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Summary 

With the support of this grant, our team has been developing a series of work on heterogeneous 
big data analyses and understanding in three domain areas: 
 

• Domain I:  Discriminative learning (image classification, line segment detection, object 
detection, tracking and segmentation and parsing); and 

• Domain II: Generative learning (unconditional and conditional image synthesis). 
• Domain III: Reinforcement learning 

 
This report summarizes the developments in 6 tasks.  

• Task 1: Developing deep grammar networks for deep learning. 
• Task 2: Developing attentive normalization methods for deep learning. 
• Task 3: Developing interpretable learning-to-learn methods for handling catastrophic 

forgetting 
• Task 4: Developing attraction field representations for robust line segment detection. 
• Task 5: Developing attentive pooling and reconfigurable normalization methods for image 

synthesis, image completion and image style transfer.  
• Task 6: Developing novel experience replay methods for deep reinforcement learning. 

 
We report a total of 11 papers in the pipeline of publication (8 published and 3 under review). 
These papers cover a broad range of topics in vision, learning, robotics and AI. 
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1. Task 1: Developing deep grammar networks for deep learning 
Objectives:  Neural architectures are the foundation for improving performance of deep neural 
networks (DNNs). The objective of this task is to develop deep compositional grammatical 
architectures which harness the best of two worlds: grammar models and DNNs. The proposed 
architectures integrate compositionality and reconfigurability of the former and the capability of 
learning rich features of the latter in a principled way.  
Accomplishments: During this report period, we have made significant technical progress:  We 
utilize AND-OR Grammars (AOG) as network generators and call the resulting networks, 
AOGNets[1]. Our proposed AOGNet is the first work in the literature which deeply integrate 
grammar models and DNNs for better feature exploration and exploitation in a compositional, 
reconfigurable and adaptive way. In our current experiments, we showed that AOGNets 
outperform all state-of-the-art neural architectures including Google’s InceptionNets, Microsfot’s 
ResNets, and Facebook’s ResNeXts etc. in visual recognition tasks. A provisional patent 
application was filed on AOGNets in November 2018.   

1.1. Method Overview 
Technically speaking, neural architectures have been explored in very restricted space in the 
literature. Learning the optimal network topology automatically in a domain-agnostic way remains 
an open problem since the seminal work of K. Fukushima’s Neocognitron. Recently, Professor 
Geoffrey Hinton (who is well-known for being called the Godfather of AI) also criticized the 
insufficiency of current mostly feed-forward network architectures. As Figure 1.a illustrates, 
network architecture design and search can be posed as a combinatorial search problem in a 
product space of two sub-spaces:  

• The structure space which consists of all directed acyclic graphs (DAGs) with the start 
node representing input raw data and the end node representing task loss functions. DAGs 
are entailed for feasible computation in implementation.    

 
Figure 1. Illustration of the space of neural architectures in (a), the stage-wise building block based 
schema that popular networks have explored the space in (b), and examples of popular building blocks 
in convolutional neural networks in (c). 
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• The node operation space which consists of all possible transformation functions for 
implementing nodes in a DAG, such as Convolution+BatchNorm+ReLU in computer 
vision. 

The structure space is almost unbounded, and the node operation space for a given structure is also 
combinatorial. Neural architecture design and search is a challenging problem due to the 
exponentially large space and the highly non- convex non-linear objective function to be optimized 
in the search. As illustrated in Figure 1.b, to mitigate the difficulty, neural architecture design and 
search have been simplified to design or search a building block structure. Then, a DNN consists 
of a predefined number of stages each of which has a small number of building blocks. This stage- 
wise building-block based design is also supported by the theoretical study under some 
assumptions. Figure 1.c shows examples of some popular building blocks with different structures.  
 

 
Figure 2. Illustration of our AOG building block for grammar- guided network generator. The 
resulting networks, AOGNets obtain 80.18% top-1 accuracy with 40.3M parameters in ImageNet, 
significantly outperforming ResNet-152 (77.0%, 60.2M), ResNeXt-101 (79.6%, 83.9M), 
DenseNet-Cosine-264 (79.6%, ∼73M) and DualPathNet-98 (79.85%, 61.6M). See [1] for details. 

 

We proposed grammar-guided network generators which can generate “high-quality” DNNs 
by exploiting compositionality, reconfigurability and lateral connectivity which are well-known 
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principles in cognitive science, neuroscience and pattern theory. They are fundamental for the 
remarkable capabilities possessed by humans, of learning rich knowledge and adapting to different 
environments, especially in vision and language. They have not been, however, fully and explicitly 
integrated in existing DNNs. We presented compositional grammatic architectures that realize 
compositionality, reconfigurability and lateral connectivity for building block design in a 
principled way. We utilize AND-OR Grammars (AOG) and propose AOG building blocks that 
unify the best practices developed in existing popular building blocks. Our method deeply 
integrates hierarchical and compositional grammars and DNNs for harnessing the best of both 
worlds in deep representation learning. Figure 2 illustrates the proposed AND-OR Grammar (AOG) 
building block, and Figure 3 shows an example of AOGNets.  

1.2. Result Summary  
In experiments, AOGNet is tested in two golden testbeds: the ImageNet-1K classification 
benchmark and the MS-COCO object detection and segmentation benchmark. In ImageNet-1K, 
AOGNet obtains better performance than ResNet and most of its variants, ResNeXt and its 
attention based variants such as SENet, DenseNet and DualPathNet. AOGNet also obtains the best 
model interpretability score using network dissection. AOGNet further shows better potential in 
adversarial defense. In MS-COCO, AOGNet obtains better performance than the ResNet and 
ResNeXt backbones in Mask R-CNN.  

 
Table 1. The top-1 and top-5 error rates (%) on the ImageNet-1K validation set using single model 
and single-crop testing. Our AOGNets obtain the best accuracy. Please refer to [1] for details of 
the references in the table.  
Table 1 shows the results in ImageNet-1K. Our AOGNets are the best among the models with 
comparable model sizes in comparison in terms of top-1 and top-5 accuracy. Our small AOGNet-
12M outperforms ResNets (44.5M and 60.2M) by 1.32% and 0.72% respectively. We note that 
our AOGNets use the same bottleneck operation function as ResNets, so the improvement must be 
contributed by the AOG building block structure. Our AOGNet-40M obtains better performance 
than all other methods in comparison, including ResNeXt-101+SE (48.9M) which represents the 
most powerful and widely used combination in practice. AOGNet-40M also obtains better 
performance than the runner-up, DPN-98 (61.6M), which indicates that the hierarchical and 
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compositional integration of information flow in our AOG building block is more effective than 
the cascade-based integration in the DPN. Our AOGNet-60M achieves the best results. 

 
Figure 4. Comparisons of model interpretability using the widely used network dissection method 
on ImageNet pretrained networks. Our AOGNets obtain the highest interpretability score in terms 
of the protocol based on the number of unique detectors (left), although they use smaller number 
of detectors (right, i.e., less complicated models in terms of model parameters).  
Model Interpretability has been recognized as a critical concern in developing deep learning based 
AI systems. We use the network dissection metric which compares the number of unique 
“detectors” (i.e., filter kernels) in the last convolution layer. Our AOGNet obtains the best score 
in comparison (Figure 4), which indicates the AOG building block has great potential to induce 
model interpretabilty by design, while achieving the best accuracy performance. 

 
Table 2. Top-1 accuracy comparisons under white-box adversarial attack using 1-step FGSM with 
the Foolbox toolkit. Our AOGNets show great potential in adversarial defense.  
Adversarial robustness is another crucial issue faced by many DNNs. We conduct a simple 
experiment to com- pare the out-of-the-box adversarial robustness of different DNNs. Table 2 
shows the results. Under the vanilla settings, our AOGNets show better potential in adversarial 
defense, especially when the perturbation energy is controlled relatively low (i.e. ε = 0.1). We 
investigate this with different attacks and adversarial training in our on-going work. 
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Table 3. The top-1 and top-5 error rates (%) on the ImageNet-1Kvalidation set under mobile 
settings.  
Mobile settings. We train an AOGNet-4M under the typical mobile settings (mode size < 5M 
parameters, and FLOPs < 600M). Table 3 shows the comparison results. We obtain performance 
on par to or better than the popular networks specifically designed for mobile platforms such as 
the MobileNets and ShuffleNets. Our AOGNet also outperforms the auto-searched network, 
NASNet (which used around 800 GPUs in search). We note that we use the same AOGNet 
structure, thus showing promising device-agnostic capability of our AOGNets. This is potentially 
important and useful for deploying DNNs to different platforms in practice since no extra efforts 
of hand-crafting or searching neural architectures are entailed. 

 
Table 4. Mask-RCNN results on coco val2017 using the 1x training schedule. Results of ResNets 
and ResNeXts are reported by the state-of-the-art maskrcnn-benchmark. 
In MS-COCO, Table 4 shows the comparison results. Our AOGNets obtain better results than the 
ResNet and ResNeXt backbones with smaller model sizes and similar or slightly better inference 
time. The results show the effectiveness of our AOGNets learning better features in object 
detection and segmentation tasks. 

2.  Task 2: Developing attentive normalization methods for deep learning 
Objectives:  Batch Normalization (BN) is a vital pillar in the development of deep learning with 
many recent variations such as Group Normalization (GN) and Switchable Normalization (SN). 
Channel-wise feature attention methods such as the squeeze-and-excitation (SE) unit have also 
shown impressive performance improvement. Feature normalization and feature attention have 
been studied separately, however. The objective of this task is to develop a novel and lightweight 
integration of feature normalization and feature channel- wise attention.  
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Accomplishments: We developed Attentive Normalization (AN) [2] which is a lightweight 
integration of feature normalization and attention. AN is complementary and applicable to existing 
variants of BN. In experiments, we test AN in the ImageNet-1K classification dataset and the MS-
COCO object detection and instance segmentation dataset with significantly better performance 
obtained than the vanilla BN. Our AN also outperforms two state-of-the-art variants of BN, GN 
and SN. 

 
Figure 5. Illustration of the proposed Mixture Normalization (MN) in (b) using the vanilla Batch 
Normalization (BN) as backbone (a). MN shares the feature normalization component with BN, 
and differs in how the affine transformation is done. (c) shows our lightweight deployment of MN 
in the bottleneck of a ResNet building block (ResBlock) which follows the 3 × 3 convolution unit 
to potentially jointly integrate spatial attention in learning the instance-specific attention 
parameters. MN can also use other variants of BN as backbones. The input feature map is 
represented using the convention (𝑁, 𝐶, 𝐻,𝑊	) for the batch axis, channel axis, spatial height and 
width axes respectively. xi represents a feature response in the input feature map with position 
index 𝑖	 = 	 (𝑖,	, 𝑖-	, 𝑖.	, 𝑖/	).  𝑥12  represents the normalized response using the pooled channel-wise 
mean and variance. 𝑥12  is the response after affine transformation with learned scale and offset 
parameters. See [2] for details. 
2.1. Method Overview 
BN and its variants take into account different ways of computing the mean and variance within a 
min-batch for feature normalization, followed by a learnable channel-wise affine transformation. 
SE explicitly learns how to adaptively recalibrate channel-wise feature responses. AN absorbs SE 
into the affine transformation of BN. As illustrated in Figure 5, unlike BN which only learns one 
affine transformation for each channel, AN learns a small number K of affine transformation 
components per channel (e.g., K = 5 is a hyperparameter). The scale and offset parameters for the 
final instance-specific channel-wise affine transformation is computed as weighted sum of the 
mixture of affine transformation components. The instance-specific weights are learned from the 
input feature map. For example, we utilize the squeeze module in the SE unit to learn the weights. 
It consists of a global average pooling layer, a fully-connected layer and the sigmoid activation 
function. It first utilizes the mean of each filter to represent its “importance” and then learns the 
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interdependencies between the filters from the eye of their means to capture channel-wise attention. 
We can also learn weights for the scale and offset parameters separately.When deploying our AN, 
e.g., into the Bottleneck building block of ResNets, to control the extra parameters introduced by 
our AN, we use a lightweight deployment for it. It follows the 3 × 3 convolution unit since it has 
the least number of channels. Potentially, this will jointly integrate local spatial attention in 
learning the instance-specific attention parameters. We keep the other two feature normalization 
(BN) units. By mixing AN and BN, we also obtain a new type of Bottleneck operations. 
2.2. Result Summary 
We tested AN using ResNet50 as backbone, which is also used by other types of variants of BN 
(so we can compare results). We test AN in the ImageNet-1K classification dataset and the MS-
COCO object detection and instance segmentation dataset with significantly better performance 
obtained than the vanilla BN. Our AN also outperforms two state-of-the-art variants of BN, GN 
and SN. 

 
Table 5.  The top-1 and top-5 error rates (%) on the ImageNet-1K validation set using single model 
and single-crop testing.  
Table 5 shows the comparison results. Our AN obtains the best top-1 and top-5 accuracy results 
with negligible extra parameters at almost no extra computational cost. Our AN improves BN by 
almost 0.6% on top-1, and outperforms SN by 0.2%, which shows the effectiveness of our 
lightweight integration of feature normalization and attention.  

         
Figure 6. Left: t-SNE plot comparison of learned weights in the mixture for the four stages of 
ResNet-50 with randomly selected 12 ImageNet classes. In each stage, the learned y vectors of all 
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the units are concatenated for visualization. Right: More semantically or visually similar classes 
tend to have closer embeddings. 
Figure 6 (Left) shows the t-SNE plots for the four stages in ResNet50. In each stage, we 
concatenate the learned weights in all Bottleneck units as the clustering features for images. We 
randomly select 12 categories (gondola, vase, lion, etc.) in the validation dataset. We observe that 
the learned weights become stronger and stronger for clustering the images for deeper stages. In 
the final stage (stage4), we clearly see the clusters are formed. This effect shows that the learned 
weights are indeed informative and meaningful for the classification task. The sub-network used 
to learn the weights (Eqn. 6 in the paper [2]) shares the similar settings with the classification head 
classifier (consisting of a global average pooling, a FC layer and softmax). So, we can treat the 
learned weights as some latent classification codes. The final affine transformation is then guided 
by this latent classification codes for recalibrating the normalized feature responses, which may 
be the underlying driving force introduced by our AN. We further investigate if the learned weights 
can pre- serve the semantic similarities, that is visually or semantically similar categories should 
be also closer to each other in the t-SNE plots. Figure 6 (Right) verifies the hypothesis. For 
example, we can see “pizza”, “hot dog” and “cheeseburger” are very close, as well as “race car” 
and “sports car”. Our AN shows strong capability in preserving semantic similarities which is one 
of the most important criteria for representation learning. 

 

 
Figure 7. Illustration of the effects of MN and BN on filter responses. We show the filter response 
histograms (marginal distributions) for different images in different categories. Here we show 
results of a 4-stage ResNet50. stage 𝑖 unit 𝑗 means the histograms are plot for the output feature 
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map of the j-th ResBlock in the i-th stage. From the histograms, we observe that for images from 
the same class (e.g., school bus), the histograms of our MN show higher similarities with smaller 
variance.  
Figure 7 shows empirical comparisons between our AN and the vanilla BN. This empirically 
shows that a channel-wise attention guided mixture of affine transformation helps recalibrate the 
normalized responses in a more meaningful way. 

 
Table 6. Detection and segmentation results in COCO, using Mask R- CNN with ResNet-50-FPN. 
All models use 2x lr scheduling (180k iterations). BN∗ means BN is frozen in fine-tuning for 
object detection. SN† means that only Layer Norm and Instance Norm are used in the SN. In our 
implementation of the MN head, MN (w/ GN) means that we use the mixture version of GN in the 
head. 
In MS-COCO, when fine-tuning the ImageNet pretrained ResNet50+AN and ResNet101+AN on 
COCO for object detection and segmentation, we freeze all the gamma and beta parameters and 
the tracked running mean and variance, but allow the FC layers to continue learn except for the 
FC layer in the first stage. As Table 6 shows, with only AN in the backbone, our AN obtains 
comparable performance to the model with GN in both backbone and the head classifiers although 
GN stands right in its sweet pot. This shows that our AN does not suffer too much from the small 
batch settings in fine-tuning. We conjecture that the FC layers can compensate the small batch 
issue by learning instance-specific feature channel-wise attention. Compared with the vanilla BN, 
we significantly improve the performance, which shows the effectiveness of integrating feature 
normalization and attention in transferring models between different tasks. 

3.  Task 3: Developing interpretable learning-to-learn methods for handling catastrophic 
forgetting 

Objectives: Learning different tasks continuously is a common and practical scenario that happens 
all through the course of human learning. The learning of new skills from new tasks usually does 
not have negative impact on the previously learned tasks. Furthermore, with learning multiple 
tasks that are highly related, it often helps to advance all related skills. However, this is commonly 
not the case in current deep learning models. When presented a sequence of learning tasks, the 
model experiences so called “catastrophic forgetting” problem where the model “forgets” the 
previous learned task while learning the new task. Addressing catastrophic forgetting is one of the 
key challenges in continual learning where machine learning systems are trained with sequential 
or streaming tasks. Despite recent remarkable progress in state-of-the-art deep learning, deep 
neural networks (DNNs) are still plagued with the catastrophic forgetting problem. The objective 
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of this task is to develop a conceptually simple yet general and effective framework for handling 
catastrophic forgetting in continual learning with DNNs. Then, we can study continual learning in 
long-term and large-scale object tracking-by-detection-and-parsing.  
Accomplishments: We propose a learn-to-grow framework[3] based on differentiable neural 
architecture search (NAS). The proposed method consists of two components: a neural structure 
optimization component and a parameter learning and/or fine-tuning component. By separating 
the explicit neural structure learning and the parameter estimation, not only is the proposed method 
capable of evolving neural structures in an intuitively meaningful way, but also shows strong 
capabilities of alleviating catastrophic forgetting in experiments. Furthermore, the proposed 
method outperforms all other baselines on the permuted MNIST dataset, the split CIFAR100 
dataset and the Visual Domain Decathlon dataset in continual learning setting. 
3.1. Method Overview 
In our learn-to-grow framework, the first neural structure optimization component learns the best 
neural structure for the current task on top of the current DNN trained with previous tasks. It learns 
whether to reuse or adapt building blocks in the current DNN, or to create new ones if needed 
under the differentiable neural architecture search framework. The parameter estimation/fine-
tuning component estimates parameters for newly introduced structures, and fine-tunes the old 
ones if preferred. Figure 8 illustrates the proposed framework.  

 
Figure 8. Illustration of the proposed learn-to-grow framework. a) Current state of super model. 
In this example, the 1st and 3rd layers have single copy of weight, while the 2nd and 4th has two 
and three respectively. b) During search, each copy of weight for each layer will have a “reuse” 
and an “adaptation” options plus a “new” option, thus totally 2|𝑆8| 	+ 	1 choices. α is the weight 
parameters for the architecture. c) Parameter optimization with selected architecture on the current 

task k. d) Update super model to add the newly created 𝑆;′ . 

In neural structure optimization, we utilize differentiable NAS. We assume that one already has 
in mind a global structure that may work for all tasks (i.e., super-net), and we are only selecting 
connectivity pattern between layers and their corresponding operator. It is straight forward to adapt 
this to more complicated cases, we make the simplification because: 1) it is common in a multi-
task continual learning scenario that one has some rough clue regarding the overall model structure; 
2) this simplifies the optimization problem significantly. Let’s define a certain network with 𝐿 
shareable layers and one task-specific layer (i.e. last layer) for each task. A super network 𝑆 is 
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maintained so that all the new task-specific layers and new shareable layers will be stored into 𝑆. 
The goal of search is trying to find out the optimal choice for each of the 𝐿 layers, given the current 
task data 𝐷> and all the shareable layer’s weights stored in 𝑆. The candidate choices for each layer 
could be “reuse”, “adaptation” and “new”. The reuse choice will make new task use the same 
parameter as the previous task. The adaptation option adds a small parameter overhead that trains 
an additive function to the original layer output. The new operator will spawn new parameters of 
exactly the size of the current layer parameters. 
In parameter estimation and/or fine-tuning, after we get the optimal choices for each layer from 
the search procedure, we retrain the optimal architecture on the current task. There are two 
strategies to deal with “reuse”, we can either fix it unchanged during retraining just as in search, 
or we can tune it with some regularization – simple 𝑙@  regularization or more sophisticated 
regularizations like elastic weight consolidation. We tested both in experiments.  
3.2. Result Summary 

 
(a)                                                         (b) 

     
(c)                                                         (d) 

Figure 9. Comparative performance on a) permuted MNIST and b) split CIFAR-100 dataset. 
Methods include Kirkpatrick et al. (2017, EWC), Lee et al. (2017b, IMM), Fernando et al. (2017, 
PathNet (PN)), Rusu et al. (2016, Progressive Net (PG)), Serra` et al. (2018, HAT), Lee et al. 
(2017b, DEN), Nguyen et al. (2018, VCL), ours (w/o reg) denotes the case where finetuning for 
current tasks is done without using any regularization to prevent forgetting, and ours represents 
the case where the l2 regularization is used. c) Results of different continual learning approaches 
on 10 permutated MNIST datasets. The averaged accuracy after all 10 tasks are learned and total 
number of parameters are compared. d) Results of different continual learning approaches on split 
CIFAR100 dataset. The averaged accuracy after all 10 tasks are learned and total number of 
parameters are compared. 
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Comparison with Other Methods. As shown in Figure 9, we compare the performance of various 
methods on the permuted MNIST dataset with ten different permutations, and the CIFAR-100 
dataset where we randomly partition the classes of CIFAR-100 into 10 disjoint sets, and regard 
learning each of the 10-class classification as one task. It is clear that our method (either tuned 
with or without regularization) performs competitive or better than other methods on these tasks. 
This result suggests that although theoretically, structure can be learned along with parameter, in 
practice, the current optimization have a hard time achieving this. This in turn indicates the 
importance of explicit taking structure learning into account when learning tasks continuously. 
We also conduct comprehensive ablation studies on different aspects of our learn-to-grow 
framework in the paper [3] which show the significance of the proposed framework.  
4.  Task 4: Developing bottom-up/top-down integrated framework for online object tracking 
Objective: Robust online object tracking entails integrating short-term trackers and long-term 
trackers in an elegant framework to handle structural and appearance variations of unknown 
objects in an online manner. The integration and synergy between short-term and long-term 
trackers have yet studied well in the literature, especially in pre-training free settings. To address 
this issue, this objective of this task is to develop a bottom-up and top-down integrated framework. 
The bottom-up component realizes a data-driven approach for particle generation. It exploits a 
short-term tracker to generate bounding box proposals in a new frame based on current tracking 
results. In the top-down component, a graph regularized sparse coding scheme is proposed as the 
long- term tracker. 
Accomplishment: We are interested in model-free settings in online object tracking. The proposed 
bottom-up/Top-down integration method is tested on the widely used OTB-100 benchmark and 
the VOT2016 benchmark with better performance obtained than baselines including deep learning 
based trackers. In addition, the outputs from the top-down sparse coding are potentially useful for 
downstream tasks such as action recognition, multiple-object tracking, and object re-identification. 

4.1. Method Overview 

 
Figure 10. Approximation of the discriminative particles by the top-down component. (a): The 
real target areas of sequence Jogging-1. (b): Real target and distractors in the 54thframe. (c): 
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Response map obtained from the bottom-up component. (d): Distractor approximated by the top-
down component. (e): Real target approximated by the top-down component. 
This paper proposes a bottom-up and top-down integrated framework to make the short-term 
tracker and long-term tracker work cooperatively. The bottom-up component realizes a data-driven 
approach which guides the gaze to the visual attention areas according to the object feature analysis. 
We exploit the short-term tracker as the bottom-up component to generate bounding box proposals 
that are to be carried forward to the top-down component. The areas corresponding to the response 
peaks and sidelobes are presented as discriminative particles in the new frame, in which both of 
the real target and other distractors are included, as shown in Figure 10 (b). The top-down 
component is driven by the high-level cognitive knowledge and aims to approximate the proposals 
obtained from the bottom-up component by the long-term memory of the target status. A novel 
graph regularized sparse coding scheme is presented as the representation model of long-term 
tracking. We first compute a particle graph whose nodes are the discriminative particles and edges 
are formed in terms of appearance and spatial-temporal similarities between bottom-up particles. 
And the constraint mode of the sparse coefficients is induced by the particle graph. Moreover, part- 
based representations are exploited to model the particles, which aims to deal with target partial 
variations. The sparse coding results of the distractor and the real target are shown in Figure 10 (d) 
and (e) respectively. For the distractor with the maximum response score in the bottom-up 
component, the energy of the coefficients is scattered in different dictionary entries. By 
comparison, in the representation of the real target, the non-zero elements of the coefficients are 
mainly distributed on the corresponding sub-dictionary. 

 
Figure 11. Overview of the proposed integrated tracking framework. Our method contains a 
bottom-up component, which applies the instant memory (a classifier) to generate bounding box 
proposals, and a top-down component to model each particle part individually with an over-
complete dictionary that contains long- term memory of the tracking objects. The representation 
model is based on a novel graph regularized sparse coding scheme, in which the underlying 
relationship of bottom-up particles is utilized as high-level cognitive information in the 
representation process. And the final tracking result is inferred based on the sparse coding 
coefficients energies and probabilities of all parts. 
The overview of the proposed tracking framework is illustrated in Figure 11. When a new frame 
arrives, a classifier with short-term memory of the tracking object is used to generate bounding 
box proposals (i.e., discriminative particles) within the searching window. Next, each particle is 
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divided into several local image blocks, which are then represented individually by a stored 
template set of long-term object appearance. The representation results of all parts are combined 
together to determine the final tracking result. Figure 12 shows some examples of the learned top-
down sparse coding dictionary.  

 
Figure 12. Illustration of dictionary entries of the long-term tracker. Two sequence videos 
(Jogging-1 and Bolt) are shown as valid test examples. (a): Sequence frames of different tracking 
period. (b): The initial target to be tracked, the blue and red masks illustrate two selected local 
parts to be represented. (c): The dictionary entries for target representation. 

4.2. Result Summary 
In the first frame, 50 positive samples are selected to initialize the dictionary. Each candidate image 
is resized to 32 × 32 pixels and is divided into 16 × 16 local image blocks with 8-pixel patch 
step size. Our experiment is implemented in MATLAB on a laptop with an Intel Core i7-6700HQ 
2.60GHz CPU and 16G RAM. 

 
Figure 13. Plots of OPE on the OTB-100 benchmark. The performance score for each tracker is 
illustrated in the legend. We evaluate the proposed algorithm on OTB-100 with comparisons to 8 
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state-of-the-art trackers, including 2 correlation filter based trackers: SRDCF and KCF; 2 sparse 
representation based trackers: SCM and MTT; 2 trackers with CNN features: CNN-SVM and CNT 
and 2 tracking-by-detection based trackers: STRUCK and TLD. From the results, we can see that 
the proposed tracker outperforms other state-of-the-art trackers. 
In the OTB-100 benchmark which consists of 100 test sequences. Figure 13 shows the comparison 
results. In the tracking process, for each sequence, only the target location of the first frame is 
manually labeled. Two basic metrics, center error and overlap rate are employed to evaluate the 
performance of each tracker. Based on these two metrics, the benchmark result is reported as the 
precision plots and success plots respectively. The precision plots show the position error between 
the predicting bounding boxes and the ground truth bounding boxes. Its performance score is the 
distance precision at a threshold of 20 pixels. The success plots take the position and scale variation 
into account. Its performance score is the area under curve value. Figure 14 shows some qualitative 
results. 

 
Figure 14. Qualitative comparisons in OTB-100.  
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Figure 15. Pooled AR plot and expected average overlap ranks. The sensitivity parameter for 
calculating robustness is defined as 30.  
In the VOT2016 benchmark which consists of 60 video sequences. Figure 15 shows the comparison 
results. Unlike OTB where a tracker is initialized at the beginning of a sequence and left to track 
until the end, the VOT challenges apply a reset-based methodology, in which trackers are re-
initialized five frames after failure. Three measures are used to analysis tracking behavior in the 
reset-based experiment: 1) accuracy (A), 2) robustness (R) and 3) expected average overlap (EAO). 
The accuracy is the average overlap value of the predicted and ground truth bounding boxes during 
success tracking periods. The robustness measures the number of tracking failures. The third 
measure, EAO, is a combination of the raw values of per-frame accuracies and failures in a 
principled manner. We compare the proposed tracker with 29 related and state- of-the-art tracking 
methods in the VOT2016 challenge. Sixteen trackers are based on the correlation filter framework 
with hand-crafted features. Five trackers apply CNN features into correlation filter, CCOT, DDC, 
deepMKCF, deepSRDCF, and RFD-CF2. The remaining eight trackers are selected from other 
tracking frameworks, MDNet-N and SiamAN are based on convolutional neural networks 
architecture, MIL and STRUCK2014 are in the tracking-by-detection framework, DPT and 
GGTv2, are two part-based trackers, DFT is based on distributed fields, IVT is based on sub-space 
learning. The MDNet-N tracking method is an extension of MDNet, which is the winner of 
VOT2015. The CCOT method is the winner of VOT2016.  

5.  Task 5: Developing attraction field representations for robust line segment detection 
Objective: Line segment detection (LSD) is an important yet challenging low-level task in 
computer vision. LSD usually consists of two steps: line heat map generation and line segment 
model fitting. The former can be computed either simply by the gradient magnitude map (mainly 
used before the recent resurgence of deep learning), or by a learned convolutional neural network 
(ConvNet) in state-of-the-art methods. The latter needs to address the challenging issue of handling 
un- known multi-scale discretization nuisance factors (e.g., the classic zig-zag artifacts of line 
segments in digital images) when aligning pixels or linelets to form line segments in the line heat 
map. The main drawbacks of existing two-stage methods are in two-fold: lacking elegant solutions 
to solve the local ambiguity and/or class imbalance in line heat map generation, and requiring extra 
carefully designed heuristics or supervisedly learned contextual information in inferring line 
segments in the line heat map. The objective of this task is to develop methods which focus on 
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learning based LSD framework and utilize a single-stage method which rigorously addresses the 
drawbacks of existing LSD approaches. 
Accomplishment: In experiments, the proposed method is tested on the WireFrame dataset and 
the YorkUrban dataset with state-of-the-art performance obtained. In particular, we improve the 
performance by large margin 4.5% on the WireFrame dataset against state-of-the-art methods. Our 
method is also fast with 6.6 ∼ 10.4 FPS, outperforming most of line segment detectors. 

5.1. Method Overview 

 
Figure 16. Illustration of the proposed method. (a) The proposed attraction field dual 
representation for line segment maps. A line segment map can be almost perfectly recovered from 
its attraction filed map (AFM), by using a simple squeeze algorithm. (b) The proposed formulation 
of posing the LSD problem as the region coloring problem. The latter is addressed by learning 
ConvNets. 
The proposed method for LSD is motivated by two observations: a) The duality between region 
representation and boundary contour representation of objects or surfaces, which is a well-known 
fact in computer vision; b) The recent remarkable progresses for image semantic segmentation by 
deep ConvNet based methods such as U-Net and DeepLab. The intuitive idea of this task is that if 
we can bridge line segment maps and their dual region representations, we will pose the problem 
of LSD as the problem of region coloring, and thus open the door to leveraging the best practices 
developed in state-of-the-art deep ConvNet based image semantic segmentation methods to 
improve perfor- mance for LSD. By dual region representations, it means they are capable of 
recovering the input line segment maps in a nearly perfect way via a simple algorithm. We present 
an efficient and straightforward method for computing the dual region representation. By re-
formulating LSD as the equivalent region coloring problem, we address the afore- mentioned 
challenges of handling local ambiguity and class imbalance in a principled way.  
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Figure 16 illustrates the proposed method. Given a 2D line segment map, we represent each line 
segment by its geometry model using the two end-points. In computing the dual region 
representation, there are three components:  

• A region-partition map. It is computed by assigning every pixel to one and only one line 
segment based on a proposed point to line segmentation distance function. The pixels 
associated with one line segment form a region. All regions represent a partition of the 
image lattice (i.e., mutually exclusive and the union occupies the entire image lattice).  

• An attraction field map. Each pixel in a partition region has one and only one corresponding 
projection point on the geometry line segment (but the reverse is often a one-to-many 
mapping). In the attraction field map, every pixel in a partition region is then represented 
by its attraction/projection vector between the pixel and its projection point on the 
geometry line segment. 

• A light-weight squeeze module. It follows the attraction field to squash partition regions in 
an attraction field map to line segments that almost perfectly recovers the input ones, thus 
bridging the duality between region-partition based attraction field maps and line segment 
maps  

The proposed method can also be viewed as an intuitive expansion-and-contraction operation 
between 1D line segments and 2D regions in a simple projection vector field: The region-partition 
map generation jointly expands all line segments into partition regions, and the squeeze module 
degenerates regions into line segments.  

5.2. Result Summary 
We test our method on two widely used benchmarks, the WireFrame dataset and YorkUrban 
dataset. All methods are evaluated quantitatively by the precision and recall protocol. The 
precision rate indicates the proportion of positive detection among all of the detected line segments 
whereas recall reflects the fraction of detected line segments among all in the scene. The detected 
and ground-truth line segments are digitized to image domain and we define the “positive detection” 
pixel-wised. The line segment pixels within 0.01 of the image diagonal is regarded as positive. 
After getting the precision (P) and recall (R), we compare the performance of algorithms with F-
measure 𝐹	 = 	2	 × C⋅E

CFE
 .  Figure 17 and Table 7 summarize the comparison results. Figure 18 

show qualitative comparisons.  
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Figure 17. The PR curves of different line segment detection methods on the WireFrame (left) 
and YorkUrban (right) datasets. 

 
Table 7. F-measure evaluation with state-of-the-art approaches on the WireFrame dataset and York 
Urban dataset. The last column reports the average speed of different methods in frames per second 
(FPS) on the WireFrame dataset. 

 
Figure 18. Some Results of line segment detection on Wireframe and YorkUrban datasets with 
different approaches LSD, MCMLSD, Linelet, Deep Wireframe Parser and ours with the a-trous 
Residual U-Net are shown from left to right. The ground truths are listed in last column as reference. 
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6. Task 6: Developing attentive pooling and reconfigurable normalization methods for 
image synthesis and image style transfer 
Objective: Generative learning is one of the most important and challenging tasks in computer 
vision and machine learning. Image synthesis is an important generative image modeling task in 
computer vision which aims at synthesizing realis- tic and novel images by learning high-
dimensional data distributions. Image-to-Image translation is usually built on image synthesis with 
two different settings, paired and un- paired translations. Generative adversarial networks (GANs) 
have recently become the most popular framework for generative learning. The objective of this 
task is two-fold: i) Develop attentive pooling modules for generators in GANs which can simulate 
intuitive “drawing” process (e.g., coarse-to-fine); ii) Develop conditional feature normalization 
schema for generators in GANs which can leverage the provided information in conditional GANs 
(recall that we developed conditional feature normalization methods for discriminative tasks in 
Task 2).    
Accomplishments: We explored two directions in generative learning with GANs. We develop a 
method of learning Attentive Atrous Convolution (AAC) which is a novel architectural unit and 
can be easily integrated into generators of GANs. The proposed AAC integrates the widely used 
Atrous Spatial Pyramid Pooling (ASPP) in discriminative learning tasks, a proposed cascade 
attention mechanism and residual connections. In experiments, the proposed AAC is integrated in 
GANs for image synthesis and tested on the Celeba-HQ-128 dataset. It is also integrated in 
CycleGANs for unpaired image-to-image translation task and tested on the Cityscape dataset, the 
Facade and Aerial Maps dataset. The proposed AAC significantly improves performance of the 
baseline GANs and CycleGANs. It also obtains comparable or better performance than some state-
of-the-art variants of GANs and CycleGANs. Coarse-to-fine and fine-to-coarse AAC are studied 
and intriguing attention maps are observed in both tasks. On the other hand, we develop methods 
which are capable of synthesizing realistic and sharp images from reconfigurable spatial layout 
(i.e., bounding boxes + class labels in an image lattice) and style (i.e., structural and appearance 
variations encoded by latent vectors), especially at high resolution. We present a layout- and style-
based architecture for generative adversarial networks (termed LostGANs) that can be trained end-
to-end to generate images from reconfigurable layout and style. In experiments, the proposed 
method is tested on the COCO-Stuff dataset and the Visual Genome dataset with state-of-the-art 
performance obtained.  
6.1. Method Overview 
In GANs, less attention has been paid to neural architecture design, especially for the generators. 
The intuitive idea of this study is that exploring new architectures could improve performance of 
generative learning in a way complementary to existing efforts. The goal of this study is then to 
design a generic and light-weight architectural unit that can be easily integrated into generators of 
GANs and CycleGANs. For the proposed AAC module (Figure 19), it leverages advantages of the 
three components to facilitate effective end- to-end generative learning: (i) the capability of fusing 
multi-scale information by ASPP; (ii) the capability of capturing relative importance between both 
spatial locations (especially multi-scale con- text) or feature channels by attention; (iii) the 
capability of preserving information and enhancing optimization feasibility by residual 
connections. The proposed AAC building block harnesses advantages of the three components in 
generative learning tasks. 
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Figure 19. The proposed Attentive Atrous Convolution (AAC) building block. Top: Illustration 
of the integration of the proposed AAC in the generator of an unconditional GAN for image 
synthesis. Bottom-left: The detailed neural architecture of the proposed AAC. Bottom-right: The 
operation of the attentive fuse component between two consecutive levels in the pyramid. 

 

 

 
Figure 20. Top: Illustration of the proposed layout- and style-based GANs (LostGANs) for image 
synthesis from reconfigurable layout and style. Both the generator and discriminator use ResNets 
as backbones. Bottom: Illustration of the generator (a) and the ISLA-Norm (b) in our LostGAN. 
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For the proposed LostGANs (Figure 20), to enable image synthesis from reconfigurable layouts 
and sytles, our method consists of the following three aspects: First, since layout-to-image entails 
highly expressive neural architectures handling multi-object generation and their diverse 
occurrence and configurations in layouts. We utilize ResNet for both the generator and 
discriminator in the proposed LostGAN. We are studying AOGNet in LostGANs in our on-going 
work. Second, to account for the gap between bounding boxes in a layout and underlying object 
shapes, we introduce an encoder for layout to predict masks for each bounding box. As we will 
show in experiments, our LostGAN can predict reasonably good masks in a weakly-supervised 
manner. The masks help place objects in the generated images with fine-grained geometric 
properties. So, we address layout-to-image by computing layout-to-mask-to-image.  Third, to 
achieve instance-sensitive and layout-aware style control, we extend the Adaptive Instance 
Normalization (AdaIN) used in the StyleGAN to object instance-specific and layout-aware feature 
normalization (ISLA-Norm) for the generator for fine-grained spatially distributed multi-object 
style control. ISLA-Norm computes the mean and variance as done in BatchNorm, but computes 
object instance-specific and layout-aware affine transformations (i.e., gamma and beta parameters) 
separately for each sample in a min-batch as done in AdaIN. We utilize the projection-based 
approach. From the layout encoder, we compute object instance-specific style latent codes (gamma 
and beta parameters) via simple linear projection. Then, we place the projection-based latent codes 
in the corresponding predicted masks, and thus induce layout-aware affine transformations for 
recalibrating normalized feature responses. 

6.2. Result Summary 

 
Figure 21. Illustration of attention maps learned by the proposed Attentive Atrous Convolution 
(AAC) when integrated in GANs for image synthesis on the CelebA-HQ-128 dataset. The attention 
maps are visualized using heat maps where 𝐶𝑘𝐷𝑟 represents convolution with kernel 𝑘 × 𝑘 and 
Atrous rate 𝑟. 
Evaluation of the proposed ACC in conditional and unconditional image synthesis. In experiments, 
the proposed method is tested in both image synthesis tasks using the state-of-the-art SNDC- 
GANs, and unpaired image-to-image translation tasks using the popular CycleGANs. We obtain 
significantly better performance than the vanilla SNDCGANs and CycleGANs and the baseline 
ASPP module. Although our models are much smaller, we obtain comparable performance to a 
recent variant of CycleGANs, the SCAN which use stacked CycleGANs in the progressive training 
protocol. Figure 21 shows a face synthesis example and the learned coarse-to-fine attention heat 
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maps. Figure 22 show more examples in comparison with vanilla SNDCGANs and 
SNDCGANs+ASSP. Figure 23 and 24 show examples in image-to-image translation tasks.  

 
Figure 22. Examples of generated images by the proposed model trained on CelebA-HQ and the 
FID distance (smaller is better). 

 
Figure 23. Comparisons on Cityscapes dataset of 256x256 resolution.  

 
Figure 24. Results on Labels ⇒ Facades and Labels ⇒ Maps.  
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Evaluation of the proposed LostGANs. In experiments, the proposed method is tested on the 
COCO-Stuff dataset and the Visual Genome dataset with state-of-the-art performance obtained. 
Figure 25, 26 and 27 show examples of our method handling reconfigurable layouts and styles in 
image synthesis. Table 8 shows the quantitative comparison. Figure 28 shows qualitative 
comparison. 

 
Figure 25. Left: Our model preserves one-to-many mapping for image synthesis from layout and 
style. Three samples are generated for each input layout by sampling the style latent codes. Right: 
Our model is also adaptive w.r.t. reconfigurations of layouts (by adding new object bounding boxes 
or changing the location of a bounding box). The results are generated at resolution 128 × 128. 

 
Figure 26. Generation results by adding new objects or change spatial position of objects. 

 
Figure 27. Multiple samples generated from same layout. Synthesized images have various visual 
appearance while preserving objects at desired location.  
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Table 8. Quantitative comparisons using Inception Score (higher is better) and Diversity Score 
(higher is better) evaluation on COCO-Stuff and VG dataset. 

 
Figure 28. Generated samples from given layouts on COCO-Stuff (top) and Visual Genome 
(bottom). 
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7. Task 7: Developing novel experience replay methods for deep reinforcement learning 
Objective: Hindsight Experience Replay (HER) was recently proposed to tackle the sample- 
inefficiency of standard experience replay in reinforcement learning from sparse rewards due to 
disproportionately few successful episodes observed by an agent. In its operation, HER introduces 
an optimistic bias in the hindsight experiences and therefore achieves only a suboptimal 
improvement in sample-efficiency. Motivated by counterfactual reasoning, the objective of this 
task is to develop a weighted reward mechanism which extends HER by assigning a proportionally 
larger influence to rewards collected during hindsight replay and a smaller influence to rewards 
collected during the real episode, and the proposed method is titled Aggressive Rewards to Counter 
bias in Hindsight Experience Replay (ARCHER). 
Accomplishment: In experiments, we validate our algorithm on two continuous control 
environments from DeepMind Control Suite in combination with various reward functions, task 
complexities and goal-sampling strategies. Our experiments demonstrate that ARCHER 
consistently attains a higher success rate in less time, thus establishing its benefit in achieving good 
sample-efficiency.  A few interesting directions emerge for further exploration. Some of our 
experiments reveal that ARCHER enjoys higher sample-efficiency only until a context-dependent 
number of samples, after which vanilla HER catches up to ARCHER. This result makes intuitive 
sense as the high performance of ARCHER leads to the fast convergence of real and hindsight 
experiences, and diminished hindsight bias. Hence, a scheduled annealing of ARCHER remains 
of interest. Also, we specifically constructed a simple linear relation to derive an informative 
hindsight reward function, however there may exist a more complex mapping between real and 
hindsight rewards and hence it may be advantageous to introduce a generative model to learn this 
latent mapping. Furthermore, measuring the performance of ARCHER on a real-world robot 
presents an important future direction. 

7.1. Method Overview 
We first examine the source of bias in HER, and then present our algorithm ARCHER which uses 
more aggressive rewards for hindsight experiences to combat the bias, and thus achieving greater 
sample-efficiency. 

In the vanilla HER, compare the real experience tuple (𝑠K||𝑔, 𝑎K, 𝑠KFN||𝑔, 𝑟K) to the artificially 
constructed hindsight experience tuple (𝑠K||𝑔O, 𝑎K, 𝑠KFN||	𝑔^ℎ			, 𝑟KO). This conversion of the a real 
experience to its corresponding hindsight experience makes the following unjustified assumption 
- Given different inputs 𝑠K||𝑔 and 𝑠K||𝑔O , the policy network returns the same action, 𝑎K. This 
assumption overestimates the probability assigned by the policy network to 𝑎K, given the input 
𝑠K||𝑔O. If we actually execute the policy network with 𝑠K||𝑔O as input, it is unlikely to output 𝑎K, 
making 𝑠KFN  also unlikely. Hence, we observe a chain of compounding uncertainty along the 
hinsight episode. Therefore, to more effectively use HER, we require to correct the hindsight bias 
induced by this overestimated probability. The intuitive check would be to generate hindsight 
experiences by using models capable of counterfactual reasoning, i.e. by asking the network what 
if 𝑔O was the actual goal, instead of mere substitution of real experiences. However, this a critical 
limitation of deductive learning models and remains a challenge for the future. 
We propose a simple solution to offset this bias. We make that case that a hindsight experience 
and a real experience cannot be treated in the same manner as real experiences are authentically 
generated by interacting with the environment, and hence their probability is unbiased. In contrast, 
to overcome hindsight bias, we need to match the true probability of the hindsight experiences to 
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their biased probability. To do so, we nudge the current policy to be more consistent with the 
hindsight data in the replay buffer. Hence, to meet the overestimated hindsight likelihood of at for 
𝑠K||𝑔O, we utilize more aggressive hindsight rewards, so that a large positive reward given to a 
successful hindsight transition greatly increases the Q-value of the hindsight state-action pair, 
which indirectly drives an aggressive policy update towards choosing this maximizing action for 
the given hindsight state. Figure 29 shows the algorithm.  

 
Figure 29. The proposed ARCHER algorithm.  
7.2. Result Summary 

 
Figure 30. Illustration of the two environments: Reacher (Top) and Finger (Bottom). 
We evaluate our method on the DeepMind (DM) Control Suite simulation software (Figure 30). 
This library consists of a set of continuous control environments in Python, built on top of the 
MuJoCo physics engine. Each environment in the suite provides a physics task along with a well-
defined continuous action space 𝐴, continuous state/observation space 𝑆, and intrinsic transition 
dynamics based on the physics engine. For our experiments, we program our own reward functions 
to conduct ablation studies on ARCHER and verify its robustness, as detailed in the following 
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sections. Figure 31 shows the superior performance of the proposed ARCHER compared with the 
vanilla HER.  

 
Figure 31. Policy performance in the Reacher (Top) and the Finger (Bottom) environments with 
sparse binary negative rewards and the final sampling strategy for hindsight goals.  
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