

Bottom-Up Plug-and-Play Hardware/Software Toolkit for Monitoring, Diagnostics and Self-Correction

Principle Investigator / Email Address Phil Callihan/philc@ncms.org

Project Team Lead National Center for Manufacturing Sciences (NCMS)

Project Designation DMDII-15-14-09

UI LABS Contract Number 0220160029

Project Participants

Perisense

ACE Clearwater Enterprises

Georgia Tech Research Corporation

DMDII Funding Value $726,278.00

Project Team Cost Share $1,038,987.00

Award Date January 3, 2017

Completion Date December 31, 2018

DIGITIZING AMERICAN MANUFACTURING

DMDII FINAL PROJECT REPORT

Ercie.Legaspi
Typewritten text
SPONSORSHIP DISCLAIMER STATEMENT: This project was completed under the Cooperative Agreement W31P4Q-14-2-0001, between U.S. Army - Army Contracting Command - Redstone and UI LABS on behalf of the Digital Manufacturing and Design Innovation Institute. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Department of the Army.DISTRIBUTION STATEMENT A. Approved for public release; distribution unlimited.

Final Project Report | December 18, 2019 1

TABLE OF CONTENTS

Page(s) Section

2 I. Executive Summary

4 II. Project Overview

23 III. KPI’s & Metrics

25 IV. Technology Outcomes

39 V. Accessing the Technology

40 VI. Industry Impact & Potential

43 VII. Tech Transition Plan & Commercialization

47 VIII. Workforce Development

47 IX. Conclusions/Recommendations

50 X. Lessons Learned

51 XI. Definitions

52 XII. Appendices

Final Project Report | December 18, 2019 2

I. EXECUTIVE SUMMARY

The National Center for Manufacturing Sciences (NCMS) assembled a multi-disciplinary team to develop

a sensor toolkit for legacy shop floor machines that captures data which is then transmitted to a secure

cloud and converted into reports that allows companies to make quality, production, and operations

decisions. The team included software and hardware development provided by the Georgia Institute of

Technology, further development and commercialization by Perisense, and manufacturing test

environment provided by ACE Clearwater.

The sensor toolkit successfully captures data in real-time from manufacturing equipment, processes,

parts, and worker interactions, and converts it into actionable intelligence for immediate and long-term

improvements. The sensor toolkit is compatible with machines with legacy controllers and empowers

operators and supervisors at small and medium-sized manufacturers (SMMs) as well as large companies

to increase quality and efficiency. It is also affordable for companies who do not have costly, complex

legacy enterprise resource planning (ERP) tools, to improve their real-time understanding of shop floor

problems. The completed toolkit uses robust and commercially available sensors for data acquisition

combined with secure cloud servers and intuitive analytics tools to deliver actionable information for

real-time machine process diagnostics and monitoring.

This solution provides end users with new visibility into operations, empowering and encouraging all

stakeholders to improve quality, safety, and productivity. Data is displayed via a web interface that can

be viewed on desktop computers, laptops, or portable mobile devices allowing monitoring from the

factory floor or remote offices. The data captured also can be linked to conventional ERP systems and

serve as a platform for advanced analytics and business intelligence.

Industry Problem

U.S. manufacturers face competitive pressures both domestically and globally. Developing nations are

aggressively seeking to attract manufacturing operations to their low-cost locations while countries like

China and India are moving up the value chain, seeking larger slices of the high-tech manufacturing

market. At home, domestic manufacturers are challenged with a rapidly changing technology landscape

and the imperative to stay current or have their businesses fail. The competition is fiercest for U.S.

based SMMs that must compete on price and under the constraint of the higher cost of operating in a

developed nation. U.S. based SMMs also must comply with strict environmental and safety

requirements from which foreign competitors are exempt.

Many SMMs have older legacy machines, that are productive but lack monitoring and data analytic

capability. Sometimes these machines serve niche market sectors where investment is difficult to justify.

In other cases, SMMs are skeptical that the return on investment (ROI) justifies the purchase of new

equipment.

New equipment with the capability to monitor and report performance data also requires capital

expenditures and can cause production delays during installation. New equipment with built-in

monitoring also requires information technology (IT) networks and cyber security requirements which

add additional barriers to adoption. Equipment connected to the internet requires safeguards to

prevent hacking, intrusion, and regular maintenance which adds to the cost of implementation.

Final Project Report | December 18, 2019 3

SMMs are faced with a difficult situation—fail to upgrade production equipment and risk becoming less

competitive as rivals upgrade or invest precious capital and lose production time to install expensive

new equipment with monitoring capability along with the expensive required infrastructure.

SMMs wrestle with the challenge and promise of Industry 4.0 or I4- the current trend of automation and

data exchange between humans and equipment on the factory floor while dealing with the reality of

fierce competition. These smart factory principles look to revolutionize manufacturing but SMMs will

only realize these benefits if they can find a way to affordably retrofit their current equipment.

The project team developed a solution that provides SMMs with the ability to easily and affordably

monitor and optimize their current factory floor equipment in order stay competitive with both

domestic and foreign competitors. The data gathered by the sensor tool kit also allows SMMs to

implement condition-based maintenance (CBM) on older equipment which can further help reduce

costs.

Large manufacturers can also benefit from this sensor toolkit. The affordability and ease of installation

makes this solution ideal for deployments in test cells or for deployment in remote manufacturing sites.

It can also be used to validate data from equipment instrumented by other means.

How the Problem was Addressed

The development team chose components and developed software using the following criteria:

 Affordability—whenever possible the sensor toolkit would use commercial off-the-shelf (COTS)

components and open source software tools.

 Capability—the sensor toolkit needed to capture data that SMMs would find valuable to

understanding and optimizing operations.

 Robustness—the toolkit sensors had to be able to operate in an industrial setting with a

minimum of maintenance.

 Ease of use—the sensor toolkit had to display data in a simple, easy to understand format so

that company executives and machine operators could both understand the data quickly

without extensive training. It also had to be easy to install with a minimum of downtime.

 Minimal IT Footprint—The toolkit must not require extensive re-configuration of the existing IT

network.

Summary of Project Outcomes and Recommendation

The sensor toolkit solution developed by the team was demonstrated in a welding application at ACE

Clearwater, an SMM supplier to the Department of Defense (DOD). Such processes are difficult to

monitor and costly to automate, especially in short-run or widely variegated production.

Results were available via mobile or desktop devices with sensors used to monitor environmental

conditions that might impact weld quality. This monitoring was delivered through synchronous data

during active welding operations, and was readily accessible during each operation.

This project team successfully created an impactful sensor toolkit that will enable manufacturers to

easily and affordably monitor legacy shop floor equipment. The product was deployed in multiple

Final Project Report | December 18, 2019 4

environments for over 18 months and proved rugged enough to operate on the factory floor while

reporting data to a secure cloud.

The following recommendations would help promote further adoption development of the sensor

toolkit.

 Perform SMM outreach about the advantages and utility of retrofitting legacy equipment.

 Education to address security concerns regarding cloud solutions.

 Conduct further pilot projects to encourage wider deployment among SMM and document

additional use cases.

 Development of additional of sensors.

 Advertising of the discounted sensor toolkit for DMDII/MxD members.

DMDII SMM members can purchase a base product package from Perisense including four sensors

including one year of storage and monitoring for $5,500 (regular price $6,000) plus travel costs for

installation. Large OEM DMDII/MxD members can purchase a product package from Perisense including

ten sensors including one year of storage and monitoring for $14,000 (regular price $15,000) plus travel

costs for installation.

II. PROJECT REVIEW

Replacing legacy machine tools could cost hundreds of thousands of dollars not to mention the

downtime and integrations costs required for new installations. Current factory sensing, controls, and

management software applications are designed for large enterprises and the accompanying costs of

implementation and maintenance are prohibitive for most SMMs.

But machine monitoring by selecting the right mix of sensors for each a use case can provide the

following crucial benefits to SMMs:

 Reduce downtime from the analysis of real usage data;

 Provide data to support operator observations and;

 Support adoption of condition-based maintenance.1

Even basic monitoring can pay huge dividends for SMMs. Simply monitoring power usage of a spindle

motor can help a company manage the quality of its equipment and improve maintenance schedules.

“…Directly monitoring the power consumed by the spindle motor allows you to understand exactly what

is happening with the tool. A new, sharp tool requires less power to cut than a worn, dull tool...If the

power goes up suddenly, that may mean a crash or a broken tool.”2

1 https://www.shopfloorautomations.com/machine-monitoring-benefits/
2 https://todaysmachiningworld.com/magazine/how-it-works-tool-monitoring/

Final Project Report | December 18, 2019 5

Figure 1-- Cloud Architecture for Sensor Toolkit

The team successfully created a capable sensor toolkit solution while addressing cost and

implementation barriers that have prevented widespread adoption by SMMs. The sensor toolkit

captures data in real-time from manufacturing equipment, processes, parts, and then converts it into

actionable intelligence for immediate and long-term improvements. This solution empowers operators

and supervisors at SMMs to increase quality and efficiency with ease and decisiveness.

The sensor toolkit also helps SMMs too small to use costly, complex ERP tools, improve their real-time

understanding of shop floor problems. The sensor toolkit deployments use capable and commercially

available sensors for data acquisition combined with cloud servers and intuitive analytics tools that

deliver actionable information for process diagnostics, and monitoring.

Project Scope

The overarching goal was to develop and demonstrate a means of providing SMMs with an affordable,

capable tool for real-time machine monitoring, diagnostics while providing factory floor visibility and

reporting at a far lower cost than acquiring new equipment and deploying existing ERP and

manufacturing management software tools.

Georgia Tech and Perisense identified the following top-level goals at the beginning of the project:

 Identification and acquisition of a suite of sensors suitable for supporting welding process data

acquisition in welding cells.

 Integration of the sensor suite with wireless communications including Wi-Fi, and cellular

connections.

 Development of a cloud-based platform for acquiring sensor data from the welding system(s),

welding and other shop floor equipment for management personnel.

 Reporting system that uses data acquired from the sensor and human communication data to

report quality and productivity metrics to shop floor and management.

Final Project Report | December 18, 2019 6

Objectives

Specific objectives that support these goals included:

 Development of a set of retrofittable wireless sensors suitable for use in SMMs and other

manufacturing facilities.

 Development of a platform for acquiring sensor data and recording interactions of shop floor

personnel with systems, at specified intervals and transferring it to a database.

 Development of a data base architecture and data analytics package that allows actionable

intelligence to be produced from the sensor and shop floor communications data.

 Development of a reporting system that clearly communicates this actionable information on an

on-demand basis via computers or mobiles devices.

 Demonstration of the prototype system at ACE Clearwater and making it available to

DMDII/MxD members at a discount to facilitate further deployment.

The team projected the following work schedule for the sensor toolkit development:

Final Project Report | December 18, 2019 7

Figure 2-- Project Work Schedule

Responsibility for tasks and deliverables were distributed among the development team as follows.

Task 1: Baseline Metric Assessment

 Task 1.1 Development of specifications for sensors
Perisense, Georgia Tech, ACE

Clearwater

 Task 1.2 Development of data collection plan Perisense

 Task 1.3
Achieve consensus on sensor selection and data

collection plan

Perisense, Georgia Tech, ACE

Clearwater

Task 2: Deliverable – System Requirement Document

Define capabilities for collecting machine data, application internal functions

 Task 2.1 Define capabilities for collecting machine data Perisense

Work Schedule

The Work Schedule is summarized in the following table:

Table 5. Work Schedule

Program Months 1-3 4-6 7-9 10-12 13-15 16-18 19-21 22-24

Task 1 Deliverable - Baseline Metric Assessment

 1.1 - Development of specifications for sensors

 1.2 - Development of data collection plan

 1.3 - Achieve consensus on sensors and data collection plan

Task 2 Deliverable - System Requirement Document

 Task 2 - Define capabilities for collecting machine data, application

internal functions

 2.1 - Define capabilities for collecting machine data

 2.2 - Test capabilties with project group

 2.3 - Define application internal functions

 2.4 - Validate inernal functions

 2.5 - Refine solutions

Task 3 Deliverable - Sensor Specification

 Task 3 - Select, Acquire and Test Sensors

 3.1 - Select sensors

 3.2 - Acquire sensors

 3.3 - Test sensors for noise sensitivity

 3.4 - Harden sensors if required

 3.5 - Report on suite of tested sensors that meet specs

Task 4 Deliverable - Manufacturing Application Document

 Task 4 - Design, Develop and Test Manfuacturing Application

 4.1 - Design manufacturing application

 4.2 - Develop manufacturing application

 4.3 - Test manufacturing application

 4.4 - Preliminary software/hardware documentation

Task 5 Deliverable - Installation Report

 Task 5 - Install Sensors & Software in ACE shop; verify functionality

 5.1 - Install sensors at ACE

 5.2 - Install software

 5.3 - Verify functionality

Task 6 Deliverable - Beta Test Analysis Report

 Task 6 - System Operation Trial Period

 6.1 - Operate & acquire data from manufacturing software

 6.2 - Validate data. Collect feedback

 6.3 - Analyze data to develop metrics

 6.4 - Develop report of performance metrics

 6.5 - Develop report on management & worker feedback on app.

Task 7 Deliverable - Product Demonstrations

 Task 7 - Conduct Internal review; Implement Fixes Where Required

 7.1 - Conduct internal review

 7.2 - Define software & hardware fixes required

 7.3 - Define improvements & future work required

Task 8 Deliverable - Draft Installation Guide

 Task 8 - Accessbility of Manufacturing Software Application

 8.1 - Install software application in GridCell network

 8.2 - Develop installation guide for beta users, DDMII

Final Project Report | December 18, 2019 8

 Task 2.2 Test capabilities with project group
Perisense, Georgia Tech, ACE

Clearwater

 Task 2.3 Define application internal functions Perisense

 Task 2.4 Validate internal functions
Perisense, Georgia Tech, ACE

Clearwater

 Task 2.5 Refine solutions
Perisense, Georgia Tech, ACE

Clearwater

Task 3: Deliverable – Sensor Specification

Select, acquire, and test sensors

 Task 3.1 Select sensors
Perisense, Georgia Tech, ACE

Clearwater

 Task 3.2 Acquire sensors Perisense

 Task 3.3 Test sensors for noise sensitivity ACE Clearwater

 Task 3.4 Harden sensors where required Perisense, Georgia Tech

 Task 3.5 Report on suite of tested sensors Perisense, Georgia Tech

Task 4: Deliverable – Manufacturing Application Document

Design, develop, and test, manufacturing application

 Task 4.1 Design manufacturing application Perisense

 Task 4.2 Develop manufacturing application MakerSweet, ACE Clearwater

 Task 4.3 Test manufacturing application MakerSweet, ACE Clearwater

 Task 4.4 Preliminary software/hardware application Perisense

Task 5: Deliverable – Installation Report

Install sensors and software at ACE Clearwater; verify functionality

 Task 5.1 Install sensors at ACE Clearwater ACE Clearwater

 Task 5.2 Install software Perisense

 Task 5.3 Verify functionality Perisense, ACE Clearwater

Task 6: Deliverable – Beta Test Analysis Report

System Operation Trial Period

 Task 6.1
Operate and acquire data from manufacturing

software
ACE Clearwater

 Task 6.2 Validate data, collect feedback MakerSweet, ACE Clearwater

 Task 6.3 Analyze data to develop metrics Perisense

 Task 6.4 Develop report of performance metrics Perisense

 Task 6.5
Develop report on operation of the sensors and

application
MakerSweet, ACE Clearwater

Final Project Report | December 18, 2019 9

Task 7: Deliverable – Product Demonstration

Conduct Internal Review, Refine Product

 Task 7.1 Conduct internal review
 Perisense, Georgia Tech, ACE

CClearwater

 Task 7.2 Define software and hardware fixes Perisense, ACE Clearwater

 Task 7.3 Define improvements and future work Perisense

Task 8: Deliverable – Draft Installation Guide

Accessibility of Manufacturing Software Application

 Task 8.1 Install software application at DMDII NCMS, Perisense

 Task 8.2 Develop installation guide and final report NCMS, Perisense

Approach

To minimize development times and costs the project team utilized inexpensive COTS components and

open source software. The sensor toolkit had to be affordable and expandable compared to

commercially available alternatives.

“…Most modern manufacturing equipment includes process monitoring capabilities including

communication technologies such as MTConnect and UPC-UA. However, modern manufacturing

equipment is very expensive to purchase. Many companies do not want to make the capital investment

and purchase new machines when continual maintenance of their current machines is relatively cheap

in comparison. Yet, older equipment often cannot reap the efficiency benefits provided by modern

machine monitoring technologies. A need exists to provide a low-cost solution to retrofit these

machines with modern machine monitoring capabilities…Numerous external commercial sensors have

been developed in the last five years to wirelessly monitor manufacturing operations and determine

machine health. The Bosch XDK Cross Domain Development Kit [3] and the Fluke Vibration Sensor [4]

are examples of commercial sensor packs that contain accelerometers to measure the vibration

characteristics of manufacturing equipment. This data can be used at a base level to determine machine

run time, overall usage analytics, and implement basic crash detection techniques. However, the cost of

these sensors both exceed $200 per unit, also resulting in an expensive capital purchase to adequately

monitor a handful of machines in a small machine shop...A need exists to provide a low-cost machine

monitoring solution that can be used both as a complete product and expandable platform. The desired

product can be quickly implemented with base functionality and requires little or no development by

the user. Additionally, its capabilities can be expanded if the user has a need for a custom

implementation. This low-cost solution must strike a balance between an industry-ready machine

monitoring product and a modularly expandable implementation platform.”3

The development team evaluated components and integrated software using the following criteria:

 Ease of use—sensor toolkit had to display data in a simple, easy to understand format so that

company executives and machine operators could both understand the data quickly without

extensive training. It also had to be easy to install with a minimum of downtime.

3 Saleeby, K. (2019). Development of a low-cost wireless accelerometer platform for machine monitoring

applications. Georgia Institute of Technology, Atlanta, Georgia, United States of America. Used with permission.

Final Project Report | December 18, 2019 10

 Affordability—whenever possible the toolkit would use COTS components and open source

software tools.

 Robustness—sensor toolkit had to be capable of operating in an industrial setting with a

minimum of maintenance.

 Minimal IT footprint—sensor toolkit must not require extensive configuration the existing IT

network.

The project team included the following organizations:

 Perisense—a talented team of IT and manufacturing professionals with a proven track record of

creating innovative manufacturing solutions. The company provides valuable information about

the performance and productivity of legacy manufacturing assets delivered via low-cost robust

sensors that extract previously unobtainable machine data and convert it to actionable

intelligence that improves manufacturers' quality and results. Perisense developed the

hardware platforms (microprocessor, sensors, case), software to process the captured data, and

application to display the results in a web dashboard via computer or mobile device.

 Georgia Institute of Technology (Georgia Tech)—is a top-ranked public college and one of the

leading research universities in the United States. Georgia Tech provides a technologically

focused education to more than 25,000 undergraduate and graduate students in fields ranging

from engineering, computing, and sciences, to business, design, and liberal arts. The Georgia

Tech project team includes an internationally renowned expert on manufacturing technology

and processes and top-flight graduate students that operates a cluster of high-performance

open architecture CNC systems supported by graduate and post-graduate students and faculty

with significant experience in machine cell communication, control and architecture design.

Georgia Tech helped prototype initial hardware designs, evaluated early sensors, validated

software architecture, and provide remote testing of the solution.

 National Center of Manufacturing Sciences (NCMS)—an organization with a long track record of

successful commercialization of manufacturing research and development (R&D) projects.

NCMS was formed in 1986 to strengthen North American manufacturers and respond to global

competition. The balance between long-standing experience and fresh innovation requires a

unique intersection of highly capable companies, access to efficient, effective contracting

vehicles and relationships built on credibility and trust. NCMS conducted extensive surveys of

SMMs to encourage the use of internet of things (IOT)4 and digital manufacturing tools and

provided project management, coordinated progress reporting with the sponsor, as well as

providing access to SMMs to validate potential use cases.

 ACE Clearwater (ACE)—a manufacturer of complex metal forms, components and welded

assemblies for the aerospace and power generation industries. ACE is a preferred supplier to

major aerospace primes for work on exotic materials and complex assemblies and component.

ACE provided a production test environment and feedback.

The team identified the following subcomponents as being necessary for a commercially successful

sensor toolkit:

4 Internet of things (IoT) is the extension of Internet connectivity into physical devices and everyday objects.

Embedded with electronics, Internet connectivity, and other forms of hardware (such as sensors), these devices

can communicate and interact with others over the Internet, and they can be remotely monitored and

controlled. https://en.wikipedia.org/wiki/Internet_of_things

Final Project Report | December 18, 2019 11

 Infrastructure—cloud computing resources required to store, process, capture, and visualize

data.

 Hardware—CPU board necessary to run the software and manage the sensors collecting

machine data.

 Sensors—endpoints collecting various data from the machines on the factory floor.

 Connectivity—physical and networking medium for transmitting the data to cloud services.

 Code—programming code to manage the on-site solution, transmission of the captured data,

and configuration of cloud services to receive and visualize data.

Three primary use cases were initially considered for the sensor toolkit:

 Small Machine Shop

 Paper Factory

 Educational Tool Shop

“…Three common uses cases were selected for analysis to determine the ways in which Industry 4.0

technologies could benefit their operations. Our selected use cases were inspired by the needs of three

different environments associated with manufacturing processes.

The first use case is a small-scale machine shop, or “Job shop”, where quantities of discrete parts made

range from 1 to 10,000. This shop’s capabilities include CNC machining, metal forging equipment, and

other equipment for discrete processes. The second use case is paper mill for continuous manufacturing

of pulp and paper products. This shop’s capabilities include paper machines with high-viscosity pumps,

revolving pulp presses and dryers, a chemical distribution infrastructure. The third use case is an

educational machine shop where students learn the fundamentals of prototyping and manufacturing

processes. This shop’s capabilities included small hand-held power tools, small raw material processing

equipment such as band saws and grinders, manual mills and lathes, and CNC 3-axis mills.”5

The sensor toolkit evolved from prototypes created by Georgia Tech and Perisense to find the least

expensive, yet capable, and robust solutions to meet the monitoring needs of manufacturers. Prototype

sensor kits were tested at several Michigan companies including an SMM and a large OEM factory as

well as in the Georgia Tech simulated factory environment.

5 Saleeby, K. (2019). Development of a low-cost wireless accelerometer platform for machine monitoring

applications. Georgia Institute of Technology, Atlanta, Georgia, United States of America. Used with permission.

Final Project Report | December 18, 2019 12

Figure 3-- Georgia Tech Demonstration “Fog” Computing Sensor

Georgia Tech also experimented with sensors utilizing the “fog” computing6 paradigm where data is

collected and partially processed at the collection point before being sent to a cloud location for

additional processing and storage.

Figure 4-- Prototype Sensor Kits Used BeagleBone and Arduino Processors

The software design focused code running on a lightweight open source Linux kernel running on the

prototype boards (BeagleBone, Arduino, Onion, and ultimately Raspberry Pi) to process the data from

the sensors and transmit back to the cloud for storage and processing. Georgia Tech created the initial

prototypes before the team settled on the Raspberry Pi as the base CPU unit for the sensor toolkits.

These initial prototypes helped validate that machine monitoring and operational visualization was

possible using inexpensive retrofit sensor toolkit solutions.

The team tested several different CPUs during the prototype phase. Georgia Tech and Perisense built

several sensor test kits based on commercially available hardware. Each protype test kit performed well

in test deployments, successfully capturing and reporting data.

6 “Fog computing” is a term created by Cisco that refers to extending cloud computing to the edge of an

enterprise's network. Also known as edge computing or fogging, fog computing facilitates the operation of

compute, storage, and networking services between end devices and cloud computing data centers. While edge

computing is typically referred to the location where services are instantiated, fog computing implies

distribution of the communication, computation, and storage resources and services on or close to devices and

systems in the control of end-users. Fog computing is a medium weight and intermediate level of computing

power. Rather than a substitute, fog computing often serves as a complement to cloud computing.

https://en.wikipedia.org/wiki/Fog_computing

Final Project Report | December 18, 2019 13

CPU Type Features Cost

BeagleBone Single board Linux,

Programmable Real-time

unit, onboard capacity for

data analysis.

$75

Arduino Small size, 32-bit ARM,

expandable, developer

support.

$25

Onion Omega Single board Linux, onboard

Wi-Fi, expandable, supports

many programming language.

$5

Raspberry Pi Expandable, large developer

community, extensive

python, small size and power

requirements, product

roadmap.

$40

The team eventually selected the Raspberry Pi as the CPU for development of the sensor toolkits. This

choice was made by evaluating CPU performance, commercial availability, cost, and developer support

necessary to demonstrate commercial viability of the sensor toolkit.

 Figure 5-- Georgia Tech Test Equipment and Report

Georgia Tech also was instrumental validating that geographically dispersed sensor kits could

simultaneously capture and display data from multiple machines and different locations while

transmitting data in the MTConnect format directly to the database. Georgia Tech prototypes used the

MQTT7 protocol to deliver data via an MQTT broker (client/server) in the MQTT format.

7 MQTT stands for MQ Telemetry Transport. It is a publish/subscribe, extremely simple and lightweight

messaging protocol, designed for constrained devices and low-bandwidth, high-latency or unreliable networks.

The design principles are to minimise network bandwidth and device resource requirements whilst also

attempting to ensure reliability and some degree of assurance of delivery. These principles also turn out to make

the protocol ideal of the emerging “machine-to-machine” (M2M) or “Internet of Things” world of connected

devices, and for mobile applications where bandwidth and battery power are at a premium. http://mqtt.org/faq

Final Project Report | December 18, 2019 14

Figure 6-- Georgia Tech MQTT Testing Diagram

The MQTT model identified by Georgia Tech in the early prototype phase was used throughout the

project to collect and organize data.

The development team also successfully captured and displayed data via an iPhone app during the early

prototype phase.

Figure 7-- Prototype iPhone Reporting App

Final Project Report | December 18, 2019 15

After development of the pre-prototype sensor kits, the development began work a sensor kit that

would evolve into a commercial offering.

Welding Application Monitoring

ACE was interested in using the sensor toolkits to monitor its welding applications. The company had

several welding stations, some in the open shop and others in closed booths and wanted to track

particulates in the air and identify the potential impact on operations.

Obtaining data to assist in defining the acceptable quality and productivity space for specific applications

had proven a challenge. ACE deals with a wide range of parts in relatively low volumes, adding to the

relative complexity of defining weld quality via process data. They suspected that particulates in the air

impacted weld quality and wanted to track the differences between work being done on the shop floor

versus closed booths.

ACE joined the project in June 2017. The first air particulate sensor toolkits were implemented around

September 2017. The chart below shows the level of air particulates in an enclosed weld booth, open

weld booth and in an office environment. The data shows the average in an enclosed weld booth is

about 28-30 μA (microgram) of particulates per m^3 of air; open weld booth is about 50-55; office

environment (for comparison only) is about 6-8.

Final Project Report | December 18, 2019 16

Figure 8-- Sample Reports from ACE Clearwater showing Temperature, Humidity, and Particulates

Over the course of the project, the air particulate monitors were improved to include temperature and

humidity, as well as to improve Wi-Fi connectivity. ACE at the time had only weld booths enclosed.

Based on the data, ACE enclosed all weld booths by February 2019 to reduce overall air particulates for

our welding process.

The approach provided ACE with new visibility into the impact of particulates on welding processes.

Approximately 1 MB of data was collected stored on a cloud server hosted on Amazon Web Services

(AWS) over the course of 18 months. The data was collected in time-ordered sets that is available to be

imported into a conventional ERP system later. The AWS cloud serves as a platform for advanced

analytics and business intelligence related for the welding application on an ongoing basis.

The sensor toolkit also provides data and third-party test bed for developing custom applications on the

cloud platform, much like the Apple AppStore, Salesforce AppExchange, Oracle Cloud Marketplace, or

Siemens Mindsphere. The team opted to rely on an HTML to render dashboards, but the database could

also support app development on the iPhone or Android platform.

Final Project Report | December 18, 2019 17

Figure 9-- Example Sensor Toolkit Installation and Report

The sensor toolkit allows for small deployments that can scale up quickly and easily while being

affordable for manufacturing companies of all sizes. A SMM can purchase a base product resulting from

this project with four sensors including one year of storage and monitoring for $6,000 (discounts are

available for DMDII/MxD members).

Installation by a field engineer takes less than 30 minutes in most cases and depending on the

application the machine installation may not require any downtime. This project has resulted in

meaningful equipment monitoring solution within the reach of most SMMs.

Industry Outreach

During the development of the sensor toolkits NCMS and Perisense interviewed over two dozen

manufacturers were including OEMs and SMMs to identify and validate the following sensor toolkit

requirements:

 Capability to measure operator productivity and machine duty cycle.

 Compatibility with older, non-instrumented legacy machine tools.

 Proactive identification of emerging issues with legacy equipment.

 Affordability and resilient solution with minimal downtime for installation.

 Easy to use with minimal training.

The team also had several workshops with Michigan based SMMs who had previously expressed interest

in a low-cost solution to specifically monitor power usage.8 Participants were engaged in discrete

manufacturing and served a number of industrial sectors including aerospace, automotive and medical.

Firm sizes ranged from under 10 employees to between 50 and 100. Energy usage was identified as a

8 Industrial Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains

(DOE/EERE/ Office of Advanced Manufacturing Program (AMO))

Final Project Report | December 18, 2019 18

major challenge and agreement was broad and unequivocal enough to suggest that energy usage is a

universal concern for manufacturers.

These focus groups were composed of people in leadership positions at SMMs who closely

monitored business expenses and were greatly impacted by the variable energy charges primarily driven

by seasonal changes. They were also aware of overall efficiencies of newer equipment but identified

capital costs of upgrading as major deterrent. Energy metrics and dashboard to identify potential savings

and verification of savings over the life of equipment were identified as possible drivers for adoption.

The manufacturers surveyed were large OEMs and SMMs including members of the automotive,

defense, and aerospace sectors help identify the following sensors as having the broadest initial appeal:

accelerometer, particulate, thermometer, and current meter.

Sensor ToolKit

Sensor Potential Application

Accelerometer Lathes, Drills

Particulates Welding, Additive Manufacturing

Thermometer Motors, Environmental Conditions

Current Meter Machine Usage, Energy Conservation

Expandability, Installation, and Reporting

The sensor toolkit can support multiple sensors daisy chained together to gather a variety of data points

from a single machine. For example--a sensor kit on a lathe could be installed with an accelerometer to

monitor RPMs, a thermometer to track the health of the motor, and current meter to track overall

usage of the equipment. An SMM could then determine the correlation of scrap and part defects to the

data collected and identify how tool wear impacts energy usage and schedule maintenance accordingly.

Basic installation is done by a Perisense field engineer or company technical staff under their

supervision. The sensor is secured via a fastener or magnetic connection depending on the type of

equipment and environment.

Final Project Report | December 18, 2019 19

Figure 10-- Sample Milling Application Showing Temperature, Current, and Vibration Data

The data is displayed with a dashboard that is rendered using HTML and displayed on standard web

browsers (Google Chrome, Firefox, or Microsoft Explorer/Edge). The team evaluated creating a

dedicated phone app but ultimately decided on the HTML dashboard approach that could detect and

customize reports for user on whatever platform they were using (desktop, laptop, or mobile device.)

The reporting dashboard can show data from each sensor or aggregate data from multiple machines, or

locations as necessary. Perisense works with each customer to create reports to best meet their

monitoring goals. The reporting can also be configured sent alerts on key events and track historical

data.

The sensor toolkit was also designed to support multiple custom sensors as identified by end users

depending on plant environment and applications. Any COTS industrial grade sensor could be integrated

into the toolkit.

Response to Industry Needs

The outreach activities confirmed that SMMs do have strong interest in applications that can improve

the productivity and quality of their operations and monitor machine tool energy usage but the solution

must be affordable, capable, and compatible with their current equipment.

The sensor toolkit addressed each SMM need as identified from surveys and focus groups.

 Capability--Sensor toolkit is useful for a variety of applications such as stamping, injection molding,

welding, and machining to monitor runtime, part count, process repeatability, and maintenance.

 Low acquisition cost--Developed solution has reporting that looks and feels like a simple web page

with intuitive consumer-friendly interfaces rather than Oracle or SAP. The application also provides

analysis points in the form of actionable intelligence, with affordable sensors being the primary cost

of acquisition. The system also incorporates standard report types and infographics that can be easily

accessed by users. These easy to grasp reports are also a key selling point during product

demonstrations.

Final Project Report | December 18, 2019 20

 Low operating cost--Large-scale ERP systems require a small army of database administrators to

maintain them as well as in-house servers and/or external data centers. The team built a system that

uses cloud storage eliminating the need for SMMs to manage a data center or add servers to their

existing network. This offers a significant cost savings over existing systems. An expandable cloud-

based system enables SMMs to quickly and easily scale up to hundreds or thousands of sensors.

 Flexibility--System reporting allows each individual user and/or department to customize their view

of the system depending on their needs. This allows feeds from individuals, machines, and

workstations to be aggregated and accessed with flexibility. Individuals can add a machine or work

cell to their feed, or remove them as issues emerge, are resolved, and as permitted by system

administrators.

 Robustness--Solution is easy to use and has durable sensors and a network infrastructure that

operates in harsh factory environments that may include electronic interference and high decibel

noise. Components and software have been selected with sophisticated electrical and acoustic noise

filtering. The Georgia Tech testbed environment has a numerous machines tools running to support

research activities. The selected sensors were developed to operate in an industrial environment.

Georgia Tech verified the operation of each sensor prior to deployment at ACE.

The team developed the basic architecture and framework and validated the concept of a peer-to-peer

network that allows machines, processes, and people to access data in real-time. The solution supports

SMM legacy hardware at moderate cost, while providing real benefits; when combined with the use of

data analytics methods to analyze data and aggregate providing business intelligence via intuitive

dashboards. The team relied on COTS tools that support current IOT industry standards and protocol.

The team implemented an initial application to monitor gas tungsten arc welding at ACE. It is important

to note that while welding is the initial test process, other sensors can be swapped out or daisy chained

together to monitor virtually any other legacy machine tool. Stamping presses, welding, machining, and

injection molding machines are examples of manufacturing operations that can be instrumented on this

platform.

Figure 11-- Products from ACE Clearwater Test Deployment

The sensor toolkit utilizes a scalable, extensible architecture in which sensors are treated as another

“peer” on the platform and sensor data can be streamed to other users or an analytics engine. This

Final Project Report | December 18, 2019 21

peering allows multiple sensors to be daisy chained allowing each sensor toolkit to have multiple

sensors onboard all transmitting data for analysis to the cloud.

Once in the cloud this data can be aggregated and analyzed for trends using the data collection and

analysis tools from Perisense.

Figure 12-- Example Weekly, Monthly, and Annual Reports

Benefits

This approach realized the following benefits:

 Sensor toolkit is affordable for SMMs who are cost conscious when introducing new products

and services. Custom components purchased at the prototype stage, purchased in small

quantities would have driven up costs.

 Common inexpensive components which are already in use many other products.

 Standard interfaces allowed for the connection of many possible sensors allowing the solution

to be customized for different environments.

 Cloud computing services allowed for quick configuration and development while removing the

burden of needing to purchase on-premises computer servers for SMMs to deploy the final

product.

The sensor toolkit deployment at ACE Clearwater was used to monitor the impact of particulates but

the data could also be used to identify other issues.

For example, a company might discover that:

Final Project Report | December 18, 2019 22

 Wire feeders are inconsistent, causing variances in bead size or porosity defects—companies

have expressed interest in adding a specialized sensor to so this (Perisense is in talks with an

OEM to add an additional sensor to track this).

 Some operators in manual welding processes have poor travel speed consistency, which affects

weld quality and conformance to heat affect zone size.

 Welding current or voltage may vary more than is tolerable with impacts on porosity, bead

geometry, spatter, etc.

 Absent welds in some locations are caused by failure of arc initiation on automated lines.

 It is possible to compare welding stations and note which have significantly higher variations in

operating parameters than others, making it possible to identify the root cause of variability and

reduce these, thus improving quality through changes to the welding procedures, joint designs,

etc.

 Ambient conditions on the plant floor such as temperature and humidity can be monitored over

long periods of time and cross-referenced to weld quality, providing users with difficult to track

long time frame quality impacts.

 Wide variations in the cycle time of certain machines and operators that can be used to assess

the productivity of individual operators or identify inefficiencies in the way a specific welding

operation is set up. Some possible examples include:

o Operators spending less minutes on shift welding than others.

o Stations with excessive set up times, possibly indicating poor tooling design or a need to

tighten tolerances on incoming part geometry.

o Evaluating waste and attempt to address resource management.

o OEMs analyzing weld operation data from multiple suppliers in order to develop vendor

scorecards and improve incoming materials quality.

o Stations with excessive set up times, possibly indicating poor tooling design or a need to

tighten tolerances on incoming part geometry.

o Evaluating waste and attempt to address resource management.

o OEMs analyzing weld operation data from multiple suppliers in order to develop vendor

scorecards and improve incoming materials quality.

Most importantly, this approach when coupled with the easy-to-grasp dashboard makes data available

at all worker levels and time frames desired by the company to improve quality and worker satisfaction,

while providing management with the key insights and actionable intelligence needed to enhance

business results.

The completed sensor toolkit is now a commercially available product that includes the real-time

application, sensor installation, and basic analytics. Future developments will include the addition of

new processes, analytics improvements, a wider selection of data gathering options, more granular

capabilities for information sharing, and integration with third-party systems. The sensor toolkit will also

include a cellular data transmission option to allow deployments where no guest networks exist or

direct network connections are impractical.

Final Project Report | December 18, 2019 23

III. KPI’S & METRICS

The sensor toolkit can monitor various key improvement indicators (KPIs) related to legacy machine tool

equipment.

Improve Welding and Joining Processes--In the context of a welding operation, data can be gathered

on a range of operating parameters with known impact on quality and productivity including travel

speed, wire feed rate, gas flow rate, welding current and voltage. Some welding systems available in

the market today have built-in sensors to provide this data, and retrofitting is also available.

However, none of the providers of OEM systems and sensors, or retro-fit welding sensors, provide a

broadly-connected, real-time system that can be used on a multi-level basis to allow operators to

analyze system performance in real-time for monitoring and troubleshooting; neither do they

aggregate data as reports to management on a scheduled basis for operational analysis.

Analyze Worker Reporting--Workers on the factory floor often detect problems visually, audibly, or

otherwise, but their descriptions aren’t considered “data” and are often undervalued or ignored.

Text analysis of a worker’s log might reveal comments about vibration, stalls, or events that sensors

may not even detect. Textual analysis has become increasingly sophisticated in the last few years

and that trend will continue. Computers will become more proficient at scanning a piece of text (or

voice converted to text) for themes and repetition; essentially, text and voice can thus be classified

and analyzed in the same way as structured data.

Historical Data--Sensor toolkit aggregates historical process data that can then be analyzed to

identify patterns and relationships among discrete process steps and inputs. At this point, data will

be used to then optimize factors that have been proven to create desired effects or outcomes.

Analytics to Improve National Competitiveness--Data collection and analysis can also be the ultimate

in pre-competitive collaboration between enterprises. Sensor toolkits can aggregate data from

multiple manufacturers to create a diverse, anonymous, standardized data set. Each manufacturer

can use this information to evaluate their operation against peak performance data for given

metrics. Such a system could be a powerful engine for U.S. national industrial competitiveness.

Welding Application- Ace Clearwater

The sensor toolkits were deployed at ACE for 18 months and helped them identify when conditions of

high particulates were in the air during welding operations. When these conditions were identified by

the sensor toolkit, supervisors would be alerted to intervene on the shop floor to rectify the situation.

ACE focused on welds on flight critical repair components where high particulate counts could adversely

impact the quality of the work.

Final Project Report | December 18, 2019 24

Figure 13-- Welding report showing temperature, humidity, and particulates

During testing Perisense identified the following KPIs that sensor toolkits could track for welding

customers.

Metric Present State

(Baseline)

Future State (Project Goal)

Duty Cycle (financial) Yes Welder time use, productivity, and

energy consumption data.

Part to Part Process

Consistency (technical)

Yes Part to part consistency within a

batch, ability to match with visual and

post-NDI results.

Impact of Humidity and

Temperature on

Productivity and Rejection

Rate (technical)

Yes Demonstrate ability to monitor

temperature and humidity; relate to

worker duty cycle, part production

rate, and number of repairs/rejects.

Potential Business Outcomes

The following potential business outcomes have been identified:

 Users targeting production bottlenecks by quantifying equipment usage.

 Discovery of equipment performing below needed specifications.

 Reduce scrap and re-work by identifying optimal environmental conditions.

 Scheduling of preventive maintenance based on CBM rather than TBM principles.

Business Cases

 Large OEM, Tier 1 or Tier 2:

Final Project Report | December 18, 2019 25

Large OEMs can deploy sensor toolkits to their existing plant floor machinery installation to verify data

gathered from other sources or add functionality to legacy equipment. The sensor toolkit could also be

useful to monitor smaller remote facilities that have disparate equipment perhaps acquired though a

merger or acquisition.

 SMM Use Case:

Smaller Tier 2 or 3--Manufacturing engineers at a small shops can buy a low cost, retrofit sensor package

and data analytics to provide visibility into operations, obtain quality alerts on the floor, measure OEE,

an identify key areas in the shop that require improvements. New equipment using MT Connect9 could

provide manufacturers with similar data but is cost prohibitive for many manufacturers.

The sensor toolkit offers an affordable, impactful alternative to purchasing a new CNC machine, “…In

many job shops, producing profit in a short-term time frame can be exceedingly difficult when common

CNC machines of quality for small parts range from $30,000 - $500,000 in price.”10

IV. TECHNOLOGY OUTCOMES

System Overview

The sensor toolkit addresses key shortcoming suffered by SMMs--affordable visibility into the quality,

safety, and efficiency of their operations including machines, parts, processes, and people. It provides

data to reduce work cycle costs and improve quality for SMMs that have unconnected legacy machines

and that is easily retrofitted with plug-and-play sensors to provide easy to understand dashboards via

desktop and laptop computers or mobile devices.

The sensor toolkit solution utilizes cloud computing technology to provide SMMs with the analysis tools

to integrate information in intuitive ways that empower both manufacturing management and workers

to address quality assurance and decision-making. This solution also frees SMMs from the need to have

onsite computer servers and complicated IT infrastructure while being capable of easily scaling up to

meet demand.

The project resulted in the following sensor toolkit solution.

9 MTConnect is a standard for formatting and transmitting data produced by manufacturing equipment so that it

can be processed by software applications. Common uses for this technology are real-time machine monitoring,

and historical reporting using charts, graphs, and other visual representations of a shop’s performance.

https://www.shopfloorautomations.com/what-does-mtconnect-cost/
10 Saleeby, K. (2019). Development of a low-cost wireless accelerometer platform for machine monitoring

applications. Georgia Institute of Technology, Atlanta, Georgia, United States of America. Used with permission.

Final Project Report | December 18, 2019 26

Figure 14-- Sensor Toolkit Overview

System Requirements

The sensor toolkit has following requirements for deployment:

 Legacy factory equipment such as a machine tool or welding apparatus.

 Local network connected to the internet or access to data cellular network.

 Computers or mobile devices to view the data reports.

 Access to the equipment for approximately 30 minutes for installation (not all installations

require machine downtime.)

The following sensors are currently available and can be linked together to run simultaneously. Custom

sensors can also be integrated on a case-by-case basis.

Sensor ToolKit

Sensor Potential Application

Accelerometer Lathes, Drills

Particulates Welding, Additive Manufacturing

Thermometer Motors, Environmental Conditions

Current Meter Machine Usage, Energy Conservation

DMDII/MxD members can purchase a discounted base product package from Perisense including four

sensors including one year of storage.

System Architecture

The system architecture is comprised of the following subcomponents:

Final Project Report | December 18, 2019 27

 Infrastructure—Cloud computing resources necessary to store, process, and visualize data.

 Base Hardware CPU—Processor to run the software and connect the sensors collecting data.

 Sensors—Endpoints collecting data from the machines on the factory floor.

 Connectivity—Physical and wireless channels for transmitting the data to cloud services.

Perisense designed a wireless hub to support multiple sensors and ease deployment utilizing

cellular data networks.

Features & Attributes

Once the Raspberry Pi architecture was selected as the base hardware CPU the sensor toolkit went

through three revisions.

Infrastructure Base Hardware CPU Sensor Connectivity

Amazon Web Services

(AWS) – Services used

for device fleet

management, data

storage, processing,

analysis and

visualization of the

data

Raspberry Pi3B

Raspberry PI0W

Accelerometer

(ADXL345), Particulate

(SDS011),

Thermometer

(TMP006, DS18B20),

Current meter

(SCT013). Provisioned

for connection of

various other sensors

Wireless connectivity

provided by special

Perisense developed

router (serving all the

devices within the area

of 10,000 square feet)

This configuration represented the final baseline configuration of the product (version 2) tested by

project team. Version 2 of the solution is a major upgrade from version 1 with additional reporting

capability, analysis and visualization provided by AWS. The wireless (Wi-Fi) capability was further

enhanced adding a using a custom wireless router developed by Perisense engineers.

Infrastructure--AWS is a web service that provides secure, resizable compute capacity in the cloud. It is

designed to make web-scale cloud computing easier for developers. It provides complete control of

computing resources on Amazon’s proven computing environment. AWS reduces the time required to

obtain and boot new server instances to minutes, allowing quick capacity changed, both up and down,

as computing requirements change. AWS enables users to pay only for capacity that is actually needed.

Using AWS provided the product team with the flexibility to offer an affordable solution for smaller

SMMs while providing the scalability to server larger customers as well.

Base Hardware CPU--Base computing hardware continued to use the same versions of Raspberry Pi from

the intermediate version of the product with the following specifications:

Raspberry Pi 3 Model B--Earliest model of the third-generation Raspberry Pi replacing the Raspberry Pi 2

Model B in February 2016:

 Quad Core 1.2GHz Broadcom BCM2837 64bit CPU

 1GB RAM

Final Project Report | December 18, 2019 28

 BCM43438 wireless LAN and Bluetooth Low Energy (BLE) on board

 100 Base Ethernet

 40-pin extended GPIO

 4 USB 2 ports

 4 Pole stereo output and composite video port

 Full size HDMI

 CSI camera port for connecting a Raspberry Pi camera

 DSI display port for connecting a Raspberry Pi touchscreen display

 Micro SD port for loading your operating system and storing data

 Upgraded switched Micro USB power source up to 2.5A

Raspberry Pi Zero W--Launched at the end of February 2017, the Pi Zero W has the functionality of the

original Pi Zero, but with added connectivity capabilities:

 1GHz, single-core CPU

 512MB RAM

 Mini HDMI and USB On-The-Go ports

 Micro USB power

 HAT-compatible 40-pin header

 Composite video and reset headers

 CSI camera connector

 802.11 b/g/n wireless LAN

 Bluetooth 4.1

 Bluetooth Low Energy (BLE)

Sensors—Endpoints for data collection with the following capabilities:

Accelerometer (ADXL345) is a small, thin, ultra low power, 3-axis accelerometer with high resolution

(13-bit) measurement at up to ±16 g. Digital output data is formatted as 16-bit twos complement and is

accessible through either a SPI (3- or 4-wire) or I2C digital interface. The ADXL345 is well suited for

mobile device applications. It measures the static acceleration of gravity in tilt-sensing applications, as

well as dynamic acceleration resulting from motion or shock. Its high resolution (3.9 mg/LSB) enables

measurement of inclination changes less than 1.0°. Several special sensing functions are provided.

Activity and inactivity sensing detect the presence or lack of motion by comparing the acceleration on

any axis with user-set thresholds. Tap sensing detects single and double taps in any direction. Freefall

sensing detects if the device is falling. These functions can be mapped individually to either of two

interrupt output pins. An integrated memory management system with a 32-level first in, first out (FIFO)

buffer can be used to store data to minimize host processor activity and lower overall system power

consumption. Low power modes enable intelligent motion-based power management with threshold

sensing and active acceleration measurement at extremely low power dissipation. The ADXL345 is

supplied in a small, thin, 3 mm × 5 mm × 1 mm, 14-lead, plastic package.

Accelerometer Features:

 Ultra low power: as low as 23 μA in measurement mode and μA in standby mode at VS = 2.5 V

 Power consumption scales automatically with bandwidth

 User-selectable resolution

Final Project Report | December 18, 2019 29

 Fixed 10-bit resolution

 Full resolution, where resolution increases with g range, up to 13-bit resolution at ±16 g

(maintaining 4 mg/LSB scale factor in all g ranges)

 Embedded memory management system with FIFO technology minimizes host processor load

 Single tap/double tap detection

 Activity/inactivity monitoring

 Free-fall detection

 Supply voltage range: 2.0 V to 3.6 V

 I/O voltage range: 1.7 V to VS

 SPI (3- and 4-wire) and I2C digital interfaces

 Flexible interrupt modes mappable to either interrupt pin

 Measurement ranges selectable via serial command

 Bandwidth selectable via serial command

 Wide temperature range (−40°C to +85°C)

 10,000 g shock survival

 Pb free/RoHS compliant

 Small and thin: 3 mm × 5 mm × 1 mm LGA package

Particulate Sensor (SDS011) uses the principle of laser scattering to measure the particle

concentration between 0.3 to 10μm. It provides digital output and has a built-in fan to enhance

reliability.

Characteristics:

1. Accurate and reliable: laser detection, stable, good consistency.

2. Quick response: response time is less than 10 seconds when the scene changes.

3. Easy integration: UART output (or IO output can be customized), fan built-in.

4. High resolution: resolution of 0.3μg/m3; Nova Fitness Co., Ltd. SDS011 sensor 2.

5. Certification: products have passed CE/FCC/RoHS certification.

Working principle: Using laser scattering principle. Light scattering can be induced when particles go

through the detecting area. The scattered light is transformed into electrical signals and these signals

will be amplified and processed. The number and diameter of particles can be obtained by analysis

because the signal waveform has certain relations with the particle’s diameter.

Infrared Thermopile Sensor (TMP006) is temperature sensor that measures the temperature of an

object without the need to make contact the object. This sensor uses a thermopile to absorb the

infrared energy emitted from the object being measured and uses the corresponding change in

thermopile voltage to determine the object temperature.

Infrared sensor voltage range is specified from –40°C to +125°C to enable use in a wide range of

applications. Low power consumption along with low operating voltage makes the device suitable for

battery-powered applications. The low package height of the chip-scale format enables standard high-

volume assembly methods, and can be useful where limited spacing to the object being measured is

available.

Final Project Report | December 18, 2019 30

Sensor Features:

 Complete Solution in 1,6-mm × 1,6-mm Wafer Chip-Scale Package (WCSP) Device (DSBGA)

 Digital Output:

o Sensor Voltage: 7 μV/°C

o Local Temperature: –40°C to +125°C

 SMBus™-Compatible Interface: at 3.3 V

 Pin-Programable Interface Addressing

 Low Supply Current: 240 μA

 Low Minimum Supply Voltage: 2.2 V

Thermometer Sensor (DS18B20) is a digital thermometer that provides 9-bit to 12-bit Celsius

temperature measurements and has an alarm function with nonvolatile user-programmable upper and

lower trigger points. The DS18B20 communicates over a 1-Wire bus that by definition requires only one

data line (and ground) for communication with a central microprocessor. It has an operating

temperature range of -55°C to +125°C and is accurate to ±0.5°over the range of -10°C to +85°C. In

addition, the DS18B20 can derive power directly from the data line (“parasite power”), eliminating the

need for an external power supply.

Each DS18B20 has a unique 64-bit serial code, which allows multiple DS18B20s to function on the same

1-Wire bus. Thus, it is simple to use one microprocessor to control many DS18B20s distributed over a

large area. Applications that can benefit from this feature include HVAC environmental controls,

temperature monitoring systems inside buildings, equipment, or machinery, and process monitoring

and control systems.

Features:

 Unique 1-Wire® Interface Requires Only One Port Pin for Communication

 Each Device has a Unique 64-Bit Serial Code Stored in an On-Board ROM

 Multidrop Capability Simplifies Distributed Temperature-Sensing Applications

 Requires No External Components

 Can Be Powered from Data Line; Power Supply Range is 3.0V to 5.5V

 Measures Temperatures from -55°C to +125°C (-67°F to +257°F)

 ±0.5°C Accuracy from -10°C to +85°C

 Thermometer Resolution is User Selectable from 9 to 12 Bits

 Converts Temperature to 12-Bit Digital Word in 750ms (Max)

 User-Definable Nonvolatile (NV) Alarm Settings

 Alarm Search Command Identifies and Addresses Devices Whose Temperature is Outside

Programmed Limits (Temperature Alarm Condition)

 Available in 8-Pin SO (150 mils), 8-Pin μSOP, and 3-Pin TO-92 Packages

 Software Compatible with the DS1822

 Applications Include Thermostatic Controls, Industrial Systems, Consumer Products,

Thermometers, or Any Thermally Sensitive System

Current Meter (SCT013) is a split core current transformer to measure electrical current.

Final Project Report | December 18, 2019 31

These sensors were chosen for its affordability and recommended use for industrial instrumentation

applications.

Characteristics:

 Opening size: 13mm*13mm,

o Non-linerity±3%（10%-120% of rated input current）

o 1m leading wire, standard Φ3.5 three core plug output.

o Current output type and voltage output type (voltage output type built-in sampling

resistor)

 Purpose: Used for current measurement, monitor and protection for AC motor, lighting

equipment, air compressor etc.

 Core material: Ferrite

 Mechanical strength: Number of switching is not less than 1000 times (test at 25℃)

 Safety index: Dielectric strength (between shell and output) 1000V AC/1min

o Fire resistance property: In accordance with UL94-Vo

o Work temperature: -25℃～+70℃

The product also has been provisioned to allow the connection of many other sensors via a daisy chain11

connection.

Connectivity--Network connectivity is provided by wireless capability (Wi-Fi) integrated into the base

Raspberry Pi hardware. An important addition to the baseline capability.

11 In electrical and electronic engineering, a daisy chain is a wiring scheme in which multiple devices are wired

together in sequence. Daisy chains may be used for power, analog signals, digital data, or a combination

thereof. https://en.wikipedia.org/wiki/Daisy_chain_(electrical_engineering)

Final Project Report | December 18, 2019 32

Business Requirements

Infrastructure Base Hardware CPU Sensors Connectivity

Amazon Web Services

(AWS) – limited to SQL

database used for

storage and elastic

cloud computer

services

Raspberry Pi3B

Raspberry PI0W

Accelerometer

(ADXL345), Particulate

(SDS011),

Thermometer

(TMP006, DS18B20),

Current meter

(SCT013). Provisioned

for connection of

various other sensors

Wireless connectivity

provided by special

Perisense developed

router (serving all the

devices within the area

of 10000 square feet)

Meets Requirements Meets Requirements Meets Requirements Meets Requirements

The final sensor kit hardware (version 2) is a complete solution and which meets every business

requirement. AWS supports all required applications and also allows virtual environments to be spun up

to support installations of any size. It also has virtually 100% uptime due to its distributed architecture.

This version still supports Wi-Fi but also utilizes a custom wireless cellular hub that makes installation at

any location possible with no IT intervention. The Raspberry PI and sensors provide the processing

power necessary to support the open source python applications.

Final Project Report | December 18, 2019 33

Version Comparison

Figure 15-- Product Configurations as Tested

The team also created multiple pre-prototypes before deciding on the Raspberry Pi processor. Georgia

Tech developed early senor kits based on the BeagleBone as well as the software code to test the

configurations.

BeagleBone is a barebone development board with a Sitara ARM Cortex-A8 processor running at 720

MHz, 256 MB of RAM, two 46-pin expansion connectors, on-chip Ethernet, a microSD slot, and a USB

host port and multipurpose device port which includes low-level serial control and JTAG hardware

debug connections.

BeagleBone Black is a newer version of the BeagleBone that increases RAM to 512 MB, the processor

clock to 1 GHz, and it adds HDMI and 2 GB of eMMC flash memory. The BeagleBone Black also ships with

Linux kernel 3.8, upgraded from the original BeagleBone's Linux kernel 3.2, allowing the BeagleBone

Black to take advantage of Direct Rendering Manager (DRM).

The final decision to go with Raspberry Pi for the project was driven by cost and capability. Raspberry Pi

was less expensive and had all the needed features onboard without the need to add additional board

components.

Future development plan for mass production will use a custom board.

Final Project Report | December 18, 2019 34

Software Development Documentation/Design Document

The software design goal was to provide simplest and most effective connection between the hardware

sensors and end user. The project team chose the Python programming language, an open source with a

massive programming development community to meet this challenge. The sensor toolkit utilizes

individual sensor drivers provided by sensor suppliers. The data acquisition software acquires sensor

data which is then transmitted to AWS for analysis and visualization.

AWS routes the data to a relational database for visualization utilizing open source third party software

Grafana (https://grafana.com/). Grafana provides and interface allowing to build customer facing

dashboard by using various built-in graphical tools. A typical customer facing Grafana dashboard will

include several panels such as time-based plots, on/off indicator buttons, gauge indicators, etc.

Perisense used standard SQL database queries to populate the dashboard.

Figure 16-- Equipment Temperature, Current, and Accelerometer Data

Users & Use Cases

Project Participant-- ACE Clearwater

ACE manufactures complex metal forms, components and welded assemblies for the aerospace and

power generation industries specializing in exotic materials, complex assemblies, and components.

ACE also has additional facilities with the following capabilities:

 One of the largest drop hammer operations in the country, model shop, foundry, spinning,

planishing, check & straighten, hand-trimming, shear, and deburr. It also benefits from a

complete closed-loop, organic clean line operation and quality team for final inspections, in-

house, and adds an additional 250,000 square feet of manufacturing.

 Hydroforming, with a 400-ton hydraulic press, machine shop and 5-axis laser cutting equipment.

It has also been, for four years, the site for ACE Manufacturing Day celebrations for hundreds of

local school children to learn what about aerospace manufacturing.

ACE used the sensor toolkit to monitor temperature, humidity, atmospheric particulates, and weld

current during welding of flight critical replacement parts for the Department of Defense (DOD).

Final Project Report | December 18, 2019 35

ACE joined the project in June 2017. The first air particulate sensor toolkits were implemented around

September 2017. The chart below shows the level of air particulates in an enclosed weld booth, open

weld booth and in an office environment. The data shows the average in an enclosed weld booth is

about 28-30 ug (microgram) of particulates per m^3 of air; open weld booth is about 50-55; office

environment (for comparison only) is about 6-8.

Figure 17--- ACE Particulate Reports

Over the course of the project, the air particulate monitors were improved to include temperature and

humidity, as well as to improve Wi-Fi connectivity. ACE at the time had only two weld booths enclosed.

Based on the data, ACE enclosed all of its weld booths by February 2019 to reduce overall air

particulates for welding processes. This has reduced our air particulate levels to around 9-11 (see

current charts below, averages are circled red).

Final Project Report | December 18, 2019 36

Figure 18-- Welding report showing temperature, humidity, and particulates

Use Cases

Large OEM, Tier 1 or Tier 2:

Large OEMS can purchase a product package from Perisense including ten sensors including one year of

storage and monitoring for $15,000 (DMDII/MxD member price $14,000) plus travel costs for

installation by Perisense engineers. The customer can choose from among the following sensors:

accelerometer, particulates, thermometer and current meter. Sensors are covered under warranty for

one year and maintenance contracts for subsequent years are available. After the first-year storage and

monitoring is $1 a day per sensor. Custom sensors can be integrated for an additional cost.

Potential OEM deployment include installation on similar equipment (a cell of drill presses or lathes) to

compare performance and power usage as well as monitoring pieces of equipment both before and

after maintenance.

OEMs can also purchase the solution for installation downstream in their supply chain to monitor

partner equipment at remote locations.

Final Project Report | December 18, 2019 37

SMM Use case:

Smaller Tier 2 or 3--Example: As the manufacturing engineering and IT manager at a small maker of

precision equipment used in OEM plants, I can buy a low cost, retrofit sensor package and data analytics

to provide visibility into my operations, obtain quality alerts on the floor, measure OEE, an identify key

areas in the shop that require improvements.

An SMM can purchase a base product package from Perisense including four sensors including one year

of storage and monitoring for $6,000 (DMDII/MxD member price $5,500) plus travel costs for

installation by Perisense engineers. The customer can choose from among the following sensors:

accelerometer, particulates, thermometer and current meter. Sensors are covered under warranty for

one year and maintenance contracts for subsequent years are available. After the first-year storage and

monitoring is $1 a day per sensor. Custom sensors can be integrated for an additional cost.

The base product package would allow an SMM to monitor the performance of a milling machine

(accelerometer), the utilization rate of a CNC machine (current meter), and identify potential equipment

failures (thermometer). A spike in motor temperature can indicate a bad bearing that needs to be

repaired.

Digital Manufacturing and Design Innovation Institute (DMDII)/MXD

The Digital Manufacturing and Design Innovation Institute (DMDII) is where innovative manufacturers go

to forge their futures. In partnership with UI LABS and the DOD, DMDII equips U.S. factories with the

digital tools and expertise they need to begin building every part better than the last. As a result, our

more than 300 partners increase their productivity and win more business.

Figure 19-- Solution Deployed at DMDII/MXD

Final Project Report | December 18, 2019 38

DMDII has invested approximately $90 million in more than 60 applied R&D projects in areas including

design; product development; systems engineering; future factories; agile, resilient supply chains; and

cybersecurity.

The Institute operates from a nearly 100,000-square-foot innovation center near downtown Chicago. Its

factory floor features some of the most advanced manufacturing equipment in the world, which

partners can use for experimentation and training on everything from augmented reality to advanced

simulation techniques.

Figure 20-- Mobile Data reporting from DMDII Demo

DMDII’s vision is to increase U.S. manufacturing productivity by making “every part better than the last.”

In February of 2019, DMDII was renamed MxD, which stands for manufacturing times digital. MxD’s

mission is to drive the digital future of manufacturing, pioneering new technologies that make America’s

industrial base and warfighters more resilient and agile

Final Project Report | December 18, 2019 39

V. ACCESSING THE TECHNOLOGY

Background Intellectual Property

The team is claiming no background intellectual property on this project.

Technical and Systems Requirements

The following requirements are necessary to deploy the baseline solution:

 Factory equipment such as a machine tool or welding apparatus.

 Local network connected to the internet or active Wi-Fi or cellular network.

 Computers or mobile devices to view the data reports.

DMDII/MxD members can purchase a base product package from Perisense including four sensors

including one year of storage and monitoring for $5,500 plus travel costs for installation by Perisense

engineers. The customer can choose from among the following sensors: accelerometer, particulates,

thermometer and current meter. Sensors are covered under warranty for one year and maintenance

contracts for subsequent years are available. After the initial year storage and monitoring costs $1 a day

per sensor. Custom sensors can be integrated for an additional cost.

Final Project Report | December 18, 2019 40

VI. INDUSTRY IMPACT & POTENTIAL

Potential Impact

According to statistics from the U.S. Census12 bureau there are over quarter of a million manufacturing

firms in the United States, and 94% employ less than a hundred workers.

Figure 21— U.S. Census Bureau and MAPI Manufacturing Employment Data

Many of these companies are potential users of the product resulting from this project. While the initial

sensor toolkit includes just four sensors it can support hundreds of additional commercially available

sensors.

12 http://www.themanufacturinginstitute.org/Research/Facts-About-Manufacturing/Economy-and-

Jobs/Company-Size/Company-Size.aspx

Final Project Report | December 18, 2019 41

Other Industry Potential

The product resulting from this project could be further enhanced by analyzing the results with machine

learning capability.13

 Initial exploration of machine learning via retrofit data--data quantity expanded over time

 Very limited effort but demonstrated that data quality is sufficient to allow ML methods to be

applied successfully.

o Used to demonstrate part discrimination.

Figure 22— Potential Machine Learning Applications for Sensor Toolkit Data

Expanding Sensor “Library” and Applications

 The flexibility of the node based, multiple port design allows multiple measurements to be

made, and customized to various processes at low cost.

 Identifying and prioritizing measurement types and applications benefit suppliers and users

o Via DMDII/MxD and MEP investigating the possibility of working with a company on a

custom application.

 Good case study for value creation due to low cost of implementing solutions for low volume

processes.

Another application identified by user groups is the ability to monitor power usage of equipment. SMMs

are particularly sensitive to the variable costs of energy usage and can use this toolkit to monitor and

adjust behavior.

13 Machine Learning (ML) is the scientific study of algorithms and statistical models that computer systems use

to progressively improve their performance on a specific task. Machine learning algorithms build a

mathematical model of sample data, known as "training data", in order to make predictions or decisions

without being explicitly programmed to perform the task. Machine learning algorithms are used in the

applications of email filtering, detection of network intruders, and computer vision, where it is infeasible to

develop an algorithm of specific instructions for performing the task. Machine learning is closely related to

computational statistics, which focuses on making predictions using computers.

https://en.wikipedia.org/wiki/Machine_learning

Final Project Report | December 18, 2019 42

Necessary Steps for Cross Industry Migration

Next steps for possible uses in other environments and industries were identified:

 As a development program, the sensor toolkits are not designed for permanent installation in

manufacturing settings that require the highest levels of safety standards due to excessive heat

or chemicals.

 Customer discovery conversations have indicated that packaging, particularly meeting UL and

Class 1, Division 1 explosion safety is an important consideration.

These topics receive relatively little attention in development activities, but should be considered early

in the design stage, and may be relevant to other efforts underway at DMDII/MxD.

Final Project Report | December 18, 2019 43

VII. TECH TRANSITION PLAN & COMMERCIALIZATION

Future Plans

Next steps towards mass production:

 Tooling for faster production of robust enclosures—current enclosure are 3D printed as

needed. This process is slow and would not support mass production.

 Development kits—there has been interest in a development kit which would expand the

number of sensors types for test deployments.

 Custom system boards—Raspberry Pi boards while being very capable are not easily sourced for

mass purchase.

 Packaging—for shipping and to easily identify what type of sensor is being deployed and to help

track inventory. Current packaging is very basic (a cardboard box with stickers). As production is

scaled up newer package with SKU to identify different configurations would be beneficial.

Some users have expressed interest in having their data stored in other hosting environments:

 Microsoft Azure

 Mindsphere

 Rackspace Cloud

 IBM Cloud

 Google Cloud

The solution itself while currently being hosted on AWS can be ported to virtually any hosting

environment. The team is evaluating which clouds offer the best marketing opportunities to drive

further adoption.

The team is also considering options for customers who don’t want their data stored in any cloud and

want local server options within their enterprise.

Technology Transition Plan

Perisense, Inc. www.perisense.io, is a Delaware C Corporation based in Ann Arbor, MI developing hybrid

software/hardware products for the Industrial Internet of Things (IIOT). Huge changes in manufacturing,

enterprise software, machine monitoring and data analysis, known as “Manufacturing 4.0” are

drastically increasing the amount of data manufacturers needed to remain competitive. Yet, per the

Society of Manufacturing Engineers (SME), half or more of older “legacy” machines can’t be included

because they don’t have the sensors and connectivity needed. This huge data gap limits manufacturers’

opportunities to optimize plant and enterprise operations. Perisense’s unique value proposition is a

scalable, robust, end-to-end solution for acquiring and analyzing legacy machine data at an affordable

cost.

Final Project Report | December 18, 2019 44

 Figure 23— Sensor Toolkit Features

Market Analysis-- The IOT market has grown rapidly due to accelerated adoption; estimated overall

market size is $100B/year in 2016, with growth to $930B/year projected by 2025. Perisense’s segments,

IOT sensors and analytics, are projected to reach almost $40B by 2021. Perisense targets two groups of

customers making up about half of the IOT sensors and analytics market: manufacturing and logistics.

We focus on the 25-50% of this $20B market that needs retrofit data acquisition and analysis

capabilities, representing an addressable market of $5-10B by 2021. Closely linked, logistics and

manufacturing use similar data and can be cross sold for larger accounts and higher sales.

Figure 24— Sensor Kit Market Data

Within these focused segments, Perisense has a compelling value proposition as our extensible system

provides a low risk, low cost entry opportunity with flexibility to add unlimited amounts of connectivity

and analytics as we demonstrate the value of our services. A Fortune 100 OEM recently requested a

quote from Perisense for a smaller plant because “SAP won’t do anything in one of our plants for less

than a million dollars and in this case such a high cost can’t be justified, but we still need the data.”

Microsoft has approached Perisense about joining its Azure platform because “we are always looking for

good partners and I believe you could fill an important gap which is the retrofit of legacy systems for the

Source: Markets and Markets Reports

"IOT Analytics Market by Application”
Source: GrandView Research– “IOT Analytics

Market by Component, End Use and Segment”

Final Project Report | December 18, 2019 45

IOT.” Our first customer bought from Perisense due to dissatisfaction with MTConnect based offerings

already installed in his plant.

Competitive Analysis-- Most legacy machine data is sampled from a Programmable Logic Controller

(PLC); it is low resolution data acquired just once or twice per cycle with low time stamp accuracy.

Perisense has developed copyrighted software and proprietary edge computing to obtain data

independent of the PLC related directly to product quality, at process relevant frequency and intervals.

Data rates can be customized to the application. There are few robust, capable, moderate cost retrofit

sensor products in this space. Forcam offers a three

machine “starter kit” at a cost of $24,950 with only

60 days of data service; this is about 4X the cost of a

Perisense sensor with one year of services. Perisense

will benefit from its partnership with Siemens to

expand our marketing and sales reach at little or no

cost. As our competition evolves, we will pursue

more partners e.g., SAP, Microsoft etc. to remain

highly competitive in this sector.

Final Project Report | December 18, 2019 46

Perisense Company Overview

Value Proposition--Perisense is the best value provider of high quality data acquisition, storage

and analysis for legacy machines.

Core Competency--Perisense has world class talent in manufacturing, sensor design and

application, and data analysis.

Product Overview--The Perisense sensor toolkit solution for legacy machine data acquisition, cloud

storage and analysis/reporting stands out for its low cost and high value. Our plug-and-play product

minimizes installation costs and disruptions, and includes: 1) rugged, semi-customizable sensor and

wireless data acquisition for legacy machinery and other assets (e.g., forklifts) that is a gateway to high

margin software services; 2) secure data upload to a cloud database for storage and analysis; 3) data

and software services including delivery of alerts, analytics and displays based on user KPIs and

requirements. Perisense acquires data at higher resolution than competitors that sample Programmable

Logic Controllers (PLCs) and can integrate data from multiple plants and locations. We can also ingest

and integrate data acquired from other sources (historical data, flat files, streams from PLCs, RFID data).

Our exceptional software team has produced proprietary edge computing and copyrighted software for

efficient data transfer between sensors and the datacenter, while supporting immediate alerts as

required by users. Perisense is also preparing two provisional patent applications: a novel sensor for

real-time detection of weld defects in high value parts, and an innovative approach to easily entering

supervisor or operator generated codes to the database without a need for a screen or keyboard-

based interface.

Perisense is testing its third generation product at five companies in California, Ontario and Michigan,

has obtained over 3,000 days of data and received product input from a wide range of other companies

including Rolls Royce, GM, Siemens, Delta, Whirlpool and Caterpillar. Our product is available for sale to

early users at a reduced price so we can incorporate customer feedback as we build out our platform. A

higher volume Generation 4 product will roll out in early 2019, to include developing a custom board

and sourcing of the board and enclosures to manufacturers in Michigan.

The team has identified the following barriers to adoption of this solution:

 General lack of awareness among SMMs that retrofitting legacy manufacturing equipment is

possible. Many believe that the only way to realize gains from monitoring and data analysis

require purchasing brand new equipment.

 Lack of awareness of the benefits from equipment monitoring.

 Belief that retrofitting equipment prohibitively expensive either in capital costs or from

potential downtime during installation.

 Security concerns regarding cloud solutions.

 Concerns from SMMs whether they have the IT expertise to manage such a solution.

Final Project Report | December 18, 2019 47

Additional Information

VIII. WORKFORCE DEVELOPMENT

N/A

IX. CONCLUSIONS/RECOMMENDATIONS

This project successfully created a product that will enable manufacturers to easily and affordably

monitor legacy shop floor equipment. The product was deployed in multiple environments and proven

rugged enough to operate on the factory floor.

The following recommendations would help promote adoption of this solution:

 SMM outreach about the advantages and options of retrofitting legacy equipment.

 Education to address the security concerns regarding cloud solutions.

 A pilot plan to underwrite a wider deployment among SMM to document additional use cases.

DMDII/MxD SMM members can purchase a base product package from Perisense including four sensors

including one year of storage and monitoring for $5,500 plus travel costs for installation by Perisense

engineers. The customer can choose from among the following sensors: accelerometer, particulates,

thermometer and current meter. Sensors are covered under warranty for one year and maintenance

contracts for subsequent years are available. After the first-year storage and monitoring is $1 a day per

sensor.

Potential uses include monitoring the performance of a milling machines, utilization rate of a CNC

machines, or identifying upcoming equipment failures. Perisense can also integrate additional sensors

and create custom reports as identified by customer need.

Final Project Report | December 18, 2019 48

Figure 25-- Example Sensor Toolkit Installation and Report available for DMDII/MxD Members

DMDII/MxD larger OEM members can purchase a product package from Perisense including ten sensors

including one year of storage and monitoring for $15,000 (DMDII/MxD member price $14,000) plus

travel costs for installation by Perisense engineers. The customer can choose from among the following

sensors: accelerometer, particulates, thermometer and current meter. Sensors are covered under

warranty for one year and maintenance contracts for subsequent years are available. After the first year

storage and monitoring is $1 a day per sensor. Custom sensors can be integrated for an additional cost.

Potential OEM deployment include installation on similar equipment (a cell of drill presses or lathes) to

compare performance and power usage as well as monitoring pieces of equipment both before and

after maintenance.

OEMs can also purchase the solution for installation downstream in their supply chain to monitor

partner equipment at remote locations.

Final Project Report | December 18, 2019 49

Figure 26-- Product Data Sheet

A wider deployment to gather data from a large deployment of companies could provide analytics to

improve and benchmark national competitiveness. Sensor toolkits could aggregate data from multiple

manufacturers to create a diverse, anonymous, standardized data set. Such a system could be a

powerful engine for U.S. national industrial competitiveness.

Final “Version 2” (Available for DMDII/MxD members)

Infrastructure Base Hardware CPU Sensor Connectivity

Amazon Web Services

(AWS) – Services used

for device fleet

management, data

storage, processing,

analysis and

visualization of the

data

Raspberry Pi3B

Raspberry PI0W

Accelerometer

(ADXL345), Particulate

(SDS011),

Thermometer

(TMP006, DS18B20),

Current meter

(SCT013). Provisioned

for connection of

various other sensors

Wireless connectivity

provided by special

Perisense developed

router (serving all the

devices within the area

of 10000 square feet)

Final Project Report | December 18, 2019 50

X. LESSONS LEARNED

Problems Encountered

Network Security

The initial deployment had problems configuring the solution to successfully connect and communicate

data via the ethernet network at the test site. As a DOD supplier the network was properly secured to

prevent intrusions and unauthorized equipment on the factory floor. These barriers were successfully

navigated but caused installation delays preventing data from being successfully transmitted.

This was an important lesson for the project team. Many manufacturing organizations have stringent

requirements and procedures for the installation of computer equipment that require internet access.

Smaller companies may have limited or poorly documented networks or in some cases no network

access at all.

These problems at the first installation site resulted in Perisense developing a custom router with

optional cellular wireless connectivity.

Figure 27-- Perisense Custom Router

Factors Complicating Welding

Welding is aggressive from the point of view of electrical and acoustic noise, smoke and dust, and

because we are testing on a manual rather than automated system there is additional complexity in

measuring things like travel speed in the absence of an automated gantry. With its heavy manual

component and significant electrical noise, welding has significant challenges when it comes to

monitoring solutions. While there are welding systems available in the market today with built-in

Final Project Report | December 18, 2019 51

sensors providing real-time weld process data, most SMMs have limited automation and

instrumentation, offering a major opportunity for improvement.

Some major vendors also provide PC-based programs to analyze data and conduct statistical analysis.

For example, Miller Electric has a remote database to which users can send data and receive

performance reports on their operation. Another example is Lincoln Electric, which provides a welding

system set up and procedure application that can be used to select parameters in the field for welding

operations, but it cannot be used to collect or analyze data.

Surprises

The relatively low overhead of the software and sensors made cost and availability the major driver in

selecting a CPU. Throughout the project, the number of possible hardware combinations exceeded the

pace of software development. Open source software tools allowed sensors to swapped in and out to

find the best solution for each case.

With the proliferation of industrial grade sensors available, the major challenge became creating a

robust enclosure that could be attached to equipment and survive on the factory floor.

Plan/Scope of Work/Proposal Claim Deviations

There were no major deviations from the proposed project plan.

Risks Realized

N/A

XI. DEFINITIONS

AWS--Amazon web services

Azure--Microsoft cloud hosting environment

Cloud--Shared computer resources accessed via the internet

CBM--Condition-based maintenance

COTS--Commercial off-the-shelf

CPU--Central Processing Unit

DOD--Department of Defense

ERP--Enterprise resource planning

HTML--Hypertext markup language

IT--Information technology

IOT--Internet of things

KPI--key performance indicator

Machine Tool--A machine for shaping or machining metal or other rigid materials, usually by cutting,

boring, grinding, shearing, or other forms of deformation. Machine tools employ some sort of tool that

does the cutting or shaping. All machine tools have some means of constraining the workpiece and

Final Project Report | December 18, 2019 52

provide a guided movement of the parts of the machine. https://en.wikipedia.org/wiki/Machine_tool

OEE--Overall Equipment Effectiveness

OEM--Original equipment manufacturer

PLM--Product lifecycle management (PLM)

Python--an interpreted, high-level, general-purpose programming language

R&D--Research and development

SMM--Small and medium manufacturers

TBM--Time-based maintenance

Welding--A fabrication or sculptural process that joins materials, usually metals or thermoplastics, by

using high heat to melt the parts together and allowing them to cool causing fusion. Welding is distinct

from lower temperature metal-joining techniques such as brazing and soldering, which do not melt the

base metal. https://en.wikipedia.org/wiki/Welding

Wi-Fi--technology for radio wireless local area networking of devices based on the IEEE 802.11

standards.

XII. APPENDICES

Section should minimally include the following:
a. List Document Deliverables

b. Demos

1. Setup Instructions

2. Bill of Materials

3. Exceptions

4. Additional Relevant Materials

c. Validation & Testing

1. Plans

2. Results

3. Installation Reports

4. User Guide/Installation Manual

5. Additional Relevant Materials

PHP Driver Code for Sensors

PYTHON driver code for the PPD42NS

from __future__ import print_function

import math

import pigpio

class sensor:

 """

 A class to read a Shinyei PPD42NS Dust Sensor, e.g. as used

Final Project Report | December 18, 2019 53

 in the Grove dust sensor.

 This code calculates the percentage of low pulse time and

 calibrated concentration in particles per 1/100th of a cubic

 foot at user chosen intervals.

 You need to use a voltage divider to cut the sensor output

 voltage to a Pi safe 3.3V (alternatively use an in-line

 20k resistor to limit the current at your own risk).

 """

 def __init__(self, pi, gpio):

 """

 Instantiate with the Pi and gpio to which the sensor

 is connected.

 """

 self.pi = pi

 self.gpio = gpio

 self._start_tick = None

 self._last_tick = None

 self._low_ticks = 0

 self._high_ticks = 0

 pi.set_mode(gpio, pigpio.INPUT)

 self._cb = pi.callback(gpio, pigpio.EITHER_EDGE, self._cbf)

 def read(self):

 """

 Calculates the percentage low pulse time and calibrated

 concentration in particles per 1/100th of a cubic foot

 since the last read.

 For proper calibration readings should be made over

 30 second intervals.

 Returns a tuple of gpio, percentage, and concentration.

 """

 interval = self._low_ticks + self._high_ticks

 if interval > 0:

 ratio = float(self._low_ticks)/float(interval)*100.0

 conc = 1.1*pow(ratio,3)-3.8*pow(ratio,2)+520*ratio+0.62;

 else:

 ratio = 0

 conc = 0.0

Final Project Report | December 18, 2019 54

 self._start_tick = None

 self._last_tick = None

 self._low_ticks = 0

 self._high_ticks = 0

 return (self.gpio, ratio, conc)

 def _cbf(self, gpio, level, tick):

 if self._start_tick is not None:

 ticks = pigpio.tickDiff(self._last_tick, tick)

 self._last_tick = tick

 if level == 0: # Falling edge.

 self._high_ticks = self._high_ticks + ticks

 elif level == 1: # Rising edge.

 self._low_ticks = self._low_ticks + ticks

 else: # timeout level, not used

 pass

 else:

 self._start_tick = tick

 self._last_tick = tick

 def pcs_to_ugm3(self, concentration_pcf):

 '''

 Convert concentration of PM2.5 particles per 0.01 cubic feet to µg/ metre cubed

 this method outlined by Drexel University students (2009) and is an approximation

 does not contain correction factors for humidity and rain

 '''

 if concentration_pcf < 0:

 raise ValueError('Concentration cannot be a negative number')

 # Assume all particles are spherical, with a density of 1.65E12 µg/m3

 densitypm25 = 1.65 * math.pow(10, 12)

 # Assume the radius of a particle in the PM2.5 channel is .44 µm

 rpm25 = 0.44 * math.pow(10, -6)

 # Volume of a sphere = 4/3 * pi * radius^3

 volpm25 = (4/3) * math.pi * (rpm25**3)

Final Project Report | December 18, 2019 55

 # mass = density * volume

 masspm25 = densitypm25 * volpm25

 # parts/m3 = parts/foot3 * 3531.5

 # µg/m3 = parts/m3 * mass in µg

 concentration_ugm3 = concentration_pcf * 3531.5 * masspm25

 return concentration_ugm3

 def ugm3_to_aqi(self, ugm3):

 '''

 Convert concentration of PM2.5 particles in µg/ metre cubed to the USA

 Environment Agency Air Quality Index - AQI

 https://en.wikipedia.org/wiki/Air_quality_index

 Computing_the_AQI

 https://github.com/intel-iot-

devkit/upm/pull/409/commits/ad31559281bb5522511b26309a1ee73cd1fe208a?diff=split

 '''

 cbreakpointspm25 = [[0.0, 12, 0, 50],\

 [12.1, 35.4, 51, 100],\

 [35.5, 55.4, 101, 150],\

 [55.5, 150.4, 151, 200],\

 [150.5, 250.4, 201, 300],\

 [250.5, 350.4, 301, 400],\

 [350.5, 500.4, 401, 500],]

 C=ugm3

 if C > 500.4:

 aqi=500

 else:

 for breakpoint in cbreakpointspm25:

 if breakpoint[0] <= C <= breakpoint[1]:

 Clow = breakpoint[0]

 Chigh = breakpoint[1]

 Ilow = breakpoint[2]

 Ihigh = breakpoint[3]

 aqi=(((Ihigh-Ilow)/(Chigh-Clow))*(C-Clow))+Ilow

 return aqi

if __name__ == "__main__":

Final Project Report | December 18, 2019 56

 import time

 while True:

 pi = pigpio.pi() # Connect to Pi.

 s = sensor(pi, 7) # set the GPIO pin number

 # Use 30s for a properly calibrated reading.

 time.sleep(30)

 # get the gpio, ratio and concentration in particles / 0.01 ft3

 g, r, c = s.read()

 if (c==1114000.62):

 print("Error\n")

 continue

 print("Air Quality Measurements for PM2.5:")

 print(" " + str(int(c)) + " particles/0.01ft^3")

 # convert to SI units

 concentration_ugm3=s.pcs_to_ugm3(c)

 print(" " + str(int(concentration_ugm3)) + " ugm^3")

 # convert SI units to US AQI

 # input should be 24 hour average of ugm3, not instantaneous reading

 aqi=s.ugm3_to_aqi(concentration_ugm3)

 print(" Current AQI (not 24 hour avg): " + str(int(aqi)))

 print("")

 pi.stop() # Disconnect from Pi.

 time.sleep(5)

PYTHON driver code for the ADXL345 (3 axes accelerometer from Analog Device)

import smbus

import adxl345.base

class ADXL345(adxl345.base.ADXL345_Base):

 STD_ADDRESS = 0x1D

 ALT_ADDRESS = 0x53

 def __init__(self, alternate=False, port=1):

 """ Initialize the driver

Final Project Report | December 18, 2019 57

 :param alternate: use the standard or alternate I2C address as selected by pin

SDO/ALT_ADDRESS

 :param port: number of I2C bus to use

 """

 self.bus = smbus.SMBus(port)

 if alternate:

 self.i2caddress = ADXL345.ALT_ADDRESS

 else:

 self.i2caddress = ADXL345.STD_ADDRESS

 def get_register(self, address):

 bytes = self.bus.read_i2c_block_data(self.i2caddress, address, 1)

 return bytes[0]

 def get_registers(self, address, count):

 bytes = self.bus.read_i2c_block_data(self.i2caddress, address, count)

 return bytes;

 def set_register(self, address, value):

 self.bus.write_byte_data(self.i2caddress, address, value)

from __future__ import division

import math

class ADXL345_Base:

 # Registers

 REG_DEVICE_ID = 0x00

 REG_THRESH_TAP = 0x1D

 REG_OFSX = 0x1E

 REG_OFSY = 0x1F

 REG_OFSZ = 0x20

 REG_DUR = 0x21

 REG_LATENT = 0x22

 REG_WINDOW = 0x23

 REG_THRESH_ACT = 0x24

 REG_THRESH_INACT = 0x25

 REG_TIME_INACT = 0x26

 REG_ACT_INACT_CTL = 0x27

 REG_THRESH_FF = 0x28

 REG_TIME_FF = 0x29

 REG_TAP_AXES = 0x2A

 REG_ACT_TAP_STATUS = 0x2B

 REG_BW_RATE = 0x2C

 REG_POWER_CTL = 0x2D

 REG_INT_ENABLE = 0x2E

 REG_INT_MAP = 0x2F

 REG_INT_SOURCE = 0x30

Final Project Report | December 18, 2019 58

 REG_DATA_FORMAT = 0x31

 REG_DATAX0 = 0x32

 REG_DATAX1 = 0x33

 REG_DATAY0 = 0x34

 REG_DATAY1 = 0x35

 REG_DATAZ0 = 0x36

 REG_DATAZ1 = 0x37

 REG_FIFO_CTL = 0x38

 REG_FIFO_STATUS = 0x39

 # Full Resolution scale factor (0x100 LSB/g ~= 3.9/1000 mg/LSB)

 SCALE_FACTOR = 1/0x100

 def __init__(self):

 self._full_resolution = True

 self._range = 0

 def get_register(self, address):

 raise NotImplementedError("This method should be implemented by subclasses")

 def get_registers(self, address, count):

 raise NotImplementedError("This method should be implemented by subclasses")

 def set_register(self, address, value):

 raise NotImplementedError("This method should be implemented by subclasses")

 def get_device_id(self):

 return self.get_register(ADXL345_Base.REG_DEVICE_ID)

 def set_data_rate(self, hz, low_power=False):

 if hz >= 3200:

 rate = 3200

 rate_code = 0b1111

 elif hz >= 1600 and hz < 3200:

 rate = 1600

 rate_code = 0b1110

 elif hz >= 800 and hz < 1600:

 rate = 800

 rate_code = 0b1101

 elif hz >= 400 and hz < 800:

 rate = 400

 rate_code = 0b1100

 elif hz >= 200 and hz < 400:

 rate = 200

 rate_code = 0b1011

 elif hz >= 100 and hz < 200:

 rate = 100

 rate_code = 0b1010

Final Project Report | December 18, 2019 59

 elif hz >= 50 and hz < 100:

 rate = 50

 rate_code = 0b1001

 elif hz >= 25 and hz < 50:

 rate = 25

 rate_code = 0b1000

 elif hz >= 25/2 and hz < 25:

 rate = 25/2

 rate_code = 0b0111

 elif hz >= 25/4 and hz < 25/2:

 rate = 25/4

 rate_code = 0b0110

 elif hz >= 25/8 and hz < 25/4:

 rate = 25/8

 rate_code = 0b0101

 elif hz >= 25/16 and hz < 25/8:

 rate = 25/16

 rate_code = 0b0100

 elif hz >= 25/32 and hz < 25/16:

 rate = 25/32

 rate_code = 0b0011

 elif hz >= 25/64 and hz < 25/32:

 rate = 25/64

 rate_code = 0b0010

 elif hz >= 25/128 and hz < 25/64:

 rate = 25/128

 rate_code = 0b0001

 elif hz < 25/128:

 rate = 25/256

 rate_code = 0

 if low_power:

 rate_code = rate_code | 0x10

 self.set_register(ADXL345_Base.REG_BW_RATE, rate_code)

 return rate;

 def _equal(self, value, reference, error_margin=0.1):

 return value >= (reference - error_margin) and value <= (reference + error_margin)

 def _convert(self, lsb, msb):

 """ Convert the gravity data returned by the ADXL to meaningful values """

 value = lsb | (msb << 8)

 if value & 0x8000:

 value = -value ^ 0xFFFF

 if not self._full_resolution:

 value = value << self._range

 value *= ADXL345_Base.SCALE_FACTOR

Final Project Report | December 18, 2019 60

 return value

 def _set_power_ctl(self, measure, wake_up=0, sleep=0, auto_sleep=0, link=0):

 power_ctl = wake_up & 0x03

 if sleep:

 power_ctl |= 0x04

 if measure:

 power_ctl |= 0x08

 if auto_sleep:

 power_ctl |= 0x10

 if link:

 power_ctl |= 0x20

 self.set_register(ADXL345_Base.REG_POWER_CTL, power_ctl)

 def _send_data_format(self, self_test=0, spi=0, int_invert=0, justify=0):

 data_format = self._range & 0x03

 if justify:

 data_format |= 0x04

 if self._full_resolution:

 data_format |= 0x08

 if int_invert:

 data_format |= 0x20

 if spi:

 data_format |= 0x40

 if self_test:

 data_format |= 0x80

 self.set_register(ADXL345_Base.REG_DATA_FORMAT, data_format)

 def _set_fifo_mode(self, mode=0, trigger=0, samples=0x1F):

 fifo_ctl = samples & 0x1F

 fifo_ctl = fifo_ctl | ((mode & 0x03) << 6)

 if trigger:

 fifo_ctl |= 0x20

 self.set_register(ADXL345_Base.REG_FIFO_CTL, fifo_ctl)

 def power_on(self):

 self._set_power_ctl(True)

 def power_off(self):

 self._set_power_ctl(False)

 def set_range(self, range, full_resolution=True):

Final Project Report | December 18, 2019 61

 """ Set the G range and the resolution. Valid range values are 2, 4, 8, 16. Full resolution set

either 10-bit or 13-bit resolution """

 if range == 2:

 range_code = 0x0

 elif range == 4:

 range_code = 0x1

 elif range == 8:

 range_code = 0x2

 elif range == 16:

 range_code = 0x3

 else:

 raise ValueError("invalid range [" + str(range) + "] expected one of [2, 4, 8, 16]")

 self._range = range_code

 self._full_resolution = full_resolution

 self._send_data_format()

 def get_axes(self):

 """ return values for the 3 axes of the ADXL, expressed in g (multiple of earth gravity) """

 bytes = self.get_registers(ADXL345_Base.REG_DATAX0, 6)

 x = self._convert(bytes[0], bytes[1])

 y = self._convert(bytes[2], bytes[3])

 z = self._convert(bytes[4], bytes[5])

 return {'x': x,

 'y': y,

 'z': z}

 def get_fifo_count(self):

 count = self.get_register(ADXL345_Base.REG_FIFO_STATUS)

 return count & 0x7F

 def get_fifo(self):

 """ return an array of the whole FIFO """

 fifo_count = self.get_fifo_count()

 fifo = []

 for num in range(0,fifo_count):

 fifo.append(self.get_axes())

 return fifo

 def enable_fifo(self, stream=True):

 if stream:

 self._set_fifo_mode(mode=0x02)

 else:

 self._set_fifo_mode(mode=0x01)

 def disable_fifo(self):

 self._set_fifo_mode(mode=0x00)

Final Project Report | December 18, 2019 62

 def set_offset(self, x, y, z):

 """ set hardware offset for the 3 axes of the ADXL, units are g """

 def convert_offet(value):

 value = value / ADXL345_Base.SCALE_FACTOR / 4

 bytes = int(value)& 0xFF

 return bytes

 self.set_register(ADXL345_Base.REG_OFSX, convert_offet(x))

 self.set_register(ADXL345_Base.REG_OFSY, convert_offet(y))

 self.set_register(ADXL345_Base.REG_OFSZ, convert_offet(z))

 def calibrate(self):

 """ Auto calibrate the device offset. Put the device so as one axe is parallel to the gravity field

(usually, put the device on a flat surface) """

 self.set_offset(0, 0, 0)

 samples = self.get_axes()

 x = samples['x']

 y = samples['y']

 z = samples['z']

 abs_x = math.fabs(x)

 abs_y = math.fabs(y)

 abs_z = math.fabs(z)

 # Find which axe is in the field of gravity and set its expected value to 1g absolute value

 if self._equal(abs_x, 1) and self._equal(abs_y, 0) and self._equal(abs_z, 0):

 cal_x = 1 if x > 0 else -1

 cal_y = 0

 cal_z = 0

 elif self._equal(abs_x, 0) and self._equal(abs_y, 1) and self._equal(abs_z, 0):

 cal_x = 0

 cal_y = 1 if y > 0 else -1

 cal_z = 0

 elif self._equal(abs_x, 0) and self._equal(abs_y, 0) and self._equal(abs_z, 1):

 cal_x = 0

 cal_y = 0

 cal_z = 1 if z > 0 else -1

 else:

 raise ValueError("Could not determine ADXL position. One axe should be set in field of

gravity")

 offset_x = cal_x - x

 offset_y = cal_y - y

 offset_z = cal_z - z

 self.set_offset(offset_x, offest_y, offset_z)

Final Project Report | December 18, 2019 63

 return {'x': offset_x,

 'y': offset_y,

 'z': offset_z}

Python Code for Particulate PMS1003 Sensor

import serial

import time

import datetime

import csv

import sqlite3

import random

def hexShow(argv):

 result = ''

 hLen = len(argv)

 for i in xrange(hLen):

 hvol = ord(argv[i])

 hhex = '%02x'%hvol

 result += hhex+' '

t = serial.Serial('/dev/ttyAMA0',9600, timeout=1.5)

time_now=datetime.datetime.now()

old_time=0

conn = sqlite3.connect("Ace_Clearwater_Welding_Booth_1.db")

c = conn.cursor()

#c.execute('''CREATE TABLE Sensor_Data (time text, pm25(ug/m^3) float, pm10(ug/m^3) float,

temperature float, humidity float);''')

c.execute('''CREATE TABLE IF NOT EXISTS Sensor_Data (time text, PM25 float, PM10 float,

temperature float, humidity float);''')

while True:

 t.flushInput()

 time.sleep(10)

 retstr = t.read(32)

 hexShow(retstr)

 if len(retstr)==32:

 if(retstr[0]==b"\x42" and retstr[1]==b'\x4d'):

 pm25=ord(retstr[12])+ord(retstr[13])

 pm10=ord(retstr[14])+ord(retstr[15])

 print "Concentration for pm2.5=%.1f ug/m^3 and pm10=%.1f

ug/m^3"%(pm25,pm10)

 time_now=datetime.datetime.now()

 data_list=[time_now.strftime('%H:%M:%S'), str(pm25),str(pm10)]

 with open("PMS1003" + time_now.strftime('-%d-%m-%y') + ".csv", 'a') as fp:

 if old_time==time_now.strftime('-%d-%m-%y'):

Final Project Report | December 18, 2019 64

 writer = csv.DictWriter(fp, fieldnames = ["Time", "pm2.5(ug/m^3)",

"pm10(ug/m^3)"], delimiter = ';')

 writer.writerow({'Time': time_now.strftime('%H:%M:%S'),

'pm2.5(ug/m^3)': pm25, 'pm10(ug/m^3)': pm25})

 #fp.flush()

 else:

 writer = csv.DictWriter(fp, fieldnames = ["Time", "pm2.5(ug/m^3)",

"pm10(ug/m^3)"], delimiter = ';')

 writer.writeheader()

 writer.writerow({'Time': time_now.strftime('%H:%M:%S'),

'pm2.5(ug/m^3)': pm25, 'pm10(ug/m^3)': pm25})

 old_time=time_now.strftime('-%d-%m-%y')

 #fp.flush()

 #writer.write

 #fp.write("{}\n".format(data_list))

 else:

 print "Problem "

 stop

 # write to Database

 temp_temp = round(random.uniform(65,95),1)

 temp_hum = round(random.uniform(0,100), 1)

 c.execute("INSERT INTO Sensor_Data VALUES (?, ?, ?, ?,

?);",(time_now.strftime('%H:%M:%S'), pm25, pm10, temp_temp, temp_hum))

 conn.commit()

PYTHON driver code for the HTU21D Temperature & Humidity Sensor

from smbus import SMBus

I2C_ADDR = 0x40

CMD_TRIG_TEMP_HM = 0xE3

CMD_TRIG_HUMID_HM = 0xE5

CMD_TRIG_TEMP_NHM = 0xF3

CMD_TRIG_HUMID_NHM = 0xF5

CMD_WRITE_USER_REG = 0xE6

CMD_READ_USER_REG = 0xE7

CMD_RESET = 0xFE

class HTU21D:

 def __init__(self, busno):

 self.bus = SMBus(busno)

 def read_temperature(self):

 self.reset()

 msb, lsb, crc = self.bus.read_i2c_block_data(I2C_ADDR, CMD_TRIG_TEMP_HM, 3)

Final Project Report | December 18, 2019 65

 return -46.85 + 175.72 * (msb * 256 + lsb) / 65536

 def read_humidity(self):

 self.reset()

 msb, lsb, crc = self.bus.read_i2c_block_data(I2C_ADDR, CMD_TRIG_HUMID_HM, 3)

 return -6 + 125 * (msb * 256 + lsb) / 65536.0

 def reset(self):

 self.bus.write_byte(I2C_ADDR, CMD_RESET)

if __name__ == '__main__':

 htu = HTU21D(1)

 print htu.read_temperature()

 print htu.read_humidity()

PYTHON driver code for the SDS011 Dust Sensor

from enum import IntEnum

import logging

import time

import struct

import serial

import math

class SDS011(object):

 """Class representing the SD011 dust sensor and its methods.

 The device_path on Win is one of your COM ports,

 on Linux it is one of "/dev/ttyUSB..." or "/dev/ttyAMA..."

 """

 '''

 The serial communication uses encoded bytes:

 each serial telegram starts with 0xAA and ends with 0xAB.

 The telegram sent to the sensor:

 the second byte is 0xB4, the 16th and 17th byte is 0xFF.

 In the response from SDS011 the second byte is 0xC5.

 If it is a response sent automaticaly by the sensor in "Initiative" Report Mode,

 the second byte is 0xC0.

 The third byte is always the command byte.

 In response to a request command or a sensor initiated response,

 the second byte is 0xC0.

 A telegram to the sensor in Report Mode:

 Setting to Initiative:

 Message aa:b4:02:01:00:00:00:00:00:00:00:00:00:00:00:ff:ff:01:ab

 Response aa:c5:02:01:00:00:cc:0b:da:ab

Final Project Report | December 18, 2019 66

 Setting to Passive:

 Message aa:b4:02:01:01:00:00:00:00:00:00:00:00:00:00:ff:ff:02:ab

 Response aa:c5:02:01:01:00:cc:0b:db:ab

 '''

 logging.getLogger(__name__).addHandler(logging.NullHandler())

 __SerialStart = 0xAA

 __SerialEnd = 0xAB

 __SendByte = 0xB4

 __ResponseByte = 0xC5

 __ReceiveByte = 0xC0

 __ResponseLength = 10

 __CommandLength = 19

 __CommandTerminator = 0xFF

 class Command(IntEnum):

 """Enumeration of SDS011 commands"""

 ReportMode = 2,

 Request = 4,

 DeviceId = 5,

 WorkState = 6,

 Firmware = 7,

 DutyCycle = 8

 class CommandMode(IntEnum):

 """Command to get the current configuration or set it"""

 Getting = 0,

 Setting = 1

 class ReportModes(IntEnum):

 '''Report modes of the sensor:

 In passive mode one has to send a request command,

 in order to get the measurement values as a response.'''

 Initiative = 0,

 Passiv = 1

 class WorkStates(IntEnum):

 '''the Work states:

 In sleeping mode it does not send any data, the fan is turned off.

 To get data one has to wake it up'''

 Sleeping = 0,

 Measuring = 1

 class UnitsOfMeasure(IntEnum):

 '''The unit of the measured values.

 Two modes are implemented:

 The default mode is MassConcentrationEuropean returning

Final Project Report | December 18, 2019 67

 values in microgram/cubic meter (mg/m³).

 The other mode is ParticleConcentrationImperial returning values in

 particles / 0.01 cubic foot (pcs/0.01cft).

 The concentration is calculated by assuming

 different mean sphere diameters of pm10 or pm2.5 particles.

 '''

 # µg / m³, the mode of the sensors firmware

 MassConcentrationEuropean = 0,

 # pcs/0.01 cft (particles / 0.01 cubic foot)

 ParticelConcentrationImperial = 1

 # Constructor

 def __init__(self, device_path, **args):

 '''

 The device_path on Win is one of your COM ports.

 On Linux one of "/dev/ttyUSB..." or "/dev/ttyAMA..."

 '''

 logging.info("Start of SDS011 constructor. The device_path: %s", device_path)

 self.__timeout = 2

 if 'timeout' in args.keys(): # serial line read timeout

 self.__timeout = int(args['timeout'])

 self.__unit_of_measure = self.UnitsOfMeasure.MassConcentrationEuropean

 if 'unit_of_measure' in args.keys(): # in mass or values in concentration

 if isinstance(args['unit_of_measure'], self.UnitsOfMeasure):

 self.__unit_of_measure = args['unit_of_measure']

 else:

 raise ValueError("unit_of_measure give is not of type SDS011.UnitOfMeasure.")

 self.__device_path = device_path

 self.device = None

 try:

 self.device = serial.Serial(device_path,

 baudrate=9600, stopbits=serial.STOPBITS_ONE,

 parity=serial.PARITY_NONE,

 bytesize=serial.EIGHTBITS,

 timeout=self.__timeout)

 if self.device.isOpen() is False:

 if not self.device.open():

 raise IOError(

 "Unable to open USB to SDS011 for device %s" % device_path)

 except:

 raise IOError("SDS011: unable to set serial device %s" %

 device_path)

 # ToDo: initiate whith the values, the sensor has to be queried for

 # that

 self.__firmware = None

 self.__reportmode = None

 self.__workstate = None

Final Project Report | December 18, 2019 68

 self.__dutycycle = None

 self.__device_id = None

 self.__read_timeout = 0

 self.__dutycycle_start = time.time()

 self.__read_timeout_drift_percent = 2

 # within response the __device_id will be set

 first_response = self.__response()

 if len(first_response) == 0:

 # Device might be sleeping. So wake it up

 logging.warning("SDS011: While constructing the instance "

 "the sensor is not responding. \n"

 "Maybe in sleeping, in passive mode, or in a "

 "duty cycle? Will wake it up.")

 self.__send(self.Command.WorkState,

 self.__construct_data(self.CommandMode.Setting,

 self.WorkStates.Measuring))

 self.__send(self.Command.DutyCycle, self.__construct_data(

 self.CommandMode.Setting, 0))

 # at this point, device is awake, shure. So store this state

 self.__workstate = self.WorkStates.Measuring

 self.__get_current_config()

 logging.info("SDS011 Sensor has firmware: %s", self.__firmware)

 logging.info("SDS011 Sensor reportmode: %s", self.__reportmode)

 logging.info("SDS011 Sensor workstate: %s", self.__workstate)

 logging.info("SDS011 Sensor dutycycle: %s, None if Zero",

 self.__dutycycle)

 logging.info("SDS011 Sensor device ID: %s", self.device_id)

 logging.log(16, "The SDS011 constructor is successfully executed.")

 # conversion parameters come from:

 # http://ir.uiowa.edu/cgi/viewcontent.cgi?article=5915&context=etd

 def mass2particles(self, pm, value):

 """Convert pm size from µg/m3 back to concentration pcs/0.01sqf"""

 if self.__unit_of_measure == self.UnitsOfMeasure.MassConcentrationEuropean:

 return value

 elif self.__unit_of_measure == self.UnitsOfMeasure.ParticelConcentrationImperial:

 pi = 3.14159

 density = 1.65 * pow(10, 12)

 if pm == 'pm10':

 radius = 2.60

 elif pm == 'pm2.5':

 radius = 0.44

 else:

 raise RuntimeError('SDS011 Wrong Mass2Particle parameter value for pm.\n \

 "%s" given, "pm10" or "pm2.5" expected.' % pm)

 radius *= pow(10, -6)

Final Project Report | December 18, 2019 69

 volume = (4.0 / 3.0) * pi * pow(radius, 3)

 mass = density * volume

 K = 3531.5

 concentration = value / (K * mass)

 return int(concentration + 0.5)

 # Destructor

 def __del__(self):

 # it's better to clean up

 if self.device is not None:

 self.device.close()

 # ReportMode

 @property

 def device_path(self):

 """The device path of the sensor"""

 return self.__device_path

 # ReportMode

 @property

 def reportmode(self):

 """The report mode, the sensor has at the moment"""

 return self.__reportmode

 @reportmode.setter

 def reportmode(self, value):

 '''Setter for report mode. Use self.ReportMode IntEnum'''

 if (isinstance(value, self.ReportModes) or

 value is None):

 self.__send(self.Command.ReportMode, self.__construct_data(

 self.CommandMode.Setting, value))

 self.__reportmode = value

 logging.info("SDS011 set reportmode: %s", value)

 else:

 raise TypeError("Report mode must be of type SDS011.ReportModes")

 # workstate

 @property

 def workstate(self):

 """The workstate of the sensor as a value of type self.WorkStates"""

 return self.__workstate

 @workstate.setter

 def workstate(self, value):

 if (isinstance(value, self.WorkStates) or

 value is None):

 self.__send(self.Command.WorkState, self.__construct_data(

 self.CommandMode.Setting, value))

Final Project Report | December 18, 2019 70

 self.__workstate = value

 logging.info("workstate setted: %s", value)

 else:

 raise TypeError("Report Mode must be of type SDS011.WorkStates")

 # dutycycle

 @property

 def dutycycle(self):

 """The duty cycle the sensor has as a value of type int"""

 return self.__dutycycle

 @dutycycle.setter

 def dutycycle(self, value):

 if (isinstance(value, int) or

 value is None):

 if value < 0 or value > 30:

 raise ValueError(

 "SDS011 duty cycle has to be between 0 and 30 inclusive!")

 self.__send(self.Command.DutyCycle, self.__construct_data(

 self.CommandMode.Setting, value))

 self.__dutycycle = value

 # Calculate new timeout value

 self.__read_timeout = self.__calculate_read_timeout(value)

 self.__dutycycle_start = time.time()

 logging.info("SDS011 set duty cycle timeout: %s", self.__read_timeout)

 logging.info("SDS011 set Duty cycle: %s", value)

 self.__get_current_config()

 else:

 raise TypeError("SDS011 duty cycle should be of type int")

 @property

 def device_id(self):

 """The device id as a string"""

 return "{0:02x}{1:02x}".format(self.__device_id[0], self.__device_id[1]).upper()

 @property

 def firmware(self):

 """The firmware of the device"""

 return self.__firmware

 @property

 def unit_of_measure(self):

 """The unit of measure the sensor returns the values"""

 return self.__unit_of_measure

 @property

 def timeout(self):

 return self.__timeout

Final Project Report | December 18, 2019 71

 def __construct_data(self, cmdmode, cmdvalue):

 '''Construct a data byte array from cmdmode and cmdvalue.

 cmdvalue has to be self.CommandMode type and cmdvalue int.

 Returns byte arry of length 2'''

 if not isinstance(cmdmode, self.CommandMode):

 raise TypeError(

 "SDS011 cmdmode must be of type {0}", type(self.CommandMode))

 if not isinstance(cmdvalue, int):

 raise TypeError("SDS011 cmdvalue must be of type {0}", type(int))

 retval = bytearray()

 retval.append(cmdmode)

 retval.append(cmdvalue)

 logging.log(16, "SDS011 data %s for commandmode %s constructed.",

 cmdvalue, cmdmode)

 return retval

 def __get_current_config(self):

 '''Get the sensor status at construction time of this instance:

 the current status of the sensor.'''

 # Getting the Dutycycle

 response = self.__send(self.Command.DutyCycle,

 self.__construct_data(self.CommandMode.Getting, 0))

 if response is not None and len(response) > 0:

 dutycycle = response[1]

 self.__dutycycle = dutycycle

 self.__read_timeout = self.__calculate_read_timeout(dutycycle)

 self.__dutycycle_start = time.time()

 else:

 raise RuntimeError("SDS011 duty cycle is not detectable")

 response = None

 # Getting reportmode

 response = self.__send(self.Command.ReportMode,

 self.__construct_data(self.CommandMode.Getting, 0))

 if response is not None and len(response) > 0:

 reportmode = self.ReportModes(response[1])

 self.__reportmode = reportmode

 else:

 raise RuntimeError("SDS011 report mode is not detectable")

 response = None

 # Getting firmware

 response = self.__send(self.Command.Firmware,

 self.__construct_data(self.CommandMode.Getting, 0))

 if response is not None and len(response) > 0:

 self.__firmware = "{0:02d}{1:02d}{2:02d}".format(

Final Project Report | December 18, 2019 72

 response[0], response[1], response[2])

 else:

 raise RuntimeError("SDS011 firmware is not detectable")

 response = None

 def __calculate_read_timeout(self, timeoutvalue):

 newtimeout = 60 * timeoutvalue + \

 self.__read_timeout_drift_percent / 100 * 60 * timeoutvalue

 logging.log(18, "SDS011 timeout calculated for %s: %s",

 timeoutvalue, newtimeout)

 return newtimeout

 def get_values(self):

 '''Get the sensor response and return measured value of PM10 and PM25'''

 logging.log(16, "SDS011 get get_values entered")

 if self.__workstate == self.WorkStates.Sleeping:

 raise RuntimeError("The SDS011 sensor is sleeping and will not " +

 "send any values. Will wake it up first.")

 if self.__reportmode == self.ReportModes.Passiv:

 raise RuntimeError("The SDS011 sensor is in passive report mode "

 "and will not automaticly send values. "

 "You need to call Request() to get values.")

 self.__dutycycle_start = time.time()

 while self.dutycycle == 0 or \

 time.time() < self.__dutycycle_start + self.__read_timeout:

 response_data = self.__response()

 if len(response_data) > 0:

 logging.info(

 "SDS011 received response from sensor %d bytes.", len(response_data))

 return self.__extract_values_from_response(response_data)

 raise IOError(

 "SDS011 No data within read timeout of %d has been received." % self.__read_timeout)

 def request(self):

 """Request measurement data as a tuple from sensor when its in ReporMode.Passiv"""

 response = self.__send(self.Command.Request, bytearray())

 retval = self.__extract_values_from_response(response)

 return retval

 def __extract_values_from_response(self, response_data):

 """Extracts the value of PM25 and PM10 from sensor response"""

 data = response_data[2:6]

 value_of_2point5micro = None

 value_of_10micro = None

 if len(data) == 4:

 value_of_2point5micro = self.mass2particles(

 'pm2.5', float(data[0] + data[1] * 256) / 10.0)

Final Project Report | December 18, 2019 73

 value_of_10micro = self.mass2particles(

 'pm10', float(data[2] + data[3] * 256) / 10.0)

 logging.log(14, "SDS011 get_values successful executed.")

 if self.dutycycle != 0:

 self.__dutycycle_start = time.time()

 return (value_of_10micro, value_of_2point5micro)

 elif self.dutycycle == 0:

 raise ValueError("SDS011 data is missing")

 def __send(self, command, data):

 '''The method for sending commands to the sensor and returning the response'''

 logging.log(16, "SDS011 send() entered with command %s and data %s.",

 command.name, data)

 # Proof the input

 if not isinstance(command, self.Command):

 raise TypeError("The command must be of type SDS011.Command")

 if not isinstance(data, bytearray):

 raise TypeError("SDS011 data must be of type byte array")

 logging.log(16, "SDS011 input parameters checked")

 # Initialise the commandarray

 bytes_to_send = bytearray()

 bytes_to_send.append(self.__SerialStart)

 bytes_to_send.append(self.__SendByte)

 bytes_to_send.append(command.value)

 # Add data and set zero to the remainder

 for i in range(0, 12):

 if i < len(data):

 bytes_to_send.append(data[i])

 else:

 bytes_to_send.append(0)

 # last two bytes before the checksum is the CommandTerminator

 bytes_to_send.append(self.__CommandTerminator)

 bytes_to_send.append(self.__CommandTerminator)

 # calculate the checksum

 checksum = self.__checksum_make(bytes_to_send)

 # append the checksum

 bytes_to_send.append(checksum % 256)

 # and append the terminator for serial sent

 bytes_to_send.append(self.__SerialEnd)

 logging.log(16, "SDS011 sending: %s", "".join("%02x:" % b for b in bytes_to_send))

 # send the command

 written_bytes = self.device.write(bytes_to_send)

 self.device.flush()

 if written_bytes != len(bytes_to_send):

 raise IOError("SDS011 Not all bytes written")

 #self.__debugprt(3,"Sended and flushed: %s" % bytes_to_send)

 if len(bytes_to_send) != 19:

Final Project Report | December 18, 2019 74

 logging.info("SDS011 sent: %d bytes, expected 19.", len(bytes_to_send))

 # check the receive value

 received = self.__response(command)

 if len(received) != 10:

 logging.info("SDS011 received: %d bytes, expected 10.", len(received))

 if len(received) == 0:

 raise IOError("SDS011 sensor is not responding.")

 # when no command or command is request command,

 # second byte has to be ReceiveByte

 if ((command is None or command == self.Command.Request) and

 received[1] != self.__ReceiveByte):

 raise ValueError(

 "SDS011 expected to receive value {0:#X} on a value request.\

 Received:\"{1}\"".format(self.__ReceiveByte, received[1]))

 # check, if response is response of the command, except Command.Request

 if command is not self.Command.Request:

 if received[2] != command.value:

 raise ValueError(

 "SDS011 respomse does not belong to the command sent afore.")

 else:

 returnvalue = received[3: -2]

 else:

 returnvalue = received

 # return just the received data. Further evaluation of data outsite

 # this function

 logging.log(18, "Leaving send() normal and returning %s", "".join("%02x:" % b for b in

received[3: -2]))

 return returnvalue

 def __response(self, command=None):

 '''Get and check the response from the sensor.

 Response can be the response of a command sent or

 just the measurement data, while sensor is in report mode Initiative'''

 # receive the response while listening serial input

 bytes_received = bytearray(1)

 one_byte = bytes(0)

 while True:

 one_byte = self.device.read(1)

 '''If no bytes are read the sensor might be in sleep mode.

 It makes no sense to raise an exception here. The raise condition

 should be checked in a context outside of this fuction.'''

 if len(one_byte) > 0:

 bytes_received[0] = ord(one_byte)

 # if this is true, serial data is coming in

 if bytes_received[0] == self.__SerialStart:

 single_byte = self.device.read(1)

 if (((command is not None and command != self.Command.Request)

 and ord(single_byte) == self.__ResponseByte) or

Final Project Report | December 18, 2019 75

 ((command is None or command is self.Command.Request)

 and ord(single_byte) == self.__ReceiveByte)):

 bytes_received.append(ord(single_byte))

 break

 else:

 if self.__dutycycle == 0:

 logging.error("SDS011 A sensor response has not arrived within timeout limit. "

 "If the sensor is in sleeping mode wake it up first!"

 " Returning an empty byte array as response!")

 else:

 logging.info("SDS011 no response. Expected while in dutycycle.")

 return bytearray()

 thebytes = struct.unpack('BBBBBBBB', self.device.read(8))

 bytes_received.extend(thebytes)

 if command is not None and command is not self.Command.Request:

 if bytes_received[1] is not self.__ResponseByte:

 raise IOError("SDS011 no ResponseByte found in the response.")

 if bytes_received[2] != command.value:

 raise IOError(

 "Third byte of serial data \"{0}\" received is not the expected response \

 to the previous command: \"{1}\"".format(bytes_received[2], command.name))

 if command is None or command is self.Command.Request:

 if bytes_received[1] is not self.__ReceiveByte:

 raise IOError("SDS011 Received byte not found on the Value Request.")

 # check checksum

 if self.__checksum_make(bytes_received[0:-2]) != bytes_received[-2]:

 raise IOError("SDS011 Checksum of received data is invalid.")

 # set device_id if device Id is None, proof it, if it's not None

 if self.__device_id is None:

 self.__device_id = bytes_received[-4:-2]

 elif self.__device_id is not None and not self.__device_id.__eq__(bytes_received[-4:-2]):

 raise ValueError("SDS011 Data received (%s) does not belong "

 "to this device with id %s.",

 bytes_received, bytes_received[-4:-2], self.__device_id)

 logging.log(18, "SDS011 The response() was successful")

 return bytes_received

 def reset(self):

 '''

 Sets Report mode to Initiative. Workstate to Measuring and Duty cyle to 0

 '''

 self.workstate = self.WorkStates.Measuring

 self.reportmode = self.ReportModes.Initiative

 self.dutycycle = 0

 logging.info("Sensor resetted")

 def __checksum_make(self, data):

Final Project Report | December 18, 2019 76

 '''

 Generates the checksum for data to be sent or received from the sensor.

 The data has to be of type byte array and must start with 0xAA,

 followed by 0xB4 or 0xC5 or 0xC0 as second byte.

 The sequence must end before the position of the checksum.

 '''

 logging.log(14, "SDS011 building the checksum for data %s.", data)

 # Build checksum for data to send or receive

 if len(data) not in (self.__CommandLength - 2, self.__ResponseLength - 2):

 raise ValueError("SDS011 Length data has to be {0} or {1}.".format(

 self.__CommandLength - 2, self.__ResponseLength))

 if data[0] != self.__SerialStart:

 raise ValueError("SDS011 data is missing the Startbit")

 if data[1] not in (self.__SendByte, self.__ResponseByte, self.__ReceiveByte):

 raise ValueError(

 "SDS011 data is missing SendBit-, ReceiveBit- or ReceiveValue-Byte")

 if data[1] != self.__ReceiveByte and data[2] not in list(map(int, self.Command)):

 raise ValueError(

 "SDS011 The data command byte value \"{0}\" is not valid.".format(data[2]))

 #checksum = command.value + bytes_to_send[15] + bytes_to_send[16]

 checksum = 0

 for i in range(2, len(data)):

 checksum = checksum + data[i]

 checksum = checksum % 256

 logging.log(14, "SDS011 Checksum calculated is {}.".format(checksum))

 return checksum

PYTHON driver code for the TMP006 Temperature Sensor

import time

import struct

from micropython import const

from adafruit_bus_device.i2c_device import I2CDevice

__version__ = "0.0.0-auto.0"

__repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_TMP006.git"

Default device I2C address.

_TMP006_I2CADDR = const(0x40)

Register addresses.

_TMP006_VOBJ = const(0x00)

_TMP006_TAMB = const(0x01)

_TMP006_CONFIG = const(0x02)

_TMP006_MANUID = const(0xFE)

_TMP006_DEVID = const(0xFF)

Config register values.

Final Project Report | December 18, 2019 77

_TMP006_CFG_RESET = const(0x8000)

_TMP006_CFG_MODEON = const(0x7000)

CFG_1SAMPLE = const(0x0000)

CFG_2SAMPLE = const(0x0200)

CFG_4SAMPLE = const(0x0400)

CFG_8SAMPLE = const(0x0600)

CFG_16SAMPLE = const(0x0800)

_TMP006_CFG_DRDYEN = const(0x0100)

_TMP006_CFG_DRDY = const(0x0080)

class TMP006:

 """Class to represent an Adafruit TMP006 non-contact temperature measurement

 board.

 """

 # Class-level buffer for reading and writing data with the sensor.

 # This reduces memory allocations but means the code is not re-entrant or

 # thread safe!

 _BUFFER = bytearray(4)

 def __init__(self, i2c, address=_TMP006_I2CADDR, samplerate=CFG_16SAMPLE):

 self._device = I2CDevice(i2c, address)

 self._write_u16(_TMP006_CONFIG, _TMP006_CFG_RESET)

 time.sleep(.5)

 if samplerate not in (CFG_1SAMPLE, CFG_2SAMPLE, CFG_4SAMPLE, CFG_8SAMPLE,

 CFG_16SAMPLE):

 raise ValueError('Unexpected samplerate value! Must be one of: ' \

 'CFG_1SAMPLE, CFG_2SAMPLE, CFG_4SAMPLE, CFG_8SAMPLE, or CFG_16SAMPLE')

 # Set configuration register to turn on chip, enable data ready output,

 # and start sampling at the specified rate.

 config = _TMP006_CFG_MODEON | _TMP006_CFG_DRDYEN | samplerate

 self._write_u16(_TMP006_CONFIG, config)

 # Check device ID match expected value.

 dev_id = self.read_register(_TMP006_DEVID)

 if dev_id != 0x67:

 raise RuntimeError('Init failed - Did not find TMP006')

 @property

 def active(self):

 """True if sensor is active."""

 return self._read_u16(_TMP006_CONFIG) & _TMP006_CFG_MODEON != 0

 @active.setter

 def active(self, val):

 control = self._read_u16(_TMP006_CONFIG)

 if val:

 control |= _TMP006_CFG_MODEON

 else:

Final Project Report | December 18, 2019 78

 control &= ~(_TMP006_CFG_MODEON)

 self._write_u16(_TMP006_CONFIG, control)

 @property

 def temperature(self):

 # pylint: disable=bad-whitespace, invalid-name, too-many-locals

 """Read object temperature from TMP006 sensor."""

 if not self.active:

 raise RuntimeError('Can not read from sensor when inactive.')

 while not self._data_ready():

 pass

 vobj = self._read_sensor_voltage()

 tamb = self._read_die_temperature() + 273.15 # to kelvin

 # see TMP006 User Guide, section 5.1

 S0 = 6.4e-14 # nominal value

 a1 = 1.75e-3

 a2 = -1.678e-5

 TREF = 298.15

 b0 = -2.94e-5

 b1 = -5.7e-7

 b2 = 4.63e-9

 c2 = 13.4

 S = S0 * (1 + a1*(tamb - TREF) + a2*(tamb - TREF)**2)

 VOS = b0 + b1*(tamb - TREF) + b2*(tamb - TREF)**2

 fVOBJ = (vobj - VOS) + c2*(vobj - VOS)**2

 TOBJ = (tamb**4 + (fVOBJ/S))**0.25

 return TOBJ - 273.15 # back to celsius

 def _data_ready(self):

 return (self.read_register(_TMP006_CONFIG) & _TMP006_CFG_DRDY) != 0

 def _read_sensor_voltage(self):

 vobj = self.read_register(_TMP006_VOBJ)

 vobj = struct.unpack(">h", vobj.to_bytes(2, 'big'))[0]

 return vobj * 156.25e-9 # volts

 def _read_die_temperature(self):

 tamb = self.read_register(_TMP006_TAMB)

 tamb = struct.unpack(">h", tamb.to_bytes(2, 'big'))[0]

 return (tamb >> 2) / 32. # celsius

 def read_register(self, register):

 """Read sensor Register."""

 return self._read_u16(register)

Final Project Report | December 18, 2019 79

 def _read_u16(self, address):

 with self._device as i2c:

 self._BUFFER[0] = address & 0xFF

 i2c.write(self._BUFFER, end=1, stop=False)

 i2c.readinto(self._BUFFER, end=2)

 return self._BUFFER[0]<<8 | self._BUFFER[1]

 def _write_u16(self, address, val):

 with self._device as i2c:

 self._BUFFER[0] = address & 0xFF

 self._BUFFER[1] = (val >> 8) & 0xFF

 self._BUFFER[2] = val & 0xFF

 i2c.write(self._BUFFER, end=3)

PYTHON driver code for the DS18B20 Temperature Sensor

from os import path, listdir, system

from glob import glob

class DS18B20(object):

 """This class represents a temperature sensor of type DS18B20"""

 DEGREES_C = 0x01

 DEGREES_F = 0x02

 KELVIN = 0x03

 BASE_DIRECTORY = "/sys/bus/w1/devices"

 SLAVE_PREFIX = "28-"

 SLAVE_FILE = "w1_slave"

 UNIT_FACTORS = {DEGREES_C: lambda x: x * 0.001, DEGREES_F: lambda x: x * 0.001 * 1.8 +

32.0, KELVIN: lambda x: x * 0.001 + 273.15}

 class DS18B20Error(Exception):

 """Exception Baseclass for DS18B20 sensor errors"""

 pass

 class NoSensorFoundError(DS18B20Error):

 """Exception when no sensor is found"""

 def __init__(self, sensor_id):

 self._sensor_id = sensor_id

 def __str__(self):

 if self._sensor_id:

 return "No DS18B20 temperature sensor with id '%s' found" % self._sensor_id

 return "No DS18B20 temperature sensor found"

 class SensorNotReadyError(DS18B20Error):

 """Exception when the sensor is not ready yet"""

 def __str__(self):

Final Project Report | December 18, 2019 80

 return "Sensor is not yet ready to read temperature"

 class UnsupportedUnitError(DS18B20Error):

 """Exception when unsupported unit is given"""

 def __str__(self):

 return "Only Degress C, F and Kelvin are currently supported"

 @classmethod

 def get_available_sensors(cls):

 """Returns all available sensors"""

 sensors = []

 for sensor in listdir(cls.BASE_DIRECTORY):

 if sensor.startswith(cls.SLAVE_PREFIX):

 sensors.append(sensor[3:])

 return sensors

 @classmethod

 def get_all_sensors(cls):

 """Returns an instance for every available DS18B20 sensor"""

 return [DS18B20(sensor_id) for sensor_id in cls.get_available_sensors()]

 def __init__(self, sensor_id=None, load_kernel_modules=True):

 """If no sensor id is given the first found sensor will be taken"""

 self._type = "DS18B20"

 self._id = sensor_id

 if load_kernel_modules:

 self._load_kernel_modules()

 self._sensor = self._get_sensor()

 def get_id(self):

 """Returns the id of the sensor"""

 return self._id

 def get_type(self):

 """Returns the type of this temperature sensor"""

 return self._type

 def exists(self):

 """Returns True if the sensor exists and is available to read temperature"""

 path = self._get_sensor()

 return path is not None

 def _get_sensor(self):

 """Returns the sensors slave path"""

 sensors = self.get_available_sensors()

 if self._id and self._id not in sensors:

 raise DS18B20.NoSensorFoundError(sensor_id)

Final Project Report | December 18, 2019 81

 if not self._id and sensors:

 self._id = sensors[0]

 return path.join(DS18B20.BASE_DIRECTORY, DS18B20.SLAVE_PREFIX + self._id,

DS18B20.SLAVE_FILE)

 def _get_sensor_value(self):

 """Returns the raw sensor value"""

 with open(self._sensor, "r") as f:

 data = f.readlines()

 if data[0].strip()[-3:] != "YES":

 raise DS18B20.SensorNotReadyError()

 return float(data[1].split("=")[1])

 def _get_unit_factor(self, unit):

 """Returns the unit factor depending on the unit constant"""

 try:

 return DS18B20.UNIT_FACTORS[unit]

 except KeyError:

 raise DS18B20.UnsupportedUnitError()

 def get_temperature(self, unit=DEGREES_C):

 """Returns the temperature in the specified unit"""

 factor = self._get_unit_factor(unit)

 sensor_value = self._get_sensor_value()

 return factor(sensor_value)

 def get_temperatures(self, units):

 """Returns the temperatures in the specified units"""

 sensor_value = self._get_sensor_value()

 temperatures = []

 for unit in units:

 factor = self._get_unit_factor(unit)

 temperatures.append(factor(sensor_value))

 return temperatures

 def _load_kernel_modules(self):

 """Load kernel modules needed by the temperature sensor"""

 system("modprobe w1-gpio")

 system("modprobe w1-therm")

d. Sample Reports from Test Site

Welding Application- Ace Clearwater

Final Project Report | December 18, 2019 82

Customer makes most use of the particulates data. These are very difficult welds on flight critical repair

components. The manager tracks these measurements and will go out to the shop to see what’s going

on when the levels go above target levels,

Figure 28--- ACE Particulate Reports

Figure 29--- ACE Temperature, Humidity, and Particulate Reports

Final Project Report | December 18, 2019 83

Figure 30--- Temperature, Current, and Accelerometer Milling Machine Report

Figure 31--- Sample Machine Availability Report

Figure 32--- Sample Machine Usage Report

Final Project Report | December 18, 2019 84

Verion Progression

Alpha Hardware (version 0)

Infrastructure Base Hardware CPU Sensors Connectivity

Plot.ly – provided data

visualization with

limited data storage

ability.

Raspberry PI2 Accelerometer

(ADXL345), Particulate

(PPD42MS)

Wired, requires

separate internet drop

per device

This configuration represented a functional prototype with basic reporting capability.

Infrastructure

The data storage and visualization capability were provided by Plotly (https://plot.ly/), a cloud service

provider that integrates with the python program language used by the development team.

Base Hardware CPU

The base computing hardware selected was a Raspberry Pi 2 Model B (https://www.raspberrypi.org/)

with the following specifications:

• A 900MHz quad-core ARM Cortex-A7 CPU

• 1GB RAM

• 100 Base Ethernet connectivity

• 4 USB ports

• 40 GPIO pins

• Full HDMI port

• Combined 3.5mm audio jack and composite video

• Camera interface (CSI)

• Display interface (DSI)

• Micro SD card slot

• VideoCore IV 3D graphics core

Sensors

The preliminary sensors and capabilities:

Accelerometer (ADXL345) is a small, thin, ultralow power, 3-axis accelerometer

with high resolution (13-bit) measurement at up to ±16 g. Digital output data is formatted as 16-bit twos

complement and is accessible through either a SPI (3- or 4-wire) or I2C digital interface. The ADXL345 is

well suited for mobile device applications. It measures the static acceleration of gravity in tilt-sensing

applications, as well as dynamic acceleration resulting from motion or shock. Its high resolution (3.9

mg/LSB) enables measurement of inclination changes less than 1.0°. Several special sensing functions

are provided. Activity and inactivity sensing detect the presence or lack of motion by comparing the

acceleration on any axis with user-set thresholds. Tap sensing detects single and double taps in any

Final Project Report | December 18, 2019 85

direction. Freefall sensing detects if the device is falling. These functions can be mapped individually to

either of two interrupt output pins. An integrated memory management system with a 32-level first in,

first out (FIFO) buffer can be used to store data to minimize host processor activity and lower overall

system power consumption. Low power modes enable intelligent motion-based power management

with threshold sensing and active acceleration measurement at extremely low power dissipation.

The ADXL345 is supplied in a small, thin, 3 mm × 5 mm × 1 mm,

14-lead, plastic package.

Accelerometer Features

 Ultralow power: as low as 23 μA in measurement mode and μA in standby mode at VS = 2.5 V

(typical)

 Power consumption scales automatically with bandwidth

 User-selectable resolution

 Fixed 10-bit resolution

 Full resolution, where resolution increases with g range,

 up to 13-bit resolution at ±16 g (maintaining 4 mg/LSB

 scale factor in all g ranges)

 Embedded memory management system with FIFO

 technology minimizes host processor load

 Single tap/double tap detection

 Activity/inactivity monitoring

 Free-fall detection

 Supply voltage range: 2.0 V to 3.6 V

 I/O voltage range: 1.7 V to VS

 SPI (3- and 4-wire) and I2C digital interfaces

 Flexible interrupt modes mappable to either interrupt pin

 Measurement ranges selectable via serial command

 Bandwidth selectable via serial command

 Wide temperature range (−40°C to +85°C)

 10,000 g shock survival

 Pb free/RoHS compliant

 Small and thin: 3 mm × 5 mm × 1 mm LGA package

Particulate Sensor (PPD42NS) creates Digital (Lo Pulse) output to Particulate Matters(PM). Lo Pulse

Occupancy time (LPO time) is in proportion to PM concentration. The output from “P1” is for PM whose

size is around 1 micro meter or larger.

Particulate Sensor Features:

Detectable particle size approx. 1μm (minimum.)

Detectable range of concentration 0~28,000 pcs/liter (0~8,000pcs/0.01 CF=283ml)

Supply Voltage DC5V +/- 10% (CN1:Pin1=GND, Pin3=+5V) Ripple

Voltage within 30mV

Operating Temperature Range 0~45°C

Operating Humidity Range 95%rh or less (without dew condensation) Power

consumption 90mA

Final Project Report | December 18, 2019 86

Storage temperature -30~60°C

Time for stabilization 1 minute after power turned on

Dimensions 59(W) × 45(H) × 22(D) [mm] Weight 24g(approx.)

Output Method Negative Logic, Digital output,

Hi : over 4.0V(Rev.2) Lo : under 0.7V

(As Input impedance : 200kΩ) OP-Amp output, Pull-up

resistor : 10kΩ

These sensors were chosen for its affordability and recommended use for industrial instrumentation

applications.

Connectivity

Network connectivity is provided by wired ethernet.

Final Project Report | December 18, 2019 87

Business Requirements

Infrastructure Base Hardware CPU Sensors Connectivity

Plot.ly – provided data

visualization with

limited data storage

ability.

Raspberry PI2 Accelerometer

(ADXL345), Particulate

(PPD42MS)

Wired, requires

separate internet drop

per device

Limited Meets Requirements Meets Requirements Limited

The version 0 hardware was an initial proof-of-concept and each main component was not expected to

meet every business requirement. Plot.ly was able to display reported data but lacked the capability for

custom applications. Likewise, the wired connectivity was only supported for testing at this protype

stage. The Raspberry Pi and sensor were considered to meet requirements as the open source python

applications did not require extensive computing power.

Beta Hardware (Version 1)

Infrastructure Base Hardware CPU Sensors Connectivity

Amazon Web Services

(AWS) – limited to SQL

database used for

storage and elastic

cloud computer

services

Raspberry Pi3B

Raspberry PI0W

Accelerometer

(ADXL345), Particulate

(PMS1003),

Thermometer

(HTU21DS)

Wireless, connected to

a wired internet bridge

Infrastructure

This configuration represented the intermediate configuration and was a major upgrade from the

prototype with additional reporting capability provided by moving to AWS and adding wireless Wi-Fi

capability.

The data storage and visualization capability was upgraded to Amazon Web Services (AWS) a cloud

service provider that integrates with the python program language used by the development team.

AWS is a web service that provides secure, resizable compute capacity in the cloud. It is designed to

make web-scale cloud computing easier for developers. It provides complete control of computing

resources on Amazon’s proven computing environment. AWS reduces the time required to obtain and

boot new server instances to minutes, allowing quick capacity changed, both up and down, as

computing requirements change. AWS changes the economics of computing by allowing you to pay only

for capacity that you actually use and provided the team’s developers with the capability to build failure

resilient applications and isolate them from common failure scenarios.

Using AWS provided the product team with the flexibility to offer an affordable solution for smaller

SMMs while providing the scalability to server larger customers as well.

Final Project Report | December 18, 2019 88

Base Hardware CPU

The base computing hardware was upgraded with two new versions of Raspberry Pi 2 with the following

specifications:

Raspberry Pi 3 Model B-- the earliest model of the third-generation Raspberry Pi, It replaced the

Raspberry Pi 2 Model B in February 2016.

 Quad Core 1.2GHz Broadcom BCM2837 64bit CPU

 1GB RAM

 BCM43438 wireless LAN and Bluetooth Low Energy (BLE) on board

 100 Base Ethernet

 40-pin extended GPIO

 4 USB 2 ports

 4 Pole stereo output and composite video port

 Full size HDMI

 CSI camera port for connecting a Raspberry Pi camera

 DSI display port for connecting a Raspberry Pi touchscreen display

 Micro SD port for loading your operating system and storing data

 Upgraded switched Micro USB power source up to 2.5A

Raspberry Pi Zero W-- launched at the end of February 2017, the Pi Zero W has the functionality of the

original Pi Zero, but with added connectivity capabilities.

 1GHz, single-core CPU

 512MB RAM

 Mini HDMI and USB On-The-Go ports

 Micro USB power

 HAT-compatible 40-pin header

 Composite video and reset headers

 CSI camera connector

 802.11 b/g/n wireless LAN

 Bluetooth 4.1

 Bluetooth Low Energy (BLE)

Sensors

Version 1 sensors and capabilities:

Accelerometer (ADXL345) is a small, thin, ultralow power, 3-axis accelerometer with high resolution

(13-bit) measurement at up to ±16 g. Digital output data is formatted as 16-bit twos complement and is

accessible through either a SPI (3- or 4-wire) or I2C digital interface. The ADXL345 is well suited for

mobile device applications. It measures the static acceleration of gravity in tilt-sensing applications, as

well as dynamic acceleration resulting from motion or shock. Its high resolution (3.9 mg/LSB) enables

measurement of inclination changes less than 1.0°. Several special sensing functions are provided.

Activity and inactivity sensing detect the presence or lack of motion by comparing the acceleration on

Final Project Report | December 18, 2019 89

any axis with user-set thresholds. Tap sensing detects single and double taps in any direction. Freefall

sensing detects if the device is falling. These functions can be mapped individually to either of two

interrupt output pins. An integrated memory management system with a 32-level first in,

first out (FIFO) buffer can be used to store data to minimize host processor activity and lower overall

system power consumption. Low power modes enable intelligent motion-based power management

with threshold sensing and active acceleration measurement at extremely low power dissipation.

The ADXL345 is supplied in a small, thin, 3 mm × 5 mm × 1 mm, 14-lead, plastic package.

Accelerometer Features:

 Ultralow power: as low as 23 μA in measurement mode and μA in standby mode at VS = 2.5 V

 Power consumption scales automatically with bandwidth

 User-selectable resolution

 Fixed 10-bit resolution

 Full resolution, where resolution increases with g range, up to 13-bit resolution at ±16 g

(maintaining 4 mg/LSB scale factor in all g ranges)

 Embedded memory management system with FIFO technology minimizes host processor load

 Single tap/double tap detection

 Activity/inactivity monitoring

 Free-fall detection

 Supply voltage range: 2.0 V to 3.6 V

 I/O voltage range: 1.7 V to VS

 SPI (3- and 4-wire) and I2C digital interfaces

 Flexible interrupt modes mappable to either interrupt pin

 Measurement ranges selectable via serial command

 Bandwidth selectable via serial command

 Wide temperature range (−40°C to +85°C)

 10,000 g shock survival

 Pb free/RoHS compliant

 Small and thin: 3 mm × 5 mm × 1 mm LGA package

Particulate Sensor (PMS1003) is a digital and universal particle concentration sensor, which can be used

to obtain the number of suspended particles in the air and output the concentration of particles in the

form of digital interface. This sensor can be inserted into variable instruments related to the

concentration of suspended particles in the air or other environmental improvement equipment to

provide correct concentration data in time.

The PMS1003 works using the laser scattering principle -- scattering by using a laser to radiate

suspending particles in the air, then collect scattering light in a certain degree, and finally obtain the

curve of scattering light change with time. In the end, equivalent particle diameter and the number of

particles with different diameter per unit volume can be calculated by microprocessor based on MIE

theory.

Mainly output as the quality and number of each particles with different size per unit volume, the unit

volume of particle number is 0.1L and the unit of mass concentration is μ g/m³. There are two options

for digital output: passive and active. Default mode is active after power up. In this mode sensor would

Final Project Report | December 18, 2019 90

send serial data to the host automatically. The active mode is divided into two sub-modes: stable mode

and fast mode. If the concentration change is small the sensor would run at stable mode with the real

interval of 2.3s, if the change is big the sensor would be changed to fast mode automatically with the

interval of 200~800ms, the higher of the concentration, the shorter of the interval.

Thermometer Sensor (HTU21D) is a digital humidity sensor with temperature output that is embedded

in a reflow solderable Dual Flat No leads (DFN) package with a small 3 x 3 x 0.9 mm footprint. This sensor

provides calibrated, linearized signals in digital, I²C format.

HTU21D(F) digital humidity sensors are dedicated humidity and temperature plug and play (PnP)

transducers for OEM applications where reliable and accurate measurements are needed. Direct

interface with a micro-controller is made possible with the module for humidity and temperature digital

outputs. These low power sensors are designed for high volume and cost sensitive applications with

tight space constraints.

Every sensor is individually calibrated and tested. Lot identification is printed on the sensor and an

electronic identification code is stored on the chip – which can be read out by command. Low battery

can be detected and a checksum improves communication reliability. The resolution of these digital

humidity sensors can be changed by command (8/12bit up to 12/14bit for RH/T).

Optional PTFE filter/membrane (F) protects HTU21D digital humidity sensors against dust and water

immersion, as well as against contamination by particles. PTFE filter/membranes preserve a high

response time. The white PTFE filter/membrane is directly stuck on the sensor housing.

Thermometer Sensor Features:

 Full interchangeability with no calibration required in standard conditions

 Instantaneous desaturation after long periods in saturation phase

 Compatible with automatized assembly processes, including Pb free and reflow processes

 Individual marking for compliance to stringent traceability requirements

These sensors were chosen for its affordability and recommended use for industrial instrumentation

applications.

Connectivity

Network connectivity is provided by wireless capability (Wi-Fi) integrated into the base Raspberry Pi

hardware.

Final Project Report | December 18, 2019 91

Business Requirements

Infrastructure Base Hardware CPU Sensors Connectivity

Amazon Web Services

(AWS) – limited to SQL

database used for

storage and elastic

cloud computer

services

Raspberry PI2 Accelerometer

(ADXL345), Particulate

(PPD42MS)

Wireless, connected to

a wired internet bridge

Meets Requirements Meets Requirements Meets Requirements Limited

The Beta version 1 hardware was a functional prototype and each main component was expected to

meet every business requirement. Amazon Web Services (AWS) replaced Plot.ly and not only does it

support practically any application, it also allows virtual environments to be spun up to support

installations of any size. It also has virtually 100% uptime due to its distributed architecture. This version

supported Wi-Fi but deployment at ACE Clearwater showed that even using guest hardware could be an

implementation obstacle. The Raspberry PI and sensor were considered to meet requirements as the

open source python applications did not require extensive computing power.

