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1. Introduction 

To predict the responses of energetic materials (EMs) to a variety of conditions 
pertinent to their life cycle, US Army Combat Capabilities Development Command 
(CCDC) Army Research Laboratory (ARL) researchers develop and apply physics-
based models of the phenomena that underlie them. Relevant to both performance 
and vulnerability, responses are strongly related to the EM’s rate of decomposition. 
Therefore, the models must include a chemical kinetics mechanism to compute that 
rate. Moreover, to provide insights with the potential to inform the development of 
propellant and explosive formulations, the mechanisms must be “detailed” (i.e., 
include parameterized formulae for computing the rate coefficients of relevant 
elementary reactions and the thermochemical properties of the species involved in 
those reactions). 

For applications for which ARL researchers believe reliable formulae for 
computing reaction rates and thermochemical properties need to be established, 
they employ state-of-the-art computational approaches to develop them. Over the 
past decade, significant increases in computing power and advances in 
computational methods have enabled them to parameterize formulae for reactions 
involving increasingly large molecules. Added to existing mechanisms and 
integrated into computational fluid dynamics (CFD) models, they have led to 
insights into phenomena ranging from the ignition delays in hydrazine-alternative 
hypergolic propulsion systems,1 to the prediction of burning rates for disruptive 
EMs that have yet to be produced in quantities sufficient for them to be measured.2 
However, the time and effort required to establish and validate such formulae has 
prevented them from being widely developed and used. It typically takes 6–12 
months to develop formulae for a new application. Therefore, their potential to 
positively impact munitions development programs with expected life cycles of  
1–3 years can be limited. 

A number of factors contribute to the length of time it takes to develop and apply 
parameterizations for reaction-rate coefficients and species thermochemical 
properties for new reactions. One is the validation process. Although ARL 
researchers employ state-of-the-art computational approaches to develop 
parameterizations, it is only when they are included in a model as part of a detailed 
mechanism that they can be critically evaluated. Canonical (idealized) combustion 
models are invaluable for this purpose. However, current mechanisms have as many 
as eight times more elementary reactions and species than those of a decade ago, 
and the computational costs associated with these models increase quadratically to 
cubically with the number of species (NS), making them O(10–100) times more 
expensive. Such costs also have to be borne for other applications of these models, 
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including predicting EM burning rates,2 their response to conditions like slow cook-
off,3 and mechanism reduction.4–6 Outpacing increases in single-core computing 
power over that same time period, the (wall) times needed to run the original serial 
implementations of a core set of programs employed for these purposes were 
becoming untenable. 

Believing wall times could be reduced by refactoring the programs to harness the 
parallel processing of High Performance Computing Modernization Program 
(HPCMP) DOD Supercomputing Resource Center (DSRC) platforms, but not 
having the expertise necessary to do so, ARL researchers requested User 
Productivity Enhancement, Technology Transfer, and Training (PETTT) 
reactionary assistance (RA). Through the incorporation of node-level parallelism 
via OpenMP threading, significant reductions in the runtimes of four programs 
were achieved. The performance improvements increase the likelihood that 
mechanism development will be undertaken in the first place, and increase the 
potential of the mechanisms that are created to accelerate munition development 
because more time is available to exploit them. 

2. Algorithm Descriptions 

All the programs for which refactorings were sought were ARL-customized 
versions of subroutines in the venerable CHEMKIN package for the analysis of 
gas-phase reaction dynamics. CHEMKIN is now a commercial7 product; however, 
all work involved precommercial versions of subroutine packages developed by the 
US Department of Energy. Referred to herein by their CHEMKIN name, they 
included SENKIN, OPPDIF, and PREMIX. SENKIN computes the time evolution 
of a homogeneous reacting gas mixture in a closed system. (Its results are referred 
to hereafter as homogeneous reactor [HR] simulations.) SENKIN is also employed 
as a subroutine in a mechanism reduction program called TMM3.4–6 OPPDIF 
computes species and temperature profiles for steady-state opposed-flow diffusion 
flames. PREMIX computes species and temperature profiles for steady-state 
burner-stabilized and freely propagating premixed laminar flames. It is also 
employed as a subroutine for a program employed to predict EM burning rates 
called CYCLOPS.2,8 Aspects of these programs that were relevant to their 
refactoring are as follow. 

2.1 TMM3 

TMM3 was the first program that was refactored. It produces skeletal/reduced 
mechanisms from a full (i.e., comprehensive) mechanism. It accomplishes that by 
the following: 
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1. Randomly reordering the full mechanism’s reactions. 

2. Sequentially eliminating individual reactions from the randomized mechanism 
on a trial basis. 

3. Running (SENKIN) HR simulations with the (trial) mechanism created by each 
elimination. 

4. Permanently eliminating a reaction if changes to selected results of the 
simulations do not exceed specified criteria.  

If all reactions involving a chemical species are eliminated, that species is also 
removed from the mechanism. 

The first (major) step of the reduction process—randomly ordering the sequence of 
reactions in the full mechanism—is performed because the impact that the 
elimination of a reaction has on an HR simulation can depend on whether other 
reactions have already been eliminated. Because of this dependence, ARL 
researchers attempt to increase the probability that a viable skeletal mechanism will 
be produced by applying the screening process to many different orderings; 40 to 
100 will typically be processed. With appropriate job submission scripts, different 
orderings could be (and were) reduced in parallel on HPCMP DSRC platforms, but 
each reduction was done in serial. Given this framework, I focused on reducing the 
runtime for a given ordering by exploiting parallelism to reduce the runtimes of the 
individual HR simulations. 

Several factors determine the computational cost of HR simulations run for a 
TMM3-based reduction. The HR model is defined by a set of ordinary differential 
equations (ODEs). 

𝜕𝜕𝒖𝒖
𝜕𝜕𝜕𝜕

= 𝑓𝑓(𝒖𝒖), (1) 

where u is the vector of state variables and f(u) is the right-hand-side (RHS) 
function that prescribes species and energy conservation (governing equations). 
State variables include the mass fractions (Yj) of each species (j) and (for all 
reductions performed to date) temperature (T). Thus, the number of species (NS) in 
the chemical kinetics mechanism establishes the number of ODEs: NS+1. The 
number of reactions (NR) in the mechanism also impacts the cost because each 
contributes a source term to each conservation equation. 

Because reaction rates (typically) have an exponential dependence with respect to 
1/T, and possibly Tn as well, the RHS function is highly nonlinear, resulting in the 
ODEs being stiff. Stiffness lacks a rigorous mathematical definition but, in general, 
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refers to systems in which the integration step (h) of a numerical method is 
constrained by stability, not by accuracy. That is, h is forced to be far smaller than 
necessary to satisfy the specified level of accuracy. Stiffness often arises in 
combustion modeling due to the wide range of time-scales between fast- and  
slow-reaction chemical species. Stiff systems can be efficiently integrated with 
implicit integration methods that are stable regardless the size of h allowing the 
step-size to be adjusted only based on the accuracy requirements. In TMM3, the 
ODEs of the HR model are integrated in time using version 3.0 of DASPK.9 The 
DASPK library employs a variable-order (between first- and fifth-order) backward 
difference formula with variable h.  

DASPK, like most implicit integration methods, requires the computation of the 
ODE system’s Jacobian matrix (J): 

𝐽𝐽 = 𝜕𝜕𝜕𝜕(𝒖𝒖)
𝜕𝜕𝒖𝒖

 (2) 

In the HR models called by TMM3, J is a dense matrix with (NS+1)2 elements. 
Analytical expressions for computing its elements may be derived,10 but doing so 
would be difficult because there are many different types of reactions (and thus 
source term types) involved in the mechanisms developed by ARL scientists. For 
this reason, the following numerical approximation based on finite-differences is 
used instead: 

𝐽𝐽𝑖𝑖𝑖𝑖 ≅  𝜕𝜕𝑖𝑖
�𝑢𝑢𝑗𝑗+𝜀𝜀�−𝜕𝜕𝑖𝑖�𝑢𝑢𝑗𝑗�

𝜀𝜀
 (3) 

where for RHS (sub)function i, 𝜀𝜀 is a value that is small relative to uj. 

Each approximation of J requires NS+2 RHS evaluations. Since the number of 
source terms that must be computed for each of those evaluations is proportional to 
NR, which also generally increases in proportion to NS, the cost of the  
finite-difference approximation of J typically increases quadratically with NS and 
can be very costly. Fortunately, each column vector can be evaluated 
independently, and this was the primary source of parallelism implemented in 
TMM3. In addition, since J does not contribute directly to the updated u, an 
approximation of J is sufficient so long as the system converges efficiently. 
Exploiting this fact, DASPK will reuse the same J for up to six timesteps to reduce 
the number of times it has to be recomputed. 

A lower-upper (LU) factorization of the iteration matrix (i.e., [𝐼𝐼 − 𝛽𝛽ℎ𝐽𝐽]) is also 
needed to update the solution vector for each iteration. Since the matrix is dense, 
the cost is proportional to (NS+1)3 (i.e., cubic), and thus very high for large NS. 
DASPK originally used subroutines in the LINPACK11 library to perform the 
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factorization. Basic Linear Algebra Subprogram (BLAS)12 functions were also used 
extensively for vector–vector operations (i.e., Level-1 BLAS). More-efficient 
factorization algorithms are available in the LAPACK13 library, which provides the 
same functionality as LINPACK and, in some instances, node-level parallelism. 

2.2 SENKIN 

Representing the simplest canonical combustion problem, an HR model derived 
from SENKIN is the first one employed by an ARL researcher to evaluate a new 
mechanism. Solutions are analyzed to determine if results for state variables and 
(possibly) derived properties are consistent with expectations. In addition, the 
solutions are analyzed to identify individual reactions or groups of reactions that 
have the most impact on a system’s dynamics. That is facilitated by the model’s 
capacity to perform sensitivity analyses. 

Sensitivity analyses* involve computing the sensitivity coefficient 𝑠𝑠𝑖𝑖 for a 
parameter 𝑝𝑝𝑖𝑖 (i.e., 𝑠𝑠𝑖𝑖 = ∂𝒖𝒖

∂𝑝𝑝𝑗𝑗
) via the forward sensitivity equation: 

∂𝑠𝑠𝑗𝑗
∂𝜕𝜕

= ∂𝜕𝜕(𝒖𝒖)
∂𝒖𝒖

𝑠𝑠𝑖𝑖 + ∂𝜕𝜕(𝒖𝒖)
∂𝑝𝑝𝑗𝑗

 . (4) 

To exploit the fact that the coefficient of the first term of the RHS is the Jacobian 
of the ODE system, DASPK implements a staggered corrector method9 in which 
the governing ODE system is solved first (i.e., the Newton iteration for a timestep 
is converged) and then the same J is used to update the sensitivity equations, thus 
avoiding an additional, costly J evaluation. 

An arbitrary number of sensitivity equations can be solved in SENKIN. However, 
ARL researchers commonly compute sensitivity coefficients with respect to the 
pre-exponential factor of the modified Arrhenius function employed to compute 
reaction-rate coefficients. For such computations, there are NR 𝑝𝑝𝑖𝑖 terms resulting 
in [NR*(NS+1)] sensitivity equations that must be solved. Although J (and its LU 
factorization) can be reused for each sensitivity equation, the triangular forward and 
backward solves needed for the LU decomposition for each sensitivity equation are 
very costly. Furthermore, each 𝑠𝑠𝑖𝑖 requires the computation of ∂𝜕𝜕(𝑢𝑢)

∂𝑝𝑝𝑗𝑗
 terms, which 

like the elements of J, are calculated via finite differences. Therefore, even though 
the sensitivity equations are linear, and thus generally easier to solve than the 
governing equations, when NR and NS are large, their cost can be considerable, 
indeed often being the dominant cost of a simulation. 

                                                 
* For an introduction to forward sensitivity equation solution methods, see the CVODES14 documentation. 
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2.3 OPPDIF 

OPPDIF15 attempts to find the steady-state solution for opposed-flow diffusion 
flame problems. It supposes that two circular, gaseous jet streams with opposed 
velocities impinge and form a stagnation plane with a stationary diffusion flame. 
Presuming radial symmetry, such problems reduce to one (spatial) dimension 
oriented in the axial direction. The governing equations include NS+1 equations to 
enforce species and energy conservation and three equations to enforce mass and 
momentum conservation (i.e., NS+4 total governing equations). Boundary 
conditions are specified at both ends of the domain, establishing a two-point 
boundary value problem (BVP). OPPDIF is often used to analyze the impact of 
strain-rates on a flame’s properties, including extinction. 

Accounting for the molecular transport of species, momentum and energy in a 
multicomponent gaseous mixture requires the computation of diffusion 
coefficients, viscosities, thermal conductivities, and thermal diffusion coefficients. 
For OPPDIF simulations, these parameters are computed via calls to a library called 
TRANLIB, which is a companion of CHEMKIN. It can implement either  
mixture-averaged or full multicomponent approaches to compute them. The former 
involves determining a gas’s properties from properties for pure species via mixture 
averaging rules. The latter is more accurate, but is much more computationally 
expensive. The evaluation of ordinary multicomponent diffusion coefficients 
requires the inversion of an NS × NS matrix, and the evaluation of thermal 
conductivity and thermal diffusion coefficients requires solving a 3*NS × 3*NS 
system of algebraic equations. 

The steady-state equations are discretized on a nonuniform 1-D grid. Convective 
terms are computed based on first-order upwind differences, and diffusive terms are 
computed based on second-order central differences. The mesh is automatically 
refined to resolve steep gradients. 

The BVP is solved via the TWOPNT math library. It uses Newton’s method to 
search for solutions. If a search fails, TWOPNT will attempt to generate a better 
initial guess for it by marching the system forward in pseudo-time using an implicit 
method. Both the pseudo-time and Newton algorithms require computing a 
Jacobian for the problem being solved. Since there are (NS+4) unknown state 
variables at each mesh point, but each mesh point is dependent only upon its 
immediate neighbors, the Jacobian is block-tridiagonal with square submatrix 
blocks each with (NS+4) × (NS+4) elements. As in TMM3 and SENKIN, finite 
differences are employed to evaluate elements of the matrix. 
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TWOPNT stores the Jacobian in a banded format with a bandwidth of  
[2*(NS+4)-1] above and below the diagonal. There are [(NS+4)*NP] unknown 
state variables in OPPDIF problems, where NP is the number of mesh points. The 
banded format requires approximately [4*NP(NS+4)2] terms. (Note that this 
storage allocation is larger than needed for the block-tridiagonal matrix; the 
additional terms are included to support partial-row pivoting in the LU 
factorization.) 

The overall cost of OPPDIF is difficult to predict due to the manner in which 
TWOPNT searches for a solution. In some cases, the search will converge rapidly 
on a coarse mesh and all subsequent refined meshes. However, in other instances, 
thousands of pseudo-timesteps and many Newton iterations may be required to find 
the solution on the final mesh. Additionally, as will be discussed later, the cost 
grows exponentially with the NP, and most of the computational time is spent 
finding solutions on refined meshes. For this reason, I focused on accelerating the 
per-iteration cost when NP is large. 

As in TMM3 and SENKIN, the major cost of a pseudo-timestep or a Newton 
iteration in OPPDIF involves the assembly and factorization of the Jacobian. 
Indeed, due to the spatial dimension (i.e., the mesh points), their size can be of 
O(10–100) times larger than those encountered in TMM3 or SENKIN, making the 
cost of their assembly and factorization extremely high. Furthermore, the LU 
factorization of the Jacobian can be exceedingly† costly. As in TMM3 and 
SENKIN, the Jacobian can be assembled in parallel when using the  
finite-difference approximation. Note that while there are [NP*(NS+4)] columns, 
only [3*(NS+4)+1] RHS evaluations are needed to form the Jacobian due to its 
block-tridiagonal structure.‡ In addition, though their scalability is generally less 
efficient than for a dense matrix, parallel LU factorization methods are available 
for banded matrices. 

Another significant cost on a per-iteration basis is the computation of the RHS 
function. This involves 1) evaluating the convective and diffusive fluxes between 
all mesh points and 2) evaluating the net reaction rates at each point. NP evaluations 
of the reaction rates (i.e., one per point) can become quite costly, as can the 
evaluation of the diffusion coefficients. In the latter, the evaluation of the NS2 terms 
of the binary diffusion coefficient matrix must be factorized and solved with 
O(NS3) cost if the multicomponent formulation approach is employed. An O(NS2) 
                                                 
† Iterative Krylov methods for solving the linear systems are supported in OPPDIF. These may be useful for 
larger mechanisms when the cost of direct factorization becomes prohibitive in terms of memory or time.  

‡ Since a mesh point is only dependent upon its immediate (±1) neighbors, every third block-state vector can 
be perturbed, thereby evaluating multiple, linearly independent columns vectors with each RHS evaluation. 
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cost is incurred if the mixture-averaged approach is employed. The fluxes, 
diffusion, and reaction-rate computations can be evaluated concurrently, providing 
some parallelism in the computation of the RHS function.  

2.4 PREMIX 

PREMIX16 is designed to set up and find steady-state solutions for two premixed 
flame types: 1) laminar, freely propagating flames and 2) burner-stabilized flames. 
Measured (or modeled) heat loss to the burner device and measured temperature 
problems can be specified in the burner-stabilized model. Laminar flame speed is 
often the target output of the freely propagating model. 

PREMIX is very similar to OPPDIF in that a 1-D flame is simulated on a  
finite-difference mesh and solved with TWOPNT. Its solution search algorithm and 
discretization method are the same as OPPDIF’s. Computational aspects such as 
the Jacobian’s structure and RHS evaluation details are also the same. Since these 
account for the bulk of the computational cost, the OPPDIF analysis applied to 
PREMIX. (The number of governing equations in PREMIX is NS+2, two less than 
OPPDIF. For large mechanisms, the difference in computational cost is negligible.) 
Therefore, the optimization methods implemented were identical. 

3. Optimization Methods 

As already discussed, all four programs and the supporting libraries were serial 
codes, and thus could only use a single central processing unit (CPU) core on DSRC 
computing platforms. They were originally developed in the 1980s and 1990s at a 
time when the dominant high-performance computing (HPC) paradigm was vector 
parallelism on a single CPU. This approach exploits data parallelism in which the 
same operation (e.g., addition) can be applied concurrently to separate data (e.g., 
increment each element of an array concurrently). This approach is still supported 
in modern HPC systems via single-instruction, multiple data (SIMD) parallelism 
within each CPU core. However, all modern HPC systems are multicore with O(10) 
CPU cores per node. As such, to fully harness the computing power available on 
DSRC platforms, applications must exploit multicore parallelism. 

The two dominant parallel programming paradigms for modern multicore HPC 
systems are shared memory and distributed memory. Both are suitable for programs 
in which domains can be partitioned into sections and processed concurrently. 

Shared-memory (shmem) parallelism (generally) uses a multithreaded 
programming method so that all threads can view the same memory (along with 
their own private memory). Multiple threads of execution are spawned from the 
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parent process. In the HPC context, one (or several) threads are assigned to each 
CPU core. This approach allows an application to use all the cores on a single 
compute node but does not support parallelism across multiple nodes. The threads 
in a shmem application communicate, implicitly or explicitly, by updating shared 
memory locations and by synchronizing. Since threads can access the same 
memory, care must be taken to ensure only one thread updates a shared variable at 
a time. Otherwise, the value of the shared variable becomes undetermined. This is 
referred to as a race condition. 

Distributed-memory parallelism uses multiple processes, each with its own 
(unshared) memory, that communicate explicitly. The most common 
communication method is via the message passing interface (MPI) standard. There 
is no limit to the number of processes that can be run in parallel in the distributed-
memory paradigm; all cores across hundreds or thousands of nodes can be used 
concurrently. However, the development of such applications is generally much 
more difficult than shmem applications. In particular, the developer must explicitly 
partition the problem domain and assign each MPI process a portion of the 
partitioned workload. Furthermore, all communication is explicit: data must either 
be sent and received between individual processes (i.e., point-to-point messages) 
or all processes must participate in collective communication operations (e.g.,  
all-to-all, one-to-all, or all-to-one). 

Shmem, while limited to node-level parallelism, was selected for this refactoring 
effort because (generally) it is faster to incorporate into existing serial applications 
and supports incremental optimization. I employed the OpenMP17 multithreading 
language to implement it. 

OpenMP is commonly used to implement shmem parallelism in computational 
science applications. It supports the fork-join threading model§ in which the 
application runs serially until a parallel region is encountered. In the fork-join 
model, a fixed number of threads are created (i.e., forked) from the master (serial) 
thread upon entry into a parallel region. The workload inside the region is 
partitioned via a work-sharing partitioning algorithm, and each thread executes its 
assigned portion of the overall workload. At the end of the parallel region, all 
threads synchronize and are joined back into the master thread. At this point the 
code returns to serial mode until the next parallel region is encountered. 

A common example of the OpenMP work-sharing approach is partitioning 
iterations of a loop and executing the partitions in parallel. Briefly, the k loop 

                                                 
§ Fork-join parallelism with work-sharing is often sufficient for applications dominated by large loop 
structures. OpenMP also supports task-based parallelism for unstructured parallelism. 
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iterations are split into p contiguous, non-overlapping chunks of size (k/p). (In 
OpenMP, k does not need to be an integer multiple of p. At most, q threads will 
execute an extra loop iteration where q = [ k modulo p ].) Commonly, p equals the 
number of threads. The partitioned loop iterations are then executed concurrently 
and, in the ideal case, will complete p times faster than the serial version. In 
practice, this perfect scaling is rarely achieved due to the overhead associated with 
forking the threads and synchronization. 

Any number of parallel regions may be set up with OpenMP. This allows for 
incremental parallelization of suitable regions of the code. Generally, incremental 
refactoring follows this workflow: 

1) Select the most-expensive loop structure identified through loop-level 
profiling. 

2) Refactor the loop operations to avoid race conditions and/or inefficient data 
sharing. 

3) Add OpenMP parallel loop declarations with suitable directives regarding 
privatized variables. 

4) Verify the results produced by the parallel region match those produced by 
the serial version. 

5) Profile the refactored code to assess the parallel efficiency.  

6) If efficiency is unacceptable, repeat steps 1–4 to improve the efficiency. 

In the four models considered, the high cost of computing J was common to all of 
them. In each case, this operation was refactored following the same strategy, 
though the specific implementations were unique. It is computed in the following 
manner: 

1) Evaluate 𝑓𝑓(𝒖𝒖) 

2) Enter an OpenMP parallel region 

3) For all columns 𝑗𝑗 =  1,𝑁𝑁 

a. perturb the state vector:𝒖𝒖+ = 𝒖𝒖 + 𝛿𝛿𝑖𝑖 

b. evaluate 𝑓𝑓(𝒖𝒖+) 

c. update the column vector:  𝐽𝐽𝑖𝑖 = [𝑓𝑓(𝒖𝒖+) − 𝑓𝑓(𝒖𝒖)] / δ𝑖𝑖  

4) Close the OpenMP parallel region 
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The N iterations over the columns of J are independent and could be evaluated in 
parallel using OpenMP parallel loop directives. Each thread needed private arrays 
for the perturbed state vector and resulting RHS vector. Additionally, each thread 
needed private storage internally for the RHS function. OpenMP will automatically 
allocate fixed-length private arrays; however, some larger, dynamic arrays with 
variable length had to be allocated and deallocated manually inside the parallel 
region. 

The RHS functions of all four applications call several CHEMKIN functions (e.g., 
CKWYP to compute net species production rates). OPPDIF and PREMIX also call 
TRANLIB functions (e.g., MCMDIF to compute multicomponent diffusion 
coefficients). These libraries have internal data structures that combine read-only 
data (e.g., Arrhenius rate coefficients and species molecular weights) with 
intermediate scratch arrays employed for computing complex functions such as 
reaction-rate coefficients. Each OpenMP thread needed private copies of the 
CHEMKIN scratch arrays. Ideally, all threads would share a single copy of the 
read-only data. However, CHEMKIN and TRANLIB store all internal data (i.e., 
read-only and scratch) in contiguous integer and floating-point arrays that are 
difficult to separate. Therefore, each thread was programmed to create a private 
(redundant) copy of the read-only data. Although this is a one-time allocation—the 
data are reused for the lifetime of the simulation—it wastes memory and may 
negatively impact cache usage. 

Because it does not consider the internal features of the RHS function, the 
parallelization method implemented to compute the Jacobian is generic. It can be 
applied to most ODE systems solved by DASPK. An additional optimization was 
implemented that is specific to the HR model and TMM3. The CHEMKIN function 
CKWYP computes the net species-production rates given pressure, temperature, 
and species mass fractions. Internally, CKWYP computes the molar concentration 
via CKYTCP and then calls CKRATT and CKRATX to compute, respectively, the 
temperature- and concentration-dependent reaction-rate terms. In the finite-
difference approximation employed to compute the Jacobian, the temperature is 
only perturbed for one vector column. That is, the temperature is constant for NS+1 
of the NS+2 RHS evaluations. Based on this observation, it was possible to reduce 
the cost of computing the Jacobian by directly calling CKRATT and CKRATX 
instead of CKWYP. Additional logic was added to the Jacobian assembly function 
to precompute and share the temperature-dependent rate terms across all threads. 
Note that this approach also applies to the serial implementation and will reduce its 
cost and execution time. 

Conceptually, this method would also work in SENKIN. However, the cost to 
compute the Jacobian was less than the cost to compute terms for the sensitivity 
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equations. Furthermore, the SENKIN RHS function allows perturbations of other 
model parameters for sensitivity analysis, complicating this method of 
optimization. Therefore, the cost (in labor) to refactor the Jacobian’s evaluation in 
it was not considered warranted. 

Like the evaluation of the Jacobian, the ∂𝜕𝜕(𝑢𝑢)
∂𝑝𝑝𝑗𝑗

 terms of the sensitivity equations are 

evaluated by finite differences. SENKIN supports both first-order forward 
differences (like those used in evaluating the Jacobian) and second-order central 
differences. The second-order formulation is used here. It requires two evaluations 
of the governing RHS function for each sensitivity equation. As already noted, each 
sensitivity equation is independent, and there may be many times more sensitivity 
equations than governing equations. For example, there are 1,930 reactions and 456 
species in ARL’s DMAZ-RFNA mechanism. Therefore, because there are 4.23 
times more reactions than species, the RHS function for the sensitivity equations 
could take approximately 8.5 times longer to compute than the system’s Jacobian. 

The OpenMP parallel loop implementation for the evaluation of the sensitivity 
parameter derivatives is very similar to that described above for the evaluation of 
the Jacobian matrix. That is,  

1) Evaluate 𝑓𝑓(𝒖𝒖) 

2) Enter an OpenMP parallel region 

3) For each sensitivity equation 𝑗𝑗 = 1,𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

a. perturb the state vector:𝒖𝒖+ = 𝒖𝒖 + δ𝑖𝑖  

b. evaluate 𝑓𝑓(𝒖𝒖+) 

c. perturb the state vector:𝒖𝒖− = 𝒖𝒖  −  δ𝑖𝑖  

d. evaluate 𝑓𝑓(𝒖𝒖−) 

e. update the column vector ∂f(𝒖𝒖)
∂p

�
𝑖𝑖

= [𝑓𝑓(𝒖𝒖+) − 𝑓𝑓(𝒖𝒖−)]/2𝛿𝛿𝑖𝑖  

4) Close the OpenMP parallel region 

It required an additional thread-private array for both RHS vectors evaluated with 
the forward and backward perturbed state vectors. 

The last unique optimization implemented in SENKIN was the parallel update of 
the sensitivity equations. Once the primary state vector is solved at a given timestep, 
all sensitivity equations are updated using the staggered approach. Each equation 
requires the linear solution of the factorized iteration matrix with a unique RHS 
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vector. The LINPACK function DGESL is used to solve the linear system from the 
previously factored Jacobian matrix via forward and backward triangular matrix 
solves: 

1) Enter an OpenMP parallel region 

2) For each sensitivity equation 𝑗𝑗 = 1,𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

a. solve J∆= 𝐿𝐿𝐿𝐿 ∆= 𝑟𝑟𝑖𝑖 

i. solve Ly = 𝑟𝑟𝑖𝑖 

ii. solve U∆ = y 

b. update the sensitivity equation  𝑠𝑠𝑖𝑖 =  𝑠𝑠𝑖𝑖  +  ∆ 

3) Close the OpenMP parallel region 

Here, ∆ is the update vector needed to advance the solution one timestep. 

In refactoring PREMIX and OPPDIF, the approach employed to parallelize J’s 
computation in SENKIN was followed and will not be repeated here. Two unique 
optimizations were implemented in both applications: 1) evaluating each mesh 
point in the RHS function in parallel and 2) replacing LINPACK functions for 
banded matrix factorization and linear solves with LAPACK functions. 

The RHS function in both PREMIX and OPPDIF requires evaluation of convective 
and diffusive fluxes at the midpoint between the mesh cells, the net species 
production rates at the cell centers, and evaluation of the energy equation at the cell 
centers. The fluxes are relatively cheap to evaluate but the cost to compute transport 
properties (i.e., diffusion, conduction, and viscosity) can be very high. The fluxes and 
coefficients at the mesh midpoints can be evaluated in parallel, as can the reaction 
rates at the cell centers. To date, the midpoint fluxes, transport coefficients, and 
reaction rates have been evaluated in parallel in PREMIX but not in OPPDIF. 

Note that when the parallel Jacobian is being constructed, the parallel directives in RHS 
are automatically disabled by OpenMP. By default, OpenMP does not allow nested 
parallelism (i.e., a thread in a parallel loop creating more threads in an inner, nested 
loop). In this case, the RHS function is executed serially by each thread while 
constructing a column of the Jacobian. 

Since the size of the linear system can be O(10–100) times larger for OPPDIF and 
PREMIX than for TMM3 or SENKIN, matrix factorization can be the dominant 
cost of a simulation. OPPDIF and PREMIX use a banded matrix format with a 
bandwidth of approximately [2*(NS+2)]. LINPACK functions DGBFA and 
DGBSL were used to factor and solve the linear systems in the original programs. 



 

14 

They only supported vector parallelism (i.e., vector operations) within the BLAS 
functions with a maximum length of [2*(NS+2)]. In the classic Crout LU 
factorization algorithm with scalar elements, only limited vector parallelism is 
possible. 

LAPACK uses a block-matrix formulation for all matrix–matrix operations, 
including factorization. This provides for a much-higher-level parallelism than 
LINPACK. LAPACK also makes much more efficient use of the cache hierarchy.** 
There are several highly optimized implementations of the LAPACK library. I used 
the Intel Math Kernel Library (MKL) for this effort. It provides single- and 
multicore parallel versions of LAPACK. In particular, the DGBTRF and DGBTRS 
functions were implemented to factor and solve the band-matrix system. 

The TRANLIB library uses LAPACK functions DGETRF and DGETRS to factor 
and solve the dense (NS2) diffusion coefficient matrix, 𝐷𝐷𝑖𝑖𝑗𝑗, when the 
multicomponent transport formulation is requested by PREMIX and OPPDIF. When 
evaluating the RHS function in parallel, each thread must factor and solve its own 
unique copy of 𝐷𝐷𝑖𝑖𝑗𝑗 serially. MKL serial versions were used to avoid nested 
parallelism when the RHS or Jacobian functions are computed via OpenMP parallel 
loops. Note that the serial MKL implementations of the LAPACK functions are also 
heavily optimized. 

TWOPNT also computes an approximation condition number for the linear system 
(i.e., �|𝐴𝐴|� ∗ �|𝐴𝐴−1|�). Used to steer the iterative solver, it was evaluated by the 
LAPACK function DGBCON. 

4. Results 

The following are the performance enhancements achieved for the four refactored 
applications. To demonstrate their portability, testing was done on several different 
HPCMP DSRC platforms. 

4.1 TMM3 

At the outset of the RA activity, serialized instances of the TMM3-based reductions 
were being run concurrently on individual CPU cores. This permitted coarse-grain 
parallelism, but runtimes for large mechanisms were severely compromising what 
could be accomplished. A case in point was the reduction of a mechanism 
developed to model ammonium perchlorate-hydroxyl-terminated polybutadiene 

                                                 
** Cache efficiency was a principle design goal of the LAPACK library and an important optimization 
consideration for modern multicore systems. 
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(AP-HTPB) combustion.4 It had 2,634 reactions and 639 species and needed to be 
reduced for use in a CFD model of AP-HTPB composite propellant deflagration. 
Validity over a wide range of pressures was desired. Given also that the gas phase 
would have regions that ran from very fuel rich to very fuel lean, ARL researchers 
would have liked to have employed as many as six different HR simulations as 
bases for the screening process. However, due to the lengths of the simulations, if 
more than two were employed, a (serial) reduction could not complete within the 
allowable 168-h (7-day) wall-time limit on Excalibur, a Cray XC40 HPC system at 
the ARL DSRC. Moreover, even with only two employed, reductions of well over 
half of the orderings that were submitted failed to complete within the allowable 
time.  

Using the refactored version with eight OpenMP threads (i.e., eight cores) per 
ordering on Excalibur, the overall runtime was reduced by 3.5 times versus the 
original one core per ordering, and all the reductions that were submitted completed 
within the 168-h wall-time limit. 

The optimal number of threads per reduction can be tuned to maximize the 
throughput. The only parallelism in TMM3 within each realization is the evaluation 
of the Jacobian’s elements. The matrix has NS+1 columns, and runtimes could, 
theoretically, be further reduced by using that many threads (cores) in parallel. 
However, each OpenMP thread should evaluate many columns to overcome the 
overhead associated with the fork-join model. Amdahl’s law dictates that the 
maximum speedup of a fork-join style of parallel application is 

Speedup ≤ � 1
�1−𝜕𝜕𝑝𝑝�

= 1
𝜕𝜕𝑠𝑠
� (5) 

where fp and 𝑓𝑓𝑠𝑠 are the percentage of the application executing in parallel and serial, 
respectively, and 𝑓𝑓𝑠𝑠 = �1 − 𝑓𝑓𝑝𝑝�. For example, if 10% of the application executes 
serially, the speedup limit is 10× with an infinite number of parallel threads and 
cores. (Of course, you cannot exceed the number of cores on a single compute 
node.) Therefore, as TMM3 reduces the mechanism’s number of species, the 
Jacobian’s computation constitutes a smaller fraction of the overall cost, increasing 
relative cost of the serial section and reducing the impact of the parallelization. 
Since TMM3 can already harness some coarse-grained parallelism, I recommend 
keeping the number of threads between 4 and 16 per realization. 

4.2 SENKIN 

For SENKIN, the sensitivity equation RHS function and solution updates were 
parallelized. Table 1 shows the original (serial) runtimes and the parallel  
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runtimes (and speed-up) for three representative mechanisms using 16 and 32 cores 
on a single compute node on Excalibur. Serial times show the rapid cost increase 
of the simulations with increase in mechanism size. For the small hydrogen–air 
mechanism, the code actually ran slower with OpenMP. Due to the small amount 
of parallel work (i.e., Amdahl’s law in action), this result is not noteworthy. For the 
larger mechanisms, the simulations completed much faster, and the speed-up 
approached 8× on a full compute node. 

Table 1 HR model performance on Excalibur: wall-clock times (seconds) for serial and 
parallel runs on Excalibur 

Mechanism Mechanism size Serial time 
Parallel time (speed-up) 

16 Cores 32 Cores 

H2-O2 10/18 2.6 2.7 (0.96) … 

MMH-RFNA 106/680 270 41.4 (6.3) 34.0 (7.9) 

DMAZ-RFNA 456/1930 2,670 630 (4.2) 514 (5.2) 

4.3 PREMIX 

Figure 1 shows the evolution of optimizations implemented in PREMIX when they 
were employed to simulate a burner-stabilized, premixed flame. The computing 
platform was Centennial, an SGI ICE XA HPC system at the ARL DSRC. The 
mechanism that was the basis for the simulation had 514 chemical species and 937 
reactions. It was assembled to model the combustion of propellants formulated with 
nitrocellulose and nitroglycerine.  

The species concentrations and temperature versus distance profiles employed as 
the starting point for the simulation corresponded to a (converged) solution 
obtained for a similar set of boundary conditions. The program will estimate the 
profiles based on other input types, and sometimes it is necessary to initialize them 
with an ad hoc profile (e.g., equilibrium concentration in the product region with a 
planar T profile). However, such approaches can be costly and are prone to failure.  
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Fig. 1 PREMIX benchmark using serial and OpenMP parallelism on Centennial (ARL 
DSRC). Nitrocellulose–nitroglycerin mechanism with 514 species and 937 reactions. Runtime 
categories shown are the RHS function time (Fun), Jacobian matrix assembly (Jacob), Banded 
matrix factorization (LU), and all other costs summed (Other). Cases include: single (serial) 
and multicore (OMP); vectorization disabled (no-vec), standard compiler vectorization (vec), 
and vectorization with enhanced (BLAS) kernels (vec-opt); parallel RHS function (ParFun); 
and replacing Linpack functions with Lapack (Lapack). Speed-up is relative to single-core 
execution with standard compiler vectorization enabled (serial-vec). 

In this specific case, the starting mesh had 228 points, and no refinement was 
needed for the new solution. The total number of unknowns was 117,648 (i.e., 
[NP*(NS+2)]). Transport properties were computed on the basis of the mixture-
averaging rules implemented via TRANLIB. Again, this approach costs less than 
TRANLIB’s multicomponent formulation. 

As noted earlier, the original version of the PREMIX code used the LINPACK 
linear algebra library with level-1 BLAS functions. These functions rely only upon 
vector data parallelism (i.e., SIMD parallelism) within a single CPU core. To 
highlight the impact of vector parallel processing, automatic compiler vectorization 

 -

 1.0

 2.0

 3.0

 4.0

 5.0

 6.0

 7.0

 8.0

 9.0

0

20

40

60

80

100

120

140

160

180

serial
no-vec

serial
vec

serial
vec-opt

OMP
20t

no-vec

OMP
20t

vec-opt

OMP
40t

vec-opt

OMP
20t

vec-opt
Lapack

OMP
20t

vec-opt
Lapack
ParFun

OMP
40t

vec-opt
Lapack
ParFun

Sp
ee

d-
up

Ru
n-

tim
e 

(m
in

ut
es

)

Fun Jacob LU Other Speed-up



 

18 

was explicitly disabled†† and compared with normal compiler optimization. The 
case without automatic vectorization (serial/no-vec) ran 11% slower than the 
baseline case (serial/vec) case. The cost breakdown shown in Fig. 1 indicates that 
the RHS function (mostly the CHEMKIN and TRANLIB functions) significantly 
benefited from vectorization. The BLAS functions were then refactored to improve 
automatic vectorization (serial/vec-opt). This reduced the LU factorization time by 
35%. Note these studies were performed with only one of the 40 available CPU 
cores on a Centennial node. 

When performed with the serial implementation of the program, the computation 
of the Jacobian (with all vectorization enabled) accounted for 31% of the total  
runtime. When performed with OpenMP and 20 CPU cores, the runtime needed to 
compute the Jacobian was reduced by 14.5 times, becoming only 2.1% of the total 
runtime. The overall runtime for the simulation was reduced by 1.75 times. 

Performing the simulation with all 40 cores (i.e., 40 OpenMP threads) on a node 
did not produce an appreciable (additional) reduction in the runtime. This is not 
uncommon with OpenMP. A Centennial node comprises two CPU sockets, each 
with 20 cores. Each socket has its own dynamic-random-access-memory main 
memory and all 20 cores share the L3 cache. Threads on socket A can access the 
data on socket B, but there is a latency and bandwidth penalty (i.e., nonuniform 
memory access [NUMA]). As a result, the runtime for the evaluation of the 
Jacobian’s column vectors, which was the only parallelized process, was only 31% 
less than that achieved with 20 cores. Moreover, since the Jacobian’s evaluation 
accounted for such a small portion of the simulation’s overall runtime, the reduction 
in the simulation’s overall runtime was virtually undetectable. 

The costliest components of the PREMIX simulation are the banded matrix LU 
decomposition and estimation of the matrix condition number. With the parallel 
Jacobian assembly operation, the LU factorization accounted for 67% of the net 
runtime. LAPACK functions were substituted for LINPACK versions and linked 
using the optimized Intel MKL. Using 20 cores on a single CPU socket, the 
factorization was accelerated by 18.9 times compared with the baseline LINPACK 
implementation, and the total runtime was reduced by 4.4 times. Note that the 
category Other in Fig. 1 includes all time not spent in the other three categories. It 
was dominated by the linear system solve operation (i.e., solving the linear systems 
with the previously factored Jacobian matrix). A LAPACK version was used for 
this as well, but it did not provide any significant speed-up because this operation 
was not thread efficient. 

                                                 
†† Modern optimizing compilers will apply SIMD vector instructions when possible by default. 
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The last optimization involved the evaluation of the transport coefficients, 
convective fluxes, diffusive fluxes at the mesh midpoints, and the reaction rates at 
the mesh points in parallel (i.e., evaluate the RHS function in parallel). The 
transport property evaluations, even though based on mixture-averaged terms, were 
the dominant cost in computing the RHS function. 

With 20 cores on a single CPU socket, the RHS function evaluations were 
accelerated by 5.6 times and the total runtime was 6.5 times less than the baseline 
serial code’s. With all 40 cores, the total runtime was greater even though RHS 
function evaluation, Jacobian matrix evaluation, and LU factorization were 47%, 
37%, and 15.5% faster, respectively. In this case, the time to estimate the condition 
number increased 19%, and the time spent solving the linear systems, which 
accounted for 59% of the net runtime, increased 15%. Parallel triangular matrix 
solves, which were a significant cost of the condition number estimation, required 
repeated synchronization and significant data sharing and was impeded by NUMA 
effects. These operations also had lower computational intensities than 
factorization (i.e., quadratic versus cubic theoretical cost-scaling), which explains 
why they did not scale as well in parallel. By contrast, the RHS and Jacobian 
function evaluations required no thread synchronization, and each thread operated 
on its own data exclusively, making it more cache-efficient. 

It is possible to separately control the number of threads used by MKL and the main 
OpenMP parallel code in PREMIX. By setting the number of threads used by MKL 
to 20, and presumably forcing those 20 threads to use one CPU socket, while using 
all 40 threads (cores) for the remaining OpenMP regions, the total speedup 
increased to 7.3 times (not shown). In this case the performance of the triangular 
solves with LAPACK was not hindered by the NUMA overhead, while the RHS 
and Jacobian functions could still efficiently harness all 40 cores on the compute 
node. 

4.4 OPPDIF 

The parallel computation of the Jacobian’s elements implemented in the OPPDIF 
application followed the same strategy employed for PREMIX. The problem 
employed to evaluate performance improvements was an opposed-flow diffusion 
flame simulation with HMX as the oxidizer and a combination of HMX (93%) and 
R45M (7%) in the fuel stream. Although TWOPNT failed to produce a solution 
that met specified converge criteria for this problem, using 22 threads on one CPU 
socket on the Onyx HPC system (Cray XC50) at the US Army Engineer Research 
and Development Center DSRC, the parallel Jacobian assembly method did reduce 
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the total runtime for the calculations that were performed from 4.5 to 3.2 h. The 
speed-up as a function of the number of cores used is shown in Fig. 2.  

 

Fig. 2 Scaling of OPPDIF on Onyx with OpenMP parallel Jacobian matrix assembly, using 
one CPU socket with up to 22 cores and one thread per core 

In addition, although the Jacobian’s construction was costly, it was not the 
dominant expense of the simulation. As found in refactoring PREMIX, the LU 
factorization of the banded matrix was more expensive for large mechanisms and 
large numbers of grid points. Therefore, LAPACK routines were implemented as 
before to reduce the factorization cost. Direct comparison of the runtimes may be 
somewhat misleading because neither case converged to a solution, and they failed 
in different ways. As noted, it is common for solutions to diverge when starting 
from an ad hoc initial profile. The difference was likely due to (small) differences 
in the condition number approximation used to steer the Newton iteration method 
being amplified by the nonlinear system. And because the solutions diverged in 
different manners, the number of nonlinear iterations and the refined mesh sizes 
were different. Nonetheless, the course of the simulations were similar enough that 
I believe the comparison reflects the performance enhancements that can be 
expected with the parallelized code. 

Another simulation employed to evaluate the impact that various parallel 
implementations would have on OPPDIF runtimes involved the USC 111  
species-784 reaction (USC) mechanism. This mechanism was designed to model 
H2/CO/C1-C4 hydrocarbon combustion.‡‡ Transport properties were computed on 
                                                 
‡‡ University of Southern California. http://ignis.usc.edu/Mechanisms/USC-
Mech%20II/USC_Mech%20II.htm. 
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the basis of TRANLIB’s mixture-averaging rules. The fuel stream contained 9.5% 
CH4 by volume, and the oxidizer stream was air at atmospheric pressure and 
temperature. The starting temperature and species concentrations versus distance 
corresponded to a converged solution on a grid with 83 mesh points. With  
more-stringent mesh-refinement criteria specified, a new solution was produced on 
a grid with 156 points.  

The runtimes and speed-up compared with the serial, baseline code with (SeqMKL) 
and without LAPACK functions, and the parallel Jacobian evaluation with 
(ParMKL) and without LAPACK functions, are shown in Fig. 3. 

 

Fig. 3 Runtime (minutes) and speed-up of OPPDIF using USC mechanism on Centennial 
using parallel Jacobian evaluation and sequential or parallel matrix factorization with MKL 

Serially, the Jacobian’s assembly and factorization combined to account for 88% 
of the runtime. Using LAPACK’s DGBTRF with MKL, the factorization time 
dropped 12% and the total runtime dropped the same amount. Evaluating the 
Jacobian in parallel alone (i.e., without LAPACK) reduced its runtime by 75% and 
reduced the overall runtime by 2.9 times. Combining both, the runtime was reduced 
by 4.9 times. 

The RHS function itself has not (to date) been refactored as done for PREMIX. 
Doing so should further reduce runtimes because the RHS function now accounts 
for 51% of the total runtime for this simulation when using the parallel Jacobian 
assembly and factorization methods. Even though the RHS is running serially, the 
MKL LAPACK functions for dense matrices can accelerate the application when 
the multicomponent formulation for computing transport properties is used. To 
investigate this matter, the solution produced on the basis of mixture-averaged 
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transport properties was employed as the starting point of a simulation based on 
TRANSLIB’s multicomponent formulation. Performed with MKL within the serial 
code, the runtime was reduced by 2.4 times. The speed-up was directly due to the 
improved factorization performance obtained with the optimized LAPACK 
libraries. 

5. Summary and Conclusions 

This report details the motivation and methods for refactoring a suite of 
CHEMKIN-based programs for multicore parallelism. OpenMP multithreading 
was used to implement shared-memory (loop) parallelism in four applications: 
TMM3, SENKIN, OPPDIF, and PREMIX. The net speed-up factors, which varied 
between the applications, were significant. 

Parallelization of finite-difference-based Jacobian evaluations was a common 
strategy, and it was implemented in each application. However, as mechanisms get 
larger, it may be useful to investigate the efficiency of analytical Jacobian 
evaluations for TMM3 and SENKIN. 

For PREMIX and OPPDIF, which both involve one spatial dimension, it was found 
that runtimes were driven by band-matrix LU factorizations of Jacobians. 
Replacing legacy LINPACK factorization methods with LAPACK functions and 
linking them with the highly optimized MKL functions significantly improved their 
performances. Note these changes required only minor changes to the application 
code. 

As mechanism sizes increase, it might be useful to consider alternative solution 
strategies for the matrix systems. Kyrlov iterative methods (e.g., GMRES) might 
be more efficient at solving the linear systems for large mechanisms if the 
factorization of dense matrices becomes problematic.  
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List of Symbols, Abbreviations, and Acronyms 

1-D 1-dimensional 

AP-HTPB ammonium perchlorate-hydroxyl-terminated polybutadiene 

ARL Army Research Laboratory 

BLAS Basic Linear Algebra Subprogram 

BVP boundary value problem 

CCDC US Army Combat Capabilities Development Command 

CFD computational fluid dynamics 

CPU central processing unit 

DOD Department of Defense 

DSRC DOD Supercomputing Resource Center 

EM energetic material 

Fun function 

HPC high-performance computing 

HPCMP High Performance Computing Modernization Program 

HR homogeneous reactor 

LU lower-upper 

MPI message passing interface 

MKL Math Kernel Library 

no-vec vectorization disabled 

NP number of mesh points 

NR number of reactions 

NS number of species 

NUMA nonuniform memory access 

ODE ordinary differential equation 

OMP multicore 

ParFun parallel RHS fuction 
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PETTT User Productivity Enhancement, Technology Transfer, and Training 

RA reactionary assistance 

RHS right-hand-side 

serial-vec single-core execution with standard compiler vectorization enabled 

shmem shared memory 

SIMD  single-instruction, multiple data 

vec  standard compiler vectorization 

vec-opt vectorization with enhanced BLAS kernels 
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