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1. Introduction

The problem of determining the electrical conductivity of a computational “mixed
cell” is a challenging one under any circumstance, though the problem of averag-
ing properties across heterogeneous media is a well-studied one.1 One aspect of the
mixed-cell problem that continues to vex modelers is knowing the morphology of
the constituents within the mixed cell. By morphology I mean the spatial distribu-
tion and granularity of the constituents. This is especially relevant to the problem of
electrical conductivity, as circuits with insulators connected in serial versus parallel
configurations exhibit vastly different conductivity.

In general, based on the understanding of cell resolution, the spatial distribution of
material within a mixed cell is unknown. In some treatments, for example, with the
BLINT algorithm in CTH,2 a heterogeneous spatial distribution of material within
a mixed cell is assumed, based on the constituent fractions found in adjacent cells.
In general, however, assuming a random distribution of material within the mixed
cell is the norm.

The challenge becomes even more critical, yet more direct, when one mixed-cell
component is a perfect insulator (e.g., void). It is more critical because the net
mixed-cell conductivity drops completely to zero at the point where the conducting
component(s) of material cannot establish a route of connectivity across the cell.
However, the problem is also more direct, in that, to begin with, one can focus on
the issue of connectivity rather than conductivity.

With that perspective, we examine the issue of electrical connectivity across a ran-
domly distributed two-component mixture, in which one of the components is a
perfect insulator. This report does not propose a computational approach to address-
ing the larger problem of mixed-cell conductivity. Rather, it presents some relevant
ideas and examines their implications in the context of assessing the probability
of electrical connectivity between two arbitrary points on opposite boundaries of a
two-dimensional (2-D), two-component mixture.

2. Granularity

In addition to the distribution of the mixed-cell components within the cell volume,
which we assume as randomly distributed, another significant factor to consider is
the component granularity. That is to say, the physical size of the individual material
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fragments within the cell, relative to the overall cell size. The finer the granularity,
the more potential pathways there exist across the cell through which connectivity
can be established.

To consider this concept of granularity, we choose to model the material system
within a mixed cell as a 2-D Cartesian network of nodes, connected by horizontal
and vertical links to the nearest neighbors (examples shown in Fig. 1). The nodes
represent fixed connectivity-monitoring stations within the cell, and the dashed
links represent an abstraction of the physical material that lies between the monitor-
ing stations. This abstraction allows us to convert the physical reality of material-
component fragments within the cell into a 2-D network, with which we hope to
study the electrical connectivity between opposing nodes O and X .

O

X

O

X

O

X

Fig. 1 Several sample representations of n×n mixed-cell granularity by way of a Cartesian
nodal array (circle symbols) connected by linkages (dashed lines)

The examples provided in Fig. 1 are intended to be representative of the material
granularity within the cell. However, they are in no way intended to be definitive.
In the 4×4 sample array, for example, there are 24 linkages connecting the 16 nodal
stations, which would indicate that each link represents approximately 1/24 of the
cell’s total volume, thus providing a representation of the fragment size of the ma-
terial within the cell. In contrast, each of the 12 linkages in the 3×3 net represent
approximately 1/12 of the cell’s total volume.

3. Material Components

It has already been indicated that the linkages in Fig. 1 are abstract representations
of the material in the mixed cell. For simplicity in this introductory report, we limit
our consideration to a two-component system, in which one of the components is an
electrical insulator (such as void), while the other component is a simple conductor.

2



A key point of understanding is that a given linkage may be composed of either

conductor material or insulator material, but not both (i.e., the network linkage
represents the smallest indivisible quantity of material).

There are several ways to go about probabilistically assessing whether a given
linkage embodies conductive or insulating material. Those methods are introduced
later—at this point, one need merely comprehend that each linkage embodies ex-
actly one of the material constituents in the mixed cell (either conductor or insulator,
according to our presently considered situation).

In this way, an analysis into the probability of electrical connectivity between nodes
O and X is an indicator of whether the conductivity across the cell is likely to be
zero or some value on the order of the conductor’s intrinsic value. An inference of
the actual nonzero conductivity magnitude, based on the specifics of the connectiv-
ity, is not addressed in this introductory report, which limits itself to studying the
connectivity of the network that abstractly represents the morphological conditions
within the mixed cell.

4. Network Permutations (2×2 Example)

The netc program was written (in C, see Appendix A) to methodically explore all
the permutations that a given network can exhibit. Since a given network linkage
contains either the conductor (1) or the insulator (0), each realization of the net-
work can be identified by a binary number consisting of one digit for each of the
network’s linkages.

For example, consider the 2×2 matrix shown in Fig. 2, in which network nodes are
numbered in black and network linkages are numbered in red. The binary identi-
fier 1011 will identify the realization of the network in which linkages 0, 2, and 3
contain the conductor, and only linkage 1 contains the (“broken-link”) insulator.∗

We may deduce that such a 4-link network has a total of 16 realizations. In general,
the number of realizations, N , is expressed as

N = 2n , (1)

where n is the number of links in the network (in our example, n = 4). The netc

∗We refer to insulator links as “broken” because they break the path of conductivity.
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program explores each of these realizations, in search of connectivity between op-
posing nodes, here designated with numerals 0 and 3.

0

3

1

2

0

1

2 3

Fig. 2 A 2×2 network in which nodes and linkages have been assigned unique identification,
node numbers in black and linkage numbers in red

In some realizations, such as 1010 (conductor at linkages 0 and 2), no conduc-
tive paths connect nodes 0 to 3. In other realizations, such as 0110, exactly one
conductive pathway, node path 0-2-3, by way of links 2 and 1, will present itself.
Finally, some realizations will exist that present more than one conductive path-
way from node 0 to 3, namely, realization 1111, in which all linkages are populated
with conducting material. There, both node pathways 0-1-3 as well as 0-2-3 provide
connectivity between nodes 0 and 3.

Because the realization space is so limited, we present it in full in Table 1. We can
then aggregate the data found in Table 1 by grouping those realizations that share a
common number, k, of broken links. Such an aggregation is found in Table 2. We
denote the total number of realizations possessing k broken links as Nk . The number
of realizations that, with k broken links, retain electrical connectivity between nodes
O and X , we denote Ck .
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Table 1 Realization space for the 2×2 network

Realization Link status Broken links Pathways found Nodal path(s)

0 0000 4 0
1 1000 3 0
2 0100 3 0
3 1100 2 0
4 0010 3 0
5 1010 2 0
6 0110 2 1 0-2-3
7 1110 1 1 0-2-3
8 0001 3 0
9 1001 2 1 0-1-3
10 0101 2 0
11 1101 1 1 0-1-3
12 0011 2 0
13 1011 1 1 0-1-3
14 0111 1 1 0-2-3
15 1111 0 2 0-1-3,

0-2-3

This topology has four nodes and four links, giving 24 = 16 realizations.
We note that 43.75% or 7/16 realizations provide connectivity.

Table 2 Aggregated realization space for the 2×2 network

links
Broken

realizations
Connected / Realizations rate (%)

Connectivity

k Ck / Nk

0 1 / 1 100
1 4 / 4 100
2 2 / 6 33.3
3 0 / 4 0
4 0 / 1 0

0–4 7 / 16 43.8
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5. Statistical Analysis of Permutations

The goal here is to statistically analyze the probability, over all possible realiza-
tions, that connectivity will be maintained in the given network, as a function of the
broken (insulating) links that are introduced. There are a number of ways in which
the permutations of a given network may be analyzed to this end, two of which we
pursue in this report.

One technique is to assign a local conduction probability, f , that any given (indis-
tinguishable) linkage in the network will be a conductor. The other technique is to
actually constrain the global fraction, f̂ , of the conducting linkages in the network,
to an assigned value. Let us not forget that these networks we consider are being
used as analogs for a two-component mixed cell, in which one of the components
is a conductor and the other an insulator.

With either technique, let us infer something about the relationship of the network-
conduction local/global parameter ( f or f̂ ) to the void fraction of the analogous
mixed computational cell, since a material void is insulating in its nature. The total
fraction of conducting material in a mixed cell is precisely represented by the global
conducting fraction f̂ . If the total fraction of conducting material is f̂ , then the
volume fraction of the insulating (e.g., void) material is 1 − f̂ .

In a similar fashion, if f , rather than f̂ , is our independent variable, it implies that
the probability of finding conductor material at any arbitrary link in the net equals
f . Correspondingly, if the void fraction of the analogous mixed cell were 1 − f ,
the probability of finding randomly distributed conducting material at any given
location in the cell would also be f .

This correspondence of f̂ (or f ) to the mixed cell’s solid fraction is drawn so that
we may understand the connection between studying these hypothetical Cartesian
networks and the problem of mixed-cell connectivity. Our task is to predict the
probability of network connectivity, F, as a function of f or f̂ , whichever is given.
What we find is that the relationship is highly nonlinear and reminiscent of a thresh-
old in which the likelihood of network connectivity remains suppressed until such
time that f (or f̂ ) rises above a threshold level. This observation is reminiscent of
the phenomena known as order-disorder transitions.3
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5.1 F( f ): Connectivity as a Function of Local Conduction Probability

In this first approach, we do not reject the possibility of any network realization—all
realizations are possible. However, the likelihood of any particular realization will
vary with the probability, f , that any given (indistinguishable) link is conducting.

For a network with n links, the probability P(k, f ) that, for any given realization,
exactly k out of the n links will be “broken” (insulating), may be given as

P(k, f ) = f n−k(1 − f )k . (2)

In comparison, the random likelihood∗ that any given realization will manifest is
1/N . Thus, P(k, f ) can be expressed relative to the random draw as

Prel(k, f ) =
P(k, f )
1/N

= N f n−k(1 − f )k . (3)

Equation 3 represents the normalized weight of likelihood that attaches to a realiza-
tion with k broken links, for a given value of local conduction probability, f . One
can understand this better, using the 2×2 network example, by examining values of
Prel(k, f ) in Table 3.

Table 3 For the 2×2 network, relative likelihood of k broken links in network, given local
conduction probabilities of 0.1, 0.3, 0.5, 0.7, and 0.9, respectively

k Prel(k,0.1) Prel(k,0.3) Prel(k,0.5) Prel(k,0.7) Prel(k,0.9)

0 0.002 0.130 1.000 3.842 10.498
1 0.014 0.302 1.000 1.646 1.166
2 0.130 0.706 1.000 0.706 0.130
3 1.166 1.646 1.000 0.302 0.014
4 10.498 3.842 1.000 0.130 0.002

When the single-link conduction probability is small (e.g., f = 0.1), broken links
are more likely. Thus, a single realization that has four broken links is 10.498 times
more likely than the random case in which all realizations have equal likelihood.
Correspondingly, in that case, the likelihood of manifesting a particular realization
with only one of four links broken is quite low: 0.014 times as likely as the random
case.

∗By random likelihood, we mean the likelihood of a given realization with no consideration
given to the value of f . That is to say, the likelihood if all realizations were equally probable, which
is simply given as 1/N , the inverse of the number of realizations.
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As the local conduction probability rises to 0.5, all realizations have equal probabil-
ity of occurrence. Again, as f rises above 0.5, the Prel values favor the realizations
having fewer numbers of broken links.

We now have all the information needed to reach our goal of assessing the probabil-
ity, F, of establishing connectivity, as a function of local conduction probability, f .
Each realization that exhibits connectivity must have summed its particular proba-
bility of occurring, P(k, f ):

F( f ) =
n∑

k=0
Ck P(k, f ) =

n∑
k=0

Ck

N
· Prel(k, f ) . (4)

For the 2×2 case that has been used as our example, all the information to cal-
culate F( f ) is available in Tables 2 and 3. The result of applying Eq. 4 is tabu-
lated in Table 4. Note that, because of the simplicity of the 2×2 network, without
any crosslinks, the function F may be, likewise, calculated analytically as F( f ) =

2 f 2 − f 4.

Table 4 For the 2×2 network, the probability of network connectivity, F, as a function of the
local conduction probability, f

f F( f )

0.0 0.000
0.1 0.020
0.3 0.172
0.5 0.438
0.7 0.740
0.9 0.964
1.0 1.000

5.2 F( f̂ ): Connectivity as a Function of Global Conducting Fraction

With this second approach, the process is considerably simplified relative to that
described in Section 5.1. However, it is also more limited in scope, for the reason
that the global conducting fraction, f̂ , can only take on certain discrete values.

The independent variable f̂ signifies the global fraction of linkages in the network
that are conducting. Since the number of linkages is finite and the number of con-
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ducting linkages is integral, the possible values of f̂ are limited to

f̂ =
n − k

n
(n integer, k = 0,1, ...,n) , (5)

where k is the number of broken (insulating) links in the network of n links. Thus,
there are only n + 1 possible values of f̂ , evenly distributed between f̂ = 0 and
f̂ = 1, inclusive. For small n, this can seem quite limiting.

With this approach, realizations that do not comport to the selected value of f̂ (i.e.,
the selected value of k) are excluded from consideration. Thus the result can be
very simply expressed as

F( f̂ ) =
Ck

Nk
, (6)

given as the last column of Table 2 directly and repeated again in Table 5.

Table 5 For the 2×2 network, the probability of network connectivity, F, as a function of the
global conducting fraction, f̂

f̂ F( f̂ )

0.00 0.000
0.25 0.000
0.50 0.333
0.75 1.000
1.00 1.000

5.3 Example: 2×2 Nodal Grid

The 2×2 case was used illustratively in Sections 5.1 and 5.2 of this report. The
schematic was given in Fig. 2, while tabulated results of the aggregation of permu-
tations were presented in Tables 2–5. We can use those results to present graphically
in Fig. 3 the probability of network connectivity as a function of either the local
conductivity probability, f , or the global conducting fraction, f̂ .

We see that F( f ) begins to take on an “S”-shaped aspect. The F( f̂ ) result shows
a steeper transition from insulating (F = 0) to conducting (F = 1). However, the
dearth of valid domain points, brought about by the small number of links in the
mesh, is quite apparent.
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Network Connectivity Probability
as function of single-link or

cumulative-link likelihood (2 x 2 case)

f, f (%)

0 20 40 60 80 100
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F(f ) = 2f 
2  f 4

^

^

Fig. 3 For the 2×2 network, the probability of network connectivity, F, with either f or f̂ as
the independent variable

5.4 Example: 3×3 Nodal Grid

In the 3×3 grid, there are 9 nodal points and 12 linkages, as seen in the schematic of
Fig. 4. With n = 12 linkages, the number of realizations involving conducting and
insulating link combinations is N = 212 = 4096. In addition, for every one of these
4096 realizations, the netc program must search out each of the many pathways for
connecting node 0 to node 8. For the 3×3 grid, netc determines that there are 12
unique pathways for traversing from node 0 to 8 (6 paths involving 5 nodes, 4 paths
involving 7 nodes, and 2 paths involving all 9 nodes).

The raw data are too voluminous to tabulate in the space of this report, so instead,
we jump to the aggregated data found in Table 6. Because four links are the mini-
mum to achieve connectivity in the 3×3 grid, any realizations with fewer than four
conducting links will always fail to connect.

As the enabler for calculating F( f ), we need to calculate the values of Prel for var-
ious numbers of broken links (k) and local conduction probability ( f ). Since the
number of links, n, is larger than for the 2×2 case, the enumeration in Table 7 is,
likewise, longer. Because Prel is based on fractions to the power n, the relative like-
lihoods take on more extreme values, than in the 2×2 case. The values showing
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Fig. 4 A 3×3 network in which nodes and linkages have been assigned unique identification,
node numbers in black and linkage numbers in red

in the table as 0.000 are, in fact, very small positive numbers with large negative
exponents. They are presented in truncated decimal form merely to emphasize the
relative weights placed on realizations for differing values of k. They are not trun-
cated by the netc program (except to the limit of machine precision).

The content of Tables 6 and 7 may be used in accordance with Eq. 4 to calculate
F( f ). Those results are presented in Table 8, for a number of specified values of f .

The alternative to specifying the local-conduction probability f is to specify the
global conducting fraction, f̂ . The data for this F( f̂ ) probability are generated in
accordance with Eq. 6, come from the right-hand column of Table 6 and are repre-
sented again in Table 9. Recall that f̂ is not a continuous domain, but evenly spaced
across n + 1 values in the range 0 to 1, according to Eq. 5.

The results of Tables 8 and 9 are presented graphically in Fig. 5. The “S”-shaped
character of the probability distribution is more distinct as compared to Fig. 5. We
further see that the F( f̂ ) result, while still valid only over the discrete domain in-
dicated by circles in the figure, is also developing into a steep “S”-shaped curve.
These curves represent the probability F that network connectivity is achieved.
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Table 6 Aggregated realization space for the 3×3 network

links
Broken

realizations
Connected / Realizations rate (%)

Connectivity

k Ck / Nk

0 1 / 1 100
1 12 / 12 100
2 64 / 66 97.0
3 192 / 220 87.3
4 334 / 495 67.5
5 312 / 792 39.4
6 166 / 924 18.0
7 48 / 792 6.1
8 6 / 495 1.2
9 0 / 220 0

10 0 / 66 0
11 0 / 12 0
12 0 / 1 0

0–12 1135 / 4096 27.7

Table 7 For the 3×3 network, relative likelihood of k broken links in network, given local
conduction probabilities of 0.1, 0.3, 0.5, 0.7, and 0.9, respectively

k Prel(k,0.1) Prel(k,0.3) Prel(k,0.5) Prel(k,0.7) Prel(k,0.9)

0 0.000 0.002 1.000 56.694 1156.831
1 0.000 0.005 1.000 24.297 128.537
2 0.000 0.012 1.000 10.413 14.282
3 0.000 0.028 1.000 4.463 1.587
4 0.000 0.065 1.000 1.913 0.176
5 0.000 0.151 1.000 0.820 0.020
6 0.002 0.351 1.000 0.351 0.002
7 0.020 0.820 1.000 0.151 0.000
8 0.176 1.913 1.000 0.065 0.000
9 1.587 4.463 1.000 0.028 0.000
10 14.282 10.413 1.000 0.012 0.000
11 128.537 24.297 1.000 0.005 0.000
12 1156.831 56.564 1.000 0.002 0.000

Table 8 For the 3×3 network, the probability of network connectivity, F, as a function of the
local conduction probability, f

f F( f )

0.0 0.000
0.1 0.001
0.3 0.045
0.5 0.277
0.7 0.691
0.9 0.973
1.0 1.000
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Table 9 For the 3×3 network, the probability of network connectivity, F, as a function of the
global conducting fraction, f̂

f̂ F( f̂ )

0.000 0.000
0.083 0.000
0.167 0.000
0.250 0.000
0.333 0.012
0.417 0.066
0.500 0.180
0.583 0.394
0.667 0.675
0.750 0.873
0.833 0.970
0.917 1.000
1.000 1.000

Network Connectivity Probability
as function of single-link or

cumulative-link likelihood (3 x 3 case)
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Fig. 5 For the 3×3 network, the probability of network connectivity, F, with either f or f̂ as
the independent variable
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5.5 Example: 4×4 Nodal Grid

In the 4×4 grid, there are 16 nodal points and 24 linkages, as seen in the schematic
of Fig. 6. With n = 24 linkages, the number of realizations involving conducting
and insulating link combinations is N = 224 = 16,777,216. In addition, for every
one of these nearly 17 million realizations, the netc program must search out each
of the many pathways for connecting node 0 to node 15. For the 4×4 grid, netc
determines that there are 184 unique pathways for traversing from node 0 to 15
(ranging from 7- to 15-node paths).

0
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Fig. 6 A 4×4 network in which nodes and linkages have been assigned unique identification,
node numbers in black and linkage numbers in red

The raw data are far too voluminous to tabulate in the space of this report, so in-
stead, we jump to the aggregated data found in Table 10. Because six links are the
minimum to achieve connectivity in the 4×4 grid, any realizations with fewer than
six conducting links will always fail to connect.

As the enabler for calculating F( f ), we need to calculate the values of Prel for
various numbers of broken links (k) and local conduction probability ( f ). Since the
number of links, n, is larger than for the 3×3 case, the enumeration in Table 11 is,
likewise, longer than that presented in Table 7. Because Prel is based on fractions
to the power n, the relative likelihoods take on more extreme values, than those
found in the 3×3 case. The values showing in the table as 0.000 are, in fact, very
small positive numbers with large negative exponents. The netc program, unlike the
table, does not truncate their values (below machine resolution) when using them in
calculations. The tabulated results are left in decimal form to emphasize the relative
magnitude of weight placed on realizations with differing numbers of broken links.
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Table 10 Aggregated realization space for the 4×4 network

links
Broken

realizations
Connected / Realizations rate (%)

Connectivity

k Ck / Nk

0 1 / 1 100
1 24 / 24 100
2 274 / 276 99.3
3 1976 / 2024 97.6
4 10071 / 10626 94.8
5 38392 / 42504 90.3
6 112742 / 134596 83.8
7 258144 / 346104 74.6
8 460680 / 735471 62.6
9 635632 / 1307504 48.6

10 672928 / 1961256 34.3
11 547944 / 2496144 22.0
12 344033 / 2704156 12.7
13 165956 / 2496144 6.7
14 60670 / 1961256 3.1
15 16332 / 1307504 1.3
16 3066 / 735471 0.4
17 360 / 346104 0.1
18 20 / 134596 ≈0
19 0 / 42504 0
20 0 / 10626 0
21 0 / 2024 0
22 0 / 276 0
23 0 / 24 0
24 0 / 1 0

0–24 3329245 / 16777216 19.8

The content of Tables 10 and 11 may be used in accordance with Eq. 4 to calculate
F( f ). Those results are presented in Table 12, for a number of specified values of
f .

The alternative to specifying the local-conduction probability f is to specify the
global conducting fraction, f̂ . The data for this F( f̂ ) probability are generated in
accordance with Eq. 6, come from the right-hand column of Table 10, and are rep-
resented again in Table 13. Recall that f̂ is not a continuous domain, but evenly
spaced across n + 1 values in the range 0 to 1, according to Eq. 5.
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Table 11 For the 4×4 network, relative likelihood of k broken links in network, given local
conduction probabilities of 0.1, 0.3, 0.5, 0.7, and 0.9, respectively

k Prel(k,0.1) Prel(k,0.3) Prel(k,0.5) Prel(k,0.7) Prel(k,0.9)

0 0.000 0.000 1.000 3214.200 1338258.845
1 0.000 0.000 1.000 1377.514 148695.427
2 0.000 0.000 1.000 590.363 16521.714
3 0.000 0.000 1.000 253.013 1835.746
4 0.000 0.000 1.000 108.434 203.972
5 0.000 0.000 1.000 46.472 22.664
6 0.000 0.001 1.000 19.916 2.518
7 0.000 0.002 1.000 8.536 0.280
8 0.000 0.004 1.000 3.658 0.031
9 0.000 0.010 1.000 1.568 0.003
10 0.000 0.023 1.000 0.672 0.000
11 0.000 0.053 1.000 0.288 0.000
12 0.000 0.123 1.000 0.123 0.000
13 0.000 0.288 1.000 0.053 0.000
14 0.000 0.672 1.000 0.023 0.000
15 0.003 1.568 1.000 0.010 0.000
16 0.031 3.658 1.000 0.004 0.000
17 0.280 8.536 1.000 0.002 0.000
18 2.518 19.916 1.000 0.001 0.000
19 22.664 46.472 1.000 0.000 0.000
20 203.972 108.434 1.000 0.000 0.000
21 1835.746 253.013 1.000 0.000 0.000
22 16521.714 590.363 1.000 0.000 0.000
23 148695.427 1377.514 1.000 0.000 0.000
24 1338258.845 3214.200 1.000 0.000 0.000

Table 12 For the 4×4 network, the probability of network connectivity, F, as a function of the
local conduction probability, f

f F( f )

0.0 0.000
0.1 0.000
0.3 0.013
0.5 0.198
0.7 0.678
0.9 0.975
1.0 1.000
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Table 13 For the 4×4 network, the probability of network connectivity, F, as a function of the
global conducting fraction, f̂

f̂ F( f̂ )

0.000 0.000
0.042 0.000
0.083 0.000
0.125 0.000
0.167 0.000
0.208 0.000
0.250 ≈0.000
0.292 0.001
0.333 0.004
0.375 0.013
0.417 0.031
0.458 0.067
0.500 0.127
0.542 0.220
0.583 0.343
0.625 0.486
0.667 0.626
0.708 0.746
0.750 0.838
0.792 0.903
0.833 0.948
0.875 0.976
0.917 0.993
0.958 1.000
1.000 1.000

The results of Tables 12 and 13 are presented graphically in Fig. 7. The “S”-shaped
character of the probability distribution is much more distinct, even as compared
to that in Fig. 5. We further see that the F( f̂ ) result, while still valid only over the
discrete domain indicated by circles in the figure, is more fully developed into a
steep “S”-shaped curve. Recall, these curves represent the probability F that net-
work connectivity is achieved.

The next in the series, a 5×5 network, proved too computationally challenging to
achieve. However, a slight variation on the 5×5 network, clipped at the corners in
order to reduce the number of linkages, was accomplished. Because it was not a
true n×n network, we relegate the results to Appendix B.
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Network Connectivity Probability
as function of single-link or

cumulative-link likelihood (4 x 4 case)
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Fig. 7 For the 4×4 network, the probability of network connectivity, F, with either f or f̂ as
the independent variable

6. Discussion

The results of this analysis are interesting from a variety of perspectives. First, as
the granularity of the grid is increased, from 2×2 to 3×3 and then to 4×4, the data
more sharply transition from low F to high F, occurring over a smaller change in
either f or f̂ . In addition, the domain of transition is shifting rightward, to higher
values of both f and f̂ . This trend can be seen clearly in Fig. 8.

What is to be concluded by this sharp transition from low to high values of F? Re-
call, these graphs represent the probability of network connectivity as a function of
either the local conduction probability of each indistinguishable link in the network
( f ) or, alternately, as a function of the global fraction of links that are conducting
( f̂ ).

To the left side of the transition (low f or f̂ ), the conclusion is that there is a very
low likelihood of achieving network connectivity. Conversely, to the right side of the
transition (high f or f̂ ), the likelihood of connectivity is almost assured. Recall also
that both f and, more directly, f̂ , represent analogies to the fraction of conducting
material within a mixed computational cell (i.e., the cell’s void fraction corresponds
to 1 − f or 1 − f̂ ).
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Network Connectivity as a function of
Link Connectivity (n x n cases)
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Network Connectivity as a function of
Link Connectivity (n x n cases)
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Fig. 8 For n×n networks, the probability of network connectivity as a function of either a) the
local conduction probability or b) the global conducting fraction

The steep gradient represents a threshold—a fractional quantity of conducting mate-
rial that is apparently required to bring the network into a highly probable conduct-
ing configuration. Too little conducting material results, not in a lower proportional
conductivity, but in a high likelihood of zero conductivity. At the other end of the
spectrum, the very high F values indicate that the network possesses enough redun-
dant pathways of electrical connection, that the introduction of a small fraction of
nonconducting (void) material is highly unlikely to disrupt the overall number of
pathways necessary to establish a solid electrical connection.

As an aside, an alternate (approximate) analytical method of establishing F( f ) is
shown in Appendix C.

7. Conclusion

In this report, we use the construct of an n×n network to serve as an analogy to the
problem of a computational, two-component mixed cell. In the network, linkages
between the Cartesian nodes were considered to be in one of two possible states:
conducting or insulating. A direct metaphor was drawn between the probability that
an individual network link would be conducting (or, alternately, the overall fraction
of conducting links in the network) and the fraction of conducting material found
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in the mixed cell.

In this way, studying the connectivity behavior of the network in a statistical way
provides us an understanding of the likelihood that electrical connectivity within a
mixed cell can be maintained, expressed as a function of the nonconducting void
content present in the cell.

In a real mixed cell, the morphological arrangement of the void will play a signifi-
cant role in establishing the connectivity. In this simplified approach to the problem,
the insulating links in the network (representative of void in the mixed cell) were
randomly distributed throughout the cell.

The resulting analysis, which was performed on networks of size 2×2, 3×3, and
4×4, exhibited noteworthy trends. In particular, the likelihood of connectivity in no
way was expressed in any manner proportional to the global fraction of conducting
links, nor the local (per-link) probability of conduction. Rather, a steep threshold
was noted, such that if the fraction of conducting links fell below the threshold, the
probability of establishing connectivity dropped precipitously toward zero. Con-
versely, if the fraction of conducting links was above the threshold, there arose a
very strong probability of connectivity across the network.

The observed threshold ± width was found to be, for both f and f̂ , approximately
0.65 ± 0.1. Indications are that the threshold center might increase and that the
threshold width might narrow further if networks more finely granulated than 4×4
were considered.

This modeling approach does not provide the means to interpret how mixed-cell
conductivity should vary with void content. It was not intended to do so. How-
ever, it does reveal that the mixed-cell connectivity (directly related to the presence
of nonzero conductivity) is very much driven by a threshold phenomenon. If the
conducting fraction of material in a cell falls below some critical threshold, the
probability of connectivity drops very rapidly toward zero.
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Appendix A. C99 Program to Assess Network Connectivity
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The C99 program source code, netc, is given. It is designed to handle up to 64 links
in the simulation network.

#include <stdio.h>

#include "netbuild64.c"

int main();

void topologysummary();

void setlinkstatus();

int expandfromnode();

int alreadyinnet();

void printlayout();

double likelihoodanalysis();

/*
OUTPUT MASKING:

0 = No masking

1 = Mask nodal paths

2 = and mask # of paths found, and mask broken-link count

3 = and mask Realization # & Link status

*/

int masklevel = 3;

/************************************************************/

int main()

{

long long linkcases, linkcase, connectcases,

linkstatus[99], brokenlinkcases[99], brokenlinkconnected[99];

int i, j, netnodes, brokenlinks, netnode[99];

double caselikelihood, Xlikelihood, brokenlikelihood,

linklikelihood;

int pathfound;

for (i = 0; i < 99; i++)

{

brokenlinkcases[i] = 0LL;

brokenlinkconnected[i] = 0LL;

}

printlayout (layout);

linkcases = 1LL << linkcount; /*Same as 2^linkcount*/

connectcases = 0LL;

for (linkcase = 0LL; linkcase < linkcases; linkcase++)

{

if (masklevel < 3)

printf("***Realization #%d: Links status = ", linkcase);

setlinkstatus(linkcase, linkcount, &linkstatus, &brokenlinks);

brokenlinkcases[brokenlinks] += 1LL;

pathfound = expandfromnode(0,0,&netnode,&linkstatus);

if (pathfound > 0)

{

if (masklevel < 2) printf (" (%d paths found)\n", pathfound);

connectcases += 1LL;

brokenlinkconnected[brokenlinks] += 1LL;

}

}

topologysummary(linkcases, connectcases);

/* for (linklikelihood = 0.1; linklikelihood <= 1.0;
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linklikelihood += 0.2)*/

for (linklikelihood = 0.05; linklikelihood <= 1.0;

linklikelihood += 0.05)

{

Xlikelihood = likelihoodanalysis(linklikelihood,linkcases,

&brokenlinkconnected, &brokenlinkcases);

printf ("Probability of connectivity = %3.2f%%\n", Xlikelihood);

}

Xlikelihood = likelihoodanalysis(-1.,linkcases,

&brokenlinkconnected, &brokenlinkcases);

}

/************************************************************/

void topologysummary(linkcases, connectcases)

long long linkcases, connectcases;

{

double fraccases;

printf ("\n");

printf ("This topology has %d nodes and %d links, ",

nodes, linkcount);

printf ("giving 2^%d = %jd realizations.\n",

linkcount, linkcases);

fraccases = (100.*connectcases)/linkcases;

printf ("\n%3.2f%% or %jd/%jd realizations provide"

" connectivity.\n", fraccases, connectcases, linkcases);

return;

}

/************************************************************/

void setlinkstatus(linkcase, linkcount, plinkstatus, pbrokenlinks)

long long linkcase, *plinkstatus;

int linkcount, *pbrokenlinks;

{

int L;

*pbrokenlinks = 0;

if (masklevel < 3) printf("[");

for (L = 0; L < linkcount; L++)

{

*(plinkstatus+L) = linkcase >>L & 1LL;

if (*(plinkstatus+L) != 1LL) *pbrokenlinks+= 1;

if (masklevel < 3) printf("%jd", *(plinkstatus+L));

}

if (masklevel < 3) printf("]");

if (masklevel < 2) printf(" (%d broken links)", *pbrokenlinks);

if (masklevel < 3) printf ("\n");

return;

}

/************************************************************/

int expandfromnode(n, netnodes, pnetnode, plinkstatus)

long long *plinkstatus;

int n, netnodes, *pnetnode;

{

int path, L, k, NN, pathfound, nestpf;

*(pnetnode+netnodes) = n;

netnodes++;

if (n == (nodes-1))

24



{

if (masklevel < 1)

{

printf(" %d-node path: ", netnodes);

for (k=0; k < netnodes; k++)

{

if (k != 0) printf (",");

printf("%d", *(pnetnode+k));

}

printf("\n");

}

pathfound = 1;

return (pathfound);

}

pathfound = 0;

path = 0;

for (path=0; path < nlinks[n]; path++)

{

L = link[n][path];

if (*(plinkstatus+L) == 1LL)

{

for (k=0; k<2; k++)

{

if (k==0)

NN = nA[L];

else

NN = nB[L];

if (alreadyinnet(NN, netnodes, pnetnode) == 0)

{

nestpf = expandfromnode(NN, netnodes, pnetnode, plinkstatus);

pathfound += nestpf;

}

}

}

}

return (pathfound);

}

/************************************************************/

int alreadyinnet(NN, netnodes, pnetnode)

int NN, netnodes, *pnetnode;

{

int status, i;

status = 0;

for (i=0; i<netnodes; i++)

{

if (*(pnetnode+i) == NN)

status = 1;

}

return (status);

}

/************************************************************/

void printlayout (layout)

char layout[][50];

{
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int i, j;

for (i=0; layout[i][0] != ’\0’; i++)

{

for (j=0; layout[i][j] != ’\0’; j++)

{

printf("%c", layout[i][j]);

}

printf ("\n");

}

printf ("\n\n");

}

/************************************************************/

double likelihoodanalysis(linklikelihood, linkcases,

pbrokenlinkconnected, pbrokenlinkcases)

long long linkcases, *pbrokenlinkconnected, *pbrokenlinkcases;

double linklikelihood;

{

int i, j;

double Xlikelihood, brokenlikelihood, caselikelihood;

if (linklikelihood >= 0)

printf ("\nFor a single-link likelihood (SLL) of %4.2f:\n",

linklikelihood);

else

printf("\nCumulative-link likelihood (CLL) analysis:\n");

Xlikelihood = 0.;

for (i=0; i < linkcount + 1; i++)

{

brokenlikelihood = 100. *
(*(pbrokenlinkconnected+i))/(*(pbrokenlinkcases+i));

printf ("With %d broken links, %jd/%jd realizations (%3.2f%%)"

" connect",

i, *(pbrokenlinkconnected+i), *(pbrokenlinkcases+i),

brokenlikelihood);

if (linklikelihood >= 0){

caselikelihood = 1.0;

for (j=0; j < linkcount; j++)

{

if (j < i)

caselikelihood *= (1.-linklikelihood)/0.5;

else

caselikelihood *= linklikelihood/0.5;

}

printf (" at %5.3fx random likelihood\n",

caselikelihood);

Xlikelihood += *(pbrokenlinkconnected+i) * caselikelihood;

}

else

{

Xlikelihood = 1. * (linkcount - i) / linkcount;

printf (" with CLL = %1.3f\n", Xlikelihood);

}

}

Xlikelihood *= 100. / linkcases;

return Xlikelihood;
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}

/************************************************************/
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The #included file netbuild64.c, defines the net connectivity for the cases con-
sidered. Different versions exist for each of the three networks considered in this
report.

netbuild64.c (2×2 case)

/**2x2*******************************************************/

static char layout[][50] ={

"4 NODES:",

" ",

"0 +---+ 1",

" | |",

" | |",

" | |",

"2 +---+ 3",

" ",

"4 LINKS:",

" ",

" +-0-+",

" | |",

" 2 3",

" | |",

" +-1-+",

"",

};

static int linkcount = 4;

static int nodes = 4;

static int nA[] = {0,2,0,1};

static int nB[] = {1,3,2,3};

static int link[][2] = {{0,2},

{0,3},

{1,2},

{1,3}};

static int nlinks[] = {2,2,2,2};
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netbuild64.c (3×3 case)

/**3x3*******************************************************/

static char layout[][50] ={

"9 NODES:",

" ",

" 1",

"0 +---+---+ 2",

" | | |",

"3 +---+4--+ 5",

" | | |",

"6 +---+---+ 8",

" 7",

" ",

"12 LINKS:",

" ",

" +-0-+-1-+",

" 6 8 10",

" +-2-+-3-+",

" 7 9 11",

" +-4-+-5-+",

""

};

static int linkcount = 12;

static int nodes = 9;

static int nA[] = {0,1,3,4,6,7,0,3,1,4,2,5};

static int nB[] = {1,2,4,5,7,8,3,6,4,7,5,8};

static int link[][4] = {{0,6},

{0,1,8},

{1,10},

{2,6,7},

{2,3,8,9},

{3,10,11},

{4,7},

{4,5,9},

{5,11}};

static int nlinks[] = {2,3,2,3,4,3,2,3,2};
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netbuild64.c (4×4 case)

/**4x4*******************************************************/

static char layout[][50] ={

"16 NODES:",

" ",

" 1 2",

" 0 +---+---+---+ 3",

" | | | |",

" 4 +---+5--+6--+ 7",

" | | | |",

" 8 +---+9--+10-+ 11",

" | | | |",

"12 +---+---+---+ 15",

" 13 14",

" ",

"24 LINKS:",

" ",

" +-0-+-1-+-2-+",

" 12 15 18 21",

" +-3-+-4-+-5-+",

" 13 16 19 22",

" +-6-+-7-+-8-+",

" 14 17 20 23",

" +-9-+-10+-11+",

""

};

static int linkcount = 24;

static int nodes = 16;

static int nA[] =

{0,1,2,4,5,6,8, 9,10,12,13,14,0,4, 8,1,5, 9,2, 6,10,3, 7,11};

static int nB[] =

{1,2,3,5,6,7,9,10,11,13,14,15,4,8,12,5,9,13,6,10,14,7,11,15};

static int link[][4]= {{0,12},

{0,1,15},

{1,2,18},

{2,21},

{3,12,13},

{3,4,15,16},

{4,5,18,19},

{5,21,22},

{6,13,14},

{6,7,16,17},

{7,8,19,20},

{8,22,23},

{9,14},

{9,10,17},

{10,11,20},

{11,23}};

static int nlinks[] = {2,3,3,2,3,4,4,3,3,4,4,3,2,3,3,2};
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Appendix B. Example: A 5×5 (Clipped) Nodal Grid
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This example is not included directly in the report, because it does not represent a
pure n×n network. Instead, it is a 5×5 network with the two lateral corner nodes
clipped from the network, as shown in Fig. B-1. As it is, the network contains
36 linkages, which translates to 236 = 68,719,476,736 (68.7 billion) statistical
realizations, each of which requires checking for all of the 2746 possible pathways
from node O to X (amounting to over 188 trillion pathways that must be checked).

O

X

Fig. B-1 A 5×5 nodal network, clipped at corners, containing 23 nodes and 36 linkages

Retaining the clipped corner nodes, while desirable, proved to be computationally
prohibitive. Thus, the corner clipping was introduced to get a sense of how the true
5×5 network might behave. Because the tabulated results are voluminous, they are
omitted. We instead jump directly to the graphical result shown in Fig. B-2. We see,
as n increases, the F( f ) and F( f̂ ) behavior become more closely aligned with each
other, compared with, for example, Figs. 3 or 5.

We may add these graphs atop the summaries for F( f ) and F( f̂ ), in order to ob-
serve the trend as the network width n is increased. We do so, in red, in Fig. B-3.
We observe that the expected trend continues that, as n increases, the threshold to
activate F becomes both steeper and shifts toward the direction of increasing f and
f̂ .

Finally, we present the netbuild64.c input file employed by the netc program, for
the case of the clipped 5×5 network.
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Network Connectivity Probability
as function of single-link or

cumulative-link likelihood (5 x 5* case)
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Fig. B-2 For the 5×5 (clipped) network, the probability of network connectivity, F, with either
f or f̂ as the independent variable
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Fig. B-3 For n×n networks (including the clipped 5×5 network), the probability of network
connectivity as a function of either a) the local conduction probability or b) the global con-
ducting fraction
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netbuild64.c (5×5 (clipped) case)

/**5x5(corners removed)**************************************/

static char layout[][50] ={

"23 NODES:",

" ",

" +0--+1--+2--+3 ",

" | | | | ",

" +4--+5--+6--+7--+8",

" | | | | |",

" +9--+10-+11-+12-+13",

" | | | | |",

" +14-+15-+16-+17-+18",

" | | | |",

" +19-+20-+21-+22",

" ",

"36 LINKS:",

" ",

" +-0-+-1-+-2-+",

" 18 21 25 29",

" +-3-+-4-+-5-+-6-+",

" 19 22 26 30 33",

" +-7-+-8-+-9-+-10+",

" 20 23 27 31 34",

" +-11+-12+-13+-14+",

" 24 28 32 35",

" +-15+-16+-17+",

""

};

static int linkcount = 36;

static int nodes = 23;

static int nA[] =

{0,1,2, 4,5,6,7, 9,10,11,12, 14,15,16,17, 19,20,21,

0,4,9, 1,5,10,15, 2,6,11,16, 3,7,12,17, 8,13,18};

static int nB[] =

{1,2,3, 5,6,7,8, 10,11,12,13, 15,16,17,18, 20,21,22,

4,9,14, 5,10,15,19, 6,11,16,20, 7,12,17,21, 13,18,22};

static int link[][4]= {{0,18},

{0,1,21},

{1,2,25},

{2,29},

{3,18,19},

{3,4,21,22},

{4,5,25,26},

{5,6,29,30},

{6,33},

{7,19,20},

{7,8,22,23},

{8,9,26,27},

{9,10,30,31},

{10,33,34},

{11,20},

{11,12,23,24},
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{12,13,27,28},

{13,14,31,32},

{14,34,35},

{15,24},

{15,16,28},

{16,17,32},

{17,35}};

static int nlinks[] =

{2,3,3,2, 3,4,4,4,2, 3,4,4,4,3, 2,4,4,4,3, 2,3,3,2};

35



Appendix C. Approximate (Analytical) Evaluation of F( f )
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The approaches derived in this report examine each permutative realization of the
network (which represents an analogy to a mixed cell). While providing an exact
tabulation of those realizations, the method is not very scalable, as the number of
permutations, N , grows as 2n, where n is the number of linkages in the network. The
value of 2n quickly exceeds computational capacity as n grows, since the method
employed uses a brute-force approach to the examination.

The approach can be streamlined and even evaluated analytically, if an approxi-
mation is made. We demonstrate the approximation for the 3×3 network, whose
topology is repeated for convenience as Fig. C-1. We seek to evaluate the probabil-
ity of connectivity between nodes 0 and 8.

For the approximation, let us assume that the connectivity path across the network
is precluded from experiencing “reversals”. Here, a reversal is defined as a nodal
pathway that locally moves upward and/or leftward to reach the terminus. If all valid
pathways are limited to those that traverse the network in a rightward and/or down-
ward direction, in the process of connecting node 0 to node 8, then straightforward
analytical methods can be brought to bear.

0
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0 1 2

3 4
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6 7

1

2 3

4 5

6

7

8

9

10

11

Fig. C-1 A 3×3 network in which nodes and linkages have been assigned unique identification,
node numbers in black and linkage numbers in red

The preclusion of reversals means that the network can be analyzed as a standard
probability tree, with the probability of each linkage specified as f . If the probabil-
ity of connectivity between nodes 0 and A is FA, and node C can only be reached
directly from node A, then FC = f FA. If, on the other hand, node C can be reached
directly from two separate nodes, A and B, then FC = f FA + f FB − f 2FAFB.
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Using this approach, the probability of connectivity between node 0 and each suc-
cessive node in the 3×3 network can be established until, at last, node 8 is reached
to establish the probability, F, that node 0 connects to node 8.

=

=

F( f ) = F8 =

=

F5 = F7 =

=

F4 =

F2 = F6 =

F1 = F3 =

F0 =

2 f 4(3 − f 2 − 2 f 3 + f 5) − f 8(3 − f 2 − 2 f 3 + f 5)2
2 f F5 − ( f F5)

2
f (F5 + F7) − f 2F5F7

f 3(3 − f 2 − 2 f 3 + f 5)

f (F2 + F4) − f 2F2F4

2 f 2 − f 4
f (F1 + F3) − f 2F1F3

f 2
f

1

This analytical, yet approximate, estimation of F( f ), which excludes reversals, can
be directly compared with the exact result established in Section 5.4 of this report.

Network Connectivity Probability
as function of single-link or

cumulative-link likelihood (3 x 3 case)
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Fig. C-2 For the 3×3 network, the probability of network connectivity, F( f ), comparing exact
and approximate methods
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