
 
 
 
 

 ARL-TR-8898 ● JAN 2020 
  
 
 
 

 
 
 
A Review of Artificial Intelligence (AI) 
Algorithms for Sound Classification: 
Implications for Human–Robot Interaction 
(HRI) 
 
by Troy Kelley and Kelly Dickerson 
 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited. 



 

 

NOTICES 

Disclaimers 

The findings in this report are not to be construed as an official Department of the 
Army position unless so designated by other authorized documents. 

Citation of manufacturer’s or trade names does not constitute an official 
endorsement or approval of the use thereof. 

Destroy this report when it is no longer needed.  Do not return it to the originator. 



 

 

 
 
 

 ARL-TR-8898 ● JAN 2020 

 

 
 
A Review of Artificial Intelligence (AI) 
Algorithms for Sound Classification: Implications 
for Human–Robot Interaction (HRI) 
 
Troy Kelley 
Human Research and Engineering Directorate, CCDC Army Research Laboratory 
 
Kelly Dickerson 
CCDC Data & Analysis Center 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited.



 

ii 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the 
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. 
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

January 2020  
2. REPORT TYPE 

Technical Report 
3. DATES COVERED (From - To) 

October 2018–September 2019 
4. TITLE AND SUBTITLE 

A Review of Artificial Intelligence (AI) Algorithms for Sound Classification: 
Implications for Human–Robot Interaction (HRI) 

5a. CONTRACT NUMBER 

 
5b. GRANT NUMBER 

 
5c. PROGRAM ELEMENT NUMBER 

 
6. AUTHOR(S) 

Troy Kelley and Kelly Dickerson 
5d. PROJECT NUMBER 

 
5e. TASK NUMBER 

 
5f. WORK UNIT NUMBER 

 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

CCDC Army Research Laboratory 
ATTN: FCDD-RLH-FD 
2800 Powder Mill Road, Adelphi, MD 20783‐1138 

8. PERFORMING ORGANIZATION REPORT NUMBER 

 
ARL-TR-8898 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

 
10. SPONSOR/MONITOR'S ACRONYM(S) 

 
11. SPONSOR/MONITOR'S REPORT NUMBER(S) 

 
12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 
13. SUPPLEMENTARY NOTES 
 

14. ABSTRACT 

This report presents a review of artificial intelligence (AI) algorithms and their application to audition in a human–robot 
interaction (HRI) context. The AI algorithms selected for auditory perception ultimately have an impact on computational 
transparency, system behavior explainability, and ultimately, the quality of the HRI. AI algorithms applied to auditory 
perception include sounds sensed and processed by a software system, as well as sounds emitted by a software system that are 
meant to be recognized by a human listener. Some major classes of AI algorithms, specifically neural networks, deep learning, 
hidden Markov models, and hybrid models will be reviewed in the context of machines’ sound processing. Additionally, the 
effects of each class of algorithm on transparency and HRI will be discussed. Recent work in AI algorithm development 
suggests that hybrid models may be the best approach for sound processing as they are recommended for complex data 
processing and decision-making. Hybrid models blend approaches to maximize the benefits while minimizing the limitations 
of multiple techniques. A set of general recommendations are included in the final section of the report. 
15. SUBJECT TERMS 

artificial intelligence, human–robot interaction, transparency, hybrid architectures, neural networks 

16. SECURITY CLASSIFICATION OF: 
17. LIMITATION 
       OF  
       ABSTRACT 

UU 

18. NUMBER 
       OF  
       PAGES 

28 

19a. NAME OF RESPONSIBLE PERSON 

Susan Hill 
a. REPORT 

Unclassified 
b. ABSTRACT 

Unclassified 
 

c. THIS PAGE 

Unclassified 
 

19b. TELEPHONE NUMBER (Include area code) 

(410) 278-6237 
 Standard Form 298 (Rev. 8/98) 

 Prescribed by ANSI Std. Z39.18 



 

iii 

Contents 

1. Introduction 4 

1.1 Definitions of AIs, Algorithms, Agents, and other Thinking Machines 4 

1.2 Benefits of Sound 4 

1.2.1 Using Speech to Interact With Technology 5 

1.2.2 Beyond Speech: Environmental Sound 5 

1.2.3 Sound Stimulus Preparation 7 

2. Major AI Approaches 7 

2.1 Current State of the Art of AI 8 

2.2 Neural Networks 9 

2.3 Deep Learning 11 

2.4 Markov Models 12 

2.5 Hybrid Models 13 

3. Discussion 14 

4. Conclusion and Future Directions 16 

5. References 17 

List of Symbols, Abbreviations, and Acronyms 25 

Distribution List 26 
  



 

4 

1. Introduction 

1.1 Definitions of AIs, Algorithms, Agents, and other Thinking 
Machines 

This report describes the advantages and disadvantages of some of the major 
approaches to artificial intelligence (AI), including neural networks, deep learning, 
hidden Markov models (HMM), and hybrid approaches in developing algorithms 
for the classification of auditory information. Before discussing how sound can 
enhance situational awareness (SA), it is important to define some of the common 
terms surrounding the discussion of AI. An AI algorithm is a collection of software 
functions that allow the AI to discriminate and label various sensory inputs such as 
sounds or images. AI algorithms can also make decisions based on those inputs. 
The combination of AI and physical sensing capabilities is an embodied intelligent 
machine. Examples of embodied intelligent machines include many different 
consumer and military products—devices such as Amazon Echo, Tesla vehicles, or 
a robotic vehicle-gunnery station. In the military context, AI algorithms are often 
implemented in a mobile robotics context (i.e., intelligent agents) and embedded in 
mobile systems, such as the high-mobility multipurpose wheeled vehicle, and even 
embedded in a stationary Tactical Operations Center (TOC). Intelligent agents can 
be considered a subcategory of embodied intelligent machines. While there are 
multiple salient feature differences between possible types of embodied intelligent 
machines, the critical distinction for the purpose of this report is between AI 
algorithms (software) and embodied intelligent machines (software + sensing and 
action). Finally, an autonomous system refers to robotic assets (agents) and other 
embodied intelligent machines that can act entirely independently from their human 
teammates.  

1.2 Benefits of Sound 

Soldier tasks tend to rely predominantly on the visual modality unless the task is 
explicitly communication related. Vehicle operators, pilots, unmanned aerial 
vehicle operators, and data workers, such as command and control TOCs and 
cybersecurity experts, all have visually demanding roles and are at risk of visual 
overload. Moving information from one modality to another is one strategy for 
mitigation of visual workload. For example, pilots with high visual workload can 
use auditory cueing to improve performance and SA (Calhoun et al. 1987). In 
addition to reducing visual load by serving as another information channel, auditory 
information can enhance SA (Endsley 1995); for example, a sudden increase or 
decrease in the loudness of traffic could suggest the presence of a threat, or a change 
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in the frequency spectrum could indicate the presence of more than just passenger 
vehicles on a roadway. Evidence from the multisensory integration literature 
suggests that in day-to-day life, humans will dynamically shift attention between 
auditory and visual information, maximally weighing information from either 
sounds or objects (depending on the context), their prior experience, and perceived 
reliability (or unreliability) of those cues (Shams and Seitz 2008). Despite the clear 
benefit of auditory information to Soldier SA, Army autonomous systems have 
generally underutilized sound as a potential source of information about the 
environment. Current autonomous systems do not listen, but rather rely on  
text-based communication from Soldiers to gain an understanding about mission 
goals, environment status, and team status (ARL 2017). 

1.2.1 Using Speech to Interact With Technology 

There are several reasons why the Army has relied primarily on text inputs rather 
than moving toward speech for robotic systems and intelligent agents. There is 
familiarity and a history of using text-based systems; and automatic speech 
recognition (ASR) systems, while a significant technical innovation, have several 
potential usability and signal processing issues when considered in an operational 
context. ASR technologies are not new (see Haridas et al. 2018); however, recent 
iterations using AIs (i.e., Google Duplex; see Leviathan and Matias 2018) have 
improved the ability of the system to recognize both the phonetic and semantic 
contents of speech. Despite the capabilities improvements of AI-supported ASRs, 
these technologies are not really well suited to the battlefield. Universally, old and 
new ASRs require a low signal-to-noise ratio to function properly. Pilots, vehicle 
operators, or dismounted Soldiers would be hard pressed to find an area quiet 
enough that they could effectively use voice commands to interact with their 
vehicles or other technologies. Further, speech can be easily overheard, making the 
situations where voice commands could be used limited to cockpits and other 
vehicle crew areas.  

1.2.2 Beyond Speech: Environmental Sound 

ASR systems have limited practical utility in an operational context because of 
noise and the need to keep sensitive communications quiet. Environmental sound, 
non-speech auditory stimuli produced by the activities of animals, humans, and 
machines, can provide critical information for squads to leverage to improve SA. 
Familiar sounds and the soundscapes they create in urban environments create a 
representation of “normal” or “safe” operations. Changes to ambient-sound level 
or the objects contributing to the auditory milieu can convey important information. 
When detected, these changes can improve overall SA. However, human listeners 
often miss changes in the auditory environment (change deafness; see Gregg and 
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Samuel 2008). Sensors can be used to “hear” sounds earlier than a human could 
detect the event and AIs may be able to assist in recognition of important changes 
in the ambient auditory environment by classifying sounds and then alerting 
Soldiers to mission-relevant information. Using AI to detect and classify sounds 
reduces the impact of known human-perceptual limitations such as change 
deafness, inattentional deafness (Gregg and Samuel 2008), and informational 
masking (Dickerson and Gaston 2014), and represents the potential for a synergistic 
relationship between the sensing and classification abilities of the machine with the 
decision-making capabilities of the human. The remainder of this report is devoted 
to highlighting some of the recent work in environmental sound classification and 
providing background and perspective of common AI frameworks. 

1.2.2.1 Environmental Sound Classification 

Classification is the algorithmic process used to predict category membership for 
items in a data set. Classification is also a foundational capability for any AI. Thus, 
we will use classification performance as a running example through Section 3. 
Automatic classification of auditory scenes is still relatively novel compared to 
visual object classification. In a review of the auditory scene classification 
literature, Salamon and Bello (2015) found few examples of scene classification, 
and many of those were restricted to using global scene properties and generally 
did not attempt to extract and classify individual sound objects within a scene. This 
limitation is not unique to auditory scene classification. A similar challenge exists 
for visual objects embedded in scenes. Naturalistic scenes are noisy compared to 
single images and sounds, and while a scene provides beneficial context for a 
human, for machine classifiers it can cause problems. Humans are able to segment 
individual auditory streams (Mondor 1994) and visual objects (Helmholtz 1925; 
Hochberg 1981) from a complex background and this is a fundamental aspect of 
object recognition. However, this human-like object classification process, 
regardless of the modality, has been a significant challenge for AI. Adding to the 
special challenge of sound recognition, urban scenes can unfold in almost any 
acoustic configuration and, unlike speech and music, urban auditory scenes do not 
have any sort of higher-order rule structure (i.e., grammar, composition) that could 
serve as an initial organizing principle. Urban planners and designers map and 
classify the sound objects contributing to a scene; however, this process has relied 
overwhelmingly on “low-tech” methods, such as manual sound file annotation and 
interviews with city residents. These inefficient processes may be acceptable for 
humans trying to understand a particular sound environment; however, for 
automatic classification and AI training, “low-tech” data sets means small data sets 
with limited a priori tagging. These two factors make creation of model training 
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sets particularly difficult for sound (see Vogiatzis and Remy 2018 for review of 
methods for mapping urban soundscapes). 

1.2.3 Sound Stimulus Preparation 

In terms of stimulus processing for AI applications, sound classification research 
proceeds much like visual object recognition. Sounds are segmented from the 
background, preprocessed in various ways, and filtered to approximate the human 
sensory and perceptual processes. The most common filter choice in recent years 
for sound is the mel-frequency cepstrum (MFC), likely because it approximates the 
psychological sensation of frequency height of a pure tone (see Serizel et al. 2017). 
Earlier efforts tended to rely on rectangular or critical bands (Green et al. 1984); 
however, these filters were poorly suited to complex stimuli such as environmental 
sounds. 

Irrespective of the sensory stream, after filtering, transformed features are extracted 
and these features are then fed into an AI mechanism for classification. The specific 
features extracted and submitted for classification vary depending on the particular 
approach selected (see Salamon and Bello 2015 and Serizel et al. 2017 for detailed 
reviews). Once classification is accomplished, retraining of the network can be an 
issue.   

2. Major AI Approaches 

AI has made great strides since its early days. The AI community has been 
researching problem solving since the 1960s (Minsky 1961). Initial efforts on 
problem solving were largely in the domain of chess using symbolic systems 
(Simon and Simon 1962). The domain of chess as a problem space turned out to be 
relatively well defined. Even in the 1950s, it was understood that chess was a 
relatively easy problem space. As Shannon (1950) noted: The chess machine is an 
ideal one to start with since  

1) the problem is sharply defined in terms of the allowed operations (i.e., the 
moves) and in the desired goal (i.e., checkmate);  

2) it is neither so simple as to be trivial nor too difficult for satisfactory 
solution;  

3) chess is generally considered to require “thinking” for skillful play; a 
solution of this problem will force us to either to admit the possibility of 
mechanized thinking or to further restrict our concept of “thinking”; and 
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4) the discrete structure of chess fits well into the digital nature of modern 
computers.  

All of these points from Shannon allowed for the application of symbolic 
approaches. In other words, the symbolic approaches used in the era of Shannon’s 
chess machine were inherently discrete and precisely quantifiable. For example, 
language and mathematics are symbolic systems and early implementations of 
these systems within AI were referred to as “production systems”. These systems 
were similar to formal predicate logic systems using “if–then” formalisms. 
However, it was previously discovered by Kurt Godel in 1931 that symbolic 
systems are inherently incomplete (Hofstadter 1979) and thus are not capable of 
accounting for every eventuality in a logical space. To complicate AI research, and 
what fostered the early overenthusiasm, was that these early symbolic systems did 
not account for some of the more difficult aspects of stimulus perception since chess 
pieces are stationary, identifiable, and consistent. As AI progressed, there was a 
move away from chess toward visual perception as a problem space, and an attempt 
to begin to approximate the variety and complexity of the real world in the problem 
spaces and training sets used in AI applications (Horn 1986). 

2.1 Current State of the Art of AI 

Current AI systems have achieved superhuman levels of performance in various 
games including Go (Lee 2019a; Lee 2019b), chess (Campbell et al. 2002), and 
backgammon (Tesauro 1994). Current AI approaches, like the early focus on chess, 
also tend to focus on specific problem domains as opposed to developing a more 
generalized learning system (Kelley and Long 2010). One notable example of a 
system that made the jump from domain specific to potentially generalizable is 
Watson (the supercomputer program) created by IBM to play Jeopardy. Watson 
only played Jeopardy and did not play other types of games, such as Wheel of 
Fortune. As the Watson platform matured, the system became a more sophisticated 
question-and-answer expert system performing a task more like a search engine and 
less like a Jeopardy contestant. Watson and similar AI systems start out solving one 
type of problem, but have been applied outside their original domains; for example, 
Watson has been found especially useful for medical diagnostics, which can be a 
constrained problem space and expert systems lend themselves well to the task. 
Chen et al. (2016) found that Watson’s ability to organize billions of pages of 
textual information and create novel textual connections was extremely useful for 
certain domains, like drug repurposing and novel drug candidate selection. 

Many AI solutions to classification problems rely upon the “brute force” approach 
to problem solving, which relies on computer power to examine large numbers of 
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possibilities in a vast search space. Indeed, the brute-force methodology 
implemented in Watson and many currently used deep learning architectures rely 
on sheer processing power to work with the huge sets of training stimuli to develop 
a reliable AI. In recent years, advancements in graphical processing units (GPUs) 
allowed deep learning architectures to take advantage of additional computational 
power and thus, GPU improvements in the accuracy of machine classifiers using 
brute-force approaches to object classification. In 2011, researchers used GPUs and 
deep learning to achieve superhuman performance in a visual pattern recognition 
task involving handwritten digits (Ciresan et al. 2011). While speech recognition 
performance begins to approximate human performance, sound classification still 
lags behind, with the best-performing classifiers scoring between 40%–70% 
depending on the specifics of the approach (see Salamon and Bello [2015] for 
example classification accuracies and Moffat et al. [2017] for review). 

In the next sections, four major AI methodologies are discussed in relation to the 
classification problem. Specifically, neural networks (Section 2.2), deep learning 
(Section 2.3), HMM (Section 2.4), and hybrid approaches (Section 2.5) are 
discussed. While there are benefits and limits to each approach, the present review 
discusses these factors in the context of autonomous systems for improving SA and 
representational methodologies for improved computational transparency. For 
example, deep learning AI architectures produce a learned output; however, the 
representational network supporting a particular learning outcome is not 
transparent and may be fundamentally different from the representational network 
constructed by a human mind when presented with the same information. For 
autonomous systems that operate independently, this is not an issue; however, for 
teaming, a shared representation is critical for building shared SA and, ultimately, 
beneficial functional autonomous systems that can operate effectively in the 
dynamically changing conditions of a battlefield. 

2.2 Neural Networks 

Neural networks (McClelland and Rumelhart 1986) are distributed classification 
systems that are meant to act much like the distributed collections of neurons in the 
brain, except that the information in a neural network is largely static, with discrete 
calculations at each node, while the human synapses are dynamic, changing 
constantly as when new experiences are added. Neural networks have been used 
extensively for the classification of a variety of stimuli including images 
(Krizhevsky et al. 2012), handwritten characters (LeCun et al. 1990), and more 
recently, sound (Piczak 2015). 
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Neural networks operate by extracting important information (feature vectors) to 
classify data. In auditory stimuli, pitch, loudness, and sound duration are just some 
of the features that a neural network researcher would attempt to extract as feature 
vectors to classify the data. Auditory researchers frequently use the MFC, which is 
a power-spectrum representation of sound and a convenient feature to analyze. 
However, a problem with developing neural networks for sound is that, unlike 
images where features are often spatially separated and have face validity (a line is 
recognized as a line but also part of a larger object), sounds almost always arrive to 
the listener comingled, where a given auditory stream contains parts of multiple 
sound sources. 

Feature extraction for automated systems must proceed in a manner similar to 
humans where the arriving cacophony is segregated based on both low-level feature 
similarity (i.e., frequency, intensity, direction) and then grouped to form 
meaningful sound representations based on cognitive factors such as prior 
experience and listening context. 

Vision researchers have traditionally used image databases, which are static 
representations of the world (Deng et al. 2009), because they are easy to work with 
and low in data requirements. However, static data ignore the additional 
information from dynamic changes in the world. Newer research shows that 
temporal information in video improves classification and reduces the number of 
training examples required (Simonyan and Zisserman 2014) and using deep 
learning techniques for action recognition in videos further increases improvements 
(Sharma et al. 2015). Auditory researchers have found that static, neatly parsed, 
data can differ greatly from the more dynamic, real-world spoken data. For 
example, people often speak in short bursts and phrases, and emit nonlinguistic 
sounds (ah, hum) that are not well interpreted by current speech-to-text systems 
(Anagnostopoulos et al. 2015). This makes development of real-world sound 
classification systems difficult. 

As part of the AI development cycle, neural network researchers sometimes use 
“black-box” techniques to extract features from a data set (Castelvecchi 2016). 
Black-box techniques create trained systems where the decision-making process is 
not immediately apparent. For example, a decision-tree system allows the decision-
making process to be broken down into a series of steps and decision points, 
allowing the consumer of the information to check each decision at each point in 
the network. 

However, black-box techniques do not create a decision tree. For instance, within 
a neural network, the information related to the decision-making process is stored 
as a collection of weights across the nodes in the network, making explanations of 
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the decision-making process nearly impossible. So black-box techniques yield 
classification systems that are not explainable by a human and can reduce the 
efficiency of the subsequent Human–Robot Interaction (HRI). In other words, the 
features extracted by black-box techniques are not necessarily known to the neural 
network developer, and the use of those features for classification yields 
unexplainable results, even to the developer of the system. 

This black-box problem where feature extraction results may not be knowable, even 
by developers, led to recent research in explainable AI, which should be of benefit 
to the HRI community. For example, when a decision is made by an AI system, the 
consumer of that information might need additional information about how the 
decision was made and want to know the AI’s confidence in the decision. Further, 
for HRI in particular, a decision made by the AI must be transparent and 
understandable (see Gunning 2017 and Gunning and Aha 2019 for discussion on 
explainable AI). These types of concerns may seem basic, but the decisional 
processes and transparency of those system decisions are critical in high-risk 
domains such as medical diagnoses, aviation support, and battlefield SA. 
Explainable AI is especially helpful in the after-action reports and debriefings that 
accompany military operations. Systems like Debrief, which was a hybrid system, 
were used to justify actions for the TacAir-Soar combat domain (Laird et al. 1994) 
and explainable AI systems aided in military planning and execution (Tate et al. 
2000). 

2.3 Deep Learning 

Deep learning is a neural network technique, or set of techniques, that is currently 
popular in the AI community. Deep learning has generally shown better 
performance as compared to neural networks for some types of classification tasks 
(LeCun et al. 2015). For example, in 2011 researchers used deep learning 
techniques to achieve superhuman performance in a visual pattern-recognition task 
involving handwritten digits (Ciresan et al. 2011). However, the better performance 
for deep learning compared to traditional neural network approaches could be due 
to the use of brute-force training methodologies. The brute-force approach can lead 
the network to overgeneralize. Overgeneralization (i.e., overfitting) is the 
phenomenon where the model is highly tuned for accuracy on the training set, but 
performs poorly on novel examples at test (Srivastava et al. 2014). Overfitting has 
been a known problem with neural networks for a long time (Tetko et al. 1995). 
This also leads to another problem where a novel input cannot be rejected from a 
trained set of data. In other words, the neural network does not know that it does 
not know an instance of given data. 
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Other neural network problems persist as well. For example, deep learning neural 
nets have classified nonsense images as trained images (Nguyen et al. 2015). And 
while deep learning has been applied to auditory data for speech recognition with 
typical improvements over traditional neural networks (Amodei et al. 2016), it has 
recently been shown that deep learning for speech recognition can be fooled by 
nonsense data in the same ways as image classification (Cisse et al. 2017). This 
could have enormous implications for secure data neural networks in the 
Department of Defense. If neural networks trained to recognize specific auditory 
commands could be easily fooled by nonsense vocalizations, or vocalizations that 
appear to be correct, neural networks could miss obvious environmental sound 
classifications on the battlefield or take actions that are not intended by the 
designers. 

In terms of human interaction, deep learning has some of the same problems as 
traditional neural networks. If feature extraction is done by a deep learning network, 
then the lack of explainability from a black-box process can be even more 
detrimental to humans interacting with the AI. Furthermore, issues of overtraining 
and overgeneralization can make the learning achieved by deep learning processes 
nontransferable to other situations, perhaps without the understanding by the end 
user of the system—meaning that the system was intended to be used on specific 
data only and is not valid outside of that constrained data set. 

2.4 Markov Models 

The Markov decision-making process, and the family of Markov decision-making 
models, has been used in robotics for several decades (Koenig and Simmons 1998) 
and is extremely useful for speech recognition (Haridas et al. 2018) and human 
motion trajectory prediction (Rudenko et al. 2019) by modeling the state emission 
probabilities (Renals et al. 1994). In terms of AI classification systems, speech 
recognition is probably one of the best applications of HMMs. 

Speech recognition algorithms benefit from having a time series probability 
distribution, something that is not applicable in static visual domain sets. For 
example, in speech recognition, each word cues the probability of the next word in 
a sentence, so a set of probabilities for each word in a sentence is easily defined in 
a computationally efficient manner. This problem space has lent itself well to the 
use of HMMs. HMMs were used extensively in the 1980s and caused a rapid 
advancement in the field of speech recognition (Haridas et al. 2018). For speech 
recognition tasks, the state of the world can be defined in finite terms, but for other 
more difficult tasks, like environmental sound recognition, the state space is much 
more vast, or nondeterministic polynomial (NP) time, known as NP-complete. By 
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NP-complete we mean the time required to solve such problems is so vast that it is 
essentially prohibitive to the efficient solving of the problem. 

Unlike deep learning neural networks, which rely on extracting features for 
classifications, HMMs instead predict state transitions, which can be explained to 
the end user and thus improve the overall human interaction with the AI. For 
instance, it can be explained that a certain word in a sequence of words was the 
most likely next word in a sentence, and that is why the word was predicted as an 
outcome. This is in contrast to neural networks, where even the designer of the 
network might not understand why a network arrived at a certain decision. Further, 
HMMs have been used to estimate the reward functions of human operators, and 
consequently select behaviors that are congruent with the perceived policy of the 
human operators (Tabrez and Hayes 2019). This application of HMM makes any 
communication with the human operators more seamless since understanding of 
reward functions is relatively straight forward and easily understood by human 
users. 

Recently, HMM architectures have been combined with deep learning in a hybrid 
methodology, which is discussed in the next section. This hybrid union of 
techniques allows the time-dependent aspects of HMM to be combined with the 
classification strengths of deep learning (Hinton et al. 2012). 

2.5 Hybrid Models 

As technology becomes more complex, and as AI solutions are used in more 
complex decision-making areas, there is an increased need to integrate and unify 
architectures with an emphasis on transparency and explainability to the end user. 
In general, no single type of AI algorithm offers the best solution for all possible 
classification problems, including auditory classification problems. Instead, the 
best solution for difficult computational problems is usually to combine algorithm 
classes and theoretical approaches into a more seamless hybrid approach. A hybrid 
approach leverages the strengths of each computational methodology into a unified 
whole, while avoiding the pitfalls associated with each individual approach. 

As neural networks proved less effective than HMMs for speech processing, there 
was a shift in AI approaches in the late 2000s to develop more hybrid systems of 
both neural networks and HMMs (Juang and Rabiner 2004). With respect to 
specific problems in sound, hybrid systems have been used to advance the state of 
the art in speech recognition (Hinton et al. 2012). These hybrid systems use a 
mixture of deep learning and HMM. Additionally, hybrid models were used to 
advance the state of the art for recognition of emotion in speech (Pao et al. 2007). 
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This theoretical point of using hybrid methodologies has been argued for several 
decades in the AI community, especially for combining neural network approaches 
with more traditional symbolic approaches (Smolensky 1987; Holyoak 1991; Sun 
and Alexandre 1997; Sun 2001; Kelley 2003; Anderson et al. 2004; Clark and 
Pulman 2007; Jilk et al. 2008). A hybrid approach has also been used to 
successfully develop several cognitive architectures capable of complex problem 
solving including Soar (Laird et al. 1994), the Atomic Components of Thought-
Rational (ACT-R) (Anderson et al. 2004), and Clarion (Sun 2006). These 
architectures are goal-based symbolic systems at the high level, and human-like 
memory decay systems at the low level (Anderson 2005). 

In a recent review of hybrid models, Fajardo-Toro et al. (2018) argue that as the 
complexity of problems increases, the need for models to handle more complex, 
dynamic, nonlinear relationships also increases, and this need necessitates the 
continued development of hybrid models. For example, newer hybrid models in 
speech emotion recognition apply deep learning and HMMs (Li et al. 2013).  
Dao et al. (2019) recently argued that hybrid models, in the areas of structural 
engineering, were needed because earlier single-method models could not answer 
more complex problems, specifically, determining the properties of geo-polymer 
concrete. Recently, hybrid models have shown promise for solving more complex 
problems than models based on single AI algorithms across a variety of different 
problem domains. A survey of hybrid models in finance showed that hybrid 
methodologies outperformed other methods of classification in a variety of 
complex financial problem spaces including bankruptcy prediction and financial 
forecasting (Bahrammirzaee 2010). Additionally, hybrid models have been used to 
better estimate possible human trajectories (Rudenko et al. 2019) for oil price 
prediction (Wu et al. 2019) and wildfire prediction (Jaafari et al. 2019) 

3. Discussion 

In summary, discrete symbolic approaches originally used to play chess in the 
1960s were replaced by distributed neural networks in the 1980s, which emerged 
as a new approach in AI. Since then, deep learning neural networks have used a 
variation on multilayer processing, or convolution, to add computational power to 
traditional neural networks. Additionally, increased computational speed for neural 
network training is provided by recent advancements in the design of GPUs. 
Multiple GPUs are inexpensive for researchers to use on a small scale and can be 
operated in parallel for increased computational power. 

However, the current deep learning methodology is a brute-force AI approach; it 
uses large sets of training data and multilayer networks for learning and does not 
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develop transparent learning methods that can be easily communicated to human 
users. Additionally, deep learning neural networks can be fooled by nonsense data 
(Radford et al. 2015) and there are issues of overfitting and lack of generalization 
(Spigler 2019). Other architectures, specifically HMMs, have been used with 
success in speech-to-text systems. HMM researchers benefited from the temporal 
nature of speech, which allows the efficient use of HMM systems in speech 
recognition. While HMMs perform relatively well for speech, and while speech 
recognition automation has made great strides, other types of sound classification 
problems still persist. The best HMM, deep learning, and neural network 
approaches all put up classification accuracy values in the 40%–80% range, 
depending on the size of the data set, the length of the samples, and the particulars 
of the classification approach. 

Hybrid approaches, like the Symbolic and Sub-symbolic Robotics Intelligence 
System (Kelley 2006) or ACT-R/Leabra (O’Reilly and Munakata 2000) both 
combine neural networks with production systems for solving complex 
classification and decision-making problems. For classification problems, hybrid 
systems can use deep learning neural networks to process large amounts of data at 
the lower levels, combined with higher levels of predicate logic for decision 
making, and the integration of ontologies for contextualized problem solving. This 
use of the higher-level information and context could potentially improve 
classification accuracies for environmental sound sets, which are often smaller and 
more abstract than the image sets used previously in deep learning, neural network, 
or HMM approaches. Jaafari et al. (2019) warns that the benefits of hybrid models 
over traditional single-model approaches might not be evident during initial 
training, but that hybrid models were shown to be more robust during the validation 
phases of development and less susceptible to overfitting and overtraining. This is 
something for researchers to keep in mind during any model comparison.  

In terms of computational transparency and explainability, symbolic systems are, 
by nature, more intuitively explainable than distributed systems—as language itself 
is an example of a symbolic system. The use of ontologies ConceptNet (Liu and 
Singh 2004) and Cyc (Lefkowitz et al. 2007) with spoken interactions from the user 
would allow increased understanding given the symbolic nature of the 
representation. However, while current hybrid models offer a solution for 
communication and HRI using speech, there is currently no research examining 
environmental sound perception for AI systems using these architectures or a 
comparable hybrid approach that leverages the neural networks’ ability to handle 
huge amounts of data while using higher-level cognitive concepts to refine a 
solution and support better classification and decision making, explainability, and 
ultimately, SA. This is an important gap in the literature and mirrors a gap that 
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existed until the late 1990s in the human environmental sound perception literature. 
Research on acoustic and semantic influences on sound perception was entirely 
separate. Gregg and Samuel (2008) found that both acoustic and semantic 
information influenced sound detection. More recently, researchers are using 
ontologies to incorporate context into natural language dialog to improve overall 
conceptual understanding (Rajpathak et al. 2012). However, few models of 
environmental classification, as opposed to language processing, are relying on 
transformations of acoustic data and do not incorporate any higher level contextual 
information. 

4. Conclusion and Future Directions 

Additional research on environmental sound processing, perception, and cognitive 
decision making using sound is needed for humans, agents, and human–agent teams 
to develop the best sensing, algorithmic, and communication strategies for 
autonomous systems to increase SA in complex urban environments. 

Use of hybrid AI methodologies (e.g., neural networks with HMM) may provide 
the best performance, and work to improve transparency and create learning that is 
semantically similar to human learning is needed to improve SA at a team or squad 
level. 

The HRI community needs to be aware and understand the limitations of AI 
techniques, especially in the areas of overtraining/overgeneralization and black-box 
techniques. These techniques can be detrimental to increased transparency, which 
is needed to ensure adequate HRI. 

Humans learn to speak and understand speech by extracting regularities from the 
auditory environment. Environmental sound perception proceeds much the same 
way. Future research developing auditory classification training sets should focus 
on developing a strategy for understanding how noise in the data can benefit 
learning; noisy data in the right context can create robust and highly transferable 
learning. 
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ACT-R Atomic Components of Thought-Rational 

AI artificial intelligence 

ARL Army Research Laboratory 

ASR automatic speech recognition 

CCDC US Army Combat Capabilities Development Command 

GPU graphical processing unit 

HMM hidden Markov models 

HRI Human–Robot Interaction 

MFC mel-frequency cepstrum 

NP nondeterministic polynomial 

SA situational awareness 

TOC Tactical Operations Center 
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