
AIR FORCE RESEARCH LABORATORY
AEROSPACE SYSTEMS DIRECTORATE

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542
AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

AFRL-RQ-WP-TR-2019-0182

FOUNDATIONS OF SCALABLE NONCONVEX
OPTIMIZATION

Ali Jadbabaie, Suvrit Sra, Stefanie Jegelka, and Alexander Rakhlin
Massachusetts Institute of Technology

OCTOBER 2019
Final Report

DISTRIBUTION STATEMENT A. Approved for public release.

Distribution is unlimited.

STINFO COPY

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or
permission to manufacture, use, or sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs
security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09. This report is available to the
general public, including foreign nationals.

Copies may be obtained from the Defense Technical Information Center (DTIC)
(https://discover.dtic.mil/).

AFRL-RQ-WP-TR-2019-01 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

DEAN E. BRYSON CHARLES TYLER
Work Unit Manager Chief, Design and Analysis Branch
Design and Analysis Branch Aerospace Vehicles Division

PHILIP S. BERAN, PhD
Technical Advisor, Design and Analysis Branch
Aerospace Vehicles Division

This report is published in the interest of scientific and technical information exchange and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

*Disseminated copies will show “//Signature//” stamped or typed above the signature blocks.

//Signature on File//*//Signature on File//

//Signature on File//

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)
October 2019 Final 18 April 2018 – 11 October 2019

4. TITLE AND SUBTITLE
FOUNDATIONS OF SCALABLE NONCONVEX OPTIMIZATION

5a. CONTRACT NUMBER
FA8650-18-2-7838

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
61101E

6. AUTHOR(S)
Ali Jadbabaie, Suvrit Sra, Stefanie Jegelka, and Alexander Rakhlin

5d. PROJECT NUMBER
N/A

5e. TASK NUMBER
5f. WORK UNIT NUMBER

Q1YR
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBERMassachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Air Force Research Laboratory
Aerospace Systems Directorate
Wright-Patterson Air Force Base, OH 45433-7542
Air Force Materiel Command
United States Air Force

Defense Advanced Research Projects
 Agency/Tactical Technology
 Office (DARPA/TTO)
3701 N. Fairfax Drive

Arlington, VA 22203

AGENCY ACRONYM(S)
AFRL/RQVC

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER(S)

AFRL-RQ-WP-TR-2019-0182

12. DISTRIBUTION/AVAILABILITY STATEMENT
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

13. SUPPLEMENTARY NOTES
This report is the result of contracted fundamental research, which is deemed exempt from Public Affairs Office security and policy
review in accordance with Deputy Assistant Secretary of the Air Force (Science, Technology, Engineering) (SAF/AQR)
memorandum dated 10 Dec 08 and Air Force Research Laboratory Executive Director (AFRL/CA) policy clarification memorandum
dated 16 Jan 09.
This report contains .pdf attachments related to the research effort. Click the paperclip icon in the left vertical toolbar, and double
click the referenced attachment. The file names correspond to the primary reference in each numbered section within the report.

14. ABSTRACT
This research program focused on creating a new paradigm for scalable nonconvex optimization. Four principal investigators with
backgrounds in optimization, machine learning, and statistics were involved. The project led to development of new theories for
understanding the acceleration phenomena in convex and nonconvex optimization in Euclidean and non-Euclidean spaces, with
applications of training deep neural networks. The project also led to new theories about limitations and expressivity of neural
networks, and to the first complete results for characterization of the optimization landscape of deep linear neural networks, leading
to new results that supported the concept that local minima are global. Adding minimal nonlinearities changed the picture, with local
optima whose performance are worse than linear classifiers. A first set of complete results on Bayesian optimization was developed,
corresponding to settings in which even function evaluations are expensive, as well as gradients and higher order derivatives.
Furthermore, the powers of graph neural networks, which have become a popular new framework for modeling large scale data with
graph structures, was rigorously characterized. Finally, over fitting and generalization was analyzed, showing that the standard view
in machine learning/statistics that interpolation leads to overfitting is not quite accurate in high dimensions, providing an explanation
for unreasonable effectiveness of over-parameterized neural networks.

15. SUBJECT TERMS
nonconvex optimization, machine learning, scalable algorithms, foundational mathematics

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER OF
PAGES
23

19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

 Dean E. Bryson
19b. TELEPHONE NUMBER (Include Area Code)

(312) 713-7137
Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

i
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

TABLE OF CONTENTS
1. Executive Summary .. 1
2. Technical Progress .. 5
3. Comprehensive Project Report ... 6

3.1 Understanding acceleration in large scale, first-order optimization 6
3.2 Geometry of Acceleration in Non-Euclidean environments ... 7
3.3 Understanding Optimization landscape of Empirical Risk Minimization in deep

neural networks .. 7
3.4 New Approaches to Scalable Bayesian Optimization .. 8
3.5 Efficient escape of saddle points and reaching stationary points in non-convex

optimization ... 9
3.6 Understanding trade-offs between Over-fitting, interpolation, and generalization

in optimization for statistical learning. .. 10
3.7 Finite sample expressive power of small-width ReLU networks 10
3.8 Efficient nonconvex empirical risk minimization via adaptive sample size

methods .. 11
3.9 Achieving acceleration in distributed optimization via direct discretization of the

Heavy-Ball ODE .. 11
3.10 On increasing self-confidence in non-Bayesian social learning over time-

varying directed graphs .. 12
3.11 Interpolation as a learning mechanism. ... 12
3.12 Stable Optimization with Gaussian Processes ... 13
3.13 Small nonlinearities in activation functions create bad local minima in neural

networks ... 14
3.14 Efficiently testing local optimality and escaping saddles for ReLU networks 14
3.15 R-SPIDER: A Fast Riemannian Stochastic Optimization Algorithm with

Curvature Independent Rate .. 14
3.16 Consistency of Interpolation with Laplace Kernels is a High-Dimensional

Phenomenon ... 15
3.17 What Can Neural Networks Reason About? ... 15
3.18 How Powerful are Graph Neural Networks? ... 15
3.19 Small ReLU networks are powerful memorizers: a tight analysis of

memorization capacity. .. 16
3.20 Are deep ResNets provably better than linear predictors?....................................... 16
3.21 Competitive Contagion with Spare Seeding. ... 17
3.22 A Separation Principle for Joint Sensor and Actuator Scheduling with

Guaranteed Performance Bound. ... 17
3.23 Non-Bayesian Social Learning with Uncertain Models over Time-Varying

Directed Graphs. .. 18
3.24 Non-Bayesian Social Learning with Gaussian Uncertain Models 18
3.25 Non-Bayesian Social Learning with Uncertain Models .. 18

1
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

1. Executive Summary

A bold new research program focused on creating a new paradigm for scalable nonconvex
optimization was proposed. From the invention of linear programming by George Dantzig in
1947, optimization has had a profound effect on all walks of life, but most importantly on
military operations. Over the past 50 years there have been remarkable theoretical, numerical,
and computational advances in all forms of optimization, yet most of the theoretical and
complexity-theoretic advances have been in the field of convex optimization. Standard
approaches for handling nonconvexity have been to use variants of gradient descent, or
stochastic gradient algorithms (or various versions of Newton and quasi-Newton) methods to
find stationary points (and not necessary minima) of nonconvex problems. In fact, verifying
whether a point is a minimum itself is a computationally hard problem. As a result, nonconvex
optimization has become mostly an art of choosing good initial guesses and/or heuristics based
on annealing methods. Motivated by two application domains, we proposed a shift in paradigm
beyond convexity, and to explore recent advances in various fields of pure and applied
mathematics to exploit the geometric structure of a large class of discrete and continuous
problems and go beyond heuristic approaches. Our research effort was motivated by application
domains which form a cross-cutting thrust of the proposed effort on large scale statistical and
machine learning. We proposed new approaches for continuous nonconvex optimization. First,
we explored global optimality for nonconvex optimization problems, and developed an
understanding of accelerated optimization algorithms. We also proposed how to exploit the
geometric structure, by developing accelerated approaches for optimization over manifolds.
Next, we investigated a variety of techniques for nonconvex optimization, and address how one
can quantify fast escape from saddle points and propose to develop a rigorous complexity theory
and convergence rates for nonconvex minimization. In the third task, we explored using
derivative-free techniques in conjunction with the geometry of the problem to tackle
nonconvexity and develop a deep understanding of the interplay of statistical learning and
optimization.

We advanced the theoretical understanding of rectified linear unit (ReLU) networks from two
different approaches. Initially, we provided new results about the finite sample expressive power
of small-width ReLU networks. We improved state of the art literature by providing new bounds
on the ability of ReLU networks to learn arbitrary data sets, with respect to the number and width
of their hidden layers. Moreover, we provided a novel algorithm for testing local optimality of
escaping saddle points for ReLU networks. In nonconvex functions, saddle points are a major
limitation in traditional training methods, given that the satisfaction of first order conditions is
not enough for the verification of local optimal. In turn saddle points might hinder the
performance of such approaches. The correct identification of such saddle points and being able
to move away from them are major contributions to the performance improvement of general
deep learning methods.

One particularly relevant problem in non-convex optimization resulting from training deep
learning models is the empirical risk minimization (ERM). We provided novel results for the
minimization of such problem where the loss function is possibly non-convex. Our new adaptive
sample size method can iteratively find a solution to ERM based on an iterative construction of
solutions with a relatively small number of samples and avoid saddle points.

2
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

Also related to large-scale learning problems, we have studied novel interpretations and
mechanism design for efficient learning using interpolation of data. We have shown that
interpolation strategies can be used and still perform well in terms of out of sample prediction.
With the hiring of the new postdoctoral scholar we introduced the distributed approach for the
solution of optimization problems over networks. A first result related to distributed optimization
over networks is the design of a new class of distributed algorithms based on discretization
approaches of a differential equation. This new algorithm builds upon our results from Runge-
Kutta integrators for accelerated centralized algorithms and extends these results for new
algorithms that can be executed over networks. A second result is with respect of large-scale
social learning algorithms, that models the learning process in social networks and provides new
approaches for the design of distributed estimation and optimization algorithms. We provided the
first necessary and sufficient condition that guarantees that a distributed optimization algorithm
will achieve a network-wide solution to an optimization problem even if the links have decaying
weights and the graph topology is directed and changes with time.

We have provided new insights into the impacts of nonlinearities in neural networks.
Particularly, we have shown that the results on spurious local minima in linear neural networks
are not useful for the study of the nonlinear ones. We demonstrated that even the slightest non-
linearity introduces a plethora of spurious local minima, making the result about linear neural
networks not robust.

Additionally, we developed a novel algorithm for testing optimality and escaping saddle points
in neural networks with ReLU activation functions, which has been shown to be hard due to the
presence of non-differentiable points. We exploit the geometry of the problem to provide a
method that reduces the total computation to the solution of quadratic problem at each hidden
node. In a best scenario this translates to a single equality constraint quadratic program, while in
the worst case we show that the complexity is exponential only in the number of inequality
constraints.

On the topic of escaping saddle points, we also contributed a new result for non-convex
problems with constraints. We provide a framework that generates a sequence of iterates that
reach an approximate second order stationary point and provide a corresponding upper bound for
its iteration complexity. We characterize the overall complexity of reaching such approximate
second order stationary point. Also, we provide a homologous result for the stochastic case.

Moreover, we have provided a fast optimization method for smooth stochastic problems over
Riemanian manifolds. We extended the existing SPIDER algorithm and achieve a better
convergence rate than other known methods. We also show a curvature-independent
convergence rate for both convex and non-convex cases.

We also contributed in the study of adversarially robust optimization by developing a new
algorithm for Gaussian process optimization, called StableOpt, that is robust to adversarial
perturbations. We provide the sample complexity of the algorithm to reach an arbitrary optimal
point and provide the corresponding lower bound.

3
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

Another front we explored is the efficient solution of non-convex ERM problems. We have
provided an adaptive sample size method that iteratively finds approximate local minima to the
ERM problem with a few samples, and iteratively increases the sample size in a fast converging
region of the problem. This new method is computationally efficient, and we showed the
required sample sizes to guarantee a desired accuracy for an approximation of a local minima,
without getting attracted to a saddle point.

Finally, we have provided new theoretical insights into the relation between interpolation and
generalization in learning. Initially, we have shown that interpolation, in the reproducing kernel
Hilbert space, generalizes well for high dimensional datasets, but not for low-dimensional ones.
This is a new result that presents a purely high dimensional phenomena in learning theory. This
is particularly relevant for model machine learning applications, such as deep learning where
usually the number of parameters is high, and yet some empirical evidence suggests
memorization of the date yields to generalization. Moreover, we showed that for ridgeless
regression can generalize, even if simple interpolation is used. We show that this is an implicit
regularization phenomenon, due to the high dimension of the input data, the curvature of the
kernel function and the geometric properties of the data. We provided an upper bound for out-
of-sample error as well as empirical evidence of this phenomenon.

One of our main achievements are contributions toward the understanding of the generalization
capabilities, memorization and performance of neural networks. Initially, we focused on a more
complete characterization of the reasoning capabilities of neural networks. Particularly, we
investigated on the empirical evidence that certain architectures in neural networks achieve better
performance in reasoning tasks when such architecture resemble certain algorithmic structures.
We build upon the recent evidence that graph neural networks (GNNs) achieve better
performance than less structure networks. Our results suggest that GNNs can have potential
applications to learn traditionally reasoning based algorithms like dynamic programming. Also,
we shed some light into the possible design of architectures for complex reasoning. Along the
same lines, we propose a theoretical formalization for the analysis of the expressive power of
GNNs to capture graph structures. We show that certain networks such as graph convolutional
networks cannot learn to distinguish between some carefully designed simple graphs. Moreover,
we construct an architecture that is provable the most expressive in the class of GNNs. Both
results are backed up by benchmark numerical analysis.

We also focused on the memorization power of ReLU networks. Particularly, we focus on
showing tight bounds, i.e., a sufficient and necessary condition indicating the number of hidden
nodes necessary to perfectly memorize a dataset with a relatively small ReLU network (3-layer).
We also showed a generalization result for arbitrary L-layer networks. These bounds are
supported by an analysis of stochastic gradient descent showing that under certain initialization
conditions a memorization of the global minima is achieved, that is, a small empirical risk point
is achieved. We also broadened our current understanding of the performance of residual
networks (RNs) in comparison with linear predictors. The state-of-the-art understanding
indicates that single residual block RNs outperforms any linear predictor. We extended this
analysis to multiple residual blocks. We showed that deep RNs have critical points that are either
as good as a linear predictor or have strictly negative Hessian. This, in turn indicates that the
optimization landscape can improve with multiple skip-connections.

4
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

On a second research thrust, we studied a novel strategic model for information diffusion in
social networks. Given that a company can seed strategic individuals in the market, such
company can improve its market share. We built on a duopoly game representation between the
firms. We studied the effect of the network structure on the optimal seeding strategies. We
derived conditions under which Nash equilibrium leads to sparse seeding in large populations.
Moreover, we explored the problem of sparse sensor and actuation in linear dynamical systems.
We provided a novel understanding of the problem showing a separation principle where sensing
actuating schedules can be found separately. However, these problems cannot be solved or
approximated in polynomial time for time-invariant schedules. We proposed a time-varying
solution that can be computed in polynomial time.

Finally, we developed a new model for distributed inference over networks, when the statistics
about the hypotheses are not know precisely but need to be estimated from finite amounts of
data. We showed that traditional non-Bayesian approaches can converge almost surely to the
wrong hypothesis and thus, provide a novel model for which such uncertain decisions can be
made, at the same time we provide a more general understanding of the effects of finite amounts
of data in the constructions of the statistics of the hypotheses. We showed that such method can
be implemented over arbitrary time-varying directed networks. We also extended this analysis to
Gaussian observations.

5
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

2. Technical Progress

Here we provide a brief description of the technical accomplishments of the project. A detailed
description of each bullet point is made below.

• Understanding acceleration in large scale, first-order optimization
• Geometry of Acceleration in Non-Euclidean environments
• Understanding Optimization landscape of Empirical Risk Minimization in deep neural

networks
• New Approaches to Scalable Bayesian Optimization
• Efficient escape of saddle points and reaching stationary points in non-convex optimization
• Understanding trade-offs between Over-fitting, interpolation, and generalization in

optimization for statistical learning.
• Finite sample expressive power of small-width ReLU networks
• Efficient nonconvex empirical risk minimization via adaptive sample size methods
• Achieving acceleration in distributed optimization via direct discretization of the Heavy-Ball

ODE
• On increasing self-confidence in non-Bayesian social learning over time-varying directed

graphs
• Interpolation as a learning mechanism.
• Stable Optimization with Gaussian Processes
• Small nonlinearities in activation functions create bad local minima in neural networks
• Efficiently testing local optimality and escaping saddles for ReLU networks
• R-SPIDER: A Fast Riemannian Stochastic Optimization Algorithm with Curvature

Independent Rate
• Adversarially Robust Optimization with Gaussian Processes
• Consistency of Interpolation with Laplace Kernels is a High-Dimensional Phenomenon
• What Can Neural Networks Reason About?
• How Powerful are Graph Neural Networks?
• Small ReLU networks are powerful memorizers: a tight analysis of memorization capacity.
• Are deep Residual Networks provably better than linear predictors?
• Competitive Contagion with Sparse Seeding.
• A Separation Principle for Joint Sensor and Actuator Scheduling with Guaranteed

Performance Bound.
• Non-Bayesian Social Learning with Uncertain Models over Time-Varying Directed Graphs.
• Non-Bayesian Social Learning with Gaussian Uncertain Models
• Non-Bayesian Social Learning with Uncertain Models

6
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

3. Comprehensive Project Report

A summary for our advances and new developments in each area is provided in the next sections.

3.1 Understanding acceleration in large scale, first-order optimization

Zhang, J., Mokhtari, A., Sra, S., & Jadbabaie, A. (2018). Direct Runge-Kutta discretization
achieves acceleration. In Advances in Neural Information Processing Systems (pp. 3900-3909).

Our research focused on understanding the acceleration of gradient-based optimization methods
which lead to provably-correct design of fast optimization algorithms. Particularly, we are able
to achieve acceleration by directly discretizing a second order ordinary differential equation
(ODE) related to the continuous limit of Nesterov’s accelerated gradient method. While
development of accelerated gradient-based optimization algorithms goes back to the work of
Polyak (1967) and Nesterov (1983), many of the aspects of acceleration still remain a mystery.
It is well-understood that gradient descent can be viewed as discretization of a first order ODE
�̇�𝑥 = −∇𝑓𝑓(𝑥𝑥), and suffers from slow convergence rate. Momentum-based acceleration methods
instead rely on a second order ODE of the form �̈�𝑥 + 𝑏𝑏�̇�𝑥 + ∇𝑓𝑓(𝑥𝑥) = 0. Recently, Boyd, Su, and
Candes [2014] showed that when the stepsize in Nesterov’s acceleration scheme goes to zero,
one can recover the above ODE with a time-varying friction coefficient 𝑏𝑏 = 3/𝑡𝑡. However, up to
now it remained a mystery how one can recover an accelerated gradient algorithm from the
above second order ODE. In fact recent results by Wilson, Wibisono, and Jordan in a 2015 paper
in Proceedings of the National Academy of Sciences suggested that the only way to achieve a
stable accelerated gradient algorithm, one might have to use symplectic integrators that preserve
the mechanical properties of the continuous-time dynamical system while discretizing.

In our recent work we (Jadbabaie, and Sra), together with our student Jingzhao Zhang and our
postdoctoral scholar Aryan Mokhtari show that when the function is smooth enough,
acceleration can be achieved by a stable discretization of this ODE using standard Runge-Kutta
integrators. Specifically, we prove that under the standard assumptions of Lipschitz-gradient,
convexity and order-(s+2) differentiability, the sequence of iterates generated by discretizing the
proposed second-order ODE converges to the optimal solution at a rate of O(N^(−2s/s+1)),
where s is the order of the Runge-Kutta numerical integrator. Furthermore, we introduce a new
local flatness condition on the objective, under which rates even faster than O(N^(−2)) can be
achieved with low-order integrators and only gradient information. Notably, this flatness
condition is satisfied by several standard loss functions used in machine learning.

7
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

3.2 Geometry of Acceleration in Non-Euclidean environments

Zhang, H., & Sra, S. (2018, July). An estimate sequence for geodesically convex optimization. In
Conference On Learning Theory (pp. 1703-1723).

Sra, S., Vishnoi, N. K., & Yildiz, O. (2018). On Geodesically Convex Formulations for the
Brascamp-Lieb Constant. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2018). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik.

We propose a Riemannian version of Nesterov's accelerated gradient algorithm (RAGD) and
show that for geodesically smooth and strongly convex problems, within a neighborhood of the
minimizer whose radius depends on the condition number as well as the sectional curvature of
the manifold, RAGD converges to the minimizer with acceleration. Unlike past algorithms that
require the exact solution to a nonlinear equation which in turn may be intractable, our algorithm
is constructive and computationally tractable. Our proof exploits a new estimate sequence and a
novel bound on the nonlinear metric distortion, both ideas may be of independent interest.

We have further studied two non-convex formulations for computing the optimal constant in the
Brascamp-Lieb inequality, which is an inequality that can be thought of as extension of the
Poincaré inequality which only concerns Gaussian probability distributions. The Brascamp–Lieb
inequality is also related to the Cramér–Rao bound. While Brascamp–Lieb is an upper-bound,
the Cramér–Rao bound lower-bounds the variance. We have shown that the above inequality
corresponding to a given datum are geodesically log-concave on the manifold of positive definite
matrices endowed with the Riemannian metric corresponding to the Hessian of the
logdeterminant function. Recent work of authors like Garg and collaborators in the literature also
implies a geodesically log-concave formulation of the Brascamp-Lieb constant through a
reduction to the operator scaling problem. However, the dimension of the arising optimization
problem in their reduction depends exponentially on the number of bits needed to describe the
Brascamp-Lieb datum. The formulations presented here have dimensions that are polynomial in
the bit complexity of the input datum.

3.3 Understanding Optimization landscape of Empirical Risk Minimization in deep neural

networks

Yun, C., Sra, S., & Jadbabaie, A. (2018). Efficiently testing local optimality and escaping
saddles for ReLU networks. arXiv preprint arXiv:1809.10858. Accepted to International
Conference on Learning Representations (ICLR) 2019

In the past year, we have investigated the loss surface of deep linear and nonlinear neural
networks. We show that for deep linear networks with differentiable losses, critical points after
the multilinear parameterization inherit the structure of critical points of the underlying loss with
linear parameterization. As corollaries we obtain results that local minima are global which
subsume most previous results, while showing how to distinguish global minima from saddle
points. For nonlinear neural networks, we prove two theorems showing that even for networks
with one hidden layer, there can be spurious local minima. Indeed, for piecewise linear

8
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

nonnegative homogeneous activations (e.g., ReLU), we prove that for almost all practical
datasets there exist infinitely many local minima that are not global. We have constructed a
counterexample involving other activation functions (e.g., sigmoid, tanh, arctan, etc.), for which
there exists a local minimum strictly inferior to the global minimum. This paper has been
submitted for publication.

In our recent work we (Jadbabaie and Sra), together with our student Chulhee Yun, provide a
theoretical algorithm for checking local optimality and escaping saddles at nondifferentiable
points of empirical risks of two-layer ReLU networks. Our algorithm receives any parameter
value and returns: local minimum, second-order stationary point, or a strict descent direction.
The presence of M data points on the nondifferentiability of the ReLU divides the parameter
space into at most 2^M regions, which makes analysis difficult. By exploiting polyhedral
geometry, we reduce the total computation down to one convex quadratic program (QP) for each
hidden node, O(M) (in)equality tests, and one (or a few) nonconvex QP. For the last QP, we
show that our specific problem can be solved efficiently, in spite of nonconvexity. In the benign
case, we solve one equality constrained QP, and we prove that projected gradient descent solves
it exponentially fast. In the bad case, we have to solve a few more inequality constrained QPs,
but we prove that the time complexity is exponential only in the number of inequality
constraints. Our experiments show that either benign case or bad case with very few inequality
constraints occurs, implying that our algorithm is efficient in most cases.

3.4 New Approaches to Scalable Bayesian Optimization

Wang, Z., Gehring, C., Kohli, P., & Jegelka, S. (2017). Batched large-scale Bayesian
optimization in high-dimensional spaces. arXiv preprint arXiv:1706.01445.

Bayesian optimization (BO) has become an effective approach for black-box function
optimization problems when function evaluations are expensive, and the optimum can be
achieved within a relatively small number of queries. However, many cases, such as the ones
with high-dimensional inputs, may require a much larger number of observations for
optimization. Despite an abundance of observations thanks to parallel experiments, current BO
techniques have been limited to merely a few thousand observations. In this paper, we propose
ensemble Bayesian optimization (EBO) to address three current challenges in BO
simultaneously: large-scale observations, high dimensional input spaces, and selections of batch
queries that balance quality and diversity. The key idea of EBO is to operate on an ensemble of
additive Gaussian process (GP) models, each of which possesses a randomized strategy to divide
and conquer. We show unprecedented, previously impossible results of scaling up BO to tens of
thousands of observations within minutes of computation.

9
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

3.5 Efficient escape of saddle points and reaching stationary points in non-convex
optimization

Mokhtari, A., Ozdaglar, A., & Jadbabaie, A. (2018). Escaping saddle points in constrained
optimization. In Advances in Neural Information Processing Systems (pp. 3629-3639).

There has been a recent revival of interest in large-scale, scalable, non-convex optimization, due
to obvious applications in machine learning. In convex problems, finding a first-order stationary
point is often sufficient since it leads to finding an approximate local (and hence global)
minimum. However, in the nonconvex setting, even when the problem is unconstrained,
convergence to a first-order stationary point is not enough as the critical point to which
convergence is established might be a saddle point. It is therefore natural to look at higher order
derivatives and search for a second-order stationary point. Indeed, under the assumption that all
the saddle points are strict, in both unconstrained and constrained settings, convergence to a
second order stationary point implies convergence to a local minimum. While convergence to a
second order stationary point has been thoroughly investigated in the recent literature for the
unconstrained setting; the iteration complexity of the convex-constrained setting has not been
studied yet.

Our research focuses on escaping from saddle points in smooth nonconvex optimization
problems subject to a convex set and achieving a second-order stationary point which is a good
approximation of the global minimum in many nonconvex problems that appear in machine
learning, including matrix completion, dictionary learning, phase retrieval, and certain classes of
deep neural networks. In particular, we propose a generic framework that yields convergence to a
second-order stationary point, if the convex constraint set is simple for a quadratic objective
function. To be more precise, our results hold if one can find a constant factor approximate
solution of a quadratic program subject to the constraint in polynomial time. Under this
condition, we show that the sequence of iterates generated by the proposed framework reaches a
second-order stationary point in a polynomial number of iterations. We further characterize the
overall arithmetic operations to reach a second-order stationary point when the constraint set can
be written as a set of quadratic constraints. Finally, we extend our results to the stochastic setting
and characterize the number of stochastic gradient and Hessian evaluations to reach a second-
order stationary point.

In this paper, we study the problem of escaping from saddle points in smooth nonconvex
optimization problems subject to a convex set C. We propose a generic framework that yields
convergence to a second-order stationary point of the problem, if the convex set C is simple for a
quadratic objective function. Specifically, our results hold if one can find a ρ-approximate
solution of a quadratic program subject to C in polynomial time, where ρ < 1 is a positive
constant that depends on the structure of the set C. Under this condition, we show that the
sequence of iterates generated by the proposed framework reaches an (ρ, γ)-second order
stationary point (SOSP) in at most O(max{ ρ-2 , ρ-3 γ-3 }) iterations. We further characterize the
overall complexity of reaching an SOSP when the convex set C can be written as a set of
quadratic constraints and the objective function Hessian has a specific structure over the convex
set C. Finally, we extend our results to the stochastic setting and characterize the number of
stochastic gradient and Hessian evaluations to reach an (ρ, γ)-SOSP.

10
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

3.6 Understanding trade-offs between Over-fitting, interpolation, and generalization in
optimization for statistical learning.

Belkin, M., Rakhlin, A., & Tsybakov, A. B. (2018). Does data interpolation contradict statistical
optimality?. arXiv preprint arXiv:1806.09471. (See attachment Reference 3.6.pdf.)

Liang, T., & Rakhlin, A. (2018). Just interpolate: Kernel “ridgeless” regression can generalize.
arXiv preprint arXiv:1808.00387. (See attachment Reference Liang 3.6 and 3.11.pdf.)

Our research over the 18 months on this topic was focused on the following fundamental
question: can a learning method be successful out-of-sample if it interpolates data? It is usually
taught in both Machine Learning and Statistics courses that data memorization is a bad idea from
generalization point of view. In joint work "Does data interpolation contradict statistical
optimality?" (with M. Belkin and A. Tsybakov, arXiv:1806.09471v1) we challenged this point of
view, showing that a classical nonparametric estimator (the Nadaraya-Watson estimator) with an
appropriately chosen kernel fits the data exactly while being optimal in terms of out-of-sample
performance. We continued this line of work in “Just Interpolate: Kernel ‘Ridgeless’ Regression
Can Generalize” (with T. Liang, arXiv:1501.06598), showing that kernel ridge regression (a
classical method in machine learning and statistics) can generalize even if the regularization it
turned off (in which case the method achieves exact fit to data). The analysis uncovers a new
implicit regularization mechanism that is due to high dimensionality of the data, curvature of the
kernel function, and favorable geometric properties of the data. These two papers challenge the
common belief that a statistical or learning procedure necessarily overfits if it interpolates the
data. The motivation for looking at this question lies, in part, in the recent success of deep
learning methods, which have the flexibility to fit data exactly. Our findings have implication for
both theory and practice of machine learning, and suggest further avenues of investigation that
includes the optimization side of the problem of interpolation.

3.7 Finite sample expressive power of small-width ReLU networks

Yun, C., Sra, S., & Jadbabaie, A. (2019). Small ReLU networks are powerful memorizers: a tight
analysis of memorization capacity. Accepted to NeurIPS 2019. (See attachment Reference 3.7
and 3.19 (Yun).pdf.)

In our recent work we (Jadbabaie and Sra), together with our student Chulhee Yun, study
universal finite sample expressivity of neural networks, defined as the capability to perfectly
memorize arbitrary datasets. For scalar outputs, existing results require a hidden layer as wide
as N to memorize N data points. In contrast, we prove that a 3-layer (2-hidden-layer) ReLU
network with 4√N hidden nodes can perfectly fit any arbitrary dataset. For K-class classification,
we prove that a 4-layer ReLU network with 4√N+4K hidden neurons can memorize arbitrary
datasets. For example, a 4-layer ReLU network with only 8,000 hidden nodes can memorize
datasets with N = 1,000,000 and K = 1,000 (e.g., ImageNet). Our results show that even small
networks already have tremendous overfitting capability, admitting zero empirical risk for any
dataset. We also extend our results to deeper and narrower networks, and prove converse results
showing necessity of Ω(N) parameters for shallow networks.

11
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

3.8 Efficient nonconvex empirical risk minimization via adaptive sample size methods

Mokhtari, A., Ozdaglar, A., & Jadbabaie, A. (2019, April). Efficient Nonconvex Empirical Risk
Minimization via Adaptive Sample Size Methods. In The 22nd International Conference on
Artificial Intelligence and Statistics (pp. 2485-2494).

We are interested in finding a local minimizer of an ERM problem where the loss associated
with each sample is possibly a nonconvex function. Unlike traditional deterministic and
stochastic algorithms that attempt to solve the ERM problem for the full training set, we propose
an adaptive sample size scheme to reduce the overall computational complexity of finding a local
minimum. To be more precise, we first find an approximate local minimum of the ERM problem
corresponding to a small number of samples and use the uniform convergence theory to show
that if the population risk is a Morse function, by properly increasing the size of training set the
iterates generated by the proposed procedure always stay close to a local minimum of the
corresponding ERM problem. Therefore, eventually the proposed procedure finds a local
minimum of the ERM corresponding to the full training set which happens to also be a local
minimum of the ERM problem with high probability. We formally state the conditions on the
size of the initial sample set and characterize the required accuracy for obtaining an approximate
local minimum to ensure that the iterates always stay in a neighborhood of a local minimum and
do not get attracted to saddle points.

In this paper, we are interested in finding a local minimizer of an ERM problem where the loss
associated with each sample is possibly a nonconvex function. Unlike traditional deterministic
and stochastic algorithms that attempt to solve the ERM problem for the full training set, we
propose an adaptive sample size scheme to reduce the overall computational complexity of
finding a local minimum. To be more precise, we first find an approximate local minimum of the
ERM problem corresponding to a small number of samples and use the uniform convergence
theory to show that if the population risk is a Morse function, by properly increasing the size of
training set the iterates generated by the proposed procedure always stay close to a local
minimum of the corresponding ERM problem. Therefore, eventually the proposed procedure
finds a local minimum of the ERM corresponding to the full training set which happens to also
be a local minimum of the ERM problem with high probability. We formally state the conditions
on the size of the initial sample set and characterize the required accuracy for obtaining an
approximate local minimum to ensure that the iterates always stay in a neighborhood of a local
minimum and do not get attracted to saddle points.

3.9 Achieving acceleration in distributed optimization via direct discretization of the Heavy-

Ball ODE

Zhang, J., Uribe, C. A., Mokhtari, A., & Jadbabaie, A. (2019, July). Achieving acceleration in
distributed optimization via direct discretization of the heavy-ball ODE. In 2019 American
Control Conference (ACC) (pp. 3408-3413). IEEE.

We follow up our previous result showing that gradient-based optimization methods achieve
acceleration by directly discretizing a second order ODE related to the continuous limit of
Nesterov's accelerated gradient method. In our recent work we (Jadbabaie), together with student

12
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

Jingzhao Zhang and postdoctoral scholars Aryan Mokhtari and Cesar A. Uribe extend the
dynamical system point of view to the design of accelerated algorithms for distributed large-
scale optimization problems over networks. Particularly, we develop a distributed algorithm for
solving problem of minimizing large but finite sum of convex functions over networks. The
proposed algorithm is derived from directly discretizing the second-order heavy-ball differential
equation and achieves acceleration: a convergence rate faster than distributed gradient descent-
based methods for strongly convex objectives that may not be smooth. Notably, we achieve
acceleration without resorting to well-known Nesterov's momentum approach. We provide
numerical experiments and contrast the proposed method with recently proposed optimal
distributed optimization algorithms.

3.10 On increasing self-confidence in non-Bayesian social learning over time-varying directed

graphs

Uribe, C. A., & Jadbabaie, A. (2019, July). On Increasing Self-Confidence in Non-Bayesian
Social Learning over Time-Varying Directed Graphs. In 2019 American Control Conference
(ACC) (pp. 3532-3537). IEEE.

One important aspect of large-scale optimization problems is the availability of large quantities
of data, which in turn can be distributed locally among several data centers. Given that the data is
not available at a central location, distributed approaches play an important role to handle this
limited information scenario. Several aspects of consensus-based algorithms have been studied in
the literature. However, most of the existing results assume the existence of some persistent
communication between agents or nodes where the data is located and processed.

In our recent work we (Jadbabaie), together with postdoctoral scholar Cesar A. Uribe, studied the
convergence of the log-linear non-Bayesian social learning update rule, for a group of agents that
collectively seek to identify a parameter that best describes a joint sequence of observations.
Contrary to recent literature, we focus on the case where agents assign decaying weights to its
neighbors, and the network is not connected at every time instant but over some finite time
intervals. We provide a necessary and sufficient condition for the rate at which agents decrease
the weights and still guarantees social learning.

3.11 Interpolation as a learning mechanism.

Liang, T., & Rakhlin, A. (2018). Just interpolate: Kernel "ridgeless" regression can generalize.
arXiv preprint arXiv:1808.00387. (See attachment Reference Liang 3.6 and 3.11.pdf.)

We (Rakhlin), and student Xiyu Zhai, have been investigating the question of interpolation as a
learning mechanism. The prior work by PI Rakhlin and T. Liang showed that one can interpolate
the data using infinite-dimensional kernel Hilbert space functions, yet still perform well in terms
of out of sample prediction. Our approach in that work relied on a high-dimensional
phenomenon for random kernel matrices. A natural follow-up question was whether high
dimensionality of the data is necessary to show good properties of interpolation. In the present
work with Xiyu Zhai, we proved that interpolation cannot succeed in low dimensions, under

13
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

certain general assumptions. Our work sheds further light on the nature of interpolation as a
learning mechanism.

In the absence of explicit regularization, kernel ridgeless regression with nonlinear kernels has
the potential to fit the training data perfectly. It has been observed empirically, however, that
such interpolated solutions can still generalize well on test data. We isolate a phenomenon of
implicit regularization for minimum-norm interpolated solutions which is due to a combination
of high dimensionality of the input data, curvature of the kernel function, and favorable
geometric properties of the data such as an eigenvalue decay of the empirical covariance and
kernel matrices. In addition to deriving a data-dependent upper bound on the out-of-sample error,
we present experimental evidence suggesting that the phenomenon occurs in the MNIST dataset.

3.12 Stable Optimization with Gaussian Processes

Bogunovic, I., Scarlett, J., Jegelka, S., & Cevher, V. (2018). Adversarially robust optimization
with Gaussian processes. In Advances in Neural Information Processing Systems (pp. 5760-
5770).

GPs provide powerful means for sequentially optimizing a black-box function f that is costly to
evaluate and for which noisy point evaluations are available. Since its introduction, this approach
has successfully been applied to numerous applications, including robotics, algorithm parameter
tuning, recommender systems, environmental monitoring, and many more. In many such
applications, one is faced with various forms of uncertainty that are not accounted for by
standard algorithms. In robotics, the optimization is often performed via simulations, creating a
mismatch between the assumed function and the true one; in parameter tuning, the function is
typically similarly mismatched due to limited training data; in recommendation systems and
several other applications, the underlying function is inherently time-varying, so the returned
solution may become increasingly stale over time; the list goes on.

We (Jegelka) address these considerations by studying the GP optimization problem with an
additional requirement of stability or robustness: the returned point is perturbed by an adversary,
and we seek to ensure that this perturbation degrades the function value as little as possible. This
problem is of interest not only for attaining improved robustness to uncertainty, but also for
settings where one seeks a region of good solutions rather than a single point, and for other
related max-min optimization settings. We show that standard GP optimization algorithms do not
exhibit the desired robustness properties and give a novel confidence-bound based algorithm
StableOpt for this purpose. We rigorously establish the required number of samples for
StableOpt to find a near-optimal point, and we complement this guarantee with an algorithm-
independent lower bound. We experimentally demonstrate a variety of potential applications of
interest on real-world data sets, and we show that StableOpt consistently succeeds in finding a
stable maximizer where several baseline methods fail.

14
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

3.13 Small nonlinearities in activation functions create bad local minima in neural networks

Yun, C., Sra, S., & Jadbabaie, A. (2018). Small nonlinearities in activation functions create bad
local minima in neural networks. arXiv preprint arXiv:1802.03487. Accepted to ICLR | 2019,
Seventh International Conference on Learning.

We investigate the loss surface of neural networks. We prove that even for one-hidden-layer
networks with slightest nonlinearity, the empirical risks have spurious local minima in most
cases. Our results thus indicate that in general having no spurious local minima is a property
limited to deep linear networks, and insights obtained from linear networks are not robust.
Specifically, for ReLU(-like) networks we constructively prove that for almost all (in contrast to
previous results) practical datasets there exist infinitely many local minima. We also present a
counterexample for more general activations (sigmoid, tanh, arctan, ReLU, etc.), for which there
exists a bad local minimum. Our results make the least restrictive assumptions relative to
existing results on local optimality in neural networks. We complete our discussion by presenting
a comprehensive characterization of global optimality for deep linear networks, which unifies
other results on this topic.

3.14 Efficiently testing local optimality and escaping saddles for ReLU networks

Yun, C., Sra, S., & Jadbabaie, A. (2018). Efficiently testing local optimality and escaping
saddles for ReLU networks. arXiv preprint arXiv:1809.10858. Accepted to ICLR | 2019, Seventh
International Conference on Learning.

We provide a theoretical algorithm for checking local optimality and escaping saddles at
nondifferentiable points of empirical risks of two-layer ReLU networks. Our algorithm receives
any parameter value and returns: local minimum, second-order stationary point, or a strict
descent direction. The presence of M data points on the nondifferentiability of the ReLU divides
the parameter space into at most 2^M regions, which makes analysis difficult. By exploiting
polyhedral geometry, we reduce the total computation down to one convex quadratic program
(QP) for each hidden node, O(M) (in)equality tests, and one (or a few) nonconvex QP. For the
last QP, we show that our specific problem can be solved efficiently, in spite of nonconvexity. In
the benign case, we solve one equality constrained QP, and we prove that projected gradient
descent solves it exponentially fast. In the bad case, we have to solve a few more inequality
constrained QPs, but we prove that the time complexity is exponential only in the number of
inequality constraints. Our experiments show that either benign case or bad case with very few
inequality constraints occurs, implying that our algorithm is efficient in most cases.

3.15 R-SPIDER: A Fast Riemannian Stochastic Optimization Algorithm with Curvature

Independent Rate

Zhang, J., Zhang, H., & Sra, S. (2018). R-spider: A fast Riemannian stochastic optimization
algorithm with curvature independent rate. arXiv preprint arXiv:1811.04194.

We study smooth stochastic optimization problems on Riemannian manifolds. Via adapting the
recently proposed SPIDER algorithm proposed by Fang and collaborators (cf.

15
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

arXiv:1807.01695v2) to Riemannian manifolds, we can achieve faster rate than known
algorithms in both the finite sum and stochastic settings. Unlike previous works, by not resorting
to bounding iterate distances, our analysis yields curvature independent convergence rates for
both the nonconvex and strongly convex cases.

3.16 Consistency of Interpolation with Laplace Kernels is a High-Dimensional Phenomenon

Rakhlin, A., & Zhai, X. (2018). Consistency of Interpolation with Laplace Kernels is a High-
Dimensional Phenomenon. arXiv preprint arXiv:1812.11167.

We show that minimum-norm interpolation in the reproducing kernel Hilbert space (RKHS)
corresponding to the Laplace kernel is not consistent if input dimension is constant. The lower
bound holds for any choice of kernel bandwidth, even if selected based on data. The result
supports the empirical observation that minimum-norm interpolation (that is, exact fit to training
data) in RKHS generalizes well for some high-dimensional datasets, but not for low-dimensional
ones.

3.17 What Can Neural Networks Reason About?

Xu, K., Li, J., Zhang, M., Du, S. S., Kawarabayashi, K. I., & Jegelka, S. (2019). What Can
Neural Networks Reason About?. arXiv preprint arXiv:1905.13211.

Neural networks have successfully been applied to solving reasoning tasks, ranging from
learning simple concepts like "close to", to intricate questions whose reasoning procedures
resemble algorithms. Empirically, not all network structures work equally well for reasoning. For
example, GNNs have achieved impressive empirical results, while less structured neural
networks may fail to learn to reason. Theoretically, there is currently limited understanding of
the interplay between reasoning tasks and network learning. In this paper, we develop a
framework to characterize which tasks a neural network can learn well, by studying how well its
structure aligns with the algorithmic structure of the relevant reasoning procedure. This suggests
that GNNs can learn dynamic programming, a powerful algorithmic strategy that solves a broad
class of reasoning problems, such as relational question answering, sorting, intuitive physics, and
shortest paths. Our perspective also implies strategies to design neural architectures for complex
reasoning. On several abstract reasoning tasks, we see empirically that our theory aligns well
with practice.

3.18 How Powerful are Graph Neural Networks?

Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2018). How powerful are graph neural networks?.
arXiv preprint arXiv:1810.00826.

GNNs are an effective framework for representation learning of graphs. GNNs follow a
neighborhood aggregation scheme, where the representation vector of a node is computed by
recursively aggregating and transforming representation vectors of its neighboring nodes. Many
GNN variants have been proposed and have achieved state-of-the-art results on both node and
graph classification tasks. However, despite GNNs revolutionizing graph representation learning,

16
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

there is limited understanding of their representational properties and limitations. Here, we
present a theoretical framework for analyzing the expressive power of GNNs to capture different
graph structures. Our results characterize the discriminative power of popular GNN variants,
such as graph convolutional networks and GraphSAGE, and show that they cannot learn to
distinguish certain simple graph structures. We then develop a simple architecture that is
provably the most expressive among the class of GNNs and is as powerful as the Weisfeiler-
Lehman graph isomorphism test. We empirically validate our theoretical findings on a number of
graph classification benchmarks, and demonstrate that our model achieves state-of-the-art
performance.

3.19 Small ReLU networks are powerful memorizers: a tight analysis of memorization

capacity.

Yun, C., Sra, S., & Jadbabaie, A. (2019). Small ReLU networks are powerful memorizers: a tight
analysis of memorization capacity. Accepted to Neural Information Processing Systems
(NeurIPS) 2019 (Spotlight). (See attachment Reference 3.7 and 3.19 (Yun).pdf.)

We study finite sample expressivity, i.e., memorization power of ReLU networks. We show that
3-layer ReLU networks with Ω(√𝑁𝑁) hidden nodes can perfectly memorize most datasets with N
points. We also prove that width Ω(√𝑁𝑁) is necessary and sufficient for memorizing N data
points, proving tight bounds on memorization capacity. For deeper networks, we show that an L-
layer network with W parameters in the hidden layers can memorize N data points if W = Ω(N).
Combined with a recent upper bound O(WlogW) on Vapnik Chervonenkis dimension, our
construction is almost tight for any fixed L, i.e., the result cannot be further improved upon.
Subsequently, we analyze memorization capacity of residual networks under a general position
assumption; we prove results that substantially reduce the known requirement of N hidden nodes.
Finally, we study dynamics of stochastic gradient descent (SGD), and show that when initialized
near a memorizing global minimum of the empirical risk, SGD quickly finds a nearby point with
small empirical risk

3.20 Are deep ResNets provably better than linear predictors?

Yun, C., Sra, S., & Jadbabaie, A. (2019). Are deep ResNets provably better than linear
predictors?. arXiv preprint arXiv:1907.03922. Accepted to Neural Information Processing
Systems (NeurIPS) 2

Recent results in the literature indicate that a residual network (ResNet) composed of a single
residual block outperforms linear predictors, in the sense that all local minima in its optimization
landscape are at least as good as the best linear predictor. However, these results are limited to a
single residual block, instead of the deep ResNets composed of multiple residual blocks. We take
a step towards extending this result to deep ResNets. We start by two motivating examples. First,
we show that there exist datasets for which all local minima of a fully-connected ReLU network
are no better than the best linear predictor, whereas a ResNet can have strictly better local
minima. Second, we show that even at its global minimum, the representation obtained from the
residual blocks of a 2-block ResNet do not necessarily improve monotonically over subsequent
blocks, which highlights a fundamental difficulty in analyzing deep ResNets. Our main theorem

17
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

on deep ResNets shows under simple geometric conditions that, any critical point in the
optimization landscape is either (i) at least as good as the best linear predictor; or (ii) the Hessian
at this critical point has a strictly negative eigenvalue. Notably, our results show that even
without using direct skip-connections from input layer to the last hidden layer, multiple skip-
connections can improve the optimization landscape. Finally, we complement our results by
showing benign properties of the near-identity regions of deep ResNets, showing size-
independent upper bounds for the risk attained at critical points as well as the Rademacher
complexity.

3.21 Competitive Contagion with Spare Seeding.

M. Siami, A. Ajorlou, and A. Jadbabaie, "Competitive Contagion with Spare Seeding,” IFAC
Workshop on Distributed Estimation and Control in Networked Systems (NecSys19).

This paper studies a strategic model of marketing and product diffusion in social networks. We
consider two firms offering substitutable products which can improve their market share by
seeding the key individuals in the market. Consumers update their consumption level for each of
the two products as the best response to the consumption of their neighbors in the previous
period. This results in linear update dynamics for the product consumption. Each consumer
receives externality from the consumption of each neighbor where the strength of the externality
is higher for consumption of the products of the same firm. We represent the above setting as a
duopoly game between the firms and introduce a novel framework that allows for sparse seeding
to emerge as an equilibrium strategy. We then study the effect of the network structure on the
optimal seeding strategies and the extent to which the strategies can be sparsified. In particular,
we derive conditions under which near Nash equilibrium strategies can asymptotically lead to
sparse seeding in large populations. The results are illustrated using a core-periphery network.

3.22 A Separation Principle for Joint Sensor and Actuator Scheduling with Guaranteed

Performance Bound.

M. Siami, and A. Jadbabaie, "A Separation Principle for Joint Sensor and Actuator Scheduling
with Guaranteed Performance Bounds," The 58th IEEE Conference on Decision and Control,
Nice, France, 2019.

We study the problem of jointly designing a sparse sensor and actuator schedule for linear
dynamical systems while guaranteeing a control/estimation performance that approximates the
fully sensed/actuated setting. We further prove a separation principle, showing that the problem
can be decomposed into finding sensor and actuator schedules separately. However, it is shown
that this problem cannot be efficiently solved or approximated in polynomial, or even quasi-
polynomial time for time-invariant sensor/actuator schedules; instead, we develop deterministic
polynomial-time algorithms for a time-varying sensor/actuator schedule with guaranteed
approximation bounds. Our main result is to provide a polynomial-time joint actuator and sensor
schedule that on average selects only a constant number of sensors and actuators at each time
step, irrespective of the dimension of the system. The key idea is to sparsify the controllability
and observability Gramians while providing approximation guarantees for Hankel singular

18
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

values. This idea is inspired by recent results in theoretical computer science literature on
sparsification

3.23 Non-Bayesian Social Learning with Uncertain Models over Time-Varying Directed

Graphs.

Uribe, C. A., Hare, J. Z., Kaplan, L., & Jadbabaie, A. (2019). Non-Bayesian Social Learning
with Uncertain Models over Time-Varying Directed Graphs. arXiv preprint arXiv:1909.04255.
Accepted to The 58th IEEE Conference on Decision and Control, Nice, France, 2019.

We study the problem of non-Bayesian social learning with uncertain models, in which a
network of agents seeks to cooperatively identify the state of the world based on a sequence of
observed signals. In contrast with the existing literature, we focus our attention on the scenario
where the statistical models held by the agents about possible states of the world are built from
finite observations. We show that existing non-Bayesian social learning approaches may select a
wrong hypothesis with non-zero probability under these conditions. Therefore, we propose a new
algorithm to iteratively construct a set of beliefs that indicate whether a certain hypothesis is
supported by the empirical evidence. This new algorithm can be implemented over time-varying
directed graphs, with non-doubly stochastic weights.

3.24 Non-Bayesian Social Learning with Gaussian Uncertain Models

Hare, J. Z., Uribe, C. A., Kaplan, L., & Jadbabaie, A. (2019). 4.21 Non-Bayesian Social
Learning with Gaussian Uncertain Models, Submitted to American Control Conference

Non-Bayesian social learning theory provides a framework for distributed inference of a group
of agents interacting over a social network by sequentially communicating and updating beliefs
about the unknown state of the world through likelihood updates from their observations.
Typically, likelihood models are assumed known precisely. However, in many situations the
models are generated from sparse training data due to lack of data availability, high cost of
collection/calibration, limits within the communications network, and/or the high dynamics of
the operational environment. Recently, social learning theory was extended to handle those
model uncertainties for categorical models. In this paper, we introduce the theory of Gaussian
uncertain models and study the properties of the beliefs generated by the network of agents. We
show that even with finite amounts of training data, non-Bayesian social learning can be
achieved and all agents in the network will converge to a consensus belief that provably
identifies the best estimate for the state of the world given the set of prior information.

3.25 Non-Bayesian Social Learning with Uncertain Models

Hare, J. Z., Uribe, C. A., Kaplan, L., & Jadbabaie, A. (2019). Non-Bayesian Social Learning
with Uncertain Models. arXiv preprint arXiv:1909.09228. Submitted to IEEE Transactions on
Signal Processing.

Non-Bayesian social learning theory provides a framework that models distributed inference for
a group of agents interacting over a social network. In this framework, each agent iteratively

19
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

forms and communicates beliefs about an unknown state of the world with their neighbors using
a learning rule. Existing approaches assume agents have access to precise statistical models (in
the form of likelihoods) for the state of the world. However, in many situations, such models
must be learned from finite data. We propose a social learning rule that takes into account
uncertainty in the statistical models using second-order probabilities. Therefore, beliefs derived
from uncertain models are sensitive to the amount of past evidence collected for each hypothesis.
We characterize how well the hypotheses can be tested on a social network, as consistent or not
with the state of the world. We explicitly show the dependency of the generated beliefs with
respect to the amount of prior evidence. Moreover, as the amount of prior evidence goes to
infinity, learning occurs and is consistent with traditional social learning theory.

Major Announcements and Placements:
• PI Ali Jadbabaie was the lead organizer of a new DoD-supported conference at the interface

of Learning, dynamical systems, and control theories. The conference is called L4DCand
attracted nearly 400 researchers. The second conference will be held at Berkeley campus on
June 10-11

• Lagrange postdoc Aryan Mokhtari joined the faculty of University of Texas at Austin as an
Assistant Professor in the Electrical Engineering department

• Lagrange postdoc Cesar Uribe (who received partial support on this project), together with PI
Ali Jadbabaie, collaborated with Dr. Lance Kaplan of Army Research Lab and his postdoc
James Hare who is funded by a LUCI project from OSD.

	1. Executive Summary
	2. Technical Progress
	3. Comprehensive Project Report
	3.1 Understanding acceleration in large scale, first-order optimization
	3.2 Geometry of Acceleration in Non-Euclidean environments
	3.3 Understanding Optimization landscape of Empirical Risk Minimization in deep neural networks
	3.4 New Approaches to Scalable Bayesian Optimization
	3.5 Efficient escape of saddle points and reaching stationary points in non-convex optimization
	3.6 Understanding trade-offs between Over-fitting, interpolation, and generalization in optimization for statistical learning.
	3.7 Finite sample expressive power of small-width ReLU networks
	3.8 Efficient nonconvex empirical risk minimization via adaptive sample size methods
	3.9 Achieving acceleration in distributed optimization via direct discretization of the Heavy-Ball ODE
	3.10 On increasing self-confidence in non-Bayesian social learning over time-varying directed graphs
	3.11 Interpolation as a learning mechanism.
	3.12 Stable Optimization with Gaussian Processes
	3.13 Small nonlinearities in activation functions create bad local minima in neural networks
	3.14 Efficiently testing local optimality and escaping saddles for ReLU networks
	3.15 R-SPIDER: A Fast Riemannian Stochastic Optimization Algorithm with Curvature Independent Rate
	3.16 Consistency of Interpolation with Laplace Kernels is a High-Dimensional Phenomenon
	3.17 What Can Neural Networks Reason About?
	3.18 How Powerful are Graph Neural Networks?
	3.19 Small ReLU networks are powerful memorizers: a tight analysis of memorization capacity.
	3.20 Are deep ResNets provably better than linear predictors?
	3.21 Competitive Contagion with Spare Seeding.
	3.22 A Separation Principle for Joint Sensor and Actuator Scheduling with Guaranteed Performance Bound.
	3.23 Non-Bayesian Social Learning with Uncertain Models over Time-Varying Directed Graphs.
	3.24 Non-Bayesian Social Learning with Gaussian Uncertain Models
	3.25 Non-Bayesian Social Learning with Uncertain Models

	2019-0182CoverPageDistroA.pdf
	AFRL-RQ-WP-TR-2019-0182

	2019-0182SF298DistroA.pdf
	REPORT DOCUMENTATION PAGE

Direct Runge-Kutta Discretization Achieves Acceleration

Jingzhao Zhang jzhzhang@mit.edu

Aryan Mokhtari aryanm@mit.edu

Suvrit Sra suvrit@mit.edu

Ali Jadbabaie jadbabai@mit.edu

Laboratory for Information and Decision Systems
Institute for Data, Systems, and Society
Massachusetts Institute of Technology

Abstract

We study gradient-based optimization methods obtained by directly discretizing
a second-order ordinary differential equation (ODE) related to the continuous
limit of Nesterov’s accelerated gradient method. When the function is smooth
enough, we show that acceleration can be achieved by a stable discretization of
this ODE using standard Runge-Kutta integrators. Specifically, we prove that un-
der Lipschitz-gradient, convexity and order-(s+ 2) differentiability assumptions,
the sequence of iterates generated by discretizing the proposed second-order ODE
converges to the optimal solution at a rate of O(N−2

s
s+1), where s is the order

of the Runge-Kutta numerical integrator. Furthermore, we introduce a new local
flatness condition on the objective, under which rates even faster than O(N−2)
can be achieved with low-order integrators and only gradient information. No-
tably, this flatness condition is satisfied by several standard loss functions used in
machine learning. We provide numerical experiments that verify the theoretical
rates predicted by our results.

1 Introduction

In this paper, we study accelerated first-order optimization algorithms for the problem

min
x∈Rd

f(x), (1)

where f is convex and sufficiently smooth. A classical method for solving (1) is gradient descent
(GD), which displays a sub-optimal convergence rate of O(N−1)—i.e., the gap f(xN)− f(x∗) be-
tween GD and the optimal value f(x∗) decreases to zero at the rate ofO(N−1). Nesterov’s seminal
accelerated gradient method [Nesterov, 1983] matches the oracle lower bound of O(N−2) [Ne-
mirovskii et al., 1983], and is thus a central result in the theory of convex optimization.

However, ever since its introduction, acceleration has remained somewhat mysterious, especially
because Nesterov’s original derivation relies on elegant but unintuitive algebraic arguments. This
lack of understanding has spurred a variety of recent attempts to uncover the rationale behind the
phenomenon of acceleration [Allen-Zhu and Orecchia, 2014, Bubeck et al., 2015, Lessard et al.,
2016, Hu and Lessard, 2017, Scieur et al., 2016, Fazlyab et al., 2017].

We pursue instead an approach to NAG (and accelerated methods in general) via a continuous-time
perspective. This view was recently studied by Su et al. [2014], who showed that the continuous limit
of NAG is a second order ODE describing a physical system with vanishing friction; Wibisono et al.
[2016] generalized this idea and proposed a class of ODEs by minimizing Bregman Lagrangians.

Although these works succeed in providing a richer understanding of Nesterov’s scheme via its
continuous time ODE, they fail to provide a general discretization procedure that generates provably
convergent accelerated methods. In contrast, we introduce a second-order ODE that generates an
accelerated first-order method for smooth functions if we simply discretize it using any Runge-Kutta
numerical integrator and choose a suitable step size.

1.1 Summary of results

Assuming that the objective function is convex and sufficiently smooth, we establish the following:

1

ar
X

iv
:1

80
5.

00
52

1v
5

 [
m

at
h.

O
C

]
 2

8
N

ov
 2

01
8

� We propose a second-order ODE, and show that the sequence of iterates generated by discretizing
using a Runge-Kutta integrator converges to the optimal solution at the rate O(N

−2s
s+1), where s

is the order of the integrator. By using a more precise numerical integrator, (i.e., a larger s), this
rate approaches the optimal rate O(N−2).

� We introduce a new local flatness condition for the objective function (Assumption 1), under
which Runge-Kutta discretization obtains convergence rates even faster than O(N−2), without
requiring high-order integrators. In particular, we show that if the objective is locally flat around
a minimum, by using only gradient information we can obtain a convergence rate of O(N−p),
where p quantifies the degree of local flatness. Acceleration due to local flatness may seem
counterintuitive at first, but our analysis reveals why it helps.

To the best of our knowledge, this work presents the first direct1 discretization of an ODE that yields
accelerated gradient methods. Unlike Betancourt et al. [2018] who study symplecticity and consider
variational integrators, and Scieur et al. [2017] who study consistency of integrators, we focus on the
order of integrators (see §2.1). We argue that the stability inherent to the ODE and order conditions
on the integrators suffice to achieve acceleration.

1.2 Additional related work
Several works [Alvarez, 2000, Attouch et al., 2000, Bruck Jr, 1975, Attouch and Cominetti, 1996]
have studied the asymptotic behavior of solutions to dissipative dynamical systems. However, these
works retain a theoretical focus as they remain in the continuous time domain and do not discuss
the key issue, namely, stability of discretization. Other works such as [Krichene et al., 2015], study
the counterpart of Su et al. [2014]’s work for mirror descent algorithms and achieve acceleration
via Nesterov’s technique. Diakonikolas and Orecchia [2017] proposes a framework to analyze the
first order mirror descent algorithms by studying ODEs derived from duality gaps. Also, Raginsky
and Bouvrie [2012] obtain nonasymptotic rates for continuous time mirror descent in a stochastic
setting.

A textbook treatment of numerical integration is given in [Hairer et al., 2006]; some of our proofs
build on material from Chapters 3 and 9. [Isaacson and Keller, 1994] and [West, 2004] also provide
nice introductions to numerical analysis.

2 Problem setup and background

Throughout the paper we assume that the objective f is convex and sufficiently smooth. Our key
result rests on two key assumptions introduced below. The first assumption is a local flatness con-
dition on f around a minimum; our second assumption requires f to have bounded higher order
derivatives. These assumptions are sufficient to achieve acceleration simply by discretizing suitable
ODEs without either resorting to reverse engineering to obtain discretizations or resorting to other
more involved integration mechanisms.

We will require our assumptions to hold on a suitable subset of Rd. Let x0 be the initial point to our
proposed iterative algorithm. First consider the sublevel set

S := {x ∈ Rd | f(x) ≤ exp(1)((f(x0)− f(x∗) + ‖x0 − x∗‖2) + 1}, (2)
where x∗ is a minimum of (1). Later we will show that the sequence of iterates obtained from
discretizing a suitable ODE never escapes this sublevel set. Thus, the assumptions that we introduce
need to hold only within a subset of Rd. Let this subset be defined as

A := {x ∈ Rd | ∃x′ ∈ S, ‖x− x′‖ ≤ 1}, (3)
that is, the set of points at unit distance to the initial sublevel set (2). The choice of unit distance is
arbitrary, and one can scale that to any desired constant.
Assumption 1. There exists an integer p ≥ 2 and a positive constant L such that for any point
x ∈ A, and for all indices i ∈ {1, ..., p− 1}, we have the lower-bound

f(x)− f(x∗) ≥ 1
L‖∇

(i)f(x)‖
p

p−i , (4)

where x∗ minimizes f and ‖∇(i)f(x)‖ denotes the operator norm of the tensor∇(i)f(x).
1That is, discretize the ODE with known numerical integration schemes without resorting to reverse engi-

neering NAG’s updates.

2

Assumption 1 bounds high order derivatives by function suboptimality, so that these derivatives
vanish as the suboptimality converges to 0. Thus, it quantifies the flatness of the objective around
a minimum.2 When p = 2, Assumption 1 is slightly weaker than the usual Lipschitz-continuity of
gradients (see Example 1) typically assumed in the analysis of first-order methods, including NAG.
If we further know that the objectives Taylor expansion around an optimum does not have low order
terms, p would be the degree of the first nonzero term.

Example 1. Let f be convex with L
2 -Lipschitz continuous gradients, i.e., ‖∇f(x) − ∇f(y)‖ ≤

L
2 ‖x− y‖. Then, for any x, y ∈ Rd we have

f(x) ≥ f(y) + 〈∇f(y), x− y〉+ 1
L‖∇f(x)−∇f(y)‖2.

In particular, for y = x∗, an optimum point, we have∇f(y) = 0, and thus we have f(x)−f(x∗) ≥
1
L‖∇f(x)‖2, which is nothing but inequality (4) for p = 2 and i = 1.

Example 2. Consider the `p-norm regression problem: minx f(x) = ‖Ax − b‖pp, for even integer
p ≥ 2. If ∃x∗, Ax∗ = b, then f satisfies inequality (4) for p, and L depends on p and the operator
norm of A.

Logistic loss satisfies a slightly different version of Assumption 1 because its minimum can be at
infinity. We will explain this point in more detail in Section 3.1.

Next, we introduce our second assumption that adds additional restrictions on differentiability and
bounds the growth of derivatives.

Assumption 2. There exists an integer s ≥ p and a constantM ≥ 0, such that f(x) is order (s+2)
differentiable. Furthermore, for any x ∈ A, the following operator norm bounds hold:

‖∇(i)f(x)‖ ≤M, for i = p, p+ 1, . . . , s, s+ 1, s+ 2. (5)

When the sublevel sets of f are compact and hence the set A is also compact; as a result, the
bound (5) on high order derivatives is implied by continuity. In addition, an Lp loss of the form
‖Ax− b‖pp also satisfy (5) with M = p!‖A‖p2.

2.1 Runge-Kutta integrators

Before moving onto our new results (§3) let us briefly recall explicit Runge-Kutta (RK) integrators
used in our work. For a more in depth discussion please see the textbook [Hairer et al., 2006].

Definition 1. Given a dynamical system ẏ = F (y), let the current point be y0 and the step size be
h. An explicit S stage Runge-Kutta method generates the next step via the following update:

gi = y0 + h

i−1∑
j=1

aijF (gj), Φh(y0) = y0 + h

S∑
i=1

biF (gi), (6)

where aij and bi are suitable coefficients defined by the integrator; Φh(y0) is the estimation of the
state after time step h, while gi (for i = 1, . . . , S) are a few neighboring points where the gradient
information F (gi) is evaluated.

By combining the gradients at several evaluation points, the integrator can achieve higher precision
by matching up Taylor expansion coefficients. Let ϕh(y0) be the true solution to the ODE with
initial condition y0; we say that an integrator Φh(y0) has order s if its discretization error shrinks as

‖Φh(y0)− ϕh(y0)‖ = O(hs+1), as h→ 0. (7)

In general, RK methods offer a powerful class of numerical integrators, encompassing several basic
schemes. The explicit Euler’s method defined by Φh(y0) = y0 + hF (y0) is an explicit RK method
of order 1, while the midpoint method Φh(y0) = y0 + hF (y0 + h

2F (y0)) is of order 2. Some high-
order RK methods are summarized in [Verner, 1996]. An order 4 RK method requires 4 stages, i.e.,
4 gradient evaluations, while an order 9 method requires 16 stages.

2One could view this as an error bound condition that reverses the gradient-based upper bounds on subop-
timality stipulated by the Polyak-Łojasiewicz condition [Lojasiewicz, 1965, Attouch et al., 2010].

3

Algorithm 1: Input(f, x0, p, L,M, s,N) . Constants p, L,M are the same as in Assumptions
1: Set the initial state y0 = [~0;x0; 1] ∈ R2d+1

2: Set step size h = C/N
1

s+1 . C is determined by p, L,M, s, x0
3: xN Order-s-Runge-Kutta-Integrator(F, y0, N, h) . F is defined in equation 12
4: return xN

3 Main results

In this section, we introduce a second-order ODE and use explicit RK integrators to generate iterates
that converge to the optimal solution at a rate faster than O(1/t) (where t denotes the time variable
in the ODE). A central outcome of our result is that, at least for objective functions that are smooth
enough, it is not the integrator type that is the key ingredient of acceleration, but a careful analysis
of the dynamics with a more powerful Lyapunov function that achieves the desired result. More
specifically, we will show that by carefully exploiting boundedness of higher order derivatives, we
can achieve both stability and acceleration at the same time.

We start with Nesterov’s accelerated gradient (NAG) method that is defined according to the updates

xk = yk−1 − h∇f(yk−1), yk = xk + k−1
k+2 (xk − xk−1). (8)

Su et al. [2014] showed that the iteration (8) in the limit is equivalent to the following ODE

ẍ(t) + 3
t ẋ(t) +∇f(x(t)) = 0, where ẋ = dx

dt (9)

when one drives the step size h to zero. It can be further shown that in the continuous domain
the function value f(x(t)) decreases at the rate of O(1/t2) along the trajectories of the ODE. This
convergence rate can be accelerated to an arbitrary rate in continuous time via time dilation as in
[Wibisono et al., 2016]. In particular, the solution to

ẍ(t) + p+1
t ẋ(t) + p2tp−2∇f(x(t)) = 0, (10)

has a convergence rate O(1/tp). When p > 2, Wibisono et al. [2016] proposed rate matching
algorithms via utilizing higher order derivatives (e.g., Hessians). In this work, we focus purely on
first-order methods and study the stability of discretizing the ODE directly when p ≥ 2.

Though deriving the ODE from the algorithm is solved, deriving the update of NAG or any other
accelerated method by directly discretizing an ODE is not. As stated in [Wibisono et al., 2016], ex-
plicit Euler discretization of the ODE in (9) may not lead to a stable algorithm. Recently, Betancourt
et al. [2018] observed empirically that Verlet integration is stable and suggested that the stability re-
lates to the symplectic property of the Verlet integration. However, in our proof, we found that the
order condition of Verlet integration would suffice to achieve acceleration. Though symplectic
integrators are known to preserve modified Hamiltonians for dynamical systems, we weren’t able to
leverage this property for dissipative systems such as (11).

This principal point of departure from previous works underlies Algorithm 1, which solves (1) by
discretizing the following ODE with an order-s integrator:

ẍ(t) +
2p+ 1

t
ẋ(t) + p2tp−2∇f(x(t)) = 0. (11)

where we have augmented the state with time, to turn the non-autonomous dynamical system into
an autonomous one. The solution to (11) exists and is unique when t > 0. This claim follows by
local Lipschitzness of f and is discussed in more details in Appendix A.2 of Wibisono et al. [2016].

We further highlight that the ODE in (11) can also be written as the dynamical system

ẏ = F (y) =

− 2p+1
t v − p2tp−2∇f(x)

v
1

 , where y = [v;x; t]. (12)

We have augmented the state with time to obtain an autonomous system, which can be readily
solved numerically with a Runge-Kutta integrator as in Algorithm 1. To avoid singularity at t = 0,

4

Algorithm 1 discretizes the ODE starting from t = 1 with initial condition y(1) = y0 = [0;x0; 1].
The choice of 1 can be replaced by any arbitrary positive constant.

Notice that the ODE in (11) is slightly different from the one in (10); it has a coefficient 2p+1
t for

ẋ(t) instead of p+1
t . This modification is crucial for our analysis via Lyapunov functions (more

details in Section 4 and Appendix A).

The parameter p in the ODE (11) is set to be the same as the constant in Assumption 1 to achieve
the best theoretical upper bound by balancing stability and acceleration. Particularly, the larger
p is, the faster the system evolves. Hence, the numerical integrator requires smaller step sizes to
stabilize the process, but a smaller step size increases the number of iterations to achieve a target
accuracy. This tension is alleviated by Assumption 1. The larger p is, the flatter the function f is
around its stationary points. In other words, Assumption 1 implies that as the iterates approach a
minimum, the high order derivatives of the function f , in addition to the gradient, also converge to
zero. Consequently, the trajectory slows down around the optimum and we can stably discretize the
process with a large enough step size. This intuition ultimately translates into our main result.
Theorem 1. (Main Result) Consider the second-order ODE in (11). Suppose that the function f
is convex and Assumptions 1 and 2 are satisfied. Further, let s be the order of the Runge-Kutta
integrator used in Algorithm 1, N be the total number of iterations, and x0 be the initial point.
Also, let E0 := f(x0) − f(x∗) + ‖x0 − x∗‖2 + 1. Then, there exists a constant C1 such that if we
set the step size as h = C1N

−1/(s+1)(L + M + 1)−1E−10 , the iterate xN generated after running
Algorithm 1 for N iterations satisfies the inequality

f(xN)− f(x∗) ≤ C2E0
[
(L+M+1)E0

N
s

s+1

]p
= O

(
N−p

s
s+1
)
, (13)

where the constants C1 and C2 only depend on s, p, and the Runge-Kutta integrator. Since each
iteration consumes S gradient, f(xN)−f(x∗) will converge asO(S

ps
s+1N−

ps
s+1) with respect to the

number of gradient evaluations. Note that for commonly used Runge-Kutta integrators, S ≤ 8.

The proof of this theorem is quite involved; we provide a sketch in Section 4, deferring the detailed
technical steps to the appendix. We do not need to know the constant C1 exactly in order to set the
step size h. Replacing C1 by any smaller positive constant leads to the same polynomial rate.

Theorem 1 indicates that if the objective has bounded high order derivatives and satisfies the flatness
condition in Assumption 1 with p > 0, then discretizing the ODE in (11) with a high order integrator
results in an algorithm that converges to the optimal solution at a rate that is close to O(N−p). In
the following corollaries, we highlight two special instances of Theorem 1.
Corollary 2. If the function f is convex with L-Lipschitz gradients and is 4th order differentiable,
then simulating the ODE (11) for p = 2 with a numerical integrator of order s = 2 for N iterations
results in the suboptimality bound

f(xN)− f(x∗) ≤ C2(f(x0)− f(x∗) + ‖x0 − x∗‖2 + 1)3(L+M + 1)2

N4/3
.

Note that higher order differentiability allows one to use a higher order integrator, which leads to the
optimal O(N−2) rate in the limit. The next example is based on high order polynomial or `p norm.

Corollary 3. Consider the objective function f(x) = ‖Ax + b‖44. Simulating the ODE (11) for
p = 4 with a numerical integrator of order s = 4 for N iterations results in the suboptimality bound

f(xN)− f(x∗) ≤ C2(f(x0)− f(x∗) + ‖x0 − x∗‖2 + 1)5(L+M + 1)4

N16/5
.

3.1 Logistic loss

Discretizing logistic loss f(x) = log(1 + e−w
T x) does not fit exactly into the setting of Theorem

1 due to nonexistence of x∗. This potentially causes two problems. First, Assumption 1 is not well
defined. Second, the constant E0 in Theorem 1 is not well defined. We explain in this section how
we can modify our analysis to admit logistic loss by utilizing its structure of high order derivatives.

The first problem can be resolved by replacing f(x∗) by infx∈Rdf(x) in Assumption 1; then, the
logistic loss satisfies Assumption 1 with arbitrary integer p > 0. To approach the second problem,

5

we replace x∗ by x̃ that satisfies the following relaxed inequalities. For some ε1, ε2, ε3 < 1 we have

〈x− x̃,∇f(x)〉 ≥ f(x)− f(x̃)− ε1, (14)

f(x)− f(x̃) ≥ 1
L‖∇

(i)f(x)‖
p

p−i − ε2, f(x̃)− inf
x∈Rd

f(x) ≤ ε3. (15)

As the inequalities are relaxed, there exists a vector x̃ ∈ Rd that satisfies the above conditions. If we
follow the original proof and balance the additional error terms by picking x̃ carefully, we obtain

Corollary 4. (Informal) If the objective is f(x) = log(1 + e−w
T x), then discretizing the ODE (11)

with an order s numerical integrator for N iterations with step size h = O(N−1/(s+1)) results in a
convergence rate of O(Sp

s
s+1N−p

s
s+1).

4 Proof of Theorem 1

We prove Theorem 1 as follows. First(Proposition 5), we show that the suboptimality f(x(t)) −
f(x∗) along the continuous trajectory of the ODE (11) converges to zero sufficiently fast. Sec-
ond(Proposition 6), we bound the discretization error ‖Φh(yk) − ϕh(yk)‖, which measures the
distance between the point generated by discretizing the ODE and the true continuous solution.
Finally(Proposition 7), a bound on this error along with continuity of the Lyapunov function (16)
implies that the suboptimality of the discretized sequence of points also converges to zero quickly.

Central to our proof is the choice of a Lyapunov function used to quantify progress. We propose in
particular the Lyapunov function E : R2d+1 → R+ defined as

E([v;x; t]) :=
t2

4p2
‖v‖2 +

∥∥∥x+
t

2p
v − x∗

∥∥∥2 + tp(f(x)− f(x∗)). (16)

The Lyapunov function (16) is similar to the ones used by Wibisono et al. [2016], Su et al. [2014],
except for the extra term t2

4p2 ‖v‖
2. This term allows us to bound ‖v‖ by O(Et). This dependency is

crucial for us to achieve the O(N−2) bound(see Lemma 11 for more details).

We begin our analysis with Proposition 5, which shows that the function E is non-increasing with
time, i.e., Ė(y) ≤ 0. This monotonicity then implies that both tp(f(x) − f(x∗)) and t2

4p2 ‖v‖
2 are

bounded above by some constants. The bound on tp(f(x)− f(x∗)) provides a convergence rate of
O(1/tp) on the sub-optimality f(x(t))−f(x∗). It further leads to an upper-bound on the derivatives
of the function f(x) in conjunction with Assumption 1.
Proposition 5 (Monotonicity of E). Consider the vector y = [v;x; t] ∈ R2d+1 as a trajectory of
the dynamical system (12). Let the Lyapunov function E be defined by (16). Then, for any trajectory
y = [v;x; t], the time derivative Ė(y) is non-positive and bounded above; more precisely,

Ė(y) ≤ − t
p
‖v‖2. (17)

The proof of this proposition follows from convexity and (11); we defer the details to Appendix A.

Next, to bound the Lyapunov function for numerical solutions, we need to bound the distance be-
tween points in the discretized and continuous trajectories. As in Section 2.1, for the dynamical
system ẏ = F (y), let Φh(y0) denote the solution generated by a numerical integrator starting at
point y0 with step size h. Similarly, let ϕh(y0) be the corresponding true solution to the ODE.
An ideal numerical integrator would satisfy Φh(y0) = ϕh(y0); however, due to discretization error
there is always a difference between Φh(y0) and ϕh(y0) determined by the order of the integra-
tor as in (7). Let {yk}Ni=0 be the sequence of points generated by the numerical integrator, that is,
yk+1 = Φh(yk). In the following proposition, we derive an upper bound on the resulting discretiza-
tion error ‖Φh(yk)− ϕh(yk)‖.
Proposition 6 (Discretization error). Let yk = [vk;xk; tk] be the current state of the dynamical
system ẏ = F (y) defined in (12). Suppose xk ∈ S defined in (2). If we use a Runge-Kutta
integrator of order s to discretize the ODE for a single step with a step size h such that h ≤
min{0.2, 1

(1+κ)C(1+E(yk))(M+L+1)}, then

‖Φh(yk)− ϕh(yk)‖ ≤ C ′hs+1(M+L+1)

[
[(1 + E(yk))]s+1

tk
+ h

[(1 + E(yk))]s+2

tk

]
, (18)

6

where the constants C, κ, and C ′ only depend on p, s, and the integrator.

The proof of Proposition 6 is the most challenging part in proving Theorem 1. Details may be found
in Appendix B. The key step is to bound ‖ ∂

s+1

∂hs+1 [Φh(yk) − ϕh(yk)]‖. To do so, we first bound
the high order derivative tensor ‖∇(i)f‖ using Assumption 1 and Proposition 5 within a region of
radius R. By carefully selecting R, we can show that for a reasonably small h, Φh(yk) and ϕh(yk)
is constrained in the region. Second, we need to compute the high order derivatives of ẏ = F (y)
as a function of ∇(i)f which is bounded in the region of radius R. As shown in Appendix E, the
expressions for higher derivatives become quite complicated as the order increases. We approach this
complexity by using the notation for elementary differentials (see Appendix E) adopted from [Hairer
et al., 2006]; we then induct on the order of the derivatives to bound the higher order derivatives. The
flatness assumption (Assumption 1) provides bounds on the operator norm of high order derivatives
relative to the objective function suboptimality, and hence proves crucial in completing the inductive
step.

By the conclusion in Proposition 6 and continuity of the Lyapunov function E , we conclude that the
value of E at a discretized point is close to its continuous counterpart. Using this observation, we
expect that the Lyapunov function values for the points generated by the discretized ODE do not
increase significantly. We formally prove this key claim in the following proposition.
Proposition 7. Consider the dynamical system ẏ = F (y) defined in (12) and the Lyapunov func-
tion E defined in (16). Let y0 be the initial state of the dynamical system and yN be the final point
generated by a Runge-Kutta integrator of order s after N iterations. Further, suppose that Assump-
tions 1 and 2 are satisfied. Then, there exists a constant C̃ determined by p, s and the numerical
integrator, such that if the step size h satsfies h = C̃ N−1/(s+1)

(L+M+1)(eE(y0)+1) , then we have

E(yN) ≤ exp(1) E(y0) + 1. (19)

Please see Appendix C for a proof of this claim.

Proposition 7 shows that the value of the Lyapunov function E at the point yN is bounded above
by a constant that depends on the initial value E(y0). Hence, if the step size h satisfies the required
condition in Proposition 7, we can see that

f(xN)− f(x∗) ≤ E(yN)
tpN
≤ eE(y0)+1

(1+Nh)p . (20)

The first inequality in (20) follows from the definition of the E (16). Replacing the step size h in
(20) by the choice used in Proposition 7 yields

f(xN)− f(x∗) ≤ (L+M + 1)p(eE(y0) + 1)p+1

C̃Np s
s+1

, (21)

and the claim of Theorem 1 follows.

Note: The dependency of the step size h on the degree of the integrator s suggests that an integrator
of higher order allows for larger step size and therefore faster convergence rate.

5 Numerical experiments

In this section, we perform a series of numerical experiments to study the performance of the pro-
posed scheme for minimizing convex functions through the direct discretization (DD) of the ODE in
(11) and compare it with gradient descent (GD) as well as Nesterov’s accelerated gradient (NAG).
All figures in this section are on log-log scale. For each method tested, we empirically choose the
largest step size among {10−k|k ∈ Z} subject to the algorithm remaining stable in the first 1000
iterations.

5.1 Quadratic functions

We now verify our theoretical results by minimizing a quadratic convex function of the form f(x) =
‖Ax− b‖2 by simulating the ODE in (11) for the case that p = 2, i.e.,

ẍ(t) +
5

t
ẋ(t) + 4∇f(x(t)) = 0,

7

(a) Quadratic objective (b) Objective as in (22)

Figure 1: Convergence paths of GD, NAG, and the proposed simulated dynamical system with
integrators of degree s = 1, s = 2, and s = 4. The objectives satisfy Assumption 1 with p=2.

where A ∈ R10×10 and b ∈ R10. The first five entries of b = [b1; . . . ; b10] are valued 0 and the
rest are 1. Rows Ai in A are generated by an i.i.d multivariate Gaussian distribution conditioned on
bi. The data is linearly separable. Note that the quadratic objective f(x) = ‖Ax− b‖2 satisfies the
condition in Assumption 1 with p = 2. It is also clear that it satisfies the condition in Assumption 2
regarding the bounds on higher order derivatives.

Convergence paths of GD, NAG, and the proposed DD procedure for minimizing the quadratic
function f(x) = ‖Ax− b‖2 are demonstrated in Figure 1(a). For the proposed method we consider
integrators with different degrees, i.e., s ∈ {1, 2, 4}. Observe that GD eventually attains linear rate
since the function is strongly convex around the optimal solution. NAG displays local acceleration
close to the optimal point as mentioned in [Su et al., 2014, Attouch and Peypouquet, 2016]. For
DD, if we simulate the ODE with an integrator of order s = 1, the algorithm is eventually unstable.
This result is consistent with the claim in [Wibisono et al., 2016] and our theorem that requires
the step size to scale with O(N−0.5). Notice that using a higher order integrator leads to a stable
algorithm. Our theoretical results suggest that the convergence rate for s ∈ {1, 2, 4} should be worse
than O(N−2) and one can approach such rate by making s sufficiently large. However, as shown in
Figure 1(a), in practice with an integrator of order s = 4, the DD algorithm achieves a convergence
rate of O(N−2). Hence, our theoretical convergence rate in Theorem 1 might be conservative.

We also compare the performances of these algorithms when they are used to minimize

f([x1, x2]) = ‖Ax1 − b‖2 + ‖Cx2 − d‖44. (22)

Matrix C and vector d are generated similarly as A and b. The result is shown in Figure 1(b). As
expected, we note that GD no longer converges linearly, but the other methods converge at the same
rate as in Figure 1(a).

5.2 Decoupling ODE coefficients with the objective

Throughout this paper, we assumed that the constant p in (11) is the same as the one in Assumption 1
to attain the best theoretical upper bounds. In this experiment, however, we empirically explore the
convergence rate of discretizing the ODE

ẍ(t) +
2q + 1

t
ẋ(t) + q2tq−2∇f(x(t)) = 0,

when q 6= p. In particular, we use the same quadratic objective f(x) = ‖Ax− b‖2 as in the previous
section. This objective satisfies Assumption 1 with p = 2. We simulate the ODE with different
values of q using the same numerical integrator with the same step size. Figure 2 summarizes
the experimental results. We observe that when q > 2, the algorithm diverges. Even though the
suboptimality along the continuous trajectory will converge at a rate of O(t−p) = O(t−2), the
discretized sequence cannot achieve the lower bound which is of O(N−2).

8

Figure 2: Minimizing quadratic objective by simulating different ODEs with the RK44 integrator
(4th order). In the case when p = 2, the optimal choice for q is 2.

(a) The objective is an `4 norm. (b) The objective is a logistic loss.

Figure 3: Experiment results for the cases that Assumption 1 holds for p > 2.

5.3 Beyond Nesterov’s acceleration

In this section, we discretize ODEs with objective functions that satisfy Assumption 1 with p > 2.
For all ODE discretization algorithms, we use an order-2 RK integrator that calls the gradient oracle
twice per iteration. Then we run all algorithms for 106 iterations and show the results in Figure 3.
As shown in Example 2, the objective

f(x) = ‖Ax− b‖44 (23)

satisfies Assumption 1 for p = 4. By Theorem 1 if we set q = 4, we can achieve a convergence
rate close to the rate O(N−4). We run the experiments with different values of q and summarize
the results in Figure 3(a). Note that when q > 2, the convergence of direct discretization methods
is faster than NAG. Interestingly, when q = 6 > p = 4, the discretization is still stable with
convergence rate roughly O(N−5). This suggests that our theorem may be conservative.

We then simulate the ODE for the objective function

f(x) =
10∑
i=1

log(1 + e−w
T
i x),

for a dataset of linearly separable points. The data points are generated in the same way as in
Section 5.1. As shown in Section 3.1, it satisfies Assumption 1 for arbitrary p > 0. As shown in
Figure 3(b), the objective decreases faster for larger q; this verifies Corollary 4.

9

6 Discussion

This paper specifies sufficient conditions for stably discretizing an ODE to obtain accelerated first-
order (i.e., purely gradient based) methods. Our analysis allows for the design of optimization
methods via direct discretization using Runge-Kutta integrators based on the flatness of objective
functions. complementing the existing studies that derive ODEs from optimization methods, we
show that one can prove convergence rates of a optimization algorithms by leveraging properties of
its ODE representation. We hope that this perspective will lead to more general results.

In addition, we identified a new condition in Assumption 1 that quantifies the local flatness of con-
vex functions. At first, this condition may appear counterintuitive, because gradient descent actually
converges fast when the objective is not flat and the progress slows down if the gradient vanishes
close to the minimum. However, when we discretize the ODE, the trajectories with vanishing gra-
dients oscillate slowly, and hence allow stable discretization with large step sizes, which ultimately
allows us to achieve acceleration. We think this high-level idea, possibly as embodied by Assump-
tion 1 could be more broadly used in analyzing and designing other optimization methods.

Based on the above two points, this paper contains both positive and negative message for the recent
trend in ODE interpretation of optimization methods. On one hand, it shows that with careful
analysis, discretizing ODE can preserve some of its trajectories properties. On the other hand, our
proof suggests that nontrivial additional conditions might be required to ensure stable discretization.
Hence, designing an ODE with nice properties in the continuous domain doesn’t guarantee the
existence of a practical optimization algorithm.

Although our paper answers a fundamental question regarding the possibility of obtaining acceler-
ated gradient methods by directly discretizing second order ODEs (instead of reverse engineering
Nesterov-like constructions), it does not fully explain acceleration. First, unlike Nesterov’s acceler-
ated gradient method that only requires first order differentiability, our results require the objective
function to be (s + 2)-times differentiable (where s is the order of the integrator). Indeed, the
precision of numerical integrators only increases with their order when the function is sufficiently
differentiable. This property inherently limits our analysis. Second, while we achieve the O(N−2)
convergence rate, some of the constants in our bound are loose (e.g., for squared loss and logistic
regression they are quadratic in L versus linear in L for NAG). Achieving the optimal dependence
on initial errors f(x0) − f(x∗), the diameter ‖x0 − x∗‖, as well as constants L and M requires
further investigation.

Acknowledgement

AJ and SS acknowledge support in part from DARPA FunLoL, DARPA Lagrange; AJ also acknowl-
edges support from an ONR Basic Research Challenge Program, and SS acknowledges support from
NSF-IIS-1409802.

References

Z. Allen-Zhu and L. Orecchia. Linear coupling: An ultimate unification of gradient and mirror
descent. arXiv preprint arXiv:1407.1537, 2014.

F. Alvarez. On the minimizing property of a second order dissipative system in hilbert spaces. SIAM
Journal on Control and Optimization, 38(4):1102–1119, 2000.

H. Attouch and R. Cominetti. A dynamical approach to convex minimization coupling approxima-
tion with the steepest descent method. Journal of Differential Equations, 128(2):519–540, 1996.

H. Attouch and J. Peypouquet. The rate of convergence of nesterov’s accelerated forward-backward
method is actually faster than 1/kˆ2. SIAM Journal on Optimization, 26(3):1824–1834, 2016.

H. Attouch, X. Goudou, and P. Redont. The heavy ball with friction method, i. the continuous
dynamical system: global exploration of the local minima of a real-valued function by asymptotic
analysis of a dissipative dynamical system. Communications in Contemporary Mathematics, 2
(01):1–34, 2000.

10

H. Attouch, J. Bolte, P. Redont, and A. Soubeyran. Proximal alternating minimization and projec-
tion methods for nonconvex problems: An approach based on the kurdyka-łojasiewicz inequality.
Mathematics of Operations Research, 35(2):438–457, 2010.

M. Betancourt, M. I. Jordan, and A. C. Wilson. On symplectic optimization. arXiv preprint
arXiv:1802.03653, 2018.

R. E. Bruck Jr. Asymptotic convergence of nonlinear contraction semigroups in hilbert space. Jour-
nal of Functional Analysis, 18(1):15–26, 1975.

S. Bubeck, Y. T. Lee, and M. Singh. A geometric alternative to nesterov’s accelerated gradient
descent. arXiv preprint arXiv:1506.08187, 2015.

J. Diakonikolas and L. Orecchia. The approximate duality gap technique: A unified theory of first-
order methods. arXiv preprint arXiv:1712.02485, 2017.

M. Fazlyab, A. Ribeiro, M. Morari, and V. M. Preciado. Analysis of optimization algorithms via
integral quadratic constraints: Nonstrongly convex problems. arXiv preprint arXiv:1705.03615,
2017.

E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration: structure-preserving al-
gorithms for ordinary differential equations, volume 31. Springer Science & Business Media,
2006.

B. Hu and L. Lessard. Dissipativity theory for nesterov’s accelerated method. arXiv preprint
arXiv:1706.04381, 2017.

E. Isaacson and H. B. Keller. Analysis of numerical methods. Courier Corporation, 1994.
W. Krichene, A. Bayen, and P. L. Bartlett. Accelerated mirror descent in continuous and discrete

time. In Advances in neural information processing systems, pages 2845–2853, 2015.
L. Lessard, B. Recht, and A. Packard. Analysis and design of optimization algorithms via integral

quadratic constraints. SIAM Journal on Optimization, 26(1):57–95, 2016.
S. Lojasiewicz. Ensembles semi-analytiques. Lectures Notes IHES (Bures-sur-Yvette), 1965.
A. Nemirovskii, D. B. Yudin, and E. R. Dawson. Problem complexity and method efficiency in

optimization. 1983.
Y. Nesterov. A method of solving a convex programming problem with convergence rate o (1/k2).

In Soviet Mathematics Doklady, volume 27, pages 372–376, 1983.
M. Raginsky and J. Bouvrie. Continuous-time stochastic mirror descent on a network: Variance

reduction, consensus, convergence. In Decision and Control (CDC), 2012 IEEE 51st Annual
Conference on, pages 6793–6800. IEEE, 2012.

D. Scieur, A. d’Aspremont, and F. Bach. Regularized nonlinear acceleration. In Advances In Neural
Information Processing Systems, pages 712–720, 2016.

D. Scieur, V. Roulet, F. Bach, and A. d’Aspremont. Integration methods and accelerated optimiza-
tion algorithms. arXiv preprint arXiv:1702.06751, 2017.

W. Su, S. Boyd, and E. Candes. A differential equation for modeling nesterovs accelerated gradient
method: Theory and insights. In Advances in Neural Information Processing Systems, pages
2510–2518, 2014.

J. Verner. High-order explicit runge-kutta pairs with low stage order. Applied numerical mathemat-
ics, 22(1-3):345–357, 1996.

M. West. Variational integrators. PhD thesis, California Institute of Technology, 2004.
A. Wibisono, A. C. Wilson, and M. I. Jordan. A variational perspective on accelerated methods in

optimization. Proceedings of the National Academy of Sciences, 113(47):E7351–E7358, 2016.

11

A Proof of Proposition 5

According to the dynamical system in (12) we can write

ẋ = v, ẍ = v̇ = −2p+ 1

t
v − p2tp−2∇f(x). (24)

Using these definitions we can show that

Ė =
t2

4p2
〈2v, v̇〉+

2t

4p2
〈v, v〉+ 2〈x+

t

2p
v − x∗, ẋ+

ẋ

2p
+

t

2p
ẍ〉+ tp〈∇f(x), ẋ〉

+ ptp−1(f(x)− f(x∗))

=
2t2

4p2
〈ẋ, ẍ+

2p+ 1

t
ẋ〉 − 2t2

4p2
〈ẋ, 2p

t
ẋ〉+ 2

t

2p
〈x+

t

2p
ẋ− x∗, ẍ+

2p+ 1

t
ẋ〉

+ tp〈∇f(x), ẋ〉+ ptp−1(f(x)− f(x∗))

=
t2

2p2
〈ẋ,−p2tp−2∇f〉 − t

p
‖ẋ‖2 +

t

p
〈x+

t

2p
ẋ− x∗,−p2tp−2∇f〉

+ tp〈∇f(x), ẋ〉+ ptp−1(f(x)− f(x∗))

=− t

p
‖ẋ‖2 + ptp−1(f(x)− f(x∗))− ptp−1〈x− x∗,∇f〉

≤ − t

p
‖ẋ‖2. (25)

The equalities follows from rearrangement and (11). The last inequality holds due to convexity.

B Proof of Proposition 6 (Discretization Error)

In this section, we aim to bound the difference between the true solution defined by the ODE and
the point generated by the integrator, i.e., ‖Φh(yc) − ϕh(yc)‖. Since the integrator has order s, the
difference ∆(h) := ‖Φh(yc)−ϕh(yc)‖ should be proportional to hs+1. Here, we intend to formally
derive an upper bound of O(hs+1) on ∆(h).

We start by introducing some notations. Given a vector y = [v;x; t] ∈ R2d+1, we define the
following projection operators

πx(y) = x ∈ Rd, πv(y) = v ∈ Rd, πt(y) = t ∈ R, πv,x(y) =

[
v
x

]
∈ R2d. (26)

We also define the set B(xc, R) which is a ball with center xc and radius R as

B(xc, R) = {x ∈ Rd|‖x− xc‖ ≤ R}, (27)

and define the set UR,0.2(yc) as

UR,0.2(yc) = {y = [v;x; t]|‖v − vc‖ ≤ R, ‖x− xc‖ ≤ R, |t− tc| ≤ 0.2}. (28)

In the following Lemma, we show that if we start from the point yc and choose a sufficiently small
stepsize, the true solution defined by the ODE ϕh(y0) and the point generated by the integrator
Φh(yc) remain in the set UR,0.2(yc).

Lemma 8. Let y ∈ UR,0.2(yc) where yc = [vc;xc; tc], tc ≥ 1, and R = 1
tc

. Suppose
that B(xc, R) ⊆ A (defined in (3)) and hence Assumptions 1 and 2 are satisfied. If h ≤
min{0.2, 1

(1+κ)C(E(yc)+1)(L+M+1)}, the true solution defined by the ODE ϕh(y0) and the point
generated by the integrator Φh(yc) remain in the set UR,0.2(yc), i.e.,

ϕh(yc) ∈ UR,0.2(yc), Φh(yc) ∈ UR,0.2(yc), (29)

where κ is a constant determined by the Runge-Kutta integrator. In addition, the intermediate points
gi defined in Definition 1 also belong to the set UR,0.2(yc).

12

Proof. Note that ∀y ∈ R2d+1, ‖πtF (y)‖ = 1. Clearly when h ≤ 0.2,

πtϕh(yc)− yc = h ≤ 0.2. (30)

Similarly, for any integrator that is at least order 1,

πtΦh(yc)− yc = h ≤ 0.2. (31)

Therefore, we only need to focus on bounding the remaining coordinates.

By Lemma 10, we have that when y ∈ UR,0.2(yc),

‖πv,xF (y)‖ ≤ C(E(yc) + 1)(L+M + 1)

tc
. (32)

By definition 1,

gi = yk + h
i−1∑
j=1

aijF (gj) Φh(yk) = yk + h
s−1∑
i=0

biF (gi).

Let κ = max{
∑
j |aij |,

∑
|bi|}, we have that when h ≤ min{0.2, R/[κC(E(yc)+1)(L+M)

tc
]},

gi ∈ UR,0.2(yc) Φh(yc) ∈ UR,0.2(yc). (33)

By fundamental theorem of calculus, we have that

ϕh(yc) = yc +

∫ h

0

F (ϕt(yc))dt ∈ UR,0.2(yc). (34)

Rearrange and apply Cauchy-Schwarz, we get

‖πv,x[ϕh(yc)− yc]‖ ≤
∫ h

0

‖πv,xF (ϕt(yc))‖dt ∈ UR,0.2(yc). (35)

By mean value theorem and proof of contradiction, we can show that when h ≤
min{0.2, R/C(E(yc)+1)(L+M)

tc
}, ∫ h

0

‖πv,xF (ϕt(yc))‖dt ≤ R. (36)

In particular, if
∫ h
0
‖πv,xF (ϕt(yc))‖dt ≥ R, then exists y1 and h0 < h such that ‖y1 − yc‖ = R

and y1 = yc +
∫ h0

0
F (ϕt(yc))dt. By mean value theorem, this implies that exist y ∈ UR,0.2(yc)

such that ‖πv,xF (y)‖ > C(E(yc)+1)(L+M+1)
tc

, which contradicts Lemma 10.

Therefore we proved that
ϕh(yc) ∈ UR,0.2(yc). (37)

The result in Lemma 8 shows that ϕh(yc) and Φh(yc) remain in the set UR,0.2(yc). In addition, we
can bound the operator norm of ∇(i)f in B(xc, R) by Lemma 9. Since ∂qϕh(yc)

∂hq is a function of
∇(i)f , we can show in Lemma 11 that the (s + 1)th derivative of ϕh(yc) and Φh(yc) are bounded
above by ∥∥∥∥∂qϕh(yc)

∂hq

∥∥∥∥ ≤ C0[E(yc) + 1]q(L+M + 1)q

tc
, (38)

and∥∥∥∥∂qΦh(yc)

∂hq

∥∥∥∥ ≤ C1[1 + E(yc)]
q(L+M + 1)q + C2h[1 + E(yc)]

q+1(L+M + 1)p+1

tc
. (39)

Since the integrator has order s, we can write

∂i

∂hi
[Φh(yk)− ϕh(yk)] = 0 for i = 1, ..., s. (40)

13

Therefore, the difference between the true solution ϕh(yc) defined by the ODE and the point Φh(yc)
generated by the integrator can be upper bounded by

‖Φh(yc)− ϕh(yc)‖ ≤
(∥∥∥∥∂s+1ϕh(yk)

∂hs+1

∥∥∥∥+

∥∥∥∥∂s+1Φh(yk)

∂hs+1

∥∥∥∥)hs+1 (41)

Replacing the norms on the right hand side of (41) by their upper bounds in (38) and (39) implies
that

‖Φh(yc)− ϕh(yc)‖ ≤ hs+1

[
(C0 + C1)[E(yc) + 1]s+1(M + L+ 1)s+1

tc

]
+ hs+2

[
C2[1 + E(yc)]

s+2(M + L+ 1)s+2

tc

]
. (42)

By replacing yc = [vc;xc; tc] in (42) by yk = [vk;xk; tk] the claim in (18) follows.

C Proof of Proposition 7 (Analysis of discrete Lyapunov functions)

As defined earlier in Section 4, Φh(yk) is the solution generated by the numerical integrator, and
ϕh(yk) is a point on the trajectory of the ODE. yc = [~0;xc; 1] is the initial point of the ODE. Recall
that {yk}Ni=0 is the sequence of points produced by the numerical integrator, i.e., yk+1 = Φh(yk).

To simplify the notation, we let Ek = E(yk), Ek+1 = E(Φh(yk)), ỹ = ϕh(yk) = [ṽ; x̃; t + h],
ŷ = Φh(yk) = [v̂; x̂; t+ h].

We want to prove by induction on k = 0, 1, ..., N that

Ek ≤ (1 +
1

N
)kE0 +

k

N
. (43)

The base case E0 ≤ E0 is trivial. Now let’s assume by induction that the inequality in (43) holds
for k = j, i.e.,

Ej ≤ (1 +
1

N
)jE0 +

j

N
. (44)

By this assumption, we know that f(xk) ≤ eE0+1
tpk

≤ eE0 + 1 and hence xk ∈ S defined in (2).

Note that R = 1
tk
≤ 1. We then have

B(xk, R) ⊆ B(xk, 1) ∈ A (45)

for A defined in (3). By assumption in Proposition 5,

h ≤ 0.2, h ≤ 1

(1 + κ)C(eE0 + 2)(L+M + 1)
. (46)

By utilizing the bound on ‖Φh(yk) − ϕh(yk)‖ and the continuity of E(y), we show in Lemma 13
that the discretization error of ‖E(ŷ)− E(ỹ)‖ is upper bounded by

‖E(Φh(yk))− E(ϕh(yk))‖ (47)

≤ C ′hs+1[(1 + Ek)s+1(L+M + 1)s+1+ h(1 + Ek)s+2(L+M + 1)s+2](Ek + Ek+1 + 1),

under conditions in (45) and (46). C ′ only depends on p, s and the numerical integrator.

We proceed to prove the inductive step. Start by writing Ek+1 = E(Φh(yk)) as

E(Φh(yk)) = E(yk) + E(ϕh(yk))− E(yk) + E(Φh(yk))− E(ϕh(yk)). (48)

According to Proposition 5, E(ϕh(yk))− E(yk) ≤ 0. Therefore,

Ek+1 ≤ Ek + ‖E(ŷ)− E(ỹ)‖. (49)

Replace the norm ‖E(ŷ)− E(ỹ)‖ = ‖E(Φh(yk))− E(ϕh(yk))‖ by its upper bound (47) to obtain

Ej+1 ≤ Ej+Chs+1[(1+Ej)
s+1(L+M+1)s+1+h(1+Ej)

s+2(L+M+1)s+2](Ej+Ej+1+1).
(50)

14

Before proving the inductive step, we need to ensure that the step size h is sufficiently small. Here,
we further add two more j-independent conditions on the choice of step size h. In particular, we
assume that

h ≤ 1

eE0 + 2
, hs+1 ≤ 1

3(1 + C−1)C ′N(eE0 + 2)s+1(L+M + 1)s+1
. (51)

Note that since we want show the claim in (43) for k = 1, . . . , N , in inductive assumptions we have
that j ≤ N − 1. Now we proceed to show that if the inequality in (43) holds for k = j it also holds
for k = j + 1. By setting k = j in (50) we obtain that

Ej+1 ≤ Ej+C ′hs+1(1+Ej)
s+1(L+M+1)s+1[1+h(1+Ej)(L+M+1)](Ej+Ej+1+1). (52)

Using the assumption of induction in (44) we can obtain that Ej ≤ eE0 + 1 by setting j = n in the
right hand side. Using this inequality and the second condition in (46), we can write

h ≤ 1

C(eE0 + 2)(L+M + 1)
≤ 1

C(Ej + 1)(L+M + 1)
(53)

Using this expression we can simplify (52) to
Ej+1 ≤ Ej + (1 + C−1)C ′hs+1(1 + Ej)

s+1(L+M + 1)s+1(Ej + Ej+1 + 1). (54)
We can further show that

(1 + C−1)C ′hs+1(1 + Ej)
s+1(L+M + 1)s+1

≤ (1 + C−1)C ′hs+1(2 + eE0)s+1(L+M + 1)s+1 ≤ 1

3N
, (55)

where the first inequality holds since Ej ≤ eE0 + 1 and the second inequality holds due to the
second condition in (51). Simplifying the right hand side of (54) using the upper bound (55) leads
to

Ej+1 ≤ Ej +
1

3N
(Ej + Ej+1 + 1). (56)

Regroup the terms in (56) to obtain that Ej+1 is upper bounded by

Ej+1 ≤
(

1 + 1
3N

1− 1
3N

)
Ej +

1

3N − 1
(57)

Now replace Ej by its upper bound in (44) to obtain

Ej+1 ≤
(

1 + 1
3N

1− 1
3N

)((
1 +

1

N

)j
E0 +

j

N

)
+

1

3N − 1

=

(
1 + 1

3N

1− 1
3N

)(
1 +

1

N

)j
E0 +

(
1 + 1

3N

1− 1
3N

)
j

N
+

1

3N − 1

=

(
3N + 1

3N − 1

)(
1 +

1

N

)j
E0 +

(
3N + 1

3N − 1

)
j

N
+

1

3N − 1

≤
(

1 +
1

N

)j+1

E0 +

(
3N + 1

3N − 1

)
j

N
+

1

3N − 1
, (58)

where the first inequality holds since 3N+1
3N−1 ≤

N+1
N and the last inequality follows from 1+ 2

3N−1 ≥
1 + 1

N . Further, we can show that(
3N + 1

3N − 1

)
j

N
+

1

3N − 1
=

(
1 +

2

3N − 1

)
j

N
+

1

3N − 1

=
j

N
+

(
2

3N − 1

)
j

N
+

1

3N − 1

≤ j

N
+

(
2

3N − 1

)
N − 1

N
+

1

3N − 1

=
j

N
+

1

N

(
3N − 2

3N − 1

)
≤ j + 1

N
, (59)

15

where in the first inequality we use the fact that j ≤ N − 1. Using the inequalities in (58) and (59)
we can conclude that

Ej+1 ≤
(

1 +
1

N

)j+1

E0 +
j + 1

N
, (60)

Therefore, the inequality in (43) is also true for k = j + 1. The proof is complete by induction and
we can write

EN ≤ eE0 + 1. (61)
Now if we reconsider the conditions on h in (46) and (51), we can conclude that there exists a
constant C̃ that is determined by p, s and the numerical integrator, such that

h ≤ C̃ N−1/(s+1)

(L+M + 1)(eE0 + 1)
, (62)

satisfies all the inequalities in (46) and (51).

D Bounding operator norms of derivatives and discretization errors of
Lyapunov functions

Lemma 9. Given state yc = [vc;xc; tc] with tc ≥ 1 and the radius R = 1
tc

, if B(xc, R) ⊆ A
(defined in (3)) and hence Assumptions 1,2 hold, then for all y ∈ UR,0.2(yc) we can write

‖∇(i)f(x)‖ ≤ p(M + L+ 1)
E(yc) + 1

tp−ic

. (63)

Proof. Based on Assumption 2, we know that

‖∇(p)f(x)‖ ≤M. (64)

We further can show that the norm ‖∇(p−1)f(x)‖ is upper hounded by

‖∇(p−1)f(x)‖ = ‖∇(p−1)f(xc) +∇(p−1)f(x)−∇(p−1)f(xc)‖
≤ ‖∇(p−1)f(xc)‖+ ‖∇(p−1)f(x)−∇(p−1)f(xc)‖ (65)

Using the bound in (64) and the mean value theorem we can show that ‖∇(p−1)f(x) −
∇(p−1)f(xc)‖ ≤ M‖x − xc‖ ≤ MR, where the last inequality follows from y ∈ UR,0.2(yc).
Applying this substitution into (65) implies that

‖∇(p−1)f(x)‖ ≤ ‖∇(p−1)f(xc)‖+MR

≤ [L(f(xc)− f(x∗))]
1
p +MR, (66)

where the first inequality holds due to definition of operator norms and the last inequality holds due
to the condition in Assumption 1. By following the same steps one can show that

‖∇(p−2)f(x)‖ ≤ [L(f(xc)− f(x∗))]
2
p +R[[L(f(xc)− f(x∗))]

1
p +MR] (67)

By iteratively applying this procedure we obtain that if y = [x; v; t] ∈ R2d+1 belongs to the set
UR,0.2(yc), then we have

‖∇(i)f(x)‖ ≤MRp−i +

p−1∑
j=i

[L(f(xc)− f(x∗))]
p−j
p Rj−i. (68)

Notice that since p−j
p ≤ 1 for j = 1, . . . , p − 1, it follows that we can write L

p−j
p ≤ 1 + L.

Moreover, the definition of the Lyapunov function E in (16) implies that

[f(xc)− f(x∗)]
p−j
p ≤ E(yc)

p−j
p

tp−jc

≤ 1 + E(yc)

tp−jc

(69)

16

where the last inequality follows from the fact that E(yc)
p−j
p ≤ 1 + E(yc) for j = 1, . . . , p − 1.

Therefore, we can simplify the upper bound in (68) by

‖∇(i)f(x)‖ ≤MRp−i +

p∑
j=i

(1 + L)(1 + E(yc))

tp−jc

Rj−i. (70)

By replacing the radius R with 1/tc we obtain that

‖∇(i)f(x)‖ ≤ M

tp−ic

+

p∑
j=i

(1 + L)(1 + E(yc))

tp−ic

=
M + p(1 + L)(1 + E(yc))

tp−ic

(71)

As the Lyapunov function E(yc) is always non-negative, we can write M ≤ Mp(1 + E(yc)). Ap-
plying this substitution into (71) yields

‖∇(i)f(x)‖ ≤ p(L+M + 1)(1 + E(yc))

tp−ic

, (72)

and the claim in (63) follows.

Lemma 10. If B(xc, R) ⊆ A (defined in (3)) and hence Assumptions 1 and 2 hold, there exists a
constant C determined by p such that, ∀y ∈ UR,0.2(yc) where yc = [vc;xc; tc], tc ≥ 1 and R = 1

tc
,

we have

‖πx,vF (y)‖ =≤ C(E(yc) + 1)(L+M + 1)

tc
. (73)

Proof. According to Lemma 9, we can write that

‖∇f(x)‖ ≤ p(M + L+ 1)
E(yc) + 1

tp−1c

. (74)

Further, the definition of the Lyapunov function in (16) implies that

‖vc‖ ≤
2pE(yc)

0.5

tc
. (75)

Since y ∈ UR,0.2(yc), we have that
|t− tc| ≤ 0.2, ‖v − vc‖ ≤ R, ‖x− xc‖ ≤ R. (76)

Further, based on the dynamical system in (12), we can write

‖πx,vF (y)‖ =

∥∥∥∥[− 2p+1
t v − p2tp−2∇f(x)

v

]∥∥∥∥
≤ 2p+ 1

t
‖v‖+ ‖p2tp−2∇f(x)‖+ ‖v‖

≤
(

2p+ 1

t
+ 1

)
(‖vc‖+ ‖vc − v‖) + p2tp−2‖∇f(x)‖, (77)

where the first inequality is obtained by using the property of norm, and in the last one we use the
triangle inequality. Note that according to (76) we have t ≥ tc − 0.2. Since tc ≥ 1 it implies that
t ≥ 0.8tc. In addition we can also show that t ≤ tc + 0.2 ≤ 1.2tc. Applying these bounds into (77)
yields

‖πx,vF (y)‖ ≤
(
p+ 1

0.8tc
+ 1

)
(‖vc‖+ ‖vc − v‖) + (1.2)p−2p2tp−2c ‖∇f(x)‖ (78)

Replace ‖∇f(x)‖, ‖vc‖, and ‖vc − v‖ in (78) by their upper bounds in (74), (75), and (76), respec-
tively, to obtain

‖πx,vF (y)‖ ≤
(
p+ 1

0.8tc
+ 1

)(
2pE(yc)

0.5

tc
+R

)
+ (1.2)p−2p3(M + L+ 1)

E(yc) + 1

tc

≤
(
p+ 1

0.8tc
+ 1

)(
2p(E(yc) + 1) + 1

tc

)
+ (1.2)p−2p3(M + L+ 1)

E(yc) + 1

tc
, (79)

17

where in the second inequality we replace R by 1/tc and E(yc)
0.5 by its upper bound E(yc) + 1.

Considering that tc ≥ 1 and the result in (79) w obtain that there exists a constant C such that

‖πx,vF (y)‖ ≤ C(E(yc) + 1)(L+M + 1)

tc
, (80)

where C only depends on p.

Lemma 11. Given state yc = [vc, xc, tc] with tc ≥ 1, let R = 1
tc

. If B(xc, R) ⊆ A (defined in (3))
and hence Assumptions 1,2 hold, then when h ≤ min{0.2, 1

(1+κ)C(E(yc)+1)(L+M+1)}, we have

∥∥∥∥∂qϕh(yc)

∂hq

∥∥∥∥ ≤ C0[E(yc) + 1]q(L+M + 1)q

tc
, (81)

and∥∥∥∥∂qΦh(yc)

∂hq

∥∥∥∥ ≤ C1[1 + E(yc)]
q(L+M + 1)q + C2h[1 + E(yc)]

q+1(L+M + 1)p+1

tc
, (82)

where C and κ are the same constants as in Lemma 10. Further, the constants C1, C2, C3 are
determined by p, q, and the integrator.

Remark 12. In the proof below, we reuse variants of symbol C(e.g.C1, C2, C̃) to hide constants de-
termined by p, q and the integrator. We recommend readers to focus on the degree of the polynomials
in (L+M + 1), E(yc), h, tc, and check that the rest can be upper-bounded by variants of symbol C.
We frequently use two tricks in this section. First, for a ∈ (0, 1), we can bound

ca ≤ c+ 1 (83)

Second, note that given tc ≥ 1,for any n > 0, there exist constants C1, C2, C3 determined by n such
that for all t subject to |t− tc| ≤ 0.2,

1

tn
≤ C1

tnc
≤ C2t

n ≤ C3t
n
c (84)

Proof. Notice that the system dynamic function F : R2d+1 → R2d+1 in Equation (12) is a vec-
tor valued multivariate function. We denote its ith order derivatives by ∇(i)F (y), which is a
(2d+ 1)× . . .×(2d+ 1)︸ ︷︷ ︸

i+1 times

tensor. The tensor is symmetric by continuity and Schwartz theorem. As

a shorthand, we use∇(i)F to denote∇(i)F (y). We know that y(i) = F (i−1)(y) = ∂iy
∂ti . Notice that

F (i−1)(y) is a vector. As an example, we can write

y(1) =F

y(2) =F (1) = ∇F (F)

y(3) =F (2) = ∇(2)F (F, F) +∇F (∇F (F)). (85)

The derivative∇(i)F (y) can be interpreted as a linear map: ∇(i)F : R2d+1× . . .×R2d+1︸ ︷︷ ︸
i times

→ R2d+1.

∇(2)F (F1, F2) maps F1, F2 to some element in R2d+1. Enumerating the expressions will soon get
very complicated. However, we can express them compactly with elementary differentials summa-
rized in Appendix E (see Chapter 3.1 in Hairer et al. [2006] for details).

18

First we bound ∇(i)F by explicitly computing its entries. Let a(t) = p2tp−2 and b(t) = 2p+1
t .

Based on the definition in (12), we obtain that

∂k+1F

∂v∂tk
=

−b(k)(t)II(k)

0

 , ∂kF

∂tk
=

−b(k)(t)v − a(k)(t)∇f(x)
0
0

 ,
∂i+kF

∂xi∂tk
=

−a(k)(t)∇i+1f(x)
0
0

 , ∂iF

∂xi
=

−a(t)∇i+1f(x)
0
0

 ,
∂i+jF

∂vj∂xi
=0,

∂F

∂v
=

 2p+1
t I
I
0

 , ∂jF

∂vj
= 0, j ≥ 2. (86)

(87)

For any vector y = [v;x; t] ∈ UR,0.2(yc), we can show that the norm of∇(n)F is upper bounded by

‖∇(n)F (F1, F2, ..., Fn)‖ ≤ ‖a(t)∇(n+1)f(x)‖
∏
i∈[n]

‖πxFi‖

+ ‖b(n)(t)v + a(n)(t)∇f(x)‖
∏
i∈[n]

‖πtFi‖

+

n−1∑
k≥1

∑
S⊂[n]
|S|=k

‖a(k)(t)∇(n−k+1)f(x)‖

[∏
s∈S
‖πtFs‖

] ∏
s′∈[n]/S

‖πxFs′‖

+
∑
i∈[n]

‖b(n−1)(t) + 1‖‖πvFi‖
∏
j 6=i

‖πtFj‖. (88)

Using the definition of the Lyapunov function E and the definition of the set UR,0.2(yc) it can be
shown that

‖vc‖ ≤
E(yc)

0.5

tc
≤ E(yc) + 1

tc
, tc ≥ 1, |t− tc| ≤ 0.2, ‖v − vc‖ ≤ R. (89)

Further, the result in Lemma 9 implies that

‖∇(i)f(x)‖ ≤ p(M + L+ 1)
E(yc) + 1

tp−ic

. (90)

Substituting the upper bounds in (89) and (90) into (88) implies that for n = 1, . . . , p we can write

‖∇(n)F (F1, F2, ..., Fn)‖

≤ C1(M + L+ 1)[E(yc) + 1]tn−1c

∏
i∈[n]

‖πxFi‖

+ C2(M + L+ 1) [E(yc) + 1] t−n−1c

∏
i∈[n]

‖πtFi‖

+ C3(M + L+ 1)

p−1∑
k≥1

[E(Fc) + 1] tn−2k−1c

∑
S⊂[n]
|S|=k

[∏
s∈S
‖πtFs‖

] ∏
s′∈[n]/S

‖πxFs′‖

+ C4

∑
i∈[n]

[
1 +

1

tnc

]
‖πvFi‖

∏
j 6=i

‖πtFj‖, (91)

where C1, C2, C3, and C4 only depend on n and p.

19

For n = p, p + 1, ..., s, we can get similar bounds. To do so, not only we use the result in (90), but
also we use the bounds guaranteed by Assumption 2. Hence, for n = p, p+ 1, ..., s it holds

‖∇(n)F (F1, F2, ..., Fn)‖

≤ C1Mtp−2c

∏
i∈[n]

‖πxFi‖

+ C2(M + L+ 1)[E(yc) + 1]t−n−1c

∏
i∈[n]

‖πtFi‖

+ C3

p−1∑
k≥1

(M + L+ 1)[E(yc) + 1]tp−k−2c

∑
S⊂[n]
|S|=k

[∏
s∈S
‖πtFs‖

] ∏
s′∈[n]/S

‖πxFs′‖

+ C4

∑
i∈[n]

[
1 +

1

tnc

]
‖πvFi‖

∏
j 6=i

‖πtFj‖. (92)

Finally we are ready to bound the time derivatives. We first bound the elementary differentials F (τ)
defined in Section E Definition 2. Let F (τ) = F (τ)(y) for convenience. We claim that when
|τ | ≤ q, then ∀y ∈ UR,0.2(yc)

‖πtF (τ)‖ ≤ 1, ‖πv,xF (τ)‖ ≤ C|τ |(L+M + 1)|τ |
[E(yc) + 1]|τ |

tc
, (93)

where the constant Cq only depends on p and q. We use induction to prove the claims in (93).
The base case is trivial as we have shown in Lemma 10 that ‖πx,vF (•)(y)‖ = ‖πx,vF (y)‖ ≤
C(E(yc)+1)(L+M)

tc
, and ‖πtF (•)(y)‖ = ‖πtF (y)‖ = 1. Since the last coordinate grows linearly

with rate 1 no matter what x, v are, it can be shown that

πtF (τ)(y) = 0, ∀|τ | ≥ 2. (94)

We hence focus on proving the upper bound for the norm ‖πx,vF (τ)(y)‖ in (93).

Now assume |τ | = q and it has m subtrees attached to the root, τ = [τ1, ..., τm] with
∑m
i=1 |τi| =

q − 1. When m ≤ p− 1, by (91) we obtain

‖∇(m)F (F (τ1), ..., F (τm))‖

≤ C1[(M + L+ 1)(E(yc) + 1)]tm−1c

∏
i∈[m]

‖πxF (τi)‖

+ C2(M + L+ 1)[E(yc) + 1]t−m−1c

∏
i∈[m]

‖πtF (τi)‖

+ C3

m−1∑
k≥1

[(M + L+ 1)(E(yc) + 1)1]tm−2k−1c

∑
S⊂[m]
|S|=k

[∏
s∈S
‖πtF (τs)‖

] ∏
s′∈[m]/S

‖πxF (τs′)‖

+ C4

∑
i∈[m]

[
1 +

1

tnc

]
‖πvF (τi)‖

∏
j 6=i

‖πtF (τj)‖. (95)

Notice that |τi| ≤ q − 1. By inductive assumption in (93) we can write

‖πtF (τi)‖ ≤ 1 for all i = 1 . . . ,m (96)∏
i∈S
‖πv,xF (τi)‖ ≤ Cn(L+M + 1)n

[E(yc) + 1]n

t
|S|
c

, where n =
∑
i

|τi|. (97)

Apply these substitutions into (95) to and use the inequality
∑
i |τi| ≤ q − 1 to obtain that

‖∇(m)F (F (τ1), ..., F (τm))‖ ≤ Cq
[E(yc) + 1]q(M + L+ 1)q

tc
. (98)

20

Hence, since ‖πx,vF (τ)‖ ≤ ‖∇(m)F (F (τ1), ..., F (τm))‖ we obtain that

‖πx,vF (τ)‖ ≤ Cq
[E(yc) + 1]q(M + L+ 1)q

tc
. (99)

Similarly, for m ≥ p, by (92) we can write

‖∇(m)F (F (τ1), ..., F (τm))‖

≤ C1Mtp−2c

∏
i∈[m]

‖πxF (τi)‖

+ C2(M + L+ 1)[E(yc) + 1]t−n−1
∏
i∈[n]

‖πtF (τi)‖

+ C3

m−1∑
k≥1

[(M + L+ 1)(E(yc) + 1)1]tp−k−2c

∑
S⊂[m]
|S|=k

[∏
s∈S
‖πtF (τs)‖

] ∏
s′∈[m]/S

‖πxF (τs′)‖

+ C4

∑
i∈[m]

[
1 +

1

tnc

]
‖πvF (τi)‖

∏
j 6=i

‖πtF (τj)‖. (100)

Plug in the induction assumption in (93) into (100) to obtain

‖πx,vF (τ)‖ ≤ ‖∇(m)F (F (τ1), ..., F (τm))‖ ≤ Cq
[E(yc) + 1]q(M + L+ 1)q

tc
. (101)

Hence, the proof is complete by induction.

Now we proceed to derive an upper bound for higher order time derivatives. By Lemma 14 we can
write

‖∂
qϕh(yc)

∂hq
‖ = ‖F (q−1)(ϕh(yc))‖ = ‖

∑
|τ |=q

α(τ)F (τ)(ϕh(yc))‖.

By Lemma 10, we know that when h ≤ min{0.2, 1
(1+κ)C(E(yc)+1)(M+L)}, y ∈ UR,0.2(yc). There-

fore, (101) holds. Hence, there exists a constant C determined by p, q such that

‖∂
qϕh(yc)

∂hq
‖ ≤ C[E(yc) + 1]q(M + L+ 1)q

tc
.

Similarly by Lemma 15, we have the following equation

∂qΦh(yc)

∂hq
=
∑
i≤S

bi[h
∂qF (gi)

∂hq
+ q

∂q−1F (gi)

∂hq
]

Here, ∂
qF (gi)
∂hq has the same recursive tree structure as F (q)(y), except that we need to replace all F

in the expression by ∂gi
∂h and all∇(n)F (y) by∇(n)F (gi). By Definition 1 and Lemma 10, we know

that

‖πx,v∂gi
∂h

‖ ≤
∑
j≤i−1

|aij |
C(E(yc) + 1)(M + L+ 1)

tc
, ‖πt∂gi

∂h
‖ = |

∑
j≤i−1

aij |.

We also know by lemma 10 that ∀i, gi ∈ UR,0.2(yc). Hence the bounds for ‖∇(n)F (y)‖ also
holds for ∇(n)F (gi). Therefore, by the same argument as for bounding ‖∂

qϕh(yc)
∂hq ‖, we will get

same bounds for ‖∂
qF (gi)
∂hq ‖ up to a constant factor determined by the integrator. Based on this, we

conclude that

‖∂
qΦh(yc)

∂hq
‖ ≤ C[(L+M + 1)(1 + E(yc))]

q + C ′h[(L+M + 1)(1 + E(yc))]
(q+1)

tc
,

where the constants are determined by p, q and the integrator.

21

Lemma 13. Suppose the conditions in Proposition 6 hold. Then, we have that
‖E(Φh(yk))− E(ϕh(yk))‖
≤ Chs+1[(1 + Ek)s+1(L+M + 1)s+1 + h(1 + Ek)s+2(L+M + 1)s+2](Ek + Ek+1 + 1),

(102)
where C only depends on p, s and the numerical integrator.

Proof. Denote ŷ = Φh(yk), ỹ = ϕh(yk). Notice that t̃ = t̂ = tk + h. In fact, because we start the
simulation at tc = 1 and we require that h ≤ 0.2, we have

tk

t̃
=

tk
tk + h

∈
[

5

6
, 1

]
. (103)

Now using the definition of the Lyapunov function E we can show that

‖E(ŷ)− E(ỹ)‖ ≤ t̃2

4p2
∣∣‖ṽ‖2 − ‖v̂‖2∣∣+

∣∣∣∣‖x̃+
t̃

2p
ṽ − x∗‖2 − ‖x̂+

t̂

2p
v̂ − x∗‖2

∣∣∣∣+ t̃p(|f(x̃)− f(x̂)|)

≤ 2t̂2

4p2
(‖ṽ − v̂‖‖ṽ + v̂‖) + t̃p(‖x̃− x̂‖)(‖∇f(x̃)‖+ ‖∇f(x̂)‖)

+ 2

∥∥∥∥x̃− x̂+
t̃

2p
(ṽ − v̂)

∥∥∥∥∥∥∥∥x̃+
t̃

2p
ṽ − x∗ + x̂+

t̂

2p
v̂ − x∗

∥∥∥∥ , (104)

where to derive the second inequality we used the convexity of the function f which implies

〈y − x,∇f(y)〉 ≤ f(x)− f(y) ≤ 〈x− y,∇f(x)〉. (105)

Recall that Ek = E(yk), Ek+1 = E(ŷ) = E(Φh(yk)), Ẽk+1 = E(ỹ) = E(ϕh(yk)). According to
Proposition 5 we know that Ẽk+1 ≤ Ek, and therefore Ẽk+1 is upper bounded by Ek. Therefore,
we can write

‖ṽ‖ ≤

√
Ẽk+1

t̃
≤
√
Ek

t̃
≤ Ek + 1

t̃
, ‖v̂‖ ≤ Ek+1 + 1

t̂
,∥∥∥∥x̃+

t̃

2p
ṽ − x∗

∥∥∥∥ ≤√Ek ≤ Ek + 1,

∥∥∥∥x̂+
t̂

2p
v̂ − x∗

∥∥∥∥ ≤ Ek+1 + 1. (106)

Further, by Assumption 1, we have that

‖∇f(x̃)‖ ≤ L(Ek + 1)

t̃p−1
, ‖∇f(x̂)‖ ≤ L(f(x̂)− f(x∗))

p−1
p ≤ L(

Ek+1

t̂p
)

p−1
p ≤ L(Ek+1 + 1)

t̂p−1
.

(107)
In addition, by Proposition 6, we know that for some constant C determined by p, s, L,M and the
integrator, it holds

max{‖ṽ − v̂‖, ‖x̃− x̂‖}

≤ Chs+1

[
[1 + E(yk)]s+1(L+M + 1)s+1

tk
+ h

[1 + E(yk)]s+2(L+M + 1)s+2

tk

]
. (108)

Define M := [[1+E(yk)]
s+1(L+M+1)s+1

tk
+ h [1+E(yk)]s+2(L+M+1)s+2

tk
]. Use the upper bounds in

(106)-(108) and the definition ofM to simplify the right hand side of (104) to

‖E(ŷ)− E(ỹ)‖ ≤ 2t̃2

4p2
Chs+1MEk + Ek+1 + 2

t̃
+ t̃pChs+1ML(Ek+1 + Ek + 2)

t̃p−1

+ 2

(
1 +

tk
2p

)
Chs+1M(Ek + Ek+1 + 2). (109)

Now use the fact that tk
t̃

is bounded by a constant as shown (103). Further, upper bound all the
constants determined by s, p and the numerical integrator, we obtain that
‖E(ŷ)− E(ỹ)‖
≤ C ′hs+1[(1 + Ek)s+1(L+M + 1)s+1 + h(1 + Ek)s+2(L+M + 1)s+2](Ek + Ek+1 + 1),

(110)
and the claim in (102) follows.

22

Figure 4: A figure adapted from Hairer et al. [2006]. Example tree structures and corresponding
function derivatives.

E Elementary differentials

We briefly summarize some key results on elementary differentials from Hairer et al. [2006]. For
more details, please refer to chapter 3 of the book. Given a dynamical system

ẏ = F (y)

we want to find a convenient way to express and compute its higher order derivatives. To do this,
let τ denote a tree structure as illustrated in Figure 4. |τ | is the number of nodes in τ . Then we can
adopt the following notations as in Hairer et al. [2006]
Definition 2. For a tree τ , the elementary differential is a mapping F (τ) : Rd → Rd, defined
recursively by F (•)(y) = F (y) and

F (τ) = ∇(m)F (y)(F (τ1)(y), ..., F (τm)(y))

for τ = [τ1, ..., τm]. Notice that
∑m
i=1 |τi| = |τ | − 1.

Some examples are shown in Figure 4. With this notation, the following results from Hairer et al.
[2006] Chapter 3.1 hold. The proof follows by recursively applying the product rule.
Lemma 14. The qth order derivative of the exact solution to ẏ = F (y) is given by

y(q)(tc) = F (q−1)(yc) =
∑
|τ |=q

α(τ)F (τ)(yc)

for y(tc) = yc. α(τ) is a positive integer determined by τ and counts the number of occurrences of
the tree pattern τ .

The next result is obtained by Leibniz rule. The expression for ∂qF (gi)
∂hq can be calculated the same

way as in Lemma 14.
Lemma 15. For a Runge-Kutta method defined in definition 1, if F is qth differentiable, then

∂qΦh(yc)

∂hq
=
∑
i≤S

bi[h
∂qF (gi)

∂hq
+ q

∂q−1F (gi)

∂hq
] (111)

where ∂qF (gi)
∂hq has the same structure as F (q)(y) in lemma 14, except that we need to replace all F

in the expression by ∂gi
∂h and all∇(n)F (y) by∇(n)F (gi).

23

On Increasing Self-Confidence in Non-Bayesian Social Learning
over Time-Varying Directed Graphs

César A. Uribe and Ali Jadbabaie

Abstract— We study the convergence of the log-linear non-
Bayesian social learning update rule, for a group of agents that
collectively seek to identify a parameter that best describes a
joint sequence of observations. Contrary to recent literature,
we focus on the case where agents assign decaying weights
to its neighbors, and the network is not connected at every
time instant but over some finite time intervals. We provide a
necessary and sufficient condition for the rate at which agents
decrease the weights and still guarantees social learning.

I. INTRODUCTION

The theory of non-Bayesian social learning [1] has gained
increasing attention in recent years for its ability to pro-
vide simple and practical models for inference in complex
environments where a large number of decision makers
repeatedly interact over some network structure. In contrast
to a fully rational approach, where agents incorporate new
information in a Bayesian manner, the non-Bayesian social
learning model assumes agents use some other functional
form to aggregate its information and construct new be-
liefs [2]. Some examples of these aggregation schemes build
upon classical results on linear [3] and log-linear models [4].

The basic non-Bayesian social learning model assumes a
group of agents tries to identify the state of the world via
sequentially receiving information about an unknown state,
and communicating with other agents in their social clique.
Moreover, agents incorporate the received information using
some social learning rule [1], [2]. A group is said to achieve
social learning if all agents can identify the state of the world
even if their local private signals do not provide sufficient
information. For a summary of some of the recent results in
non-Bayesian social learning see [5].

One of the enabling tools for the study of non-Bayesian
social learning is the analysis of distributed averaging algo-
rithms [6], [7], [8]. Therefore, most of the existing results
about the convergence of beliefs in social learning inherit
some requirements about the connectivity of the network and
the persistence of weights an agent assigns to its neighbors.
In terms of graph connectivity, a group of agents following
log-linear update rules has been shown to be able to learn the
unknown state parameter for fixed undirected graphs [2], [9],
fixed directed graphs, time-varying undirected graphs [10],
time-varying directed graphs [11]. In terms of graph con-
nectivity, uniform connectivity has been shown sufficient for

This research was supported in part by DARPA Lagrange and a Vannevar
Bush Fellowship.

The authors are with the Laboratory for Information and Decision
Systems (LIDS), and the Institute for Data, Systems, and Society (IDSS),
Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge,
MA 02139 {cauribe,jadbabai}@mit.edu

social learning [11]. However, the central assumption in most
of the previous results is that the weight an agent assigns
to a neighbor at any time instant is lower bounded by some
positive constant. This implies that, although the graph might
change with time, the links are persistent and its effects do
not decay with time.

The assumption of the existence of lower bounds on
the weights for time-varying graphs poses some structural
constraints that ease the convergence analysis of the ag-
gregating schemes. However, recent approaches pose the
question of increasing self-confidence, where an agent grad-
ually increases its self-weights and at the same time assigns
a decaying weight to its neighbors [12]. Such behavior
is justified by the intuition that an agent might become
more and more confident in its own opinion as aggregates
more information [12]. Also, one might consider agents that
assume only they are becoming more informed over time,
while others are not [13]. An increasing self-confidence
implies that an agent will assign a zero weight to the opinion
of its neighbors eventually.

In [13], the authors provided a condition for the rate
at which the weights decay such that social learning is
guaranteed for fixed graphs. In [1] this result was extended to
time-varying graphs that are connected at each time instant.
In [12], the authors considered a fixed rate of decay of
O(1/k) and showed learning is achieved for both fixed and
time-varying graphs that are always connected. Other authors
have considered the phenomena of asymptotic isolation of
agents in a network assuming the intervals of intercommu-
nication between them increase with time [14], [15].

In this paper, we generalize existing results and provide the
conditions for which social learning happens, even if agents
have an increasing self-confidence or decaying weights for
a uniform strongly connected sequences of graphs, that is,
sequences of graphs that might not be connected at each time
instant but over finite periods of time. Also, we show that
this result is tight by providing a necessary condition for
social learning, on the rate at which the weights decay. If
such condition does not hold, one cannot guarantee learning
occurs for general sequences of uniformly connected graphs.
This result is of independent interests for the literature of
average consensus and distributed optimization, as it provides
a condition to guarantee that consensus is achieved even if
the weight matrices do not have lower bounded non-zero
entries.

This paper is organized as follows. Section II presents
the problem of non-Bayesian social learning. Also, we recall
some basic definitions and assumptions, and state our main

ar
X

iv
:1

81
2.

09
81

9v
1

 [
m

at
h.

O
C

]
 2

4
D

ec
 2

01
8

result. Section III shows the proof our main results, and intro-
duce some auxiliary technical lemmas. Section V extends the
main result to the case of agents with conflicting hypotheses.
Section IV presents a converse result, where we show a
necessary condition to guarantee social learning. Section VI
presents a numerical example that validates our theoretical
results. Finally, Section VII presents some conclusions and
future work.

Notation: Random variables are represented as upper case
letters, i.e. X , whereas their realizations as its corresponding
lower case, i.e. x. Subscripts will denote time indices and
make use of the letter k. Agent indices are represented
as superscripts and use the letters i or j. The i-th row
and j-th column entry of a matrix A is denoted as [A]ij .
Moreover, for a sequence of matrices {Ak} we denote
Ak:t = AkAk−1 · · ·At+1At for k ≥ t. We use a.s. to refer
to almost sure convergence.

II. PROBLEM FORMULATION AND RESULTS
Consider a set of n agents, denoted by V = {1, . . . , n},

who seek to learn a fixed underlying and unknown state of
the world by sequentially observing realizations from a set
of random variables. Particularly, at each time step k ≥ 0,
each agent i receives an independent (in time and among
the agents) private realization of a finite random variable
Xi
k ∼ P i, where we assume P i has full support over

the realizations of Xi
k. Moreover, each agent has a private

parametrized family of distributions PiΘ = {P iθ} for θ ∈ Θ,
where Θ = {θ1, . . . , θp} is a finite set. We will generally
refer to Θ as the set of hypotheses. The group objective is to
find a parameter θ ∈ Θ that solves the following optimization
problem

min
θ∈Θ

n∑
i=1

DKL(P i‖P iθ), (1)

where DKL(P i‖P iθ) is the Kullback-Leibler (KL) divergence
between the distribution P i and P iθ . In words, the group
of agents tries to identify a member of their joint param-
eter space such that it generates a probability distribution∏i
i=1 P

i
θ that minimizes the KL divergence with the true

distribution of the observations
∏n
i=1 P

i. The fact that Θ is
finite guarantees that a solution of (1) always exists. We will
denote as Θ∗ the subset of Θ that minimizes (1). Moreover,
in order to avoid trivial solutions we assume Θ∗ 6= Θ.

Clearly, if for each individual agent Θ∗i =
arg minθ∈ΘDKL(P i‖P iθ) is non-empty and has only
one element that is common to all agents, each agent can
solve (1) separately. However, we study the general case
where there are identifiability limitations, e.g., the set Θ∗i
has more than one element for some i ∈ V , yet

⋂n
i=1 Θ∗i

is non-empty, and Θ∗ ∈
⋂n
i=1 Θ∗i . Moreover, we also study

the case where
⋂n
i=1 Θ∗i is empty, that is, there might be

conflicting hypothesis [16] in the sense that the minimizer
of the local functions might not be the same for all agents.

Under these identifiability issues, the agents collaborate
with each other to jointly solve problem (1). This collabo-
ration comes in the form of exchange of information among

them. We will assume that in addition to their private signals,
each agent receives at each time step the beliefs of a subset
of the other agents that we will call the neighbors. We
define the beliefs of an agent i as a probability distribution
over the simplex generated by Θ. We denote by µik(θ) the
belief that agent i has at time k about the hypothesis θ. The
communication among the agents is modeled as a sequence
of graphs {Gk}, where Gk = (V, Ek), and Ek is a set of edges
such that (j, i) ∈ Ek if agent j can send information to agent
i at time k.

In this paper, we study the group dynamics where each
agent i ∈ V updates its beliefs following the log-linear social
learning rule:

µik+1(θ) =

∏n
j=1 µ

j
k(θ)[Tk]ijpiθ(x

i
k+1)∑

θ̂∈Θ

∏n
j=1 µ

j
k(θ̂)[Tk]ijpi

θ̂
(xik+1)

, (2)

where piθ(x
i
k) = P (Xi

k = xik|θ∗ = θ) denotes the probability
of observing the realization xik at time k conditioned on
the true hypothesis being θ. Moreover Tk is a non-negative
matrix of weights compliant with the underlying structure of
the graph Gk.

In contrast with other works, our objective is to establish
necessary conditions for the convergence of the beliefs of
all the agents in the network to the solution of (1) for a
weaker connectivity assumption. Mainly, we are interested
in whether social learning is achieved with the log-linear
update rule (2) for agents with increasing self-confidence,
i.e., the weights an agent assigns to its neighbors decay to
zero, or equivalently, the self-weight [Tk]ii converges to 1,
for all i ∈ V , as k increases. In general, one should expect
that the rate at which an agent increases its self-confidence
should not be too fast, as not enough information from its
neighbors might arrive.

Next, we recall some basic assumptions and definitions.
Definition 1: A sequence of graphs {Gk} is uniformly

strongly connected or B-strongly connected, if there exists
an integer B > 0 such that the graph with edge set

EBk =

(k+1)B−1⋃
i=kB

Ei

is strongly connected for every k ≥ 0.
Definition 2 (Definition 2.1 in [17]): Let {Ak} be a se-

quence of row stochastic matrices. We say that {Ak} is
ergodic if limk→∞AkAk−1 . . . As = 1φTs for any s ≥ 0,
where φs is a stochastic vector.

Assumption 1: Given a sequence of graphs {Gk} that is
B-strongly connected, then
(a) For each k, there exists a weight matrix Tk that is

row-stochastic and compliant with the underlying graph
topology, i.e., [Tk]ij > 0 if (j, i) ∈ Ek.

(b) There exists a sequence {λk}, with λk ∈ (0, 1), and
constants a ∈ (0, 1) and ā ∈ (0, 1), such that

[Tk]ij ≥ λka,∑
j 6=i

[Tk]ij ≤ λkā,

for all k ≥ 0 and all pairs of agents such that (j, i) ∈ Ek
and i 6= j.

Assumption 1(a) ensures that the sequence of weights used
in the update rule (2) is consistent with the structure of the
communication network among the agents. Particularly, if
agent j can send information to agent i at a time instant k,
then the edge (j, i) ∈ Ek, and therefore the agent i assigns a
positive weight to the information coming from agent j, i.e.,
[Tk]ij > 0. Assumption 1(b) limits the rate of decay of the
weights an agent assigns to its neighbors. Particularly, even
if an edge does not exist at every time step, its corresponding
strength do not decay faster than the sequence {λk}. This in
turn limits the rate at which the self-confidence of an agent
increases. Our main result will characterize the conditions
on {λk} to guarantee the network of agents will learn the
state.

Assumption 2: The set
⋂n
i=1 Θ∗i , where Θ∗i =

arg min
θ∈Θ

DKL

(
P i‖P iθ

)
for each i, is non-empty. Moreover,

Θ∗ ⊆
⋂n
i=1 Θ∗i .

Assumption 2 guarantees that even if some agents cannot
correctly identify Θ∗, the optimal set that solves (1) lies
inside the optimal set of the solution of their local problem.
Later in Section V, we will remove this assumption by
allowing conflicting hypotheses, i.e.,

⋂n
i=1 Θ∗i being empty.

Next, we state our main result regarding the consistency
of the learning rule (2). That is, all the agents in the network
concentrate their beliefs on the set Θ∗ that solves (1).

Theorem 1: Let Assumptions 1 and 2 hold. If

lim
k→∞

k

(k+1)B−1∏
i=kB

λi =∞. (3)

Then, the update rule (2) has the following property:

lim
k→∞

µik(θ) = 0 a.s. ∀θ /∈ Θ∗, i ∈ V.
Condition (3), on the rate of decrease on {λk}, states that

sequential products of the form
∏(k+1)B−1
i=kB λi should not

decrease too fast. Particularly, for a connectivity parameter
B it is sufficient to guarantee that λk > O(k−1/B). That is,
the total decreases in the time period of size B should not
be faster than O(1/k). Moreover, if B = 1 we recover the
same condition as in [1], [13]. Additionally, (3) implies that∑∞
k=1

∏(k+1)B−1
i=kB λi =∞.

III. CONSISTENCY OF SOCIAL LEARNING WITH
INCREASING SELF-CONFIDENCE

In this section, we prove our main result in Theorem 1.
Initially, we provide a fundamental assumption about the
existence of a strictly positive lower bound on the weights a
node assigns to the information coming from other nodes.

Assumption 3: For each k, the matrix Ak is stochastic,
i.e.,

∑n
j=1[Ak]ij = 1 for i ∈ V , with positive diagonal

entries. Additionally, there exists a constant η > 0 such that
if [Ak]ij > 0 then [Ak]ij > η.

With Assumption 3 at hand, we state a well-known result
about the ergodicity of the backward product of row stochas-
tic matrices.

Lemma 2 (Lemma 2 in [18]): Suppose that the graph se-
quence {Gk} is uniformly strongly connected and let As-
sumption 3 hold. Then, for each integer s ≥ 0, there is a
stochastic vector φs such that for all i, j and k > s

|[AkAk−1 . . . As+1As]ij − φjs| ≤ 2
((

1− ηnB
) 1
nB

)k−s
.

One immediate conclusion from Lemma 2 the sequence
{Ak} is ergodic.

The next auxiliary lemma states that the entries of the
sequence of stochastic vectors {φk} are lower bounded by a
strictly positive value that depends on the structure of {Gk}.

Lemma 3 (Lemma 4 and Corollary 2 in [18]): Given a
graph sequence {Gk}, define

δ , inf
k≥0

(
min
i∈V

[1TAkAk−1 . . . A0]i

)
.

If the graph sequence {Gk} is B-strongly connected, then
δ ≥ ηnB . Moreover, if Ak is doubly stochastic for all k ≥ 0
or if {Gk} is regular, then δ = 1. Furthermore, φs as defined
in Lemma 2 satisfies φik ≥ δ/n for all k ≥ 0 and i ∈ V .

Next, we state our first auxiliary result that will be
fundamental to the construction of the proof of Theorem 1.
Particularly, we provide a condition on the sequence {λk}
such that the {Tk}, for which Assumption 1 holds, is
ergodic. The next lemma will limit the rate at which the
self-confidence increases such that we can guarantee there is
sufficient mixing among the nodes in the network.

Lemma 4: Suppose Assumption 1 holds for a B-strongly
connected sequence of graphs {Gk}. If (3) holds. Then, {Tk}
is ergodic.

Proof: Initially, it follows from Assumption 1, that each
member of the sequence of weight matrices {Tk} can be
written as

Tk = (1− λk)I + λkAk,

where {Ak} is a sequence of stochastic matrices whose
nonzero elements are uniformly lowered bounded by
η = min{a, ā} ∈ (0, 1), i.e., [Ak]ij ≥ η for all (j, i) ∈ Ek.

Following the approach proposed in [13], we define {Λk}
as a sequence of independent Bernoulli random variables
where P (Λk = 1) = λk, and P (Λk = 0) = 1 − λk.
Therefore, we can write each of the elements of the sequence
of matrices {Tk} as

Tk = E[(1− Λk)I + ΛkAk],

where the expectation is taken with respect to the random
variable Λk. Moreover, define the random matrix Zk by

Zk =
k∏
t=s

[(1− Λt)I + ΛtAt] =
k∏
t=s

AΛt
t .

Thus,

E[Zk] =
k∏
t=s

Tt =
k∏
t=s

E[(1− Λk)I + ΛkAk].

Now, define the sequence of random variables {βk} by

βk =

{
1 if

∑(k+1)B−1
i=kB Λi = B,

0 otherwise.
(4)

The random variable βk serves as an indicator function
for the event {Λi = 1 ∀i ∈ (kB, . . . (k + 1)B − 1)}. Partic-
ularly, if {βk = 1}, then the product

∏(k+1)B−1
i=kB AΛt

i =∏(k+1)B−1
i=kB Ai. Moreover, if the event {βk = 1} occurs

infinitely many times, then from Lemma 2 it follows that

lim
k→∞

E[Zk] = lim
k→∞

k∏
t=s

Tt = 1φTs . (5)

Therefore, to complete the proof we need to show that
if (3) holds, then the event {βk = 1} occurs infinitely often.
Initially, note that

P (βk = 1) =

(k+1)B−1∏
i=kB

P (Λi = 1)

=

(k+1)B−1∏
i=kB

λi.

Thus, by the Borel-Cantelli
lemma, if

∑∞
k=1 P (βk = 1) =∞, then

P ({βk = 1} infinitely often) = 1.
Moreover, if 3 holds then

∞∑
k=1

P (βk = 1) =
∞∑
k=1

(k+1)B−1∏
i=kB

λi =∞,

and the desired result holds.
Lemma 4 shows that if (3) holds, then {Tk} is ergodic.

That is, even if the weights, an agent assigns to its neighbors,
decays to zero, if the rate at which that happens is sufficiently
slow, then the resulting infinite product is equivalent to
an infinite product of row stochastic matrices with lower
bounded entries.

The next lemma states the existence of an absolute proba-
bility sequence for the Markov chain generated by {Tk} [17].
Later in the proof of our main theorem, we will make use
of this absolute probability sequence.

Lemma 5: There exists an absolute probability {φk} se-
quence for the chain {Tk}, i.e.,

φTk+1TkTk−1 . . . Ts = φTs .

Proof: This result follows immediately from Lemma 4
and Lemma 4.4 in [17].

Now, we are ready to prove our main result regarding
the conditions for a group of agents with increasing self-
confidence to reach social learning.

Proof: [Theorem 1] Initially, define the random vari-
ables

ϕik(θ, θ∗) = log
µik(θ)

µik(θ∗)
, and Liθ,θ∗(Xi

k) = log
piθ(X

i
k)

piθ∗(Xi
k)
.

Thus, it follows form the update rule (2) that

ϕik+1(θ, θ∗) =
n∑
j=1

[Tk]ijϕ
j
k(θ, θ∗) + log

piθ(X
i
k+1)

piθ∗(Xi
k+1)

,

or equivalently, by stacking all entries of ϕik+1(θ, θ∗)
and Liθ,θ∗(Xi

k) into single column vectors ϕk+1(θ, θ∗)
and Lθ,θ∗(Xi

k), where [ϕk+1(θ, θ∗)]i = ϕik+1(θ, θ∗) and
[Lθ,θ∗(Xi

k)]i = Liθ,θ∗(Xi
k),

ϕk+1(θ, θ∗) = Tkϕk(θ, θ∗) + Lθ,θ∗(Xi
k+1) (6)

ϕk(θ, θ∗) =
k−1∑
t=1

Tk−1:tLθ,θ∗(Xi
t) + Lθ,θ∗(Xi

k), (7)

where we have assumed without loss of generality that
ϕi0(θ, θ∗) = 0 for all θ ∈ Θ and all i ∈ V , which is
equivalent to all agents having uniform beliefs at time k = 0.

To complete the proof, we first show that
lim supk→∞

1
k

∑n
i=1 φ

i
kϕ

i
k(θ, θ∗) < 0. This will imply

that the weighted sum of belief the beliefs of all neighbors
on the wrong hypothesis will asymptotically converge to
zero.

If we pre-multiply (6) by the absolute probability sequence
φk from Lemma 4, we have that

n∑
i=1

φikϕ
i
k(θ, θ∗) =

k∑
t=1

n∑
i=1

φitLiθ,θ∗(Xi
t).

Moreover, by adding and subtracting E[Liθ,θ∗(xit)], it fol-
lows that
n∑
i=1

φikϕ
i
k(θ, θ∗) =

k∑
t=1

n∑
i=1

φit
(
Liθ,θ∗(Xi

t)− E[Liθ,θ∗(Xi
t)]
)

+

+
k∑
t=1

n∑
i=1

φitE[Liθ,θ∗(Xi
t)]. (8)

Furthermore, by dividing by k on both sides and taking
the limit supremum as k → ∞, the first term on the right
in (8) goes to zero almost surely by the strong law of large
numbers, thus

lim sup
k→∞

1

k

n∑
i=1

φikϕ
i
k(θ, θ∗)

= lim sup
k→∞

1

k

k∑
t=1

n∑
i=1

φitE[Liθ,θ∗(Xi
t)]

=
n∑
i=1

φit
(
DKL(P i‖P iθ∗)−DKL(P i‖P iθ)

)
=
δ

n

n∑
i=1

(
DKL(P i‖P iθ∗)−DKL(P i‖P iθ)

)
< 0, (9)

where we have used Lemma 3 and the fact that
E[Liθ,θ∗(Xi

t)] = DKL(P i‖P iθ∗) − DKL(P i‖P iθ). More-
over, by Assumption 2 it holds that DKL(P i‖P iθ∗) <
DKL(P i‖P iθ).

The relation in (9) shows that for at least one of the agents,
the beliefs on the non-optimal hypotheses θ /∈ Θ∗ will
asymptotically go to zero. To complete the proof, we proceed
to show that the difference between the beliefs among the
agents decays to zero as well, which in turns implies that
all agents eventually assign a zero belief to the non-optimal
hypotheses.

Now, following the same approach as in [1], we proceed
to bound the asymptotic difference between the logarithmic
ratio of beliefs among the two agents with the most separate
beliefs. Initially we have that,

max
i∈V

ϕik(θ, θ∗)−min
i∈V

ϕik(θ, θ∗)

≤ max
i∈V
Liθ,θ∗(Xi

k)−min
i∈V
Liθ,θ∗(Xi

k)+

+
k−1∑
t=1

π(Tk−1 . . . Tt+1Tt)×

×
(

max
i∈V
Liθ,θ∗(Xi

t)−min
i∈V
Liθ,θ∗(Xi

t)

)
≤

k∑
t=1

π (E[Zt])

(
max
i∈V
Liθ,θ∗(Xi

t)−min
i∈V
Liθ,θ∗(Xi

t)

)
,

where the function π(A) ∈ [0, 1] is defined as

π(A) = 1− min
i,j∈V

n∑
l=1

min{[A]ik, [A]jk}

≤ 1−max
i∈V

min
i∈V

[A]ij ,

and is convex and sub-multiplicative, see Lemma A.2 in [1].
Under the assumption that the variables Xi

k are finite for
all i ∈ V and k ≥ 0, it follows that there exists a constant
c ≥ 0, independent of k, such that

max
i∈V

ϕik(θ, θ∗)−min
i∈V

ϕik(θ, θ∗) ≤ c
k∑
t=1

E [π (Zt)] . (10)

Next, without loss of generality we assume the value k
is such that we can write it as k = (s+ 1)nB − 1 for some
s ≥ 0. This will allow us to group the summation on the
right side of (10) into some initial finite sum and sets of size
nB as follows

max
i∈V

ϕik(θ, θ∗)−min
i∈V

ϕik(θ, θ∗)

≤ c
s∑
t=1

(t+1)nB−1∑
i=tnB

E [π (Zi)] + c
nB−1∑
t=1

E [π (Zt)] .

As next step, we use Lemma 2 to bound the entries of Zi
and count how many events {βk = 1} occur. Particularly, we
know that if {βk = 1} occurs nB times, the smallest entry

of Zi will be lower bounded by ηnB . Thus

max
i∈V

ϕik(θ, θ∗)−min
i∈V

ϕik(θ, θ∗)

≤ c
s∑
t=1

E
[(

1− ηnB
)b βt+···+βs

nB c
]

+ c
nB−1∑
t=1

E [π (Zt)]

≤ c
s∑
t=1

E
[
2
((

1− ηnB
) 1
nB

)βt+···+βs]
+ c

nB−1∑
t=1

E [π (Zt)]

≤ 2c
s∑
t=1

E
[
σβt+···+βs

]
+ c

nB−1∑
t=1

E [π (Zt)] ,

where we have defined σ =
(
1− ηnB

) 1
nB .

Using the fact that the random variables {βk} are inde-
pendent, we have that

max
i∈V

ϕik(θ, θ∗)−min
i∈V

ϕik(θ, θ∗)

≤ 2c
s∑
t=1

s∏
r=t

(1− (1− σ)P (βr = 1)) + c

nB−1∑
t=1

E [π (Zt)]

≤ 2c
s∑
t=1

s∏
r=s

1− (1− σ)

(r+1)B−1∏
i=rB

λi

+ c

nB−1∑
t=1

E [π (Zt)] .

Now, define αs = min1≤r≤s
∏(r+1)B−1
i=rB λi, then

max
i∈V

ϕik(θ, θ∗)−min
i∈V

ϕik(θ, θ∗)

≤ 2c

s∑
t=1

(1− (1− σ)αs)
s−t

+ c

nB−1∑
t=1

E [π (Zt)]

≤ 2c
1− (1− (1− σ)αs)

s

(1− σ)αs
+ c

nB−1∑
t=1

E [π (Zt)] , (11)

Finally, divide both sides of (11) by k and take lim sup
as k →∞, then

lim sup
k→∞

1

k

(
max
i∈V

ϕik(θ, θ∗)−min
i∈V

ϕik(θ, θ∗)

)
≤ lim sup

k→∞

1

k
2c

1− (1− (1− σ)αk)
k

(1− σ)αk

≤ 0, (12)

where the last line follows from (3) and the fact that the last
term on the right of (11) is finite. Thus,

lim
k→∞

1

k

(
ϕik(θ, θ∗)− ϕjk(θ, θ∗)

)
= 0 a.s.

The desired result will follow from (9) and (12) since they
imply that lim supk→∞

1
kϕ

i
k(θ, θ∗) < 0 almost surely for

all agents. Therefore, limk→∞ ϕik+1(θ, θ∗) = −∞, which
subsequently imply that limk→∞ µik(θ) = 0 for all θ /∈ Θ∗

with probability 1.

IV. A CONVERSE RESULT FOR THEOREM 1

In this section, we state an additional result regarding the
ergodicity of the backward product of the matrices from the
sequence {Tk}. Particularly, Lemma 4 shows that if (3) holds
then {Tk} is ergodic. This indicates that if the weight an

agent assigns to its neighbors decays sufficiently slow, the
infinite backward product of its weight matrices is equivalent
to an infinite product of a sequence of matrices whose
positive entries are lower bounded. Now, we explore the case
when (3) does not hold.

Lemma 6: Suppose Assumption 1 holds for a B-strongly
connected sequence of graphs {Gk}. If

lim
k→∞

k

(k+1)B−1∏
i=kB

λi <∞. (13)

Then, P ({βk = 1 infinitely often}) = 0.
Proof: The desired result follows from the same argu-

ment as the proof of Lemma 4. By the Borel-Cantelli lemma,
if

∞∑
k=1

P (βk = 1) =
∞∑
k=1

(k+1)B−1∏
i=kB

λi <∞. (14)

Then, P ({βk = 1} infinitely often) = 0. Therefore, the
infinite backward product of the sequence of stochastic ma-
trices {Tk} corresponds to the product of a finite number of
matrices of the form

∏(k+1)B−1
i=kB Ai, which is not sufficient

for ergodicity.
Lemma 6 shows that if the sequence {λk} decays to

zero too fast, {Tk} can be non-ergodic since it is only
equivalent to a finite number of products of matrices with
lower bounded positive entries, which might not result in a
rank one matrix for general graphs.

The next corollary presents a consequence of Lemma 6 in
the context of non-Bayesian social learning.

Corollary 7: Let Assumptions 1 and 2 hold. For a group
of agents following the update rule (2). If (13) holds. Then,
there exists a sufficiently large graph such that a subset of
agents remains uncertain about the state of the world almost
surely.

Proof: If (13) holds we know that the infinite product
{Tk} corresponds to a finite product of matrices with lower
bounded entries. Define the number of finite products as N .
Assume there are 2N agents, and they are connected over a
path graph. Moreover, only one of the agents at the end of
the path has informative signals. Then, limk=∞

∏k
t=s Tt, will

have zero entries for some points, i.e., not enough mixing
happens. Furthermore, a subset of agents will not learn.

V. SOCIAL LEARNING WITH CONFLICTING
HYPOTHESES

Assumption 2 is central for the results presented in Theo-
rem 1. In this section we explore the consistency of the log-
linear learning rule (2) when Assumption 2 does not hold.
Particularly, the fact that the optimal set Θ∗ is contained in
the optimal set of the individual local functions, guarantees
that the distance between any hypothesis θ /∈ Θ∗ to the true
distribution of the observations P i is larger than the distance
(note that the KL divergence is only a premetric) between
the hypotheses θ∗ and P ∗, i.e.,

DKL(P i‖P iθ) > DKL(P i‖P iθ∗), (15)

which in turn makes (9) hold.
If Assumption 2 does not hold, one cannot guar-

antee (15) holds, because in general we only have∑n
i=1DKL(P i‖P iθ) ≥

∑n
i=1DKL(P i‖P iθ∗), and some of

the terms in the sum might be negative. Moreover, each term
will be multiplied (weighted) by the corresponding entry
of the vector φt and thus (9) will depend on the specific
sequence of graphs used.

One way to avoid this issue is to assume that every matrix
in the sequence {Tk} is doubly stochastic, which guarantees,
by Lemma 3, that φt = 1/n, making (9) hold. However, in
general, this approach has two main issues. First, if the graph
is assumed directed, the agents might not be able to compute
a set of doubly stochastic weights distributedly. Moreover,
not every directed graph allows a doubly stochastic set of
weights [19].

In [11], the authors proposed a modified log-linear up-
date (16), and showed that it guarantees all nodes in the
network will correctly learn the solution of (1) even in the
present of conflicting hypotheses.

yik+1 =
∑
j∈Nik

[Tk]ijy
j
k (16a)

µik+1 (θ) =
1

Zik+1

 n∏
j=1

µjk (θ)
[Tk]ijy

j
k piθ(x

i
k+1)

 1

yi
k+1

(16b)

where dik is the out degree of node i at time k, and Zik+1 is
the corresponding normalization factor.

The fundamental result in Lemma 4 extends to the update
rule (16), which directly allow us to state the following result.

Theorem 8: Let Assumption 1(b) hold, and for each k,
assume there exists a weight matrix Tk that is column-
stochastic and compliant with the underlying graph topology,
i.e., [Tk]ij > 0 if (j, i) ∈ Ek. If

lim
k→∞

k

(k+1)B−1∏
i=kB

λi =∞.

Then, the update rule (16), with yi0 = 1, has the following
property:

lim
k→∞

µik(θ) = 0 a.s. ∀θ /∈ Θ∗, i ∈ V.
The proof of Theorem 8 follows similar arguments as in

the proof of Theorem 1, see also [11]. We omit the proof
due to space constraints.

VI. NUMERICAL ANALYSIS

In this section, we present simulation results for the
non-Bayesian social learning model under different varia-
tions of graph connectivity. We assume there is a group
of 10 agents, from which only one of them, agent 1,
receives informative signals from a random variable X1

k ∼
Bernoulli(0.7). All agents have a parametrized family of
distributions PΘ = {θ1, θ2}, where P iθ1 = Bernoulli(0.2)
and P iθ2 = Bernoulli(0.8), thus, Θ∗ = θ2. For the network
model we assume that Gk is a path graph if mod(k, 3) = 0,

k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

...
...

Fig. 1. A graph sequence that is a path every 3 iterations.

and Gk is the completely disconnected graph otherwise, see
Figure 1. Therefore, every 3 time steps, the graph is a path
graph and otherwise, the nodes remain disconnected. We will
simulate three different scenarios λk = 0.5, λk = 1/k, and
λk = 1/k1/3.

Figure 2 shows the effect of the rate at which λk decays
to zero. For a subset of 5 agents, we show their beliefs on
both hypotheses θ1 and θ2. Agent 1, which is the only one
with informative signals is plotted with blue color. Agent 10
is plotted with red color. If {λk = 0.5}, there is no decay
and the existing results in non-Bayesian learning guarantee
that the learning rate will be geometric. This can be seen
since all nodes in the network concentrate their beliefs on
θ2, the optimal point, at around 100 iterations. When λk =
1/k1/3, our results still guarantee convergence. Even though
the convergence rate is slower, all nodes learn the correct
state in around 1000 iterations. Finally, when λk = 1/k, the
sequence {Tk} is not ergodic. Particularly, one can see that
even after 1 ·107 iterations, the red node still has not learned
the state of the world.

VII. CONCLUSIONS AND FUTURE WORK

We studied the problem of non-Bayesian learning for
agents with increasing self-confidence. In our main result,
we explicitly characterize the fastest rate at which an agent
increases it self-confidence, or decreases the weights of its
neighbors, and still guarantees that social learning occurs.
Moreover, we do so for the learning problem where agents
can have conflicting hypotheses. Finally, we show a converse
of our main result, that states that if the rate at which the
weight decreases is faster than our rate bound, there exist
graphs for which no social learning occurs.

Two main questions remain open and require further work.
First, what is the non-asymptotic convergence rate of beliefs
generated by the log-linear update rule (2) when social
learning occurs? How does this convergence rate depend on
the convergence rate of the sequence {λk}? Second, if social
learning does not occur, is it possible to estimate the distance
between the infinite product of the matrices {Tk} and a rank
one matrix?

100 101 102
0

0.2

0.4

0.6

0.8

1

λ
k
=

0
.5

µi
k(θ1)

100 101 102
0

0.2

0.4

0.6

0.8

1

µi
k(θ2)

101 104 107
0

0.2

0.4

0.6

0.8

1

λ
k
=

1/
k
1
/
3

101 104 107
0

0.2

0.4

0.6

0.8

1

101 104 107
0

0.2

0.4

0.6

0.8

1

Iterations

λ
k
=

1/
k

101 104 107
0

0.2

0.4

0.6

0.8

1

Iterations

Fig. 2. The effect of the rate at which the weights decay.

REFERENCES

[1] P. Molavi, A. Tahbaz-Salehi, and A. Jadbabaie, “A theory of non-
bayesian social learning,” Econometrica, vol. 86, no. 2, pp. 445–490,
2018.

[2] A. Jadbabaie, P. Molavi, A. Sandroni, and A. Tahbaz-Salehi, “Non-
Bayesian social learning,” Games and Economic Behavior, vol. 76,
no. 1, pp. 210–225, 2012.

[3] M. H. DeGroot, “Reaching a consensus,” Journal of the American
Statistical Association, vol. 69, no. 345, pp. 118–121, 1974.

[4] G. L. Gilardoni and M. K. Clayton, “On reaching a consensus using
Degroot’s iterative pooling,” The Annals of Statistics, vol. 21, no. 1,
pp. 391–401, 1993.

[5] A. Nedić, A. Olshevsky, and C. A. Uribe, “A tutorial on distributed
(non-bayesian) learning: Problem, algorithms and results,” in 55th
IEEE Conference on Decision and Control (CDC), pp. 6795–6801,
Dec 2016.

[6] A. Nedić, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “On dis-
tributed averaging algorithms and quantization effects,” IEEE Trans-
actions on Automatic Control, vol. 54, no. 11, pp. 2506–2517, 2009.

[7] J. N. Tsitsiklis and M. Athans, “Convergence and asymptotic agree-
ment in distributed decision problems,” IEEE Transactions on Auto-
matic Control, vol. 29, no. 1, pp. 42–50, 1984.

[8] B. Touri and A. Nedić, “Product of random stochastic matrices,” IEEE
Transactions on Automatic Control, vol. 59, no. 2, pp. 437–448, 2014.

[9] A. Nedić, A. Olshevsky, and C. A. Uribe, “Distributed learning for
cooperative inference,” arXiv preprint arXiv:1704.02718, 2017.

[10] A. Nedić, A. Olshevsky, and C. A. Uribe, “Nonasymptotic convergence
rates for cooperative learning over time-varying directed graphs,” in
Proceedings of the American Control Conference, pp. 5884–5889,
2015.

[11] A. Nedić, A. Olshevsky, and C. A. Uribe, “Network independent
rates in distributed learning,” in Proceedings of the American Control
Conference, pp. 1072–1077, 2016.

[12] C. Wang, “An opinion dynamics model with increasing self-
confidence,” arXiv preprint arXiv:1609.05732, 2016.

[13] P. M. DeMarzo, D. Vayanos, and J. Zwiebel, “Persuasion bias, social
influence, and unidimensional opinions,” The Quarterly journal of
economics, vol. 118, no. 3, pp. 909–968, 2003.

[14] J. Lorenz, “Convergence to consensus in multiagent systems
and the lengths of inter-communication intervals,” arXiv preprint
arXiv:1101.2926, 2011.

[15] A. Olshevsky, I. C. Paschalidis, and A. Spiridonoff, “Fully asyn-
chronous push-sum with growing intercommunication intervals,” arXiv
preprint arXiv:1802.08634, 2018.

[16] A. Nedić, A. Olshevsky, and C. A. Uribe, “Fast convergence rates for
distributed non-Bayesian learning,” IEEE Transactions on Automatic
Control, vol. 62, pp. 5538–5553, Nov 2017.

[17] B. Touri, Product of Random Stochastic Matrices and Distributed
Averaging. Springer Science & Business Media, 2012.

[18] A. Nedić and A. Olshevsky, “Distributed optimization over time-
varying directed graphs,” IEEE Transactions on Automatic Control,
vol. 60, no. 3, pp. 601–615, 2015.

[19] B. Gharesifard and J. Cortés, “When does a digraph admit a doubly
stochastic adjacency matrix?,” in American Control Conference (ACC),
2010, pp. 2440–2445, IEEE, 2010.

Adversarially Robust Optimization
with Gaussian Processes

Ilija Bogunovic
LIONS, EPFL

ilija.bogunovic@epfl.ch

Jonathan Scarlett
National University of Singapore
scarlett@comp.nus.edu.sg

Stefanie Jegelka
MIT CSAIL

stefje@mit.edu

Volkan Cevher
LIONS, EPFL

volkan.cevher@epfl.ch

Abstract

In this paper, we consider the problem of Gaussian process (GP) optimization
with an added robustness requirement: The returned point may be perturbed by
an adversary, and we require the function value to remain as high as possible
even after this perturbation. This problem is motivated by settings in which the
underlying functions during optimization and implementation stages are different,
or when one is interested in finding an entire region of good inputs rather than only
a single point. We show that standard GP optimization algorithms do not exhibit
the desired robustness properties, and provide a novel confidence-bound based
algorithm STABLEOPT for this purpose. We rigorously establish the required num-
ber of samples for STABLEOPT to find a near-optimal point, and we complement
this guarantee with an algorithm-independent lower bound. We experimentally
demonstrate several potential applications of interest using real-world data sets,
and we show that STABLEOPT consistently succeeds in finding a stable maximizer
where several baseline methods fail.

1 Introduction

Gaussian processes (GP) provide a powerful means for sequentially optimizing a black-box function
f that is costly to evaluate and for which noisy point evaluations are available. Since its introduction,
this approach has successfully been applied to numerous applications, including robotics [21],
hyperparameter tuning [30], recommender systems [34], environmental monitoring [31], and more.

In many such applications, one is faced with various forms of uncertainty that are not accounted for
by standard algorithms. In robotics, the optimization is often performed via simulations, creating a
mismatch between the assumed function and the true one; in hyperparameter tuning, the function is
typically similarly mismatched due to limited training data; in recommendation systems and several
other applications, the underlying function is inherently time-varying, so the returned solution may
become increasingly stale over time; the list goes on.

In this paper, we address these considerations by studying the GP optimization problem with an
additional requirement of adversarial robustness: The returned point may be perturbed by an
adversary, and we require the function value to remain as high as possible even after this perturbation.
This problem is of interest not only for attaining improved robustness to uncertainty, but also for
settings where one seeks a region of good points rather than a single point, and for other related
max-min optimization settings (see Section 4 for further discussion).

Related work. Numerous algorithms have been developed for GP optimization in recent
years [7, 16, 17, 26, 28, 31, 35]. Beyond the standard setting, several important extensions have

ar
X

iv
:1

81
0.

10
77

5v
2

 [
st

at
.M

L
]

 1
 N

ov
 2

01
8

been considered, including batch sampling [11, 12, 14], contextual and time-varying settings [6, 20],
safety requirements [33], and high dimensional settings [18, 25, 36], just to name a few.

Various forms of robustness in GP optimization have been considered previously. A prominent
example is that of outliers [22], in which certain function values are highly unreliable; however, this
is a separate issue from that of the present paper, since in [22] the returned point does not undergo
any perturbation. Another related recent work is [2], which assumes that the sampled points (rather
than the returned one) are subject to uncertainty. In addition to this difference, the uncertainty in [2]
is random rather than adversarial, which is complementary but distinct from our work. The same is
true of a setting called unscented Bayesian optimization in [23]. Moreover, no theoretical results are
given in [2, 23]. In [8], a robust form of batch optimization is considered, but with yet another form
of robustness, namely, some experiments in the batch may fail to produce an outcome. Level-set
estimation [7, 15] is another approach to finding regions of good points rather than a single point.

Our problem formulation is also related to other works on non-convex robust optimization, par-
ticularly those of Bertsimas et al. [3, 4]. In these works, a stable design x is sought that solves
minx∈D maxδ∈U f(x + δ). Here, δ resides in some uncertainty set U , and represents the perturba-
tion against which the design x needs to be protected. Related problems have also recently been
considered in the context of adversarial training (e.g., [29]). Compared to these works, our work
bears the crucial difference that the objective function is unknown, and we can only learn about it
through noisy point evaluations (i.e. bandit feedback).

Other works, such as [5, 9, 19, 32, 37], have considered robust optimization problems of the following
form: For a given set of objectives {f1, . . . , fm} find x achieving maxx∈D mini=1,...,m fi(x). We
discuss variations of our algorithm for this type of formulation in Section 4.

Contributions. We introduce a variant of GP optimization in which the returned solution is required
to exhibit stability/robustness to an adversarial perturbation. We demonstrate the failures of standard
algorithms, and introduce a new algorithm STABLEOPT that overcomes these limitations. We
provide a novel theoretical analysis characterizing the number of samples required for STABLEOPT to
attain a near-optimal robust solution, and we complement this with an algorithm-independent lower
bound. We provide several variations of our max-min optimization framework and theory, including
connections and comparisons to previous works. Finally, we experimentally demonstrate a variety of
potential applications of interest using real-world data sets, and we show that STABLEOPT consistently
succeeds in finding a stable maximizer where several baseline methods fail.

2 Problem Setup

Model. Let f be an unknown reward function over a domain D ⊆ Rp for some dimension p. At
time t, we query f at a single point xt ∈ D and observe a noisy sample yt = f(xt) + zt, where
zt ∼ N (0, σ2). After T rounds, a recommended point x(T) is returned. In contrast with the standard
goal of making f(x(T)) as high as possible, we seek to find a point such that f remains high even
after an adversarial perturbation; a formal description is given below.

We assume that D is endowed with a kernel function k(·, ·), and f has a bounded norm in the
corresponding Reproducing Kernel Hilbert Space (RKHS) Hk(D). Specifically, we assume that
f ∈ Fk(B), where

Fk(B) = {f ∈ Hk(D) : ‖f‖k ≤ B}, (1)

and ‖f‖k is the RKHS norm inHk(D). It is well-known that this assumption permits the construction
of confidence bounds via Gaussian process (GP) methods; see Lemma 1 below for a precise statement.
We assume that the kernel is normalized to satisfy k(x,x) = 1 for all x ∈ D. Two commonly-
considered kernels are squared exponential (SE) and Matérn:

kSE(x,x′) = exp

(
−‖x− x′‖2

2l2

)
, (2)

kMat(x,x
′) =

21−ν

Γ(ν)

(√2ν‖x− x′‖
l

)
Jν

(√2ν‖x− x′‖
l

)
, (3)

where l denotes the length-scale, ν > 0 is an additional parameter that dictates the smoothness, and
J(ν) and Γ(ν) denote the modified Bessel function and the gamma function, respectively [24].

2

f(x⇤
0)

f(x⇤
✏)

f

min
�2�✏(x)

f(x + �)

ucb

lcb

Figure 1: (Left) A function f and its maximizer x∗0. (Middle) For ε = 0.06 and d(x, x′) = |x− x′|,
the decision that corresponds to the local “wider” maximum of f is the optimal ε-stable decision.
(Right) GP-UCB selects a point that nearly maximizes f , but is suboptimal in the ε-stable sense.

Given a sequence of decisions {x1, · · · ,xt} and their noisy observations {y1, · · · , yt}, the posterior
distribution under a GP(0, k(x,x′)) prior is also Gaussian, with the following mean and variance:

µt(x) = kt(x)T
(
Kt + σ2I

)−1
yt, (4)

σ2
t (x) = k(x,x)− kt(x)T

(
Kt + σ2I

)−1
kt(x), (5)

where kt(x) =
[
k(xi,x)

]t
i=1

, and Kt =
[
k(xt,xt′)

]
t,t′

is the kernel matrix.

Optimization goal. Let d(x,x′) be a function mapping D ×D → R, and let ε be a constant known
as the stability parameter. For each point x ∈ D, we define a set

∆ε(x) =
{
x′ − x : x′ ∈ D and d(x,x′) ≤ ε

}
. (6)

One can interpret this as the set of perturbations of x such that the newly obtained point x′ is within a
“distance” ε of x. While we refer to d(·, ·) as the distance function throughout the paper, we allow it
to be a general function, and not necessarily a distance in the mathematical sense. As we exemplify
in Section 5, the parameter ε might be naturally specified as part of the application, or might be better
treated as a parameter that can be tuned for the purpose of the overall learning goal.

We define an ε-stable optimal input to be any x∗ε satisfying

x∗ε ∈ arg max
x∈D

min
δ∈∆ε(x)

f(x + δ). (7)

Our goal is to report a point x(T) that is stable in the sense of having low ε-regret, defined as

rε(x) = min
δ∈∆ε(x∗ε)

f(x∗ε + δ)− min
δ∈∆ε(x)

f(x + δ). (8)

Note that once rε(x) ≤ η for some accuracy value η ≥ 0, it follows that

min
δ∈∆ε(x)

f(x + δ) ≥ min
δ∈∆ε(x∗ε)

f(x∗ε + δ)− η. (9)

We assume that d(·, ·) and ε are known, i.e., they are specified as part of the optimization formulation.

As a running example, we consider the case that d(x,x′) = ‖x − x′‖ for some norm ‖ · ‖ (e.g.,
`2-norm), in which case achieving low ε-regret amounts to favoring broad peaks instead of narrow
ones, particularly for higher ε; see Figure 1 for an illustration. In Section 4, we discuss how our
framework also captures a variety of other max-min optimization settings of interest.

Failure of classical methods. Various algorithms have been developed for achieving small regret in
the standard GP optimization problem. A prominent example is GP-UCB, which chooses

xt ∈ arg max
x∈D

ucbt−1(x), (10)

where ucbt−1(x) := µt−1(x) + β
1/2
t σt−1(x). This algorithm is guaranteed to achieve sublinear

cumulative regret with high probability [31], for a suitably chosen βt. While this is useful when
x∗ε = x∗0,1 in general for a given fixed ε 6= 0, these two decisions may not coincide, and hence,
minδ∈∆ε(x∗0) f(x∗0 + δ) can be significantly smaller than minδ∈∆ε(x∗ε) f(x∗ε + δ).

1In this discussion, we take d(x,x′) = ‖x−x′‖2, so that ε = 0 recovers the standard non-stable regret [31].

3

Algorithm 1 The STABLEOPT algorithm

Input: Domain D, GP prior (µ0, σ0, k), parameters {βt}t≥1, stability ε, distance function d(·, ·)
1: for t = 1, 2, . . . , T do
2: Set

x̃t = arg max
x∈D

min
δ∈∆ε(x)

ucbt−1(x + δ). (13)

3: Set δt = arg minδ∈∆ε(x̃t) lcbt−1(x̃t + δ)

4: Sample x̃t + δt, and observe yt = f(x̃t + δt) + zt
5: Update µt, σt, ucbt and lcbt according to (5) and (12), by including {(x̃t + δt, yt)}
6: end for

A visual example is given in Figure 1 (Right), where the selected point of GP-UCB for t = 20 is
shown. This point nearly maximizes f , but it is strictly suboptimal in the ε-stable sense. The same
limitation applies to other GP optimization strategies (e.g., [7, 16, 17, 26, 28, 35]) whose goal is to
identify the global non-robust maximum x∗0. In Section 5, we will see that more advanced baseline
strategies also perform poorly when applied to our problem.

3 Proposed Algorithm and Theory

Our proposed algorithm, STABLEOPT, is described in Algorithm 1, and makes use of the following
confidence bounds depending on an exploration parameter βt (cf., Lemma 1 below):

ucbt−1(x) := µt−1(x) + β
1/2
t σt−1(x), (11)

lcbt−1(x) := µt−1(x)− β1/2
t σt−1(x). (12)

The point x̃t defined in (13) is the one having the highest “stable” upper confidence bound. However,
the queried point is not x̃t, but instead x̃t + δt, where δt ∈ ∆ε(x̃t) is chosen to minimize the lower
confidence bound. As a result, the algorithm is based on two distinct principles: (i) optimism in the
face of uncertainty when it comes to selecting x̃t; (ii) pessimism in the face of uncertainty when it
comes to anticipating the perturbation of x̃t. The first of these is inherent to existing algorithms such
as GP-UCB [31], whereas the second is unique to the adversarially robust GP optimization problem.
An example illustration of STABLEOPT’s execution is given in the supplementary material.

We have left the final reported point x(T) unspecified in Algorithm 1, as there are numerous reasonable
choices. The simplest choice is to simply return x(T) = x̃T , but in our theory and experiments, we
will focus on x(T) equaling the point in {x̃1, . . . , x̃T } with the highest lower confidence bound.

Finding an exact solution to the optimization of the acquisition function in (13) can be challenging
in practice. When D is continuous, a natural approach is to find an approximate solution using an
efficient local search algorithm for robust optimization with a fully known objective function, such as
that of [4].

3.1 Upper bound on ε-regret

Our analysis makes use of the maximum information gain under t noisy measurements:

γt = max
x1,··· ,xt

1

2
log det(It + σ−2Kt), (14)

which has been used in numerous theoretical works on GP optimization following [31].

STABLEOPT depends on the exploration parameter βt, which determines the width of the confidence
bounds. In our main result, we set βt as in [10] and make use of the following.
Lemma 1. [10] Fix f ∈ Fk(B), and consider the sampling model yt = f(xt) + zt with zt ∼
N (0, σ2), with independence between times. Under the choice βt =

(
B + σ

√
2(γt−1 + log e

ξ)
)2

,

the following holds with probability at least 1− ξ:

lcbt−1(x) ≤ f(x) ≤ ucbt−1(x), ∀x ∈ D,∀t ≥ 1. (15)

4

The following theorem bounds the performance of STABLEOPT under a suitable choice of the
recommended point x(T). The proof is given in the supplementary material.

Theorem 1. (Upper Bound) Fix ε > 0, η > 0, B > 0, T ∈ Z, ξ ∈ (0, 1), and a distance function
d(x,x′), and suppose that

T

βT γT
≥ C1

η2
, (16)

where C1 = 8/ log(1 + σ−2). For any f ∈ Fk(B), STABLEOPT with βt set as in Lemma 1 achieves
rε(x

(T)) ≤ η after T rounds with probability at least 1− ξ, where

x(T) = x̃t∗ , t∗ = arg max
t=1,...,T

min
δ∈∆ε(x̃t)

lcbt−1(x̃t + δ). (17)

This result holds for general kernels, and for both finite and continuous D. Our analysis bounds
function values according to the confidence bounds in Lemma 1 analogously to GP-UCB [31], but
also addresses the non-trivial challenge of characterizing the perturbations δt. While we focused on
the non-Bayesian RKHS setting, the proof can easily be adapted to handle the Bayesian optimization
(BO) setting in which f ∼ GP(0, k); see Section 4 for further discussion.

Theorem 1 can be made more explicit by substituting bounds on γT ; in particular, γT =

O((log T)p+1) for the SE kernel, and γT = O(T
p(p+1)

2ν+p(p+1) log T) for the Matérn-ν kernel [31].
The former yields T = O∗

(
1
η2

(
log 1

η

)2p)
in Theorem 1 for constant B, σ2, and ε (where O∗(·)

hides dimension-independent log factors), which we will shortly see nearly matches an algorithm-
independent lower bound.

3.2 Lower bound on ε-regret

Establishing lower bounds under general kernels and input domains is an open problem even in the
non-robust setting. Accordingly, the following theorem focuses on a more specific setting than the
upper bound: We let the input domain be [0, 1]p for some dimension p, and we focus on the SE and
Matérn kernels. In addition, we only consider the case that d(x,x′) = ‖x− x′‖2, though extensions
to other norms (e.g., `1 or `∞) follow immediately from the proof.

Theorem 2. (Lower Bound) Let D = [0, 1]p for some dimension p, and set d(x,x′) = ‖x− x′‖2.
Fix ε ∈

(
0, 1

2

)
, η ∈

(
0, 1

2

)
, B > 0, and T ∈ Z. Suppose there exists an algorithm that, for any

f ∈ Fk(B), reports a point x(T) achieving ε-regret rε(x(T)) ≤ η after T rounds with probability at
least 1− ξ. Then, provided that η

B and ξ are sufficiently small, we have the following:

1. For k = kSE, it is necessary that T = Ω
(
σ2

η2

(
log B

η

)p/2)
.

2. For k = kMatérn, it is necessary that T = Ω
(
σ2

η2

(
B
η

)p/ν)
.

Here we assume that the stability parameter ε, dimension p, target probability ξ, and kernel parame-
ters l, ν are fixed (i.e., not varying as a function of the parameters T , η, σ and B).

The proof is based on constructing a finite subset of “difficult” functions in Fk(B) and applying lower
bounding techniques from the multi-armed bandit literature, also making use of several auxiliary
results from the non-robust setting [27]. More specifically, the functions in the restricted class consist
of narrow negative “valleys” that the adversary can perturb the reported point into, but that are hard
to identify until a large number of samples have been taken.

For constant σ2 and B, the condition for the SE kernel simplifies to T = Ω
(

1
η2

(
log 1

η

)p/2)
, thus

nearly matching the upper bound T = O∗
(

1
η2

(
log 1

η

)2p)
of STABLEOPT established above. In

the case of the Matérn kernel, more significant gaps remain between the upper and lower bounds;
however, similar gaps remain even in the standard (non-robust) setting [27].

5

4 Variations of STABLEOPT

While the above problem formulation seeks robustness within an ε-ball corresponding to the distance
function d(·, ·), our algorithm and theory apply to a variety of seemingly distinct settings. We outline
a few such settings here; in the supplementary material, we give details of their derivations.

Robust Bayesian optimization. Algorithm 1 and Theorem 1 extend readily to the Bayesian setting
in which f ∼ GP(0, k(x,x′)). In particular, since the proof of Theorem 1 is based on confidence
bounds, the only change required is selecting βt to be that used for the Bayesian setting in [31]. As a
result, our framework also captures the novel problem of adversarially robust Bayesian optimization.
All of the variations outlined below similarly apply to both the Bayesian and non-Bayesian settings.

Robustness to unknown parameters. Consider the scenario where an unknown function f : D ×
Θ→ R has a bounded RKHS norm under some composite kernel k((x,θ), (x′,θ′)). Some special
cases include k((x,θ), (x′,θ′)) = k(x,x′) + k(θ,θ′) and k((x,θ), (x′,θ′)) = k(x,x′)k(θ,θ′)
[20]. The posterior mean µt(x,θ) and variance σ2

t (x,θ) conditioned on the previous observations
(x1,θ1, y1), ..., (xt−1,θt−1, yt−1) are computed analogously to (5) [20].

A robust optimization formulation in this setting is to seek x that solves

max
x∈D

min
θ∈Θ

f(x,θ). (18)

That is, we seek to find a configuration x that is robust against any possible parameter vector θ ∈ Θ.

Potential applications of this setup include the following:

• In areas such a robotics, we may have numerous parameters to tune (given by x and θ collec-
tively), but when it comes to implementation, some of them (i.e., only θ) become out of our
control. Hence, we need to be robust against whatever values they may take.
• We wish to tune hyperparameters in order to make an algorithm work simultaneously for

a number of distinct data types that bear some similarities/correlations. The data types are
represented by θ, and we can choose the data type to our liking during the optimization stage.

STABLEOPT can be used to solve (18); we maintain θt instead of δt, and modify the main steps to

xt ∈ arg max
x∈D

min
θ∈Θ

ucbt−1(x,θ), (19)

θt ∈ arg min
θ∈Θ

lcbt−1(xt,θ). (20)

At each time step, STABLEOPT receives a noisy observation yt = f(xt,θt) + zt, which is used
with (xt,θt) for computing the posterior. As explained in the supplementary material, the guarantee
rε(x

(T)) ≤ η in Theorem 1 is replaced by minθ∈Θ f(x(T),θ) ≥ maxx∈D minθ∈Θ f(x,θ)− η.

Robust estimation. Continuing with the consideration of a composite kernel on (x,θ), we consider
the following practical problem variant proposed in [4]. Let θ̄ ∈ Θ be an estimate of the true problem
coefficient θ∗ ∈ Θ. Since, θ̄ is an estimate, the true coefficient satisfies θ∗ = θ̄ + δθ, where δθ
represents uncertainty in θ̄. Often, practitioners solve maxx∈D f(x, θ̄) and ignore the uncertainty.
As a more sophisticated approach, we let ∆ε(θ̄) =

{
θ − θ̄ : θ ∈ Θ and d(θ̄,θ) ≤ ε

}
, and consider

the following robust problem formulation:

max
x∈D

min
δθ∈∆ε(θ̄)

f(x, θ̄ + δθ). (21)

For the given estimate θ̄, the main steps of STABLEOPT in this setting are

xt ∈ arg max
x∈D

min
δθ∈∆ε(θ̄)

ucbt−1(x, θ̄ + δθ), (22)

δθ,t ∈ arg min
δθ∈∆ε(θ̄)

lcbt−1(xt, θ̄ + δθ), (23)

and the noisy observations take the form yt = f(xt, θ̄ + δθ,t) + zt. The guarantee rε(x(T)) ≤ η in
Theorem 1 is replaced by minδθ∈∆ε(θ̄) f(x(T), θ̄ + δθ) ≥ maxx∈D minδθ∈∆ε(θ̄) f(x, θ̄ + δθ)− η.

Robust group identification. In some applications, it is natural to partition D into disjoint subsets,
and search for the subset with the highest worst-case function value (see Section 5 for a movie

6

recommendation example). Letting G = {G1, . . . , Gk} denote the groups that partition the input
space, the robust optimization problem is given by

max
G∈G

min
x∈G

f(x), (24)

and the algorithm reports a group G(T). The main steps of STABLEOPT are given by

Gt ∈ arg max
G∈G

min
x∈G

ucbt−1(x), (25)

xt ∈ arg min
x∈Gt

lcbt−1(x), (26)

and the observations are of the form yt = f(xt) + zt as usual. The guarantee rε(x(T)) ≤ η in
Theorem 1 is replaced by minx∈G(T) f(x) ≥ maxG∈G minx∈G f(x)− η.

The preceding variations of STABLEOPT, as well as their resulting variations of Theorem 1, follow
by substituting certain (unconventional) choices of d(·, ·) and ε into Algorithm 1 and Theorem 1,
with (x,θ) in place of x where appropriate. The details are given in the supplementary material.

5 Experiments

In this section, we experimentally validate the performance of STABLEOPT by comparing against
several baselines. Each algorithm that we consider may distinguish between the sampled point (i.e.,
the point that produces the noisy observation yt) and the reported point (i.e., the point believed to
be near-optimal in terms of ε-stability). For STABLEOPT, as described in Algorithm 1, the sampled
point is x̃t + δt, and the reported point after time t is the one in {x̃1, . . . , x̃t} with the highest value
of minδ∈∆ε(x̃t) lcbt(x̃t + δ).2 In addition, we consider the following baselines:

• GP-UCB (see (10)). We consider GP-UCB to be a good representative of the wide range of
existing methods that search for the non-robust global maximum.

• MAXIMIN-GP-UCB. We consider a natural generalization of GP-UCB in which, at each time
step, the sampled and reported point are both given by

xt = arg max
x∈D

min
δ∈∆ε(x)

ucbt−1(x + δ). (27)

• STABLE-GP-RANDOM. The sampling point xt at every time step is chosen uniformly at
random, while the reported point at time t is chosen to be the point among the sampled points
{x1, . . . ,xt} according to the same rule as the one used for STABLEOPT.

• STABLE-GP-UCB. The sampled point is given by the GP-UCB rule, while the reported point
is again chosen in the same way as in STABLEOPT.

As observed in existing works (e.g., [7, 31]), the theoretical choice of βt is overly conservative. We
therefore adopt a constant value of β1/2

t = 2.0 in each of the above methods, which we found to
provide a suitable exploration/exploitation trade-off for each of the above algorithms.

Given a reported point x(t) at time t, the performance metric is the ε-regret rε(x(t)) given in (8). Two
observations are in order: (i) All the baselines are heuristic approaches for our problem, and they do
not have guarantees in terms of near-optimal stability; (ii) We do not compare against other standard
GP optimization methods, as their performance is comparable to that of GP-UCB; in particular, they
suffer from exactly the same pitfalls described at the end of Section 2.

Synthetic function. We consider the synthetic function from [4] (see Figure 2a), given by

fpoly(x, y) = −2x6 + 12.2x5 − 21.2x4 − 6.2x+ 6.4x3 + 4.7x2 − y6 + 11y5

− 43.3y4 + 10y + 74.8y3 − 56.9y2 + 4.1xy + 0.1y2x2 − 0.4y2x− 0.4x2y. (28)

2This is slightly different from Theorem 1, which uses the confidence bound lcbτ−1 for xτ instead of
adopting the common bound lcbt. We found the latter to be more suitable when the kernel hyperparameters are
updated online, whereas Theorem 1 assumes a known kernel. Theorem 1 can be adapted to use lcbt alone by
intersecting the confidence bounds at each time instant so that they are monotonically shrinking [15].

7

0 1 2 3
x

0

1

2

3

4

y

−60
−50
−40
−30
−20
−10
0
10
20

(a) fpoly(x, y)

0 1 2 3
x

0

1

2

3

4

y

−60

−50

−40

−30

−20

−10

(b) gpoly(x, y)

0 20 40 60 80 100
t

0

5

10

15

20

25

ε-
re

gr
et

StableOpt
GP-UCB
MaxiMin-GP-UCB
Stable-GP-UCB
Stable-GP-Random

(c) ε-regret

Figure 2: (Left) Synthetic function from [4]. (Middle) Counterpart with worst-case perturbations.
(Right) The performance. In this example, STABLEOPT significantly outperforms the baselines.

The decision space is a uniformly spaced grid of points in ((−0.95, 3.2), (−0.45, 4.4)) of size
104. There exist multiple local maxima, and the global maximum is at (x∗f , y

∗
f) = (2.82, 4.0),

with fpoly(x∗f , y
∗
f) = 20.82. Similarly as in [4], given stability parameters δ = (δx, δy), where

‖δ‖2 ≤ 0.5, the robust optimization problem is

max
(x,y)∈D

gpoly(x, y), (29)

where
gpoly(x, y) := min

(δx,δy)∈∆0.5(x,y)
fpoly(x− δx, y − δy). (30)

A plot of gpoly is shown in Figure 2b. The global maximum is attained at (x∗g, y
∗
g) = (−0.195, 0.284)

and gpoly(x∗g, y
∗
g) = −4.33, and the inputs maximizing f yield gpoly(x∗f , y

∗
f) = −22.34.

We initialize the above algorithms by selecting 10 uniformly random inputs (x, y), keeping those
points the same for each algorithm. The kernel adopted is a squared exponential ARD kernel. We
randomly sample 500 points whose function value is above −15.0 to learn the GP hyperparameters
via maximum likelihood, and then run the algorithms with these hyperparameters. The observation
noise standard deviation is set to 0.1, and the number of sampling rounds is T = 100. We repeat
the experiment 100 times and show the average performance in Figure 2c. We observe that STA-
BLEOPT significantly outperforms the baselines in this experiment. In the later rounds, the baselines
report points that are close to the global optimizer, which is suboptimal with respect to the ε-regret.

Lake data. In the supplementary material, we provide an analogous experiment to that above using
chlorophyll concentration data from Lake Zürich, with STABLEOPT again performing best.

Robust robot pushing. We consider the deterministic version of the robot pushing objective
from [35], with publicly available code.3 The goal is to find a good pre-image for pushing an
object to a target location. The 3-dimensional function takes as input the robot location (rx, ry) and
pushing duration rt, and outputs f(rx, ry, rt) = 5−dend, where dend is the distance from the pushed
object to the target location. The domain D is continuous: rx, ry ∈ [−5, 5] and rt ∈ [1, 30].

We consider a twist on this problem in which there is uncertainty regarding the precise target location,
so one seeks a set of input parameters that is robust against a number of different potential locations.
In the simplest case, the number of such locations is finite, meaning we can model this problem
as r ∈ arg maxr∈D mini∈[m] fi(r), where each fi corresponds to a different target location, and
[m] = {1, . . . ,m}. This is a special case of (18) with a finite set Θ of cardinality m.

In our experiment, we use m = 2. Hence, our goal is to find an input configuration r that is robust
against two different target locations. The first target is uniform over the domain, and the second
is uniform over the `1-ball centered at the first target location with radius r = 2.0. We initialize
each algorithm with one random sample from each fi. We run each method for T = 100 rounds,
and for a reported point rt at time t, we compare the methods in terms of the robust objective
mini∈[m] fi(rt). We perform a fully Bayesian treatment of the hyperparameters, sampling every 10
rounds as in [17, 35]. We average over 30 random pairs of {f1, f2} and report the results in Figure 3.
STABLEOPT noticeably outperforms its competitors except in some of the very early rounds. We
note that the apparent discontinuities in certain curves are a result of the hyperparmeter re-estimation.

3https://github.com/zi-w/Max-value-Entropy-Search

8

0 20 40 60 80 100
t

−2

0

2

4

A
vg

.
M

in
.

O
bj

.
V

al
.

GP-UCB
MaxiMin-GP-UCB
Stable-GP-UCB
Stable-GP-Random
StableOpt

t=5 t=10 t=15 t=20 t=25
0.0

0.2

0.4

0.6

0.8

1.0

A
vg

.ε
-r

eg
re

t

GP-UCB
MaxiMin-GP-UCB
StableOpt

Figure 3: Robust robot pushing experiment (Left) and MovieLens-100K experiment (Right)

Group movie recommendation. Our goal in this task is to recommend a group of movies to a user
such that every movie in the group is to their liking. We use the MovieLens-100K dataset, which
consists of 1682 movies and 943 users. The data takes the form of an incomplete matrix R of ratings,
where Ri,j is the rating of movie i given by the user j. To impute the missing rating values, we
apply non-negative matrix factorization with p = 15 latent factors. This produces a feature vector for
each movie mi ∈ Rp and user uj ∈ Rp. We use 10% of the user data for training, in which we fit a
Gaussian distribution P (u) = N (u|µ,Σ). For a given user uj in the test set, P (u) is considered to
be a prior, and the objective is given by fj(mi) = mT

i uj , corresponding to a GP with a linear kernel.

We cluster the movie feature vectors into k = 80 groups, i.e., G = {G1, . . . , Gk}, via the k-means
algorithm. Similarly to (26), the robust optimization problem for a given user j is

max
G∈G

gj(G), (31)

where gj(G) = minmi∈G fj(mi). That is, for the user with feature vector uj , our goal is to find the
group of movies to recommend such that the entire collection of movies is robust with respect to the
user’s preferences.

In this experiment, we compare STABLEOPT against GP-UCB and MAXIMIN-GP-UCB. We
report the ε-regret given by gj(G

∗) − gj(G
(t)) where G∗ is the maximizer of (31), and G(t)

is the reported group after time t. Since we are reporting groups rather than points, the base-
lines require slight modifications: At time t, GP-UCB selects the movie mt (i.e., asks for the
user’s rating of it) and reports the group G(t) to which mt belongs. MAXIMIN-GP-UCB re-
ports G(t) ∈ arg maxG∈G minm∈G ucbt−1(m) and then selects mt ∈ arg minm∈G(t) ucbt−1(m).
Finally, STABLEOPT reports a group in the same way as MAXIMIN-GP-UCB, but selects mt

analogously to (26). In Figure 3, we show the average ε-regret, where the average is taken over
500 different test users. In this experiment, the average ε-regret decreases rapidly after only a small
number of rounds. Among the three methods, STABLEOPT is the only one that finds the optimal
movie group.

6 Conclusion

We have introduced and studied a variant of GP optimization in which one requires stability/robustness
to an adversarial perturbation. We demonstrated the failures of existing algorithms, and provided a
new algorithm STABLEOPT that overcomes these limitations, with rigorous guarantees. We showed
that our framework naturally applies to several interesting max-min optimization formulations, and
we demonstrated significant improvements over some natural baselines in the experimental examples.

An interesting direction for future work is to study the ε-stable optimization formulation in the
context of hyperparameter tuning (e.g., for deep neural networks). One might expect that wide
function maxima in hyperparameter space provide better generalization than narrow maxima, but
establishing this requires further investigation. Similar considerations are an ongoing topic of debate
in understanding the parameter space rather than the hyperparmeter space, e.g., see [13].

Acknowledgment. This work was partially supported by the Swiss National Science Foundation
(SNSF) under grant number 407540_167319, by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement no725594
- time-data), by DARPA DSO’s Lagrange program under grant FA86501827838, and by an NUS
startup grant.

9

References
[1] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. Gambling

in a rigged casino: The adversarial multi-armed bandit problem. Technical report,
http://www.dklevine.com/archive/refs4462.pdf, 1998.

[2] Justin J. Beland and Prasanth B. Nair. Bayesian optimization under uncertainty. NIPS BayesOpt
2017 workshop, 2017.

[3] Dimitris Bertsimas, Omid Nohadani, and Kwong Meng Teo. Nonconvex robust optimization
for problems with constraints. INFORMS Journal on Computing, 22(1):44–58, 2010.

[4] Dimitris Bertsimas, Omid Nohadani, and Kwong Meng Teo. Robust optimization for uncon-
strained simulation-based problems. Operations Research, 58(1):161–178, 2010.

[5] Ilija Bogunovic, Slobodan Mitrović, Jonathan Scarlett, and Volkan Cevher. Robust submodular
maximization: A non-uniform partitioning approach. In International Conference on Machine
Learning (ICML), pages 508–516, 2017.

[6] Ilija Bogunovic, Jonathan Scarlett, and Volkan Cevher. Time-varying Gaussian process bandit
optimization. In International Conference on Artificial Intelligence and Statistics (AISTATS),
pages 314–323, 2016.

[7] Ilija Bogunovic, Jonathan Scarlett, Andreas Krause, and Volkan Cevher. Truncated variance
reduction: A unified approach to Bayesian optimization and level-set estimation. In Advances
in Neural Information Processing Systems (NIPS), pages 1507–1515, 2016.

[8] Ilija Bogunovic, Junyao Zhao, and Volkan Cevher. Robust maximization of non-submodular
objectives. In International Conference on Artificial Intelligence and Statistics (AISTATS),
pages 890–899, 2018.

[9] Robert S Chen, Brendan Lucier, Yaron Singer, and Vasilis Syrgkanis. Robust optimization for
non-convex objectives. In Advances in Neural Information Processing Systems (NIPS), pages
4708–4717, 2017.

[10] Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In International
Conference on Machine Learning (ICML), pages 844–853, 2017.

[11] Emile Contal, David Buffoni, Alexandre Robicquet, and Nicolas Vayatis. Parallel Gaussian
process optimization with upper confidence bound and pure exploration. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, pages 225–240.
Springer, 2013.

[12] Thomas Desautels, Andreas Krause, and Joel W Burdick. Parallelizing exploration-exploitation
tradeoffs in Gaussian process bandit optimization. Journal of Machine Learning Research,
15(1):3873–3923, 2014.

[13] Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize
for deep nets. In International Conference on Machine Learning (ICML), 2017.

[14] Javier González, Zhenwen Dai, Philipp Hennig, and Neil Lawrence. Batch Bayesian optimiza-
tion via local penalization. In International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 648–657, 2016.

[15] Alkis Gotovos, Nathalie Casati, Gregory Hitz, and Andreas Krause. Active learning for level
set estimation. In International Joint Conference on Artificial Intelligence (IJCAI), pages
1344–1350, 2013.

[16] Philipp Hennig and Christian J Schuler. Entropy search for information-efficient global opti-
mization. Journal of Machine Learning Research, 13(Jun):1809–1837, 2012.

[17] José Miguel Hernández-Lobato, Matthew W Hoffman, and Zoubin Ghahramani. Predictive
entropy search for efficient global optimization of black-box functions. In Advances in Neural
Information Processing Systems (NIPS), pages 918–926, 2014.

[18] Kirthevasan Kandasamy, Jeff Schneider, and Barnabás Póczos. High dimensional Bayesian
optimisation and bandits via additive models. In International Conference on Machine Learning
(ICML), pages 295–304, 2015.

[19] Andreas Krause, H Brendan McMahan, Carlos Guestrin, and Anupam Gupta. Robust sub-
modular observation selection. Journal of Machine Learning Research, 9(Dec):2761–2801,
2008.

10

[20] Andreas Krause and Cheng S Ong. Contextual Gaussian process bandit optimization. In
Advances in Neural Information Processing Systems (NIPS), pages 2447–2455, 2011.

[21] Daniel J Lizotte, Tao Wang, Michael H Bowling, and Dale Schuurmans. Automatic gait
optimization with Gaussian process regression. In International Joint Conference on Artificial
Intelligence (IJCAI), pages 944–949, 2007.

[22] Ruben Martinez-Cantin, Kevin Tee, and Michael McCourt. Practical Bayesian optimization in
the presence of outliers. In International Conference on Artificial Intelligence and Statistics
(AISTATS), 2018.

[23] J. Nogueira, R. Martinez-Cantin, A. Bernardino, and L. Jamone. Unscented Bayesian opti-
mization for safe robot grasping. In IEEE/RSJ Int. Conf. Intel. Robots and Systems (IROS),
2016.

[24] Carl Edward Rasmussen and Christopher KI Williams. Gaussian processes for machine learning,
volume 1. MIT press Cambridge, 2006.

[25] Paul Rolland, Jonathan Scarlett, Ilija Bogunovic, and Volkan Cevher. High-dimensional
Bayesian optimization via additive models with overlapping groups. In International Conference
on Artificial Intelligence and Statistics (AISTATS), pages 298–307, 2018.

[26] Binxin Ru, Michael Osborne, and Mark McLeod. Fast information-theoretic Bayesian optimisa-
tion. arXiv preprint arXiv:1711.00673, 2017.

[27] Jonathan Scarlett, Ilijia Bogunovic, and Volkan Cevher. Lower bounds on regret for noisy
Gaussian process bandit optimization. In Conference on Learning Theory (COLT), 2017.

[28] Shubhanshu Shekhar and Tara Javidi. Gaussian process bandits with adaptive discretization.
arXiv preprint arXiv:1712.01447, 2017.

[29] Aman Sinha, Hongseok Namkoong, and John Duchi. Certifiable distributional robustness
with principled adversarial training. In International Conference on Learning Representations
(ICLR), 2018.

[30] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization of machine
learning algorithms. In Advances in Neural information Processing Systems (NIPS), pages
2951–2959, 2012.

[31] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian process op-
timization in the bandit setting: No regret and experimental design. In International Conference
on Machine Learning (ICML), pages 1015–1022, 2010.

[32] Matthew Staib, Bryan Wilder, and Stefanie Jegelka. Distributionally robust submodular maxi-
mization. arXiv preprint arXiv:1802.05249, 2018.

[33] Yanan Sui, Alkis Gotovos, Joel Burdick, and Andreas Krause. Safe exploration for optimization
with Gaussian processes. In International Conference on Machine Learning (ICML), pages
997–1005, 2015.

[34] Hastagiri P Vanchinathan, Isidor Nikolic, Fabio De Bona, and Andreas Krause. Explore-
exploit in top-n recommender systems via Gaussian processes. In Proceedings of the 8th ACM
Conference on Recommender systems, pages 225–232. ACM, 2014.

[35] Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient Bayesian optimization.
In International Conference on Machine Learning (ICML), pages 3627–3635, 2017.

[36] Zi Wang, Chengtao Li, Stefanie Jegelka, and Pushmeet Kohli. Batched high-dimensional
Bayesian optimization via structural kernel learning. In International Conference on Machine
Learning (ICML), pages 3656–3664, 2017.

[37] Bryan Wilder. Equilibrium computation for zero sum games with submodular structure. In
Conference on Artificial Intelligence (AAAI), 2017.

11

Supplementary Material
Adversarially Robust Optimization with Gaussian Processes

Ilija Bogunovic, Jonathan Scarlett, Stefanie Jegelka and Volkan Cevher (NIPS 2018)

A Illustration of STABLEOPT’s Execution

The following figure gives an example of the selection procedure of STABLEOPT at two different
time steps:

True f
True -robust f
Ucb, Lcb
Data points
Last observed point
xt

xt + t

xt ±

(a) t = 5 (b) t = 15

Figure 4: An execution of STABLEOPT on the running example. We observe that after t = 15 steps,
x̃t obtained in Eq. 13 corresponds to x∗ε .

The intermediate time steps are illustrated as follows:

(a) t = 6 (b) t = 7 (c) t = 8

(d) t = 9 (e) t = 10 (f) t = 11

(g) t = 12 (h) t = 13 (i) t = 14

12

B Proofs of Theoretical Results

B.1 Proof of Theorem 1 (upper bound)

Recall that x̃t is the point computed by STABLEOPT in (13) at time t, and that δt corresponds to the
perturbation obtained in STABLEOPT (Line 3) at time t. In the following, we condition on the event
in Lemma 1 holding true, meaning that ucbt and lcbt provide valid confidence bounds as per (15).
As stated in the lemma, this holds with probability at least 1− ξ.

By the definition of ε-instant regret, we have

rε(x̃t) = max
x∈D

min
δ∈∆ε(x)

f(x + δ)− min
δ∈∆ε(xt)

f(x̃t + δ) (32)

≤ max
x∈D

min
δ∈∆ε(x)

f(x + δ)− min
δ∈∆ε(x̃t)

lcbt−1(x̃t + δ) (33)

= max
x∈D

min
δ∈∆ε(x)

f(x + δ)− lcbt−1(x̃t + δt) (34)

≤ max
x∈D

min
δ∈∆ε(x)

ucbt−1(x + δ)− lcbt−1(x̃t + δt) (35)

= min
δ∈∆ε(x̃t)

ucbt−1(x̃t + δ)− lcbt−1(x̃t + δt) (36)

≤ ucbt−1(x̃t + δt)− lcbt−1(x̃t + δt) (37)

= 2β
1/2
t σt−1(x̃t + δt), (38)

where (33) and (35) follow from Lemma 1, (34) follows since δt minimizes lcbt−1 by definition,
(36) follows since x̃t maximizes the robust upper confidence bound by definition, (37) follows by
upper bounding the minimum by the specific choice δt ∈ ∆ε(xt), and (38) follows since the upper
and lower confidence bounds are separated by 2β

1/2
t σt−1(·) according to their definitions in (12).

In fact, the analysis from (33) to (38) shows that the following pessimistic estimate of rε(x̃t) is upper
bounded by 2β

1/2
t σt−1(x̃t + δt):

rε(x̃t) = max
x∈D

min
δ∈∆ε(x)

f(x + δ)− min
δ∈∆ε(x̃t)

lcbt−1(x̃t + δ). (39)

Unlike rε(x̃t), the algorithm has the required knowledge to identify the value of t ∈ {1, . . . , T} with
the smallest rε(x̃t). Specifically, the first term on the right-hand side of (39) does not depend on t, so
the smallest rε(x̃t) is achieved by x(T) defined in (17). Since the minimum is upper bounded by the
average, it follows that

rε(x
(T)) ≤ rε(x(T)) (40)

≤ 1

T

T∑
t=1

2β
1/2
t σt−1(x̃t + δt) (41)

≤ 2β
1/2
T

T

T∑
t=1

σt−1(x̃t + δt), (42)

where (41) uses (38), and (42) uses the monotonicity of βT . Next, we claim that

2
T∑
t=1

σt−1(x̃t + δt) ≤
√
C1TγT , (43)

where C1 = 8/ log(1 + σ−2). In fact, this is a special case of the well-known result [31, Lemma
5.4],4 which upper bounds the sum of posterior standard deviations of sampled points in terms of
the information gain γT (recall that STABLEOPT samples at location x̃t + δt). Combining (42)–(43)
and re-arranging, we deduce that after T satisfies T

βT γT
≥ C1

η2 , the ε-instant regret is at most η, thus
completing the proof.

4More precisely, [31, Lemma 5.4] alongside an application of the Cauchy-Schwarz inequality as in [31].

13

0

f1 f2 f3 f4 f5

w

�⌘

�2⌘

min�2�✏(x) f3(x + �) = �2⌘

Width-2✏ region in which

Figure 6: Illustration of functions f1, . . . , f5 equal to a common function shifted by various multiples
of a given parameter w. In the ε-stable setting, there is a wide region (shown in gray for the dark blue
curve f3) within which the perturbed function value equals −2η.

B.2 Proof of Theorem 2 (lower bound)

Our lower bounding analysis builds heavily on that of the non-robust optimization setting with
f ∈ Fk(B) studied in [27], but with important differences. Roughly speaking, the analysis of [27] is
based on the difficulty of finding a very narrow “bump” of height 2η in a function whose values are
mostly close to zero. In the ε-stable setting, however, even the points around such a bump will be
adversarially perturbed to another point whose function value is nearly zero. Hence, all points are
essentially equally bad.

To overcome this challenge, we consider the reverse scenario: Most of the function values are still
nearly zero, but there exists a narrow valley of depth −2η. This means that every point within an
ε-ball around the function minimizer will be perturbed to the point with value−2η. Hence, a constant
fraction of the volume is still 2η-suboptimal, and it is impossible to avoid this region with high
probability unless the time horizon T is sufficiently large. An illustration is given in Figure 6, with
further details below.

We now proceed with the formal proof.

B.2.1 Preliminaries

Recall that we are considering an arbitrary given (deterministic) GP optimization algorithm. More
precisely, such an algorithm consists of a sequence of decision functions that return a sampling
location xt based on y1, . . . , yt−1, and an additional decision function that reports the final point x(T)

based on y1, . . . , yT . The points x1, . . . ,xt−1 (or x1, . . . ,xT) do not need to be treated as additional
inputs to these functions, since (x1, . . . ,xt−1) is a deterministic function of (y1, . . . , yt−1).

We first review several useful results and techniques from [27]:

• We lower bound the worst-case ε-regret within Fk(B) by the ε-regret averaged over a suitably-
designed finite collection {f1, . . . , fM} ⊂ Fk(B) of size M .

• We choose each fm(x) to be a shifted version of a common function g(x) on Rp. Specifically,
each fm(x) is obtained by shifting g(x) by a different amount, and then cropping toD = [0, 1]p.
For our purposes, we require g(x) to satisfy the following properties:

1. The RKHS norm in Rp is bounded, ‖g‖k ≤ B;
2. We have (i) g(x) ∈ [−2η, 2η] with minimum value g(0) = −2η, and (ii) there is a “width”
w such that g(x) > −η for all ‖x‖∞ ≥ w;

3. There are absolute constants h0 > 0 and ζ > 0 such that g(x) = 2η
h0
h
(
xζ
w

)
for some

function h(z) that decays faster than any finite power of ‖z‖2 as ‖z‖2 →∞.

14

Letting g(x) be such a function, we construct the M functions by shifting g(x) so that each
fm(x) is centered on a unique point in a uniform grid, with points separated by w in each
dimension. Since D = [0, 1]p, one can construct

M =
⌊(1

w

)p⌋
(44)

such functions. We will use this construction with w � 1, so that there is no risk of having
M = 0, and in fact M can be assumed larger than any desired absolute constant.

• It is shown in [27] that the above properties5 can be achieved with

M =

⌊(
r
√

log B(2πl2)p/4h(0)
2η

ζπl

)p⌋
(45)

in the case of the SE kernel, and with

M =
⌊(Bc3

η

)p/ν⌋
(46)

in the case of the Matérn kernel, where

c3 :=
(r
ζ

)ν
·
(

c
−1/2
2

2(8π2)(ν+p/2)/2

)
, (47)

and where c2 > 0 is an absolute constant. Note that these values of M amount to choosing w in
(44), and the assumption of sufficiently small η

B in the theorem statement ensures that M � 1
(or equivalently w � 1) as stated above.
• Property 2 above ensures that the “robust” function value minδ∈∆ε(x) f(x) equals −2η for

any x whose ε-neighborhood includes the minimizer xmin of f , while being −η or higher for
any input whose entire ε-neighborhood is separated from xmin by at least w. For w � 1 and
ε < 0.5, a point of the latter type is guaranteed to exist, which implies

rε(x) ≥ η (48)

for any x whose ε-neighborhood includes xmin.

In addition, we introduce the following notation, also used in [27]:

• The probability density function of the output sequence y = (y1, . . . , yT) when the un-
derlying function is fm is denoted by Pm(y). We also define f0(x) = 0 to be the zero
function, and define P0(y) analogously for the case that the optimization algorithm is run
on f0. Expectations and probabilities (with respect to the noisy observations) are similarly
written as Em, Pm, E0, and P0 when the underlying function is fm or f0. On the other hand,
in the absence of a subscript, E[·] and P[·] are taken with respect to the noisy observations
and the random function f drawn uniformly from {f1, . . . , fM} (recall that we are lower
bounding the worst case by this average).
• Let {Rm}Mm=1 be a partition of the domain into M regions according the above-mentioned

uniform grid, with fm taking its minimum value of −2η in the centre ofRm. Moreover, let
jt be the index at time t such that xt falls intoRjt ; this can be thought of as a quantization
of xt.
• Define the maximum (absolute) function value within a given regionRj as

vjm := max
x∈Rj

|fm(x)|, (49)

and the maximum KL divergence to P0 within the region as

D
j

m := max
x∈Rj

D(P0(·|x)‖Pm(·|x)), (50)

where Pm(y|x) is the distribution of an observation y for a given selected point x under the
function fm, and similarly for P0(y|x).

5Here g(x) plays the role of −g(x) in [27] due to the discussion at the start of this appendix, but otherwise
the construction is identical.

15

• Let Nj ∈ {0, . . . , T} be a random variable representing the number of points fromRj that
are selected throughout the T rounds.

Next, we present several useful lemmas. The following well-known change-of-measure result,
which can be viewed as a form of Le Cam’s method, has been used extensively in both discrete and
continuous bandit problems.

Lemma 2. [1, p. 27] For any function a(y) taking values in a bounded range [0, A], we have∣∣Em[a(y)]− E0[a(y)]
∣∣ ≤ AdTV(P0, Pm) (51)

≤ A
√
D(P0‖Pm), (52)

where dTV(P0, Pm) = 1
2

∫
RT |P0(y)− Pm(y)| dy is the total variation distance.

We briefly remark on some slight differences here compared to [1, p. 27]. There, only Em[a(y)]−
E0[a(y)] is upper bounded in terms of dTV(P0, Pm), but one easily obtains the same upper bound on
E0[a(y)]−Em[a(y)] by interchanging the roles of P0 and Pm. The step (52) follows from Pinsker’s

inequality, dTV(P0, Pm) ≤
√

D(P0‖Pm)
2 , and by upper bounding 1√

2
≤ 1 to ease the notation.

The following result simplifies the divergence term in (52).

Lemma 3. [27, Eq. (44)] Under the preceding definitions, we have

D(P0‖Pm) ≤
M∑
j=1

E0[Nj]D
j

m. (53)

The following well-known property gives a formula for the KL divergence between two Gaussians.

Lemma 4. [27, Eq. (36)] For P1 and P2 being Gaussian with means (µ1, µ2) and a common
variance σ2, we have

D(P1‖P2) =
(µ1 − µ2)2

2σ2
. (54)

Finally, we have the following technical result regarding the “needle-in-haystack” type function
constructed above.

Lemma 5. [27, Lemma 7] The functions {fm}Mm=1 corresponding to (45)–(46) are such that the
quantities vjm satisfy

∑M
m=1(vjm)2 = O(η2) for all j.

B.2.2 Analysis of the average ε-stable regret

Let Jbad(m) be the set of j such that all x ∈ Rj yield minδ∈∆ε(x) f(x + δ) = −2η when the true
function is fm, and defineRbad(m) = ∪j∈Jbad(m)Rj . By the ε-regret lower bound in (48), we have

Em[rε(x
(T))] ≥ ηPm[x(T) ∈ Rbad(m)] (55)

≥ η
(
P0[x(T) ∈ Rbad(m)]−

√
D(P0‖Pm)

)
(56)

≥ η
(
P0[x(T) ∈ Rbad(m)]−

√√√√ M∑
j=1

E0[Nj]D
j

m

)
, (57)

where (56) follows from Lemma 2 with a(y) = 1{x(T) ∈ Rbad(m)} and A = 1 (recall that x(T)

is a function of y = (y1, . . . , yT)), and (57) follows from Lemma 3. Averaging over m uniform on
{1, . . . ,M}, we obtain

E[rε(x
(T))] ≥ η

(
1

M

M∑
m=1

P0[x(T) ∈ Rbad(m)]− 1

M

M∑
m=1

√√√√ M∑
j=1

E0[Nj]D
j

m

)
. (58)

We proceed by bounding the two terms separately.

16

• We first claim that
1

M

M∑
m=1

P0[x(T) ∈ Rbad(m)] ≥ C1 (59)

for some C1 > 0. To show this, it suffices to prove that any given x(T) ∈ D is in at least a
constant fraction of theRbad(m) regions, of which there are M . This follows from the fact that
the ε-ball centered at xm,min = arg minx∈D fm(x) takes up a constant fraction of the volume
of D, where the constant depends on both the stability parameter ε and the dimension p. A
small caveat is that because the definition ofRbad insists that the every point in the regionRj
is within distance ε of xm,min, the left-hand side of (59) may be slightly below the relevant
ratio of volumes above. However, since Theorem 2 assumes that ε

B is sufficiently small, the
choices of M in (45) and (46) ensure that M is sufficiently large for this “quantization” effect
to be negligible.
• For the second term in (58), we claim that

1

M

M∑
m=1

√√√√ M∑
j=1

E0[Nj]D
j

m ≤ C2
η

σ

√
T

M
(60)

for some C2 > 0. To see this, we write

1

M

M∑
m=1

√√√√ M∑
j=1

E0[Nj]D
j

m

= O

(
1

σ

)
· 1

M

M∑
m=1

√√√√ M∑
j=1

E0[Nj](v
j
m)2 (61)

≤ O
(

1

σ

)
·

√√√√ 1

M

M∑
m=1

M∑
j=1

E0[Nj](v
j
m)2 (62)

= O

(
1

σ

)
·

√√√√ 1

M

M∑
j=1

E0[Nj]

(M∑
m=1

(vjm)2

)
(63)

= O

(
η√
Mσ

)
·

√√√√ M∑
j=1

E0[Nj] (64)

= O

(√
Tη√
Mσ

)
, (65)

where (61) follows since the divergence D(P0(·|x)‖Pm(·|x)) associated with a point x having
value v(x) is v(x)2

2σ2 (cf., (54)), (62) follows from Jensen’s inequality, (64) follows from Lemma
5, and (65) follows from

∑
j Nj = T .

Substituting (59) and (60) into (58), we obtain

E[rε(x
(T))] ≥ η

(
C1 − C2

η

σ

√
T

M

)
, (66)

which implies that the regret is lower bounded by Ω(η) unless T = Ω
(
Mσ2

η2

)
. Substituting M from

(45) and (46), we deduce that the conditions on T in the theorem statement are necessary to achieve
average regret E[rε(x

(T))] = O(η) with a sufficiently small implied constant.

B.2.3 From average to high-probability regret

Recall that we are considering functions whose values lie in the range [−2η, 2η], implying that
rε(x

(T)) ≤ 4η. Letting Tη be the lower bound on T derived above for achieving average regret

17

O(η) (i.e., we have E[r
(Tη)
ε] = Ω(η)), it follows from the reverse Markov inequality (i.e., Markov’s

inequality applied to the random variable 4η − r(Tη)
ε) that

P[rε(x
(Tη)) ≥ cη] ≥ Ω(η)− cη

4η − cη (67)

for any c > 0 sufficiently small for the numerator and denominator to be positive. The right-hand
side is lower bounded by a constant for any such c, implying that the probability of achieving ε-regret
at most cη cannot be arbitrarily close to one. By renaming cη as η′, it follows that in order to achieve
some target ε-stable regret η′ with probability sufficiently close to one, a lower bound of the same
form as the average regret bound holds. In other words, the conditions on T in the theorem statement
remain necessary also for the high-probability regret.

We emphasize that Theorem 2 concerns the high-probability regret when “high probability” means
sufficiently close to one as a function of ε, p, and the kernel parameters (but still constant with respect
to T and η). We do not claim a lower bound under any particular given success probability (e.g.,
η-optimality with probability at least 3

4).

C Details on Variations from Section 4

We claim that the STABLEOPT variations and theoretical results outlined in Section 4 are in fact
special cases of Algorithm 1 and Theorem 1, despite being seemingly quite different. The idea behind
this claim is that Algorithm 1 and Theorem 1 allow for the “distance” function d(·, ·) to be completely
arbitrary, so we may choose it in rather creative/unconventional ways.

In more detail, we have the following:

• For the unknown parameter setting maxx∈D minθ∈Θ f(x,θ), we replace x in the original
setting by the concatenated input (x,θ), and set

d((x,θ), (x′,θ′)) = ‖x− x′‖2. (68)

If we then set ε = 0, we find that the input x experiences no perturbation, whereas θ may be
perturbed arbitrarily, thereby reducing (7) to maxx∈D minθ∈Θ f(x,θ) as desired.
• For the robust estimation setting, we again use the concatenated input (x,θ). To avoid over-

loading notation, we let d0(θ,θ′) denote the distance function (applied to θ alone) adopted for
this case in Section 4. We set

d((x,θ), (x′,θ′)) =

{
d0(θ,θ′) x = x′

∞ x 6= x′.
(69)

Due to the second case, the input x experiences no perturbation, since doing so would violate
the distance constraint of ε. We are then left with x = x′ and d0(θ,θ′) ≤ ε, as required.
• For the grouped setting maxG∈G minx∈G f(x), we adopt the function

d(x,x′) = 1{x and x′ are in different groups}, (70)

and set ε = 0. Considering the formulation in (7), we find that any two inputs x and x′ yield
the same ε-stable objective function, and hence, reporting a point x is equivalent to reporting its
group G. As a result, (7) reduces to the desired formulation maxG∈G minx∈G f(x).

The variations of STABLEOPT described in (20)–(26), as well as the corresponding theoretical results
outlined in Section 4, follow immediately by substituting the respective choices of d(·, ·) and ε above
into Algorithm 1 and Theorem 1. It should be noted that in the first two examples, the definition of γt
in (14) is modified to take the maximum over not only x1, · · · ,xt, but also θ1, · · · ,θt.

D Lake Data Experiment

We consider an application regarding environmental monitoring of inland waters, using a data set
containing 2024 in situ measurements of chlorophyll concentration within a vertical transect plane,
collected by an autonomous surface vessel in Lake Zürich. This data set was considered in previous

18

0 500 1000
Length [m]

−20

−15

−10

−5

0

D
ep

th
[m

]

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

(a) Chlorophyll concentration

0 500 1000
Length [m]

−20

−15

−10

−5

0

D
ep

th
[m

]

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(b) Robust objective

0 20 40 60 80 100 120
t

0.0

0.2

0.4

0.6

ε-
re

gr
et

StableOpt
GP-UCB
MaxiMin-GP-UCB
Stable-GP-UCB
Stable-GP-Random

(c) ε-regret

Figure 7: Experiment on the Zürich lake dataset; In the later rounds STABLEOPT is the only method
that reports a near-optimal ε-stable point.

works such as [7, 15] to detect regions of high concentration. In these works, the goal was to locate
all regions whose concentration exceeds a pre-defined threshold.

Here we consider a different goal: We seek to locate a region of a given size such that the concentration
throughout the region is as high as possible (in the max-min sense). This is of interest in cases
where high concentration only becomes relevant when it is spread across a sufficiently wide area. We
consider rectangular regions with different pre-specified lengths in each dimension:

∆εD,εL(x) = {x′ − x : x′ ∈ D, |xD − x′D| ≤ εD ∩ |xL − x′L| ≤ εL}, (71)

where x = (xD, xL) and x′ = (x′D, x
′
L) indicate the depth and length, and we denote the correspond-

ing stability parameters by (εD, εL). This corresponds to d(·, ·) being a weighted `∞-norm.

We evaluate each algorithm on a 50 × 50 grid of points, with the corresponding values coming
from the GP posterior that was derived using the original data. We use the Matérn-5/2 ARD kernel,
setting its hyperparameters by maximizing the likelihood on a second (smaller) available dataset. The
parameters εD and εL are set to 1.0 and 100.0, respectively. The stability requirement changes the
global maximum and its location, as can be observed in Figure 7. The number of sampling rounds is
T = 120, and each algorithm is initialized with the same 10 random data points and corresponding
observations. The performance is averaged over 100 different runs, where every run corresponds
to a different random initialization. In this experiment, STABLE-GP-UCB achieves the smallest
ε-regret in the early rounds, while in the later rounds STABLEOPT is the only method that reports a
near-optimal ε-stable point.

19

ar
X

iv
:1

80
2.

03
48

7v
4

 [
cs

.L
G

]
 2

8
M

ay
 2

01
9

Published as a conference paper at ICLR 2019

SMALL NONLINEARITIES IN ACTIVATION FUNCTIONS

CREATE BAD LOCAL MINIMA IN NEURAL NETWORKS

Chulhee Yun, Suvrit Sra & Ali Jadbabaie
Massachusetts Institute of Technology
Cambridge, MA 02139, USA
{chulheey,suvrit,jadbabai}@mit.edu

ABSTRACT

We investigate the loss surface of neural networks. We prove that even for one-
hidden-layer networks with “slightest” nonlinearity, the empirical risks have spu-
rious local minima in most cases. Our results thus indicate that in general “no
spurious local minima” is a property limited to deep linear networks, and insights
obtained from linear networks may not be robust. Specifically, for ReLU(-like)
networks we constructively prove that for almost all practical datasets there exist
infinitely many local minima. We also present a counterexample for more general
activations (sigmoid, tanh, arctan, ReLU, etc.), for which there exists a bad local
minimum. Our results make the least restrictive assumptions relative to existing
results on spurious local optima in neural networks. We complete our discussion
by presenting a comprehensive characterization of global optimality for deep lin-
ear networks, which unifies other results on this topic.

1 INTRODUCTION

Neural network training reduces to solving nonconvex empirical risk minimization problems, a task
that is in general intractable. But success stories of deep learning suggest that local minima of the
empirical risk could be close to global minima. Choromanska et al. (2015) use spherical spin-glass
models from statistical physics to justify how the size of neural networks may result in local minima
that are close to global. However, due to the complexities introduced by nonlinearity, a rigorous
understanding of optimality in deep neural networks remains elusive.

Initial steps towards understanding optimality have focused on deep linear networks. This area has
seen substantial recent progress. In deep linear networks there is no nonlinear activation; the out-
put is simply a multilinear function of the input. Baldi & Hornik (1989) prove that some shallow
networks have no spurious local minima, and Kawaguchi (2016) extends this result to squared er-
ror deep linear networks, showing that they only have global minima and saddle points. Several
other works on linear nets have also appeared (Lu & Kawaguchi, 2017; Freeman & Bruna, 2017;
Yun et al., 2018; Zhou & Liang, 2018; Laurent & Brecht, 2018a;b).

The theory of nonlinear neural networks (which is the actual setting of interest), however, is
still in its infancy. There have been attempts to extend the “local minima are global” property
from linear to nonlinear networks, but recent results suggest that this property does not usually
hold (Zhou & Liang, 2018). Although not unexpected, rigorously proving such results turns out to
be non-trivial, forcing several authors (e.g., Safran & Shamir (2018); Du et al. (2018b); Wu et al.
(2018)) to make somewhat unrealistic assumptions (realizability and Gaussianity) on data.

In contrast, we prove existence of spurious local minima under the least restrictive (to our knowl-
edge) assumptions. Since seemingly subtle changes to assumptions can greatly influence the analysis
as well as the applicability of known results, let us first summarize what is known; this will also help
provide a better intuitive perspective on our results (as the technical details are somewhat involved).

1.1 WHAT IS KNOWN SO FAR?

There is a large and rapidly expanding literature of optimization of neural networks. Some works fo-
cus on the loss surface (Baldi & Hornik, 1989; Yu & Chen, 1995; Kawaguchi, 2016; Swirszcz et al.,
2016; Soudry & Carmon, 2016; Xie et al., 2016; Nguyen & Hein, 2017; 2018; Safran & Shamir,

1

http://arxiv.org/abs/1802.03487v4

Published as a conference paper at ICLR 2019

2018; Laurent & Brecht, 2018a; Yun et al., 2018; Zhou & Liang, 2018; Wu et al., 2018; Liang et al.,
2018a;b; Shamir, 2018), while others study the convergence of gradient-based methods for optimiz-
ing this loss (Tian, 2017; Brutzkus & Globerson, 2017; Zhong et al., 2017; Soltanolkotabi, 2017;
Li & Yuan, 2017; Du et al., 2018b; Zhang et al., 2018; Brutzkus et al., 2018; Wang et al., 2018;
Li & Liang, 2018; Du et al., 2018a;c; Allen-Zhu et al., 2018; Zou et al., 2018; Zhou et al., 2019).
In particular, our focus is on the loss surface itself, independent of any algorithmic concerns; this is
reflected in the works summarized below.

For ReLU networks, the works (Swirszcz et al., 2016; Zhou & Liang, 2018) provide counterexample
datasets that lead to spurious local minima, dashing hopes of “local implies global” properties.
However, these works fail to provide statements about generic datasets, and one can argue that their
setups are limited to isolated pathological examples. In comparison, our Theorem 1 shows existence
of spurious local minima for almost all datasets, a much more general result. Zhou & Liang (2018)
also give characterization of critical points of shallow ReLU networks, but with more than one
hidden node the characterization provided is limited to certain regions.

There are also results that study population risk of shallow ReLU networks under an assumption that
input data is i.i.d. Gaussian distributed (Safran & Shamir, 2018; Wu et al., 2018; Du et al., 2018b).
Moreover, these works also assume realizability, i.e., the output data is generated from a neural
network with the same architecture as the model one trains, with unknown true parameters. These
assumptions enable one to compute the population risk in a closed form, and ensure that one can
always achieve zero loss at global minima. The authors of Safran & Shamir (2018); Wu et al. (2018)

study the population risk function of the form Ex[(
∑k

i=1 ReLU(wT
i x)− ReLU(vTi x))

2], where the
true parameters vi’s are orthogonal unit vectors. Through extensive experiments and computer-
assisted local minimality checks, Safran & Shamir (2018) show existence of local minima for k ≥ 6.
However, this result is empirical and does not have constructive proofs. Wu et al. (2018) show
that with k = 2, there is no bad local minima on the manifold ‖w1‖2 = ‖w2‖2 = 1. Du et al.
(2018b) study population risk of one-hidden-layer CNN. They show that there can be a spurious
local minimum, but gradient descent converges to the global minimum with probability at least 1/4.

Our paper focuses on empirical risk instead of population risk, and does not assume either Gaussian-
ity or realizability. Theorem 1 1’s assumption on the dataset is that it is not linearly fittable1, which
is vastly more general and realistic than assuming that input data is Gaussian or that the output is
generated from an unknown neural network. Our results also show that Wu et al. (2018) fails to
extend to empirical risk and non-unit parameter vectors (see the discussion after Theorem 2).

Liang et al. (2018b) showed that under assumptions on the loss function, data distribution, network
structure, and activation function, all local minima of the empirical loss have zero classification
error in binary classification tasks. The result relies on stringent assumptions, and it is not directly
comparable to ours because both “the local minimum has nonzero classification error” and “the local
minima is spurious” do not imply one another. Liang et al. (2018a) proved that adding a parallel
network with one exponential hidden node can eliminate all bad local minima. The result relies on
the special parallel structure, whereas we analyze standard fully connected network architecture.

Laurent & Brecht (2018a) studies one-hidden-layer networks with hinge loss for classification. Un-
der linear separability, the authors prove that Leaky-ReLU networks don’t have bad local minima,
while ReLU networks do. Our focus is on regression, and we only make mild assumptions on data.

For deep linear networks, the most relevant result to ours is Laurent & Brecht (2018b). When all
hidden layers are wider than the input or output layers, Laurent & Brecht (2018b) prove that any lo-
cal minimum of a deep linear network under differentiable convex loss is global.2 They prove this by
showing a statement about relationship between linear vs. multilinear parametrization. Our result in
Theorem 4 is strictly more general that their results, and presents a comprehensive characterization.

A different body of literature (Yu & Chen, 1995; Soudry & Carmon, 2016; Xie et al., 2016;
Nguyen & Hein, 2017; 2018) considers sufficient conditions for global optimality in nonlinear net-
works. These results make certain architectural assumptions (and some technical restrictions) that
may not usually apply to realistic networks. There are also other works on global optimality condi-
tions for specially designed architectures (Haeffele & Vidal, 2017; Feizi et al., 2017).

1That is, given input data matrices X and Y , there is no matrix R such that Y = RX .
2Although their result overlaps with a subset of Theorem 4, our theorem was obtained independently.

2

Published as a conference paper at ICLR 2019

1.2 CONTRIBUTIONS AND SUMMARY OF RESULTS

We summarize our key contributions more precisely below. Our work encompasses results for both
nonlinear and linear neural networks. First, we study whether the “local minima are global” property
holds for nonlinear networks. Unfortunately, our results here are negative. Specifically, we prove

◮ For piecewise linear and nonnegative homogeneous activation functions (e.g., ReLU), we prove
in Theorem 1 that if linear models cannot perfectly fit the data, one can construct infinitely many
local minima that are not global. In practice, most datasets are not linearly fittable, hence this
result gives a constructive proof of spurious local minima for generic datasets. In contrast, several
existing results either provide only one counterexample (Swirszcz et al., 2016; Zhou & Liang,
2018), or make restrictive assumptions of realizability (Safran & Shamir, 2018; Du et al., 2018b)
or linear separability (Laurent & Brecht, 2018a). This result is presented in Section 2.

◮ In Theorem 2 we tackle more general nonlinear activation functions, and provide a simple ar-
chitecture (with squared loss) and dataset, for which there exists a local minimum inferior to the
global minimum for a realizable dataset. Our analysis applies to a wide range of activations,
including sigmoid, tanh, arctan, ELU (Clevert et al., 2015), SELU (Klambauer et al., 2017), and
ReLU. Considering that realizability of data simplifies the analysis and ensures zero loss at global
optima, our counterexample that is realizable and yet has a spurious local minimum is surprising,
suggesting that the situation is likely worse for non-realizable data. See Section 3 for details.

We complement our negative results by presenting the following positive result on linear networks:

◮ Assume that the hidden layers are as wide as either the input or the output, and that the empiri-

cal risk ℓ((Wj)
H+1
j=1) equals ℓ0(WH+1WH · · ·W1), where ℓ0 is a differentiable loss function and

Wi is the weight matrix for layer i. Theorem 4 shows if (Ŵj)
H+1
j=1 is a critical point of ℓ, then

its type of stationarity (local min/max, or saddle) is closely related to the behavior of ℓ0 eval-

uated at the product ŴH+1 · · · Ŵ1. If we additionally assume that any critical point of ℓ0 is a
global minimum, Corollary 5 shows that the empirical risk ℓ only has global minima and sad-
dles, and provides a simple condition to distinguish between them. To the best of our knowledge,
this is the most general result on deep linear networks and it subsumes several previous results,
e.g., (Kawaguchi, 2016; Yun et al., 2018; Zhou & Liang, 2018; Laurent & Brecht, 2018b). This
result is in Section 4.

Notation. For an integer a ≥ 1, [a] denotes the set of integers from 1 to a (inclusive). For a vector
v, we use [v]i to denote its i-th component, while [v][i] denotes a vector comprised of the first i
components of v. Let 1(·) (0(·)) be the all ones (zeros) column vector or matrix with size (·).

2 “RELU-LIKE” NETWORKS: BAD LOCAL MINIMA EXIST FOR MOST DATA

We study below whether nonlinear neural networks provably have spurious local minima. We show
in §2 and §3 that even for extremely simple nonlinear networks, one encounters spurious local min-
ima. We first consider ReLU and ReLU-like networks. Here, we prove that as long as linear models
cannot perfectly fit the data, there exists a local minimum strictly inferior to the global one. Using
nonnegative homogeneity, we can scale the parameters to get infinitely many local minima.

Consider a training dataset that consists of m data points. The inputs and the outputs are of
dimension dx and dy , respectively. We aggregate these items, and write X ∈ Rdx×m as the

data matrix and Y ∈ Rdy×m as the label matrix. Consider the 1-hidden-layer neural network

Ŷ = W2h(W1X + b11
T
m) + b21

T
m, where h is a nonlinear activation function, W2 ∈ Rdy×d1 ,

b2 ∈ Rdy , W1 ∈ Rd1×dx , and b1 ∈ Rd1 . We analyze the empirical risk with squared loss

ℓ(W1,W2, b1, b2)=
1
2‖W2h(W1X+b11

T
m)+b21

T
m−Y ‖2F.

Next, define a class of piecewise linear nonnegative homogeneous functions

h̄s+,s−(x) = max{s+x, 0}+min{s−x, 0}, (1)

where s+ > 0, s− ≥ 0 and s+ 6= s−. Note that ReLU and Leaky-ReLU are members of this class.

2.1 MAIN RESULTS AND DISCUSSION

We use the shorthand X̃ :=
[

XT
1m

]T
∈ R(dx+1)×m. The main result of this section, Theorem 1,

considers the case where linear models cannot fit Y , i.e., Y 6= RX̃ for all matrix R. With ReLU-like
activation (1) and a few mild assumptions, Theorem 1 shows that there exist spurious local minima.

3

Published as a conference paper at ICLR 2019

Theorem 1. Suppose that the following conditions hold:

(C1.1) Output dimension is dy = 1, and linear models RX̃ cannot perfectly fit Y .

(C1.2) All the data points xi’s are distinct.

(C1.3) The activation function h is h̄s+,s− .

(C1.4) The hidden layer has at least width 2: d1 ≥ 2.

Then, there is a spurious local minimum whose risk is the same as linear least squares model.
Moreover, due to nonnegative homogeneity of h̄s+,s− , there are infinitely many such local minima.

Noticing that most real world datasets cannot be perfectly fit with linear models, Theorem 1 shows
that when we use the activation h̄s+,s− , the empirical risk has bad local minima for almost all
datasets that one may encounter in practice. Although it is not very surprising that neural net-
works have spurious local minima, proving this rigorously is non-trivial. We provide a constructive
and deterministic proof for this problem that holds for general datasets, which is in contrast to ex-
perimental results of Safran & Shamir (2018). We emphasize that Theorem 1 also holds even for
“slightest” nonlinearities, e.g., when s+ = 1 + ǫ and s− = 1 where ǫ > 0 is small. This suggests
that the “local min is global” property is limited to the simplified setting of linear neural networks.

Existing results on squared error loss either provide one counterexample (Swirszcz et al., 2016;
Zhou & Liang, 2018), or assume realizability and Gaussian input (Safran & Shamir, 2018; Du et al.,
2018b). Realizability is an assumption that the output is generated by a network with unknown
parameters. In real datasets, neither input is Gaussian nor output is generated by neural networks; in
contrast, our result holds for most realistic situations, and hence delivers useful insight.

There are several results proving sufficient conditions for global optimality of nonlinear neural net-
works (Soudry & Carmon, 2016; Xie et al., 2016; Nguyen & Hein, 2017). But they rely on assump-
tions that the network width scales with the number of data points. For instance, applying Theorem

3.4 of Nguyen & Hein (2017) to our network proves that if X̃ has linearly independent columns and
other assumptions hold, then any critical point with W2 6= 0 is a global minimum. However, lin-

early independent columns already imply row(X̃) = Rm, so even linear models RX̃ can fit any Y ;
i.e., there is less merit in using a complex model to fit Y . Theorem 1 does not make any structural
assumption other than d1 ≥ 2, and addresses the case where it is impossible to fit Y with linear
models, which is much more realistic.

It is worth comparing our result with Laurent & Brecht (2018a), who use hinge loss based classifica-
tion and assume linear separability to prove “no spurious local minima” for Leaky-ReLU networks.
Their result does not contradict our theorem because the losses are different and we do not assume
linear separability.

One might wonder if our theorem holds even with d1 ≥ m. Venturi et al. (2018) showed that one-
hidden-layer neural networks with d1 ≥ m doesn’t have spurious valleys, hence there is no strict
spurious local minima; however, due to nonnegative homogeneity of h̄s+,s− we only have non-strict
local minima. Based on Bengio et al. (2006), one might claim that with wide enough hidden layer
and random W1 and b1, one can fit any Y ; however, this is not the case, by our assumption that

linear models RX̃ cannot fit Y . Note that for any d1, there is a non-trivial region (measure > 0)
in the parameter space where W1X + b11

T
m > 0 (entry-wise). In this region, the output of neural

network Ŷ is still a linear combination of rows of X̃ , so Ŷ cannot fit Y ; in fact, it can only do as
well as linear models. We will see in the Step 1 of Section 2.2 that the bad local minimum that we
construct “kills” d1 − 1 neurons; however, killing many neurons is not a necessity, and it is just to
simply the exposition. In fact, any local minimum in the region W1X + b11

T
m > 0 is a spurious

local minimum.

2.2 ANALYSIS OF THEOREM 1

The proof of the theorem is split into two steps. First, we prove that there exist local minima

(Ŵj , b̂j)
2
j=1 whose risk value is the same as the linear least squares solution, and that there are

infinitely many such minima. Second, we will construct a tuple of parameters (W̃j , b̃j)
2
j=1 that has

strictly smaller empirical risk than (Ŵj , b̂j)
2
j=1.

4

Published as a conference paper at ICLR 2019

Step 1: A local minimum as good as the linear solution. The main idea here is to exploit the
weights from the linear least squares solution, and to tune the parameters so that all inputs to hidden
nodes become positive. Doing so makes the hidden nodes “locally linear,” so that the constructed

(Ŵj , b̂j)
2
j=1 that produce linear least squares estimates at the output become locally optimal.

Recall that X̃ =
[

XT
1m

]T
∈ R(dx+1)×m, and define a linear least squares loss ℓ0(R) :=

1
2‖RX̃ − Y ‖2F that is minimized at W̄ , so that ∇ℓ0(W̄) = (W̄ X̃ − Y)X̃T = 0. Since dy = 1, the

solution W̄ ∈ Rdy×(dx+1) is a row vector. For all i ∈ [m], let ȳi = W̄
[

xT
i 1

]T
be the output of

the linear least squares model, and similarly Ȳ = W̄ X̃ .

Let η := min {−1, 2mini ȳi}, a negative constant making ȳi − η > 0 for all i. Define parameters

Ŵ1 = α

[

[W̄][dx]

0(d1−1)×dx

]

, b̂1 = α

[

[W̄]dx+1 − η
−η1d1−1

]

, Ŵ2 =
[

1
αs+

0
T
d1−1

]

, b̂2 = η,

where α > 0 is any arbitrary fixed positive constant, [W̄][dx] gives the first dx components of W̄ ,

and [W̄]dx+1 the last component. Since ȳi = [W̄][dx]xi + [W̄]dx+1, for any i, Ŵ1xi + b̂1 > 0d1

(component-wise), given our choice of η. Thus, all hidden node inputs are positive. Moreover,

Ŷ = 1
αs+

s+(αȲ − αη1T
m) + η1T

m = Ȳ , so that the loss ℓ((Ŵj , b̂j)
2
j=1) =

1
2‖Ȳ − Y ‖2F = ℓ0(W̄).

So far, we checked that (Ŵj , b̂j)
2
j=1 has the same empirical risk as a linear least squares solution. It

now remains to show that this point is indeed a local minimum of ℓ. To that end, we consider the

perturbed parameters (Ŵj +∆j , b̂j + δj)
2
j=1, and check their risk is always larger. A useful point is

that since W̄ is a minimum of ℓ0(R) = 1
2‖RX̃ − Y ‖2F, we have

(W̄ X̃ − Y)X̃T = (Ȳ − Y)
[

XT
1m

]

= 0, (2)

so (Ȳ −Y)XT = 0 and (Ȳ −Y)1m = 0. For small enough perturbations, (Ŵ1+∆1)xi+(b̂1+δ1) >
0 still holds for all i. So, we can observe that

ℓ((Ŵj +∆j , b̂j + δj)
2
j=1)=

1
2‖Ȳ − Y + ∆̃X + δ̃1T

m‖2F=
1
2‖Ȳ − Y ‖2F + 1

2‖∆̃X + δ̃1T
m‖2F, (3)

where ∆̃ and δ̃ are ∆̃ := s+(Ŵ2∆1 +∆2Ŵ1 +∆2∆1) and δ̃ := s+(Ŵ2δ1 +∆2b̂1 +∆2δ1) + δ2;

they are aggregated perturbation terms. We used (2) to obtain the last equality of (3). Thus, ℓ((Ŵj+

∆j , b̂j + δj)
2
j=1) ≥ ℓ((Ŵj , b̂j)

2
j=1) for small perturbations, proving (Ŵj , b̂j)

2
j=1 is indeed a local

minimum of ℓ. Since this is true for arbitrary α > 0, there are infinitely many such local minima.
We can also construct similar local minima by permuting hidden nodes, etc.

Step 2: A point strictly better than the local minimum. The proof of this step is more in-
volved. In the previous step, we “pushed” all the input to the hidden nodes to positive side, and took

advantage of “local linearity” of the hidden nodes near (Ŵj , b̂j)
2
j=1. But to construct parameters

(W̃j , b̃j)
2
j=1 that have strictly smaller risk than (Ŵj , b̂j)

2
j=1 (to prove that (Ŵj , b̂j)

2
j=1 is a spurious

local minimum), we make the sign of inputs to the hidden nodes different depending on data.

To this end, we sort the indices of data points in increasing order of ȳi; i.e., ȳ1 ≤ ȳ2 ≤ · · · ≤ ȳm.
Define the set J := {j ∈ [m− 1] |

∑

i≤j(ȳi − yi) 6= 0, ȳj < ȳj+1}. The remaining construction is

divided into two cases: J 6= ∅ and J = ∅, whose main ideas are essentially the same. We present
the proof for J 6= ∅, and defer the other case to Appendix A2 as it is rarer, and its proof, while
instructive for its perturbation argument, is technically too involved.

Case 1: J 6= ∅. Pick any j0 ∈ J . We can observe that
∑

i≤j0
(ȳi − yi) = −

∑

i>j0
(ȳi − yi),

because of (2). Define β =
ȳj0+ȳj0+1

2 , so that ȳi−β < 0 for all i ≤ j0 and ȳi−β > 0 for all i > j0.

Then, let γ be a constant satisfying 0 < |γ| ≤
ȳj0+1−ȳj0

4 , whose value will be specified later. Since
|γ| is small enough, sign(ȳi − β) = sign(ȳi − β + γ) = sign(ȳi − β − γ). Now select parameters

W̃1 =

[W̄][dx]

−[W̄][dx]

0(d1−2)×dx

 , b̃1 =

[W̄]dx+1 − β + γ
−[W̄]dx+1 + β + γ

0d1−2

 , W̃2 = 1
s++s−

[

1 −1 0
T
d1−2

]

, b̃2 = β.

5

Published as a conference paper at ICLR 2019

Recall again that [W̄][dx]xi + [W̄]dx+1 = ȳi. For i ≤ j0, ȳi − β + γ < 0 and −ȳi + β + γ > 0, so

ŷi =
s−(ȳi − β + γ)

s+ + s−
−

s+(−ȳi + β + γ)

s+ + s−
+ β = ȳi −

s+ − s−
s+ + s−

γ.

Similarly, for i > j0, ȳi − β + γ > 0 and −ȳi + β + γ < 0 results in ŷi = ȳi +
s+−s−
s++s−

γ. Here,

we push the outputs ŷi of the network by
s+−s−
s++s−

γ from ȳi, and the direction of the “push” varies

depending on whether i ≤ j0 or i > j0.

The empirical risk for this choice of parameters is

ℓ((W̃j , b̃j)
2
j=1) =

1

2

∑

i≤j0

(

ȳi −
s+ − s−
s+ + s−

γ − yi

)2

+
1

2

∑

i>j0

(

ȳi +
s+ − s−
s+ + s−

γ − yi

)2

= ℓ0(W̄)− 2
[

∑

i≤j0
(ȳi − yi)

] s+ − s−
s+ + s−

γ +O(γ2).

Since
∑

i≤j0
(ȳi−yi) 6= 0 and s+ 6= s−, we can choose sign(γ) = sign([

∑

i≤j0
(ȳi−yi)](s+−s−)),

and choose small |γ| so that ℓ((W̃j , b̃j)
2
j=1) < ℓ0(W̄) = ℓ((Ŵj , b̂j)

2
j=1), proving that (Ŵj , b̂j)

2
j=1

is a spurious local minimum.

3 COUNTEREXAMPLE: BAD LOCAL MINIMA FOR MANY ACTIVATIONS

The proof of Theorem 1 crucially exploits the piecewise linearity of the activation functions. Thus,
one may wonder whether the spurious local minima seen there are an artifact of the specific nonlin-
earity. We show below that this is not the case. We provide a counterexample nonlinear network and
a dataset for which a wide range of nonlinear activations result in a local minimum that is strictly in-
ferior to the global minimum with exactly zero empirical risk. Examples of such activation functions
include popular activation functions such as sigmoid, tanh, arctan, ELU, SELU, and ReLU.

We consider again the squared error empirical risk of a one-hidden-layer nonlinear neural network:

ℓ((Wj , bj)
2
j=1) :=

1
2‖W2h(W1X+b11

T
m)+b21

T
m−Y ‖2F,

where we fix dx = d1 = 2 and dy = 1. Also, let h(k)(x) be the k-th derivative of h : R 7→ R,
whenever it exists at x. For short, let h′ and h′′ denote the first and second derivatives.

3.1 MAIN RESULTS AND DISCUSSION

Theorem 2. Let the loss ℓ((Wj , bj)
2
j=1) and network be as defined above. Consider the dataset

X =

[

1 0
1

2

0 1
1

2

]

, Y =
[

0 0 1
]

.

For this network and dataset the following results hold:

1. If there exist real numbers v1, v2, v3, v4 ∈ R such that

(C2.1) h(v1)h(v4) = h(v2)h(v3), and

(C2.2) h(v1)h
(

v3+v4
2

)

6= h(v3)h
(

v1+v2
2

)

,

then there is a tuple (W̃j , b̃j)
2
j=1 at which ℓ equals 0.

2. If there exist real numbers v1, v2, u1, u2 ∈ R such that the following conditions hold:

(C2.3) u1h(v1) + u2h(v2) =
1
3 ,

(C2.4) h is infinitely differentiable at v1 and v2,

(C2.5) there exists a constant c > 0 such that |h(n)(v1)| ≤ cnn! and |h(n)(v2)| ≤ cnn!.

(C2.6) (u1h
′(v1))

2 + u1h
′′(v1)
3 > 0,

(C2.7) (u1h
′(v1)u2h

′(v2))
2<((u1h

′(v1))
2+ u1h

′′(v1)
3)((u2h

′(v2))
2 + u2h

′′(v2)
3),

then there exists a tuple (Ŵj , b̂j)
2
j=1 such that the output of the network is the same as the linear

least squares model, the risk ℓ((Ŵj , b̂j)
2
j=1) =

1
3 , and (Ŵj , b̂j)

2
j=1 is a local minimum of ℓ.

6

Published as a conference paper at ICLR 2019

Theorem 2 shows that for this architecture and dataset, activations that satisfy (C2.1)–(C2.7) intro-
duce at least one spurious local minimum. Notice that the empirical risk is zero at the global mini-
mum. This means that the data X and Y can actually be “generated” by the network, which satisfies
the realizability assumption that others use (Safran & Shamir, 2018; Du et al., 2018b; Wu et al.,
2018). Notice that our counterexample is “easy to fit,” and yet, there exists a local minimum that is
not global. This leads us to conjecture that with harder datasets, the problems with spurious local
minima could be worse. The proof of Theorem 2 can be found in Appendix A3.

Discussion. Note that the conditions (C2.1)–(C2.7) only require existence of certain real numbers
rather than some global properties of activation h, hence are not as restrictive as they look. Con-

ditions (C2.1)–(C2.2) come from a choice of tuple (W̃j , b̃j)
2
j=1 that perfectly fits the data. Condi-

tion (C2.3) is necessary for constructing (Ŵj , b̂j)
2
j=1 with the same output as the linear least squares

model, and Conditions (C2.4)–(C2.7) are needed for showing local minimality of (Ŵj , b̂j)
2
j=1 via

Taylor expansions. The class of functions that satisfy conditions (C2.1)–(C2.7) is quite large, and
includes the nonlinear activation functions used in practice. The next corollary highlights this ob-
servation (for a proof with explicit choices of the involved real numbers, please see Appendix A5).

Corollary 3. For the counterexample in Theorem 2, the set of activation functions satisfying condi-
tions (C2.1)–(C2.7) include sigmoid, tanh, arctan, quadratic, ELU, and SELU.

Admittedly, Theorem 2 and Corollary 3 give one counterexample instead of stating a claim about
generic datasets. Nevertheless, this example shows that for many practical nonlinear activations, the
desirable “local minimum is global” property cannot hold even for realizable datasets, suggesting
that the situation could be worse for non-realizable ones.

Remark: “ReLU-like” activation functions. Recall the piecewise linear nonnegative homoge-
neous activation function h̄s+,s− . They do not satisfy condition (C2.7), so Theorem 2 cannot be
directly applied. Also, if s− = 0 (i.e., ReLU), conditions (C2.1)–(C2.2) are also violated. How-
ever, the statements of Theorem 2 hold even for h̄s+,s− , which is shown in Appendix A6. Recalling
again s+ = 1 + ǫ and s− = 1, this means that even with the “slightest” nonlinearity in activation
function, the network has a global minimum with risk zero while there exists a bad local minimum
that performs just as linear least squares models. In other words, “local minima are global” prop-
erty is rather brittle and can only hold for linear neural networks. Another thing to note is that in

Appendix A6, the bias parameters are all zero, for both (W̃j , b̃j)
2
j=1 and (Ŵj , b̂j)

2
j=1. For models

without bias parameters, (Ŵj)
2
j=1 is still a spurious local minimum, thus showing that Wu et al.

(2018) fails to extend to empirical risks and non-unit weight vectors.

4 GLOBAL OPTIMALITY IN LINEAR NETWORKS

In this section we present our results on deep linear neural networks. Assuming that the hidden
layers are at least as wide as either the input or output, we show that critical points of the loss with
a multilinear parameterization inherit the type of critical points of the loss with a linear parame-
terization. As a corollary, we show that for differentiable losses whose critical points are globally
optimal, deep linear networks have only global minima or saddle points. Furthermore, we provide
an efficiently checkable condition for global minimality.

Suppose the network has H hidden layers having widths d1, . . . , dH . To ease notation, we set
d0 = dx and dH+1 = dy . The weights between adjacent layers are kept in matrices Wj ∈ Rdj×dj−1

(j ∈ [H + 1]), and the output Ŷ of the network is given by the product of weight matrices with the

data matrix: Ŷ = WH+1WH · · ·W1X . Let (Wj)
H+1
j=1 be the tuple of all weight matrices, and Wi:j

denote the product WiWi−1 · · ·Wj+1Wj for i ≥ j, and the identity for i = j − 1. We consider the

empirical risk ℓ((Wj)
H+1
j=1), which, for linear networks assumes the form

ℓ((Wj)
H+1
j=1) := ℓ0(WH+1:1), (4)

where ℓ0 is a suitable differentiable loss. For example, when ℓ0(R) = 1
2‖RX − Y ‖2F,

ℓ((Wj)
H+1
j=1) = 1

2‖WH+1:1X − Y ‖2F = ℓ0(WH+1:1). Lastly, we write ∇ℓ0(M) ≡ ∇Rℓ0(R)|R=M .

Remark: bias terms. We omit the bias terms b1, . . . , bH+1 here. This choice is for simplicity;
models with bias can be handled by the usual trick of augmenting data and weight matrices.

7

Published as a conference paper at ICLR 2019

4.1 MAIN RESULTS AND DISCUSSION

We are now ready to state our first main theorem, whose proof is deferred to Appendix A7.

Theorem 4. Suppose that for all j, dj ≥ min{dx, dy}, and that the loss ℓ is given by (4), where ℓ0
is differentiable on Rdy×dx . For any critical point (Ŵj)

H+1
j=1 of the loss ℓ, the following claims hold:

1. If ∇ℓ0(ŴH+1:1) 6= 0, then (Ŵj)
H+1
j=1 is a saddle of ℓ.

2. If ∇ℓ0(ŴH+1:1) = 0, then

(a) (Ŵj)
H+1
j=1 is a local min (max) of ℓ if ŴH+1:1 is a local min (max) of ℓ0; moreover,

(b) (Ŵj)
H+1
j=1 is a global min (max) of ℓ if and only if ŴH+1:1 is a global min (max) of ℓ0.

3. If there exists j∗ ∈ [H + 1] such that ŴH+1:j∗+1 has full row rank and Ŵj∗−1:1 has full

column rank, then ∇ℓ0(ŴH+1:1) = 0, so 2(a) and 2(b) hold. Also,

(a) ŴH+1:1 is a local min (max) of ℓ0 if (Ŵj)
H+1
j=1 is a local min (max) of ℓ.

Let us paraphrase Theorem 4 in words. In particular, it states that if the hidden layers are “wide
enough” so that the product WH+1:1 can attain full rank and if the loss ℓ assumes the form (4) for

a differentiable loss ℓ0, then the type (optimal or saddle point) of a critical point (Ŵj)
H+1
j=1 of ℓ is

governed by the behavior of ℓ0 at the product ŴH+1:1.

Note that for any critical point (Ŵj)
H+1
j=1 of the loss ℓ, either ∇ℓ0(ŴH+1:1) 6= 0 or ∇ℓ0(ŴH+1:1) =

0. Parts 1 and 2 handle these two cases. Also observe that the condition in Part 3 implies ∇ℓ0 = 0,

so Part 3 is a refinement of Part 2. A notable fact is that a sufficient condition for Part 3 is ŴH+1:1

having full rank. For example, if dx ≥ dy , full-rank ŴH+1:1 implies rank(ŴH+1:2) = dy , whereby
the condition in Part 3 holds with j∗ = 1.

If ŴH+1:1 is not critical for ℓ0, then (Ŵj)
H+1
j=1 must be a saddle point of ℓ. If ŴH+1:1 is a local

min/max of ℓ0, (Ŵj)
H+1
j=1 is also a local min/max of ℓ. Notice, however, that Part 2(a) does not

address the case of saddle points; when ŴH+1:1 is a saddle point of ℓ0, the tuple (Ŵj)
H+1
j=1 can

behave arbitrarily. However, with the condition in Part 3, statements 2(a) and 3(a) hold at the same

time, so that ŴH+1:1 is a local min/max of ℓ0 if and only if (Ŵj)
H+1
j=1 is a local min/max of ℓ.

Observe that the same “if and only if” statement holds for saddle points due to their definition; in

summary, the types (min/max/saddle) of the critical points (Ŵj)
H+1
j=1 and ŴH+1:1 match exactly.

Although Theorem 4 itself is of interest, the following corollary highlights its key implication for
deep linear networks.

Corollary 5. In addition to the assumptions in Theorem 4, assume that any critical point of ℓ0 is a

global min (max). For any critical point (Ŵj)
H+1
j=1 of ℓ, if ∇ℓ0(ŴH+1:1) 6= 0, then (Ŵj)

H+1
j=1 is a

saddle of ℓ, while if ∇ℓ0(ŴH+1:1) = 0, then (Ŵj)
H+1
j=1 is a global min (max) of ℓ.

Proof If ∇ℓ0(ŴH+1:1) 6= 0, then ŴH+1:1 is a saddle point by Theorem 4.1. If ∇ℓ0(ŴH+1:1) =

0, then ŴH+1:1 is a global min (max) of ℓ0 by assumption. By Theorem 4.2(b), (Ŵj)
H+1
j=1 must be

a global min (max) of ℓ.

Corollary 5 shows that for any differentiable loss function ℓ0 whose critical points are global min-
ima, the loss ℓ has only global minima and saddle points, therefore satisfying the “local minima
are global” property. In other words, for such an ℓ0, the multilinear re-parametrization introduced
by deep linear networks does not introduce any spurious local minima/maxima; it only introduces
saddle points. Importantly, Corollary 5 also provides a checkable condition that distinguishes global
minima from saddle points. Since ℓ is nonconvex, it is remarkable that such a simple necessary and
sufficient condition for global optimality is available.

Our result generalizes previous works on linear networks such as Kawaguchi (2016); Yun et al.
(2018); Zhou & Liang (2018), because it provides conditions for global optimality for a broader
range of loss functions without assumptions on datasets. Laurent & Brecht (2018b) proved that if

8

Published as a conference paper at ICLR 2019

(Ŵj)
H+1
j=1 is a local min of ℓ, then ŴH+1:1 is a critical point of ℓ0. First, observe that this result is im-

plied by Theorem 4.1. So our result, which was proved in parallel and independently, is strictly more
general. With additional assumption that critical points of ℓ0 are global minima, Laurent & Brecht
(2018b) showed that “local min is global” property holds for linear neural networks; our Corol-
lay 5 gives a simple and efficient test condition as well as proving there are only global minima and
saddles, which is clearly stronger.

5 DISCUSSION AND FUTURE WORK

We investigated the loss surface of deep linear and nonlinear neural networks. We proved two the-
orems showing existence of spurious local minima on nonlinear networks, which apply to almost
all datasets (Theorem 1) and a wide class of activations (Theorem 2). We concluded by Theo-
rem 4, showing a general result studying the behavior of critical points in multilinearly parametrized
functions, which unifies other existing results on linear neural networks. Given that spurious local
minima are common in neural networks, a valuable future research direction will be investigating
how far local minima are from global minima in general, and how the size of the network affects this
gap. Another thing to note is that even though we showed the existence of spurious local minima
in the whole parameter space, things can be different in restricted sets of parameter space (e.g., by
adding regularizers). Understanding the loss surface in such sets would be valuable. Additionally,
one can try to show algorithmic/trajectory results of (stochastic) gradient descent. We hope that our
paper will be a stepping stone to such future research.

ACKNOWLEDGMENTS

This work was supported by the DARPA Lagrange Program. Suvrit Sra also acknowledges support
from an Amazon Research Award.

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. arXiv preprint arXiv:1811.03962, 2018.

Pierre Baldi and Kurt Hornik. Neural networks and principal component analysis: Learning from
examples without local minima. Neural networks, 2(1):53–58, 1989.

Yoshua Bengio, Nicolas L Roux, Pascal Vincent, Olivier Delalleau, and Patrice Marcotte. Convex
neural networks. In Advances in neural information processing systems, pp. 123–130, 2006.

Alon Brutzkus and Amir Globerson. Globally optimal gradient descent for a ConvNet with gaussian
inputs. In International Conference on Machine Learning, pp. 605–614, 2017.

Alon Brutzkus, Amir Globerson, Eran Malach, and Shai Shalev-Shwartz. SGD learns over-
parameterized networks that provably generalize on linearly separable data. In International
Conference on Learning Representations, 2018.

Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun. The
loss surfaces of multilayer networks. In Artificial Intelligence and Statistics, pp. 192–204, 2015.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (ELUs). arXiv preprint arXiv:1511.07289, 2015.

Simon S Du, Jason D Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. arXiv preprint arXiv:1811.03804, 2018a.

Simon S Du, Jason D Lee, Yuandong Tian, Aarti Singh, and Barnabas Poczos. Gradient descent
learns one-hidden-layer CNN: Dont be afraid of spurious local minima. In International Confer-
ence on Machine Learning, pp. 1338–1347, 2018b.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018c.

9

Published as a conference paper at ICLR 2019

Soheil Feizi, Hamid Javadi, Jesse Zhang, and David Tse. Porcupine neural networks:(almost) all
local optima are global. arXiv preprint arXiv:1710.02196, 2017.

C Daniel Freeman and Joan Bruna. Topology and geometry of half-rectified network optimization.
In International Conference on Learning Representations, 2017.

Benjamin D Haeffele and René Vidal. Global optimality in neural network training. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7331–7339, 2017.

Kenji Kawaguchi. Deep learning without poor local minima. In Advances in Neural Information
Processing Systems, pp. 586–594, 2016.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. In Advances in Neural Information Processing Systems, pp. 972–981, 2017.

Steven G Krantz and Harold R Parks. A primer of real analytic functions. Springer Science &
Business Media, 2002.

Thomas Laurent and James Brecht. The multilinear structure of ReLU networks. In International
Conference on Machine Learning, pp. 2914–2922, 2018a.

Thomas Laurent and James Brecht. Deep linear networks with arbitrary loss: All local minima are
global. In International Conference on Machine Learning, pp. 2908–2913, 2018b.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. In Advances in Neural Information Processing Systems, pp. 8168–
8177, 2018.

Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with ReLU activa-
tion. In Advances in Neural Information Processing Systems, pp. 597–607, 2017.

Shiyu Liang, Ruoyu Sun, Jason D Lee, and R Srikant. Adding one neuron can eliminate all bad
local minima. In Advances in Neural Information Processing Systems, pp. 4355–4365, 2018a.

Shiyu Liang, Ruoyu Sun, Yixuan Li, and Rayadurgam Srikant. Understanding the loss surface of
neural networks for binary classification. In International Conference on Machine Learning, pp.
2840–2849, 2018b.

Haihao Lu and Kenji Kawaguchi. Depth creates no bad local minima. arXiv preprint
arXiv:1702.08580, 2017.

Quynh Nguyen and Matthias Hein. The loss surface of deep and wide neural networks. In Pro-
ceedings of the 34th International Conference on Machine Learning, volume 70, pp. 2603–2612,
2017.

Quynh Nguyen and Matthias Hein. Optimization landscape and expressivity of deep CNNs. In
International Conference on Machine Learning, pp. 3727–3736, 2018.

Itay Safran and Ohad Shamir. Spurious local minima are common in two-layer ReLU neural net-
works. In International Conference on Machine Learning, pp. 4430–4438, 2018.

Ohad Shamir. Are ResNets provably better than linear predictors? In Advances in Neural Informa-
tion Processing Systems, pp. 505–514, 2018.

Mahdi Soltanolkotabi. Learning ReLUs via gradient descent. In Advances in Neural Information
Processing Systems, pp. 2007–2017, 2017.

Daniel Soudry and Yair Carmon. No bad local minima: Data independent training error guarantees
for multilayer neural networks. arXiv preprint arXiv:1605.08361, 2016.

Grzegorz Swirszcz, Wojciech Marian Czarnecki, and Razvan Pascanu. Local minima in training of
neural networks. arXiv preprint arXiv:1611.06310, 2016.

10

Published as a conference paper at ICLR 2019

Yuandong Tian. An analytical formula of population gradient for two-layered ReLU network and its
applications in convergence and critical point analysis. In International Conference on Machine
Learning, pp. 3404–3413, 2017.

Luca Venturi, Afonso Bandeira, and Joan Bruna. Neural networks with finite intrinsic dimension
have no spurious valleys. arXiv preprint arXiv:1802.06384, 2018.

Gang Wang, Georgios B Giannakis, and Jie Chen. Learning ReLU networks on linearly separable
data: Algorithm, optimality, and generalization. arXiv preprint arXiv:1808.04685, 2018.

Chenwei Wu, Jiajun Luo, and Jason D Lee. No spurious local minima in a two hidden unit ReLU
network. In International Conference on Learning Representations Workshop, 2018.

Bo Xie, Yingyu Liang, and Le Song. Diverse neural network learns true target functions. arXiv
preprint arXiv:1611.03131, 2016.

Xiao-Hu Yu and Guo-An Chen. On the local minima free condition of backpropagation learning.
IEEE Transactions on Neural Networks, 6(5):1300–1303, 1995.

Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Global optimality conditions for deep neural networks.
In International Conference on Learning Representations, 2018.

Xiao Zhang, Yaodong Yu, Lingxiao Wang, and Quanquan Gu. Learning one-hidden-layer ReLU
networks via gradient descent. arXiv preprint arXiv:1806.07808, 2018.

Kai Zhong, Zhao Song, Prateek Jain, Peter L Bartlett, and Inderjit S Dhillon. Recovery guarantees
for one-hidden-layer neural networks. In International Conference on Machine Learning, pp.
4140–4149, 2017.

Yi Zhou and Yingbin Liang. Critical points of neural networks: Analytical forms and landscape
properties. In International Conference on Learning Representations, 2018.

Yi Zhou, Junjie Yang, Huishuai Zhang, Yingbin Liang, and Vahid Tarokh. SGD converges to global
minimum in deep learning via star-convex path. In International Conference on Learning Repre-
sentations, 2019.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Stochastic gradient descent optimizes
over-parameterized deep ReLU networks. arXiv preprint arXiv:1811.08888, 2018.

11

Published as a conference paper at ICLR 2019

A1 NOTATION

We first list notation used throughout the appendix. For integers a ≤ b, [a, b] denotes the set of
integers between them. We write [b], if a = 1. For a vector v, we use [v]i to denote its i-th
component, while [v][i] denotes a vector comprised of the first i components of v. Let 1d (or 0d) be

the all ones (zeros) column vector in Rd. For a subspace V ⊆ Rd, we denote by V ⊥ its orthogonal
complement.

For a matrix A, [A]i,j is the (i, j)-th entry and [A]·,j its j-th column. Let σmax(A) and σmin(A)
denote the largest and smallest singular values of A, respectively; row(A), col(A), rank(A), and
‖A‖F denote respectively the row space, column space, rank, and Frobenius norm of matrix A. Let
null(A) := {v | Av = 0} and leftnull(A) := {v | vTA = 0} be the null space and the left-null
space of A, respectively. When A is a square matrix, let tr(A) be the trace of A. For matrices
A and B of the same size, 〈A,B〉 = tr(ATB) denotes the usual trace inner product of A and B.
Equivalently, 〈A,B〉 = tr(ATB) = tr(ABT). Let 0d×m be the all zeros matrix in Rd×m.

A2 PROOF OF THEOREM 1, STEP 2, CASE 2

Case 2. J = ∅. We start with a lemma discussing what J = ∅ implies.

Lemma A.1. If J = ∅, the following statements hold:

1. There are some ȳj’s that are duplicate; i.e. for some i 6= j, ȳi = ȳj .

2. If ȳj is non-duplicate, meaning that ȳj−1 < ȳj < ȳj+1, ȳj = yj holds.

3. If ȳj is duplicate,
∑

i:ȳi=ȳj
(ȳi − yi) = 0 holds.

4. There exists at least one duplicate ȳj such that, for that ȳj , there exist at least two different
i’s that satisfy ȳi = ȳj and ȳi 6= yi.

Proof We prove this by showing if any of these statements are not true, then we have J 6= ∅ or a
contradiction.

1. If all the ȳj’s are distinct and J = ∅, by definition of J , ȳj = yj for all j. This violates
our assumption that linear models cannot perfectly fit Y .

2. If we have ȳj 6= yj for a non-duplicate ȳj , at least one of the following statements must
hold:

∑

i≤j−1(ȳi − yi) 6= 0 or
∑

i≤j(ȳi − yi) 6= 0, meaning that j − 1 ∈ J or j ∈ J .

3. Suppose ȳj is duplicate and
∑

i:ȳi=ȳj
(ȳi − yi) 6= 0. Let k = min{i | ȳi = ȳj} and l =

max{i | ȳi = ȳj}. Then at least one of the following statements must hold:
∑

i≤k−1(ȳi −
yi) 6= 0 or

∑

i≤l(ȳi − yi) 6= 0. If
∑

i≤k−1(ȳi − yi) 6= 0, we can also see that ȳk−1 < ȳk,

so k − 1 ∈ J . Similarly, if
∑

i≤l(ȳi − yi) 6= 0, then l ∈ J .

4. Since
∑

i:ȳi=ȳj
(ȳi − yi) = 0 holds for any duplicate ȳj , if ȳi 6= yi holds for one i then

there must be at least two of them that satisfies ȳi 6= yi. If this doesn’t hold for all duplicate
ȳi, with Part 2 this means that ȳj = yj holds for all j. This violates our assumption that
linear models cannot perfectly fit Y .

From Lemma A.1.4, we saw that there is a duplicate value of ȳj such that some of the data points i
satisfy ȳi = ȳj and ȳi 6= yi. The proof strategy in this case is essentially the same, but the difference

is that we choose one of such duplicate ȳj , and then choose a vector v ∈ Rdx to “perturb” the linear

least squares solution [W̄][dx] in order to break the tie between i’s that satisfies ȳi = ȳj and ȳi 6= yi.

We start by defining the minimum among such duplicate values ȳ∗ of ȳj’s, and a set of indices j that
satisfies ȳj = ȳ∗.

ȳ∗ = min{ȳj | ∃i 6= j such that ȳi = ȳj and ȳi 6= yi},

12

Published as a conference paper at ICLR 2019

J ∗ = {j ∈ [m] | ȳj = ȳ∗}.

Then, we define a subset of J ∗:

J ∗
6= = {j ∈ J ∗ | ȳj 6= yj}.

By Lemma A.1.4, cardinality of J ∗
6= is at least two. Then, we define a special index in J ∗

6=:

j1 = argmax
j∈J ∗

6=

‖xj‖2 ,

Index j1 is the index of the “longest” xj among elements in J ∗
6=. Using the definition of j1, we can

partition J ∗ into two sets:

J ∗
≥ = {j ∈ J ∗ | 〈xj , xj1〉 ≥ ‖xj1‖

2
2}, J

∗
< = {j ∈ J ∗ | 〈xj , xj1〉 < ‖xj1‖

2
2}.

For the indices in J ∗, we can always switch the indices without loss of generality. So we can assume
that j ≤ j1 = maxJ ∗

≥ for all j ∈ J ∗
≥ and j > j1 for all j ∈ J ∗

<.

We now define a vector that will be used as the “perturbation” to [W̄][dx]. Define a vector v ∈ Rdx ,
which is a scaled version of xj1 :

v =
g

M ‖xj1‖2
xj1 ,

where the constants g and M are defined to be

g =
1

4
min {|ȳi − ȳj | | i, j ∈ [m], ȳi 6= ȳj} , M = max

i∈[m]
‖xi‖2 .

The constant M is the largest ‖xi‖2 among all the indices, and g is one fourth times the minimum
gap between all distinct values of ȳi.

Now, consider perturbing [W̄][dx] by a vector −αvT . where α ∈ (0, 1] will be specified later.
Observe that

(

W̄ −
[

αvT 0
])

[

xi

1

]

= W̄

[

xi

1

]

− αvTxi = ȳi − αvTxi.

Recall that j ≤ j1 = maxJ ∗
≥ for all j ∈ J ∗

≥ and j > j1 for all j ∈ J ∗
<. We are now ready to

present the following lemma:

Lemma A.2. Define

j2 = argmax
j∈J ∗

<

〈xj , xj1 〉 , β = ȳ∗ −
α

2
vT (xj1 + xj2).

Then,

ȳi − αvTxi − β < 0 for all i ≤ j1,

ȳi − αvTxi − β > 0 for all i > j1.

Also,
∑

i>j1
(ȳi − yi)−

∑

i≤j1
(ȳi − yi) = −2(ȳj1 − yj1) 6= 0.

Proof First observe that, for any xi, |αvTxi| ≤ α ‖v‖2 ‖xi‖2 ≤ g
M

‖xi‖2 ≤ g. By definition of
g, we have 2g < ȳj − ȳi for any ȳi < ȳj . Using this, we can see that

ȳi < ȳj =⇒ ȳi − αvTxi ≤ ȳi + g < ȳj − g ≤ ȳj − αvTxj . (A.1)

In words, if ȳi and ȳj are distinct and there is an order ȳi < ȳj , perturbation of [W̄][dx] by −αvT

does not change the order. Also, since v is only a scaled version of xj1 , from the definitions of J ∗
≥

and J ∗
<,

vT (xj − xj1) ≥ 0 for j ∈ J ∗
≥ and vT (xj − xj1) < 0 for j ∈ J ∗

<. (A.2)

By definition of j2,

vT (xj2 − xj1) < 0 and vT (xj2 − xj) ≥ 0 for all j ∈ J ∗
<. (A.3)

13

Published as a conference paper at ICLR 2019

It is left to prove the statement of the lemma using case analysis, using the inequalities (A.1), (A.2),
and (A.3). For all i’s such that ȳi < ȳ∗ = ȳj1 ,

ȳi − αvTxi − β = ȳi − αvTxi − ȳ∗ +
α

2
vT (xj1 + xj2)

= (ȳi − αvTxi)− (ȳ∗ − αvTxj1) +
α

2
vT (xj2 − xj1) < 0.

Similarly, for all i such that ȳi > ȳ∗ = ȳj2 ,

ȳi − αvTxi − β = (ȳi − αvTxi)− (ȳ∗ − αvTxj2) +
α

2
vT (xj1 − xj2) > 0.

For j ∈ J ∗
≥ (j ≤ j1), we know ȳj = ȳ∗, so

ȳj − αvTxj − β =
(

ȳ∗ − αvTxj

)

−
(

ȳ∗ −
α

2
vT (xj1 + xj2)

)

= αvT [(xj1 − xj)] +
α

2
vT [(xj2 − xj1)] < 0.

Also, for j ∈ J ∗
< (j > j1),

ȳj − αvTxj − β =
(

ȳ∗ − αvTxj

)

−
(

ȳ∗ −
α

2
vT (xj1 + xj2)

)

=
α

2
vT [(xj1 − xj) + (xj2 − xj)] > 0.

This finishes the case analysis and proves the first statements of the lemma.

One last thing to prove is that
∑

i>j1
(ȳi − yi)−

∑

i≤j1
(ȳi− yi) = −2(ȳj1 − yj1) 6= 0. Recall from

Lemma A.1.2 that for non-duplicate ȳj , we have ȳj = yj . Also by Lemma A.1.3 if ȳj is duplicate,
∑

i:ȳi=ȳj
(ȳi − yi) = 0. So,

∑

i>j1

(ȳi − yi)−
∑

i≤j1

(ȳi − yi) =
∑

i∈J ∗
<

(ȳi − yi)−
∑

i∈J ∗
≥

(ȳi − yi) .

Recall the definition of J ∗
6= = {j ∈ J ∗ | ȳj 6= yj}. For j ∈ J ∗\J ∗

6=, ȳj = yj . So,

∑

i∈J ∗
<

(ȳi − yi)−
∑

i∈J ∗
≥

(ȳi − yi) =
∑

i∈J ∗
<∩J ∗

6=

(ȳi − yi)−
∑

i∈J ∗
≥
∩J ∗

6=

(ȳi − yi) .

Recall the definition of j1 = argmaxj∈J ∗
6=
‖xj‖2. For any other j ∈ J ∗

6=\{j1},

‖xj1‖
2
2 ≥ ‖xj‖2 ‖xj1‖2 ≥ 〈xj , xj1 〉 ,

where the first ≥ sign is due to definition of j1, and the second is from Cauchy-Schwarz inequality.
Since xj1 and xj are distinct by assumption, they must differ in either length or direction, or both.

So, we can check that at least one of “≥” must be strict inequality, so ‖xj1‖
2
2 > 〈xj , xj1 〉 for all

j ∈ J ∗
6=\{j1}. Thus,

J ∗
6=\{j1} = J ∗

< ∩ J ∗
6= and {j1} = J ∗

≥ ∩ J ∗
6=,

proving that
∑

i>j1

(ȳi − yi)−
∑

i≤j1

(ȳi − yi) =
∑

j∈J ∗
6=
\{j1}

(ȳi − yi)− (ȳj1 − yj1) .

Also, by Lemma A.1.3,

0 =
∑

i∈J ∗

(ȳi − yi) =
∑

i∈J ∗
6=

(ȳi − yi) = (ȳj1 − yj1) +
∑

j∈J ∗
6=\{j1}

(ȳi − yi).

Wrapping up all the equalities, we can conclude that
∑

i>j1

(ȳi − yi)−
∑

i≤j1

(ȳi − yi) = −2 (ȳj1 − yj1) ,

14

Published as a conference paper at ICLR 2019

finishing the proof of the last statement.

It is time to present the parameters (W̃j , b̃j)
2
j=1, whose empirical risk is strictly smaller than the

local minimum (Ŵj , b̂j)
2
j=1 with a sufficiently small choice of α ∈ (0, 1]. Now, let γ be a constant

such that

γ = sign((ȳj1 − yj1)(s+ − s−))
αvT (xj1 − xj2)

4
. (A.4)

Its absolute value is proportional to α ∈ (0, 1], which is a undetermined number that will be specified
at the end of the proof. Since |γ| is small enough, we can check that

sign(ȳi − αvTxi − β) = sign(ȳi − αvTxi − β + γ) = sign(ȳi − αvTxi − β − γ).

Then, assign parameter values

W̃1 =

[W̄][dx] − αvT

−[W̄][dx] + αvT

0(d1−2)×dx

 , b̃1 =

[W̄]dx+1 − β + γ
−[W̄]dx+1 + β + γ

0d1−2

 ,

W̃2 =
1

s+ + s−

[

1 −1 0
T
d1−2

]

, b̃2 = β.

With these parameter values,

W̃1xi + b̃1 =

ȳi − αvTxi − β + γ
−ȳi + αvTxi + β + γ

0d1−2

 .

As we saw in Lemma A.2, for i ≤ j1, ȳi − αvTxi − β + γ < 0 and −ȳi + αvTxi + β + γ > 0. So

ŷi = W̃2h̄s+,s−(W̃1xi + b̃1) + b̃2

=
1

s+ + s−
s−(ȳi − αvTxi − β + γ)−

1

s+ + s−
s+(−ȳi + αvTxi + β + γ) + β

= ȳi − αvTxi −
s+ − s−
s+ + s−

γ.

Similarly, for i > j1, ȳi − αvTxi − β + γ > 0 and −ȳi + αvTxi + β + γ < 0, so

ŷi = W̃2h̄s+,s−(W̃1xi + b̃1) + b̃2 = ȳi − αvTxi +
s+ − s−
s+ + s−

γ.

Now, the squared error loss of this point is

ℓ((W̃j , b̃j)
2
j=1) =

1

2
‖Ŷ − Y ‖2F

=
1

2

∑

i≤j1

(

ȳi − αvTxi −
s+ − s−
s+ + s−

γ − yi

)2

+
1

2

∑

i>j1

(

ȳi − αvTxi +
s+ − s−
s+ + s−

γ − yi

)2

=
1

2

m
∑

i=1

(

ȳi − αvTxi − yi
)2

+

∑

i>j1

(

ȳi − αvTxi − yi
)

−
∑

i≤j1

(

ȳi − αvTxi − yi
)

s+ − s−
s+ + s−

γ +O(γ2)

=ℓ0(W̄)− α

[

m
∑

i=1

(ȳi − yi)x
T
i

]

v +O(α2) +

∑

i>j1

(ȳi − yi)−
∑

i≤j1

(ȳi − yi)

s+ − s−
s+ + s−

γ +O(αγ) +O(γ2).

Recall that
∑m

i=1 (ȳi − yi)x
T
i = 0 for least squares estimates ȳi. From Lemma A.2, we saw that

∑

i>j1
(ȳi − yi) −

∑

i≤j1
(ȳi − yi) = −2(ȳj1 − yj1). As seen in the definition of γ (A.4), the

magnitude of γ is proportional to α. Substituting (A.4), we can express the loss as

ℓ((W̃j , b̃j)
2
j=1) = ℓ0(W̄)−

α|(ȳj1 − yj1)(s+ − s−)|v
T (xj1 − xj2)

2(s+ + s−)
+O(α2).

Recall that vT (xj1 − xj2) > 0 from (A.3). Then, for sufficiently small α ∈ (0, 1],

ℓ((W̃j , b̃j)
2
j=1) < ℓ0(W̄) = ℓ((Ŵj , b̂j)

2
j=1),

therefore proving that (Ŵj , b̂j)
2
j=1 is a spurious local minimum.

15

Published as a conference paper at ICLR 2019

A3 PROOF OF THEOREM 2

A3.1 PROOF OF PART 1

Given v1, v2, v3, v4 ∈ R satisfying conditions (C2.1) and (C2.2), we can pick parameter values

(W̃j , b̃j)
2
j=1 to perfectly fit the given dataset:

W̃1 =

[

v1 v2
v3 v4

]

, b̃1 =

[

0
0

]

, W̃2 =
(

h(v3)h
(

v1+v2
2

)

−h(v1)h
(

v3+v4
2

))−1
[h(v3)−h(v1)], b̃2 = 0.

With these values, we can check that Ŷ = [0 0 1], hence perfectly fitting Y , thus the loss

ℓ((W̃j , b̃j)
2
j=1) = 0.

A3.2 PROOF OF PART 2

Given conditions (C2.3)–(C2.7) on v1, v2, u1, u2 ∈ R, we prove below that there exists a local

minimum (Ŵj , b̂j)
2
j=1 for which the output of the network is the same as linear least squares model,

and its empirical risk is ℓ((Ŵj , b̂j)
2
j=1) =

1
3 . If the conditions of Part 1 also hold, this local minimum

is strictly inferior to the global one.

First, compute the output Ȳ of linear least squares model to obtain Ȳ =
[

1
3

1
3

1
3

]

. Now assign
parameter values

Ŵ1 =

[

v1 v1
v2 v2

]

, b̂1 =

[

0
0

]

, Ŵ2 = [u1 u2] , b̂2 = 0.

With these values we can check that Ŷ =
[

1
3

1
3

1
3

]

, under condition (C2.3): u1h(v1)+u2h(v2) =
1
3 . The empirical risk is ℓ((Ŵj , b̂j)

2
j=1) =

1
2 (

1
9 + 1

9 + 4
9) =

1
3 .

It remains to show that this is indeed a local minimum of ℓ. To show this, we apply perturbations to

the parameters to see if the risk after perturbation is greater than or equal to ℓ((Ŵj , b̂j)
2
j=1). Let the

perturbed parameters be

W̌1 =

[

v1 + δ11 v1 + δ12
v2 + δ21 v2 + δ22

]

, b̌1 =

[

β1

β2

]

, W̌2 = [u1 + ǫ1 u2 + ǫ2] , b̌2 = γ, (A.5)

where δ11, δ12, δ21, δ22, β1, β2, ǫ1, ǫ2, and γ are small real numbers. The next lemma rearranges

the terms in ℓ((W̌j , b̌j)
2
j=1) into a form that helps us prove local minimality of (Ŵj , b̂j)

2
j=1. Ap-

pendix A4 gives the proof of Lemma A.3, which includes as a byproduct some equalities on poly-
nomials that may be of wider interest.

Lemma A.3. Assume there exist real numbers v1, v2, u1, u2 such that conditions (C2.3)–(C2.5)
hold. Then, for perturbed parameters (W̌j , b̌j)

2
j=1 defined in (A.5),

ℓ((W̌j , b̌j)
2
j=1) ≥

1
3 + α1(δ11 − δ12)

2 + α2(δ21 − δ22)
2 + α3(δ11−δ12)(δ21−δ22), (A.6)

where αi =
uih

′′(vi)
12 +

u2
i (h

′(vi))
2

4 + o(1), for i = 1, 2, and α3 = u1u2h
′(v1)h

′(v2)
2 + o(1), and o(1)

contains terms that diminish to zero as perturbations vanish.

To make the the sum of the last three terms of (A.6) nonnegative, we need to satisfy α1 ≥ 0
and α2

3 − 4α1α2 ≤ 0; these inequalities are satisfied for small enough perturbations because of

conditions (C2.6)–(C2.7). Thus, we conclude that ℓ((W̌j , b̌j)
2
j=1) ≥

1
3 = ℓ((Ŵj , b̂j)

2
j=1) for small

enough perturbations, proving that (Ŵj , b̂j)
2
j=1 is a local minimum.

A4 PROOF OF LEMMA A.3

The goal of this lemma is to prove that

ℓ((W̌j , b̌j)
2
j=1) =

1

3
+

3

2
(perturbations)2 +

(

u1h
′′(v1)

12
+

u2
1(h

′(v1))
2

4
+ o(1)

)

(δ11 − δ12)
2

16

Published as a conference paper at ICLR 2019

+

(

u2h
′′(v2)

12
+

u2
2(h

′(v2))
2

4
+ o(1)

)

(δ21 − δ22)
2

+

(

u1u2h
′(v1)h

′(v2)

2
+ o(1)

)

(δ11 − δ12)(δ21 − δ22), (A.7)

where o(1) contains terms that diminish to zero as perturbations decrease.

Using the perturbed parameters,

W̌1X + b̌11
T
m =

[

v1 + δ11 + β1 v1 + δ12 + β1 v1 +
δ11+δ12

2 + β1

v2 + δ21 + β2 v2 + δ22 + β2 v2 +
δ21+δ22

2 + β2

]

,

so the empirical risk can be expressed as

ℓ((W̌j , b̌j)
2
j=1)

=
1

2
‖W̌2h

(

W̌1X + b̌11
T
m

)

+ b̌21
T
m − Y ‖2F

=
1

2
[(u1 + ǫ1)h(v1 + δ11 + β1) + (u2 + ǫ2)h(v2 + δ21 + β2) + γ]

2

+
1

2
[(u1 + ǫ1)h(v1 + δ12 + β1) + (u2 + ǫ2)h(v2 + δ22 + β2) + γ]

2

+
1

2

[

(u1 + ǫ1)h

(

v1 +
δ11 + δ12

2
+ β1

)

+ (u2 + ǫ2)h

(

v2 +
δ21 + δ22

2
+ β2

)

+ γ − 1

]2

(A.8)

So, the empirical risk (A.8) consists of three terms, one for each training example. By expanding
the activation function h using Taylor series expansion and doing algebraic manipulations, we will
derive the equation (A.7) from (A.8).

Using the Taylor series expansion, we can express h(v1 + δ11 + β1) as

h(v1 + δ11 + β1) = h(v1) +

∞
∑

n=1

h(n)(v1)

n!
(δ11 + β1)

n.

Using a similar expansion for h(v2 + δ21 + β2), the first term of (A.8) can be written as

1

2
[(u1 + ǫ1)h(v1 + δ11 + β1) + (u2 + ǫ2)h(v2 + δ21 + β2) + γ]

2

=
1

2

[

(u1 + ǫ1)

(

h(v1) +

∞
∑

n=1

h(n)(v1)

n!
(δ11 + β1)

n

)

+ (u2 + ǫ2)

(

h(v2) +

∞
∑

n=1

h(n)(v2)

n!
(δ21 + β2)

n

)

+ γ

]2

=
1

2

[

1

3
+ ǫ1h(v1) + (u1 + ǫ1)

∞
∑

n=1

h(n)(v1)

n!
(δ11 + β1)

n + ǫ2h(v2) + (u2 + ǫ2)

∞
∑

n=1

h(n)(v2)

n!
(δ21 + β2)

n + γ

]2

,

where we used u1h(v1)+u2h(v2) =
1
3 . To simplify notation, let us introduce the following function:

t(δ1, δ2) = ǫ1h(v1) + ǫ2h(v2) + γ + (u1 + ǫ1)

∞
∑

n=1

h(n)(v1)

n!
(δ1 + β1)

n + (u2 + ǫ2)

∞
∑

n=1

h(n)(v2)

n!
(δ2 + β2)

n.

With this new notation t(δ1, δ2), after doing similar expansions to the other terms of (A.8), we get

ℓ((W̌j , b̌j)
2
j=1)

=
1

2

[

1

3
+ t(δ11, δ21)

]2

+
1

2

[

1

3
+ t(δ12, δ22)

]2

+
1

2

[

−
2

3
+ t

(

δ11 + δ12
2

,
δ21 + δ22

2

)]2

=
1

3
+

1

3

[

t(δ11, δ21) + t(δ12, δ22)− 2t

(

δ11 + δ12
2

,
δ21 + δ22

2

)]

+
1

2
[t(δ11, δ21)]

2
+

1

2
[t(δ12, δ22)]

2
+

1

2

[

t

(

δ11 + δ12
2

,
δ21 + δ22

2

)]2

(A.9)

Before we show the lower bounds, we first present the following lemmas that will prove useful
shortly. These are simple yet interesting lemmas that might be of independent interest.

17

Published as a conference paper at ICLR 2019

Lemma A.4. For n ≥ 2,

an + bn − 2

(

a+ b

2

)n

= (a− b)2pn(a, b),

where pn is a polynomial in a and b. All terms in pn have degree exactly n − 2. When n = 2,
p2(a, b) =

1
2 .

Proof The exact formula for pn(a, b) is as the following:

pn(a, b) =

n−2
∑

k=0

[

k + 1− 2−n+1
k
∑

l=0

(k + 1− l)

(

n

l

)

]

an−k−2bk.

Using this, we can check the lemma is correct just by expanding both sides of the equation. The
rest of the proof is straightforward but involves some complicated algebra. So, we omit the details
for simplicity.

Lemma A.5. For n1, n2 ≥ 1,

an1cn2 + bn1dn2 − 2

(

a+ b

2

)n1
(

c+ d

2

)n2

=(a− b)2qn1,n2(a, b, d) + (c− d)2qn2,n1(c, d, b) + (a− b)(c− d)rn1,n2(a, b, c, d)

where qn1,n2 and rn1,n2 are polynomials in a, b, c and d. All terms in qn1,n2 and rn1,n2 have degree

exactly n1 + n2 − 2. When n1 = n2 = 1, q1,1(a, b, d) = 0 and r1,1(a, b, c, d) =
1
2 .

Proof The exact formulas for qn1,n2(a, b, d), qn2,n1(c, d, b), and rn1,n2(a, b, c, d) are as the fol-
lowing:

qn1,n2(a, b, d) =

n1−2
∑

k1=0

[

k1 + 1− 2−n1+1
k1
∑

l1=0

(k1 + 1− l1)

(

n1

l1

)

]

an1−k1−2bk1dn2 ,

qn2,n1(c, d, b) =

n2−2
∑

k2=0

[

k2 + 1− 2−n2+1
k2
∑

l2=0

(k2 + 1− l2)

(

n2

l2

)

]

bn1cn2−k2−2dk2 ,

rn1,n2(a, b, c, d) =

n1−1
∑

k1=0

n2−1
∑

k2=0

[

1− 2−n1−n2+1
k1
∑

l1=0

k2
∑

l2=0

(

n1

l1

)(

n2

l2

)

]

an1−k1−1bk1cn2−k2−1dk2 .

Similarly, we can check the lemma is correct just by expanding both sides of the equation. The
remaining part of the proof is straightforward, so we will omit the details.

Using Lemmas A.4 and A.5, we will expand and simplify the “cross terms” part and “squared terms”
part of (A.9). For the “cross terms” in (A.9), let us split t(δ1, δ2) into two functions t1 and t2:

t1(δ1, δ2) =ǫ1h(v1) + ǫ2h(v2) + γ + (u1 + ǫ1)h
′(v1)(δ1 + β1) + (u2 + ǫ2)h

′(v2)(δ2 + β2)

t2(δ1, δ2) =(u1 + ǫ1)

∞
∑

n=2

h(n)(v1)

n!
(δ1 + β1)

n + (u2 + ǫ2)

∞
∑

n=2

h(n)(v2)

n!
(δ2 + β2)

n,

so that t(δ1, δ2) = t1(δ1, δ2) + t2(δ1, δ2). It is easy to check that

t1(δ11, δ21) + t1(δ12, δ22)− 2t1

(

δ11 + δ12
2

,
δ21 + δ22

2

)

= 0.

Also, using Lemma A.4, we can see that

(δ11 + β1)
n + (δ12 + β1)

n − 2

(

δ11 + δ12
2

+ β1

)n

= (δ11 − δ12)
2pn(δ11 + β1, δ12 + β1),

18

Published as a conference paper at ICLR 2019

(δ21 + β2)
n + (δ22 + β2)

n − 2

(

δ21 + δ22
2

+ β2

)n

= (δ21 − δ22)
2pn(δ21 + β2, δ22 + β2),

so

t2(δ11, δ21) + t2(δ12, δ22)− 2t2

(

δ11 + δ12
2

,
δ21 + δ22

2

)

=(u1 + ǫ1)(δ11 − δ12)
2

∞
∑

n=2

h(n)(v1)

n!
pn(δ11 + β1, δ12 + β1)

+ (u2 + ǫ2)(δ21 − δ22)
2

∞
∑

n=2

h(n)(v2)

n!
pn(δ21 + β2, δ22 + β2).

Consider the summation
∞
∑

n=2

h(n)(v1)

n!
pn(δ11 + β1, δ12 + β1).

We assumed that there exists a constant c > 0 such that |h(n)(v1)| ≤ cnn!. From this, for small
enough perturbations δ11, δ12, and β1, we can see that the summation converges, and the summands
converge to zero as n increases. Because all the terms in pn (n ≥ 3) are of degree at least one, we
can thus write

∞
∑

n=2

h(n)(v1)

n!
pn(δ11 + β1, δ12 + β1) =

h′′(v1)

4
+ o(1).

So, for small enough δ11, δ12, and β1, the term
h′′(v1)

4 dominates the summation. Similarly, as

long as δ21, δ22, and β2 are small enough, the summation
∑∞

n=2
h(n)(v2)

n! pn(δ21 + β2, δ22 + β2) is

dominated by
h′′(v2)

4 . In conclusion, for small enough perturbations,

t(δ11, δ21) + t(δ12, δ22)− 2t

(

δ11 + δ12
2

,
δ21 + δ22

2

)

=t2(δ11, δ21) + t2(δ12, δ22)− 2t2

(

δ11 + δ12
2

,
δ21 + δ22

2

)

=(u1 + o(1))

(

h′′(v1)

4
+ o(1)

)

(δ11 − δ12)
2 + (u2 + o(1))

(

h′′(v2)

4
+ o(1)

)

(δ21 − δ22)
2

=

(

u1h
′′(v1)

4
+ o(1)

)

(δ11 − δ12)
2 +

(

u2h
′′(v2)

4
+ o(1)

)

(δ21 − δ22)
2. (A.10)

Now, it is time to take care of the “squared terms.” We will express the terms as

1

2
[t(δ11, δ21)]

2
+

1

2
[t(δ12, δ22)]

2
+

1

2

[

t

(

δ11 + δ12
2

,
δ21 + δ22

2

)]2

=
3

2

[

t

(

δ11 + δ12
2

,
δ21 + δ22

2

)]2

+
1

2
[t(δ11, δ21)]

2 +
1

2
[t(δ12, δ22)]

2 −

[

t

(

δ11 + δ12
2

,
δ21 + δ22

2

)]2

,

(A.11)

and expand and simplify the terms in

1

2
[t(δ11, δ21)]

2
+

1

2
[t(δ12, δ22)]

2 −

[

t

(

δ11 + δ12
2

,
δ21 + δ22

2

)]2

.

This time, we split t(δ1, δ2) in another way, this time into three parts:

t3 = ǫ1h(v1) + ǫ2h(v2) + γ,

t4(δ1) = (u1 + ǫ1)
∞
∑

n=1

h(n)(v1)

n!
(δ1 + β1)

n,

19

Published as a conference paper at ICLR 2019

t5(δ2) = (u2 + ǫ2)
∞
∑

n=1

h(n)(v2)

n!
(δ2 + β2)

n,

so that t(δ1, δ2) = t3 + t4(δ1) + t5(δ2). With this,

1

2
[t(δ11, δ21)]

2
+

1

2
[t(δ12, δ22)]

2 −

[

t

(

δ11 + δ12
2

,
δ21 + δ22

2

)]2

=t3

[

t4(δ11) + t4(δ12)− 2t4

(

δ11 + δ12
2

)

+ t5(δ21) + t5(δ22)− 2t5

(

δ21 + δ22
2

)]

+
1

2

[

(t4(δ11))
2 + (t4(δ12))

2 − 2

(

t4

(

δ11 + δ12
2

))2
]

+
1

2

[

(t5(δ21))
2 + (t5(δ22))

2 − 2

(

t5

(

δ21 + δ22
2

))2
]

+

[

t4(δ11)t5(δ21) + t4(δ12)t5(δ22)− 2t4

(

δ11 + δ12
2

)

t5

(

δ21 + δ22
2

)]

. (A.12)

We now have to simplify the equation term by term. We first note that

t4(δ11) + t4(δ12)− 2t4

(

δ11 + δ12
2

)

+ t5(δ21) + t5(δ22)− 2t5

(

δ21 + δ22
2

)

=t2(δ11, δ21) + t2(δ12, δ22)− 2t2

(

δ11 + δ12
2

,
δ21 + δ22

2

)

,

so

t3

[

t4(δ11) + t4(δ12)− 2t4

(

δ11 + δ12
2

)

+ t5(δ21) + t5(δ22)− 2t5

(

δ21 + δ22
2

)]

=t3

[

t2(δ11, δ21) + t2(δ12, δ22)− 2t2

(

δ11 + δ12
2

,
δ21 + δ22

2

)]

=o(1)

[(

u1h
′′(v1)

4
+ o(1)

)

(δ11 − δ12)
2 +

(

u2h
′′(v2)

4
+ o(1)

)

(δ21 − δ22)
2

]

, (A.13)

as seen in (A.10). Next, we have

(t4(δ11))
2 + (t4(δ12))

2 − 2

(

t4

(

δ11 + δ12
2

))2

=(u1 + ǫ1)
2

∞
∑

n1,n2=1

h(n1)(v1)h
(n2)(v1)

n1!n2!

[

(δ11 + β1)
n1+n2 + (δ12 + β1)

n1+n2 − 2

(

δ11 + δ12
2

+ β1

)n1+n2
]

,

=(u1 + ǫ1)
2(δ11 − δ12)

2
∞
∑

n1,n2=1

h(n1)(v1)h
(n2)(v1)

n1!n2!
pn1+n2(δ11 + β1, δ12 + β1)

=

(

u2
1(h

′(v1))
2

2
+ o(1)

)

(δ11 − δ12)
2, (A.14)

when perturbations are small enough. We again used Lemma A.4 in the second equality sign, and
the facts that pn1+n2(·) = o(1) whenever n1 + n2 > 2 and that p2(·) =

1
2 . In a similar way,

(t5(δ21))
2 + (t5(δ22))

2 − 2

(

t5

(

δ21 + δ22
2

))2

=

(

u2
2(h

′(v2))
2

2
+ o(1)

)

(δ21 − δ22)
2. (A.15)

Lastly,

t4(δ11)t5(δ21) + t4(δ12)t5(δ22)− 2t4

(

δ11 + δ12
2

)

t5

(

δ21 + δ22
2

)

=(u1 + ǫ1)(u2 + ǫ2)

∞
∑

n1,n2=1

h(n1)(v1)h
(n2)(v2)

n1!n2!

[

(δ11 + β1)
n1(δ21 + β2)

n2

20

Published as a conference paper at ICLR 2019

+ (δ12 + β1)
n1(δ22 + β2)

n2 − 2

(

δ11 + δ12
2

+ β1

)n1
(

δ21 + δ22
2

+ β2

)n2
]

,

=(u1 + ǫ1)(u2 + ǫ2)

[

(δ11 − δ12)
2

∞
∑

n1,n2=1

h(n1)(v1)h
(n2)(v2)

n1!n2!
qn1,n2(δ11 + β1, δ12 + β1, δ22 + β2)

+ (δ21 − δ22)
2

∞
∑

n1,n2=1

h(n1)(v1)h
(n2)(v2)

n1!n2!
qn2,n1(δ21 + β2, δ22 + β2, δ12 + β1)

+ (δ11 − δ12)(δ21 − δ22)

∞
∑

n1,n2=1

h(n1)(v1)h
(n2)(v2)

n1!n2!
rn1,n2(δ11 + β1, δ12 + β1, δ21 + β2, δ22 + β2)

]

=(u1u2 + o(1))

[

(δ11 − δ12)
2o(1) + (δ21 − δ22)

2o(1) + (δ11 − δ12)(δ21 − δ22)

(

h′(v1)h
′(v2)

2
+ o(1)

)]

,

(A.16)

where the second equality sign used Lemma A.5 and the third equality sign used the facts that
qn1,n2(·) = o(1) and rn1,n2(·) = o(1) whenever n1 + n2 > 2, and that q1,1(·) = 0 and r1,1(·) =

1
2 .

If we substitute (A.13), (A.14), (A.15), and (A.16) into (A.12),

1

2
[t(δ11, δ21)]

2
+

1

2
[t(δ12, δ22)]

2 −

[

t

(

δ11 + δ12
2

,
δ21 + δ22

2

)]2

=o(1)

[(

u1h
′′(v1)

4
+ o(1)

)

(δ11 − δ12)
2 +

(

u2h
′′(v2)

4
+ o(1)

)

(δ21 − δ22)
2

]

+
1

2

(

u2
1(h

′(v1))
2

2
+ o(1)

)

(δ11 − δ12)
2 +

1

2

(

u2
2(h

′(v2))
2

2
+ o(1)

)

(δ21 − δ22)
2

+ (u1u2 + o(1))

[

(δ11 − δ12)
2o(1) + (δ21 − δ22)

2o(1) + (δ11 − δ12)(δ21 − δ22)

(

h′(v1)h
′(v2)

2
+ o(1)

)]

=

(

u2
1(h

′(v1))
2

4
+ o(1)

)

(δ11 − δ12)
2 +

(

u2
2(h

′(v2))
2

4
+ o(1)

)

(δ21 − δ22)
2

+

(

u1u2h
′(v1)h

′(v2)

2
+ o(1)

)

(δ11 − δ12)(δ21 − δ22). (A.17)

We are almost done. If we substitute (A.10), (A.11), and (A.17) into (A.9), we can get

ℓ((W̌j , b̌j)
2
j=1)

=
1

3
+

3

2

[

t

(

δ11 + δ12
2

,
δ21 + δ22

2

)]2

+

(

u1h
′′(v1)

12
+ o(1)

)

(δ11 − δ12)
2 +

(

u2h
′′(v2)

12
+ o(1)

)

(δ21 − δ22)
2

+

(

u2
1(h

′(v1))
2

4
+ o(1)

)

(δ11 − δ12)
2 +

(

u2
2(h

′(v2))
2

4
+ o(1)

)

(δ21 − δ22)
2

+

(

u1u2h
′(v1)h

′(v2)

2
+ o(1)

)

(δ11 − δ12)(δ21 − δ22)

=
1

3
+

3

2

[

t

(

δ11 + δ12
2

,
δ21 + δ22

2

)]2

+

(

u1h
′′(v1)

12
+

u2
1(h

′(v1))
2

4
+ o(1)

)

(δ11 − δ12)
2

+

(

u2h
′′(v2)

12
+

u2
2(h

′(v2))
2

4
+ o(1)

)

(δ21 − δ22)
2 +

(

u1u2h
′(v1)h

′(v2)

2
+ o(1)

)

(δ11 − δ12)(δ21 − δ22),

which is the equation (A.7) that we were originally aiming to show.

21

Published as a conference paper at ICLR 2019

A5 PROOF OF COROLLARY 3

For the proof of this corollary, we present the values of real numbers that satisfy assumptions (C2.1)–
(C2.7), for each activation function listed in the corollary: sigmoid, tanh, arctan, exponential linear
units (ELU, Clevert et al. (2015)), scaled exponential linear units (SELU, Klambauer et al. (2017)).

To remind the readers what the assumptions were, we list the assumptions again. For (C2.1)–(C2.2),
there exist real numbers v1, v2, v3, v4 ∈ R such that

(C2.1) h(v1)h(v4) = h(v2)h(v3),

(C2.2) h(v1)h
(

v3+v4
2

)

6= h(v3)h
(

v1+v2
2

)

.

For (C2.3)–(C2.7), there exist real numbers v1, v2, u1, u2 ∈ R such that the following assumptions
hold:

(C2.3) u1h(v1) + u2h(v2) =
1
3 ,

(C2.4) h is infinitely differentiable at v1 and v2,

(C2.5) There exists a constant c > 0 such that |h(n)(v1)| ≤ cnn! and |h(n)(v2)| ≤ cnn!.

(C2.6) (u1h
′(v1))

2 + u1h
′′(v1)
3 > 0,

(C2.7) (u1h
′(v1)u2h

′(v2))
2 < ((u1h

′(v1))
2 + u1h

′′(v1)
3)((u2h

′(v2))
2 + u2h

′′(v2)
3).

For each function, we now present the appropriate real numbers that satisfy the assumptions.

A5.1 SIGMOID

When h is sigmoid,

h(x) =
1

1 + exp(−x)
, h−1(x) = log

(

x

1− x

)

.

Assumptions (C2.1)–(C2.2) are satisfied by

(v1, v2, v3, v4) =

(

h−1

(

1

2

)

, h−1

(

1

4

)

, h−1

(

1

4

)

, h−1

(

1

8

))

,

and assumptions (C2.3)–(C2.7) are satisfied by

(v1, v2, u1, u1) =

(

h−1

(

1

4

)

, h−1

(

1

4

)

,
2

3
,
2

3

)

.

Among them, (C2.4)–(C2.5) follow because sigmoid function is an real analytic function
Krantz & Parks (2002).

A5.2 TANH

When h is hyperbolic tangent, assumptions (C2.1)–(C2.2) are satisfied by

(v1, v2, v3, v4) =

(

tanh−1

(

1

2

)

, tanh−1

(

1

4

)

, tanh−1

(

1

4

)

, tanh−1

(

1

8

))

,

and assumptions (C2.3)–(C2.7) are satisfied by

(v1, v2, u1, u1) =

(

tanh−1

(

1

2

)

, tanh−1

(

1

2

)

, 1,−
1

3

)

,

Assumptions (C2.4)–(C2.5) hold because hyperbolic tangent function is real analytic.

22

Published as a conference paper at ICLR 2019

A5.3 ARCTAN

When h is inverse tangent, assumptions (C2.1)–(C2.2) are satisfied by

(v1, v2, v3, v4) =

(

tan

(

1

2

)

, tan

(

1

4

)

, tan

(

1

4

)

, tan

(

1

8

))

,

and assumptions (C2.3)–(C2.7) are satisfied by

(v1, v2, u1, u1) =

(

tan

(

1

2

)

, tan

(

1

2

)

, 1,−
1

3

)

,

Assumptions (C2.4)–(C2.5) hold because inverse tangent function is real analytic.

A5.4 QUADRATIC

When h is quadratic, assumptions (C2.1)–(C2.2) are satisfied by

(v1, v2, v3, v4) =

(

1,
1

2
,
1

2
,−

1

4

)

,

and assumptions (C2.3)–(C2.7) are satisfied by

(v1, v2, u1, u1) =

(

1, 1,
1

6
,
1

6

)

,

Assumptions (C2.4)–(C2.5) hold because quadratic function is real analytic.

A5.5 ELU AND SELU

When h is ELU or SELU,

h(x) = λ

{

x x ≥ 0

α(exp(x)− 1) x < 0
, h−1(x) =

{

x/λ x ≥ 0

log
(

x
λα

+ 1
)

x < 0
,

h′(x) =

{

λ x ≥ 0

λα exp(x) x < 0
, h′′(x) =

{

0 x ≥ 0

λα exp(x) x < 0
,

where α > 0, and λ = 1 (ELU) or λ > 1 (SELU). In this case, assumptions (C2.1)–(C2.2) are
satisfied by

(v1, v2, v3, v4) =

(

h−1

(

−
λα

2

)

, h−1

(

−
λα

4

)

, h−1

(

−
λα

4

)

, h−1

(

−
λα

8

))

.

Assumptions (C2.3)–(C2.7) are satisfied by

(v1, v2, u1, u2) =

(

1

3
, log

(

2

3

)

,
2

λ
,
1

λα

)

,

where (C2.4)–(C2.5) are satisfied because h(x) is real analytic at v1 and v2.

A6 PROOF OF THEOREM 2 FOR “RELU-LIKE” ACTIVATION FUNCTIONS.

Recall the piecewise linear nonnegative homogeneous activation function

h̄s+,s−(x) =

{

s+x x ≥ 0

s−x x < 0,

where s+ > 0, s− ≥ 0 and s+ 6= s−, we will prove that the statements of Theorem 2 hold for
h̄s+,s− .

23

Published as a conference paper at ICLR 2019

A6.1 PROOF OF PART 1

In the case of s− > 0, assumptions (C2.1)–(C2.2) are satisfied by

(v1, v2, v3, v4) =

(

1

s+
,−

1

s−
,−

1

s−
,
1

s+

)

.

The rest of the proof can be done in exactly the same way as the proof of Theorem 2.1, provided in
Appendix A3.

For s− = 0, which corresponds to the case of ReLU, define parameters

W̃1 =

[

0 2
−2 1

]

, b̃1 =

[

0
0

]

, W̃2 =
[

1
s+

− 2
s+

]

, b̃2 = 0.

We can check that

h̄s+,s−(W̃1X + b̃11
T
3) = s+

[

0 2 1
0 1 0

]

,

so

W̃2h̄s+,s−(W̃1X + b̃11
T
3) + b̃21

T
3 = [0 0 1] .

A6.2 PROOF OF PART 2

Assumptions (C2.3)–(C2.6) are satisfied by

(v1, v2, u1, u1) =

(

1

4s+
,

1

4s+
,
2

3
,
2

3

)

.

Assign parameter values

Ŵ1 =

[

v1 v1
v2 v2

]

, b̂1 =

[

0
0

]

, Ŵ2 = [u1 u2] , b̂2 = 0.

It is easy to compute that the output of the neural network is Ŷ =
[

1
3

1
3

1
3

]

, so ℓ((Ŵj , b̂j)
2
j=1) =

1
3 .

Now, it remains to show that this is indeed a local minimum of ℓ. To show this, we apply perturba-

tions to the parameters to see if the risk after perturbation is greater than or equal to ℓ((Ŵj , b̂j)
2
j=1).

Let the perturbed parameters be

W̌1 =

[

v1 + δ11 v1 + δ12
v2 + δ21 v2 + δ22

]

, b̌1 =

[

β1

β2

]

, W̌2 = [u1 + ǫ1 u2 + ǫ2] , b̌2 = γ,

where δ11, δ12, δ21, δ22, β1, β2, ǫ1, ǫ2, and γ are small enough real numbers.

Using the perturbed parameters,

W̌1X + b̌11
T
m =

[

v1 + δ11 + β1 v1 + δ12 + β1 v1 +
δ11+δ12

2 + β1

v2 + δ21 + β2 v2 + δ22 + β2 v2 +
δ21+δ22

2 + β2

]

,

so the empirical risk can be expressed as

ℓ((W̌j , b̌j)
2
j=1)

=
1

2
‖W̌2h̄s+,s−

(

W̌1X + b̌11
T
m

)

+ b̌21
T
m − Y ‖2F

=
1

2
[(u1 + ǫ1)s+(v1 + δ11 + β1) + (u2 + ǫ2)s+(v2 + δ21 + β2) + γ]2

+
1

2
[(u1 + ǫ1)s+(v1 + δ12 + β1) + (u2 + ǫ2)s+(v2 + δ22 + β2) + γ]

2

+
1

2

[

(u1 + ǫ1)s+

(

v1 +
δ11 + δ12

2
+ β1

)

+ (u2 + ǫ2)s+

(

v2 +
δ21 + δ22

2
+ β2

)

+ γ − 1

]2

.

24

Published as a conference paper at ICLR 2019

To simplify notation, let us introduce the following function:

t(δ1, δ2) = s+ǫ1v1 + s+ǫ2v2 + γ + s+(u1 + ǫ1)(δ1 + β1) + s+(u2 + ǫ2)(δ2 + β2)

It is easy to check that

t(δ11, δ21) + t(δ12, δ22)− 2t

(

δ11 + δ12
2

,
δ21 + δ22

2

)

= 0.

With this new notation t(δ1, δ2), we get

ℓ((W̌j , b̌j)
2
j=1)

=
1

2

[

1

3
+ t(δ11, δ21)

]2

+
1

2

[

1

3
+ t(δ12, δ22)

]2

+
1

2

[

−
2

3
+ t

(

δ11 + δ12
2

,
δ21 + δ22

2

)]2

=
1

3
+

1

3

[

t(δ11, δ21) + t(δ12, δ22)− 2t

(

δ11 + δ12
2

,
δ21 + δ22

2

)]

+
1

2
[t(δ11, δ21)]

2
+

1

2
[t(δ12, δ22)]

2
+

1

2

[

t

(

δ11 + δ12
2

,
δ21 + δ22

2

)]2

≥
1

3
= ℓ((Ŵj , b̂j)

2
j=1).

A7 PROOF OF THEOREM 4

Before we start, note the following partial derivatives, which can be computed using straightforward
matrix calculus:

∂ℓ
∂Wj

= (WH+1:j+1)
T∇ℓ0(WH+1:1)(Wj−1:1)

T ,

for all j ∈ [H + 1].

A7.1 PROOF OF PART 1, IF dy ≥ dx

For Part 1, we must show that if ∇ℓ0(ŴH+1:1) 6= 0 then (Ŵj)
H+1
j=1 is a saddle point of ℓ. Thus, we

show that (Ŵj)
H+1
j=1 is neither a local minimum nor a local maximum. More precisely, for each j, let

Bǫ(Wj) be an ǫ-Frobenius-norm-ball centered at Wj , and
∏H+1

j=1 Bǫ(Wj) their Cartesian product.

We wish to show that for every ǫ > 0, there exist tuples (Pj)
H+1
j=1 , (Qj)

H+1
j=1 ∈

∏H+1
j=1 Bǫ(Ŵj) such

that
ℓ((Pj)

H+1
j=1) > ℓ((Ŵj)

H+1
j=1) > ℓ((Qj)

H+1
j=1). (A.18)

To prove (A.18), we exploit ℓ((Ŵj)
H+1
j=1) = ℓ0(ŴH+1:1), and the assumption ∇ℓ0(ŴH+1:1) 6= 0.

The key idea is to perturb the tuple (Ŵj)
H+1
j=1 so that the directional derivative of ℓ0 along PH+1:1 −

ŴH+1:1 is positive. Since ℓ0 is differentiable, if PH+1:1 − ŴH+1:1 is small, then

ℓ((Pj)
H+1
j=1)=ℓ0(PH+1:1)>ℓ0(ŴH+1:1)=ℓ((Ŵj)

H+1
j=1).

Similarly, we can show ℓ((Qj)
H+1
j=1) < ℓ((Ŵj)

H+1
j=1). The key challenge lies in constructing these

perturbations; we outline our approach below; this construction may be of independent interest
too. For this section, we assume that dx ≥ dy for simplicity; the case dy ≥ dx is treated in
Appendix A7.2.

Since ∇ℓ0(ŴH+1:1) 6= 0, col(∇ℓ0(ŴH+1:1))
⊥ must be a strict subspace of Rdy . Consider

∂ℓ/∂W1 at a critical point to see that (ŴH+1:2)
T∇ℓ0(ŴH+1:1) = 0, so col(ŴH+1:2) ⊆

col(∇ℓ0(ŴH+1:1))
⊥ (Rdy . This strict inclusion implies rank(ŴH+1:2) < dy ≤ d1, so that

null(ŴH+1:2) is not a trivial subspace. Moreover, null(ŴH+1:2) ⊇ null(ŴH:2) ⊇ · · · ⊇ null(Ŵ2).

We can split the proof into two cases: null(ŴH+1:2) 6= null(ŴH:2) and null(ŴH+1:2) =

null(ŴH:2).

Let the SVD of ∇ℓ0(ŴH+1:1) = UlΣU
T
r . Recall [Ul]·,1 and [Ur]·,1 denote first columns of Ul and

Ur, respectively.

25

Published as a conference paper at ICLR 2019

Case 1: null(ŴH+1:2) 6= null(ŴH:2). In this case, null(ŴH+1:2)) null(ŴH:2). We will per-

turb Ŵ1 and ŴH+1 to obtain the tuples (Pj)
H+1
j=1 and (Qj)

H+1
j=1 . To create our perturbation, we

choose two unit vectors as follows:

v0 = [Ur]·,1, v1 ∈ null(ŴH+1:2) ∩ null(ŴH:2)
⊥.

Then, define ∆1 := ǫv1v
T
0 ∈ Rd1×dx , and V1 := Ŵ1 + ∆1 ∈ Bǫ(Ŵ1). Since v1 lies in

null(ŴH+1:2), observe that

ŴH+1:2V1 = ŴH+1:1 + ǫŴH+1:2v1v
T
0 = ŴH+1:1.

With this definition of V1, we can also see that

∇ℓ0(ŴH+1:1)V
T
1 (ŴH:2)

T = ∇ℓ0(ŴH+1:1)(ŴH:1)
T + ǫ∇ℓ0(ŴH+1:1)v0v

T
1 (ŴH:2)

T .

Note that ∇ℓ0(ŴH+1:1)(ŴH:1)
T is equal to ∂ℓ/∂WH+1 at a critical point, hence is zero. Since

v0 = [Ur]·,1, we have ∇ℓ0(ŴH+1:1)v0 = σmax(∇ℓ0(ŴH+1:1))[Ul]·,1, which is a nonzero column

vector, and since v1 ∈ null(ŴH:2)
⊥ = row(ŴH:2), v

T
1 (ŴH:2)

T is a nonzero row vector. From this

observation, ∇ℓ0(ŴH+1:1)v0v
T
1 (ŴH:2)

T is nonzero, and so is ∇ℓ0(ŴH+1:1)V
T
1 (ŴH:2)

T .

We are now ready to define the perturbation on ŴH+1:

∆H+1 :=
ǫ∇ℓ0(ŴH+1:1)V

T
1 (ŴH:2)

T

‖∇ℓ0(ŴH+1:1)V T
1 (ŴH:2)T ‖F

,

so that ŴH+1 +∆H+1 ∈ Bǫ(ŴH+1). Then, observe that

〈∆H+1ŴH:2V1,∇ℓ0(ŴH+1:1)〉 = 〈∆H+1,∇ℓ0(ŴH+1:1)V
T
1 (ŴH:2)

T 〉 > 0,

by definition of ∆H+1. In other words, ∆H+1ŴH:2V1 is an ascent direction of ℓ0 at ŴH+1:1. Now
choose the tuples

(Pj)
H+1
j=1 = (V1, Ŵ2, . . . , ŴH , ŴH+1 + η∆H+1),

(Qj)
H+1
j=1 = (V1, Ŵ2, . . . , ŴH , ŴH+1 − η∆H+1),

where η ∈ (0, 1] is chosen suitably. It is easy to verify that (Pj)
H+1
j=1 , (Qj)

H+1
j=1 ∈

∏H+1
j=1 Bǫ(Ŵj),

and that the products

PH+1:1 = ŴH+1:1 + η∆H+1ŴH:2V1,

QH+1:1 = ŴH+1:1 − η∆H+1ŴH:2V1.

Since ℓ0 is differentiable, for small enough η ∈ (0, 1], ℓ0(PH+1:1) > ℓ0(ŴH+1:1) > ℓ0(QH+1:1),
proving (A.18). This construction is valid for any ǫ > 0, so we are done.

Case 2: null(ŴH+1:2) = null(ŴH:2). By and large, the proof of this case goes the same, except
that we need a little more care on what perturbations to make. Define

j∗ = max{j ∈ [2, H] | null(Ŵj:2)) null(Ŵj−1:2)}.

When you start from j = H down to j = 2 and compare null(Ŵj:2) and null(Ŵj−1:2), the first

iterate j at which you have null(Ŵj:2) 6= null(Ŵj−1:2) is j∗. If all null spaces of matrices from

ŴH:2 to Ŵ2 are equal, j∗ = 2 which follows from the notational convention that null(Ŵ1:2) =

null(Id1) = {0}. According to j∗, in Case 2 we perturb Ŵ1, ŴH+1, ŴH , . . . , Ŵj∗ to get (Pj)
H+1
j=1

and (Qj)
H+1
j=1 .

Recall the definition of left-null space of matrix A: leftnull(A) = {v | vTA = 0}. By definition of
j∗, note that

null(ŴH+1:2) = null(ŴH:2) = · · · = null(Ŵj∗:2)

⇔ row(ŴH+1:2) = row(ŴH:2) = · · · = row(Ŵj∗:2)

26

Published as a conference paper at ICLR 2019

⇔ rank(ŴH+1:2) = rank(ŴH:2) = · · · = rank(Ŵj∗:2),

which means the products are all rank-deficient (recall rank(ŴH+1:2) < dy and all dj ≥ dy), and

hence they all have nontrivial left-null spaces leftnull(ŴH:2), . . . , leftnull(Ŵj∗:2) as well.

We choose some unit vectors as the following:

v0 = [Ur]·,1,

v1 ∈ null(Ŵj∗:2) ∩ null(Ŵj∗−1:2)
⊥,

vH+1 = [Ul]·,1,

vH ∈ leftnull(ŴH:2),

· · ·

vj∗ ∈ leftnull(Ŵj∗:2).

Then, for a γ ∈ (0, ǫ] whose value will be specified later, define

∆1 := γv1v
T
0 ∈ Rd1×dx ,

∆H+1 := γvH+1v
T
H ∈ Rdy×dH ,

· · ·

∆j∗+1 := γvj∗+1v
T
j∗ ∈ Rdj∗+1×dj∗ ,

and Vj := Ŵj +∆j accordingly for j = 1, j∗ + 1, . . . , H + 1.

By definition of ∆j’s, note that

VH+1:j∗+1Ŵj∗:2V1

=VH+1:j∗+2Ŵj∗+1:2V1 + VH+1:j∗+2∆j∗+1Ŵj∗:2V1 = VH+1:j∗+2Ŵj∗+1:2V1 (A.19)

=VH+1:j∗+3Ŵj∗+2:2V1 + VH+1:j∗+3∆j∗+2Ŵj∗+1:2V1 = VH+1:j∗+3Ŵj∗+2:2V1 (A.20)

= · · ·

=ŴH+1:2V1 +∆H+1ŴH:2V1 = ŴH+1:2V1 (A.21)

=ŴH+1:1 + ŴH+1:2∆1 = ŴH+1:1, (A.22)

where in (A.19) we used the definition that vj∗ ∈ leftnull(Ŵj∗:2), in (A.20) that vj∗+1 ∈

leftnull(Ŵj∗+1:2), in (A.21) that vH ∈ leftnull(ŴH:2), and in (A.22) that v1 ∈ null(Ŵj∗:2).

Now consider the following matrix product:

(VH+1:j∗+1)
T∇ℓ0(ŴH+1:1)V

T
1 (Ŵj∗−1:2)

T

=(Ŵj∗+1 +∆j∗+1)
T · · · (ŴH+1 +∆H+1)

T∇ℓ0(ŴH+1:1)(Ŵ1 +∆1)
T ŴT

2 · · · ŴT
j∗−1. (A.23)

We are going to show that for small enough γ ∈ (0, ǫ], this product is nonzero. If we expand (A.23),
there are many terms in the summation. However, note that the expansion can be arranged in the
following form:

(Ŵj∗+1 +∆j∗+1)
T · · · (ŴH+1 +∆H+1)

T∇ℓ0(ŴH+1:1)(Ŵ1 +∆1)
T ŴT

2 · · · ŴT
j∗−1

=C0 + C1γ + C2γ
2 + · · ·+ CH−j∗+2γ

H−j∗+2 (A.24)

where Cj ∈ Rdj∗×dj∗−1 for all j and Cj doesn’t depend on γ, and specifically

C0 = ŴT
j∗+1 · · · Ŵ

T
H+1∇ℓ0(ŴH+1:1)Ŵ

T
1 ŴT

2 · · · ŴT
j∗−1,

CH−j∗+2 =
1

γH−j∗+2
∆T

j∗+1 · · ·∆
T
H+1∇ℓ0(ŴH+1:1)∆

T
1 Ŵ

T
2 · · · ŴT

j∗−1.

Because the C0 is exactly equal to ∂ℓ
∂Wj∗

evaluated at a critical point ((Ŵj)
H+1
j=1), C0 = 0. Also, due

to definitions of ∆j’s,

CH−j∗+2 =(vj∗v
T
j∗+1)(vj∗+1v

T
j∗+2) · · · (vHvTH+1)∇ℓ0(ŴH+1:1)(v0v

T
1)(Ŵj∗−1:2)

T

27

Published as a conference paper at ICLR 2019

=vj∗v
T
H+1∇ℓ0(ŴH+1:1)v0v

T
1 (Ŵj∗−1:2)

T .

First, vj∗ is a nonzero column vector. Since vH+1 = [Ul]·,1 and v0 = [Ur]·,1,

vTH+1∇ℓ0(ŴH+1:1)v0 = σmax(∇ℓ0(ŴH+1:1)) > 0. Also, since v1 ∈ row(Ŵj∗−1:2),

vT1 (Ŵj∗−1:2)
T will be a nonzero row vector. Thus, the product CH−j∗+2 will be nonzero.

Since CH−j∗+2 6= 0, we can pick any index (α, β) such that the (α, β)-th entry of CH−j∗+2,
denoted as [CH−j∗+2]α,β , is nonzero. Then, the (α, β)-th entry of (A.24) can be written as

c1γ + c2γ
2 + · · ·+ cH−j∗+2γ

H−j∗+2, (A.25)

where cj = [Cj]α,β . To show that the matrix product (A.23) is nonzero, it suffices to show that its
(α, β)-th entry (A.25) is nonzero. If c1 = · · · = cH−j∗+1 = 0, then with the choice of γ = ǫ, (A.25)
is trivially nonzero. If some of c1, . . . , cH−j∗+1 are nonzero, we can scale γ ∈ (0, ǫ] arbitrarily
small, so that

|c1γ + · · ·+ cH−j∗+1γ
H−j∗+1| > |cH−j∗+2γ

H−j∗+2|,

and thus (A.25) can never be zero. From this, with sufficiently small γ, the matrix product (A.23) is
nonzero.

Now define the perturbation on Ŵj∗ :

∆j∗ :=
ǫ(VH+1:j∗+1)

T∇ℓ0(ŴH+1:1)V
T
1 (Ŵj∗−1:2)

T

‖(VH+1:j∗+1)T∇ℓ0(ŴH+1:1)V T
1 (Ŵj∗−1:2)T ‖F

,

so that Ŵj∗ +∆j∗ ∈ Bǫ(Ŵj∗). Then, observe that

〈VH+1:j∗+1∆j∗Ŵj∗−1:2V1,∇ℓ0(ŴH+1:1)〉 = tr((VH+1:j∗+1∆j∗Ŵj∗−1:2V1)
T∇ℓ0(ŴH+1:1))

= tr(∆T
j∗(VH+1:j∗+1)

T∇ℓ0(ŴH+1:1)V
T
1 (Ŵj∗−1:2)

T) = 〈∆j∗ , (VH+1:j∗+1)
T∇ℓ0(ŴH+1:1)V

T
1 (Ŵj∗−1:2)

T 〉 > 0.

This means that VH+1:j∗+1∆j∗Ŵj∗−1:2V1 and −VH+1:j∗+1∆j∗Ŵj∗−1:2V1 are ascent and descent

directions, respectively, of ℓ0(R) at ŴH+1:1. After that, the proof is very similar to the previous
case. We can define

(Pj)
H+1
j=1 = (V1, Ŵ2, . . . , Ŵj∗−1, Ŵj∗ + η∆j∗ , Vj∗+1, . . . , VH+1) ∈

∏H+1

j=1
Bǫ(Ŵj)

(Qj)
H+1
j=1 = (V1, Ŵ2, . . . , Ŵj∗−1, Ŵj∗ − η∆j∗ , Vj∗+1, . . . , VH+1) ∈

∏H+1

j=1
Bǫ(Ŵj),

where 0 < η ≤ 1 is small enough, to show that by differentiability of ℓ0(R), we get ℓ((Pj)
H+1
j=1) >

ℓ((Ŵj)
H+1
j=1) > ℓ((Qj)

H+1
j=1).

A7.2 PROOF OF PART 1, IF dy ≥ dx

First, note that ∇ℓ0(ŴH+1:1)(ŴH:1)
T = 0, because it is ∂ℓ

∂WH+1
evaluated at a critical point

(Ŵj)
H+1
j=1 . This equation implies row(∇ℓ0(ŴH+1:1))

⊥ ⊇ row(ŴH:1). Since ∇ℓ0(ŴH+1:1) 6= 0,

row(∇ℓ0(ŴH+1:1))
⊥ cannot be the whole Rdx , and it is a strict subspace of Rdx . Observe that

ŴH:1 ∈ RdH×dx and dx ≤ dH . Since row(ŴH:1) ⊆ row(∇ℓ0(ŴH+1:1))
⊥ (Rdx , this means

rank(ŴH:1) < dx, hence leftnull(ŴH:1) is not a trivial subspace.

Now observe that

leftnull(ŴH:1) ⊇ leftnull(ŴH:2) ⊇ · · · ⊇ leftnull(ŴH),

where some of left-null spaces in the right could be zero-dimensional. The procedure of choos-
ing the perturbation depends on these left-null spaces. We can split the proof into two cases:

leftnull(ŴH:1) 6= leftnull(ŴH:2) and leftnull(ŴH:1) = leftnull(ŴH:2). Because the former case
is simpler, we prove the former case first.

Before we dive in, again take SVD of ∇ℓ0(ŴH+1:1) = UlΣU
T
r . Since ∇ℓ0(ŴH+1:1) 6= 0, there

is at least one positive singular value, so σmax(∇ℓ0(ŴH+1:1)) > 0. Recall the notation that [Ul]·,1
and [Ur]·,1 are first column vectors of Ul and Ur, respectively.

28

Published as a conference paper at ICLR 2019

Case 1: leftnull(ŴH:1) 6= leftnull(ŴH:2). In this case, leftnull(ŴH:1)) leftnull(ŴH:2). We

will perturb Ŵ1 and ŴH+1 to obtain the desired tuples (Pj)
H+1
j=1 and (Qj)

H+1
j=1 .

Now choose two unit vectors vH and vH+1, as the following:

vH ∈ leftnull(ŴH:1) ∩ leftnull(ŴH:2)
⊥, vH+1 = [Ul]·,1,

and then define ∆H+1 := ǫvH+1v
T
H ∈ Rdy×dH , and VH+1 := ŴH+1 + ∆H+1. We can check

VH+1 ∈ Bǫ(ŴH+1) from the fact that vH and vH+1 are unit vectors. Since vH ∈ leftnull(ŴH:1),
observe that

VH+1ŴH:1 = ŴH+1:1 + ǫvH+1v
T
HŴH:1 = ŴH+1:1.

With this definition of VH+1, we can also see that

(ŴH:2)
TV T

H+1∇ℓ0(ŴH+1:1) = (ŴH+1:2)
T∇ℓ0(ŴH+1:1) + ǫ(ŴH:2)

T vHvTH+1∇ℓ0(ŴH+1:1).

Note that (ŴH+1:2)
T∇ℓ0(ŴH+1:1) is exactly equal to ∂ℓ

∂W1
evaluated at (Ŵj)

H+1
j=1 , hence is zero

by assumption that (Ŵj)
H+1
j=1 is a critical point. Since vH ∈ leftnull(ŴH:2)

⊥ = col(ŴH:2),

(ŴH:2)
T vH is a nonzero column vector, and since vH+1 = [Ul]·,1, vTH+1∇ℓ0(ŴH+1:1) =

σmax(∇ℓ0(ŴH+1:1))([Ur]·,1)
T , which is a nonzero row vector. From this observation, we can

see that (ŴH:2)
T vHvTH+1∇ℓ0(ŴH+1:1) is nonzero, and so is (ŴH:2)

TV T
H+1∇ℓ0(ŴH+1:1).

Now define the perturbation on Ŵ1:

∆1 :=
ǫ(ŴH:2)

TV T
H+1∇ℓ0(ŴH+1:1)

‖(ŴH:2)TV T
H+1∇ℓ0(ŴH+1:1)‖F

,

so that Ŵ1 +∆1 ∈ Bǫ(Ŵ1). Then, observe that

〈VH+1ŴH:2∆1,∇ℓ0(ŴH+1:1)〉 = tr((VH+1ŴH:2∆1)
T∇ℓ0(ŴH+1:1))

= tr(∆T
1 (ŴH:2)

TV T
H+1∇ℓ0(ŴH+1:1)) = 〈∆1, (ŴH:2)

TV T
H+1∇ℓ0(ŴH+1:1)〉 > 0,

by definition of ∆1. This means that VH+1ŴH:2∆1 and −VH+1ŴH:2∆1 are ascent and descent

directions, respectively, of ℓ0(R) at ŴH+1:1. Since ℓ0 is a differentiable function, there exists small
enough 0 < η ≤ 1 that satisfies

ℓ0(ŴH+1:1 + ηVH+1ŴH:2∆1) > ℓ0(ŴH+1:1),

ℓ0(ŴH+1:1 − ηVH+1ŴH:2∆1) < ℓ0(ŴH+1:1).

Now define

(Pj)
H+1
j=1 = (Ŵ1 + η∆1, Ŵ2, . . . , ŴH , VH+1),

(Qj)
H+1
j=1 = (Ŵ1 − η∆1, Ŵ2, . . . , ŴH , VH+1).

We can check (Pj)
H+1
j=1 , (Qj)

H+1
j=1 ∈

∏H+1
j=1 Bǫ(Ŵj), and

PH+1:1 = ŴH+1:1 + ηVH+1ŴH:2∆1.

QH+1:1 = ŴH+1:1 − ηVH+1ŴH:2∆1.

By definition of ℓ((Wj)
H+1
j=1), this shows that ℓ((Pj)

H+1
j=1) > ℓ((Ŵj)

H+1
j=1) > ℓ((Qj)

H+1
j=1). This

construction holds for any ǫ > 0, proving that (Ŵj)
H+1
j=1 can be neither a local maximum nor a local

minimum.

Case 2: leftnull(ŴH:1) = leftnull(ŴH:2). By and large, the proof of this case goes the same,
except that we need a little more care on what perturbations to make. Define

j∗ = min{j ∈ [2, H] | leftnull(ŴH:j)) leftnull(ŴH:j+1)}.

29

Published as a conference paper at ICLR 2019

When you start from j = 2 up to j = H and compare leftnull(ŴH:j) and leftnull(ŴH:j+1), the

first iterate j at which you have leftnull(ŴH:j) 6= leftnull(ŴH:j+1) is j∗. If all left-null spaces of

matrices from ŴH:2 to ŴH are equal, j∗ = H which follows from the notational convention that

leftnull(ŴH:H+1) = leftnull(IdH
) = {0}. According to j∗, in Case 2 we perturb ŴH+1, Ŵ1, Ŵ2,

. . . , Ŵj∗ to get (Pj)
H+1
j=1 and (Qj)

H+1
j=1 .

By definition of j∗, note that

leftnull(ŴH:1) = leftnull(ŴH:2) = · · · = leftnull(ŴH:j∗)

⇔ col(ŴH:1) = col(ŴH:2) = · · · = col(ŴH:j∗)

⇔ rank(ŴH:1) = rank(ŴH:2) = · · · = rank(ŴH:j∗)

which means the products are all rank-deficient (recall rank(ŴH:1) < dx and all dj ≥ dx), and

hence they all have nontrivial null spaces null(ŴH:2), . . . , null(ŴH:j∗) as well.

We choose some unit vectors as the following:

v0 = [Ur]·,1,

v1 ∈ null(ŴH:2),

· · ·

vj∗−1 ∈ null(ŴH:j∗)

vH ∈ leftnull(ŴH:j∗) ∩ leftnull(ŴH:j∗+1)
⊥,

vH+1 = [Ul]·,1.

Then, for a γ ∈ (0, ǫ] whose value will be specified later, define

∆1 := γv1v
T
0 ∈ Rd1×dx ,

· · ·

∆j∗−1 := γvj∗−1v
T
j∗−2 ∈ Rdj∗−1×dj∗−2 ,

∆H+1 := γvH+1v
T
H ∈ Rdy×dH ,

and Vj := Ŵj +∆j accordingly for j = 1, . . . , j∗ − 1, H + 1.

By definition of ∆j’s, note that

VH+1ŴH:j∗Vj∗−1:1

=VH+1ŴH:j∗−1Vj∗−2:1 + VH+1ŴH:j∗∆j∗−1Vj∗−2:1 = VH+1ŴH:j∗−1Vj∗−2:1 (A.26)

=VH+1ŴH:j∗−2Vj∗−3:1 + VH+1ŴH:j∗−1∆j∗−2Vj∗−3:1 = VH+1ŴH:j∗−2Vj∗−3:1 (A.27)

= · · ·

=VH+1ŴH:1 + VH+1ŴH:2∆1 = VH+1ŴH:1 (A.28)

=ŴH+1:1 +∆H+1ŴH:1 = ŴH+1:1, (A.29)

where in (A.26) we used the definition that vj∗−1 ∈ null(ŴH:j∗), in (A.27) that vj∗−2 ∈

null(ŴH:j∗−1), in (A.28) that v1 ∈ null(ŴH:2), and in (A.29) that vH ∈ leftnull(ŴH:j∗).

Now consider the following matrix product:

(ŴH:j∗+1)
TV T

H+1∇ℓ0(ŴH+1:1)(Vj∗−1:1)
T

= (ŴH:j∗+1)
T (ŴH+1 +∆H+1)

T∇ℓ0(ŴH+1:1)(Ŵ1 +∆1)
T · · · (Ŵj∗−1 +∆j∗−1)

T . (A.30)

We are going to show that for small enough γ ∈ (0, ǫ], this product is nonzero. If we expand (A.30),
there are many terms in the summation. However, note that the expansion can be arranged in the
following form:

(ŴH:j∗+1)
T (ŴH+1 +∆H+1)

T∇ℓ0(ŴH+1:1)(Ŵ1 +∆1)
T · · · (Ŵj∗−1 +∆j∗−1)

T

30

Published as a conference paper at ICLR 2019

=C0 + C1γ + C2γ
2 + · · ·+ Cj∗γ

j∗ (A.31)

where Cj ∈ Rdj∗×dj∗−1 for all j and Cj doesn’t depend on γ, and specifically

C0 = ŴT
j∗+1 · · · Ŵ

T
H+1∇ℓ0(ŴH+1:1)Ŵ

T
1 ŴT

2 · · · ŴT
j∗−1,

Cj∗ =
1

γj∗
ŴT

j∗+1 · · · Ŵ
T
H∆T

H+1∇ℓ0(ŴH+1:1)∆
T
1 · · ·∆T

j∗−1.

Because the C0 is exactly equal to ∂ℓ
∂Wj∗

evaluated at a critical point ((Ŵj)
H+1
j=1), C0 = 0. Also, due

to definitions of ∆j’s,

Cj∗ =(ŴH:j∗+1)
T (vHvTH+1)∇ℓ0(ŴH+1:1)(v0v

T
1)(v1v

T
2) · · · (vj∗−2v

T
j∗−1)

=(ŴH:j∗+1)
T vHvTH+1∇ℓ0(ŴH+1:1)v0v

T
j∗−1.

First, since vH ∈ col(ŴH:j∗+1), (ŴH:j∗+1)
T vH is a nonzero column vector. Also, since vH+1 =

[Ul]·,1 and v0 = [Ur]·,1, the product vTH+1∇ℓ0(ŴH+1:1)v0 = σmax(∇ℓ0(ŴH+1:1)) > 0. Finally,

vTj∗−1 is a nonzero row vector. Thus, the product Cj∗ will be nonzero.

Since Cj∗ 6= 0, we can pick any index (α, β) such that the (α, β)-th entry of Cj∗ , denoted as
[Cj∗]α,β , is nonzero. Then, the (α, β)-th entry of (A.31) can be written as

c1γ + c2γ
2 + · · ·+ cj∗γ

j∗ , (A.32)

where cj = [Cj]α,β . To show that the matrix product (A.30) is nonzero, it suffices to show that its
(α, β)-th entry (A.32) is nonzero. If c1 = · · · = cj∗−1 = 0, then with the choice of γ = ǫ, (A.32) is
trivially nonzero. If some of c1, . . . , cj∗−1 are nonzero, we can scale γ ∈ (0, ǫ] arbitrarily small, so
that

|c1γ + · · ·+ cj∗−1γ
j∗−1| > |cj∗γ

j∗ |,

and thus (A.32) can never be zero. From this, with sufficiently small γ, the matrix product (A.30) is
nonzero.

Now define the perturbation on Ŵj∗ :

∆j∗ :=
ǫ(ŴH:j∗+1)

TV T
H+1∇ℓ0(ŴH+1:1)(Vj∗−1:1)

T

‖(ŴH:j∗+1)TV T
H+1∇ℓ0(ŴH+1:1)(Vj∗−1:1)T ‖F

,

so that Ŵj∗ +∆j∗ ∈ Bǫ(Ŵj∗). Then, observe that

〈VH+1ŴH:j∗+1∆j∗Vj∗−1:1,∇ℓ0(ŴH+1:1)〉 = tr((VH+1ŴH:j∗+1∆j∗Vj∗−1:1)
T∇ℓ0(ŴH+1:1))

= tr(∆T
j∗(ŴH:j∗+1)

TV T
H+1∇ℓ0(ŴH+1:1)(Vj∗−1:1)

T) = 〈∆j∗ , (ŴH:j∗+1)
TV T

H+1∇ℓ0(ŴH+1:1)(Vj∗−1:1)
T 〉 > 0.

This means that VH+1ŴH:j∗+1∆j∗Vj∗−1:1 and −VH+1ŴH:j∗+1∆j∗Vj∗−1:1 are ascent and descent

directions, respectively, of ℓ0(R) at ŴH+1:1. After that, the proof is very similar to the previous
case. We can define

(Pj)
H+1
j=1 = (V1, . . . , Vj∗−1, Ŵj∗ + η∆j∗ , Ŵj∗+1, . . . , ŴH , VH+1) ∈

∏H+1

j=1
Bǫ(Ŵj)

(Qj)
H+1
j=1 = (V1, . . . , Vj∗−1, Ŵj∗ − η∆j∗ , Ŵj∗+1, . . . , ŴH , VH+1) ∈

∏H+1

j=1
Bǫ(Ŵj),

where 0 < η ≤ 1 is small enough, to show that by differentiability of ℓ0(R), we get ℓ((Pj)
H+1
j=1) >

ℓ((Ŵj)
H+1
j=1) > ℓ((Qj)

H+1
j=1).

A7.3 PROOF OF PART 2(A)

In this part, we show that if ∇ℓ0(ŴH+1:1) = 0 and ŴH+1:1 is a local min of ℓ0, then (Ŵj)
H+1
j=1 is a

local min of ℓ. The proof for local max case can be done in a very similar way.

31

Published as a conference paper at ICLR 2019

Since ŴH+1:1 is a local minimum of ℓ0, there exists ǫ > 0 such that, for any R satisfying

‖R− ŴH+1:1‖F ≤ ǫ, we have ℓ0(R) ≥ ℓ0(ŴH+1:1). We prove that (Ŵj)
H+1
j=1 is a local mini-

mum of ℓ by showing that there exists a neighborhood of (Ŵj)
H+1
j=1 in which any point (Vj)

H+1
j=1

satisfies ℓ((Vj)
H+1
j=1) ≥ ℓ((Ŵj)

H+1
j=1).

Now define

0 < ǫj ≤
ǫ

2(H + 1)max
{

‖ŴH+1:j+1‖F‖Ŵj−1:1‖F, 1
} .

Observe that a
max{a,1} ≤ 1 for a ≥ 0. Then, for all j ∈ [H+1], pick any Vj such that ‖Vj − Ŵj‖F ≤

ǫj . Denote ∆j = Vj−Ŵj for all j. Now, by triangle inequality and submultiplicativity of Frobenius
norm,

‖(ŴH+1 +∆H+1) · · · (Ŵ1 +∆1)− ŴH+1:1‖F ≤
H+1
∑

j=1

‖ŴH+1:j+1∆jŴj−1:1‖F +O(max
j

‖∆j‖
2
F)

≤
H+1
∑

j=1

‖ŴH+1:j+1‖F‖∆j‖F‖Ŵj−1:1‖F +O(max
j

ǫ2j)

≤
ǫ

2
+O(max

j
ǫ2j) ≤ ǫ,

for small enough ǫj’s.

Given this, for any (Vj)
H+1
j=1 in the neighborhood of (Ŵj)

H+1
j=1 defined by ǫj’s,

‖VH+1:1 − ŴH+1:1‖F ≤ ǫ, so ℓ0(VH+1:1) ≥ ℓ0(ŴH+1:1), meaning ℓ((Vj)
H+1
j=1) ≥ ℓ((Ŵj)

H+1
j=1).

Thus, (Ŵj)
H+1
j=1 is a local minimum of ℓ.

A7.4 PROOF OF PART 2(B)

For this part, we want to show that if ∇ℓ0(ŴH+1:1) = 0, then (Ŵj)
H+1
j=1 is a global min (or max)

of ℓ if and only if ŴH+1:1 is a global min (or max) of ℓ0. We prove this by showing the following:

if dj ≥ min{dx, dy} for all j ∈ [H], for any R ∈ Rdy×dx there exists a decomposition (Wj)
H+1
j=1

such that R = WH+1:1.

We divide the proof into two cases: dx ≥ dy and dy ≥ dx.

Case 1: dx ≥ dy . If dx ≥ dy , by assumption dj ≥ dy for all j ∈ [H]. Recall that W1 ∈ Rd1×dx .

Given R ∈ Rdy×dx , we can fill the first dy rows of W1 with R and let any other entries be zero. For
all the other matrices W2, . . . ,WH+1, we put ones to the diagonal entries while putting zeros to all
the other entries. We can check that, by this construction, R = WH+1:1 for this given R.

Case 2: dy ≥ dx. If dy ≥ dx, we have dj ≥ dx for all j ∈ [H]. Recall WH+1 ∈ Rdy×dH . Given

R ∈ Rdy×dx , we can fill the first dx columns of WH+1 with R and let any other entries be zero. For
all the other matrices W1, . . . ,WH , we put ones to the diagonal entries while putting zeros to all the
other entries. By this construction, R = WH+1:1 for given R.

Once this fact is given, by ℓ((Wj)
H+1
j=1) = ℓ0(WH+1:1),

inf
R

ℓ0(R) = inf
WH+1:1

ℓ0(WH+1:1) = inf
(Wj)

H+1
j=1

ℓ((Wj)
H+1
j=1).

Thus, any (Ŵj)
H+1
j=1 attaining a global min of ℓ must have infR ℓ0(R) = ℓ0(ŴH+1:1), so ŴH+1:1

is also a global min of ℓ0(R). Conversely, if ℓ0(ŴH+1:1) = inf ℓ0(R), then ℓ((Ŵj)
H+1
j=1) =

inf ℓ((Wj)
H+1
j=1), so (Ŵj)

H+1
j=1 is a global min of ℓ. We can prove the global max case similarly.

32

Published as a conference paper at ICLR 2019

A7.5 PROOF OF PART 3 AND 3(A)

Suppose there exists j∗ ∈ [H + 1] such that ŴH+1:j∗+1 has full row rank and Ŵj∗−1:1 has full

column rank. For simplicity, define A := ŴH+1:j∗+1 and B := Ŵj∗−1:1. Since AT has lin-

early independent columns, BT has linearly independent rows, and ∂ℓ/∂Wj∗ = 0 at (Ŵj)
H+1
j=1 ,

AT∇ℓ0(ŴH+1:1)B
T = 0 =⇒ ∇ℓ0(ŴH+1:1) = 0, hence Parts 2(a) and 2(b) are implied.

For Part 3(a), we want to prove that if (Ŵj)
H+1
j=1 is a local min of ℓ, then ŴH+1:1 is a local min of

ℓ0. By definition of local min, ∃ǫ > 0 such that, for any (Vj)
H+1
j=1 for which ‖Vj − Ŵj‖F ≤ ǫ (for

j ∈ [H + 1]), we have ℓ((Vj)
H+1
j=1) ≥ ℓ((Ŵj)

H+1
j=1). To show that ŴH+1:1 is a local min of ℓ0, we

have to show there exists a neighborhood of ŴH+1:1 such that, any point R in that neighborhood

satisfies ℓ0(R) ≥ ℓ0(ŴH+1:1). To prove this, we state the following lemma:

Lemma A.6. Suppose A := ŴH+1:j∗+1 has full row rank and B := Ŵj∗−1:1 has full column

rank. Then, any R satisfying ‖R− ŴH+1:1‖F ≤ σmin(A)σmin(B)ǫ can be decomposed into R =
VH+1:1, where

Vj∗ = Ŵj∗ +AT (AAT)−1(R− ŴH+1:1)(B
TB)−1BT ,

and Vj = Ŵj for j 6= j∗. Also, ‖Vj − Ŵj‖F ≤ ǫ for all j.

Proof Since A := ŴH+1:j∗+1 has full row rank and B := Ŵj∗−1:1 has full column rank,

σmin(A) > 0, σmin(B) > 0, and AAT and BTB are invertible. Consider any R satisfying

‖R− ŴH+1:1‖F ≤ σmin(A)σmin(B)ǫ. Given the definitions of Vj ’s in the statement of the lemma,
we can check the identity that R = VH+1:1 by

VH+1:1 = AVjB = AŴjB + (R − ŴH+1:1) = ŴH+1:1 + (R− ŴH+1:1) = R.

Now It is left to show that ‖Vj∗ − Ŵj∗‖F ≤ ǫ, so that (Vj)
H+1
j=1 indeed satisfies ‖Vj − Ŵj‖F ≤ ǫ

for all j. We can show that

σmax(A
T (AAT)−1) = 1/σmin(A), σmax((B

TB)−1BT) = 1/σmin(B).

Therefore,

‖Vj∗ − Ŵj∗‖F =‖AT (AAT)−1(R− ŴH+1:1)(B
TB)−1BT ‖F

≤σmax(A
T (AAT)−1)σmax((B

TB)−1BT)‖R− ŴH+1:1‖F

≤
1

σmin(A)σmin(B)
· σmin(A)σmin(B)ǫ = ǫ.

The lemma shows that for any R = VH+1:1 satisfying ‖R− ŴH+1:1‖F ≤ σmin(A)σmin(B)ǫ, we

have ℓ0(R) = ℓ0(VH+1:1) = ℓ((Vj)
H+1
j=1) ≥ ℓ((Ŵj)

H+1
j=1) = ℓ0(ŴH+1:1). We can prove the local

maximum part by a similar argument.

33

ar
X

iv
:1

80
9.

10
85

8v
2

 [
m

at
h.

O
C

]
 2

9
M

ay
 2

01
9

Published as a conference paper at ICLR 2019

EFFICIENTLY TESTING LOCAL OPTIMALITY AND

ESCAPING SADDLES FOR RELU NETWORKS

Chulhee Yun, Suvrit Sra & Ali Jadbabaie
Massachusetts Institute of Technology
Cambridge, MA 02139, USA
{chulheey,suvrit,jadbabai}@mit.edu

ABSTRACT

We provide a theoretical algorithm for checking local optimality and escaping
saddles at nondifferentiable points of empirical risks of two-layer ReLU networks.
Our algorithm receives any parameter value and returns: local minimum, second-
order stationary point, or a strict descent direction. The presence of M data points
on the nondifferentiability of the ReLU divides the parameter space into at most
2M regions, which makes analysis difficult. By exploiting polyhedral geometry,
we reduce the total computation down to one convex quadratic program (QP) for
each hidden node, O(M) (in)equality tests, and one (or a few) nonconvex QP. For
the last QP, we show that our specific problem can be solved efficiently, in spite
of nonconvexity. In the benign case, we solve one equality constrained QP, and
we prove that projected gradient descent solves it exponentially fast. In the bad
case, we have to solve a few more inequality constrained QPs, but we prove that
the time complexity is exponential only in the number of inequality constraints.
Our experiments show that either benign case or bad case with very few inequality
constraints occurs, implying that our algorithm is efficient in most cases.

1 INTRODUCTION

Empirical success of deep neural networks has sparked great interest in the theory of deep mod-
els. From an optimization viewpoint, the biggest mystery is that deep neural networks are suc-
cessfully trained by gradient-based algorithms despite their nonconvexity. On the other hand, it
has been known that training neural networks to global optimality is NP-hard (Blum & Rivest,
1988). It is also known that even checking local optimality of nonconvex problems can be NP-
hard (Murty & Kabadi, 1987). Bridging this gap between theory and practice is a very active area of
research, and there have been many attempts to understand why optimization works well for neural
networks, by studying the loss surface (Baldi & Hornik, 1989; Yu & Chen, 1995; Kawaguchi, 2016;
Soudry & Carmon, 2016; Nguyen & Hein, 2017; 2018; Safran & Shamir, 2018; Laurent & Brecht,
2018; Yun et al., 2019; 2018; Zhou & Liang, 2018; Wu et al., 2018; Shamir, 2018) and the role of
(stochastic) gradient-based methods (Tian, 2017; Brutzkus & Globerson, 2017; Zhong et al., 2017;
Soltanolkotabi, 2017; Li & Yuan, 2017; Zhang et al., 2018; Brutzkus et al., 2018; Wang et al., 2018;
Li & Liang, 2018; Du et al., 2018a;b;c; Allen-Zhu et al., 2018; Zou et al., 2018; Zhou et al., 2019).

One of the most important beneficial features of convex optimization is the existence of an optimality
test (e.g., norm of the gradient is smaller than a certain threshold) for termination, which gives us
a certificate of (approximate) optimality. In contrast, many practitioners in deep learning rely on
running first-order methods for a fixed number of epochs, without good termination criteria for the
optimization problem. This means that the solutions that we obtain at the end of training are not
necessarily global or even local minima. Yun et al. (2018; 2019) showed efficient and simple global
optimality tests for deep linear neural networks, but such optimality tests cannot be extended to
general nonlinear neural networks, mainly due to nonlinearity in activation functions.

Besides nonlinearity, in case of ReLU networks significant additional challenges in the analysis arise
due to nondifferentiability, and obtaining a precise understanding of the nondifferentiable points is
still elusive. ReLU activation function h(t) = max{t, 0} is nondifferentiable at t = 0. This means
that, for example, the function f(w, b) := (h(wT x + b) − 1)2 is nondifferentiable for any (w, b)
satisfying wTx+b = 0. See Figure 1 for an illustration of how the empirical risk of a ReLU network

1

http://arxiv.org/abs/1809.10858v2

Published as a conference paper at ICLR 2019

0

5

10

1

15

20

25

0

v

-1
1

w

0.50-0.5-2 -1-1.5

(a) A 3-d surface plot of f(w, v).

-1.5 -1 -0.5 0 0.5 1
w

-1.5

-1

-0.5

0

0.5

1

v

(b) Nondifferentiable points on (w, v) plane.

Figure 1: An illustration of the empirical risk of a ReLU network. The plotted function is f(w, v) :=
(h(w − v + 1) − 2)2 + (h(2w + v + 1) − 1)2 + (h(w + 2v + 1) − 0.5)2, where h is the ReLU
function. (a) A 3-d surface plot of the function. One can see that there are sharp ridges in the
function. (b) A plot of nondifferentiable points on the (w, v) plane. The blue line correspond to the
line w − v + 1 = 0, the red to 2w + v + 1 = 0, and the yellow to w + 2v + 1 = 0.

looks like. Although the plotted function does not exactly match the definition of empirical risk we
study in this paper, the figures help us understand that the empirical risk is continuous but piecewise
differentiable, with affine hyperplanes on which the function is nondifferentiable.

Such nondifferentiable points lie in a set of measure zero, so one may be tempted to overlook them
as “non-generic.” However, when studying critical points we cannot do so, as they are precisely
such “non-generic” points. For example, Laurent & Brecht (2018) study one-hidden-layer ReLU
networks with hinge loss and note that except for piecewise constant regions, local minima always
occur on nonsmooth boundaries. Probably due to difficulty in analysis, there have not been other
works that handle such nonsmooth points of losses and prove results that work for all points. Some
theorems (Soudry & Carmon, 2016; Nguyen & Hein, 2018) hold “almost surely”; some assume dif-
ferentiability or make statements only for differentiable points (Nguyen & Hein, 2017; Yun et al.,
2019); others analyze population risk, in which case the nondifferentiability disappears after taking
expectation (Tian, 2017; Brutzkus & Globerson, 2017; Du et al., 2018b; Safran & Shamir, 2018;
Wu et al., 2018).

1.1 SUMMARY OF OUR RESULTS

In this paper, we take a step towards understanding nondifferentiable points of the empirical risk of
one-hidden-layer ReLU(-like) networks. Specifically, we provide a theoretical algorithm that tests
second-order stationarity for any point of the loss surface. It takes an input point and returns:

(a) The point is a local minimum; or

(b) The point is a second-order stationary point (SOSP); or

(c) A descent direction in which the function value strictly decreases.

Therefore, we can test whether a given point is a SOSP. If not, the test extracts a guaranteed direc-
tion of descent that helps continue minimization. With a proper numerical implementation of our
algorithm (although we leave it for future work), one can run a first-order method until it gets stuck
near a point, and run our algorithm to test for optimality/second-order stationarity. If the point is an
SOSP, we can terminate without further computation over many epochs; if the point has a descent
direction, our algorithm will return a descent direction and we can continue on optimizing. Note that
the descent direction may come from the second-order information; our algorithm even allows us to
escape nonsmooth second-order saddle points. This idea of mixing first and second-order methods
has been explored in differentiable problems (see, for example, Carmon et al. (2016); Reddi et al.
(2017) and references therein), but not for nondifferentiable ReLU networks.

The key computational challenge in constructing our algorithm for nondifferentiable points is posed
by data points that causes input 0 to the ReLU hidden node(s). Such data point bisects the parameter
space into two halfspaces with different “slopes” of the loss surface, so one runs into nondifferen-

2

Published as a conference paper at ICLR 2019

tiability. We define these data points to be boundary data points. For example, in Figure 1b, if the
input to our algorithm is (w, v) = (−2/3, 1/3), then there are two boundary data points: “blue” and
“red.” If there are M such boundary data points, then in the worst case the parameter space divides
into 2M regions, or equivalently, there are 2M “pieces” of the function that surround the input point.
Of course, naively testing each region will be very inefficient; in our algorithm, we overcome this
issue by a clever use of polyhedral geometry. Another challenge comes from the second-order test,
which involves solving nonconvex QPs. Although QP is NP-hard in general (Pardalos & Vavasis,
1991), we prove that the QPs in our algorithm are still solved efficiently in most cases. We further
describe the challenges and key ideas in Section 2.1.

Notation. For a vector v, [v]i denotes its i-th component, and ‖v‖H :=
√
vTHv denotes a semi-

norm where H is a positive semidefinite matrix. Given a matrix A, we let [A]i,j , [A]i,·, and [A]·,j
be A’s (i, j)-th entry, the i-th row, and the j-th column, respectively.

2 PROBLEM SETTING AND KEY IDEAS

We consider a one-hidden-layer neural network with input dimension dx, hidden layer width dh, and
output dimension dy . We are given m pairs of data points and labels (xi, yi)

m
i=1, where xi ∈ R

dx

and yi ∈ R
dy . Given an input vector x, the output of the network is defined as Y (x) := W2h(W1x+

b1)+ b2, where W2 ∈ R
dy×dh , b2 ∈ R

dy , W1 ∈ R
dh×dx , and b1 ∈ R

dh are the network parameters.
The activation function h is “ReLU-like,” meaning h(t) := max{s+t, 0} + min{s−t, 0}, where
s+ > 0, s− ≥ 0 and s+ 6= s−. Note that ReLU and Leaky-ReLU are members of this class. In
training neural networks, we are interested in minimizing the empirical risk

R((Wj , bj)
2
j=1) =

∑m

i=1
ℓ(Y (xi), yi) =

∑m

i=1
ℓ(W2h(W1xi + b1) + b2, yi),

over the parameters (Wj , bj)
2
j=1, where ℓ(w, y) : Rdy × R

dy 7→ R is the loss function. We make
the following assumptions on the loss function and the training dataset:

Assumption 1. The loss function ℓ(w, y) is twice differentiable and convex in w.

Assumption 2. No dx + 1 data points lie on the same affine hyperplane.

Assumption 1 is satisfied by many standard loss functions such as squared error loss and cross-
entropy loss. Assumption 2 means, if dx = 2 for example, no three data points are on the same line.
Since real-world datasets contain noise, this assumption is also quite mild.

2.1 CHALLENGES AND KEY IDEAS

In this section, we explain the difficulties at nondifferentiable points and ideas on overcoming them.
Our algorithm is built from first principles, rather than advanced tools from nonsmooth analysis.

Bisection by boundary data points. Since the activation function h is nondifferentiable at 0, the
behavior of data points at the “boundary” is decisive. Consider a simple example dh = 1, so W1 is a
row vector. If W1xi+b1 6= 0, then the sign of (W1+∆1)xi+(b1+δ1) for any small perturbations∆1

and δ1 stays invariant. In contrast, when there is a point xi on the “boundary,” i.e., W1xi + b1 = 0,
then the slope depends on the direction of perturbation, leading to nondifferentiability. As mentioned
earlier, we refer to such data points as boundary data points. When ∆1xi + δ1 ≥ 0,

h((W1+∆1)xi+(b1+ δ1)) = h(∆1xi+ δ1) = s+(∆1xi+ δ1) = h(W1xi+ b1)+s+(∆1xi+ δ1),

and similarly, the slope is s− for ∆1xi + δ1 ≤ 0. This means that the “gradient” (as well as higher
order derivatives) of R depends on direction of (∆1, δ1).

Thus, every boundary data point xi bisects the space of perturbations (∆j , δj)
2
j=1 into two halfs-

paces by introducing a hyperplane through the origin. The situation is even worse if we have M
boundary data points: they lead to a worst case of 2M regions. Does it mean that we need to test all
2M regions separately? We show that there is a way to get around this issue, but before that, we first
describe how to test local minimality or stationarity for each region.

Second-order local optimality conditions. We can expand R((Wj +∆j , bj+δj)
2
j=1) and obtain

the following Taylor-like expansion for small enough perturbations (see Lemma 2 for details)

R(z + η) = R(z) + g(z, η)Tη + 1
2η

TH(z, η)η + o(‖η‖2), (1)

3

Published as a conference paper at ICLR 2019

where z is a vectorized version of all parameters (Wj , bj)
2
j=1 and η is the corresponding vector

of perturbations (∆j , δj)
2
j=1. Notice now that in (1), at nondifferentiable points the usual Taylor

expansion does not exist, but the corresponding “gradient” g(·) and “Hessian” H(·) now depend
on the direction of perturbation η. Also, the space of η is divided into at most 2M regions, and
g(z, η) and H(z, η) are piecewise-constant functions of η whose “pieces” correspond to the regions.
One could view this problem as 2M constrained optimization problems and try to solve for KKT
conditions at z; however, we provide an approach that is developed from first principles and solves
all 2M problems efficiently.

Given this expansion (1) and the observation that derivatives stay invariant with respect to scaling
of η, one can note that (a) g(z, η)T η ≥ 0 for all η, and (b) ηTH(z, η)η ≥ 0 for all η such that
g(z, η)T η = 0 are necessary conditions for local optimality of z, thus z is a “SOSP” (see Defini-
tion 2.2). The conditions become sufficient if (b) is replaced with ηTH(z, η)η > 0 for all η 6= 0 such
that g(z, η)T η = 0. In fact, this is a generalized version of second-order necessary (or sufficient)
conditions, i.e.,∇f = 0 and∇2f � 0 (or∇2f ≻ 0), for twice differentiable f .

Efficiently testing SOSP for exponentially many regions. Motivated from the second-order ex-
pansion (1) and necessary/sufficient conditions, our algorithm consists of three steps:

(a) Testing first-order stationarity (in the Clarke sense, see Definition 2.1),

(b) Testing g(z, η)T η ≥ 0 for all η,

(c) Testing ηTH(z, η)η ≥ 0 for {η | g(z, η)T η = 0}.

The tests are executed from Step (a) to (c). Whenever a test fails, we get a strict descent direction
η, and the algorithm returns η and terminates. Below, we briefly outline each step and discuss how
we can efficiently perform the tests. We first check first-order stationarity because it makes Step (b)
easier. Step (a) is done by solving one convex QP per each hidden node. For Step (b), we formulate
linear programs (LPs) per each 2M region, so that checking whether all LPs have minimum cost of
zero is equivalent to checking g(z, η)T η ≥ 0 for all η. Here, the feasible sets of LPs are pointed
polyhedral cones, whereby it suffices to check only the extreme rays of the cones. It turns out that
there are only 2M extreme rays, each shared by 2M−1 cones, so testing g(z, η)T η ≥ 0 can be done
with only O(M) inequality/equality tests instead of solving exponentially many LPs. In Step (b),
we also record the flat extreme rays, which are defined to be the extreme rays with g(z, η)T η = 0,
for later use in Step (c).

In Step (c), we test if the second-order perturbation ηTH(·)η can be negative, for directions where
g(z, η)T η = 0. Due to the constraint g(z, η)T η = 0, the second-order test requires solving con-
strained nonconvex QPs. In case where there is no flat extreme ray, we need to solve only one
equality constrained QP (ECQP). If there exist flat extreme rays, a few more inequality constrained
QPs (ICQPs) are solved. Despite NP-hardness of general QPs (Pardalos & Vavasis, 1991), we prove
that the specific form of QPs in our algorithm are still tractable in most cases. More specifically,
we prove that projected gradient descent on ECQPs converges/diverges exponentially fast, and each
step takes O(p2) time (p is the number of parameters). In case of ICQPs, it takes O(p3+L32L) time
to solve the QP, where L is the number of boundary data points that have flat extreme rays (L ≤M).
Here, we can see that if L is small enough, the ICQP can still be solved in polynomial time in p. At
the end of the paper, we provide empirical evidences that the number of flat extreme rays is zero or
very few, meaning that in most cases we can solve the QP efficiently.

2.2 PROBLEM-SPECIFIC NOTATION AND DEFINITION

In this section, we define a more precise notion of generalized stationary points and introduce some
additional symbols that will be helpful in streamlining the description of our algorithm in Section 3.
Since we are dealing with nondifferentiable points of nonconvex R, usual notions of (sub)gradients
do not work anymore. Here, Clarke subdifferential is a useful generalization (Clarke et al., 2008):

Definition 2.1 (FOSP, Theorem 6.2.5 of Borwein & Lewis (2010)). Suppose that a function f(z) :
Ω 7→ R is locally Lipschitz around the point z∗ ∈ Ω, and differentiable in Ω \ W where W has
Lebesgue measure zero. Then the Clarke differential of f at z∗ is

∂zf(z
∗) := cvxhull{limk∇f(zk) | zk → z∗, zk /∈ W}.

If 0 ∈ ∂zf(z
∗), we say z∗ is a first-order stationary point (FOSP).

4

Published as a conference paper at ICLR 2019

From the definition, we can note that Clarke subdifferential ∂zR(z∗) is the convex hull of all the
possible values of g(z∗, η) in (1). For parameters (Wj , bj)

2
j=1, let ∂Wj

f(z∗) and ∂bjf(z
∗) be the

Clarke differential w.r.t. to Wj and bj , respectively. They are the projection of ∂zf(z
∗) onto the

space of individual parameters. Whenever the point z∗ is clear (e.g. our algorithm), we will omit
(z∗) from f(z∗). Next, we define second-order stationary points for the empirical risk R. Notice
that this generalizes the definition of SOSP for differentiable functions f : ∇f = 0 and∇2f � 0.

Definition 2.2 (SOSP). We call z∗ is a second-order stationary point (SOSP) of R if (1) z∗ is a
FOSP, (2) g(z∗, η)T η ≥ 0 for all η, and (3) ηTH(z∗, η)η ≥ 0 for all η such that g(z∗, η)T η = 0.

Given an input data point x ∈ R
dx , we define O(x) := h(W1x + b1) to be the output of hidden

layer. We note that the notation O(·) is overloaded with the big O notation, but their meaning will
be clear from the context. Consider perturbing parameters (Wj , bj)

2
j=1 with (∆j , δj)

2
j=1, then the

perturbed output Ỹ (x) of the network and the amount of perturbation dY (x) can be expressed as

dY (x) := Ỹ (x)− Y (x) = ∆2O(x) + δ2 + (W2 +∆2)J(x)(∆1x+ δ1),

where J(x) can be thought informally as the “Jacobian” matrix of the hidden layer. The matrix
J(x) ∈ R

dh×dh is diagonal, and its k-th diagonal entry is given by

[J(x)]k,k :=

{

h′([W1x+ b1]k) if [W1x+ b1]k 6= 0

h′([∆1x+ δ1]k) if [W1x+ b1]k = 0,

where h′ is the derivative of h. We define h′(0) := s+, which is okay because it is always multiplied
with zero in our algorithm. For boundary data points, [J(x)]k,k depends on the direction of pertur-
bations [∆1 δ1]k,·, as noted in Section 2.1. We additionally define dY1(x) and dY2(x) to separate
the terms in dY (x) that are linear in perturbations versus quadratic in perturbations.

dY1(x) := ∆2O(x) + δ2 +W2J(x)(∆1x+ δ1), dY2(x) := ∆2J(x)(∆1x+ δ1).

For simplicity of notation for the rest of the paper, we define for all i ∈ [m] := {1, . . . ,m},

x̄i :=
[

xT
i 1

]T ∈ R
dx+1, ∇ℓi := ∇wℓ(Y (xi), yi), ∇2ℓi := ∇2

wℓ(Y (xi), yi).

In our algorithm and its analysis, we need to give a special treatment to the boundary data points.
To this end, for each node k ∈ [dh] in the hidden layer, define boundary index set Bk as

Bk := {i ∈ [m] | [W1xi + b1]k = 0} .
The subspace spanned by vectors x̄i for in i ∈ Bk plays an important role in our tests; so let us
define a symbol for it, as well as the cardinality of Bk and their sum:

Vk := span{x̄i | i ∈ Bk}, Mk := |Bk|, M :=
∑dh

k=1
Mk.

For k ∈ [dh], let vTk ∈ R
1×(dx+1) be the k-th row of [∆1 δ1], and uk ∈ R

dy be the k-th column of
∆2. Next, we define the total number of parameters p, and vectorized perturbations η ∈ R

p:

p := dy + dydh + dh(dx + 1), ηT :=
[

δT2 uT
1 · · · uT

dh
vT1 · · · vTdh

]

.

Also let z ∈ R
p be vectorized parameters (Wj , bj)

2
j=1, packed in the same order as η.

Define a matrix Ck :=
∑

i/∈Bk
h′([W1xi + b1]k)∇ℓix̄T

i ∈ R
dy×(dx+1). This quantity appears mul-

tiplie times and does not depend on the perturbation, so it is helpful to have a symbol for it.

We conclude this section by presenting one of the implications of Assumption 2 in the following
lemma, which we will use later. The proof is simple, and is presented in Appendix B.1.

Lemma 1. If Assumption 2 holds, then Mk ≤ dx and the vectors {x̄i}i∈Bk
are linearly independent.

3 TEST ALGORITHM FOR SECOND-ORDER STATIONARITY

In this section, we present SOSP-CHECK in Algorithm 1, which takes an arbitrary tuple (Wj , bj)
2
j=1

of parameters as input and checks whether it is a SOSP. We first present a lemma that shows the ex-
plicit form of the perturbed empirical risk R(z+η) and identify first and second-order perturbations.
The proof is deferred to Appendix B.2.

5

Published as a conference paper at ICLR 2019

Algorithm 1 SOSP-CHECK (Rough pseudocode)

Input: A tuple (Wj , bj)
2
j=1 of R(·).

1: Test if ∂W2R = {0dy×dh} and ∂b2R = {0dy}.
2: for k ∈ [dh] do
3: if Mk > 0 then
4: Test if 0T

dx+1 ∈ ∂[W1 b1]k,·
R.

5: Test if gk(z, vk)
T vk ≥ 0 for all vk via testing extreme rays ṽk of polyhedral cones.

6: Store extreme rays ṽk s.t. gk(z, ṽk)
T ṽk = 0 for second-order test.

7: else
8: Test if ∂[W1 b1]k,·

R = {0T
dx+1}.

9: end if
10: end for
11: For all η’s s.t. g(z, η)T η = 0, test if ηTH(z, η)η ≥ 0.

12: if ∃η 6= 0 s.t. g(z, η)T η = 0 and ηTH(z, η)η = 0 then
13: return SOSP.
14: else
15: return Local Minimum.
16: end if

Lemma 2. For small enough perturbation η,

R(z + η) = R(z) + g(z, η)Tη + 1
2η

TH(z, η)η + o(‖η‖2),
where g(z, η) and H(z, η) satisfy

g(z, η)T η =
∑

i
∇ℓTi dY1(xi) =

〈

∑

i
∇ℓiO(xi)

T ,∆2

〉

+
〈

∑

i
∇ℓi, δ2

〉

+

dh
∑

k=1

gk(z, vk)
T vk,

ηTH(z, η)η =
∑

i
∇ℓTi dY2(xi) +

1
2

∑

i
‖dY1(xi)‖2∇2ℓi

,

and gk(z, vk)
T := [W2]

T
·,k

(

Ck +
∑

i∈Bk
h′(x̄T

i vk)∇ℓix̄T
i

)

. Also, g(z, η) and H(z, η) are piece-

wise constant functions of η, which are constant inside each polyhedral cone in space of η.

Rough pseudocode of SOSP-CHECK is presented in Algorithm 1. As described in Section 2.1, the
algorithm consists of three steps: (a) testing first-order stationarity (b) testing g(z, η)T η ≥ 0 for all
η, and (c) testing ηTH(z, η)η ≥ 0 for {η | g(z, η)T η = 0}. If the input point satisfies the second-
order sufficient conditions for local minimality, the algorithm decides it is a local minimum. If the
point only satisfies second-order necessary conditions, it returns SOSP. If a strict descent direction
η is found, the algorithm terminates immediately and returns η. A brief description will follow, but
the full algorithm (Algorithm 2) and a full proof of correctness are deferred to Appendix A.

3.1 TESTING FIRST-ORDER STATIONARITY (LINES 1, 4, AND 8)

Line 1 of Algorithm 1 corresponds to testing if ∂W2R and ∂b2R are singletons with zero. If not, the
opposite direction is a descent direction. More details are in Appendix A.1.1.

Test for W1 and b1 is more difficult because g(z, η) depends on ∆1 and δ1 when there are boundary
data points. For each k ∈ [dh], Line 4 (if Mk > 0), and Line 8 (if Mk = 0) test if 0

T
dx+1 is

in ∂[W1 b1]k,·
R. Note from Definition 2.1 and Lemma 2 that ∂[W1 b1]k,·

R is the convex hull of all

possible values of gk(z, vk)
T . If Mk > 0, 0 ∈ ∂[W1 b1]k,·

R can be tested by solving a convex QP:

minimize{si}i∈Bk
‖[W2]

T
·,k(Ck +

∑

i∈Bk
si∇ℓix̄T

i)‖22
subject to min{s−, s+} ≤ si ≤ max{s−, s+}, ∀i ∈ Bk.

(2)

If the solution {s∗i }i∈Bk
does not achieve zero objective value, then we can directly return a descent

direction. For details please refer to FO-SUBDIFF-ZERO-TEST (Algorithm 3) and Appendix A.1.2.

3.2 TESTING g(z, η)Tη ≥ 0 FOR ALL η (LINES 5–6)

Linear program formulation. Lines 5–6 are about testing if gk(z, vk)
T vk ≥ 0 for all directions

of vk. If 0T
dx+1 ∈ ∂[W1 b1]k,·

R, with the solution {s∗i } from QP (2) we can write gk(z, vk)
T as

gk(z, vk)
T =[W2]

T
·,k

(

Ck +
∑

i∈Bk

h′(x̄T
i vk)∇ℓix̄T

i

)

=[W2]
T
·,k

(

∑

i∈Bk

(

h′(x̄T
i vk)− s∗i

)

∇ℓix̄T
i

)

.

6

Published as a conference paper at ICLR 2019

Every i ∈ Bk bisects R
dx+1 into two halfspaces, x̄T

i vk ≥ 0 and x̄T
i vk ≤ 0, in each of which

h′(x̄T
i vk) stays constant. Note that by Lemma 1, x̄i’s for i ∈ Bk are linearly independent. So, given

Mk boundary data points, they divide the space Rdx+1 of vk into 2Mk polyhedral cones.

Since gk(z, vk)
T is constant in each polyhedral cones, we can let σi ∈ {−1,+1} for all i ∈ Bk, and

define an LP for each {σi}i∈Bk
∈ {−1,+1}Mk:

minimize
vk

[W2]
T
·,k

(
∑

i∈Bk
(sσi
− s∗i)∇ℓix̄T

i

)

vk

subject to vk ∈ Vk, σix̄
T
i vk ≥ 0, ∀i ∈ Bk.

(3)

Solving these LPs and checking if the minimum value is 0 suffices to prove gk(z, vk)
T vk ≥ 0 for all

small enough perturbations. The constraint vk ∈ Vk is there because any vk /∈ Vk is also orthogonal
to gk(z, vk). It is equivalent to dx + 1 − Mk linearly independent equality constraints. So, the
feasible set of LP (3) has dx +1 linearly independent constraints, which implies that the feasible set
is a pointed polyhedral cone with vertex at origin. Since any point in a pointed polyhedral cone is a
conical combination (linear combination with nonnegative coefficients) of extreme rays of the cone,
checking nonnegativity of the objective function for all extreme rays suffices. We emphasize that
we do not solve the LPs (3) in our algorithm; we just check the extreme rays.

Computational efficiency. Extreme rays of a pointed polyhedral cone in R
dx+1 are computed

from dx linearly independent active constraints. For each i ∈ Bk, the extreme ray v̂i,k ∈ Vk ∩
span{x̄j | j ∈ Bk \ {i}}⊥ must be tested whether gk(z, v̂i,k)

T v̂i,k ≥ 0, in both directions. Note

that there are 2Mk extreme rays, and one extreme ray v̂i,k is shared by 2Mk−1 polyhedral cones.

Moreover, x̄T
j v̂i,k = 0 for j ∈ Bk \ {i}, which indicates that

gk(z, v̂i,k)
T v̂i,k = (sσi,k

− s∗i)[W2]
T
·,k∇ℓix̄T

i v̂i,k, where σi,k = sign(x̄T
i v̂i,k),

regardless of {σj}j∈Bk\{i}. Testing an extreme ray can be done with a single inequality test instead

of 2Mk−1 separate tests for all cones! Thus, this extreme ray approach instead of solving individual
LPs greatly reduces computation, from O(2Mk) to O(Mk).

Testing extreme rays. For the details of testing all possible extreme rays, please refer to
FO-INCREASING-TEST (Algorithm 4) and Appendix A.2. FO-INCREASING-TEST computes all
possible extreme rays ṽk and tests if they satisfy gk(z, ṽk)

T ṽk ≥ 0. If the inequality is not satisfied
by an extreme ray ṽk , then this is a descent direction, so we return ṽk. If the inequality holds with
equality, it means this is a flat extreme ray, and it needs to be checked in second-order test, so we
save this extreme ray for future use.

How many flat extreme rays (gk(z, ṽk)
T ṽk = 0) are there? Presence of flat extreme rays introduce

inequality constraints in the QP that we solve in the second-order test. It is ideal not to have them,
because in this case there are only equality constraints, so the QP is easier to solve. Lemma A.1 in
Appendix A.2 shows the conditions for having flat extreme rays; in short, there is a flat extreme ray
if [W2]

T
·,k∇ℓi = 0 or s∗i = s+ or s−. For more details, please refer to Appendix A.2.

3.3 TESTING ηTH(z, η)η ≥ 0 FOR {η | g(z, η)T η = 0} (LINES 11–16)

The second-order test checks ηTH(z, η)η ≥ 0 for “flat” η’s satisfying g(z, η)T η = 0. This is
done with help of the function SO-TEST (Algorithm 5). Given its input {σi,k}k∈[dh],i∈Bk

, it defines
fixed “Jacobian” matrices Ji for all data points and equality/inequality constraints for boundary data
points, and solves the QP of the following form:

minimizeη
∑

i∇ℓTi ∆2Ji(∆1xi + δ1)+
1
2

∑

i ‖∆2O(xi) + δ2 +W2Ji(∆1xi+δ1)‖2∇2ℓi
,

subject to [W2]
T
·,kuk=[W1 b1]k,·vk, ∀k ∈ [dh],

x̄T
i vk = 0, ∀k ∈ [dh], ∀i ∈ Bk s.t. σi,k = 0,

σi,kx̄
T
i vk ≥ 0, ∀k ∈ [dh], ∀i ∈ Bk s.t. σi,k ∈ {−1,+1}.

(4)

Constraints and number of QPs. There are dh equality constraints of the form [W2]
T
·,kuk =

[[W1]k,· [b1]k] vk. These equality constraints are due to the nonnegative homogeneous property
of activation h; i.e., scaling [W1]k,· and [b1]k by α > 0 and scaling [W2]·,k by 1/α yields exactly

7

Published as a conference paper at ICLR 2019

the same network. So, these equality constraints force η to be orthogonal to the loss-invariant di-
rections. This observation is stated more formally in Lemma A.2, which as a corollary shows that
any differentiable FOSP of R always has rank-deficient Hessian. The other constraints make sure
that the union of feasible sets of QPs is exactly {η | g(z, η)Tη = 0} (please see Lemma A.3 in
Appendix A.3 for details). It is also easy to check that these constraints are all linearly independent.

If there is no flat extreme ray, the algorithm solves just one QP with dh +M equality constraints. If
there are flat extreme rays, the algorithm solves one QP with dh +M equality constraints, and 2K

more QPs with dh +M − L equality constraints and L inequality constraints, where

K :=

dh
∑

k=1

∣

∣{i ∈Bk | [W2]
T
·,k∇ℓi = 0}

∣

∣ , L :=

dh
∑

k=1

|{i ∈Bk | v̂i,k or −v̂i,k is a flat ext. ray}| . (5)

Recall from Section 3.2 that i ∈ Bk has a flat extreme ray if [W2]
T
·,k∇ℓi = 0 or s∗i = s+ or s−;

thus, K ≤ L ≤M . Please refer to Appendix A.3 for more details.

Efficiency of solving the QPs (4). Despite NP-hardness of general QPs, our specific form of
QPs (4) can be solved quite efficiently, avoiding exponential complexity in p. After solving QP (4),
there are three (disjoint) termination conditions:

(T1) ηTQη > 0 whenever η ∈ S, η 6= 0, or

(T2) ηTQη ≥ 0 whenever η ∈ S, but ∃η 6= 0, η ∈ S such that ηTQη = 0, or

(T3) ∃η such that η ∈ S and ηTQη < 0,

where S is the feasible set of QP. With the following two lemmas, we show that the termination
conditions can be efficiently tested for ECQPs and ICQPs. First, the ECQPs can be iteratively
solved with projected gradient descent, as stated in the next lemma.

Lemma 3. Consider the QP, where Q ∈ R
p×p is symmetric and A ∈ R

q×p has full row rank:

minimizeη
1
2η

TQη subject to Aη = 0q

Then, projected gradient descent (PGD) updates

η(t+1) = (I −AT (AAT)−1A)(I − αQ)η(t)

with learning rate α < 1/λmax(Q) converges to a solution or diverges to infinity exponentially fast.
Moreover, with random initialization, PGD correctly checks conditions (T1)–(T3) with probability 1.

The proof is an extension of unconstrained case (Lee et al., 2016), and is deferred to Appendix B.3.
Note that it takes O(p2q) time to compute (I−AT (AAT)−1A)(I −αQ) in the beginning, and each
update takes O(p2) time. It is also surprising that the convergence rate does not depend on q.

In the presence of flat extreme rays, we have to solve QPs involving L inequality constraints. We
prove that our ICQP can be solved in O(p3 +L32L) time, which implies that as long as the number
of flat extreme rays is small, the problem can still be solved in polynomial time in p.

Lemma 4. Consider the QP, where Q ∈ R
p×p is symmetric, A ∈ R

q×p and B ∈ R
r×p have full

row rank, and
[

AT BT
]

has rank q + r:

minimizeη ηTQη subject to Aη = 0q, Bη ≥ 0r.

Then, there exists a method that checks whether (T1)–(T3) in O(p3 + r32r) time.

In short, we transform η to define an equivalent problem, and use classical results in copositive
matrices (Martin & Jacobson, 1981; Seeger, 1999; Hiriart-Urruty & Seeger, 2010); the problem can
be solved by computing the eigensystem of a (p−q−r)×(p−q−r) matrix, and testing copositivity
of an r × r matrix. The proof is presented in Appendix B.4.

Concluding the test. During all calls to SO-TEST, whenever any QP terminated with (T3), then
SOSP-CHECK immediately returns the direction and terminates. After solving all QPs, if any of
SO-TEST calls finished with (T2), then we conclude SOSP-CHECK with “SOSP.” If all QPs termi-
nated with (T1), then we can return “Local Minimum.”

8

Published as a conference paper at ICLR 2019

Table 1: Summary of experimental results

(dx, dh,m) # Runs Sum M (Avg.) Sum L (Avg.) Sum K (Avg.) P{L > 0}

(10, 1, 1000) 40 290 (7.25) 0 (0) 0 (0) 0
(10, 1, 10000) 40 371 (9.275) 1 (0.025) 0 (0) 0.025
(100, 1, 1000) 40 1,452 (36.3) 0 (0) 0 (0) 0
(100, 1, 10000) 40 2,976 (74.4) 2 (0.05) 0 (0) 0.05
(100, 10, 10000) 40 24,805 (620.125) 4 (0.1) 0 (0) 0.1
(1000, 1, 10000) 40 14,194 (354.85) 0 (0) 0 (0) 0
(1000, 10, 10000) 40 42,334 (1,058.35) 37 (0.925) 1 (0.025) 0.625

4 EXPERIMENTS

For experiments, we used artificial datasets sampled iid from standard normal distribution, and
trained 1-hidden-layer ReLU networks with squared error loss. In practice, it is impossible to get
to the exact nondifferentiable point, because they lie in a set of measure zero. To get close to those
points, we ran Adam (Kingma & Ba, 2014) using full-batch (exact) gradient for 200,000 iterations
and decaying step size (start with 10−3, 0.2× decay every 20,000 iterations). We observed that
decaying step size had the effect of “descending deeper into the valley.”

After running Adam, for each k ∈ [dh], we counted the number of approximate boundary data
points satisfying |[W1xi + b1]k| < 10−5, which gives an estimate of Mk. Moreover, for these
points, we solved the QP (2) using L-BFGS-B (Byrd et al., 1995), to check if the terminated points
are indeed (approximate) FOSPs. We could see that the optimal values of (2) are close to zero
(≤ 10−6 typically, ≤ 10−3 for largest problems). After solving (2), we counted the number of s∗i ’s
that ended up with 0 or 1. The number of such s∗i ’s is an estimate of L − K . We also counted the

number of approximate boundary data points satisfying |[W2]
T
·,k∇ℓi| < 10−4, for an estimate of K .

We ran the above-mentioned experiments for different settings of (dx, dh,m), 40 times each. We
fixed dy = 1 for simplicity. For large dh, the optimizer converged to near-zero minima, making
∇ℓi uniformly small, so it was difficult to obtain accurate estimates of K and L. Thus, we had to
perform experiments in settings where the optimizer converged to minima that are far from zero.

Table 1 summarizes the results. Through 280 runs, we observed that there are surprisingly many
boundary data points (M) in general, but usually there are zero or very few (maximum was 3) flat
extreme rays (L). This observation suggests two important messages: (1) many local minima are
on nondifferentiable points, which is the reason why our analysis is meaningful; (2) luckily, L is
usually very small, so we only need to solve ECQPs (L = 0) or ICQPs with very small number of
inequality constraints, which are solved efficiently (Lemmas 3 and 4). We can observe that M , L,
and K indeed increase as model dimensions and training set get larger, but the rate of increase is not
as fast as dx, dh, and m.

5 DISCUSSION AND FUTURE WORK

We provided a theoretical algorithm that tests second-order stationarity and escapes saddle points,
for any points (including nondifferentiable ones) of empirical risk of shallow ReLU-like networks.
Despite difficulty raised by boundary data points dividing the parameter space into 2M regions, we
reduced the computation to dh convex QPs, O(M) equality/inequality tests, and one (or a few more)
nonconvex QP. In benign cases, the last QP is equality constrained, which can be efficiently solved
with projected gradient descent. In worse cases, the QP has a few (say L) inequality constraints,
but it can be solved efficiently when L is small. We also provided empirical evidences that L is
usually either zero or very small, suggesting that the test can be done efficiently in most cases. A
limitation of this work is that in practice, exact nondifferentiable points are impossible to reach,
so the algorithm must be extended to apply the nonsmooth analysis for points that are “close” to
nondifferentiable ones. Also, current algorithm only tests for exact SOSP, while it is desirable to
check approximate second-order stationarity. These extensions must be done in order to implement
a robust numerial version of the algorithm, but they require significant amount of additional work;
thus, we leave practical/robust implementation as future work. Also, extending the test to deeper
neural networks is an interesting future direction.

9

Published as a conference paper at ICLR 2019

ACKNOWLEDGMENTS

This work was supported by the DARPA Lagrange Program. Suvrit Sra also acknowledges support
from an Amazon Research Award.

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. arXiv preprint arXiv:1811.03962, 2018.

Pierre Baldi and Kurt Hornik. Neural networks and principal component analysis: Learning from
examples without local minima. Neural networks, 2(1):53–58, 1989.

Avrim Blum and Ronald L Rivest. Training a 3-node neural network is NP-complete. In Proceedings
of the 1st International Conference on Neural Information Processing Systems, pp. 494–501. MIT
Press, 1988.

Jonathan Borwein and Adrian S Lewis. Convex analysis and nonlinear optimization: theory and
examples. Springer Science & Business Media, 2010.

Alon Brutzkus and Amir Globerson. Globally optimal gradient descent for a ConvNet with gaussian
inputs. In International Conference on Machine Learning, pp. 605–614, 2017.

Alon Brutzkus, Amir Globerson, Eran Malach, and Shai Shalev-Shwartz. SGD learns over-
parameterized networks that provably generalize on linearly separable data. In International
Conference on Learning Representations, 2018.

Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory algorithm for
bound constrained optimization. SIAM Journal on Scientific Computing, 16(5):1190–1208, 1995.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Accelerated methods for non-convex
optimization. arXiv preprint arXiv:1611.00756, 2016.

Francis H Clarke, Yuri S Ledyaev, Ronald J Stern, and Peter R Wolenski. Nonsmooth analysis and
control theory, volume 178. Springer Science & Business Media, 2008.

Simon S Du, Jason D Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. arXiv preprint arXiv:1811.03804, 2018a.

Simon S Du, Jason D Lee, Yuandong Tian, Aarti Singh, and Barnabas Poczos. Gradient descent
learns one-hidden-layer CNN: Dont be afraid of spurious local minima. In International Confer-
ence on Machine Learning, pp. 1338–1347, 2018b.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018c.

J-B Hiriart-Urruty and Alberto Seeger. A variational approach to copositive matrices. SIAM review,
52(4):593–629, 2010.

Kenji Kawaguchi. Deep learning without poor local minima. In Advances in Neural Information
Processing Systems, pp. 586–594, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas Laurent and James Brecht. The multilinear structure of ReLU networks. In International
Conference on Machine Learning, pp. 2914–2922, 2018.

Jason D Lee, Max Simchowitz, Michael I Jordan, and Benjamin Recht. Gradient descent only
converges to minimizers. In Conference on Learning Theory, pp. 1246–1257, 2016.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. In Advances in Neural Information Processing Systems, pp. 8168–
8177, 2018.

10

Published as a conference paper at ICLR 2019

Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with ReLU activa-
tion. In Advances in Neural Information Processing Systems, pp. 597–607, 2017.

Duncan Henry Martin and David Harris Jacobson. Copositive matrices and definiteness of quadratic
forms subject to homogeneous linear inequality constraints. Linear Algebra and its Applications,
35:227–258, 1981.

Katta G Murty and Santosh N Kabadi. Some NP-complete problems in quadratic and nonlinear
programming. Mathematical programming, 39(2):117–129, 1987.

Quynh Nguyen and Matthias Hein. The loss surface of deep and wide neural networks. In Pro-
ceedings of the 34th International Conference on Machine Learning, volume 70, pp. 2603–2612,
2017.

Quynh Nguyen and Matthias Hein. Optimization landscape and expressivity of deep CNNs. In
International Conference on Machine Learning, pp. 3727–3736, 2018.

Panos M Pardalos and Stephen A Vavasis. Quadratic programming with one negative eigenvalue is
NP-hard. Journal of Global Optimization, 1(1):15–22, 1991.

Sashank J Reddi, Manzil Zaheer, Suvrit Sra, Barnabas Poczos, Francis Bach, Ruslan Salakhutdi-
nov, and Alexander J Smola. A generic approach for escaping saddle points. arXiv preprint
arXiv:1709.01434, 2017.

Itay Safran and Ohad Shamir. Spurious local minima are common in two-layer ReLU neural net-
works. In International Conference on Machine Learning, pp. 4430–4438, 2018.

Alberto Seeger. Eigenvalue analysis of equilibrium processes defined by linear complementarity
conditions. Linear Algebra and its Applications, 292(1-3):1–14, 1999.

Ohad Shamir. Are ResNets provably better than linear predictors? In Advances in Neural Informa-
tion Processing Systems, pp. 505–514, 2018.

Mahdi Soltanolkotabi. Learning ReLUs via gradient descent. In Advances in Neural Information
Processing Systems, pp. 2007–2017, 2017.

Daniel Soudry and Yair Carmon. No bad local minima: Data independent training error guarantees
for multilayer neural networks. arXiv preprint arXiv:1605.08361, 2016.

Yuandong Tian. An analytical formula of population gradient for two-layered ReLU network and its
applications in convergence and critical point analysis. In International Conference on Machine
Learning, pp. 3404–3413, 2017.

Gang Wang, Georgios B Giannakis, and Jie Chen. Learning ReLU networks on linearly separable
data: Algorithm, optimality, and generalization. arXiv preprint arXiv:1808.04685, 2018.

Chenwei Wu, Jiajun Luo, and Jason D Lee. No spurious local minima in a two hidden unit ReLU
network. In International Conference on Learning Representations Workshop, 2018.

Xiao-Hu Yu and Guo-An Chen. On the local minima free condition of backpropagation learning.
IEEE Transactions on Neural Networks, 6(5):1300–1303, 1995.

Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Global optimality conditions for deep neural networks.
In International Conference on Learning Representations, 2018.

Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Small nonlinearities in activation functions create bad
local minima in neural networks. In International Conference on Learning Representations, 2019.

Xiao Zhang, Yaodong Yu, Lingxiao Wang, and Quanquan Gu. Learning one-hidden-layer ReLU
networks via gradient descent. arXiv preprint arXiv:1806.07808, 2018.

Kai Zhong, Zhao Song, Prateek Jain, Peter L Bartlett, and Inderjit S Dhillon. Recovery guarantees
for one-hidden-layer neural networks. In International Conference on Machine Learning, pp.
4140–4149, 2017.

11

Published as a conference paper at ICLR 2019

Yi Zhou and Yingbin Liang. Critical points of neural networks: Analytical forms and landscape
properties. In International Conference on Learning Representations, 2018.

Yi Zhou, Junjie Yang, Huishuai Zhang, Yingbin Liang, and Vahid Tarokh. SGD converges to global
minimum in deep learning via star-convex path. In International Conference on Learning Repre-
sentations, 2019.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Stochastic gradient descent optimizes
over-parameterized deep ReLU networks. arXiv preprint arXiv:1811.08888, 2018.

12

Published as a conference paper at ICLR 2019

Algorithm 2 SOSP-CHECK

Input: A tuple (Wj , bj)
2
j=1 of R(·).

1: if
∑m

i=1∇ℓi
[

O(xi)
T 1

]

6= 0dy×(dh+1) then

2: return [∆2 δ2]← −
∑m

i=1∇ℓi
[

O(xi)T 1
]

, ∆1 ← 0dh×dx
, δ1 ← 0dh

.
3: end if
4: for k ∈ [dh] do
5: if Mk > 0 then
6: {s∗i }i∈Bk

← FO-SUBDIFF-ZERO-TEST(k)
7: ṽTk ← [W2]

T
·,k(Ck +

∑

i∈Bk
s∗i∇ℓix̄T

i).
8: if ṽk 6= 0dx+1 then
9: return vk ← −ṽk, ∀k′ ∈ [dh] \ {k}, vk′ ← 0dx+1, ∆2 ← 0dy×dh

, δ2 ← 0dy
.

10: end if
11: (decr, ṽk, {Si,k}i∈Bk

)← FO-INCREASING-TEST(k, {s∗i }i∈Bk
).

12: if decr = True then
13: return vk ← ṽk, ∀k′ ∈ [dh] \ {k}, vk′ ← 0dx+1, ∆2 ← 0dy×dh

, δ2 ← 0dy
.

14: end if
15: else if [W2]

T
·,kCk 6= 0

T
dx+1 then

16: return vk ← −CT
k [W2]·,k, ∀k′ ∈ [dh] \ {k}, vk′ ← 0dx+1, ∆2 ← 0dy×dh

, δ2 ← 0dy
.

17: end if
18: end for
19: (decr,sosp, (∆j , δj)

2
j=1)← SO-TEST({0}k∈[dh],i∈Bk

).

20: if decr = True then return (∆j , δj)
2
j=1.

21: end if
22: if M 6= 0 and {Si,k}k∈[dh],i∈Bk

6= {{0}}k∈[dh],i∈Bk
then

23: for each element {σi,k}k∈[dh],i∈Bk
∈∏k∈[dh]

∏

i∈Bk
Si,k do

24: (decr,sospTemp, (∆j , δj)
2
j=1)← SO-TEST({σi,k}k∈[dh],i∈Bk

).

25: if decr = True then return (∆j , δj)
2
j=1.

26: end if
27: sosp← sosp ∨ sospTemp
28: end for
29: end if
30: if sosp = True then return SOSP.
31: else return Local Minimum.
32: end if

Algorithm 3 FO-SUBDIFF-ZERO-TEST

Input: k ∈ [dh]
1: Solve the following optimization problem and get optimal solution {s∗i }i∈Bk

:

minimize{si}i∈Bk
‖[W2]

T
·,k(Ck +

∑

i∈Bk
si∇ℓix̄T

i)‖22
subject to min{s−, s+} ≤ si ≤ max{s−, s+}, ∀i ∈ Bk,

(2)

2: return {s∗i }i∈Bk
.

A FULL ALGORITHMS AND PROOF OF CORRECTNESS

In this section, we present the detailed operation of SOSP-CHECK (Algorithm 2), and its helper
functions FO-SUBDIFF-ZERO-TEST, FO-INCREASING-TEST, and SO-TEST (Algorithm 3–5).

In the subsequent subsections, we provide a more detailed proof of the correctness of Algorithm 2.
Recall that, by Lemmas 1 and 2, Mk := |Bk| ≤ dx and vectors {x̄i}i∈Bk

are linearly independent.
Also, we can expand R(z + η) so that

R(z + η) = R(z) + g(z, η)Tη + 1
2η

TH(z, η)η + o(‖η‖2),

13

Published as a conference paper at ICLR 2019

Algorithm 4 FO-INCREASING-TEST

Input: k ∈ [dh], {s∗i }i∈Bk

1: for all i ∈ Bk do
2: Define Si,k ← ∅.
3: Get a vector v̂i,k ∈ Vk ∩ span{x̄j | j ∈ Bk \ {i}}⊥.
4: for ṽk ∈ {v̂i,k,−v̂i,k} do

5: Define σi,k ← sign(x̄T
i ṽk).

6: if (sσi,k
− s∗i)[W2]

T
·,k∇ℓix̄T

i ṽk < 0 then

7: return (True, ṽk, {∅}i∈Bk
)

8: else if (sσi,k
− s∗i)[W2]

T
·,k∇ℓix̄T

i ṽk = 0 then

9: Si,k ← Si,k ∪ {σi,k}.
10: end if
11: end for
12: If Si,k = ∅, Si,k ← {0}.
13: end for
14: return (False,0dx+1, {Si,k}i∈Bk

).

Algorithm 5 SO-TEST

Input: {σi,k}k∈[dh],i∈Bk

1: For all i ∈ [m], define diagonal matrices Ji ∈ R
dh×dh such that for k ∈ [dh],

[Ji]k,k ←

h′([N(xi)]k) if i ∈ [m] \Bk

sσi,k
if i ∈ Bk and σi,k ∈ {−1,+1}

0 if i ∈ Bk and σi,k = 0.

2: Solve the following QP. If there is no solution, get a descent direction (∆∗
j , δ

∗
j)

2
j=1.

minimize
η

∑

i

∇ℓTi ∆2Ji(∆1xi+δ1)+
1
2

∑

i

‖∆2O(xi)+δ2+W2Ji(∆1xi+δ1)‖2∇2ℓi
,

subject to [W2]
T
·,kuk=[W1 b1]k,·vk, ∀k ∈ [dh],

x̄T
i vk = 0, ∀k ∈ [dh], ∀i ∈ Bk s.t. σi,k = 0,

σi,kx̄
T
i vk ≥ 0, ∀k ∈ [dh], ∀i ∈ Bk s.t. σi,k ∈ {−1,+1}.

(4)

3: if There is no solution then return (True,False, (∆∗
j , δ

∗
j)

2
j=1).

4: else if QP has nonzero minimizers then return (False,True,0)
5: else return (False,False,0)
6: end if

where g(z, η) and H(z, η) satisfy

g(z, η)T η =
∑

i
∇ℓTi dY1(xi) =

〈

∑

i
∇ℓiO(xi)

T ,∆2

〉

+
〈

∑

i
∇ℓi, δ2

〉

+

dh
∑

k=1

gk(z, vk)
T vk,

ηTH(z, η)η =
∑

i
∇ℓTi dY2(xi) +

1
2

∑

i
‖dY1(xi)‖2∇2ℓi

,

and gk(z, vk)
T := [W2]

T
·,k

(

Ck +
∑

i∈Bk
h′(x̄T

i vk)∇ℓix̄T
i

)

.

A.1 TESTING FIRST-ORDER STATIONARITY (LINES 1–3, 6–10 AND 15–17)

A.1.1 TEST OF FIRST-ORDER STATIONARITY FOR W2 AND b2 (LINES 1–3)

Lines 1–3 of Algorithm 2 correspond to testing if ∂W2R = {0dy×dh
} and ∂b2R = {0dy

}. If they
are not all zero, the opposite direction is a descent direction, as Line 2 returns. To see why, suppose
∑m

i=1∇ℓi
[

O(xi)T 1
]

6= 0dy×(dh+1). Then choose perturbations

[∆2 δ2] = −
∑m

i=1
∇ℓi

[

O(xi)
T 1

]

, ∆1 = 0dh×dx
, δ1 = 0dh

.

14

Published as a conference paper at ICLR 2019

If we apply perturbation (γ∆j , γδj)
2
j=1 where γ > 0, we can immediately check that dY1(xi) =

∆2O(xi) + δ2 and dY2(xi) = 0. So,

g(z, η)T η =
∑m

i=1
∇ℓTi (∆2O(xi) + δ2) =

〈

∑m

i=1
∇ℓi

[

O(xi)
T 1

]

, [∆2 δ2]
〉

= −O(γ),

ηTH(z, η)η = 1
2

∑

i
dY1(xi)

T∇2ℓidY1(xi) = O(γ2) ≥ 0.

and also that
∑m

i=1 ‖dY (xi)‖22 = O(γ2). Then, by scaling γ sufficiently small we can achieve

R(z + η) < R(z), which disproves that (Wj , bj)
2
j=1 is a local minimum.

A.1.2 TEST OF FIRST-ORDER STATIONARITY FOR W1 AND b1 (LINES 6–10 AND 15–17)

Test for W1 and b1 is more difficult because g(z, η) depends on ∆1 and δ1 when there are boundary
data points. Recall that vTk (k ∈ [dh]) is the k-th row of [∆1 δ1]. Then note from Lemma 2 that

∑m

i=1
∇ℓTi (W2J(xi)(∆1xi + δ1)) =

∑dh

k=1
gk(z, vk)

T vk,

where gk(z, vk)
T := [W2]

T
·,k

(

Ck +
∑

i∈Bk
h′(x̄T

i vk)∇ℓix̄T
i

)

. Thus we can separate k’s and treat

them individually.

Test for zero gradient. Recall the definition Mk := |Bk|. If Mk = 0, there is no boundary data
point for k-th hidden node, so the Clarke subdifferential with respect to [W1 b1]k,·, is {CT

k [W2]·,k}.
Lines 15–17 handle this case; if the singleton element in the subdifferential is not zero, its opposite
direction is a descent direction, so return that direction, as in Line 16.

Test for zero in subdifferential. For the case Mk > 0, we saw that for boundary data points
i ∈ Bk, h′([∆1xi + δ1]k) = h′(x̄T

i vk) ∈ {s−, s+} depends on vk. Lines 6–10 test if 0T
dx+1 is in

the Clarke subdifferential of R with respect to [W1]k,· and [b1]k. Since the subdifferential is used
many times, we give it a specific nameDk := ∂[W1 b1]k,·

R. By observing that Dk is the convex hull

of all possible values of gk(z, vk)
T ,

Dk :=

{

[W2]
T
·,k

(

Ck +
∑

i∈Bk

si∇ℓix̄T
i

)

| min{s−, s+} ≤ si ≤ max{s−, s+}, ∀i ∈ Bk

}

.

Testing 0
T
dx+1 ∈ Dk is done by FO-SUBDIFF-ZERO-TEST in Algorithm 3. It solves a convex

QP (2), and returns {s∗i }i∈Bk
.

If 0T
dx+1 ∈ Dk, {s∗i }i∈Bk

will satisfy ṽTk := [W2]
T
·,k(Ck +

∑

i∈Bk
s∗i∇ℓix̄T

i) = 0
T
dx+1. Suppose

0
T
dx+1 /∈ Dk. Then, ṽk is the closest vector in Dk from the origin, so 〈ṽk, v〉 > 0 for all vT ∈ Dk.

Choose perturbations

vk = −ṽk, vk′ = 0dx+1 for all k′ ∈ [dh] \ {k}, ∆2 = 0dy×dh
, δ2 = 0dy

,

and apply perturbation (γ∆j , γδj)
2
j=1 where γ > 0. With this perturbation, we can check that

g(z, η)Tη =
∑m

i=1
∇ℓTi dY1(xi) = −γ[W2]

T
·,k

(

Ck +
∑

i∈Bk

h′(−x̄T
i ṽk)∇ℓix̄T

i

)

ṽk,

and since h′(−x̄T
i ṽk) ∈ {s−, s+} for i ∈ Bk, we have

[W2]
T
·,k

(

Ck +
∑

i∈Bk

h′(−x̄T
i ṽk)∇ℓix̄T

i

)

∈ Dk,

and 〈ṽk, v〉 > 0 for all vT ∈ Dk shows that g(z, η)Tη is strictly negative with magnitude O(γ). It
is easy to see that ηTH(z, η)η = O(γ2), so by scaling γ sufficiently small we can disprove local
minimality of (Wj , bj)

2
j=1.

15

Published as a conference paper at ICLR 2019

A.2 TESTING g(z, η)T η ≥ 0 FOR ALL η (LINES 11–14)

Linear program formulation. Lines 11–14 are essentially about testing if gk(z, vk)
T vk ≥ 0 for

all directions vk. If 0T
dx+1 ∈ Dk, with the solution {s∗i }i∈Bk

from FO-SUBDIFF-ZERO-TEST we

can write gk(z, vk)
T as

gk(z, vk)
T = [W2]

T
·,k

(

Ck +
∑

i∈Bk

h′(x̄T
i vk)∇ℓix̄T

i

)

= [W2]
T
·,k

(

∑

i∈Bk

(

h′(x̄T
i vk)− s∗i

)

∇ℓix̄T
i

)

.

For any i ∈ Bk, h′(x̄T
i vk) ∈ {s−, s+} changes whenever the sign of x̄T

i vk changes. Every i ∈ Bk

bisects R
dx+1 into two halfspaces, x̄T

i vk ≥ 0 and x̄T
i vk ≤ 0, in each of which h′(x̄T

i vk) stays
constant. Note that by Lemma 1, x̄i’s for i ∈ Bk are linearly independent. So, given Mk linearly
independent x̄i’s, they divide the space R

dx+1 of vk into 2Mk polyhedral cones.

Since gk(z, vk)
T is constant in each polyhedral cone, we can let σi ∈ {−1,+1} for all i ∈ Bk, and

define an LP for each {σi}i∈Bk
∈ {−1,+1}Mk:

minimize
vk

[W2]
T
·,k

(
∑

i∈Bk
(sσi
− s∗i)∇ℓix̄T

i

)

vk

subject to vk ∈ Vk, σix̄
T
i vk ≥ 0, ∀i ∈ Bk.

(3)

Solving these LPs and checking if the minimum value is 0 suffices to prove gk(z, vk)
T vk ≥ 0 for all

small enough perturbations. Recall that Vk := span{x̄i | i ∈ Bk} and dim(Vk) = Mk. Note that
any component of vk that is orthogonal to Vk is also orthogonal to gk(z, vk), so it does not affect
the objective function of any LP (3). Thus, the constraint vk ∈ Vk is added to the LP (3), which is
equivalent to adding dx+1−Mk linearly independent equality constraints. The feasible set of LP (3)
has dx + 1 linearly independent equality/inequality constraints, which implies that the feasible set
is a pointed polyhedral cone with vertex at origin. Since any point in a pointed polyhedral cone is a
conical combination (linear combination with nonnegative coefficients) of extreme rays of the cone,
checking nonnegativity of the objective function for all extreme rays suffices. We emphasize that we
do not solve the LPs (3) in our algorithm; we just check the extreme rays.

Computational efficiency. Extreme rays of a pointed polyhedral cone in R
dx+1 are computed

from dx linearly independent active constraints. Line 3 of Algorithm 4 is exactly computing such
extreme rays: v̂i,k ∈ Vk ∩ span{x̄j | j ∈ Bk \ {i}}⊥ for each i ∈ Bk, tested in both directions.

Note that there are 2Mk extreme rays, and one extreme ray v̂i,k is shared by 2Mk−1 polyhedral

cones. Moreover, x̄T
j v̂i,k = 0 for j ∈ Bk \ {i}, which indicates that

gk(z, v̂i,k)
T v̂i,k = (sσi,k

− s∗i)[W2]
T
·,k∇ℓix̄T

i v̂i,k, where σi,k = sign(x̄T
i v̂i,k),

regardless of {σj}j∈Bk\{i}. This observation is used in Lines 6 and 8 of Algorithm 4. Testing

gk(z, ṽk)
T ṽk ≥ 0 for an extreme ray ṽk can be done with a single inequality test instead of 2Mk−1

separate tests for all cones! Thus, this extreme ray approach instead of solving individual LPs greatly
reduces computation, from O(2Mk) to O(Mk).

Algorithm operation in detail. Testing all possible extreme rays is exactly what
FO-INCREASING-TEST in Algorithm 4 is doing. Output of FO-INCREASING-TEST is a tu-
ple of three items: a boolean, a (dx + 1)-dimensional vector, and a tuple of Mk sets. Whenever
we have a descent direction, it returns True and the descent direction ṽk. If there is no descent
direction, it returns False and the sets {Si,k}i∈Bk

.

For both direction of extreme rays ṽk = v̂i,k and ṽk = −v̂i,k (Line 4), we check if gk(z, ṽk)
T ṽk ≥ 0.

Whenever it does not hold (Lines 6–7), ṽk is a descent direction, so FO-INCREASING-TEST returns
it with True. Line 13 of Algorithm 2 uses that ṽk to return perturbations, so that scaling by small
enough γ > 0 will give us a point with R(z+γη) < R(z). If equality holds (Lines 8–9), this means
ṽk is a direction of perturbation satisfying g(z, η)T η = 0, so this direction needs to be checked if
ηTH(z, η)η ≥ 0 too. In this case, we add the sign of boundary data point x̄i to Si,k for future use
in the second-order test. The operation with Si,k will be explained in detail in Appendix A.3. After

checking if gk(z, ṽk)
T ṽk ≥ 0 holds for all extreme rays, FO-INCREASING-TEST returns False

with {Si,k}i∈Bk
.

16

Published as a conference paper at ICLR 2019

Counting flat extreme rays. How many of these extreme rays satisfy gk(z, ṽk)
T ṽk = 0? Presence

of such flat extreme rays introduce inequality constraints in the QP that we will solve in SO-TEST

(Algorithm 5). It is ideal not to have flat extreme rays, because in this case there are only equality
constraints, so the QP is easier to solve. The following lemma shows conditions for existence of flat
extreme rays as well as output of Algorithm 4.

Lemma A.1. Suppose 0T
dx+1 ∈ Dk and all extreme rays ṽk satisfy gk(z, ṽk)

T ṽk ≥ 0. Consider all

i ∈ Bk, and its corresponding v̂i,k ∈ Vk ∩ span{x̄j | j ∈ Bk \ {i}}⊥.

1. If [W2]
T
·,k∇ℓi = 0, then both extreme rays v̂i,k and −v̂i,k are flat extreme rays, and Si,k =

{−1,+1} at the end of Algorithm 4.

2. If [W2]
T
·,k∇ℓi 6= 0 and s∗i = s+ (or s−), one (and only) of ṽk ∈ {v̂i,k,−v̂i,k} that satisfies

sign(x̄T
i ṽk) = +1 (or −1) is a flat extreme ray, and Si,k = {+1} (or {−1}) at the end of

Algorithm 4.

3. If [W2]
T
·,k∇ℓi 6= 0 and s∗i 6= s±, both v̂i,k and −v̂i,k are not flat extreme rays, and Si,k =

{0} at the end of Algorithm 4.

Proof First note that we already assumed that all extreme rays ṽk satisfy gk(z, ṽk)
T ṽk ≥ 0, so

SOSP-CHECK will reach Line 14 at the end. Also note that x̄i’s in i ∈ Bk are linearly independent
(by Lemma 1), so x̄T

i v̂i,k 6= 0.

If [W2]
T
·,k∇ℓi = 0, then (sσi,k

−s∗i)[W2]
T
·,k∇ℓix̄T

i ṽk = 0 regardless of ṽk, so both v̂i,k and−v̂i,k are

flat extreme rays. If [W2]
T
·,k∇ℓi 6= 0 and s∗i = s+, ṽk ∈ {v̂i,k,−v̂i,k} that satisfies sign(x̄T

i ṽk) =
+1 gives σi,k = +1, so sσi,k

= s∗i . Thus, ṽk is a flat extreme ray. The case with s∗i = s− is proved

similarly. If [W2]
T
·,k∇ℓi 6= 0 and s∗i 6= s+, none of (s± − s∗i), [W2]

T
·,k∇ℓi, and x̄T

i v̂i,k are zero, so

v̂i,k and −v̂i,k cannot be flat.

Let B
(j)
k ⊆ Bk denote the set of indices i ∈ Bk satisfying conditions in Lemma A.1.j (j = 1, 2, 3).

Note that B
(j)
k ’s partition the set Bk. We denote the union of B

(1)
k and B

(2)
k by B

(1,2)
k , and similarly,

B
(2,3)
k := B

(2)
k ∪ B

(3)
k . We can see from the lemma that |Si,k| = 2 for i ∈ B

(1)
k , and |Si,k| = 1 for

i ∈ B
(2,3)
k . Also, it follows from the definition of K and L (5) that

K =

dh
∑

k=1

|B(1)
k |, L =

dh
∑

k=1

|B(1)
k |+ |B

(2)
k |.

Connection to KKT conditions. As a side remark, we provide connections of our tests to the well-
known KKT conditions. Note that the equality gk(z, vk)

T = [W2]
T
·,k

(
∑

i∈Bk
(sσi
− s∗i)∇ℓix̄T

i

)

for

σix̄
T
i vk ≥ 0, ∀i ∈ Bk corresponds to the KKT stationarity condition, where (sσi

− s∗i)[W2]
T
·,k∇ℓi’s

correspond to the Lagrange multipliers for inequality constraints. Then, testing extreme rays
is equivalent to testing dual feasibility of Lagrange multipliers, and having zero dual variables
([W2]

T
·,k∇ℓi = 0 or s∗i = s+ or s−, resulting in flat extreme rays) corresponds to having degen-

eracy in the complementary slackness condition.

As mentioned in Section 2.1, given that g(z, η) and H(z, η) are constant functions of η in each
polyhedral cone, one can define inequality constrained optimization problems and try to solve for
KKT conditions for z directly. However, this also requires solving 2M problems. The strength
of our approach is that by solving the QPs (2), we can automatically compute the exact Lagrange
multipliers for all 2M subproblems, and dual feasibility is also tested in O(M) time.

A.3 TESTING ηTH(z, η)η ≥ 0 FOR {η | g(z, η)T η = 0} (LINES 19–32)

The second-order test checks ηTH(z, η)η ≥ 0 for “flat” η’s satisfying g(z, η)T η = 0. This is done
with help of the function SO-TEST in Algorithm 5. Given its input {σi,k}k∈[dh],i∈Bk

, it defines
fixed “Jacobian” matrices Ji for all data points and equality/inequality constraints for boundary data
points, and solves the QP (4).

17

Published as a conference paper at ICLR 2019

Equality/inequality constraints. In the QP (4), there are dh equality constraints of the form
[W2]

T
·,kuk = [[W1]k,· [b1]k] vk. These equality constraints are due to the nonnegative homoge-

neous property of activation function h: scaling [W1]k,· and [b1]k by α > 0 and scaling [W2]·,k
by 1/α yields exactly the same network. This observation is stated more precisely in the following
lemma.

Lemma A.2. Suppose z is a FOSP (differentiable or not) of R(·). Fix any k ∈ [dh], and define
perturbation η as

uk = −[W2]·,k, vk = [[W1]k,· [b1]k]
T
, uk′ = 0, vk′ = 0 for all k′ 6= k, δ2 = 0.

Then, g(z, η)Tη = ηTH(z, η)η = 0.

The proof of Lemma A.2 can be found in Appendix B.5. A corollary of this lemma is that any
differentiable FOSP of R always has rank-deficient Hessian, and the multiplicity of zero eigenvalue
is at least dh. Hence, these dh equality constraints on uk’s and vk’s force η to be orthogonal to the
loss-invariant directions.

The equality constraints of the form x̄T
i vk = 0 are introduced when σi,k = 0; this happens for

boundary data points i ∈ B
(3)
k . Therefore, there are M − L additional equality constraints. The

inequality constraints come from i ∈ B
(1,2)
k . So there are L inequality constraints. Now, the

following lemma proves that feasible sets defined by these equality/inequality constraints added
to (4) exactly correspond to the regions where gk(z, vk)

T vk = 0. Recall from Lemma A.1 that

Si,k = {−1,+1} for i ∈ B
(1)
k , Si,k = {−1} or {+1} for i ∈ B

(2)
k , and Si,k = {0} for i ∈ B

(3)
k .

Lemma A.3. Let {σi,k}i∈B
(2)
k

be the only element of
∏

i∈B
(2)
k

Si,k. Then, in SO-TEST,

⋃

{σi,k}
i∈B

(1)
k

∈
∏

i
Si,k

{

vk | ∀i ∈ B
(3)
k , x̄T

i vk = 0, and ∀i ∈ B
(1,2)
k , σi,kx̄

T
i vk ≥ 0

}

=
{

vk | ∀i ∈ B
(3)
k , x̄T

i vk = 0, and ∀i ∈ B
(2)
k , σi,kx̄

T
i vk ≥ 0

}

=
{

vk | gk(z, vk)T vk = 0
}

.

The proof of Lemma A.3 is in Appendix B.6.

In total, there are dh +M − L equality constraints and L inequality constraints in each nonconvex
QP. It is also easy to check that these constraints are all linearly independent.

How many QPs do we solve? Note that in Line 19, we call SO-TEST with {σi,k}k∈[dh],i∈Bk
= 0,

which results in a QP (4) with dh + M equality constraints. This is done even when we have flat
extreme rays, just to take a quick look if a descent direction can be obtained without having to deal
with inequality constraints.

If there exist flat extreme rays (Line 22), the algorithm calls SO-TEST for each element of
∏

k∈[dh]

∏

i∈Bk
Si,k. Recall that |Si,k| = 2 for i ∈ B

(1)
k , so

∣

∣

∣

∣

∏

k∈[dh]

∏

i∈Bk

Si,k

∣

∣

∣

∣

= 2K .

In summary, if there is no flat extreme ray, the algorithm solves just one QP with dh +M equality
constraints. If there are flat extreme rays, the algorithm solves one QP with dh + M equality
constraints, and 2K QPs with dh +M −L equality constraints and L inequality constraints. This is
also an improvement from the naive approach of solving 2M QPs.

Concluding the test. After solving the QP, SO-TEST returns result to SOSP-CHECK. The al-
gorithm returns two booleans and one perturbation tuple. The first is to indicate that there is no
solution, i.e., there is a descent direction that leads to −∞. Whenever there was any descent direc-
tion then we immediately return the direction and terminate. The second boolean is to indicate that
there are nonzero η that satisfies ηTH(z, η)η = 0. After solving all QPs, if any of SO-TEST calls
found out η 6= 0 such that g(z, η)T η = 0 and ηTH(z, η)η = 0, then we conclude SOSP-CHECK

with “SOSP.” If all QPs terminated with unique minimum at zero, then we can conclude “Local
Minimum.”

18

Published as a conference paper at ICLR 2019

B PROOF OF LEMMAS

B.1 PROOF OF LEMMA 1

By definition, we have [W1]k,·xi + [b1]k = 0 for all i ∈ Bk, meaning that they are all on the same
hyperplane [W1]k,·x + [b1]k = 0. By the assumption, we cannot have more than dx points on the
hyperplane.

Next, assume for the sake of contradiction that the Mk := |Bk| data points x̄i’s are linearly depen-
dent, i.e., there exists a1, . . . , aMk

∈ R, not all zero, such that

Mk
∑

i=1

ai

[

xi

1

]

= 0 =⇒ a1 = −
Mk
∑

i=2

ai =⇒
Mk
∑

i=2

ai(xi − x1) = 0,

where a2, . . . , aMk
are not all zero. This implies that these Mk points xi’s are on the same (Mk−2)-

dimensional affine space. To see why, consider for example the case Mk = 3: a2(x2 − x1) =
−a3(x3−x1), meaning that they have to be on the same line. By adding any dx+1−Mk additional
xi’s, we can see that dx + 1 points are on the same (dx − 1)-dimensional affine space, i.e., a
hyperplane in R

dx . This contradicts Assumption 2.

B.2 PROOF OF LEMMA 2

From Assumption 1, ℓ(w, y) is twice differentiable and convex in w. By Taylor expansion of ℓ(·) at
(Y (xi), yi),

R(z + η) =
∑m

i=1
ℓ(Y (xi) + dY (xi), yi)

=
∑m

i=1
ℓ(Y (xi), yi) +∇ℓTi dY (xi) +

1
2dY (xi)

T∇2ℓidY (xi) + o(‖η‖2)

= R(z) +

m
∑

i=1

∇ℓTi dY1(xi) +

m
∑

i=1

∇ℓTi dY2(xi) +
1
2

m
∑

i=1

‖dY1(xi)‖2∇2ℓi
+ o(‖η‖2),

where the first-order term
∑m

i=1∇ℓTi dY1(xi) =
∑m

i=1∇ℓTi (∆2O(xi)+δ2+W2J(xi)(∆1xi+δ1))
can be further expanded to show

∑m

i=1
∇ℓTi (∆2O(xi) + δ2) =

〈

∆2,
∑

i
∇ℓiO(xi)

T
〉

+
〈

δ2,
∑

i
∇ℓi
〉

,

∑m

i=1
∇ℓTi (W2J(xi)(∆1xi + δ1)) = tr

(

∑m

i=1
J(xi)W

T
2 ∇ℓix̄T

i

[

∆T
1

δT1

])

=

dh
∑

k=1

[W2]
T
·,k

(

m
∑

i=1

[J(xi)]k,k∇ℓix̄T
i

)

vk =

dh
∑

k=1

[W2]
T
·,k

(

Ck +
∑

i∈Bk

h′(x̄T
i vk)∇ℓix̄T

i

)

vk.

Also, note that in each of the 2M divided region (which is a polyhedral cone) of η, J(xi) stays
constant for all i ∈ [m]; thus, g(z, η) and H(z, η) are piece-wise constant functions of η. Specif-
ically, since the parameter space is partitioned into polyhedral cones, we have g(z, η) = g(z, γη)
and H(z, η) = H(z, γη) for any γ > 0.

B.3 PROOF OF LEMMA 3

Suppose that w1, w2, . . . , wq are orthonormal basis of row(A). Choose wq+1, . . . , wp so that
w1, w2, . . . , wp form an orthonormal basis of Rp. Let W be an orthogonal matrix whose columns

are w1, w2, . . . , wp, and Ŵ be an submatrix of W whose columns are wq+1, . . . , wp. With this

definition, note that I −AT (AAT)−1A = ŴŴT .

Suppose that we are given η(t) satisfying Aη(t) = 0. Then we can write η(t) = Ŵµ(t), where

µ(t) ∈ R
p−q and [µ(t)]i = wT

i+qη
(t). Define µ(t+1) likewise. Then, noting η(t) = ŴŴT η(t) gives

Ŵµ(t+1) = η(t+1) = η(t) − αŴŴTQŴµ(t) = Ŵ (I − αŴTQŴ)µ(t).

19

Published as a conference paper at ICLR 2019

Define C := ŴTQŴ ∈ R
(p−q)×(p−q), and then write its eigen-decomposition C = V SV T and

denote its eigenvectors as ν1, . . . , νp−q and its corresponding eigenvalues λ1, . . . , λp−q . Then note

µ(t+1) = (I − αC)µ(t) = (I − αV SV T)

p−q
∑

i=1

(νTi µ
(t))νi =

p−q
∑

i=1

(1− αλi)(ν
T
i µ

(t))νi

=

p−q
∑

i=1

(1 − αλi)
2(νTi µ

(t−1))νi = · · · =
p−q
∑

i=1

(1− αλi)
t+1(νTi µ

(0))νi.

This proves that this iteration converges or diverges exponentially fast. Starting from the initial

point η(0) = Ŵµ(0), the component of µ(0) that corresponds to negative eigenvalue blows up ex-
ponentially fast, those corresponding to positive eigenvalue shrinks to zero exponentially fast (if
α < 1/λmax(C)), and those with zero eigenvalue will stay invariant. Therefore, if there exists

λi < 0, then η(t) blows up to infinity quickly and finds an η such that ηTQη < 0 (T3). If all λi ≥ 0,

it converges exponentially fast to Ŵ
∑

i:λi=0(ν
T
i µ

(0))νi (T2). If all λi > 0, η(t) → 0 (T1).

It is left to prove that α < 1/λmax(Q) guarantees convergence, as stated. To this end, it suffices to
show that λmax(Q) ≥ λmax(C). Note that

C = ŴTQŴ = ŴTWWTQWWT Ŵ = [0 I]WTQW

[

0

I

]

.

Using the facts that λmax(Q) = λmax(W
TQW) and C is a principal submatrix of WTQW ,

λmax(Q) = max
x

xTWTQWx

xTx
≥ max

x:[x]1:q=0

xTWTQWx

xTx
= λmax(C).

Also, if we start at a random initial point (e.g., sample from a Gaussian in R
p and project to

row(A)⊥), then with probability 1 we have νTi µ
(0) 6= 0 for all i ∈ [p − q], so we will get the

correct convergence/divergence result almost surely.

B.4 PROOF OF LEMMA 4

B.4.1 PRELIMINARIES

Before we prove the complexity lemma, we introduce the definitions of copositivity and Pareto
spectrum, which are closely related concepts to our specific form of QP.

Definition B.1. Let Q ∈ R
r×r be a symmetric matrix. We say that Q is copositive if ηTQη ≥ 0 for

all η ≥ 0. Moreover, strict copositivity means that ηTQη > 0 for all η ≥ 0, η 6= 0.

Testing whether Q is not copositive known to be NP-complete (Murty & Kabadi, 1987); it is cer-
tainly a difficult problem. There is a method testing cositivity of Q in O(r32r) time which uses
its Pareto spectrum Π(Q). The following is the definition of Pareto spectrum, taken from Seeger
(1999); Hiriart-Urruty & Seeger (2010).

Definition B.2. Consider the problem

minimize
η≥0,‖η‖2=1

ηTQη.

KKT conditions for the above problem gives us a complementarity system

η ≥ 0, Qη − λη ≥ 0, ηT (Qη − λη) = 0, ‖η‖2 = 1, (6)

where λ ∈ R is viewed as a Lagrange multiplier associated with ‖η‖2 = 1. The number λ ∈ R is
called a Pareto eigenvalue of Q if (6) admits a solution η. The set of all Pareto eigenvalues of Q,
denoted as Π(Q), is called the Pareto spectrum of Q.

The next lemma reveals the relation of copositivity and Pareto spectrum:

Lemma B.1 (Theorem 4.3 of Hiriart-Urruty & Seeger (2010)). A symmetric matrix Q is copositive
(or strictly copositive) if and only if all the Pareto eigenvalues of Q are nonnegative (or strictly
positive).

20

Published as a conference paper at ICLR 2019

Now, the following lemma tells us how to compute Pareto spectrum of Q.

Lemma B.2 (Theorem 4.1 of Seeger (1999)). Let Q be a matrix of order r. Consider a nonempty
index set J ⊆ [r]. Given J , QJ refers to the principal submatrix of Q with the rows and columns

of Q indexed by J . Let 2[r] \ ∅ denote the set of all nonempty subsets of [r]. Then λ ∈ Π(Q) if and

only if there exists an index set J ∈ 2[r] \ ∅ and a vector ξ ∈ R
|J| such that

QJξ = λξ, ξ ∈ int(R
|J|
+),

∑

j∈J

[Q]i,j [ξ]j ≥ 0 for all i /∈ J.

In such a case, the vector η ∈ R
r by

[η]j =

{

[ξ]j if j ∈ J,

0 if j /∈ J

is a Pareto-eigenvector of Q associated to the Pareto eigenvalue λ.

These lemmas tell us that the Pareto spectrum of Q can be calculated by computing eigensystems of
all 2r − 1 possible QJ , which takes O(r32r) time in total, and from this we can determine whether
a symmetric Q is copositive.

B.4.2 PROOF OF THE LEMMA

With the preliminary concepts presented, we now start proving our Lemma 4. We will first transform
η to eliminate the equality constraints and obtain an inequality constrained problem of the form
minimizew:B̄w≥0w

TRw. From there, we can use the theorems from Martin & Jacobson (1981),

which tell us that by testing positive definiteness of a (p−q−r)×(p−q−r)matrix and copositivity
of a r × r matrix we can determine which of the three categories the QP falls into. Transforming η
and testing positive definiteness take O(p3) time and testing copositivity takes O(r32r) time, so the
test in total is done in O(p3 + r32r) time.

We now describe how to transform η and get an equivalent optimization problem of the form we
want. We assume without loss of generality that A = [A1 A2] where A1 ∈ R

q×q is invertible. If
not, we can permute components of η. Then make a change of variables

η = TA

[

w̄
w

]

:=

[

A−1
1 −A−1

1 A2

0(p−q)×q Ip−q

] [

w̄
w

]

, so that ATA

[

w̄
w

]

= [I 0]

[

w̄
w

]

= w̄.

Consequently, the constraint Aη = 0 becomes w̄ = 0. Now partition B = [B1 B2], where

B1 ∈ R
r×q . Also let R be the principal submatrix of T T

AQTA composed with the last p − q rows
and columns. It is easy to check that

minimizeη ηTQη
subject to Aη = 0q, Bη ≥ 0r.

≡ minimizew wTRw
subject to (B2 −B1A

−1
1 A2)w ≥ 0r.

Let us quickly check if B2 −B1A
−1
1 A2 has full row rank. One can observe that

[

A1 A2

B1 B2

]

=

[

Iq 0

B1A
−1
1 Ir

] [

A1 A2

0 B2 −B1A
−1
1 A2

]

.

It follows from the assumption rank(
[

AT BT
]

) = q + r that B̄ := B2 − B1A
−1
1 A2 has rank r,

which means it has full row rank.

Before stating the results from Martin & Jacobson (1981), we will transform the problem a bit fur-
ther. Again, assume without loss of generality that B̄ =

[

B̄1 B̄2

]

where B̄1 ∈ R
r×r is invertible.

Define another change of variables as the following:

w = TBν :=

[

B̄−1
1 −B̄−1

1 B̄2

0(p−q−r)×r Ip−q−r

] [

ν1
ν2

]

, T T
BRTB =:

[

R̄11 R̄12

R̄T
12 R̄22

]

=: R̄.

Consequently, we get

minimizew wTRw
subject to B̄w ≥ 0r.

≡ minimizew νT R̄ν = νT1 R̄11ν1 + 2νT1 R̄12ν2 + νT2 R̄22ν2
subject to ν1 ≥ 0r.

Given this transformation, we are ready to state the lemmas.

21

Published as a conference paper at ICLR 2019

Lemma B.3 (Theorem 2.2 of Martin & Jacobson (1981)). If B̄ =
[

B̄1 B̄2

]

, with B̄1 r× r invert-

ible, then with R̄ij’s given as above, wTRw > 0 whenever B̄w ≥ 0, w 6= 0 if and only if

• R̄22 is positive definite, and

• R̄11 − R̄12R̄
−1
22 R̄

T
12 is strictly copositive.

Lemma B.4 (Theorem 2.1 of Martin & Jacobson (1981)). If B̄ =
[

B̄1 B̄2

]

, with B̄1 r× r invert-

ible, then with R̄ij’s given as above, wTRw ≥ 0 whenever B̄w ≥ 0 if and only if

• R̄22 is positive semidefinite, null(R̄22) ⊆ null(R̄12), and

• R̄11 − R̄12R̄
†
22R̄

T
12 is copositive,

where R̄†
22 is a pseudoinverse of R̄22.

Using Lemmas B.3 and B.4, we now describe how to test our given QP and declare one of (T1),
(T2), or (T3). First, we compute the eigensystem of R̄22 and see which of the following disjoint
categories it belongs to:

(PD1) All eigenvalues λ1, . . . , λp−q−r of R̄22 satisfy λi > 0.

(PD2) ∀i, λi ≥ 0, but ∃i such that λi = 0, and ∀ν2 s.t. R̄22ν2 = 0, we have R̄12ν2 = 0.

(PD3) ∀i, λi ≥ 0, but ∃i such that λi = 0, and ∃ν2 s.t. R̄22ν2 = 0 but R̄12ν2 6= 0.

(PD4) ∃i such that λi < 0, i.e., ∃ν2 such that νT2 R̄22ν2 < 0.

If the test comes out (PD3) or (PD4), then we can immediately declare (T3) without having to look at
copositivity. This is because if we get (PD4), we can choose ν1 = 0 so that νT R̄ν = νT2 R̄22ν2 < 0.
In case of (PD3), one can fix any ν1 satisfying νT1 R̄12ν2 6= 0, and by scaling ν2 to positive or
negative we can get νT R̄ν → −∞. Notice that once we have these ν satisfying νT R̄ν < 0, we can
recover η from ν by backtracking the transformations.

Next, compute the Pareto spectrum of S := R̄11 − R̄12R̄
†
22R̄

T
12 and check which case S belongs to:

(CP1) S = R̄11 − R̄12R̄
†
22R̄

T
12 is strictly copositive.

(CP2) S is copositive, but ∃ν1 ≥ 0, ν1 6= 0 such that νT1 Sν1 = 0.

(CP3) ∃ν1 ≥ 0 such that νT1 Sν1 < 0.

Here, ν1’s are Pareto eigenvectors of S defined in Lemma B.2. If we have (CP3), we can declare

(T3) because one can fix ν2 = −R̄†
22R

T
12ν1 and get νT R̄ν = νT1 Sν1 < 0. If the tests come out

(PD1) and (CP1), by Lemma B.3 we have (T1). For the remaining cases, we conclude (T2).

B.5 PROOF OF LEMMA A.2

With the given η,

∆1 =

0(k−1)×dx

[W1]k,·
0(dh−k)×dx

 , δ1 =

[

0k−1

[b1]k
0dh−k

]

, ∆2 =
[

0dy×(k−1) −[W2]·,k 0dy×(dh−k)

]

.

It is straightforward to check that for all i ∈ [m],

dY1(xi) = ∆2O(xi) +W2J(xi)(∆1xi + δ1) = −[O(xi)]k[W2]·,k +W2

[

0k−1

[O(xi)]k
0dh−k

]

= 0.

From this, g(z, η)T η =
∑

i∇ℓTi dY1(xi) = 0. For the second order terms,

ηTH(z, η)η =

m
∑

i=1

∇ℓTi dY2(xi) +
1
2

m
∑

i=1

‖dY1(xi)‖2∇2ℓi
=
∑m

i=1
∇ℓTi ∆2J(xi)(∆1xi + δ1)

=
∑m

i=1
∇ℓTi (−[O(xi)]k[W2]·,k) = −

(

∑m

i=1
[O(xi)]k∇ℓTi

)

[W2]·,k.

From the fact that z is a FOSP of R, it follows that
∑

i∇ℓiO(xi)
T = 0, so ηTH(z, η)η = 0.

22

Published as a conference paper at ICLR 2019

B.6 PROOF OF LEMMA A.3

The first equality is straightforward, because it follows from Si,k = {−1,+1} for all i ∈ B
(1)
k that

taking union of {x̄T
i vk ≤ 0} and {x̄T

i vk ≥ 0} will eliminate the inequality constraints for i ∈ B
(1)
k .

For the next equality, we start by expressingU1 :=
{

vk | gk(z, vk)T vk = 0
}

as a linear combination
of its linearly independent components. The set U1 can be expressed in the following form:

U1 = {v⊥ +
∑

i∈B
(1)
k

αiv̂i,k +
∑

i∈B
(2)
k

βiv̂i,k | v⊥ ∈ V⊥
k , ∀i ∈ B

(1)
k , αi ∈ R, and ∀i ∈ B

(2)
k , βi ≥ 0},

where v̂i,k ∈ Vk ∩ span{x̄j | j ∈ Bk \ {i}}⊥ for all i ∈ B
(1,2)
k . Additionally, for i ∈ B

(2)
k , v̂i,k is

in the direction that satisfies σi,k = sign(x̄T
i v̂i,k). To see why U1 can be expressed in such a form,

first note that at the moment SO-TEST is executed, it is already given that the point z is a FOSP. So,
for any perturbation vk we have gk(z, vk) ∈ Vk, and gk(z, vk)

T v⊥ = 0 for any v⊥ ∈ V⊥
k . For the

remaining components, please recall FO-INCREASING-TEST and Lemma A.1; v̂i,k are flat extreme

rays, so they are the ones satisfying gk(z, vk)
T vk = 0.

It remains to show that U2 := {vk | ∀i ∈ B
(3)
k , x̄T

i vk = 0, and ∀i ∈ B
(2)
k , σi,kx̄

T
i vk ≥ 0} = U1.

We show this by proving U1 ⊆ U2 and Uc
1 ⊆ Uc

2 .

To show the first part, we start by noting that for any v⊥ ∈ V⊥
k , x̄T

i v⊥ = 0 for i ∈ B
(2,3)
k because

x̄i ∈ Vk for these i’s. Also, for all i ∈ B
(1)
k , it follows from the definition of v̂i,k that x̄T

j v̂i,k = 0 for

all j ∈ B
(2,3)
k . Similarly, for all i ∈ B

(2)
k , x̄T

j v̂i,k = 0 for all j ∈ B
(2,3)
k \ {i}, and σi,kx̄

T
i v̂i,k > 0.

Therefore, any vk ∈ U1 must satisfy all constraints in U2, hence U1 ⊆ U2.

For the next part, we prove that vk ∈ Uc
1 violates at least one constraint in U2. Observe that the

whole vector space Rp can be expressed as

R
p = {v⊥ +

∑

i∈B
(1)
k

αiv̂i,k +
∑

i∈B
(2)
k

βiv̂i,k + w | w ∈ Vk ∩ span{v̂i,k, i ∈ B
(1,2)
k }⊥,

v⊥ ∈ V⊥
k , ∀i ∈ B

(1)
k , αi ∈ R, and ∀i ∈ B

(2)
k , βi ∈ R}.

Therefore, any vk ∈ Uc
1 either has a nonzero component w in Vk ∩ span{v̂i,k, i ∈ B

(1,2)
k }⊥ or

there exists i ∈ B
(k)
2 such that βi < 0. By definition, v̂i,k ∈ span{x̄j | j ∈ B

(3)
k }⊥ for any

i ∈ B
(1,2)
k , which implies that Vk ∩ span{v̂i,k, i ∈ B

(1,2)
k }⊥ = span{x̄j | j ∈ B

(3)
k }. Thus, a

nonzero component w ∈ span{x̄j | j ∈ B
(3)
k } will violate some equality constraints in U2. Next, in

case where ∃i ∈ B
(k)
2 such that βi < 0, this violates the inequality constraint corresponding to i.

23

R-SPIDER: A Fast Riemannian Stochastic Optimization
Algorithm with Curvature Independent Rate

Jingzhao Zhang jzhzhang@mit.edu
Hongyi Zhang hongyiz@mit.edu
Suvrit Sra suvrit@mit.edu
Massachusetts Institute of Technology, Cambridge, MA

Abstract

We study smooth stochastic optimization problems on Riemannian manifolds. Via
adapting the recently proposed SPIDER algorithm [Fang et al., 2018] (a variance
reduced stochastic method) to Riemannian manifold, we can achieve faster rate than
known algorithms in both the finite sum and stochastic settings. Unlike previous
works, by not resorting to bounding iterate distances, our analysis yields curvature
independent convergence rates for both the nonconvex and strongly convex cases.

1 Introduction

We analyze fast stochastic algorithms for the following optimization problem:

min
x∈M

f(x) , Eξ[f(x; ξ)], (1)

where (M, g) is a Riemannian manifold equipped with the metric g, and ξ is a random variable. We
assume that for any ξ, the function f(·; ξ) :M→ R is geodesically L-smooth (see Section 2). This
class of functions includes as special cases important problems such as principal component analysis
(PCA), independent component analysis (ICA), dictionary learning, mixture modeling, among others.
Moreover, the finite-sum problem (f(x) = 1

n

∑n
i=1 fi(x)) is a special case in which finite number of

component functions are chosen uniformly at random (e.g., in Empirical Risk Minimization).

When solving problems with parameters constrained to lie on a manifold, a naive approach is to
alternate between optimizing the cost in a suitable ambient Euclidean space and “projecting” onto the
manifold. For example, two well-known methods to compute the leading eigenvector of symmetric
matrices, power iteration and Oja’s algorithm [Oja, 1992], are in essence projected gradient and
projected stochastic gradient algorithms. For certain manifolds (e.g., positive definite matrices),
projections can be quite expensive to compute and possibly the Euclidean approach may have poor
numerical conditioning [Yuan et al., 2017].

An effective alternative is to use Riemannian optimization, which directly operates on the manifold
in question. This mode of operation allows Riemannian optimization to view the constrained
optimization problem (1) as an unconstrained problem on a manifold, and thus, to be “projection-free.”
More important is the conceptual viewpoint: by casting the problem in a Riemannian framework, one
can discover insights into problem geometry that can translate into not only more precise mathematical
analysis but also more efficient optimization algorithms.

The Euclidean version of (1) whereM = Rd and g is the Euclidean inner-product has been the
subject of intense algorithmic development in machine learning and optimization, starting with
the classical work of Robbins and Monro [1951]. However, both batch and stochastic gradient
methods suffer from high computation load. For solving finite sum problems with n components,
the full-gradient method requires n derivatives at each step; the stochastic method requires only one
derivative, but at the expense of slower O(1

ε2) convergence to an ε-accurate solution. These issues
have motivated much of the progress on faster stochastic optimization in vector spaces by using
variance reduction [Schmidt et al., 2013, Johnson and Zhang, 2013, Defazio et al., 2014, Konečnỳ
and Richtárik, 2013]. Along with many recent works (see related work), these algorithms achieve
faster convergence than the original gradient descent algorithms in multiple settings.

Riemannian counterparts of batch and stochastic optimization algorithms have witnessed growing
interest recently. Zhang and Sra [2016] present the first global complexity analysis of batch and

1

ar
X

iv
:1

81
1.

04
19

4v
3

 [
m

at
h.

O
C

]
 1

4
D

ec
 2

01
8

Nonconvex
stochastic

Nonconvex
finite sum

Strongly convex
finite sum

Gradient dominated
finite sum

Previous work O(1
ε4) O(n+ n2/3ζ1/2

ε2) O((n+ κ2ζ) log(1
ε)) O((n+ n2/3ζ1/2κ) log(1

ε))

Our work O(1
ε3) O(n+ n1/2

ε2) min{O((n+ κ2) log(1
ε)),O((n+ κn1/2) log(1

ε))}

Table 1: IFO complexity (of ensuring E[‖∇f‖2] ≤ O(ε2)) comparison between our work and
previous works [Zhang et al., 2016, Sato et al., 2017, Kasai et al., 2016]. The condition number
κ = L

µ of a L−smooth, µ−strongly convex function or κ = 2Lτ for a L−smooth, τ−gradient
dominated function; ζ is a constant determined by the manifold curvature and diameter. Please see
[Zhang et al., 2016] for more details.

stochastic gradient methods for geodesically convex functions. Later work [Zhang et al., 2016,
Kasai et al., 2016, Sato et al., 2017] improves the convergence rate for finite-sum problems by using
variance reduction techniques. In this paper, we develop this line of work further, and improve rates
based on a more careful control of variance analyzed in [Fang et al., 2018, Nguyen et al., 2017].
Another important aspect of our work is that by pursuing a slightly different analysis, we are able to
remove the assumption that all iterates remain in a compact subset of the Riemannian manifold. Such
an assumption was crucial to most previous Riemannian methods, but was not always fully justified.

Contributions. We summarize the key contributions of this paper below.

• We introduce R-SPIDER, a Riemannian variance reduced stochastic gradient method based on the
recent SPIDER algorithm [Fang et al., 2018]. We analyze R-SPIDER for optimizing geodesically
smooth stochastic nonconvex functions. To our knowledge, we obtain the first rate faster than
Riemannian stochastic gradient descent for general nonconvex stochastic Riemannian optimization.
• We specialize R-SPIDER to (Riemannian) nonconvex finite-sum problems. Our rate improves the

best known rates and match the lower bound as in the Euclidean case.
• We propose two variations of R-SPIDER for geodesically strongly convex problems and for

Riemannian gradient dominated costs. For these settings, we achieve the best known rates in terms
of number of samples n and the condition number κ.
• Importantly, we provide convergence guarantees that are independent of the Riemannian manifold’s

diameter and its sectional curvature. This contribution is important in two main aspects. First,
the best known theoretical upper bounds are improved. Second, the algorithm no longer assumes
bounded diameter of the Riemannian manifold, which helps lift the assumption crucial for previous
work that required all the iterates generated by the algorithm to remain in a compact set.

We briefly summarize the rates obtained in Table 1.

1.1 Related Work

Variance reduction in stochastic optimization. Variance reduction techniques, such as control
variates, are widely used in Monte Carlo simulations [Rubinstein and Kroese, 2011]. In linear
spaces, variance reduced methods for solving finite-sum problems have recently witnessed a huge
surge of interest [e.g. Schmidt et al., 2013, Johnson and Zhang, 2013, Defazio et al., 2014, Bach
and Moulines, 2013, Konečnỳ and Richtárik, 2013, Xiao and Zhang, 2014, Gong and Ye, 2014].
They have been shown to accelerate finite sum optimization for strongly convex objectives and
convex objectives. Later work by Lin et al. [2015], Allen-Zhu [2017a] further accelerates the rates in
convex problems using techniques similar to Nesterov’s acceleration method [Nesterov, 2013]. For
nonconvex problems, Reddi et al. [2016], Allen-Zhu [2017b], Lei et al. [2017], Fang et al. [2018],
Nguyen et al. [2017] also achieved faster rate than the vanilla (stochastic) gradient descent method in
both finite sum settings and stochastic settings. Our analysis is inspired mainly by Fang et al. [2018],
Zhang et al. [2016]. The analysis can also be applied to [Wang et al., 2018] and achieve matching
rate assuming access to proximal oracle on Riemannian manifold.

2

Riemannian optimization. Earlier references can be found in Udriste [1994], Absil et al. [2009],
where analysis is limited to asymptotic convergence (except [Udriste, 1994, Theorem 4.2]). Stochastic
Riemannian optimization has been previously considered in Bonnabel [2013], Liu et al. [2004],
though with only asymptotic convergence analysis, and without any rates. Many applications
of Riemannian optimization are known, including matrix factorization on fixed-rank manifold
[Vandereycken, 2013, Tan et al., 2014], dictionary learning [Cherian and Sra, 2015, Sun et al., 2015],
optimization under orthogonality constraints [Edelman et al., 1998, Moakher, 2002], covariance
estimation [Wiesel, 2012], learning elliptical distributions [Zhang et al., 2013, Sra and Hosseini, 2013],
Poincaré embeddings [Nickel and Kiela, 2017] and Gaussian mixture models [Hosseini and Sra,
2015]. Zhang and Sra [2016] provide the first global complexity analysis for first-order Riemannian
algorithms, but their analysis is restricted to geodesically convex problems with full or stochastic
gradients. Boumal et al. [2016] analyzed iteration complexity of Riemannian trust-region methods,
whereas Bento et al. [2017] studied non-asymptotic convergence of Riemannian gradient, subgradient
and proximal point methods. Tripuraneni et al. [2018], Zhang and Sra [2018] analyzed aspects
other than variance reduction to accelerate the convergence of first order optimization methods on
Riemannian manifolds. Zhang et al. [2016], Sato et al. [2017] analyzed variance reduction techniques
on Riemannian manifolds, and their rate has remain best-known up to our knowledge. In this
work, we improve upon their results. Zhou et al. [2018] worked on the same problem in parallel
and achieved the same rate. The difference between this work and Zhou et al. [2018] is that our
algorithm uses a constant step size and adaptive sample size. This enables us to bound E[‖∇f(x)‖2]
instead of E[‖∇f(x)‖]. Hence our result is slightly stronger and further simplifies later proof for the
convergence of gradient dominated functions.

2 Preliminaries

Before formally discussing Riemannian optimization, let us recall some foundational concepts of
Riemannian geometry. For a thorough review one can refer to any classic text, e.g.,[Petersen, 2006].

A Riemannian manifold (M, g) is a real smooth manifoldM equipped with a Riemannain metric
g. The metric g induces an inner product structure in each tangent space TxM associated with
every x ∈ M. We denote the inner product of u, v ∈ TxM as 〈u, v〉 , gx(u, v); and the norm
of u ∈ TxM is defined as ‖u‖ ,

√
gx(u, u). The angle between u, v is defined as arccos 〈u,v〉‖u‖‖v‖ .

A geodesic is a constant speed curve γ : [0, 1] → M that is locally distance minimizing. An
exponential map Expx : TxM→M maps v in TxM to y onM, such that there is a geodesic γ
with γ(0) = x, γ(1) = y and γ̇(0) , d

dtγ(0) = v. If between any two points in X ⊂ M there is a
unique geodesic, the exponential map has an inverse Exp−1x : X → TxM and the geodesic is the
unique shortest path with ‖Exp−1x (y)‖ = ‖Exp−1y (x)‖ the geodesic distance between x, y ∈ X .

Parallel transport Γyx : TxM→ TyM maps a vector v ∈ TxM to Γyxv ∈ TyM, while preserving
norm, and roughly speaking, “direction,” analogous to translation in Rd. A tangent vector of a
geodesic γ remains tangent if parallel transported along γ. Parallel transport preserves inner products.

xv

Expx(v)

x
v

y
Γyxv

Figure 1: Illustration of manifold operations. (Left) A vector v in TxM is mapped to Expx(v); (right) A vector
v in TxM is parallel transported to TyM as Γy

xv.

Function Classes. We now define some key terms. A set X is called geodesically convex if for any
x, y ∈ X , there is a geodesic γ with γ(0) = x, γ(1) = y and γ(t) ∈ X for t ∈ [0, 1]. Throughout
the paper, we assume that the function f in (1) is defined on a Riemannian manifoldM.

In the following we do not explicitly write Riemannian metric g or the index x of tangent space TxM
to simplify notation, as they should be obvious from the context: inner product of u, v ∈ TxM is
defined as 〈u, v〉 , gx(u, v); norm of u ∈ TMx is defined as ‖u‖ ,

√
gx(u, u).

3

Based on the above notations, we define the following properties of the function f in (1).
Definition 1 (Strong convexity). A function f :M→ R is said to be geodesically µ-strongly convex
if for any x, y ∈M,

f(y) ≥ f(x) + 〈gx,Exp−1x (y)〉x +
µ

2
‖Exp−1x (y)‖2.

Definition 2 (Smoothness). A differentiable function f :M→ R is said to be geodesically L-smooth
if its gradient is L-Lipschitz, i.e. for any x, y ∈M,

‖gx − Γxygy‖ ≤ L‖Exp−1x (y)‖,
where Γxy is the parallel transport from y to x.

Observe that compared to the Euclidean setup, the above definition requires a parallel transport
operation to “transport” gy to gx. It can be proved that if f is L-smooth, then for any x, y ∈M,

f(y) ≤ f(x) + 〈gx,Exp−1x (y)〉x +
L

2
‖Exp−1x (y)‖2. (2)

Definition 3 (PL inequality). f : X → R is τ -gradient dominated if x∗ is a global minimizer of f
and for every x ∈ X

f(x)− f(x∗) ≤ τ‖∇f(x)‖2. (3)

As in the Euclidean case, τ−gradient dominated is implied by 1
2τ−strongly convex.

An Incremental First-order Oracle (IFO) [Agarwal and Bottou, 2015] in (1) takes in a point x ∈M,
and generates a random sample ξ. The oracle then returns a pair (f(x; ξ),∇f(x; ξ)) ∈ R× TxM.
In finite-sum setting, ξ takes values in {1, 2, ..., n} and each random sample f(·; ξ) corresponds to
one of n component functions. We measure non-asymptotic complexity in terms of IFO calls.

3 Riemannian SPIDER

In this section we introduce the R-SPIDER algorithm. In particular, we propose one variant for
nonconvex problems, and two for gradient-dominated problems. Each variation aims to optimize a
particular dependency on function parameters. Our proposed algorithm differs from the Euclidean
SPIDER [Fang et al., 2018] in two key aspects: the variance reduction step uses parallel transport
to combine gradients from different tangent spaces; and the exponential map is used (instead of the
update xk − ηvk).

We would like to point out that if retractions instead of exponential maps are used in the proposed
algorithms, our analysis will still hold if ∃λ > 0 such that ∀v ∈ TxM, d(Expx(v),Retrx(v)) ≤
λ‖v‖2, where d(x, y) = ‖Exp−1x (y)‖.

3.1 General smooth nonconvex functions

Algorithm 1 R-SPIDER-nonconvex(x0,S1, q, ηk, ε, f, T)

for t = 0, 1, . . . T do
if mod (t, q) = 0 then

draw S1 samples
vk ← ∇fS1(xk)

else
draw S2 = dmin{n,

qL2‖Exp−1
xk−1

(xk)‖2

2ε2 }e samples (n =∞ in the stochastic setting.)
vk ← ∇fS2(xk)− Γxk

xk−1
[∇fS2(xk−1)− vk−1]

end if
xk+1 ← Expxk

(−ηkvk)
end for
return uniformly randomly from {x1, ..., xT }.

Our proposed algorithm for solving nonconvex Riemannian optimization problems is shown in
Algorithm 1. ∇Sf(x) denotes the unbiased gradient estimator obtained by averaging S samples.
We first analyze the global complexity for solving nonconvex stochastic Riemannian optimization
problems. In particular, we make the following assumptions

4

Assumption 1 (Smoothness). For any fixed ξ, f(x; ξ) is geodesically L−smooth in x.
Assumption 2 (Bounded objective). Function f is bounded below. Define M := f(x0)− f∗ ≤ ∞
where f∗ = infx∈M f(x).

Assumption 3 (Bounded variance). ∀x,Eξ[‖∇f(x)−∇f(x; ξ)‖2] ≤ σ2.

Under the above assumptions, we make the following choice of parameters for running Algorithm 1.

S1 = 2σ2/ε2, ηk =
1

2L
, q = 1/ε, T = 4ML/ε2. (4)

We now state the following theorem for optimizing stochastic nonconvex functions.
Theorem 1 (Stochastic objective). Under Assumptions 1, 2, 3 and the parameter choice in (4),
Algorithm 1 terminates in 4ML/ε2 iterations. The output x satisfies

E[‖∇f(x)‖2] ≤ 10ε2.

Furthermore, the algorithm makes less than 8ML(σ2 + 3)/ε3 IFO calls in expectation.

Proof. See Appendix A. The gist of our proof is to show that with sufficiently small variance of the
gradient estimate, the algorithm either substantially decreases the objective function every q iterations,
or terminates because the gradient norm is small.

Then we study the nonconvex problem under the finite-sum setting. In this setting, we assume
ξ ∼ Uniform({1, .., n}). Hence we can write

f(x) =
1

n

n∑
i=1

fi(x). (5)

We further make the following choice of parameters:

S1 = n, ηk =
1

2L
, q = dn1/2e, T = 4ML/ε2 (6)

Then we have the following gurrantee.
Theorem 2 (Finite-sum objective). Under Assumptions 1, 2 and the parameter choice in (6), Algo-
rithm 1 terminates in 4ML/ε2 iterations. The output x satisfies

E[‖∇f(x)‖2] ≤ 10ε2.

Furthermore, the algorithm makes less than n+ 8ML(3+n1/2)
ε2 IFO calls in expectation.

Proof. See Appendix B. The proof is almost the same as the proof for Theorem 1.

The proof of the two theorems in this section follows by carefully applying the variance reduction
technique proposed in Fang et al. [2018] onto the Riemannian manifold using the tools in Zhang
et al. [2016]. Unlike the SVRG-like algorithms in Zhang et al. [2016], Kasai et al. [2016], we can
avoid analyzing the term Exp−1x̃ (xk), where x̃ is the snapshot point. Consequently, we do not need
to resort to the trigonometric distance bound (see Zhang and Sra [2016]) and the convergence rate
doesn’t depend on the sectional curvature bound.

Further, the convergence rates in both cases match their Euclidean counterparts. Remarkably, the
O(n+ n1/2

ε2) rate under the finite-sum setting meets the lower bound as proved by Fang et al. [2018].

3.2 Gradient-dominated functions

In this section, we study the finite-sum problems with the following assumption.
Assumption 4. f :M→ R is τ−gradient dominated.

We denote κ = 2Lτ as the condition number. To solve such problems, we propose two algorithms.
The first algorithm is shown in Algorithm 2. It follows the same idea as in Zhang et al. [2016], Reddi
et al. [2016]. We have the following theorem on its convergence rate.

5

Algorithm 2 R-SPIDER-GD1(x0,M0, f)

for t = 1, . . .K do
εt =

√
M0

2t10τ

S1 = n, ηt = ε/L, q = dn1/2e
xt = R-SPIDER-nonconvex(xt−1,S1, q, ηt, εt, f)

end for
return xK

Theorem 3. Under Assumptions 1, 2, 4 and the parameter choice M0 ≥ f(x0) − f∗, after T
iterations, Algorithm 2 returns a solution xK that satisfies

E[f(xK)− f(x∗)] ≤ 2−KM0.

Further, we need O((n+ κn1/2) log(1/ε)) number of IFO calls to achieve ε accuracy in expectation.

The proof of Theorem 3 follows from Theorem 2 and the gradient dominated property, as shown in
Appendix C.

Algorithm 3 R-SPIDER-GD2(x0,S1, q, η, ε, f)

δ ← M0

4τ
for k = 1, 2, . . . , qK do

if mod (k, q) = 0 then
draw n samples and evaluate full gradient vk ← ∇f(xk)
δk = δk−1/2

else
δk = δk−1

draw Sk = dmin{n,
qL2‖Exp−1

xk−1
(xk)‖2

δ }e samples
vk ← ∇fSk(xk)− Γxk

xk−1
[∇fSk(xk−1)− vk−1]

end if
xk+1 ← Expxk

(−ηvk)
end for
return xqK

The second algorithm, shown in Algorithm 3, aims to achieve better complexity dependency on n.
With the following choice of parameters

η =
1

2L
, q = d4Lτ log(4)e, M0 ≥M = f(x0)− f(x∗), (7)

we can make the following statement.
Theorem 4. Under Assumptions 1, 2, 4 and the parameter choice in (7), after T = qK = 2KL

τ log(4)
iterations, Algorithm 3 returns a solution xT that satisfies

E[f(xT)− f(x∗)] ≤ 2−KM0.

Further, the total expected number of IFO calls is K(n+ 25κ2). In other word, to achieve ε accuracy,
we need O((n+ κ2) log(1/ε)) number of IFO calls in expectation.

Proof. See Appendix D. The algorithm adaptively choose sample sizes based on the distance of
the last update. The expected number of samples queried can be bounded by total sum of squared
distances, which can further be bounded by the change in the objective value.

In summary, Algorithm 2 achieves IFO complexity O((n + κn1/2) log(1/ε)), while Algorithm 3
achieves sample complexityO((n+κ2) log(1/ε)). It is unclear to us whether there exists an algorithm
that performs uniformly better than both of the proposed algorithms. Further, we wish to point out
that, as strong convexity implies gradient dominance, the convergence rates for the above algorithms
also apply to 1

2τ−strongly g-convex functions.

6

4 Discussion

We introduce Riemannian SPIDER algorithms, a fast variance reduced stochastic gradient algorithm
for Riemannian optimization. We analyzed the convergence rates of these algorithms for general
smooth geodesically nonconvex functions under both finite-sum and stochastic settings, as well as
for gradient dominated functions under the finite-sum setting. We showed that these algorithms
improved the best known IFO complexity. We also removed the iteration complexity dependency on
the curvature of the manifold.

There are a few open problems. First, the original SPIDER algorithm in Fang et al. [2018] and
Algorithm 1 require very small stepsize. In practice, this usually results in very slow convergence rate.
Even though the SPIDER-boost algorithm [Wang et al., 2018] and Algorithm 3 utilizes a constant
large stepsize, the former one requires random termination of the algorithm, while the latter one
requires very large sample size in each iteration. Therefore, none of these algorithms tend to perform
well in practice if the implementation follows the theory exactly. Designing and testing practical
algorithms with nice theoretical guarantees is left as future work.

Further, we approached the gradient-dominated functions with two different algorithms and got two
different convergence rates. We suspect that it is not possible to achieve the best of both worlds at
the same time. Proving such a lower bound or finding an algorithm that uniformly dominates both
algorithms are both interesting research topics.

References
P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization algorithms on matrix manifolds. Princeton

University Press, 2009.
A. Agarwal and L. Bottou. A lower bound for the optimization of finite sums. In Proceedings of the

32nd International Conference on Machine Learning (ICML-15), pages 78–86, 2015.
Z. Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. In Proceedings

of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 1200–1205. ACM,
2017a.

Z. Allen-Zhu. Natasha 2: Faster non-convex optimization than sgd. arXiv preprint arXiv:1708.08694,
2017b.

F. Bach and E. Moulines. Non-strongly-convex smooth stochastic approximation with convergence
rate o (1/n). In Advances in Neural Information Processing Systems, pages 773–781, 2013.

G. C. Bento, O. P. Ferreira, and J. G. Melo. Iteration-complexity of gradient, subgradient and proximal
point methods on riemannian manifolds. Journal of Optimization Theory and Applications, 173(2):
548–562, 2017.

S. Bonnabel. Stochastic gradient descent on Riemannian manifolds. Automatic Control, IEEE
Transactions on, 58(9):2217–2229, 2013.

N. Boumal, P.-A. Absil, and C. Cartis. Global rates of convergence for nonconvex optimization on
manifolds. IMA Journal of Numerical Analysis, 2016.

A. Cherian and S. Sra. Riemannian dictionary learning and sparse coding for positive definite
matrices. arXiv:1507.02772, 2015.

A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradient method with support
for non-strongly convex composite objectives. In NIPS, pages 1646–1654, 2014.

A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithms with orthogonality constraints.
SIAM journal on Matrix Analysis and Applications, 20(2):303–353, 1998.

C. Fang, C. J. Li, Z. Lin, and T. Zhang. Spider: Near-optimal non-convex optimization via stochastic
path integrated differential estimator. arXiv preprint arXiv:1807.01695, 2018.

P. Gong and J. Ye. Linear convergence of variance-reduced stochastic gradient without strong
convexity. arXiv preprint arXiv:1406.1102, 2014.

R. Hosseini and S. Sra. Matrix manifold optimization for Gaussian mixtures. In NIPS, 2015.
R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance reduction.

In Advances in Neural Information Processing Systems, pages 315–323, 2013.

7

H. Kasai, H. Sato, and B. Mishra. Riemannian stochastic variance reduced gradient on grassmann
manifold. arXiv preprint arXiv:1605.07367, 2016.

J. Konečnỳ and P. Richtárik. Semi-stochastic gradient descent methods. arXiv:1312.1666, 2013.
L. Lei, C. Ju, J. Chen, and M. I. Jordan. Non-convex finite-sum optimization via scsg methods. In

Advances in Neural Information Processing Systems, pages 2348–2358, 2017.
H. Lin, J. Mairal, and Z. Harchaoui. A universal catalyst for first-order optimization. In Advances in

Neural Information Processing Systems, pages 3384–3392, 2015.
X. Liu, A. Srivastava, and K. Gallivan. Optimal linear representations of images for object recognition.

IEEE TPAMI, 26(5):662–666, 2004.
M. Moakher. Means and averaging in the group of rotations. SIAM journal on matrix analysis and

applications, 24(1):1–16, 2002.
Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer

Science & Business Media, 2013.
L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takáč. Sarah: A novel method for machine learning

problems using stochastic recursive gradient. arXiv preprint arXiv:1703.00102, 2017.
M. Nickel and D. Kiela. Poincaré embeddings for learning hierarchical representations. In Advances

in neural information processing systems, pages 6338–6347, 2017.
E. Oja. Principal components, minor components, and linear neural networks. Neural Networks, 5

(6):927–935, 1992.
P. Petersen. Riemannian geometry, volume 171. Springer Science & Business Media, 2006.
S. J. Reddi, A. Hefny, S. Sra, B. Póczós, and A. Smola. Stochastic variance reduction for nonconvex

optimization. arXiv:1603.06160, 2016.
H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical Statistics,

22:400–407, 1951.
R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo method, volume 707. John Wiley

& Sons, 2011.
H. Sato, H. Kasai, and B. Mishra. Riemannian stochastic variance reduced gradient. arXiv preprint

arXiv:1702.05594, 2017.
M. Schmidt, N. L. Roux, and F. Bach. Minimizing finite sums with the stochastic average gradient.

arXiv:1309.2388, 2013.
S. Sra and R. Hosseini. Geometric optimisation on positive definite matrices for elliptically contoured

distributions. In Advances in Neural Information Processing Systems, pages 2562–2570, 2013.
J. Sun, Q. Qu, and J. Wright. Complete dictionary recovery over the sphere ii: Recovery by

Riemannian trust-region method. arXiv:1511.04777, 2015.
M. Tan, I. W. Tsang, L. Wang, B. Vandereycken, and S. J. Pan. Riemannian pursuit for big matrix

recovery. In International Conference on Machine Learning (ICML-14), pages 1539–1547, 2014.
N. Tripuraneni, N. Flammarion, F. Bach, and M. I. Jordan. Averaging stochastic gradient descent on

Riemannian manifolds. arXiv preprint arXiv:1802.09128, 2018.
C. Udriste. Convex functions and optimization methods on Riemannian manifolds, volume 297.

Springer Science & Business Media, 1994.
B. Vandereycken. Low-rank matrix completion by Riemannian optimization. SIAM Journal on

Optimization, 23(2):1214–1236, 2013.
Z. Wang, K. Ji, Y. Zhou, Y. Liang, and V. Tarokh. Spiderboost: A class of faster variance-reduced

algorithms for nonconvex optimization. arXiv preprint arXiv:1810.10690, 2018.
A. Wiesel. Geodesic convexity and covariance estimation. IEEE Transactions on Signal Processing,

60(12):6182–6189, 2012.
L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance reduction.

SIAM Journal on Optimization, 24(4):2057–2075, 2014.
X. Yuan, W. Huang, P.-A. Absil, and K. A. Gallivan. A Riemannian quasi-Newton method for

computing the Karcher mean of symmetric positive definite matrices. Florida State University,
(FSU17-02), 2017.

8

H. Zhang and S. Sra. First-order methods for geodesically convex optimization. arXiv:1602.06053,
2016.

H. Zhang and S. Sra. Towards Riemannian accelerated gradient methods. arXiv preprint
arXiv:1806.02812, 2018.

H. Zhang, S. J. Reddi, and S. Sra. Riemannian SVRG: Fast stochastic optimization on Riemannian
manifolds. In Advances in Neural Information Processing Systems, pages 4592–4600, 2016.

T. Zhang, A. Wiesel, and M. S. Greco. Multivariate generalized Gaussian distribution: Convexity
and graphical models. Signal Processing, IEEE Transactions on, 61(16):4141–4148, 2013.

P. Zhou, X.-T. Yuan, and J. Feng. Faster first-order methods for stochastic non-convex optimization
on riemannian manifolds. arXiv preprint arXiv:1811.08109, 2018.

9

Appendix

A Proof of Theorem 1

The proof of Theorem 1, Theorem 2 and Theorem 4 all follows from three steps: bound the variance
of the gradient estimator; prove that function value decrease in expectation per iteration; bound the
number of iterations with Assumption 2.

First we bound the variance of the estimator vk at each step.
Lemma 1. Under Assumptions1, 2, 3 and parameter setting in (4), ∀k ≥ 0, let k0 = bk/qcq. Then
the iterates of Algorithm 1 satisfy

E[‖vk −∇f(xk)‖2|Fk0] ≤ ε2

Proof. Let Fk be the sigma field generated by the random variable xk. Then {Fk}k≥0 forms a
filtration. We can write the following equations

E[‖vk −∇f(xk)‖2|Fk] (8)

= E[‖Γxk
xk−1

[vk−1 −∇f(xk−1)]‖2|Fk]

+ E[‖∇fS2(xk)−∇f(xk) + Γxk
xk−1

[∇f(xk−1)−∇fS2(xk−1)]‖2|Fk]

+ 2E[〈Γxk
xk−1

[vk−1 −∇f(xk−1)],∇fS2(xk)−∇f(xk) + Γxk
xk−1

[∇f(xk−1)−∇fS2(xk−1)]〉|Fk]

(9)

= E[‖vk−1 −∇f(xk−1)‖2|Fk]+

E[‖∇fS2(xk)−∇f(xk) + Γxk
xk−1

[∇f(xk−1)−∇fS2(xk−1)]‖2|Fk]. (10)

The first equality follows by the identities

vk = ∇fS2(xk)− Γxk
xk−1

[∇fS2(xk−1)− vk−1],

∇f(xk) = ∇f(xk−1)−∇f(xk−1) +∇f(xk).

The second equality follows by the fact that ∇fS2(xk−1) and ∇fS2(xk) are unbiased estimators.
Denote zi = ∇f(xk; ξi)−∇f(xk)−Γxk

xk−1
(∇f(xk−1; ξi)−∇f(xk−1)),where f(·; ξi) is a sampled

function from the distribution of ξ as defined in (1). Note that E[zi|Fk0] = 0. Hence we have

E[‖∇fS2(xk)−∇f(xk) + Γxk
xk−1

[∇f(xk−1)−∇fS2(xk−1)]‖2|Fk] = E[‖ 1

S2

S2∑
i=1

zi‖2|Fk]

=
1

S2
E[‖zi‖2|Fk]

=
1

S2
E[‖∇f(xk; ξ)−∇f(xk)− Γxk

xk−1
(∇f(xk−1; ξ)−∇f(xk−1)))‖2|Fk].

Substitue in (8) and we get that

E[‖vk −∇f(xk)‖2|Fk] ≤E[‖vk−1 −∇f(xk−1)‖2|Fk]

+
1

S2
E[‖∇f(xk; ξ)− Γxk

xk−1
[∇f(xk−1; ξ)]‖2|Fk]

≤E[‖vk−1 −∇f(xk−1)‖2|Fk] + L2E[‖Exp−1xk−1
(xk)‖2|Fk]/S2

≤E[‖vk−1 −∇f(xk−1)‖2|Fk] + L2η2k−1‖vk−1‖2/S2,

≤E[‖vk−1 −∇f(xk−1)‖2|Fk] +
ε2

2q

where the first inequality follows by E[‖x‖2] ≥ E[‖x− E[x]‖2]. The last inequality follows by the
value of S2. Apply the bound recursively and denote k0 = bk/qcq, we get

E[‖vk −∇f(xk)‖2|Fk0] ≤ E[‖vk0 −∇f(xk0)‖2|Fk0] + q
ε2

2q
≤ ε2.

1

Second, we show that the function value decreases.
Lemma 2. Under Assumptions1, 2, 3 and parameter setting in (4), ∀k ≥ 0, let k0 = bk/qcq. Then

E[f(xk+1)− f(xk)|Fk0] ≤ E[−‖vk‖
2

8L
+

1

4L
‖∇f(xk)− vk‖2|Fk0]

Proof. By geodesically L−smoothness and (2), we have

f(xk+1)− f(xk) ≤ 〈∇f(xk),Exp−1x (xk+1)〉+
L

2
‖Exp−1xk

(xk+1)‖2

≤ −ηk〈∇f(xk), vk〉+
L

2
η2k‖vk‖2

= (−ηk +
Lη2k

2
)‖vk‖2 − ηk〈∇f(xk)− vk, vk〉

≤ (−ηk/2 +
Lη2k

2
)‖vk‖2 +

ηk
2
‖∇f(xk)− vk‖2.

The second inequality follows from the update rule of xk in Algorithm 1. The last inequality follows
from −‖a‖2 − 2〈a, b〉 ≤ ‖b‖2. After taking expectation, we get

E[f(xk+1)− f(xk)|Fk0] ≤ E[
−1

8L
‖vk‖2 +

1

4L
‖∇f(xk)− vk‖2|Fk0]

The inequality follows by ηk = 1
2L .

Finally we are ready to prove the theorem.

Proof of Theorem 1. First, we rearrange and do a telescopic sum of the inequality in Lemma 4.

T−1∑
k=0

E[
‖vk‖2

8L
] ≤ E[f(x0)− f(xT) +

T−1∑
k=0

1

4L
‖∇f(xk)− vk‖2] (11)

Notice that

1

T

T−1∑
k=0

E[‖∇f(xk)‖2] ≤ 1

T

T−1∑
k=0

E[2‖vk‖2 + 2‖vk −∇f(xk)‖2] ≤ 16LM/T + 6ε2. (12)

Substitute in T = 4ML/ε2 and we proved the theorem. The expected number of IFO calls can be
computed as

TS1/q + E[
T−1∑
k=0

S2,k] ≤ 8MLσ2/ε3 + E[
T−1∑
k=0

qL2‖Exp−1xk−1
(xk)‖2

2ε2
] (13)

≤ 8MLσ2/ε3 +
q

8ε2
(8ML+ 2Tε2) ≤ 8ML(σ2 + 3)/ε3 (14)

B Proof of Theorem 2

The proof techniques are exactly the same as those in Section A, with the only changes being that
E[‖vk0 − ∇f(xk0)‖2|Fk0] ≡ 0 and we use (6) rather than (4) as the parameters. We state two
corresponding lemmas and leave out the details to avoid repetition.
Lemma 3. Under Assumptions 1, 2 and the parameter choice in (6), ∀k ≥ 0, let k0 = bk/qcq. Then
the iterates of Algorithm 1 satisfy

E[‖vk −∇f(xk)‖2|Fk0] ≤ ε2

2

Lemma 4. Under Assumptions 1, 2 and the parameter choice in (6), ∀k ≥ 0, let k0 = bk/qcq. Then

E[f(xk+1)− f(xk)|Fk0] ≤ E[−‖vk‖
2

8L
+

1

4L
‖∇f(xk)− vk‖2|Fk0]

Proof of Theorem 2. The proof follows exactly the same arguments as the proof of Theorem 1.

C Proof of Theorem 3

Proof. By Theorem 2, we know that when the R-SPIDER-nonconvex algorithm terminates in iteration
t, it returns xt satisfying

E[‖∇f(xt)‖2] ≤ M0

2tτ
.

By Assumption 4, we know that

E[f(xt)− f(x∗)] ≤ E[‖∇f(xt)‖2]τ ≤ M0

2t
, (15)

By theorem 2, in iteration t the R-SPIDER-nonconvex algorithm makes less than

n+
8L(1 +

√
n)(f(xt)− f∗)
ε2t

= n+
2t80τL(1 +

√
n)(f(xt)− f∗)
M0

IFO calls in expectation. Take expectation and substitute in the bound in (15), we get that the expected
number of IFO calls is less than (n+ 40κ(1 +

√
n))T .

D Proof of Theorem 4

As usual, we start with bounding the variance of the gradient estimator.

Lemma 5. Let k0 = bk/qcq. Under Assumptions 1, 2, 4 and the parameter choice in (7), let vk, xk
be intermediate values of Algorithm3. ∀k ≥ 0, E[‖vk −∇f(xk)‖2|Fk0] ≤ δk0 .

Proof. Based on the implementation of Algorithm 3, for i ∈ {k0, k0 + 1, ..., k0 + q − 1}, notice that
δi = δk0 . We denote δ = δi = δk0 for simplicity. Following the proof procedure in Lemma 1,

E[‖vk −∇f(xk)‖2|Fk] ≤ E[‖vk−1 −∇f(xk−1)‖2|Fk] + L2‖Exp−1xk−1
(xk)‖2/Sk (16)

≤ E[‖vk−1 −∇f(xk−1)‖2|Fk] + δ/q. (17)

Apply this recursively and denote k0 = bk/qcq, we get

E[‖vk −∇f(xk)‖2|Fk0] ≤ E[‖vk0 −∇f(xk0)‖2|Fk0] + qδ/q ≤ δ. (18)

Then we prove that function value decreases in each epoch (q iterations).

Lemma 6. Let k0 = bk/qcq, ∀k ∈ Z>0. Under Assumptions 1, 2, 4 and the parameter choice in (7),
if we run Algorithm 3 for q iteration, we have

E[f(xk0+q)− f(x∗)|Fk0] ≤ max{(f(xk0)− f(x∗))/2, δk0τ}. (19)

Proof. By geodesically L−smooth, we have

f(xk+1)− f(xk) ≤ 〈∇f(xk),Exp−1xk
(xk+1)〉+

L

2
‖Exp−1xk

(xk+1)‖2 (20)

= −η〈∇f(xk), vk〉+
Lη2

2
‖vk‖2 (21)

= − 1

2L
〈∇f(xk), vk〉+

1

8L
‖vk‖2. (22)

3

After taking expectation, we get

E[f(xk+1)− f(xk)|Fk0] ≤ E[− 1

4L
‖∇f(xk)‖2|Fk0] +

1

4L
E[‖vk −∇f(xk)‖2|Fk0]. (23)

We used the fact that

E[‖vk‖2|Fk0] = E[‖vk−∇f(xk)‖2|Fk0]+E[‖∇f(xk)‖2|Fk0]+E[2〈vk−∇f(xk),∇f(xk)〉|Fk0].

Let ∆k := f(xk)− f(x∗). By Assumption 4 and Lemma 5, we get

E[∆k+1|Fk0] ≤ E[(1− 1

4Lτ
)∆k +

1

4L
δk0 |Fk0]. (24)

By choice of parameter defined in 7, we get for ρ = 1− 1
4Lτ

E[∆k+1|Fk] ≤ E[ρ∆k +
1

4L
δk0 |Fk0]. (25)

Since ∆k0 = f(xk0)− f(x∗), we know that after q = d4Lτ log(4)e iterations, we have

E[∆k0+q|Fk0] ≤ ∆k0/4 + δk0τ log(4) ≤ max{∆k0/2, 2δk0τ}. (26)

Now we are ready to prove Theorem 4.

Proof of Theorem 4. We prove the convergence result by induction. The base case follows by
choosing M0 such that

M0 ≥M = f(x0)− f(x∗). (27)

If E[f(xqn)− f(x∗)] ≤ 2−nM0, then by Lemma 6, we have

E[f(xqn+q)− f(x∗)|Fqn] ≤ max{2δqnτ, (f(xqn)− f(x∗))/2}. (28)

By Algorithm 3, we know that δqn = 2−n−2M0/τ . After taking expectation, we get by inductive
assumption that

E[f(xqn+q)− f(x∗)] ≤ 2δqnτ = 2−(n+1)M0. (29)

We have already proved the convergence of objective values. Below, we bound the expected number
of IFO calls in total. By L−smoothness, we have

f(xk+1)− f(xk) ≤ 〈∇f(xk),Exp−1xk
(xk+1)〉+

L

2
‖Exp−1xk

(xk+1)‖2 (30)

≤ −η〈∇f(xk), vk〉+
Lη2

2
‖vk‖2 (31)

≤ 1

4L
〈2(vk −∇f(xk)), vk〉 −

3

8L
‖vk‖2 (32)

≤ − 1

8L
‖vk‖2 +

1

L
‖vk −∇f(xk)‖2. (33)

In the last inequality we used the fact that 〈a, b〉 ≤ ‖a‖2 + ‖b‖2. Take expectation and we get

E[f(xk+1)− f(xk)|Fk0] ≤ −L
2
E[‖Exp−1xk

(xk+1)‖2|Fk0] + δk0/L. (34)

Let k0 = nq be a integer multiple of q. Substitute in the choice of η, δ and sum over k. Then we get

E[f(xk0+q)− f(xk0)|Fk0] ≤ (−L
2

)

k0+q−1∑
k=k0

E[‖Exp−1xk
(xk+1)‖2|Fk0] + qδk0/L. (35)

4

Rearrange and we get

k+q−1∑
k=k0

E[‖Exp−1xk
(xk+1)‖2|Fk] ≤ 2

L
(E[f(xk0)− f(xk0+q)|Fk0] + qδk0/L). (36)

Given that f(xk0+1) ≥ f(x∗), we get

E[

k0+q−1∑
k=k0

Sk|Fk0] =
qL2

δk0

k0+q−1∑
k=k0

E[‖Exp−1xk
(xk+1)‖2|Fk0] + n (37)

≤ 2qL((f(xk0)− f(x∗))/δk0 + q/L) + n. (38)

Take another expectation with respect to xk0

E[

k+q∑
k=k0+1

Sk] ≤ 2qL(τ + q/L) + n ≤ 100L2τ2 + n. (39)

Therefore, the total expected number of IFO calls is limited by K(n+ 100L2τ2).

5

Proceedings of Machine Learning Research vol 99:1–29, 2019 32nd Annual Conference on Learning Theory

Consistency of Interpolation with Laplace Kernels is a
High-Dimensional Phenomenon

Alexander Rakhlin
Xiyu Zhai
Massachusetts Institute of Technology

Editors: Alina Beygelzimer and Daniel Hsu

Abstract
We show that minimum-norm interpolation in the Reproducing Kernel Hilbert Space correspond-
ing to the Laplace kernel is not consistent if input dimension is constant. The lower bound holds
for any choice of kernel bandwidth, even if selected based on data. The result supports the em-
pirical observation that minimum-norm interpolation (that is, exact fit to training data) in RKHS
generalizes well for some high-dimensional datasets, but not for low-dimensional ones.
Keywords: List of keywords

1. Introduction

Can a method perfectly fitting the training data perform well out-of-sample? In the last few years,
this question was raised in the context of over-parametrized neural networks (Zhang et al., 2016;
Belkin et al., 2018b), kernel methods (Belkin et al., 2018b; Liang and Rakhlin, 2018), and local
nonparametric rules (Belkin et al., 2018a,c). Experiments on a range of real and synthetic datasets
confirm that procedures attaining zero training error do not necessarily overfit and can generalize
well (Wyner et al., 2017; Zhang et al., 2016; Belkin et al., 2018b; Liang and Rakhlin, 2018). In
particular, Kernel Ridge Regression

f̂ ∈ argmin
f∈H

1

n

n∑
i=1

(f(xi)− yi)2 + λ ‖f‖2H (1)

performs “unreasonably well” in the regime λ = 0, even though the solution (generally) interpolates
the data. HereH is a Reproducing Kernel Hilbert Space (RKHS) corresponding to a kernelK, ‖·‖H
is the corresponding RKHS norm, and (x1, y1), . . . , (xn, yn) ∈ Rd × R are the training data. Since
the argmin in (1) is not unique when λ = 0, we consider the minimum-norm interpolating solution

argmin
f∈H

‖f‖H (2)

s.t. f(xi) = yi, i = 1, . . . , n

The conditions under which interpolation, such as Kernel “Ridgeless” Regression, performs
well are poorly understood. (Liang and Rakhlin, 2018) studied the high-dimensional regime n �
d, explicating (under additional assumptions) a phenomenon of implicit regularization, due to the
curvature of the kernel function, high dimensionality, and favorable geometric properties of the
training data, as quantified by the spectral decay of the kernel and covariance matrices.

c© 2019 A. Rakhlin & X. Zhai.

INTERPOLATION LOWER BOUNDS

The mechanism of implicit regularization in (Liang and Rakhlin, 2018) relies on high dimen-
sionality d of the input space, and it is unclear whether such a “blessing of high dimensionality” is
necessary for good out-of-sample performance of interpolation. Perhaps there is a different mech-
anism that leads to generalization of minimum-norm interpolants (2) for any dimensionality of the
input space? Our experiments suggest that this is not the case: minimum-norm interpolant does not
appear to perform well in low dimensions. The present paper provides a theoretical justification for
this observation. We show that the estimation error of (2) with the Laplace kernel does not converge
to zero as the sample size n increases, unless d scales with n.

We chose to study the Laplace kernel

Kc(x, x
′) = cde−c‖x−x

′‖ (3)

for several reasons. First, Belkin et al. (2018b) argue that Laplace kernel regression, in comparison
to Gaussian kernel regression, is more similar to ReLU neural networks. More precisely, the non-
linearities introduced by the Laplace kernel allow SGD to have a large “computational reach”. For
instance, as argued in (Belkin et al., 2018b), the number of epochs required to fit natural vs random
labels for Laplace kernel is well-aligned with the corresponding behavior in ReLU networks. Sec-
ond, for small c, the minimum-norm interpolant in d = 1 corresponds to simplicial interpolation of
Belkin et al. (2018a), and it may be possible to borrow some of the intuition from the latter paper
for higher dimensions. Finally, the RKHS norm corresponding to Laplace kernel can be related to
a Sobolev norm, facilitating the development of the lower bound in this paper. We also note that
non-differentiability of the kernel function at 0 puts it outside of the assumptions made by (Liang
and Rakhlin, 2018); however, a closer look at (El Karoui, 2010) reveals that it is enough to assume
differentiability in a neighborhood of 0. Hence, the upper bounds of (Liang and Rakhlin, 2018) can
be extended to the case of Laplace kernel, under the high-dimensional scaling d � n.

The “width” parameter c in (3) plays an important role. In particular, the upper bounds of (Liang
and Rakhlin, 2018) were only shown in the specific regime of this parameter, c �

√
d. The choice

of c presents a key difficulty for proving a lower bound: perhaps a clever data-dependent choice
can yield a good estimator even in low-dimensional situations? We prove a strong lower bound: no
choice of c can make the interpolation method (2) consistent if d is a constant.

The main theorem can be informally summarized as follows. If Yi are noisy observations of
f∗(Xi) at random points Xi, i = 1, . . . , n, the minimum-norm interpolant f̂c — for the case of the
Laplace kernel with any data-dependent choice of width c — is inconsistent, in the sense that with
probability close to 1,

EX∼P(f̂c(X)− f∗(X))2 ≥ Ωd(1).

Here P is the marginal distribution of X and X1, . . . , Xn, f∗ is the regression function, and the
order notation Ωd stresses the fact that d is a constant. The standard decomposition

E(f̂c(X)− f∗(X))2 = E(f̂c(X)− Y)2 − E(f∗(X)− Y)2

implies the same lower bound for excess loss.

2. Main Results

Let f∗ be an unknown smooth function over Ω = BRd(0, 1) that is not identically zero, and P an
unknown distribution over Ω with probability density function ρ bounded as

0 < cρ ≤ ρ ≤ Cρ. (4)

2

INTERPOLATION LOWER BOUNDS

Suppose X1, · · · , Xn are sampled i.i.d. according to P , and

Yi = f∗(Xi) + ξi (5)

with ξi assumed to be i.i.d. noise with P(ξi = +1) = P(ξi = −1) = 1
2 . We shall use S to denote

the collection {(Xi, Yi)}ni=1.

Theorem 1 Let f̂c be the minimum-norm solution (2) interpolating (Xi, Yi), with respect to Laplace
kernel Kc(x, y) = cde−c‖x−y‖. For fixed n and odd dimension d, with probability at least 1 −
O
(

1√
n

)
over the draw of S ,

∀c > 0, EX∼P(f̂c(X)− f∗(X))2 ≥ Ωd(1). (6)

Remark 2 We emphasize that the lower bound holds for any data-dependent choice c. The require-
ment that d be odd is for technical simplicity, and we believe that our results can be extended to
even dimensions by using more complicated tools in harmonic analysis. The assumption of binary
noise process is for brevity, and the noise magnitude can be changed by simple rescaling.

For regularized least squares (1), the parameter λ > 0 leads to a control of the norm of f̂ .
In the absence of explicit regularization, such a complexity control is more difficult to establish.
Intuitively, the norm of the solution can be greatly affected by distances between datapoints, since
the interpolating solution fits the noisy function values (separated by a constant), implying a large
derivative if datapoints are close. More precisely, given the values X1, . . . , Xn, we define

ri := min(min
j 6=i
‖Xi −Xj‖, dist(Xi, ∂Ω)) (7)

for each i = 1, . . . , n. Analyzing the behavior of the random variables ri underlies the main proofs
in this paper. While it is known that E[ri] . n−1/d (Györfi et al., 2006), our proofs require more
delicate control of the tails of powers of these variables, including control of the inverse r−1

i . As
we show, the estimation error can be related to these random quantities, via Gagliardo-Nirenberg
interpolation inequalities and control of higher-order derivatives.

More precisely, we show the following estimates on the random variables ri:

Proposition 3 There are constants C1, C2 depending on d, such that with probability 1−O(1√
n

),
the following holds for all −1 ≤ k ≤ d:

C1n
− k

d ≤ 1

n

n∑
i=1

rki ≤ C2n
− k

d . (8)

As a consequence, we can show that, with high probability, for at least a constant proportion of the
dataset, the minimal distances ri are, up to an absolute constant, of size n−1/d.

Proposition 4 For any 0 < α < 1, there is constant C ′1, C
′
2 depending on α, d, such that with

probability 1−O(1√
n

), we have

|{i : C ′1/
d
√
n ≤ ri ≤ C ′2/ d

√
n}| ≥ αn. (9)

3

INTERPOLATION LOWER BOUNDS

In particular, the Lipschitz constant of the interpolating solution is necessarily at least n1/d. On
the other hand, the tight control of ri’s, together with properties of the RKHS corresponding to
Laplace kernel, implies that the RKHS norm squared of the solution is O(n1+ 1

d), as we prove in
Proposition 19. This should be contrasted with the lower bound of Ω(exp{cn1/d}) for the norm
of any interpolating solution with respect to the Gaussian kernel given in (Belkin et al., 2018b,
Theorem 1).

3. Proof

We start with a high-level outline of the proof:

(i) We show that in odd dimension d, the RKHS norm has an explicit form, equal to a Sobolev
norm.

(ii) As the RKHS norm becomes the Sobolev norm, we can control “smoothness” of f̂c by control-
ling the RKHS norm. Since f̂c and f∗ differ on pointsXi by the amount ξi, and both functions
are “smooth”, we can choose small regions around Xi such that the squared loss over these
regions can be lower bounded. Unfortunately, the lower bound becomes vacuous as c goes to
infinity. Hence, we need a different strategy for “large” c.

(iii) When c is large, the RKHS norm approximates the L2-norm of Rd. We then show that after c
passes a certain threshold, the L2-norm of f̂c becomes smaller than a constant fraction of the
norm of f∗, implying a lower bound on the total squared loss.

(iv) Remarkably, the two distinct lower bounds in (ii) and (iii) cover all the choices of c, a result
that is not immediately evident.

More specifically, we shall show that

Proposition 5 (First Method) Fix a positive constant A > 0. Then with probability at least 1 −
Od,ρ,A

(
1√
n

)
, for any c ≤ A d

√
n we have

L(f̂c) , E
(
f̂c(X)− f∗(X)

)2
≥ Ωd,ρ,f∗,A (1) . (10)

Proposition 6 (Second Method) There exists a constant B = B(d, ρ, f∗) > 0 independent of n
such that with probability at least 1−Od,ρ

(
1√
n

)
, for any c > B d

√
n we have

E
(
f̂c(X)− f∗(X)

)2
≥ Ωd,ρ,f∗ (1) . (11)

Now we take the constant A in the first method to be equal to B and combine the two proposi-
tions, concluding that with high probability

∀c ∈ R, L(f̂c) ≥ Ω(1), (12)

concluding the proof of Theorem 1.

4

INTERPOLATION LOWER BOUNDS

Intuition The two modes of failure described in Propositions 5 and 6 are illustrated in Figure 1.
For “small” value of c, the solution creates an overly smooth (essentially piece-wise linear) interpo-
lation, while for “large” values, the function behaves more similarly to a collection of thin spikes.
In the first case, the non-vanishing (with n) MSE is due to the inability of the interpolated solution
to smoothly track the true regression function, while in the second case the solution has an L2(Ω)
norm that is only a fraction of the corresponding norm of the true regression function. The key mes-
sage of the paper is that in low dimensions there is no “middle ground” (that is, a choice of c) that
would make the interpolation rule consistent as n increases. It is worth emphasizing again that the
low-dimensional intuition does not carry over to high dimensions, and the MSE of the interpolated
solution can be small, under various conditions on the eigenvalue decay of the sample covariance
matrix (Liang and Rakhlin, 2018).

Figure 1: The two modes of failure of minimum-norm interpolation in low dimension. Regression
function f∗ depicted in blue, noisy observations are depicted in red, and the minimum-
norm interpolation with respect to Laplace kernel – in green. Left: c = 1/10. Right:
c = 10.

3.1. Notation

We work with the RKHSHc corresponding to the Laplace kernel (3). The subscript emphasizes our
focus on the width c. The inner product in Hc is denoted by 〈f, g〉Hc

, and ‖f‖2Hc
= 〈f〉Hc

denotes
the squared norm. We will be using the scaling as described in Proposition 7 in Section 4 so that

〈f〉Hc =

d+1
2∑
i=0

(d+1
2

i

)
c−2i〈f〉i = ‖f‖L2(Rd) +

d+1
2∑
i=1

(d+1
2

i

)
c−2i〈f〉i (13)

where
〈f〉i ,

∫
Rd

|Ff |2‖p‖2idp = Cd,i‖Dif‖2L2(Rd), (14)

with Ff denoting the Fourier transform of f .

3.2. First Method: Control of Hölder Continuity

Proof [of Proposition 5]

5

INTERPOLATION LOWER BOUNDS

Denoting f , f̂c − f∗,

E
(
f̂c(X)− f∗(X)

)2
≥ Ωd,ρ

(
‖f‖2L2(Ω)

)
. (15)

Hence, we need only to give a lower bound for ‖f‖2L2(Ω). From Proposition 18, for any I ⊂ [n],

‖f‖2L2(Ω) ≥ min

1,Ωd

 min

i∈I
r−d−1
i

∑
i∈I

rdi f(Xi)
2

max
i∈I

r−d−1
i + cd+1〈f〉Hc

d∑
i∈I

rdi f(Xi)
2

 . (16)

We will now prove Proposition 5 by giving upper bounds for max
i∈I

r−d−1
i and cd+1〈f〉Hc and

lower bounds for min
i∈I

r−d−1
i and

∑
i∈I

rdi f(Xi)
2.

Estimate A. From Proposition 4, with probability 1−Od,ρ(1√
n

) there is a subset I ⊂ [n] of size at

least 9
10n such that

Ωd,ρ

(
n−

1
d

)
≤ min

i∈I
ri ≤ max

i∈I
ri ≤ Od,ρ

(
n−

1
d

)
. (17)

Hence,
Ωd,ρ

(
n

d+1
d

)
≤ min

i∈I
r−d−1
i ≤ max

i∈I
r−d−1
i ≤ Od,ρ

(
n

d+1
d

)
. (18)

Estimate B. Note that for any i,

f(Xi)
2 = (f̂c(Xi)− f∗(Xi)

2 = (Yi − f∗(Xi))
2 = ξ2

i = 1, (19)

Then applying equation (17) we get

∑
i∈I

rdi f(Xi)
2 ≥ Ωd,ρ

(∑
i∈I

(
n−

1
d

)d
· 1

)
≥ Ωd,ρ,f∗,A(1). (20)

Estimate C. From Proposition 19 in the Appendix, with probability 1−Od,ρ
(

1√
n

)

cd+1〈f̂c〉Hc ≤ cd+1

(
1

3
‖f∗‖2L2(Ω) +Od,ρ,f∗

(
d
√
n

c

(
1 +

d
√
n

c

)d))
≤ Od,ρ,f∗

(
cd+1 + d

√
n
(
c+ d
√
n
)d)

≤ Od,ρ,f∗
(
Ad+1n

d+1
d + d

√
n
(
A d
√
n+ d
√
n
)d)

= Od,ρ,f∗,A

(
n

d+1
d

)
.

(21)

It then follows that

cd+1〈f〉Hc ≤ 2cd+1〈f̂c〉Hc + 2cd+1〈f∗〉Hc ≤ Od,ρ,f∗,A(n
d+1
d). (22)

6

INTERPOLATION LOWER BOUNDS

We are now ready to put all these estimates together. With probability 1−Od,ρ
(

1√
n

)
min

i∈I
r−d−1
i

∑
i∈I r

d
i f(Xi)

2

max
i∈I

r−d−1
i + cd+1〈f〉Hc

d∑
i∈I

rdi f(Xi)
2 ≥ Ωd,ρ,f∗,A(1). (23)

As a result, with probability at least 1−Od,ρ,f∗,A
(

1√
n

)
,

L(f̂c) = E
(
f̂c(X)− f∗(X)

)2
≥ Ωd,ρ,f∗,A (1) . (24)

3.3. Second Method: Control of L2 norm

The lower bound in this regime boils down to proving an upper bound on the L2(Ω) norm of the
interpolated solution as compared to the L2(Ω) norm of f∗. Proposition 19 proves this fact by
constructing another interpolating solution whose RKHS norm can be explicitly controlled. Since
f̂c is the minimal norm solution, the result follows by triangle inequality.
Proof [of Proposition 6]

We need only to show the existence of B such that

∀c > B d
√
n, ‖f̂c − f∗‖2L2(Ω) ≥ Ωd,ρ,f∗ (1) . (25)

From equation (131) in Proposition 19 in the Appendix,

〈f̂c〉Hc ≤
1

3
‖f∗‖2L2(Ω) +Od,ρ,f∗

(
d
√
n

c

(
1 +

d
√
n

c

)d)

≤ 1

3
‖f∗‖2L2(Ω) +Od,ρ,f∗

(
1

B

(
1 +

1

B

)d)
.

(26)

Then for B = B(d, ρ, f∗) large enough,

〈f̂c〉Hc ≤
1

3
‖f∗‖2L2(Ω) +

1

3
‖f∗‖2L2(Ω) ≤

2

3
‖f∗‖2L2(Ω). (27)

Now, by triangle inequality,

‖f̂c − f∗‖L2(Ω) ≥ ‖f∗‖L2(Ω) − ‖f̂c‖L2(Ω) ≥

(
1−

√
2

3

)
‖f∗‖L2(Ω) = Ωd,ρ,f∗ (1) (28)

as desired. This completes the proof.

We presented brief proofs of the lower bounds, postponing much of the technical details to the
Appendix. Next section is devoted to analyzing the RKHS corresponding to the Laplace kernel,
and, in particular, to proving a succinct expression for the RKHS norm.

7

INTERPOLATION LOWER BOUNDS

4. Explicit form of the RKHS norm

In this section, we provide an expression, up to constant factors, for the RKHS norm corresponding
to the Laplace kernel, along with the associated eigenfunctions and eigenvalues. We believe these
estimates will be useful for future study of interpolation and other methods with Laplace kernels.
Notably, the expansions provided in the next proposition are finite (with only (d+2)/2 terms), given
the choice of the basis, as opposed to infinite-dimensional expansions for the Gaussian kernel.

Proposition 7 Consider the kernel Kc(x, y) = cde−c‖x−y‖ in Rd with d odd. The corresponding
RKHS norm is given by

〈f〉Hc ∼
∫
Rd

|Ff |2(1 + ‖p‖2/c2)
d+1
2 dp ∼

d+1
2∑
i=0

(d+1
2

i

)
c−2i〈f〉i. (29)

where
〈f〉i =

∫
Rd

|Ff |2‖p‖2idp = Cd,i‖Dif‖2L2(Rd). (30)

and the Fourier transformation F is chosen such that

〈f〉0 = ‖f‖2L2(Ω). (31)

As scaling does not change the output of the algorithm, we take the convention that

〈f〉Hc =

d+1
2∑
i=0

(d+1
2

i

)
c−2i〈f〉i = ‖f‖L2(Rd) +

d+1
2∑
i=1

(d+1
2

i

)
c−2i〈f〉i (32)

Proof Consider the integral operator

TKf(x) =

∫
y
K(x, y)f(y)dy. (33)

We have
〈f, g〉Hc = 〈f, T−1

K g〉L2(Rd). (34)

An eigenspace-decomposition of TK immediately gives the form of the inner product in the RKHS.
Since Kc(x, y) = k(x − y) with k(x) = cde−c‖x‖, it is easy to verify that the family {hp(x) =
eip·x}p∈Rd are eigenfunctions of TK :

TKhp(x) =

∫
y
k(x− y)eip·ydy = λ(p)hp(x) (35)

where
λ(p) =

∫
y
k(x− y)eip·(y−x)dy =

∫
x
k(x)e−ip·xdx. (36)

Therefore, the inner product of RKHS can be written as

〈f, g〉Hc =

∫
x,p,y

1

λ(p)−1
f(x)∗hp(x)hp(y)∗g(y)dxdpdy (37)

8

INTERPOLATION LOWER BOUNDS

which can be further rewritten as:

〈f, g〉Hc =

∫
p

1

λ(p)−1
Ff(p)∗Fg(p)dp. (38)

Now for λ(p), we have
λ = Fk. (39)

In fact, λ(p) can be explicitly computed (see e.g. (Stein and Weiss, 1971, Thm 1.4)):

λ(p) = cd
∫
Rd

e−c‖x‖e−ipxdx

=

∫
Rd

e−‖x‖e−ipx/cdx

The last expression is equal to∫
Rd

(
1√
π

∫ ∞
0

e−η
√
η
e−‖x‖

2/4ηdη

)
e−ipx/cdx

=
1√
π

∫ ∞
0

e−η
√
η

(∫
Rd

e−‖x‖
2/4ηe−ipx/cdx

)
dη

=
1√
π

∫ ∞
0

e−η
√
η

(4πη)d/2e−η‖p‖
2/c2dη

=
2dπ(d−1)/2Γ(d+1

2)

(1 + ‖p‖2/c2)(d+1)/2
.

Then

λ(p)−1 =
(1 + ‖p‖2/c2)(d+1)/2

2dπ(d−1)/2Γ(d+1
2)

=

(d+1)/2∑
i=0

(d+1
2
i

)
‖p‖2i/c2i

2dπ(d−1)/2Γ(d+1
2)

(40)

and ∫
p

1

λ(p)−1
Ff(p)∗Fg(p)dp =

∫
p

(d+1)/2∑
i=0

(d+1
2
i

)
‖p‖2i/c2i

2dπ(d−1)/2Γ(d+1
2)
Ff(p)∗Fg(p)dp (41)

=

(d+1)/2∑
i=0

(d+1
2
i

)
/c2i

2dπ(d−1)/2Γ(d+1
2)

∫
p
‖p‖2iFf(p)∗Fg(p)dp, (42)

implying the result.

5. Discussion

We have presented theoretical evidence that minimum-norm interpolation with Laplacian kernel
is not consistent if d does not scale with n. On the other hand, in the high-dimensional scaling
regime n � d, (Liang and Rakhlin, 2018) exhibited a phenomenon of implicit regularization that

9

INTERPOLATION LOWER BOUNDS

allows, under a number of additional assumptions, the estimation error to be small. The interaction
of dimensionality, sample size, and eigenvalue decays for the population and sample covariance
matrices is complex, and identifying all the regimes when interpolation succeeds is still a largely
unexplored area. In particular, our lower bound becomes vacuous as soon as d starts to scale with
n. It would be interesting to understand the minimal scaling of d along with assumptions on the
underlying distribution that allow minimum-norm interpolation to succeed.

Partial motivation for the study of interpolation methods comes from the recent successes of
neural networks. These overparametrized models are typically trained to achieve zero error on the
training data (Zhang et al., 2016; Belkin et al., 2018b), yet perform well out-of-sample. Recent
work connecting sufficiently wide neural networks and the effective kernel (Mei et al., 2018; Chizat
and Bach, 2018; Daniely, 2017; Jacot et al., 2018; Du et al., 2018) suggests that interpolating neural
networks can be studied through the lens of kernel methods. In particular, it can be shown that the
limiting solutions in such cases are, in fact, minimum-norm interpolants with respect to the corre-
sponding kernel. Hence, further study of strengths and limitations of minimum-norm interpolation
can shed light on performance of neural networks.

Acknowledgments

This work was partly supported by the DARPA Lagrange program and the MIT-Sensetime Alliance
on Artificial Intelligence.

References

Mikhail Belkin, Daniel Hsu, and Partha Mitra. Overfitting or perfect fitting? risk bounds for classi-
fication and regression rules that interpolate. arXiv preprint arXiv:1806.05161, 2018a.

Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need to under-
stand kernel learning. arXiv preprint arXiv:1802.01396, 2018b.

Mikhail Belkin, Alexander Rakhlin, and Alexandre B Tsybakov. Does data interpolation contradict
statistical optimality? arXiv preprint arXiv:1806.09471, 2018c.

Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-
parameterized models using optimal transport. arXiv preprint arXiv:1805.09545, 2018.

Amit Daniely. Sgd learns the conjugate kernel class of the network. In Advances in Neural Infor-
mation Processing Systems, pages 2422–2430, 2017.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

Noureddine El Karoui. The spectrum of kernel random matrices. The Annals of Statistics, 38(1):
1–50, 2010.

László Györfi, Michael Kohler, Adam Krzyzak, and Harro Walk. A distribution-free theory of
nonparametric regression. Springer Science & Business Media, 2006.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. arXiv preprint arXiv:1806.07572, 2018.

10

INTERPOLATION LOWER BOUNDS

Giovanni Leoni. A First Course in Sobolev Spaces, Second Edition. American Mathematical Soci-
ety, 2017.

Tengyuan Liang and Alexander Rakhlin. Just interpolate: Kernel” ridgeless” regression can gener-
alize. arXiv preprint arXiv:1808.00387, 2018.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of
two-layers neural networks. arXiv preprint arXiv:1804.06561, 2018.

Elias M Stein and Guido Weiss. Introduction to Fourier analysis on Euclidean spaces (PMS-32).
Princeton University Press, 1971.

Abraham J Wyner, Matthew Olson, Justin Bleich, and David Mease. Explaining the success of
adaboost and random forests as interpolating classifiers. The Journal of Machine Learning Re-
search, 18(1):1558–1590, 2017.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

Appendix A. Bounds of Average Separation

A.1. Main Claims

Proof [of Proposition 4] With probability at least 1 − O(1√
n

) for all −1 ≤ k ≤ d, for constants
C1, C2,

C1n
− k

d ≤ 1

n

n∑
i=1

rki ≤ C2n
− k

d . (43)

Let β = 1− 1
2(1− α) = 1+α

2 . Let I1 be a subset of [n] of size ceil(βn) such that ∀i ∈ I1, j ∈
[n] \ I1, ri ≥ rj . Let r = mini∈I1 ri. Then

C2
d
√
n ≥ 1

n

∑
i

r−1
i ≥

1

n

∑
i∈I1

r−1
i ≥

1

n

βn

r
=
β

r
. (44)

It then follows that r ≥ C2/(β d
√
n). Take C ′1 = C2/β. Hence, for any i ∈ I1, ri ≥ C ′1/

d
√
n.

Similarly, there is a subset I2 of [n] of size ceil(βn) such that ∀i ∈ I2, ri ≥ C ′2/
d
√
n. Note that

|I1 ∩ I2| ≥ αn, concluding the proof.

In the rest of this section, we prove Proposition 3. Since we have the inequality(
1

n

n∑
i=1

r−1
i

)−k
≤ 1

n

n∑
i=1

rki ≤

(
1

n

n∑
i=1

rdi

) k
d

(45)

for all −1 ≤ k ≤ d, we need only to prove that with high probability

1

n

n∑
i=1

rdi . n−1 (46)

11

INTERPOLATION LOWER BOUNDS

and
1

n

n∑
i=1

r−1
i . n

1
d . (47)

A.2. Average of rdi
The following is always true:

n∑
i=1

rdi .
n∑
i=1

m(B(Xi,
1

2
ri)) ≤ m(Ω) . 1 (48)

Then the result follows.

A.3. Average of r−1
i

A.3.1. STRATEGY

We shall use Chebyshev’s inequality to bound average of r−1
i , and thus we need to estimate Cov(r−1

i , r−1
j).

This step is not direct because ri, rj are not independent: both depend on Xi and Xj .
We define r̃i, r̃j for any fixed pair of (i, j) such that

• r̃i = ri, r̃j = rj with high probability

• r̃i is independent w.r.t Xj , r̃j is independent w.r.t Xi

We will then show that Cov(r̃i, r̃j) is small and that the difference between Cov(ri, rj) and
Cov(r̃i, r̃j) is small. Applying Chebyshev’s inequality then yields the result.

A.3.2. UPPER BOUND FOR E[r−1
i] AND E[r−2

i]

P(ri < r) = 1−mP(B(Xi, r)
c)n ≤ nmP(B(Xi, r)) . nrd. (49)

Then

Er−1
i = E

∫ ∞
0

I(r−1
i > s)ds

=

∫ ∞
0

EI(r−1
i > s)ds

=

∫ ∞
0

P(r−1
i > s)ds

≤
∫ ∞

0
min(1, Cdns

−d)ds

= s0 + Cdns
1−d
0 /(d− 1) where Cdns−d0 = 1

=
d

d− 1
s0

=
d

d− 1
d
√
Cdn

(50)

12

INTERPOLATION LOWER BOUNDS

and

1

2
Er−2

i = E
∫ ∞

0
sI(r−1

i > s)ds

=

∫ ∞
0

sEI(r−1
i > s)ds

=

∫ ∞
0

sP(r−1
i > s)ds

≤
∫ ∞

0
smin(1, Cdns

−d)ds

=
1

2
s2

0 + Cdns
2−d
0 /(d− 2) where Cdns−d0 = 1

=

(
1

2
+

1

d− 2

)
s2

0

=

(
1

2
+

1

d− 2

)
(d
√
Cdn)2.

(51)

Hence,

Er−2
i ≤

d

d− 2
(Cdn)

2
d (52)

A.3.3. ESTIMATE OF COV(1
r̃i
, 1
r̃j

)

Define

r̃i := min(min
k 6=i,j

|Xk −Xi|, dist(∂Ω, Xi)) (53)

and
r̃j := min(min

k 6=i,j
|Xk −Xj |, dist(∂Ω, Xj)) (54)

Then
ri = min(r̃i, |Xi −Xj |), rj = min(r̃j , |Xi −Xj |) (55)

and r̃j is independent of Xi and r̃i is independent of Xj .

E[
1

r̃ir̃j
]− E[

1

r̃i
]E[

1

r̃j
]

= EXi,Xj [E[
1

r̃ir̃j
|Xi, Xj]]− EXi [E[

1

r̃i
|Xi]]EXj [E[

1

r̃j
|Xj]]

= EXi,Xj [E[
1

r̃ir̃j
|Xi, Xj]]− EXi

[
E
[

1

r̃i
|Xi

]
EXj

[
E[

1

r̃j
|Xj]

]]
= EXi,Xj

[
E[

1

r̃ir̃j
|Xi, Xj]

]
− EXi,Xj

[
E
[

1

r̃i
|Xi

]
E
[

1

r̃j
|Xj

]]
(indep. between Xi and Xj)

= EXi,Xj

[
E
[

1

r̃ir̃j

∣∣∣Xi, Xj

]
− E

[
1

r̃i

∣∣∣Xi, Xj

]
E
[

1

r̃j

∣∣∣Xi, Xj

]]

13

INTERPOLATION LOWER BOUNDS

where we used independence between r̃i and Xj and between r̃j and Xi. The last expression can
be written as

= EXi,Xj

[
E
[∫ ∞

0
dsI(r̃−1

i > s)

∫ ∞
0

dtI(r̃−1
j > t)

∣∣∣Xi, Xj

]

−
(
E
∫ ∞

0
dsI(r̃−1

i > s)
∣∣∣Xi, Xj

)(
E
∫ ∞

0
dtI(r̃−1

j > t)
∣∣∣Xi, Xj

)]

= EXi,Xj

[∫ ∞
0

ds

∫ ∞
0

dtE
[
I(r̃−1

i > s, r̃−1
j > t)

∣∣∣Xi, Xj

]
−
∫ ∞

0
E
[
I(r̃−1

i > s)
∣∣∣Xi, Xj

]
ds

∫ ∞
0

E
[
I(r̃−1

j > t)
∣∣∣Xi, Xj

]
dt

]

= EXi,Xj

[∫ ∞
0

∫ ∞
0

(
P
[
r̃−1
i > s, r̃−1

j > t
∣∣∣Xi, Xj

]
− P

[
r̃−1
i > s

∣∣∣Xi, Xj

]
P
[
r̃−1
j > t

∣∣∣Xi, Xj

])
dsdt

]
.

Now,

P[r−1
i > s, r−1

j > t|Xi, Xj]]

= 1− P[r−1
i < s|Xi, Xj]]− P[r−1

j < t|Xi, Xj]] + P[r−1
i < s, r−1

j < t|Xi, Xj]

P[r−1
i > s|Xi, Xj]P[r−1

j > t|Xi, Xj]

= 1− P[r−1
i < s|Xi, Xj]− P[r−1

j < t|Xi, Xj] + P[r−1
i < s|Xi, Xj]P[r−1

j < t|Xi, Xj]

(56)

Then

E[
1

r̃ir̃j
]− E[

1

r̃i
]E[

1

r̃j
]

= EXi,Xj

[∫ ∞
0

∫ ∞
0

(
P
[
r̃−1
i > s, r̃−1

j > t
∣∣∣Xi, Xj

]
− P

[
r̃−1
i > s

∣∣∣Xi, Xj

]
P
[
r̃−1
j > t

∣∣∣Xi, Xj

])
dsdt

]
= EXi,Xj

[∫ ∞
0

∫ ∞
0

(
P
[
r̃−1
i < s

∣∣∣Xi, Xj

]
P
[
r̃−1
j < t

∣∣∣Xi, Xj

]
− P

[
r̃−1
i < s, r̃−1

j < t
∣∣∣Xi, Xj

])
dsdt

]
= EXi,Xj

[∫ ∞
0

∫ ∞
0

(
mP(B(Xi, s

−1)c)n−2mP(B(Xj , t
−1)c)n−2

−mP((B(Xi, s
−1) ∪B(Xj , t

−1))c)n−2
)
dsdt

]
= EXi,Xj

[∫ ∞
R−1

0

∫ ∞
R−1

0

(
mP(B(Xi, s

−1)c)n−2mP(B(Xj , t
−1)c)n−2

−mP((B(Xi, s
−1) ∪B(Xj , t

−1))c)n−2
)
dsdt

]
(57)

where R0 = diam(Ω) is a constant depending only on d.
When s−1 + t−1 < |Xi −Xj |, we have

B(Xi, s
−1) ∪B(Xj , t

−1) = B(Xi, s
−1) tB(Xj , t

−1) (58)

14

INTERPOLATION LOWER BOUNDS

where t means disjoint union. Then

mP(B(Xi, s
−1)c)mP(B(Xj , t

−1)c)−mP((B(Xi, s
−1) ∪B(Xj , t

−1))c)

= mP(B(Xi, s
−1)c)mP(B(Xj , t

−1)c)−mP((B(Xi, s
−1) tB(Xj , t

−1))c)

= (1−mP(B(Xi, s
−1)))(1−mP(B(Xj , t

−1)))− (1−mP(B(Xi, s
−1))−mP(B(Xj , t

−1)))

= mP(B(Xi, s
−1))mP(B(Xj , t

−1))

≥ 0

(59)

Since for 0 ≤ x ≤ y ≤ 1, xn−2 − yn−2 ≤ (n− 2)xn−3(x− y), we have

0 ≤ mP(B(Xi, s
−1)c)n−2mP(B(Xj , t

−1)c)n−2 −mP((B(Xi, s
−1) ∪B(Xj , t

−1))c)n−2

≤ (n− 3)mP(B(Xi, s
−1)c)n−3mP(B(Xj , t

−1)c)n−3mP(B(Xi, s
−1))mP(B(Xj , t

−1))

≤ (n− 3)

(
max(0, 1− Cd

sd
)

)n−3(
max(0, 1− Cd

td
)

)n−3 C ′d
sd
C ′d
td

(60)

where Cd, C ′d are constants such that for any B(x, r) ⊂ Ω

Cdr
d ≤ mP(B(x, r)) ≤ C ′drd. (61)

When s−1 >
‖Xi−Xj‖

2 , we have

mP(B(Xi, s
−1)c)n−2mP(B(Xj , t

−1)c)n−2 −mP((B(Xi, s
−1) ∪B(Xj , t

−1))c)n−2

≥ mP(B(Xi, s
−1)c)n−2mP(B(Xj , t

−1)c)n−2 −mP((B(Xi, s
−1))c)n−2

≥ mP(B(Xi, s
−1)c)n−2 ·min{1, (n− 2)mP(B(Xj , t

−1))}
≥ −(max(0, 1− Cds−d))n−2 min(1, (n− 2)C ′dt

−d)

(62)

and

mP(B(Xi, s
−1)c)n−2mP(B(Xj , t

−1)c)n−2 −mP((B(Xi, s
−1) ∪B(Xj , t

−1))c)n−2

≤ mP(B(Xi, s
−1)c)n−2mP(B(Xj , t

−1)c)n−2 − (1−mP(B(Xi, s
−1))−mP(B(Xj , t

−1)))n−2

≤ (n− 2)mP(B(Xi, s
−1)c)n−3mP(B(Xj , t

−1)c)n−3mP(B(Xi, s
−1))mP(B(Xj , t

−1))

≤ (n− 3)

(
max(0, 1− Cd

sd
)

)n−3(
max(0, 1− Cd

td
)

)n−3 C ′d
sd
C ′d
td

(63)

Then

− (max(0, 1− Cds−d))n−2 min(1, (n− 2)C ′dt
−d)

≤ mP(B(Xi, s
−1)c)n−2mP(B(Xj , t

−1)c)n−2 −mP((B(Xi, s
−1) ∪B(Xj , t

−1))c)n−2

≤ (n− 3)

(
max(0, 1− Cd

sd
)

)n−3(
max(0, 1− Cd

td
)

)n−3 C ′d
sd
C ′d
td

(64)

15

INTERPOLATION LOWER BOUNDS

Similarly for t−1 >
‖Xi−Xj‖

2 , we have

− (max(0, 1− Cdt−d))n−2 min(1, (n− 2)C ′ds
−d)

≤ mP(B(Xi, s
−1)c)n−2mP(B(Xj , t

−1)c)n−2 −mP((B(Xi, s
−1) ∪B(Xj , t

−1))c)n−2

≤ (n− 3)

(
max(0, 1− Cd

sd
)

)n−3(
max(0, 1− Cd

td
)

)n−3 C ′d
sd
C ′d
td

(65)

The upper bound are the same in all three cases, but the lower bounds are different.

Upper bound for Cov(r̃−1
i , r̃−1

j) We now put the above calculations together and estimate

Cov(r̃−1
i , r̃−1

j)

= E[
1

r̃ir̃j
]− E[

1

r̃i
]E[

1

r̃j
]

= EXi,Xj

[∫ ∞
0

∫ ∞
0

(
mP(B(Xi, s

−1)c)n−2mP(B(Xj , t
−1)c)n−2

−mP((B(Xi, s
−1) ∪B(Xj , t

−1))c)n−2
)
dsdt

]
= EXi,Xj

[∫ ∞
R−1

0

∫ ∞
R−1

0

(
mP(B(Xi, s

−1)c)n−2mP(B(Xj , t
−1)c)n−2

−mP((B(Xi, s
−1) ∪B(Xj , t

−1))c)n−2
)
dsdt

]
≤ EXi,Xj

∫ ∞
R−1

0

∫ ∞
R−1

0

(n− 3)

(
max(0, 1− Cd

sd
)

)n−3(
max(0, 1− Cd

td
)

)n−3 C ′d
sd
C ′d
td
dsdt

≤ EXi,Xj

R2
0

4

∫ ∞
R−1

0

∫ ∞
R−1

0

(n− 3)

(
max(0, 1− Cd

sd
)

)n−3(
max(0, 1− Cd

td
)

)n−3 C ′d
sd−1

C ′d
td−1

dsdt

≤ EXi,Xj

R2
0

4

∫ ∞
0

∫ ∞
0

(n− 3)

(
max(0, 1− Cd

sd
)

)n−3(
max(0, 1− Cd

td
)

)n−3 C ′d
sd−1

C ′d
td−1

dsdt

=
R2

0

4

n− 3

d2(n− 2)2
(C ′d/Cd)

2

= O

(
1

n

)
(66)

16

INTERPOLATION LOWER BOUNDS

Lower bound for Cov(r̃−1
i , r̃−1

j)

E[
1

r̃ir̃j
]− E[

1

r̃i
]E[

1

r̃j
]

= EXi,Xj

[∫ ∞
0

∫ ∞
0

(
mP(B(Xi, s

−1)c)n−2mP(B(Xj , t
−1)c)n−2

−mP((B(Xi, s
−1) ∪B(Xj , t

−1))c)n−2
)
dsdt

]

= EXi,Xj

∫ ∞

2
‖Xi−Xj‖

∫ ∞
2

‖Xi−Xj‖

· · · dsdt

︸ ︷︷ ︸
A

+

∫ ∞
0

∫ 2
‖Xi−Xj‖

0
· · · dsdt︸ ︷︷ ︸

B

+

∫ 2
‖Xi−Xj‖

0

∫ ∞
0
· · · dsdt︸ ︷︷ ︸

C

(67)

(a) lower bound of A.

A ≥ 0 (68)

(b) lower bound of B.

B ≥ −
∫ 2
‖Xi−Xj‖

0

∫ ∞
0

(max(0, 1− Cds−d))n−2 min(1, (n− 2)C ′dt
−d)dtds

≥ − 2

‖Xi −Xj‖

(
max

{
0, 1− Cd

(
‖Xi −Xj‖

2

)d})n−2 ∫ ∞
0

min(1, (n− 2)Cdt
−d)dt

≥ − 2

‖Xi −Xj‖

(
max

{
0, 1− Cd

(
‖Xi −Xj‖

2

)d})n−2
1

d− 1
((n− 2)Cd)

1
d .

(69)

Note that

17

INTERPOLATION LOWER BOUNDS

E

 2

‖Xi −Xj‖

(
max

{
0, 1− Cd

(
‖Xi −Xj‖

2

)d})n−2 ∣∣∣∣∣Xi

=

∫ R0

0

2

r

(
max

{
0, 1− Cd

(r
2

)d})n−2

dµ‖Xi−Xj‖|Xi
(r)

.
∫ R0

0

2

r

(
max

{
0, 1− Cd

(r
2

)d})n−2

rd−1dr

.
∫ R0

0

(
max

{
0, 1− R0

2d
rd−1

})n−2

rd−2dr

=

∫ Rd−1
0

0

(
max

{
0, 1− R0

2d
rd−1

})n−2 1

d− 1
d(rd−1)

.
1

n

(70)

As a result,

EXi,XjB &
1

n
(71)

(c) Similarly for C, we have

EXi,XjC &
1

n
(72)

Combining all the above inequalities, we have

E[
1

r̃ir̃j
]− E[

1

r̃i
]E[

1

r̃j
] &

1

n
. (73)

Upper bound for |Cov(1
r̃i
, 1
rj

)|

|Cov(
1

r̃i
,

1

rj
)| = |E[

1

r̃ir̃j
]− E[

1

r̃i
]E[

1

r̃j
]| . 1

n
. (74)

A.3.4. ESTIMATE FOR THE DIFFERENCE BETWEEN COV(1
r̃i
, 1
rj

) AND COV(1
r̃i
, 1
rj

)

Upper bound for E|r̃−1
i − r

−1
i |2 We have

|r̃−1
i − r

−1
i | ≤

1

‖Xi −Xj‖
I{‖Xi −Xj‖ < r̃i}. (75)

Conditioned on Xi, ‖Xi −Xj‖ and r̃i are, in fact, independent. Then

E[|r̃−1
i − r

−1
i |

2|Xi, r̃i] ≤ E[
1

‖Xi −Xj‖2
I{‖Xi −Xj‖ < r̃i}|Xi, r̃i]

. E[r̃d−2
i |Xi, ri]

(76)

Hence,

E[|r̃−1
i − r

−1
i |

2 ≤ Er̃d−2
i ≤ E[r̃di]

d−2
d . n−

d−2
d (77)

18

INTERPOLATION LOWER BOUNDS

A.3.5. UPPER BOUND FOR E|r̃−1
i r̃−1

j − r
−1
i r−1

j |

E|r̃−1
i r̃−1

j − r
−1
i r−1

j | ≤ E|r̃−1
i r̃−1

j − r̃
−1
i r−1

j |+ E|r̃−1
i r−1

j − r
−1
i r−1

j |

≤
√

E[r̃−2
i]
√

E[|r̃−1
j − r

−1
j |2] +

√
E[r−2

j]

√
E[|r̃−1

i − r
−1
i |2]

≤
√

E[r−2
i]
√

E[|r̃−1
j − r

−1
j |2] +

√
E[r−2

j]

√
E[|r̃−1

i − r
−1
i |2]

.
√
n2/d

√
n−

d−2
d

≤ n−
d−4
2d

(78)

A.3.6. UPPER BOUND FOR |E[r̃−1
i]E[r̃−1

j]− E[r−1
i]E[r−1

j]|

First,

‖E[r̃−1
i]− E[r−1

i]‖ ≤
√

E[(r̃−1
i − r

−1
i)2] . n−

d−2
2d (79)

and
Er̃−1

i ≤ Er−1
i . n

1
d . (80)

Then

|E[r̃−1
i]E[r̃−1

j]− E[r−1
i]E[r−1

j]|
= |E[r̃−1

i]E[r̃−1
j]− E[r̃−1

i]E[r−1
j]|+ |E[r̃−1

i]E[r−1
j]− E[r−1

i]E[r−1
j]|

= E[r̃−1
i]|E[r̃−1

j]− E[r−1
j]|+ E[r−1

j]|E[r̃−1
i]− E[r−1

i]|

. n−
d−4
2d .

(81)

A.3.7. UPPER BOUND FOR THE DIFFERENCE BETWEEN COV(1
r̃i
, 1
rj

) AND COV(1
r̃i
, 1
rj

)

|Cov(
1

r̃i
,

1

rj
)− Cov(

1

r̃i
,

1

rj
)|

= |E[r̃−1
i]E[r̃−1

j]− E[r−1
i]E[r−1

j] + E[r̃−1
i]E[r̃−1

j]− E[r−1
i]E[r−1

j]|
≤ |E[r̃−1

i]E[r̃−1
j]− E[r−1

i]E[r−1
j]|+ |E[r̃−1

i]E[r̃−1
j]− E[r−1

i]E[r−1
j]|

. n−
d−4
2d .

(82)

A.3.8. ESTIMATE OF COV(1
ri
, 1
rj

)

Cov(
1

ri
,

1

rj
) . Cov(

1

r̃i
,

1

r̃j
) + n−

d−4
2d . n−

d−4
2d (83)

19

INTERPOLATION LOWER BOUNDS

A.3.9. UPPER BOUND OF VAR(1
n

n∑
i=1

r−1
i)

Var(
1

n

n∑
i=1

r−1
i) ≤ 1

n2

n∑
i=1

Var(r−1
i) +

1

n2

n∑
i=1,j=1,i6=j

Cov(r−1
i , r−1

j)

≤ 1

n2

n∑
i=1

E(r−2
i) +

1

n2

n∑
i=1,j=1,i6=j

Cov(r−1
i , r−1

j)

. n−
2
d
−1 + n−

d−4
2d

. n−
d−4
2d

(84)

A.3.10. FINAL STEP: CHEBYSHEV’S INEQUALITY

By Chebyshev’s inequality

P[
1

n

n∑
i=1

r−1
i > An

1
d + E[

1

n

n∑
i=1

r−1
i]] ≤ (A2n

2
d)−1Var(

1

n

n∑
i=1

r−1
i) . A−2n−

1
2 (85)

since

E[
1

n

n∑
i=1

r−1
i] = Er−1

1 . n
1
d . (86)

This concludes the proof.

Appendix B. Inequalities for Functions

B.1. Gagliardo-Nirenberg interpolation inequalities

Here we quote the statements of Gagliardo-Nirenberg inequalities from (Leoni, 2017). Note that
here the term “interpolation” has nothing to do with our notion of interpolation.

Theorem 8 (Gagliardo-Nirenberg interpolation for RN , general case, Theorem 12.87 in Leoni (2017))

Let 1 ≤ p, q ≤ ∞,m ∈ N, k ∈ N0, with 0 ≤ k < m, and let θ, r be such that

0 ≤ θ ≤ 1− k/m (87)

and

(1− θ)
(

1

p
− m− k

N

)
+ θ

(
1

q
+
k

N

)
=

1

r
∈ (−∞, 1]. (88)

Then there exists a constant c = c(m,N, p, q, θ, k) > 0 such that

|∇ku|r ≤ c‖u‖θLq(RN)‖∇
mu‖1−θ

Lp(RN)
(89)

for every u ∈ Lq(RN) ∩ Ẇm,p(RN), with the following exceptional cases:

(i) If k = 0,mp < N, and q =∞, we assume that u vanishes at infinity.

20

INTERPOLATION LOWER BOUNDS

(ii) If 1 < p < ∞ and m − k − N/p is a nonnegative integer, then (89) only holds for 0 < θ ≤
1− k/m

Theorem 9 (Gagliardo-Nirenberg interpolation for domains, Theorem 13.61 in Leoni (2017))
Let Ω ⊂ RN be an open set with uniformly Lipschitz continuous boundary (with parameters ε, L,
M), let 0 < l < ε/(4(1 + L)), let m, k ∈ N, with m ≥ 2 and 1 ≤ k < m, and let 1 ≤ p, q, r ≤ ∞
be such that p ≤ q and

k

m

1

p
+

(
1− k

m

)
1

q
=

1

r
. (90)

If p < q, assume further that Ω is bounded.
Then for every u ∈ Lq(Ω) ∩ Ẇm,p(Ω),

‖∇ku‖Lr(Ω) ≤ cl−k|Ω|1/r−1/q‖u‖Lq(Ω) + c‖u‖1−k/mLq(Ω) ‖∇
mu‖k/mLp(Ω) (91)

if p < q, while
‖∇ku‖Lp(Ω) ≤ cl−k‖u‖Lp(Ω) + c‖u‖1−k/mLp(Ω) ‖∇

mu‖k/mLp(Ω) (92)

if p = q. Here, c > 0 is a constant depending on m,N, p, q.

Remark 10 Two remarks about notation:

• the notation | · |r is defined by

|u|r :=

‖u‖Lr(RN) if r > 0,

‖∇nu‖L∞(RN) if r < 0 and a = 0,

|∇nu|C0,a(RN) if r < 0 and 0 < a < 1,

(93)

where if r < 0 we set n := floor(−N/r) and a := −n − N/r ∈ [0, 1), provided the right-
hand sides are well-defined.

• Ẇm,p(Ω) is the homogeneous Sobolev space and it coincides with the Sobolev spaceWm,p(Ω)
when Ω is a domain with finite measure.

Remark 11
For our purposes, we need the inequality in two cases:

(i) The domain is Rd with d odd, r = q = 2, k = 1,m = d+1
2 , θ = 0, then

1×

(
1

p
−

d+1
2 − 1

d

)
+ 0×

(
1

2
+

1

d

)
=

1

2
∈ (−∞, 1]. (94)

which implies
p = 2d (95)

Then
m− k −N/p =

d+ 1

2
− 1− d

2d
=
d− 2

2
(96)

is not an integer because d is odd.

Therefore, our case is not exceptional and from equation (89), we get

‖Du‖L2d(Rd) ≤ Cd‖D
d+1
2 u‖L2(Rd) (97)

21

INTERPOLATION LOWER BOUNDS

(ii) The domain is Ω = supp P = B(0, 1), when N = d is odd, r = q = p = 2, 0 ≤ k ≤
d+1

2 ,m = d+1
2 , then

k

m

1

p
+

(
1− k

m

)
1

q
=

1

r
(98)

holds. Then

‖Dku‖L2(Ω) ≤ Ck,d‖D
d+1
2 u‖αL2(Ω)‖u‖

1−α
L2(Ω)

+ C ′k,d‖u‖L2(Ω). (99)

Since
‖D

d+1
2 u‖L2(Ω) ≤ ‖D

d+1
2 u‖L2(Rd), (100)

from equation (92) we have

‖Dku‖L2(Ω) ≤ Ck,d‖D
d+1
2 u‖αL2(Rd)‖u‖

1−α
L2(Ω)

+ C ′k,d‖u‖L2(Ω). (101)

Note the theorem itself doesn’t cover k = 0, d+1
2 but equation (101) holds trivially in the two

cases when p = q = r.

22

INTERPOLATION LOWER BOUNDS

B.2. Morrey’s inequality

Theorem 12 (Morrey’s inequality)
Suppose u : Rd → R has weak derivative Du in L2d(Rd)

sup
x∈Rd,r>0

1√
r

∣∣∣∣∣u(x)− −
∫
B(x,r)

u(y)dy

∣∣∣∣∣ ≤ Cd‖Du‖L2d(Rd) (102)

If in addition, u ∈ Lq(Rd), combining with Gagliardo-Nirenberg interpolation inequality for
Rd (equation 89), we have

sup
x∈Rd,r>0

1√
r

∣∣∣∣∣u(x)− −
∫
B(x,r)

u(y)dy

∣∣∣∣∣ ≤ Cd‖D d+1
2 u‖L2(Rd) (103)

Remark 13 Here the notation −
∫
B(x,r) means the average over the ballB(x, r), i.e. 1

|B(x,r)|
∫
B(x,r).

Remark 14 This version of Morrey’s inequality is basically a middle step of Lemma 12.47 in
(Leoni, 2017) (although it is a cube instead of a ball there) and the proof is simple enough to
be written down below.

Proof For any x ∈ Rd, r > 0

∣∣∣∣∣u(x)− −
∫
B(x,r)

u(y)dy

∣∣∣∣∣ =

∣∣∣∣∣ −
∫
B(x,r)

(u(x)− u(y))dy

∣∣∣∣∣
=

∣∣∣∣∣ −
∫
B(x,r)

∫ 1

0

d

dt

(
u(x)− u(x+ t(y − x))

)
dtdy

∣∣∣∣∣
≤ −
∫
B(x,r)

∫ 1

0
‖y − x‖‖Du(x+ t(y − x))‖dtdy

=

∫ 1

0

(
−
∫
B(x,r)

‖y − x‖‖Du(x+ t(y − x))‖dy

)
dt

=

∫ 1

0
t−1

(
−
∫
B(x,tr)

‖y − x‖‖Du(y)‖dy

)
dt

≤
∫ 1

0
t−1

(
−
∫
B(x,tr)

‖y − x‖
2d

2d−1dy

) 2d−1
2d
(
−
∫
B(x,tr)

‖Du(y)‖2ddy

) 1
2d

dt

≤ Od

(∫ 1

0
t−1
(
r

2d
2d−1 t

2d
2d−1

) 2d−1
2d

(
r−dt−d

∫
Rd

‖Du(y)‖2ddy
) 1

2d

dt

)

≤ Od
(√

r‖Du‖L2d(Rd)

∫ 1

0
t−

1
2dt

)
= Od

(√
r‖Du‖L2d(Rd)

)

23

INTERPOLATION LOWER BOUNDS

B.3. Local Hölder Continuity around Samples

Definition 15 (Measure of Local Hölder Continuity around Samples) For sample set S and in-
dex set I ⊂ [n], we introduce the following measure of local Hölder continuity around samples

[f]η,S,I =
∑
i∈I

sup
x∈Rd,r>0

1

r

(
f(x)η

(
x−Xi

ri

)
− −
∫
B(x,r)

f(y)η

(
y −Xi

ri

)
dy

)2

(104)

where η(x) =

1, ‖x‖ ≤ 1

4

e
1− 1

2−4‖x‖ , 1
4 < ‖x‖ <

1
2

0, ‖x‖ ≥ 1
2

Lemma 16 For any subset I ⊂ [n], β ∈ (0, 1) and f ∈ L2(Ω)

‖f‖2L2(Ω) ≥
3

4

βdπ
d
2

2dΓ(d2 + 1)

(∑
i∈I

rdi f(Xi)
2 − 4β[f]η,S,I max

i∈I
rd+1
i

)
. (105)

Proof We write

‖f‖2L2(Ω) ≥
∑
i∈I

∫
B(Xi,βri/2)

f(x)2dx (106)

≥
∑
i∈I

∫
B(Xi,βri/2)

f(x)2η

(
x−Xi

ri

)2

dx (107)

≥
∑
i∈I

1

|B(Xi, βri/2)|

(∫
B(Xi,βri/2)

f(x)η

(
x−Xi

ri

)
dx

)2

. (108)

Writing this expression as a normalized integral, we get

∑
i∈I
|B(Xi, βri/2)|

(
−
∫
B(Xi,βri/2)

f(x)η

(
x−Xi

ri

)
dx

)2

(109)

≥
∑
i∈I
|B(Xi, ri/2)|

3

4
f(Xi)

2 − 3

(
f(Xi)− −

∫
B(Xi,βri/2)

f(x)η

(
x−Xi

ri

)
dx

)2
 (110)

≥ 3

4

∑
i∈I
|B(Xi, βri/2)|f(Xi)

2 − 3[f]η,S,I sup
i∈I

βriB(Xi, βri/2) (111)

=
3

4

βdπ
d
2

2dΓ(d2 + 1)

(∑
i∈I

rdi f(Xi)
2 − 4β[f]η,S,I max

i∈I
rd+1
i

)
. (112)

24

INTERPOLATION LOWER BOUNDS

Lemma 17 For any subset I ⊂ [n], we have

[f]η,S,I ≤ Od
((

1 + ‖f‖2L2(Ω)

)(
cd+1〈f〉Hc + max

i∈I
r−d−1
i

))
. (113)

Proof
Define ηi by

ηi(x) = η

(
x−Xi

ri

)
(114)

and
A = max{c〈f〉

1
d+1

Hc
,max
i∈I

r−1
i } (115)

We prove our lemma by first proving the following inequalities:

(a) [f]η,S,I ≤ Od
(∑
i∈I
‖D

d+1
2 (fηi)‖2L2(Rd)

)

(b)
∑
i∈I
‖D

d+1
2 (fηi)‖2L2(Rd)

≤ Od

 d+1
2∑
j=0

Ad+1−2j‖Djf‖2
L2(Rd)

(c) ‖Djf‖L2(Rd) ≤ Od

((
1 + ‖f‖L2(Ω)

)
Aj
)

and then it follows that

[f]η,S,I ≤ Od
((

1 + ‖f‖2L2(Ω)

)(
cd+1〈f〉Hc + max

i∈I
r−d−1
i

))
. (116)

Inequality (a). This is a direct application of Morrey’s inequality (equation (103)).

Inequality (b). Using Leibnitz rule we have

‖D
d+1
2 (fηi)‖2L2(Rd) ≤ Od

 ∑
|α|= d+1

2

∑
0≤β≤α

‖Dα−βηiD
βf‖2L2(Rd)

 . (117)

Since the function Dα−βηiD
βf is supported within the ball B(Xi, ri), we have

‖D
d+1
2 (fηi)‖2L2(Rd) = Od

 ∑
|α|= d+1

2

∑
0≤β≤α

‖Dα−βηiD
βf‖2L2(B(Xi,ri))

 . (118)

By Hölder inequality,

‖D
d+1
2 (fηi)‖2L2(Rd) ≤ Od

 ∑
|α|= d+1

2

∑
0≤β≤α

‖Dα−βηi‖2L∞(B(Xi,ri))
‖Dβf‖2L2(B(Xi,ri))

 . (119)

25

INTERPOLATION LOWER BOUNDS

Using the fact that
‖Dβηi‖L∞(Rd) ≤ Cdr

−|β|
i , (120)

we then get

‖D
d+1
2 (fηi)‖2L2(Rd) = Od

 ∑
|α|= d+1

2

∑
0≤β≤α

‖Dβf‖2L2(B(Xi,ri))

r
2|α−β|
i

≤ Od

 d+1
2∑
j=0

‖Djf‖2L2(B(Xi,ri))

rd+1−2j
i

≤ Od

 d+1
2∑
j=0

‖Djf‖2L2(B(Xi,ri))

min
i∈I

rd+1−2j
i

 .

(121)

Then we have

∑
i∈I
‖D

d+1
2 (fηi)‖2L2(Rd) ≤ Od

 d+1
2∑
j=0

∑
i∈I
‖Djf‖2L2(B(Xi,ri))

min
i∈I

rd+1−2j
i

≤ Od

 d+1
2∑
j=0

‖Djf‖2L2(Ω)

min
i∈I

rd+1−2j
i

≤ Od

 d+1
2∑
j=0

Ad+1−2j‖Djf‖2L2(Ω)

 .

(122)

Inequality (c). Here use Gagliardo-Nirenberg interpolation inequality for domains (equation (101))
and the fact

‖D
d+1
2 f‖2L2(Ω) ≤ ‖D

d+1
2 f‖2L2(Rd) ≤ c

d+1〈f〉Hc , (123)

we have

‖Djf‖L2(Ω) ≤ Od
(
‖D

d+1
2 f‖

2j
d+1

L2(Ω)
‖f‖

1− 2j
d+1

L2(Ω)
+ ‖f‖L2(Ω)

)
≤ Od

(
cj〈f〉

j
d+1

Hc
‖f‖

1− 2j
d+1

L2(Ω)
+ ‖f‖L2(Ω)

)
≤ Od

((
1 + ‖f‖L2(Ω)

)
Aj
)
.

(124)

Proposition 18 For any subset I ⊂ [n] and f ∈ L2(Ω), we have

‖f‖2L2(Ω) ≥ min

1,Ωd

min

i∈I
r−d−1
i

∑
i∈I r

d
i f(Xi)

2

max
i∈I

r−d−1
i + cd+1‖f‖Hc

d∑
i∈I

rdi f(Xi)
2

 . (125)

26

INTERPOLATION LOWER BOUNDS

Proof Without loss of generality suppose that ‖f‖2L2(Ω) ≤ 1. Then from Lemma 17, there is a
constant Cd such that

[f]η,S,I ≤ Cd
(
cd+1‖f‖Hc + max

i∈I
r−d−1
i

)
. (126)

From Lemma 16, we have for any β ∈ (0, 1):

‖f‖2L2(Ω) ≥
3

4

βdπ
d
2

2dΓ(d2 + 1)

(∑
i∈I

rdi f(Xi)
2 − 4β[f]η,S,I max

i∈I
rd+1
i

)

≥ 3

4

βdπ
d
2

2dΓ(d2 + 1)

(∑
i∈I

rdi f(Xi)
2 − 4βCd max

i∈I
rd+1
i

(
cd+1‖f‖Hc + max

i∈I
r−d−1
i

))
.

(127)

Taking

β =
max
i∈I

r−d−1
i

∑
i∈I r

d
i f(Xi)

2

8Cd

(
cd+1‖f‖Hc + max

i∈I
r−d−1
i

) , (128)

we get

‖f‖2L2(Ω) ≥
3

4

βdπ
d
2

2dΓ(d2 + 1)

(∑
i∈I

rdi f(Xi)
2 − 1

2

∑
i∈I

rdi f(Xi)
2

)

≥ 3

8

π
d
2

2dΓ(d2 + 1)

 min
i∈I

r−d−1
i

∑
i∈I r

d
i f(Xi)

2

8Cd

(
cd+1‖f‖Hc + max

i∈I
r−d−1
i

)

d∑
i∈I

rdi f(Xi)
2

≥ Ωd

min

i∈I
r−d−1
i

∑
i∈I r

d
i f(Xi)

2

cd+1‖f‖Hc + max
i∈I

r−d−1
i

d∑
i∈I

rdi f(Xi)
2

 .

(129)

B.4. Upper Bound on 〈f̂c〉Hc

Proposition 19 With probability at least 1 − Od,ρ(1√
n

), for any c > 0 there is a function g inter-
polating S such that

〈g〉Hc ≤
1

3
‖f∗‖2L2(Ω) +Od,ρ,f∗

(
d
√
n

c

(
1 +

d
√
n

c

)d)
. (130)

Since f̂c has the smallest RKHS norm among all interpolating functions, we have

〈f̂c〉Hc ≤
1

3
‖f∗‖2L2(Ω) +Od,ρ,f∗

(
d
√
n

c

(
1 +

d
√
n

c

)d)
. (131)

27

INTERPOLATION LOWER BOUNDS

Proof Define ri = min
j 6=i
‖Xi −Xj‖ and

η(x) =

1, ‖x‖ ≤ 1

4

e
1− 1

2−4‖x‖ , 1
4 < ‖x‖ <

1
2

0, ‖x‖ ≥ 1
2

(132)

and for α ∈ (0, 1
2) take

gα(x) :=

n∑
i=1

Yiη

(
x−Xi

αri

)
. (133)

First,

‖gα‖2L2(Rd) =
∑
i

Y 2
i ‖ηXi,αri‖2L2(Rd)

= αd‖η‖2L2(Rd)

∑
i

Y 2
i r

d
i

≤ αd‖η‖2L2(Rd)

∑
i

(‖f∗‖L∞(Ω) + 1)2rdi

≤ αd‖η‖2L2(Rd)(‖f
∗‖L∞(Ω) + 1)2

∑
i

rdi

≤ 2d|Ω|
|Bd(1)|

αd‖η‖2L2(Rd)(‖f
∗‖L∞(Ω) + 1)2

≤ Od(αd)

(134)

Therefore, we can take α to be a constant dependent only on d and f∗ such that

‖gα(x)‖2L2(Rd) ≤
1

3
‖f∗‖2L2(Ω) (135)

Since

〈η
(
x−Xi

αri

)
〉k = αd−2krd−2k

i 〈η〉k (136)

and

〈u, v〉Hc = 0, if supp u ∩ supp v = ∅ (137)

then for k ∈ N we have

〈g〉Hc = ‖g‖2L2(Rd) +
n∑
i=1

Y 2
i (αri)

d−2k〈η〉k. (138)

So when d is odd,

28

INTERPOLATION LOWER BOUNDS

〈g〉Hc = ‖g‖2L2(Rd) +

d+1
2∑

k=1

n∑
i=1

(d+1
2

k

)
Y 2
i c
−2k(αri)

d−2k〈η〉k

≤ 1

3
‖f∗‖2L2(Rd) +

d+1
2∑

k=1

n∑
i=1

(d+1
2

k

)(
‖f∗‖L∞(Ω) + 1

)2
c−2k(αri)

d−2k〈η〉k

≤ 1

3
‖f∗‖2L2(Rd) +Od,ρ

(‖f∗‖L∞(Ω) + 1
)2 d+1

2∑
k=1

n∑
i=1

c−2k(αri)
d−2k

≤ 1

3
‖f∗‖2L2(Rd) +Od,ρ,f∗

 d+1
2∑

k=1

n∑
i=1

c−2krd−2k
i

 .

(139)

From Proposition 3, with probability at least 1−Od,ρ
(

1√
n

)
we have

n∑
i=1

rd−2k
i ≤ Od,ρ

(
n2k/d

)
. (140)

Then with the same probability,

〈g〉Hc ≤
1

3
‖f∗‖2L2(Ω) +Od,ρ,f∗

(
d
√
n

c

(
1 +

d
√
n

c

)d)
. (141)

29

What Can Neural Networks Reason About?

Keyulu Xu∗ Jingling Li† Mozhi Zhang† Simon S. Du ‡

Ken-ichi Kawarabayashi§ Stefanie Jegelka∗

∗ Massachusetts Institute of Technology (MIT)
† University of Maryland ‡ Institute for Advanced Study

§ National Institute of Informatics

Abstract

Neural networks have succeeded in many reasoning tasks. Empirically, these tasks require specialized
network structures, e.g., Graph Neural Networks (GNNs) perform well on many such tasks, while less
structured networks fail. Theoretically, there is limited understanding of why and when a network struc-
ture generalizes better than other equally expressive ones.

We develop a framework to characterize which reasoning tasks a network can learn well, by studying
how well its structure aligns with the algorithmic structure of the relevant reasoning procedure. We
formally define algorithmic alignment and derive a sample complexity bound that decreases with better
alignment. This framework explains the empirical success of popular reasoning models and suggests
their limitations. We unify seemingly different reasoning tasks, such as intuitive physics, visual question
answering, and shortest paths, via the lens of a powerful algorithmic paradigm, dynamic programming
(DP). We show that GNNs can learn DP and thus solve these tasks. On several reasoning tasks, our
theory aligns with empirical results.

Correspondence to: keyulu@mit.edu

ar
X

iv
:1

90
5.

13
21

1v
3

 [
cs

.L
G

]
 2

9
Se

p
20

19

Summary statistics
What is the maximum value
difference among treasures?

Relational argmax
What are the colors of the
furthest pair of objects?

Dynamic programming
What is the cost to defeat monster X

by following the optimal path?

NP-hard problem
Subset sum: Is there a
subset that sums to 0?

Figure 1: Overview of reasoning tasks with increasingly complex structure. Each task category shows
an example task on which we perform experiments in Section 4. Algorithmic alignment suggests that (a)
Deep Sets and GNNs, but not MLP, can sample efficiently learn summary statistics, (b) GNNs, but not Deep
Sets, can learn relational argmax, (c) GNNs can learn dynamic programming, an algorithmic paradigm that
we show to unify many reasoning tasks, (d) GNNs cannot learn subset sum (NP-hard), but NES, a network
we design based on exhaustive search, can generalize. Our theory agrees with empirical results (Fig. 3).

1 Introduction

Recently, there have been many advances in building neural networks that can learn to reason. Reasoning
spans a variety of tasks, for instance, visual and text-based question answering [20, 40, 18, 13, 2], intuitive
physics, i.e., predicting the time evolution of physical objects [6, 39, 14, 11], mathematical reasoning [32,
10] and visual IQ tests [31, 45].

Curiously, neural networks that perform well in reasoning tasks usually possess specific structures [30].
Many successful models follow the Graph Neural Network (GNN) framework [7, 6, 28, 26, 29, 19]. These
networks explicitly model pairwise relations and recursively update each object’s representation by aggre-
gating its relations with other objects. Other computational structures, e.g., neural symbolic programs [43,
25, 21] and Deep Sets [44], are effective on specific tasks.

However, there is limited understanding of the relation between the generalization ability and network struc-
ture for reasoning. What tasks can a neural network (sample efficiently) learn to reason about? Answering
this question is crucial for understanding the empirical success and limitations of existing models, and for
designing better models for new reasoning tasks.

This paper is an initial work towards answering this fundamental question. We develop a theoretical frame-
work to characterize what tasks a neural network can reason about. We build on a simple observation that
reasoning procedures resemble algorithms. Hence, we study how well a reasoning algorithm aligns with the
computation graph of the network. Intuitively, if they align well, the network only needs to learn simple al-
gorithm steps to simulate the reasoning procedure, which leads to better sample efficiency. We formalize this
intuition with a numeric measure of algorithmic alignment, and show initial support for our hypothesis that
algorithmic alignment facilitates learning: Under simplifying assumptions, we show a sample complexity
bound that decreases with better alignment.

Our framework explains the empirical success of popular reasoning models and suggests their limitations.
As concrete examples, we study four categories of increasingly complex reasoning tasks: summary statis-
tics, relational argmax (asking about properties of the result of comparing multiple relations), dynamic
programming, and NP-hard problems (Fig. 1). Using alignment, we characterize which architectures are
expected to learn each task well: Networks inducing permutation invariance, such as Deep Sets [44], can
learn summary statistics, and one-iteration GNNs can learn relational argmax. Many other more complex
tasks, such as intuitive physics, visual question answering, and shortest paths – despite seeming different
– can all be solved via a powerful algorithmic paradigm: dynamic programming (DP) [9]. Multi-iteration
GNNs algorithmically align with DP and hence are expected to sample-efficiently learn these tasks. Indeed,
they do. Our results offer an explanation for the popularity of GNNs in the relational reasoning literature,

1

and also suggest limitations for tasks with even more complex structure. As an example of such a task, we
consider subset sum, an NP-hard problem where GNNs indeed fail. Overall, empirical results (Fig. 3) agree
with our theoretical analysis based on algorithmic alignment (Fig. 1). These findings also suggest how to
take into account task structure when designing new architectures.

The perspective that structure in networks helps is not new. For example, in a well-known position paper,
Battaglia et al. [7] argue that GNNs are suitable for relational reasoning because they have relational induc-
tive biases, but without formalizations. Here, we take such ideas one step further, by introducing a formal
definition (algorithmic alignment) for quantifying the relation between network and task structure, and by
formally deriving implications for learning. These theoretical ideas are the basis for characterizing what
reasoning tasks a network can learn well. Our algorithmic structural condition also differs from structural
assumptions common in learning theory, e.g. norms [37, 4, 5, 27, 16] and specifically aligns with reasoning.

In summary, we introduce algorithmic alignment to analyze learning for reasoning. Our initial theoretical
results suggest that algorithmic alignment is desirable for generalization. On four categories of reasoning
tasks with increasingly complex structure, we apply our framework to analyze which tasks some popular
networks can learn well. GNNs algorithmically align with dynamic programming, which solves a broad
range of reasoning tasks. Finally, our framework implies guidelines for designing networks for new reason-
ing tasks. Our theory agrees with experimental results.

2 Preliminaries

We begin by introducing notations and summarizing common neural networks for reasoning tasks. Let S
denote the universe, i.e., a configuration/set of objects to reason about. Each object s ∈ S is represented by
a vectorX . This vector could be state descriptions [6, 30] or features learned from data such as images [30].
Information about the specific question can also be included in the object representations. Given a set of
universes {S1, ..., SM} and answer labels {y1, ..., yM} ⊆ Y , we aim to learn a function g that can answer
questions about unseen universes, y = g (S).

Multi-layer perceptron (MLP). For a single-object universe, applying an MLP on the object representation
usually works well. But when there are multiple objects, simply applying an MLP to the concatenated object
representations often does not generalize [30].

Deep Sets. The reasoning function is defined on a set and therefore should be permutation-invariant,
i.e., the output is the same for all input orderings. To induce permutation-invariance in the neural network,
Zaheer et al. [44] propose Deep Sets.

y = MLP2

(∑
s∈S

MLP1 (Xs)
)
. (2.1)

Graph Neural Networks (GNNs). GNNs are originally proposed for learning on graphs [34]. Their
structures follow a message passing scheme [15, 41, 42], where the representation h(k)s of each node s (in
iteration k) is recursively updated by aggregating the representation of neighboring nodes. GNNs can be
adopted for reasoning by considering objects as nodes and assuming all objects pairs are connected, i.e., a
complete graph [7]:

h(k)s =
∑

t∈S
MLP(k)

1

(
h(k−1)s , h

(k−1)
t

)
, hS = MLP2

(∑
s∈S

h(K)
s

)
, (2.2)

where hS is the answer/output andK is the number of GNN layers. Each object’s representation is initialized
as h(0)s = Xs. Although other aggregation functions are proposed, we use sum in our experiments. Similar
to Deep Sets, GNNs are also permutation invariant. While Deep Sets focus on individual objects, GNNs can
also focus on pairwise relations.

2

for k = 1 … |S| - 1:

 for u in S:

d[k][u] = minv d[k-1][v] + cost (v, u)

for k = 1 … GNN iter:

hu(k) = Σv MLP(hv(k-1), hu(k-1))

algorithmically align

Bellman-Ford algorithm

d[k][u]

Graph Neural Network

hu(k)

for u in S:sample efficiently learnable

Figure 2: Our framework suggests that better algorithmic alignment improves generalization. The
Bellman-Ford algorithm (left) aligns well with GNN (right). Therefore, GNN can simulate Bellman-Ford
by filling in (learning) simple algorithm steps (the relaxation step denoted by purple blocks). In contrast, a
giant MLP does not align well, because it needs to learn the entire for loop. Thus, GNN should generalize
better when learning shortest path, which is confirmed in experiments (Section 4.3). The graphs illustrate
structure: nodes are variables in an algorithm or representation vectors in a network, and arrows are an
algorithm step or an MLP module of GNN.

The GNN framework includes many reasoning models. Relation Networks [30] and Interaction Networks [6]
resemble one-layer GNNs. Recurrent Relational Networks [28] apply LSTMs [17] after aggregation.

3 Theoretical Framework: Algorithmic Alignment

Our theory studies how the network structure and task may interact, and what the implications are for gener-
alization. Different network structures have different degrees of success in reasoning tasks, e.g., GNNs can
learn relations well, but Deep Sets often fail (Fig. 3). However, all these networks are universal approxima-
tors (Propositions 3.1 and 3.2). Thus, their differences in test accuracy must come from generalization.

We observe that the answer to many reasoning tasks may be derived by following a reasoning algorithm; we
further illustrate the algorithms for some reasoning tasks in Section 4. Many neural networks can represent
algorithms. For example, Deep Sets can universally represent permutation-invariant set functions [44, 38].
This also holds for GNNs and MLPs, as we show in Propositions 3.1 and 3.2 (our setting differs from
Scarselli et al. [33] and Xu et al. [42], who study functions on graphs):

Proposition 3.1. Let f : Rd×N → R be any continuous function over sets S of bounded cardinality
|S| ≤ N . If f is permutation-invariant to the elements in S, and the elements are in a compact set in Rd,
then f can be approximated arbitrarily closely by a GNN (of any depth).

Proposition 3.2. For any GNN N , there is an MLP that can represent all functions N can represent.

But, empirically, not all network structures work well when learning these algorithms, i.e., they generalize
differently. Intuitively, a network may generalize better if it can represent a function “more easily”. We for-
malize this idea by algorithmic alignment, formally defined in Definition 3.4. Indeed, not only the reasoning
procedure has an algorithmic structure: the neural network’s architecture induces a computational structure
on the function it computes. This corresponds to an algorithm that prescribes how the network combines
computations from modules. Fig. 2 illustrates this idea for a GNN, where the modules are its MLPs applied
to pairs of objects. In the shortest paths problem, the GNN matches the structure of the Bellman-Ford al-
gorithm: to simulate the Bellman-Ford with a GNN, the GNN’s MLP modules only need to learn a simple
update equation (Fig. 2). In contrast, if we want to represent the Bellman-Ford algorithm with a single MLP,
it needs to simulate an entire for-loop, which is much more complex than one update step. Therefore, we
expect the GNN to have better sample complexity than MLP when learning to solve shortest path problems.

3

This perspective suggests that whether a neural network can learn a reasoning task depends on whether there
exists an algorithmic solution that the network aligns well with.

3.1 Formalization of Algorithmic Alignment

We formalize the above intuition in a PAC learning framework [36]. PAC learnability formalizes sim-
plicity as sample complexity, i.e., the number of samples needed to ensure low test error with high prob-
ability. It refers to a learning algorithm A that, given training samples {xi, yi}Mi=1, outputs a function
f = A({xi, yi}Mi=1). The learning algorithm here is the training method for the neural network, e.g., gradi-
ent descent. A function is simple if it has low sample complexity.

Definition 3.3. (PAC learning and sample complexity). Fix an error parameter ε > 0 and failure prob-
ability δ ∈ (0, 1). Suppose {xi, yi}Mi=1 are i.i.d. samples from some distribution D, and the data satisfies
yi = g(xi) for some underlying function g. Let f = A({xi, yi}Mi=1) be the function generated by a learning
algorithm A. Then g is (M, ε, δ)-learnable with A if

Px∼D [‖f(x)− g(x)‖ ≤ ε] ≥ 1− δ. (3.1)

The sample complexity CA (g, ε, δ) is the minimum M so that g is (M, ε, δ)-learnable with A.

With the PAC learning framework, we define a numeric measure of algorithmic alignment (Definition 3.4),
and under simplifying assumptions, we show that the sample complexity decreases with better algorithmic
alignment (Theorem 3.6).

Formally, a neural network aligns with an algorithm if it can simulate the algorithm via a limited number of
modules, and each module is simple, i.e., has low sample complexity.

Definition 3.4. (Algorithmic alignment). Let g be a reasoning function and N a neural network with n
modules Ni. The module functions f1, ..., fn generate g for N if, by replacing Ni with fi, the network N
simulates g. Then N (M, ε, δ)-algorithmically aligns with g if (1) f1, ..., fn generate g and (2) there are
learning algorithms Ai for the Ni’s such that n ·maxiCAi(fi, ε, δ) ≤M .

Good algorithmic alignment, i.e., small M , implies all algorithm steps fi to simulate the algorithm g are
easy to learn. Therefore, the algorithm steps should not simulate complex programming constructs such as
for-loops, whose sample complexity is large (Theorem 3.5).

Next, we show how to compute the algorithmic alignment value M . Algorithmic alignment resembles
Kolmogorov complexity [23] for neural networks. Thus, it is generally non-trivial to obtain the optimal
alignment between a neural network and an algorithm. However, one important difference to Kolmogorov
complexity is that any algorithmic alignment that yields decent sample complexity is good enough (unless
we want the tightest bound). In Section 4, we will show that we can usually derive a near-optimal alignment
by avoiding as many “for loops” in algorithm steps as possible. Then, we can compute the value of an
alignment by summing the sample complexity of the algorithm steps with respect to the modules, e.g.
MLPs. As an example, we show how to compute sample complexity of MLP modules.

Recent work shows sample complexity for overparameterized two or three-layer MLPs by analyzing their
gradient descent trajectories [3, 1]. Theorem 3.5, proved in the Appendix, summarizes and extends Theorem
6.1 of Arora et al. [3] to vector-valued functions. Our framework can be used with other sample complexity
bounds for other types of modules, too.

Theorem 3.5. (Sample complexity for overparameterized MLP modules). Let A be an overparam-
eterized and randomly initialized two-layer MLP trained with gradient descent for a sufficient number of

iterations. Suppose g : Rd → Rm with components g(x)(i) =
∑

j α
(i)
j

(
β
(i)>
j x

)p(i)j , where β(i)j ∈ Rd,

4

α ∈ R, and p(i)j = 1 or p(i)j = 2l (l ∈ N+). The sample complexity CA(g, ε, δ) is

CA(g, ε, δ) = O
(maxi

∑K
j=1 p

(i)
j |α

(i)
j | · ‖β

(i)
j ‖

p
(i)
j

2 + log (m/δ)

(ε/m)2

)
. (3.2)

Theorem 3.5 suggests that functions that are “simple” when expressed as a polynomial, e.g., via a Taylor
expansion, are sample efficiently learnable by an MLP module. Thus, algorithm steps that perform com-
putation over many objects may require many samples for an MLP module to learn, since the number K
of polynomials or ‖β(i)j ‖ can increase in Eqn. (3.2). “For loop” is one example of such complex algorithm
steps.

3.2 Better Algorithmic Alignment Implies Better Generalization

We show an initial result demonstrating that algorithmic alignment is desirable for generalization. Theo-
rem 3.6 states that, in a simplifying setting where we sequentially train modules of a network with auxiliary
labels, the sample complexity bound increases with algorithmic alignment value M .

While we do not have auxiliary labels in practice, we observe the same pattern for end-to-end learning in
experiments (Section 4). We leave sample complexity analysis for end-to-end-learning to future work. We
prove Theorem 3.6 in Appendix D.

Theorem 3.6. (Algorithmic alignment improves sample complexity). Fix ε and δ. Suppose {Si, yi}Mi=1 ∼
D, where |Si| < N , and yi = g(Si) for some g. Suppose N1, ...,Nn are network N ’s MLP modules in
sequential order. Suppose N and g (M, ε, δ)-algorithmically align via functions f1, ..., fn. Under the fol-
lowing assumptions, g is (M,O(ε), O(δ))-learnable by N .

a) Algorithm stability. Let A be the learning algorithm for the Ni’s. Suppose f = A({xi, yi}Mi=1), and
f̂ = A({x̂i, yi}Mi=1). For any x, ‖f(x)− f̂(x)‖ ≤ L0 ·maxi ‖xi − x̂i‖, for some L0.
b) Sequential learning. We train Ni’s sequentially: N1 has input samples {x̂(1)i , f1(x̂

(1)
i)}Ni=1, with x̂(1)i

obtained from Si. For j > 1, the input x̂(j)i for Nj are the outputs from the previous modules, but labels are
generated by the correct functions fj−1, ..., f1 on x̂(1)i .
c) Lipschitzness. The learned functions f̂j satisfy ‖f̂j(x)− f̂j(x̂)‖ ≤ L1‖x− x̂‖, for some L1.

In our analysis, the Lipschitz constants and the universe size are constants going into O(ε) and O(δ). As
an illustrative example, we use Theorem 3.6 and 3.5 to show that GNN has a polynomial improvement in
sample complexity over MLP when learning simple relations. Indeed, GNN aligns better with summary
statistics of pairwise relations than MLP does (Section 4.1).

Corollary 3.7. Suppose universe S has ` objects X1, ..., X`, and g(S) =
∑

i,j(Xi−Xj)
2. In the setting of

Theorem 3.6, the sample complexity bound for MLP is O(`2) times larger than for GNN.

4 Predicting What Neural Networks Can Reason About

Next, we apply our framework to analyze the neural networks for reasoning from Section 2: MLP, Deep Sets,
and GNNs. Using algorithmic alignment, we predict whether each model can generalize on four categories
of increasingly complex reasoning tasks: summary statistics, relational argmax, dynamic programming, and
NP-hard problem (Fig. 3). Our theoretical analysis is confirmed with experiments (Dataset and training
details are in Appendix G).

To empirically compare sample complexity of different models, we make sure all models perfectly fit train-
ing sets through extensive hyperparameter tuning. Therefore, the test accuracy reflects how well a model

5

GNN3 GNN1 Deep
Sets

MLP Sorted
MLP

100% 95% 96%

9%

100%

(a) Maximum value difference.

GNN3 GNN1 Deep
Sets

MLP

95% 92%

21% 9%

(b) Furthest pair.

GNN7 GNN4 GNN3 GNN2 GNN1 Deep
Sets

MLP

95% 94% 90%
62%

27% 11% 7%

(c) Monster trainer.

NES GNN6 GNN1 Deep
Sets

MLP

98%
76% 68% 61% 60%

(d) Subset sum. Random is 50%.

Figure 3: Test accuracies on reasoning tasks with increasingly complex structure. Fig. 1 shows an
overview of the tasks. GNNk is GNN with k iterations. (a) Summary statistics. All models except MLP
generalize. (b) Relational argmax. Deep Sets fail. (c) Dynamic programming. Only GNNs with sufficient
iterations generalize. (d) An NP-hard problem. Even GNNs fail, but NES generalizes.

generalizes. Our analysis also explains why GNNs are widely successful across reasoning tasks. Popular
reasoning tasks such as visual question answering and intuitive physics can be solved by DP, which GNN
can learn sample-efficiently.

4.1 Summary Statistics

As discussed in Section 2, we assume each object X has a state representation X = [h1, h2, ..., hk], where
each hi ∈ Rdi is a feature vector. MLP can learn simple polynomial functions of the state representation
(Theorem 3.5). In this section, we show how Deep Sets use MLP as building blocks to learn summary
statistics.

Questions about summary statistics are common in reasoning tasks. One example from CLEVR [20] is
“How many objects are either small cylinders or red things?” Deep Sets (Eqn. 2.1) align well with algo-
rithms that compute summary statistics over individual objects. Suppose we want to compute the sum of a
feature over all objects. To simulate the reasoning algorithm, we can use the first MLP in Deep Sets to extract
the desired feature and aggregate them using the pooling layer. Under this alignment, each MLP only needs
to learn simple steps, which leads to good sample complexity. Similarly, Deep Sets can learn to compute max
or min of a feature by using smooth approximations like the softmax maxs∈S Xs ≈ log(

∑
s∈Xs

exp(Xs)).

In contrast, if we train an MLP to perform sum or max, the MLP must learn a complex for-loop and therefore
needs more samples. Therefore, our framework predicts that Deep Sets have better sample complexity than
MLP when learning summary statistics.

Maximum value difference. We confirm our predictions by training models to compute the maximum
value difference task. Each object in this task is a treasure X = [h1, h2, h3] with location h1, value h2, and
color h3. We train models to predict the difference in value between the most and the least valuable treasure,
y(S) = maxs∈S h2(Xs)−mins∈S h2(Xs).

The test accuracy follows our prediction (Fig. 3a). MLP does not generalize and only has 9% test accuracy,
while Deep Sets has 96%. Interestingly, if we sort the treasures by value (Sorted MLP in Fig. 3a), MLP
achieves perfect test accuracy. This observation can be explained with our theory—when the treasures are
sorted, the reasoning algorithm is reduced to a simple subtraction: y(S) = h2(X|S|)− h2(X1), which has a
low sample complexity for even MLPs (Theorem 3.5). GNNs also have high test accuracies. This is because
summary statistics are a special case of relational argmax, which GNNs can learn as shown next.

6

4.2 Relational Argmax

Next, we study relational argmax: tasks where we need to compare pairwise relations and answer a question
about that result. For example, a question from Sort-of-CLEVR [30] asks “What is the shape of the object
that is farthest from the gray object?”, which requires comparing the distance between object pairs.

A one-iteration GNN aligns well with relational argmax, as it sums over all pairs of objects, and thus can
compare, e.g. via softmax, pairwise information without learning the “for loops”. In contrast, Deep Sets
require many samples to learn this, because most pairwise relations cannot be encoded as a sum of individual
objects:

Claim 4.1. Suppose g(x, y) = 0 if and only if x = y. There is no f such that g(x, y) = f(x) + f(y).

Therefore, if we train a Deep Set to compare pairwise relations, one of the MLP modules has to learn a
complex “for loop”, which leads to poor sample complexity. Our experiment confirms that GNNs generalize
better than Deep Sets when learning relational argmax.

Furthest pair. As an example of relational argmax, we train models to identify the furthest pair among a
set of objects. We use the same object settings as the maximum value difference task. We train models to
find the colors of the two treasures with the largest distance. The answer is a pair of colors, encoded as an
integer category:

y(S) = (h3(Xs1), h3(Xs2)) s.t. {Xs1 , Xs2} = argmaxs1,s2∈S‖h1(Xs1)− h1(Xs2)‖`1
Distance as a pairwise function satisfies the condition in Claim 4.1. As predicted by our framework, Deep
Sets has only 21% test accuracy, while GNNs have more than 90% accuracy.

4.3 Dynamic Programming

We observe that a broad class of relational reasoning tasks can be unified by the powerful algorithmic
paradigm dynamic programming (DP) [9]. DP recursively breaks down a problem into simpler sub-problems.
It has the following general form:

Answer[k][i] = DP-Update({Answer[k − 1][j]} , j = 1...n), (4.1)

where Answer[k][i] is the solution to the sub-problem indexed by iteration k and state i, and DP-Update is
an task-specific update function that computes Answer[k][i] from Answer[k − 1][j]’s.

GNNs algorithmically align with a class of DP algorithms. We can interpret GNN as a DP algorithm,
where node representations h(k)i are Answer[k][i], and the GNN aggregation step is DP-Update. Therefore,
Theorem 3.6 suggests that a GNN with enough iterations can sample efficiently learn any DP algorithm with
a simple DP-update function, e.g. sum/min/max.

Shortest paths. As an example, we experiment with GNN on Shortest Paths, a standard DP problem.
Shortest path can be solved by the Bellman-Ford algorithm [8], which recursively updates the minimum
distance between each object u and the source s is the following:

distance[1][u] = cost(s, u), distance[k][u] = minv
{

distance[k − 1][v] + cost(v, u)
}
, (4.2)

As discussed above, GNN aligns well with this DP algorithm. Therefore, our framework predicts that GNN
has good sample complexity when learning to find shortest paths. To verify this, we test different models on
a monster trainer game, which is a shortest path variant with unkown cost functions that need to be learned
by the models. Appendix G.3 describes the task in details.

In Fig. 3c, only GNNs with at least four iterations generalize well. The empirical result confirms our theory:
a neural network can learn a task well if there exists an algorithm that it aligns well with. Interestingly,

7

GNN does not need as many iterations as Bellman-Ford. While Bellman-Ford needs N = 7 iterations,
GNNs with four iterations have almost identical test accuracy as GNNs with seven iterations (94% vs 95%).
This can also be explained through algorithmic alignment, as GNN aligns with an optimized version of
Bellman-Ford, which we explain in Appendix G.3.

After verifying that GNNs can sample-efficiently learn DP, we show that two popular families of reasoning
tasks, visual question answering and intuitive physics, can be formulated as DP. Therefore, our framework
explains why GNNs are effective in these tasks.

Visual question answering. The Pretty-CLEVR dataset [28] is an extension of Sort-of-CLEVR [30] and
CLEVR [20]. GNN works well on these datasets. Each question in Pretty-CLEVR has state representations
and asks “Starting at object X, if each time we jump to the closest object, which object is K jumps away?”.
This problem can be solved by DP, which computes the answers for k jumps from the answers for (k − 1)
jumps.

closest[1][i] = argminj d(i, j), closest[k][i] = closest[k − 1]
[
closest[1][i]

]
for k > 1, (4.3)

where closest[k][i] is the answer for jumping k times from object i, and d(i, j) is the distance between the
i-th and the j-th object.

Intuitive physics. Battaglia et al. [6] and Watters et al. [39] train neural networks to predict object dynamics
in rigid body scenes and n-body systems. Chang et al. [11] and Janner et al. [19] study other rigid body
scenes. Suppose the force acting on a physical object stays constant, we can compute the object’s trajectory
with simple functions (physics laws) based on its initial position and force. Physical interactions, however,
make the force change, which means the function to compute the object’s dynamics has to change too.
Thus, a DP algorithm would recursively compute the next force changes in the system and update DP states
(velocity, momentum, position etc of objects) according to the (learned) forces and physics laws [35].

for k = 1..K : time = mini,j Force-change-time(state[k − 1, i], state[k − 1, j]), (4.4)
for i = 1..N : state[k][i] = Update-by-forces(state[k − 1][j], time), j = 1..N, (4.5)

Force-change-time computes the time at which the force between object i and j will change. Update-
by-forces updates the state of each object at the next force change time. In rigid body systems, force
changes only at collision. In datasets where no object collides more than once between time frames, one-
iteration algorithm/GNN can work [6]. More iterations are needed if multiple collisions occur between two
consecutive frames [24]. In n-body systems, forces change continuously but smoothly. Thus, finite-iteration
DP/GNN can be viewed as a form of Runge-Kutta method [12].

4.4 Designing Neural Networks with Algorithmic Alignment

While DP solves many reasoning tasks, it has limitations. For example, NP-hard problems cannot be solved
by DP. It follows that GNN also cannot sample-efficiently learn these hard problems. Fortunately, our
framework provides a solution: if we know the structure of the underlying reasoning algorithm, we can
design a network with a similar structure to learn it. If we have no prior knowledge about the structure, then
neural architecture search over algorithmic structures will be needed.

Subset Sum. As an example, we design a new architecture that can learn to solve the subset sum problem:
Given a set of numbers, does there exists a subset that sums to 0? Subset sum is NP-hard [22] and cannot
be solved by DP. Therefore, our framework predicts that GNN cannot generalize on this task. One subset
sum algorithm is exhaustive search, where we enumerate all 2|S| possible subsets τ and check whether τ has
zero-sum. Following this algorithm, we design a similarly structured neural network which we call Neural
Exhaustive Search (NES). Given a universe, NES enumerates all subsets of objects and passes each subset
through an LSTM followed by a MLP. The results are aggregated with a max-pooling layer and MLP:

MLP2(maxτ⊆S MLP1 ◦ LSTM(X1, ..., X|τ | : X1, ..., X|τ | ∈ τ)). (4.6)

8

This architecture aligns well with subset-sum, since the first MLP and LSTM only needs to learn a simple
step, checking whether a subset has zero sum. Therefore, we expect NES to generalize well in this task.
Indeed, NES has 98% test accuracy, while other models have below 80% accuracy (Fig. 3d).

5 Conclusion

This paper is an initial step towards formally understanding how neural networks can learn to reason. We
introduce an algorithmic alignment perspective that may inspire neural network design and opens up theo-
retical avenues. An interesting future direction is to design, e.g. via algorithmic alignment, neural networks
that can learn other general algorithmic paradigms, and to explore the neural architecture search space of
algorithmic structures.

Acknowledgments

This research was supported by NSF CAREER award 1553284, DARPA DSOs Lagrange program under
grant FA86501827838 and a Chevron-MIT Energy Fellowship. This research was also supported by JST
ERATO JPMJER1201 and JSPS Kakenhi JP18H05291. MZ was supported by DARPA award HR0011-15-
C-0113 under subcontract to Raytheon BBN Technologies. The views, opinions, and/or findings contained
in this article are those of the author and should not be interpreted as representing the official views or
policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the Department
of Defense.

9

References
[1] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparameterized

neural networks, going beyond two layers. arXiv preprint arXiv:1811.04918, 2018.

[2] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zitnick,
and Devi Parikh. Vqa: Visual question answering. In Proceedings of the IEEE international conference
on computer vision, pages 2425–2433, 2015.

[3] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, 2019.

[4] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

[5] Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. In Advances in Neural Information Processing Systems, pages 6240–6249, 2017.

[6] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks for
learning about objects, relations and physics. In Advances in Neural Information Processing Systems,
pages 4502–4510, 2016.

[7] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al. Rela-
tional inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

[8] Richard Bellman. On a routing problem. Quarterly of applied mathematics, 16(1):87–90, 1958.

[9] Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

[10] Michael Chang, Abhishek Gupta, Sergey Levine, and Thomas L. Griffiths. Automatically composing
representation transformations as a means for generalization. In International Conference on Learning
Representations, 2019.

[11] Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum. A compositional
object-based approach to learning physical dynamics. In International Conference on Learning Rep-
resentations, 2017.

[12] Paul L DeVries and Patrick Hamill. A first course in computational physics, 1995.

[13] François Fleuret, Ting Li, Charles Dubout, Emma K Wampler, Steven Yantis, and Donald Geman.
Comparing machines and humans on a visual categorization test. Proceedings of the National Academy
of Sciences, 108(43):17621–17625, 2011.

[14] Katerina Fragkiadaki, Pulkit Agrawal, Sergey Levine, and Jitendra Malik. Learning visual predictive
models of physics for playing billiards. In International Conference on Learning Representations,
2016.

[15] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning, pages
1273–1272, 2017.

[16] Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity of neural
networks. In Conference On Learning Theory, pages 297–299, 2018.

[17] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–
1780, 1997.

10

[18] Ronghang Hu, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Kate Saenko. Learning to reason:
End-to-end module networks for visual question answering. In Proceedings of the IEEE International
Conference on Computer Vision, pages 804–813, 2017.

[19] Michael Janner, Sergey Levine, William T. Freeman, Joshua B. Tenenbaum, Chelsea Finn, and Jiajun
Wu. Reasoning about physical interactions with object-centric models. In International Conference
on Learning Representations, 2019.

[20] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross
Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2901–2910,
2017.

[21] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Judy Hoffman, Li Fei-Fei,
C Lawrence Zitnick, and Ross Girshick. Inferring and executing programs for visual reasoning. In
Proceedings of the IEEE International Conference on Computer Vision, pages 2989–2998, 2017.

[22] Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer computa-
tions, pages 85–103. Springer, 1972.

[23] Andrei N Kolmogorov. On tables of random numbers. Theoretical Computer Science, 207(2):387–395,
1998.

[24] Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B. Tenenbaum, and Antonio Torralba. Learning particle
dynamics for manipulating rigid bodies, deformable objects, and fluids. In International Conference
on Learning Representations, 2019.

[25] Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum, and Jiajun Wu. The neuro-
symbolic concept learner: Interpreting scenes, words, and sentences from natural supervision. In
International Conference on Learning Representations, 2019.

[26] Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li F Fei-Fei, Josh Tenenbaum, and
Daniel L Yamins. Flexible neural representation for physics prediction. In Advances in Neural Infor-
mation Processing Systems, pages 8799–8810, 2018.

[27] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural net-
works. In Conference on Learning Theory, pages 1376–1401, 2015.

[28] Rasmus Palm, Ulrich Paquet, and Ole Winther. Recurrent relational networks. In Advances in Neural
Information Processing Systems, pages 3368–3378, 2018.

[29] Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller,
Raia Hadsell, and Peter Battaglia. Graph networks as learnable physics engines for inference and
control. In International Conference on Machine Learning, pages 4467–4476, 2018.

[30] Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pascanu, Peter
Battaglia, and Timothy Lillicrap. A simple neural network module for relational reasoning. In Ad-
vances in neural information processing systems, pages 4967–4976, 2017.

[31] Adam Santoro, Felix Hill, David Barrett, Ari Morcos, and Timothy Lillicrap. Measuring abstract
reasoning in neural networks. In International Conference on Machine Learning, pages 4477–4486,
2018.

[32] David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical reason-
ing abilities of neural models. In International Conference on Learning Representations, 2019.

11

[33] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. Com-
putational capabilities of graph neural networks. IEEE Transactions on Neural Networks, 20(1):81–
102, 2009.

[34] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

[35] Jos Thijssen. Computational physics. Cambridge university press, 2007.

[36] Leslie G Valiant. A theory of the learnable. In Proceedings of the sixteenth annual ACM symposium
on Theory of computing, pages 436–445. ACM, 1984.

[37] Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media, 2013.

[38] Edward Wagstaff, Fabian B Fuchs, Martin Engelcke, Ingmar Posner, and Michael Osborne. On the
limitations of representing functions on sets. In International Conference on Machine Learning, 2019.

[39] Nicholas Watters, Daniel Zoran, Theophane Weber, Peter Battaglia, Razvan Pascanu, and Andrea
Tacchetti. Visual interaction networks: Learning a physics simulator from video. In Advances in
neural information processing systems, pages 4539–4547, 2017.

[40] Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M Rush, Bart van Merriënboer, Armand
Joulin, and Tomas Mikolov. Towards ai-complete question answering: A set of prerequisite toy tasks.
arXiv preprint arXiv:1502.05698, 2015.

[41] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International Con-
ference on Machine Learning, pages 5453–5462, 2018.

[42] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural net-
works? In International Conference on Learning Representations, 2019.

[43] Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and Josh Tenenbaum. Neural-
symbolic vqa: Disentangling reasoning from vision and language understanding. In Advances in
Neural Information Processing Systems, pages 1031–1042, 2018.

[44] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R Salakhutdinov, and
Alexander J Smola. Deep sets. In Advances in Neural Information Processing Systems, pages 3391–
3401, 2017.

[45] Chi Zhang, Feng Gao, Baoxiong Jia, Yixin Zhu, and Song-Chun Zhu. Raven: A dataset for relational
and analogical visual reasoning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5317–5327, 2019.

12

A Proof for Proposition 3.1

We will prove the universal approximation of GNNs by showing that GNNs have at least the same expressive
power as Deep Sets, and then apply the universal approximation of Deep Sets for permutation invariant
continuous functions.

Zaheer et al. [44] prove the universal approximation of Deep Sets under the restriction that the set size is
fixed and the hidden dimension is equal to the set size plus one. Wagstaff et al. [38] extend the universal
approximation result for Deep Sets by showing that the set size does not have to be fixed and the hidden
dimension is only required to be at least as large as the set size. The results for our purposes can be
summarized as follows.

Universal approximation of Deep Sets. Assume the elements are from a compact set in Rd. Any con-
tinuous function on a set S of size bounded by N , i.e., f : Rd×N → R, that is permutation invariant to the
elements in S can be approximated arbitrarily close by some Deep Sets model with sufficiently large width
and output dimension for its MLPs.

Next we show any Deep Sets can be expressed by some GNN with one message passing iteration. The
computation structure of one-layer GNNs is shown below.

hs =
∑
t∈S

φ (Xs, Xt) , hS = g

(∑
s∈S

hs

)
, (A.1)

where φ and g are parameterized by MLPs. If φ is a function that ignores Xt so that φ (Xs, Xt) = ρ(Xs)
for some ρ, e.g., by letting part of the weight matricies in φ be 0, then we essentially get a Deep Sets in the
following form.

hs = ρ (Xs) , hS = g

(∑
s∈S

hs

)
. (A.2)

For any such ρ, we can get the corresponding φ via the construction above. Hence for any Deep Sets, we can
express it with an one-layer GNN. The same result applies to GNNs with multiple layers (message passing
iterations), because we can express a function ρ(Xs) by the composition of multiple ρ(k)’s, which we can
express with a GNN layer via our construction above. It then follows that GNNs are universal approximators
for permutation invariant continuous functions.

B Proof for Proposition 3.2

For any GNN N , we construct an MLP that is able to do the exact same computation as N . It will then
follow that the MLP can represent any function N can represent. Suppose the computation structure of N
is the following.

h(k)s =
∑
t∈S

f (k)
(
h(k−1)s , h

(k−1)
t

)
, hS = g

(∑
s∈S

h(K)
s

)
, (B.1)

where f and g are parameterized by MLPs. Suppose the set size is bounded by M (the expressive power of
GNNs also depend onM [38]). We first show the result for a fixed size input, i.e., MLPs can simulate GNNs
if the input set has a fixed size, and then apply an ensemble approach to deal with variable sized input.

Let the input to the MLP be a vector concatenated by h(0)s ’s, in some arbitrary ordering. For each message
passing iteration of N , any f (k) can be represented by an MLP. Thus, for each pair of (h(k−1)t , h

(k−1)
s), we

13

can set weights in the MLP so that the the concatenation of all f(h(k−1)t , h
(k−1)
s) become the hidden vector

after some layers of the MLP. With the vector of f(h(k−1)t , h
(k−1)
s) as input, in the next few layers of the

MLP we can construct weights so that we have the concatenation of h(k)s =
∑

t∈S f
(k)
(
h
(k−1)
s , h

(k−1)
t

)
as

the result of the hidden dimension, because we can encode summation with weights in MLPs. So far, we
can simulate an iteration of GNNN with layers of MLP. We can repeat the process for K times by stacking
the similar layers. Finally, with a concatenation of h(K)

s as our hidden dimension in the MLP, similarly, we
can simulate hS = g

(∑
s∈S h

(K)
s

)
with layers of MLP. Stacking all layers together, we have obtained an

MLP that can simulate N .

To deal with variable sized inputs, we construct M MLPs that can simulate the GNN for each input set size
1, ...,M . Then we construct a meta-layer, whose weights represent (universally approximate) the summation
of the output of M MLPs multiplied by an indicator function of whether each MLPs has the same size as
the set input (these need to be input information). The meta layer weights on top can then essentially select
the output from of MLP that has the same size as the set input and then exactly simulate the GNN. Note that
the MLP we construct here has the requirement for how we input the data and the information of set sizes
etc. In practice, we can have M MLPs and decide which MLP to use depending on the input set size.

C Proof for Theorem 3.5

Theorem 3.5 is a generalization of Theorem 6.1 in [3], which addresses the scalar case. See [3] for a
complete list of assumptions.

Theorem C.1. [3] Suppose we have g : Rd → R, g(x) =
∑

j αj

(
β>j x

)pj
, where βj ∈ Rd, α ∈ R, and

pj = 1 or pj = 2l (l ∈ N+). Let A be an overparameterized two-layer MLP that is randomly initialized
and trained with gradient descent for a sufficient number of iterations. The sample complexity CA(g, ε, δ) is

O
(∑

j pj |αj |·‖βj‖
pj
2 +log(1/δ)

ε2

)
.

To extend the sample complexity bound to vector-valued functions, we view each entry/component of the
output vector as an independent scalar-valued output. We can then apply a union bound to bound the error
rate and failure probability for the output vector, and thus, bound the overall sample complexity.

Let ε and δ be the given error rate and failure probability. Moreover, suppose we choose some error rate ε0
and failure probability δ0 for the output/function of each entry. Applying Theorem C.1 to each component

g(x)(i) =
∑
j

α
(i)
j

(
β
(i)>
j x

)p(i)j
=: gi(x) (C.1)

yields a sample complexity bound of

CA(gi, ε0, δ0) = O

∑j p
(i)
j |α

(i)
j | · ‖β

(i)
j ‖

p
(i)
j

2 + log (1/δ0)

ε20

 (C.2)

for each gi(x). Now let us bound the overall error rate and failure probability given ε0 and δ0 for each entry.
The probability that we fail to learn each of the gi is at most δ0. Hence, by a union bound, the probability
that we fail to learn any of the gi is at most m · δ0. Thus, with probability at least 1−mδ0, we successfully
learn all gi for i = 1, ...,m, so the error for every entry is bounded by ε0. The error for the vector output is
then at most

∑m
i=1 ε0 = mε0.

Setting mδ0 = δ and mε0 = ε gives us δ0 = δ
m and ε0 = ε

m . Thus, if we can successfully learn the function
for each output entry independently with error ε/m and failure rate δ/m, we can successfully learn the entire

14

vector-valued function with rate ε and δ. This yields the following overall sample complexity bound:

CA(g, ε, δ) = O

maxi
∑

j p
(i)
j |α

(i)
j | · ‖β

(i)
j ‖

p
(i)
j

2 + log (m/δ)

(ε/m)2

 (C.3)

Regarding m as a constant, we can further simplify the sample complexity to

CA(g, ε, δ) = O

maxi
∑

j p
(i)
j |α

(i)
j | · ‖β

(i)
j ‖

p
(i)
j

2 + log (1/δ)

ε2

 . (C.4)

D Proof for Theorem 3.6

We will show the learnability result by an inductive argument. Specifically, we will show that under our
setting and assumptions, the error between the learned function and correct function on the test set will not
blow up after the transform of another learned function f̂j , assuming learnability on previous f̂1, ..., f̂j−1 by
induction. Thus, we can essentially provably learn at all layers/iterations and eventually learn g.

Suppose we have performed the sequential learning. Let us consider what happens at the test time. Let fj be
the correct functions as defined in the algorithmic alignment. Let f̂j be the functions learned by algorithm
Aj and MLP Nj . We have input S ∼ D, and our goal is to bound ‖g(S)− ĝ(S)‖ with high probability. To
show this, we bound the error of the intermediate representation vectors, i.e., the output of f̂j and fj , and
thus, the input to f̂j+1 and fj+1.

Let us first consider what happens for the first module N1. f1 and f̂1 have the same input distribution
x ∼ D, where x are obtained from S, e.g., the pairwise object representations as in Eqn. 2.2. Hence, by the
learnability assumption onA1, ‖f1(x)− f̂1(x)‖ < ε with probability at least 1−δ. The error for the input of
N2 is then O(ε) with failure probability O(δ), because there are a constant number of terms of aggregation
of f1’s output, and we can apply union bound to upper bound the failure probability.

Next, we proceed by induction. Let us fix a k. Let z denote the input for fk, which are generated by
the previous fj’s, and let ẑ denote the input for f̂k, which are generated by the previous f̂j’s. Assume
‖z − ẑ‖ ≤ O(ε) with failure probability at most O(δ). We aim to show that this holds for k + 1. For the
simplicity of notation, let f denote the correct function fk and let f̂ denote the learned function f̂k. Since
there are a constant number of terms for aggregation, our goal is then to bound ‖f̂(ẑ)− f(z)‖. By triangle
inequality, we have

‖f̂(ẑ)− f(z)‖ = ‖f̂(ẑ)− f̂(z) + f̂(z)− f(z)‖ (D.1)

≤ ‖f̂(ẑ)− f̂(z)‖+ ‖f̂(z)− f(z)‖ (D.2)

We can bound the first term with the Lipschitzness assumption of f̂ as the following.

‖f̂(ẑ)− f̂(z)‖ ≤ L1‖ẑ − z‖ (D.3)

To bound the second term, our key insight is that f is a learnale correct function, so by the learnability
coefficients in algorithmic alignment, it is close to the function f̃ learned by the learning algorithmA on the
correct samples, i.e., f is close to f̃ = A ({zi, yi}). Moreover, f̂ is generated by the learning algorithm A

15

on the perturbed samples, i.e., f̂ = A ({ẑi, yi}). By the algorithm stability assumption, f̂ and f̃ should be
close if the input samples are only slightly perturbed. It then follows that

‖f̂(z)− f(z)‖ = ‖f̂(z)− f̃(z) + f̃(z)− f(z)‖ (D.4)

≤ ‖f̂(z)− f̃(z)‖+ ‖f̃(z)− f(z)‖ (D.5)
≤ L0max

i
‖zi − ẑi‖+ ε w.p. ≥ 1− δ (D.6)

where zi and ẑi are the training samples at the same layer k. Here, we apply the same induction condition as
what we had for z and ẑ: ‖zi − ẑi‖ ≤ O(ε) with failure probability at most O(δ). We can then apply union
bound to bound the probability of any bad event happening. Here, we have 3 bad events each happening
with probability at most O(δ). Thus, with probability at least 1−O(δ), we have

‖f̂(ẑ)− f(z)‖ ≤ L1O(ε) + L0O(ε) + ε = O(ε) (D.7)

This completes the proof.

E Proof for Corollary 3.7

Our main insight is that a giant MLP learns the same function (Xi −Xj)
2 for `2 times and encode them in

the weights. This leads to the O(`2) extra sample complexity through Theorem 3.5, because the number of
polynomial terms (Xi −Xj)

2 is of order `2.

First of all, the function f(x, y) = (x− y)2 can be expressed as the following polynomial.

(x− y)2 =
(
[1 − 1]> [x y]

)2
(E.1)

We have β = [1− 1], so p · ‖β‖p = 4. Hence, by Theorem 3.5, it takes O(log(1/δ)
ε2

) samples for an MLP to
learn f(x, y) = (x− y)2. Under the sequential training setting, an one-layer GNN applies an MLP to learn
f , and then sums up the outcome of f(Xi, Xj) for all pairs Xi, Xj . Here, we essentially get the aggregation
error O(`2 · ε) from `2 pairs. However, we will see that applying an MLP to learn g will also incur the same
aggregation error. Hence, we do not need to consider the aggregation error effect when we compare the
sample complexities.

Now we consider using MLP to learn the function g. No matter in what order the objects Xi are concate-
nated, we can express g with the sum of polynomials as the following.

g(S) =
∑
ij

(β>ij [X1, ..., Xn])
2, (E.2)

where βij has 1 at the i-th entry, −1 at the j-th entry and 0 elsewhere. Hence ‖βij‖p · p = 4. It then follows
from Theorem 3.5 and union bound that it takes O((`2 + log(1/δ̂))/ε̂2) to learn g, where ε̂ = `2ε and
δ̂ = `2δ. Here, as we have discussed above, the same aggregation error ε̂ occurs in the aggregation process
of f , so we can simply consider ε̂ for both. Thus, comparing O(log(1/δ̂)/ε̂2) and O((`2 + log(1/δ̂))/ε̂2)
gives us the O(`2) difference.

F Proof for Claim 4.1

We prove the claim by contradiction. Suppose there exists f such that f(x) + f(y) = g(x, y) for any x and
y. This implies that for any x, we have f(x) + f(x) = g(x, x) = 0. It follows that f(x) = 0 for any x.
Now consider some x and y so that x 6= y. We must have f(x) + f(y) = 0 + 0 = 0. However, g(x, y) 6= 0
because x 6= y. Hence, there exists x and y so that f(x)+f(y) 6= g(x, y). We have reached a contradiction.

16

G Experiments: Data and Training Details

G.1 Fantastic Treasure: Maximum Value Difference

Dataset generation. In the dataset, we sample 50, 000 training data, 5, 000 validation data, and 5, 000 test
data. For each model, we report the test accuracy with the hyperparameter setting that achieves the best
validation accuracy. In each training sample, the input universe consists of 25 treasures X1, ..., X25. For
each treasure Xi, we have Xi = [h1, h2, h3], where the location h1 is sampled uniformly from [0..20]8, the
value h2 is sample uniformly form [0..100], and the color h3 is sampled uniformly from [1..6]. The task is to
answer what the difference is in value between the most and least valuable treasure. We generate the answer
label y for a universe S as follows: we find the the maximum difference in value among all treasures and set
it to y. Then we make the label y into one-hot encoding with 100 + 1 = 101 classes.

Hyperparameter setting. We train all models with the Adam optimizer, with learning rate from 1e −
3, 5e− 4, and 1e− 4, and we decay the learning rate by 0.5 every 50 steps. We use cross-entropy loss. We
train all models for 150 epochs. We tune batch size of 128 and 64.

For GNNs and HRN, we choose the hidden dimension of MLP modules from 128 and 256. For DeepSet
and MLP, we choose the hidden dimension of MLP modules from 128, 256, 2500, 5000. For the MLP and
DeepSet model, we choose the number of of hidden layers for MLP moduels from 4 and 8, 16. For GNN
and HRN, we set the number of hidden layers of the MLP modules to 3, 4. Moreover, dropout with rate 0.5
is applied before the last two hidden layers of MLP1, i.e., the last MLP module in all models.

G.2 Fantastic Treasure: Furthest Pair

Dataset generation. In the dataset, we sample 60, 000 training data, 6, 000 validation data, and 6, 000 test
data. For each model, we report the test accuracy with the hyperparameter setting that achieves the best
validation accuracy. In each training sample, the input universe consists of 25 treasures X1, ..., X25. For
each treasure Xi, we have Xi = [h1, h2, h3], where the location h1 is sampled uniformly from [0..20]8, the
value h2 is sample uniformly form [0..100], and the color h3 is sampled uniformly from [1..6]. The task is
to answer what are the colors of the two treasure that are the most distant from each other. We generate the
answer label y for a universe S as follows: we find the pair of treasures that are the most distant from each
other, say (Xi, Xj). Then we order the pair (h3(Xi), h3(Xj)) to obtain an ordered pair (a, b) with a ≤ b
(aka. a = min{h3(Xi), h3(Xj)} and (b = max{h3(Xi), h3(Xj)}), where h3(Xi) denotes the color of Xi.
Then we compute the label y from (a, b) by counting how many valid pairs of colors are smaller than (a, b)
(a pair (k, l) is smaller than (a, b) iff i). k < a or ii). k = a and l < b). The label y is one-hot encoding of
the minimum cost with 6× (6− 1)/2 + 6 = 21 classes.

Hyperparameter setting. We train all models with the Adam optimizer, with learning rate from 1e −
3, 5e− 4, and 1e− 4, and we decay the learning rate by 0.5 every 50 steps. We use cross-entropy loss. We
train all models for 150 epochs. We tune batch size of 128 and 64.

For the MLP and DeepSet model, we choose the number of of hidden layers of MLP modules from 4 and
8, 16. For GNN and HRN models, we set the number of hidden layers of the MLP modules from 3 and
4. For DeepSet and MLP models, we choose the hidden dimension of MLP modules from 128, 256, 2500,
5000. For GNNs and HRN, we choose the hidden dimension of MLP modules from 128 and 256. Moreover,
dropout with rate 0.5 is applied before the last two hidden layers of MLP1, i.e., the last MLP module in all
models.

G.3 Monster Trainer

Task description. We are a monster trainer who lives in a world S with 10 monsters. Each monster X =
[h1, h2] has a location h1 ∈ [0..10]2 and a unique combat level h2 ∈ [1..10]. In each game, the trainer starts
at a random location with level zero, Xtrainer = [p0, 0], and receives a quest to defeat the level-k monster. At

17

each time step, the trainer can challenge any more powerful monsterX , with a cost equal to the product of the
travel distance and the level difference c(Xtrainer, X) = ‖h1(Xtrainer)− h1(X)‖`1 × (h2(X)− h2(Xtrainer)).
After defeating monster X , the trainer’s level upgrades to h2(X), and the trainer moves to h1(X). We ask
the minimum cost of completing the quest, i.e., defeating the level-k monster. The range of cost (number
of classes for prediction) is 200. To make games even more challenging, we sample games whose optimal
solution involves defeating three to seven non-quest monsters.

A DP algorithm for shortest paths that needs half of the iterations of Bellman-Ford. We provide a DP
algorithm as the following. To compute a shortest-path from a source object s to a target object t with at
most seven stops, we run the following updates for four iterations:

distances[1][u] = cost(s, u), distances[k][u] = minv
{

distances[k − 1][v] + cost(v, u)
}
, (G.1)

distancet[1][u] = cost(u, t), distancet[k][u] = minv
{

distancet[k − 1][v] + cost(u, v)
}
. (G.2)

Update Eqn. G.1 is identical to the Bellman-Ford algorithm Eqn. 4.2, and distances[k][u] is the shortest
distance from s to u with at most k stops. Update Eqn. G.2 is a reverse Bellman-Ford algorithm, and
distancet[k][u] is the shortest distance from u to t with at most k stops. After running Eqn. G.1 and
Eqn. G.2 for k iterations, we can compute a shortest path with at most 2k stops by enumerating a mid-point
and aggregating the results of the two Bellman-Ford algorithms:

minu
{

distances[k][u] + distancet[k][u]
}
. (G.3)

Thus, this algorithm needs half of the iterations of Bellman-Ford.

Dataset generation. In the dataset, we sample 200, 000 training data, 6, 000 validation data, and 6, 000
test data. For each model, we report the test accuracy with the hyperparameter setting that achieves the
best validation accuracy. In each training sample, the input universe consists of the trainer and 10 monsters
X0, ..., X10, and the request level k, i.e., we need to challenge monster k. We have Xi = [h1, h2], where
h1 = i indicates the combat level, and the location h2 ∈ [0..10]2 is sampled uniformly from [0..10]2. We
generate the answer label y for a universe S as follows. We implement a shortest path algorithm to compute
the minimum cost from the trainer to monster k, where the cost is defined in task description. Then the
label y is a one-hot encoding of minimum cost with 200 classes. Moreover, when we sample the data, we
apply rejection sampling to ensure that the minimum cost’s shortest path is of length 3, 4, 5, 6, 7 with equal
probability. That is, we eliminate the trivial questions.

Hyperparameter setting. We train all models with the Adam optimizer, with learning rate from 2e − 4
and 5e − 4, and we decay the learning rate by 0.5 every 50 steps. We use cross-entropy loss. We train all
models for 300 epochs. We tune batch size of 128 and 64.

For the MLP model, we choose the number of layers from 4 and 8, 16. For other models, we choose the
number of hidden layers of MLP modules from 3 and 4. For GNN models, we choose the hidden dimension
of MLP modules from 128 and 256. For DeepSet and MLP models, we choose the hidden dimension of
MLP modules from 128, 256, 2500. Moreover, dropout with rate 0.5 is applied before the last two hidden
layers of MLP1, i.e., the last MLP module in all models.

G.4 Subset Sum

Dataset generation. In the dataset, we sample 40, 000 training data, 4, 000 validation data, and 4, 000 test
data. For each model, we report the test accuracy with the hyperparameter setting that achieves the best
validation accuracy. In each training sample, the input universe S consists of 6 numbers X1, ..., X6, where
each Xi is uniformly sampled from [-200..200]. The goal is to decide if there exists a subset that sums up
to 0. In the data generation, we carefully decrease the number of questions that have trivial answers: 1)we
control the number of samples where 0 ∈ {X1, ..., X6} to be around 1% of the total training data; 2) we
further control the number of samples where X1 + ... + X6 = 0 or ∃i, j ∈ [1..6] so that Xi = −Xj to
be around 1.5% of the total training data. In addition, we apply rejection sampling to make sure that the

18

questions with answer yes (aka. such subset exists) and answer no (aka. no such subset exists) are balanced
(i.e., 20,000 samples for each class in the training data).

Hyperparameter setting. We train all models with the Adam optimizer, with learning rate from 1e −
3, 5e− 4, and 1e− 4, and we decay the learning rate by 0.5 every 50 steps. We use cross-entropy loss. We
train all models for 300 epochs. The batch size we use for all models is 64.

For DeepSets and MLP models, we choose the number of of hidden layers of the MLP modules from 4,
8, 16. For GNN and HRN models, we set the number of hidden layers of the last MLP modules to 4. For
DeepSets and MLP, we choose the hidden dimension of MLP modules from 128, 256, 2500, 5000. For
GNN and HRN models, we choose the hidden dimension of MLP modules from 128 and 256. Moreover,
dropout with rate 0.5 is applied before the last two hidden layers of MLP1, i.e., the last MLP module in all
models.

The model Neural Exhaustive Search (NES) enumerates all possible non-empty subsets τ of S, and passes
the numbers of τ to an MLP, in a random order, to obtain the hidden feature. The hidden feature is then
passed to a single-direction one-layer LSTM of hidden dimension 128. Afterwards, NES applies an aggre-
gation function to these 26 − 1 hidden states obtained by the LSTM to obtain the final output. For NES, we
set the number of hidden layers of the last MLP, i.e., MLP2, to 4, the number of hidden layers of the MLPs
prior to the last MLP, i.e., MLP1, to 3, and we choose the hidden dimension of all MLP modules from 128
and 256.

19

Published as a conference paper at ICLR 2019

HOW POWERFUL ARE GRAPH NEURAL NETWORKS?

Keyulu Xu ∗†
MIT
keyulu@mit.edu

Weihua Hu ∗‡
Stanford University
weihuahu@stanford.edu

Jure Leskovec
Stanford University
jure@cs.stanford.edu

Stefanie Jegelka
MIT
stefje@mit.edu

ABSTRACT

Graph Neural Networks (GNNs) are an effective framework for representation
learning of graphs. GNNs follow a neighborhood aggregation scheme, where the
representation vector of a node is computed by recursively aggregating and trans-
forming representation vectors of its neighboring nodes. Many GNN variants have
been proposed and have achieved state-of-the-art results on both node and graph
classification tasks. However, despite GNNs revolutionizing graph representation
learning, there is limited understanding of their representational properties and
limitations. Here, we present a theoretical framework for analyzing the expressive
power of GNNs to capture different graph structures. Our results characterize
the discriminative power of popular GNN variants, such as Graph Convolutional
Networks and GraphSAGE, and show that they cannot learn to distinguish certain
simple graph structures. We then develop a simple architecture that is provably
the most expressive among the class of GNNs and is as powerful as the Weisfeiler-
Lehman graph isomorphism test. We empirically validate our theoretical findings
on a number of graph classification benchmarks, and demonstrate that our model
achieves state-of-the-art performance.

1 INTRODUCTION

Learning with graph structured data, such as molecules, social, biological, and financial networks,
requires effective representation of their graph structure (Hamilton et al., 2017b). Recently, there
has been a surge of interest in Graph Neural Network (GNN) approaches for representation learning
of graphs (Li et al., 2016; Hamilton et al., 2017a; Kipf & Welling, 2017; Velickovic et al., 2018;
Xu et al., 2018). GNNs broadly follow a recursive neighborhood aggregation (or message passing)
scheme, where each node aggregates feature vectors of its neighbors to compute its new feature
vector (Xu et al., 2018; Gilmer et al., 2017). After k iterations of aggregation, a node is represented
by its transformed feature vector, which captures the structural information within the node’s k-hop
neighborhood. The representation of an entire graph can then be obtained through pooling (Ying
et al., 2018), for example, by summing the representation vectors of all nodes in the graph.

Many GNN variants with different neighborhood aggregation and graph-level pooling schemes have
been proposed (Scarselli et al., 2009b; Battaglia et al., 2016; Defferrard et al., 2016; Duvenaud et al.,
2015; Hamilton et al., 2017a; Kearnes et al., 2016; Kipf & Welling, 2017; Li et al., 2016; Velickovic
et al., 2018; Santoro et al., 2017; Xu et al., 2018; Santoro et al., 2018; Verma & Zhang, 2018; Ying
et al., 2018; Zhang et al., 2018). Empirically, these GNNs have achieved state-of-the-art performance
in many tasks such as node classification, link prediction, and graph classification. However, the
design of new GNNs is mostly based on empirical intuition, heuristics, and experimental trial-and-
error. There is little theoretical understanding of the properties and limitations of GNNs, and formal
analysis of GNNs’ representational capacity is limited.

∗Equal contribution.
†Work partially performed while in Tokyo, visiting Prof. Ken-ichi Kawarabayashi.
‡Work partially performed while at RIKEN AIP and University of Tokyo.

1

ar
X

iv
:1

81
0.

00
82

6v
3

 [
cs

.L
G

]
 2

2
Fe

b
20

19

Published as a conference paper at ICLR 2019

Here, we present a theoretical framework for analyzing the representational power of GNNs. We
formally characterize how expressive different GNN variants are in learning to represent and distin-
guish between different graph structures. Our framework is inspired by the close connection between
GNNs and the Weisfeiler-Lehman (WL) graph isomorphism test (Weisfeiler & Lehman, 1968), a
powerful test known to distinguish a broad class of graphs (Babai & Kucera, 1979). Similar to GNNs,
the WL test iteratively updates a given node’s feature vector by aggregating feature vectors of its
network neighbors. What makes the WL test so powerful is its injective aggregation update that maps
different node neighborhoods to different feature vectors. Our key insight is that a GNN can have as
large discriminative power as the WL test if the GNN’s aggregation scheme is highly expressive and
can model injective functions.

To mathematically formalize the above insight, our framework first represents the set of feature
vectors of a given node’s neighbors as a multiset, i.e., a set with possibly repeating elements.
Then, the neighbor aggregation in GNNs can be thought of as an aggregation function over the
multiset. Hence, to have strong representational power, a GNN must be able to aggregate different
multisets into different representations. We rigorously study several variants of multiset functions and
theoretically characterize their discriminative power, i.e., how well different aggregation functions can
distinguish different multisets. The more discriminative the multiset function is, the more powerful
the representational power of the underlying GNN.

Our main results are summarized as follows:

1) We show that GNNs are at most as powerful as the WL test in distinguishing graph structures.

2) We establish conditions on the neighbor aggregation and graph readout functions under which
the resulting GNN is as powerful as the WL test.

3) We identify graph structures that cannot be distinguished by popular GNN variants, such as
GCN (Kipf & Welling, 2017) and GraphSAGE (Hamilton et al., 2017a), and we precisely
characterize the kinds of graph structures such GNN-based models can capture.

4) We develop a simple neural architecture, Graph Isomorphism Network (GIN), and show that
its discriminative/representational power is equal to the power of the WL test.

We validate our theory via experiments on graph classification datasets, where the expressive power
of GNNs is crucial to capture graph structures. In particular, we compare the performance of GNNs
with various aggregation functions. Our results confirm that the most powerful GNN by our theory,
i.e., Graph Isomorphism Network (GIN), also empirically has high representational power as it almost
perfectly fits the training data, whereas the less powerful GNN variants often severely underfit the
training data. In addition, the representationally more powerful GNNs outperform the others by test
set accuracy and achieve state-of-the-art performance on many graph classification benchmarks.

2 PRELIMINARIES

We begin by summarizing some of the most common GNN models and, along the way, introduce our
notation. LetG = (V,E) denote a graph with node feature vectorsXv for v ∈ V . There are two tasks
of interest: (1) Node classification, where each node v ∈ V has an associated label yv and the goal is
to learn a representation vector hv of v such that v’s label can be predicted as yv = f(hv); (2) Graph
classification, where, given a set of graphs {G1, ..., GN} ⊆ G and their labels {y1, ..., yN} ⊆ Y , we
aim to learn a representation vector hG that helps predict the label of an entire graph, yG = g(hG).

Graph Neural Networks. GNNs use the graph structure and node features Xv to learn a representa-
tion vector of a node, hv , or the entire graph, hG. Modern GNNs follow a neighborhood aggregation
strategy, where we iteratively update the representation of a node by aggregating representations
of its neighbors. After k iterations of aggregation, a node’s representation captures the structural
information within its k-hop network neighborhood. Formally, the k-th layer of a GNN is

a(k)v = AGGREGATE(k)
({
h(k−1)u : u ∈ N (v)

})
, h(k)v = COMBINE(k)

(
h(k−1)v , a(k)v

)
,

(2.1)

where h(k)v is the feature vector of node v at the k-th iteration/layer. We initialize h(0)v = Xv, and
N (v) is a set of nodes adjacent to v. The choice of AGGREGATE(k)(·) and COMBINE(k)(·) in

2

Published as a conference paper at ICLR 2019

Graph Rooted subtree

2 WL test iterations

Multiset

GNN aggregation

….

Captures structures

Figure 1: An overview of our theoretical framework. Middle panel: rooted subtree structures
(at the blue node) that the WL test uses to distinguish different graphs. Right panel: if a GNN’s
aggregation function captures the full multiset of node neighbors, the GNN can capture the rooted
subtrees in a recursive manner and be as powerful as the WL test.

GNNs is crucial. A number of architectures for AGGREGATE have been proposed. In the pooling
variant of GraphSAGE (Hamilton et al., 2017a), AGGREGATE has been formulated as

a(k)v = MAX
({

ReLU
(
W · h(k−1)u

)
, ∀u ∈ N (v)

})
, (2.2)

where W is a learnable matrix, and MAX represents an element-wise max-pooling. The COMBINE
step could be a concatenation followed by a linear mapping W ·

[
h
(k−1)
v , a

(k)
v

]
as in GraphSAGE. In

Graph Convolutional Networks (GCN) (Kipf & Welling, 2017), the element-wise mean pooling is
used instead, and the AGGREGATE and COMBINE steps are integrated as follows:

h(k)v = ReLU
(
W ·MEAN

{
h(k−1)u , ∀u ∈ N (v) ∪ {v}

})
. (2.3)

Many other GNNs can be represented similarly to Eq. 2.1 (Xu et al., 2018; Gilmer et al., 2017).

For node classification, the node representation h(K)
v of the final iteration is used for prediction. For

graph classification, the READOUT function aggregates node features from the final iteration to
obtain the entire graph’s representation hG:

hG = READOUT
({
h(K)
v

∣∣ v ∈ G}). (2.4)

READOUT can be a simple permutation invariant function such as summation or a more sophisticated
graph-level pooling function (Ying et al., 2018; Zhang et al., 2018).

Weisfeiler-Lehman test. The graph isomorphism problem asks whether two graphs are topologically
identical. This is a challenging problem: no polynomial-time algorithm is known for it yet (Garey,
1979; Garey & Johnson, 2002; Babai, 2016). Apart from some corner cases (Cai et al., 1992), the
Weisfeiler-Lehman (WL) test of graph isomorphism (Weisfeiler & Lehman, 1968) is an effective and
computationally efficient test that distinguishes a broad class of graphs (Babai & Kucera, 1979). Its
1-dimensional form, “naïve vertex refinement”, is analogous to neighbor aggregation in GNNs. The
WL test iteratively (1) aggregates the labels of nodes and their neighborhoods, and (2) hashes the
aggregated labels into unique new labels. The algorithm decides that two graphs are non-isomorphic
if at some iteration the labels of the nodes between the two graphs differ.

Based on the WL test, Shervashidze et al. (2011) proposed the WL subtree kernel that measures the
similarity between graphs. The kernel uses the counts of node labels at different iterations of the
WL test as the feature vector of a graph. Intuitively, a node’s label at the k-th iteration of WL test
represents a subtree structure of height k rooted at the node (Figure 1). Thus, the graph features
considered by the WL subtree kernel are essentially counts of different rooted subtrees in the graph.

3 THEORETICAL FRAMEWORK: OVERVIEW

We start with an overview of our framework for analyzing the expressive power of GNNs. Figure 1
illustrates our idea. A GNN recursively updates each node’s feature vector to capture the network
structure and features of other nodes around it, i.e., its rooted subtree structures (Figure 1). Throughout
the paper, we assume node input features are from a countable universe. For finite graphs, node
feature vectors at deeper layers of any fixed model are also from a countable universe. For notational
simplicity, we can assign each feature vector a unique label in {a, b, c . . .}. Then, feature vectors of
a set of neighboring nodes form a multiset (Figure 1): the same element can appear multiple times
since different nodes can have identical feature vectors.

3

Published as a conference paper at ICLR 2019

Definition 1 (Multiset). A multiset is a generalized concept of a set that allows multiple instances
for its elements. More formally, a multiset is a 2-tuple X = (S,m) where S is the underlying set of
X that is formed from its distinct elements, and m : S → N≥1 gives the multiplicity of the elements.

To study the representational power of a GNN, we analyze when a GNN maps two nodes to the same
location in the embedding space. Intuitively, a maximally powerful GNN maps two nodes to the same
location only if they have identical subtree structures with identical features on the corresponding
nodes. Since subtree structures are defined recursively via node neighborhoods (Figure 1), we can
reduce our analysis to the question whether a GNN maps two neighborhoods (i.e., two multisets)
to the same embedding or representation. A maximally powerful GNN would never map two
different neighborhoods, i.e., multisets of feature vectors, to the same representation. This means its
aggregation scheme must be injective. Thus, we abstract a GNN’s aggregation scheme as a class of
functions over multisets that their neural networks can represent, and analyze whether they are able
to represent injective multiset functions.

Next, we use this reasoning to develop a maximally powerful GNN. In Section 5, we study popular
GNN variants and see that their aggregation schemes are inherently not injective and thus less
powerful, but that they can capture other interesting properties of graphs.

4 BUILDING POWERFUL GRAPH NEURAL NETWORKS

First, we characterize the maximum representational capacity of a general class of GNN-based
models. Ideally, a maximally powerful GNN could distinguish different graph structures by mapping
them to different representations in the embedding space. This ability to map any two different graphs
to different embeddings, however, implies solving the challenging graph isomorphism problem. That
is, we want isomorphic graphs to be mapped to the same representation and non-isomorphic ones to
different representations. In our analysis, we characterize the representational capacity of GNNs via
a slightly weaker criterion: a powerful heuristic called Weisfeiler-Lehman (WL) graph isomorphism
test, that is known to work well in general, with a few exceptions, e.g., regular graphs (Cai et al.,
1992; Douglas, 2011; Evdokimov & Ponomarenko, 1999).
Lemma 2. LetG1 andG2 be any two non-isomorphic graphs. If a graph neural networkA : G → Rd

mapsG1 andG2 to different embeddings, the Weisfeiler-Lehman graph isomorphism test also decides
G1 and G2 are not isomorphic.

Proofs of all Lemmas and Theorems can be found in the Appendix. Hence, any aggregation-based
GNN is at most as powerful as the WL test in distinguishing different graphs. A natural follow-up
question is whether there exist GNNs that are, in principle, as powerful as the WL test? Our answer,
in Theorem 3, is yes: if the neighbor aggregation and graph-level readout functions are injective, then
the resulting GNN is as powerful as the WL test.

Theorem 3. Let A : G → Rd be a GNN. With a sufficient number of GNN layers, A maps any
graphs G1 and G2 that the Weisfeiler-Lehman test of isomorphism decides as non-isomorphic, to
different embeddings if the following conditions hold:

a) A aggregates and updates node features iteratively with

h(k)v = φ
(
h(k−1)v , f

({
h(k−1)u : u ∈ N (v)

}))
,

where the functions f , which operates on multisets, and φ are injective.

b) A’s graph-level readout, which operates on the multiset of node features
{
h
(k)
v

}
, is injective.

We prove Theorem 3 in the appendix. For countable sets, injectiveness well characterizes whether a
function preserves the distinctness of inputs. Uncountable sets, where node features are continuous,
need some further considerations. In addition, it would be interesting to characterize how close
together the learned features lie in a function’s image. We leave these questions for future work,
and focus on the case where input node features are from a countable set (that can be a subset of an
uncountable set such as Rn).
Lemma 4. Assume the input feature space X is countable. Let g(k) be the function parameterized by
a GNN’s k-th layer for k = 1, ..., L, where g(1) is defined on multisets X ⊂ X of bounded size. The
range of g(k), i.e., the space of node hidden features h(k)v , is also countable for all k = 1, ..., L.

4

Published as a conference paper at ICLR 2019

Here, it is also worth discussing an important benefit of GNNs beyond distinguishing different graphs,
that is, capturing similarity of graph structures. Note that node feature vectors in the WL test are
essentially one-hot encodings and thus cannot capture the similarity between subtrees. In contrast, a
GNN satisfying the criteria in Theorem 3 generalizes the WL test by learning to embed the subtrees
to low-dimensional space. This enables GNNs to not only discriminate different structures, but also to
learn to map similar graph structures to similar embeddings and capture dependencies between graph
structures. Capturing structural similarity of the node labels is shown to be helpful for generalization
particularly when the co-occurrence of subtrees is sparse across different graphs or there are noisy
edges and node features (Yanardag & Vishwanathan, 2015).

4.1 GRAPH ISOMORPHISM NETWORK (GIN)

Having developed conditions for a maximally powerful GNN, we next develop a simple architecture,
Graph Isomorphism Network (GIN), that provably satisfies the conditions in Theorem 3. This model
generalizes the WL test and hence achieves maximum discriminative power among GNNs.

To model injective multiset functions for the neighbor aggregation, we develop a theory of “deep
multisets”, i.e., parameterizing universal multiset functions with neural networks. Our next lemma
states that sum aggregators can represent injective, in fact, universal functions over multisets.
Lemma 5. Assume X is countable. There exists a function f : X → Rn so that h(X) =

∑
x∈X f(x)

is unique for each multiset X ⊂ X of bounded size. Moreover, any multiset function g can be
decomposed as g (X) = φ

(∑
x∈X f(x)

)
for some function φ.

We prove Lemma 5 in the appendix. The proof extends the setting in (Zaheer et al., 2017) from sets to
multisets. An important distinction between deep multisets and sets is that certain popular injective set
functions, such as the mean aggregator, are not injective multiset functions. With the mechanism for
modeling universal multiset functions in Lemma 5 as a building block, we can conceive aggregation
schemes that can represent universal functions over a node and the multiset of its neighbors, and thus
will satisfy the injectiveness condition (a) in Theorem 3. Our next corollary provides a simple and
concrete formulation among many such aggregation schemes.
Corollary 6. Assume X is countable. There exists a function f : X → Rn so that for infinitely
many choices of ε, including all irrational numbers, h(c,X) = (1 + ε) · f(c) +

∑
x∈X f(x) is

unique for each pair (c,X), where c ∈ X and X ⊂ X is a multiset of bounded size. Moreover, any
function g over such pairs can be decomposed as g (c,X) = ϕ

(
(1 + ε) · f(c) +

∑
x∈X f(x)

)
for

some function ϕ.

We can use multi-layer perceptrons (MLPs) to model and learn f and ϕ in Corollary 6, thanks to
the universal approximation theorem (Hornik et al., 1989; Hornik, 1991). In practice, we model
f (k+1) ◦ ϕ(k) with one MLP, because MLPs can represent the composition of functions. In the first
iteration, we do not need MLPs before summation if input features are one-hot encodings as their
summation alone is injective. We can make ε a learnable parameter or a fixed scalar. Then, GIN
updates node representations as

h(k)v = MLP(k)

((
1 + ε(k)

)
· h(k−1)v +

∑
u∈N (v)

h(k−1)u

)
. (4.1)

Generally, there may exist many other powerful GNNs. GIN is one such example among many
maximally powerful GNNs, while being simple.

4.2 GRAPH-LEVEL READOUT OF GIN

Node embeddings learned by GIN can be directly used for tasks like node classification and link
prediction. For graph classification tasks we propose the following “readout” function that, given
embeddings of individual nodes, produces the embedding of the entire graph.

An important aspect of the graph-level readout is that node representations, corresponding to subtree
structures, get more refined and global as the number of iterations increases. A sufficient number of
iterations is key to achieving good discriminative power. Yet, features from earlier iterations may
sometimes generalize better. To consider all structural information, we use information from all
depths/iterations of the model. We achieve this by an architecture similar to Jumping Knowledge

5

Published as a conference paper at ICLR 2019

sum - multiset

>
mean - distribution max - set

>
Input

Figure 2: Ranking by expressive power for sum, mean and max aggregators over a multiset.
Left panel shows the input multiset, i.e., the network neighborhood to be aggregated. The next three
panels illustrate the aspects of the multiset a given aggregator is able to capture: sum captures the
full multiset, mean captures the proportion/distribution of elements of a given type, and the max
aggregator ignores multiplicities (reduces the multiset to a simple set).

vs. v0
v

(a) Mean and Max both fail

vs.
v

v0

(b) Max fails

vs.
v v0

(c) Mean and Max both fail

Figure 3: Examples of graph structures that mean and max aggregators fail to distinguish.
Between the two graphs, nodes v and v′ get the same embedding even though their corresponding
graph structures differ. Figure 2 gives reasoning about how different aggregators “compress” different
multisets and thus fail to distinguish them.

Networks (Xu et al., 2018), where we replace Eq. 2.4 with graph representations concatenated across
all iterations/layers of GIN:

hG = CONCAT
(
READOUT

({
h(k)v |v ∈ G

}) ∣∣ k = 0, 1, . . . ,K
)
. (4.2)

By Theorem 3 and Corollary 6, if GIN replaces READOUT in Eq. 4.2 with summing all node features
from the same iterations (we do not need an extra MLP before summation for the same reason as
in Eq. 4.1), it provably generalizes the WL test and the WL subtree kernel.

5 LESS POWERFUL BUT STILL INTERESTING GNNS

Next, we study GNNs that do not satisfy the conditions in Theorem 3, including GCN (Kipf &
Welling, 2017) and GraphSAGE (Hamilton et al., 2017a). We conduct ablation studies on two aspects
of the aggregator in Eq. 4.1: (1) 1-layer perceptrons instead of MLPs and (2) mean or max-pooling
instead of the sum. We will see that these GNN variants get confused by surprisingly simple graphs
and are less powerful than the WL test. Nonetheless, models with mean aggregators like GCN
perform well for node classification tasks. To better understand this, we precisely characterize what
different GNN variants can and cannot capture about a graph and discuss the implications for learning
with graphs.

5.1 1-LAYER PERCEPTRONS ARE NOT SUFFICIENT

The function f in Lemma 5 helps map distinct multisets to unique embeddings. It can be param-
eterized by an MLP by the universal approximation theorem (Hornik, 1991). Nonetheless, many
existing GNNs instead use a 1-layer perceptron σ ◦W (Duvenaud et al., 2015; Kipf & Welling, 2017;
Zhang et al., 2018), a linear mapping followed by a non-linear activation function such as a ReLU.
Such 1-layer mappings are examples of Generalized Linear Models (Nelder & Wedderburn, 1972).
Therefore, we are interested in understanding whether 1-layer perceptrons are enough for graph
learning. Lemma 7 suggests that there are indeed network neighborhoods (multisets) that models
with 1-layer perceptrons can never distinguish.
Lemma 7. There exist finite multisets X1 6= X2 so that for any linear mapping W ,∑

x∈X1
ReLU (Wx) =

∑
x∈X2

ReLU (Wx) .

6

Published as a conference paper at ICLR 2019

The main idea of the proof for Lemma 7 is that 1-layer perceptrons can behave much like linear
mappings, so the GNN layers degenerate into simply summing over neighborhood features. Our
proof builds on the fact that the bias term is lacking in the linear mapping. With the bias term and
sufficiently large output dimensionality, 1-layer perceptrons might be able to distinguish different
multisets. Nonetheless, unlike models using MLPs, the 1-layer perceptron (even with the bias term)
is not a universal approximator of multiset functions. Consequently, even if GNNs with 1-layer
perceptrons can embed different graphs to different locations to some degree, such embeddings may
not adequately capture structural similarity, and can be difficult for simple classifiers, e.g., linear
classifiers, to fit. In Section 7, we will empirically see that GNNs with 1-layer perceptrons, when
applied to graph classification, sometimes severely underfit training data and often perform worse
than GNNs with MLPs in terms of test accuracy.

5.2 STRUCTURES THAT CONFUSE MEAN AND MAX-POOLING

What happens if we replace the sum in h (X) =
∑

x∈X f(x) with mean or max-pooling as in GCN
and GraphSAGE? Mean and max-pooling aggregators are still well-defined multiset functions because
they are permutation invariant. But, they are not injective. Figure 2 ranks the three aggregators by
their representational power, and Figure 3 illustrates pairs of structures that the mean and max-pooling
aggregators fail to distinguish. Here, node colors denote different node features, and we assume the
GNNs aggregate neighbors first before combining them with the central node labeled as v and v′.

In Figure 3a, every node has the same feature a and f(a) is the same across all nodes (for any function
f). When performing neighborhood aggregation, the mean or maximum over f(a) remains f(a)
and, by induction, we always obtain the same node representation everywhere. Thus, in this case
mean and max-pooling aggregators fail to capture any structural information. In contrast, the sum
aggregator distinguishes the structures because 2 · f(a) and 3 · f(a) give different values. The same
argument can be applied to any unlabeled graph. If node degrees instead of a constant value is used
as node input features, in principle, mean can recover sum, but max-pooling cannot.

Fig. 3a suggests that mean and max have trouble distinguishing graphs with nodes that have repeating
features. Let hcolor (r for red, g for green) denote node features transformed by f . Fig. 3b shows that
maximum over the neighborhood of the blue nodes v and v′ yields max (hg, hr) and max (hg, hr, hr),
which collapse to the same representation (even though the corresponding graph structures are
different). Thus, max-pooling fails to distinguish them. In contrast, the sum aggregator still works
because 1

2 (hg + hr) and 1
3 (hg + hr + hr) are in general not equivalent. Similarly, in Fig. 3c, both

mean and max fail as 1
2 (hg + hr) =

1
4 (hg + hg + hr + hr).

5.3 MEAN LEARNS DISTRIBUTIONS

To characterize the class of multisets that the mean aggregator can distinguish, consider the example
X1 = (S,m) and X2 = (S, k ·m), where X1 and X2 have the same set of distinct elements, but
X2 contains k copies of each element of X1. Any mean aggregator maps X1 and X2 to the same
embedding, because it simply takes averages over individual element features. Thus, the mean
captures the distribution (proportions) of elements in a multiset, but not the exact multiset.

Corollary 8. Assume X is countable. There exists a function f : X → Rn so that for h(X) =
1
|X|
∑

x∈X f(x), h(X1) = h(X2) if and only if multisets X1 and X2 have the same distribution.
That is, assuming |X2| ≥ |X1|, we have X1 = (S,m) and X2 = (S, k ·m) for some k ∈ N≥1.

The mean aggregator may perform well if, for the task, the statistical and distributional information
in the graph is more important than the exact structure. Moreover, when node features are diverse
and rarely repeat, the mean aggregator is as powerful as the sum aggregator. This may explain why,
despite the limitations identified in Section 5.2, GNNs with mean aggregators are effective for node
classification tasks, such as classifying article subjects and community detection, where node features
are rich and the distribution of the neighborhood features provides a strong signal for the task.

5.4 MAX-POOLING LEARNS SETS WITH DISTINCT ELEMENTS

The examples in Figure 3 illustrate that max-pooling considers multiple nodes with the same feature
as only one node (i.e., treats a multiset as a set). Max-pooling captures neither the exact structure nor

7

Published as a conference paper at ICLR 2019

the distribution. However, it may be suitable for tasks where it is important to identify representative
elements or the “skeleton”, rather than to distinguish the exact structure or distribution. Qi et al.
(2017) empirically show that the max-pooling aggregator learns to identify the skeleton of a 3D point
cloud and that it is robust to noise and outliers. For completeness, the next corollary shows that the
max-pooling aggregator captures the underlying set of a multiset.

Corollary 9. Assume X is countable. Then there exists a function f : X → R∞ so that for
h(X) = maxx∈X f(x), h(X1) = h(X2) if and only if X1 and X2 have the same underlying set.

5.5 REMARKS ON OTHER AGGREGATORS

There are other non-standard neighbor aggregation schemes that we do not cover, e.g., weighted
average via attention (Velickovic et al., 2018) and LSTM pooling (Hamilton et al., 2017a; Murphy
et al., 2018). We emphasize that our theoretical framework is general enough to characterize the
representaional power of any aggregation-based GNNs. In the future, it would be interesting to apply
our framework to analyze and understand other aggregation schemes.

6 OTHER RELATED WORK

Despite the empirical success of GNNs, there has been relatively little work that mathematically
studies their properties. An exception to this is the work of Scarselli et al. (2009a) who shows that
the perhaps earliest GNN model (Scarselli et al., 2009b) can approximate measurable functions in
probability. Lei et al. (2017) show that their proposed architecture lies in the RKHS of graph kernels,
but do not study explicitly which graphs it can distinguish. Each of these works focuses on a specific
architecture and do not easily generalize to multple architectures. In contrast, our results above
provide a general framework for analyzing and characterizing the expressive power of a broad class
of GNNs. Recently, many GNN-based architectures have been proposed, including sum aggregation
and MLP encoding (Battaglia et al., 2016; Scarselli et al., 2009b; Duvenaud et al., 2015), and most
without theoretical derivation. In contrast to many prior GNN architectures, our Graph Isomorphism
Network (GIN) is theoretically motivated, simple yet powerful.

7 EXPERIMENTS

We evaluate and compare the training and test performance of GIN and less powerful GNN variants.1
Training set performance allows us to compare different GNN models based on their representational
power and test set performance quantifies generalization ability.

Datasets. We use 9 graph classification benchmarks: 4 bioinformatics datasets (MUTAG, PTC, NCI1,
PROTEINS) and 5 social network datasets (COLLAB, IMDB-BINARY, IMDB-MULTI, REDDIT-
BINARY and REDDIT-MULTI5K) (Yanardag & Vishwanathan, 2015). Importantly, our goal here is
not to allow the models to rely on the input node features but mainly learn from the network structure.
Thus, in the bioinformatic graphs, the nodes have categorical input features but in the social networks,
they have no features. For social networks we create node features as follows: for the REDDIT
datasets, we set all node feature vectors to be the same (thus, features here are uninformative); for the
other social graphs, we use one-hot encodings of node degrees. Dataset statistics are summarized in
Table 1, and more details of the data can be found in Appendix I.

Models and configurations. We evaluate GINs (Eqs. 4.1 and 4.2) and the less powerful GNN
variants. Under the GIN framework, we consider two variants: (1) a GIN that learns ε in Eq. 4.1
by gradient descent, which we call GIN-ε, and (2) a simpler (slightly less powerful)2 GIN, where
ε in Eq. 4.1 is fixed to 0, which we call GIN-0. As we will see, GIN-0 shows strong empirical
performance: not only does GIN-0 fit training data equally well as GIN-ε, it also demonstrates good
generalization, slightly but consistently outperforming GIN-ε in terms of test accuracy. For the less
powerful GNN variants, we consider architectures that replace the sum in the GIN-0 aggregation with
mean or max-pooling3, or replace MLPs with 1-layer perceptrons, i.e., a linear mapping followed

1The code is available at https://github.com/weihua916/powerful-gnns.
2There exist certain (somewhat contrived) graphs that GIN-ε can distinguish but GIN-0 cannot.
3For REDDIT-BINARY, REDDIT–MULTI5K, and COLLAB, we did not run experiments for max-pooling

due to GPU memory constraints.

8

https://github.com/weihua916/powerful-gnns.

Published as a conference paper at ICLR 2019

Epoch

0

Epoch

0

WL kernel and GNN variants

Epoch

0

Epoch

0

Epoch

0

Figure 4: Training set performance of GINs, less powerful GNN variants, and the WL subtree kernel.

by ReLU. In Figure 4 and Table 1, a model is named by the aggregator/perceptron it uses. Here
mean–1-layer and max–1-layer correspond to GCN and GraphSAGE, respectively, up to minor
architecture modifications. We apply the same graph-level readout (READOUT in Eq. 4.2) for GINs
and all the GNN variants, specifically, sum readout on bioinformatics datasets and mean readout on
social datasets due to better test performance.

Following (Yanardag & Vishwanathan, 2015; Niepert et al., 2016), we perform 10-fold cross-
validation with LIB-SVM (Chang & Lin, 2011). We report the average and standard deviation of
validation accuracies across the 10 folds within the cross-validation. For all configurations, 5 GNN
layers (including the input layer) are applied, and all MLPs have 2 layers. Batch normalization
(Ioffe & Szegedy, 2015) is applied on every hidden layer. We use the Adam optimizer (Kingma
& Ba, 2015) with initial learning rate 0.01 and decay the learning rate by 0.5 every 50 epochs.
The hyper-parameters we tune for each dataset are: (1) the number of hidden units ∈ {16, 32} for
bioinformatics graphs and 64 for social graphs; (2) the batch size ∈ {32, 128}; (3) the dropout ratio
∈ {0, 0.5} after the dense layer (Srivastava et al., 2014); (4) the number of epochs, i.e., a single epoch
with the best cross-validation accuracy averaged over the 10 folds was selected. Note that due to the
small dataset sizes, an alternative setting, where hyper-parameter selection is done using a validation
set, is extremely unstable, e.g., for MUTAG, the validation set only contains 18 data points. We also
report the training accuracy of different GNNs, where all the hyper-parameters were fixed across the
datasets: 5 GNN layers (including the input layer), hidden units of size 64, minibatch of size 128,
and 0.5 dropout ratio. For comparison, the training accuracy of the WL subtree kernel is reported,
where we set the number of iterations to 4, which is comparable to the 5 GNN layers.

Baselines. We compare the GNNs above with a number of state-of-the-art baselines for graph
classification: (1) the WL subtree kernel (Shervashidze et al., 2011), where C-SVM (Chang & Lin,
2011) was used as a classifier; the hyper-parameters we tune are C of the SVM and the number
of WL iterations ∈ {1, 2, . . . , 6}; (2) state-of-the-art deep learning architectures, i.e., Diffusion-
convolutional neural networks (DCNN) (Atwood & Towsley, 2016), PATCHY-SAN (Niepert et al.,
2016) and Deep Graph CNN (DGCNN) (Zhang et al., 2018); (3) Anonymous Walk Embeddings
(AWL) (Ivanov & Burnaev, 2018). For the deep learning methods and AWL, we report the accuracies
reported in the original papers.

7.1 RESULTS

Training set performance. We validate our theoretical analysis of the representational power of
GNNs by comparing their training accuracies. Models with higher representational power should
have higher training set accuracy. Figure 4 shows training curves of GINs and less powerful GNN
variants with the same hyper-parameter settings. First, both the theoretically most powerful GNN, i.e.
GIN-ε and GIN-0, are able to almost perfectly fit all the training sets. In our experiments, explicit
learning of ε in GIN-ε yields no gain in fitting training data compared to fixing ε to 0 as in GIN-0.
In comparison, the GNN variants using mean/max pooling or 1-layer perceptrons severely underfit
on many datasets. In particular, the training accuracy patterns align with our ranking by the models’

9

Published as a conference paper at ICLR 2019

Datasets IMDB-B IMDB-M RDT-B RDT-M5K COLLAB MUTAG PROTEINS PTC NCI1

D
at

as
et

s # graphs 1000 1500 2000 5000 5000 188 1113 344 4110
classes 2 3 2 5 3 2 2 2 2
Avg # nodes 19.8 13.0 429.6 508.5 74.5 17.9 39.1 25.5 29.8

B
as

el
in

es
WL subtree 73.8 ± 3.9 50.9 ± 3.8 81.0 ± 3.1 52.5 ± 2.1 78.9 ± 1.9 90.4 ± 5.7 75.0 ± 3.1 59.9 ± 4.3 86.0 ± 1.8 ∗

DCNN 49.1 33.5 – – 52.1 67.0 61.3 56.6 62.6
PATCHYSAN 71.0 ± 2.2 45.2 ± 2.8 86.3 ± 1.6 49.1 ± 0.7 72.6 ± 2.2 92.6 ± 4.2 ∗ 75.9 ± 2.8 60.0 ± 4.8 78.6 ± 1.9
DGCNN 70.0 47.8 – – 73.7 85.8 75.5 58.6 74.4
AWL 74.5 ± 5.9 51.5 ± 3.6 87.9 ± 2.5 54.7 ± 2.9 73.9 ± 1.9 87.9 ± 9.8 – – –

G
N

N
va

ri
an

ts

SUM–MLP (GIN-0) 75.1 ± 5.1 52.3 ± 2.8 92.4 ± 2.5 57.5 ± 1.5 80.2 ± 1.9 89.4 ± 5.6 76.2 ± 2.8 64.6 ± 7.0 82.7 ± 1.7
SUM–MLP (GIN-ε) 74.3 ± 5.1 52.1 ± 3.6 92.2 ± 2.3 57.0 ± 1.7 80.1 ± 1.9 89.0 ± 6.0 75.9 ± 3.8 63.7 ± 8.2 82.7 ± 1.6
SUM–1-LAYER 74.1 ± 5.0 52.2 ± 2.4 90.0 ± 2.7 55.1 ± 1.6 80.6 ± 1.9 90.0 ± 8.8 76.2 ± 2.6 63.1 ± 5.7 82.0 ± 1.5
MEAN–MLP 73.7 ± 3.7 52.3 ± 3.1 50.0 ± 0.0 20.0 ± 0.0 79.2 ± 2.3 83.5 ± 6.3 75.5 ± 3.4 66.6 ± 6.9 80.9 ± 1.8
MEAN–1-LAYER (GCN) 74.0 ± 3.4 51.9 ± 3.8 50.0 ± 0.0 20.0 ± 0.0 79.0 ± 1.8 85.6 ± 5.8 76.0 ± 3.2 64.2 ± 4.3 80.2 ± 2.0
MAX–MLP 73.2 ± 5.8 51.1 ± 3.6 – – – 84.0 ± 6.1 76.0 ± 3.2 64.6 ± 10.2 77.8 ± 1.3
MAX–1-LAYER (GraphSAGE) 72.3 ± 5.3 50.9 ± 2.2 – – – 85.1 ± 7.6 75.9 ± 3.2 63.9 ± 7.7 77.7 ± 1.5

Table 1: Test set classification accuracies (%). The best-performing GNNs are highlighted with
boldface. On datasets where GINs’ accuracy is not strictly the highest among GNN variants, we
see that GINs are still comparable to the best GNN because a paired t-test at significance level 10%
does not distinguish GINs from the best; thus, GINs are also highlighted with boldface. If a baseline
performs significantly better than all GNNs, we highlight it with boldface and asterisk.

representational power: GNN variants with MLPs tend to have higher training accuracies than those
with 1-layer perceptrons, and GNNs with sum aggregators tend to fit the training sets better than
those with mean and max-pooling aggregators.

On our datasets, training accuracies of the GNNs never exceed those of the WL subtree kernel. This
is expected because GNNs generally have lower discriminative power than the WL test. For example,
on IMDBBINARY, none of the models can perfectly fit the training set, and the GNNs achieve at
most the same training accuracy as the WL kernel. This pattern aligns with our result that the WL test
provides an upper bound for the representational capacity of the aggregation-based GNNs. However,
the WL kernel is not able to learn how to combine node features, which might be quite informative
for a given prediction task as we will see next.

Test set performance. Next, we compare test accuracies. Although our theoretical results do not
directly speak about the generalization ability of GNNs, it is reasonable to expect that GNNs with
strong expressive power can accurately capture graph structures of interest and thus generalize
well. Table 1 compares test accuracies of GINs (Sum–MLP), other GNN variants, as well as the
state-of-the-art baselines.

First, GINs, especially GIN-0, outperform (or achieve comparable performance as) the less powerful
GNN variants on all the 9 datasets, achieving state-of-the-art performance. GINs shine on the social
network datasets, which contain a relatively large number of training graphs. For the Reddit datasets,
all nodes share the same scalar as node feature. Here, GINs and sum-aggregation GNNs accurately
capture the graph structure and significantly outperform other models. Mean-aggregation GNNs,
however, fail to capture any structures of the unlabeled graphs (as predicted in Section 5.2) and
do not perform better than random guessing. Even if node degrees are provided as input features,
mean-based GNNs perform much worse than sum-based GNNs (the accuracy of the GNN with mean–
MLP aggregation is 71.2±4.6% on REDDIT-BINARY and 41.3±2.1% on REDDIT-MULTI5K).
Comparing GINs (GIN-0 and GIN-ε), we observe that GIN-0 slightly but consistently outperforms
GIN-ε. Since both models fit training data equally well, the better generalization of GIN-0 may be
explained by its simplicity compared to GIN-ε.

8 CONCLUSION

In this paper, we developed theoretical foundations for reasoning about the expressive power of
GNNs, and proved tight bounds on the representational capacity of popular GNN variants. We also
designed a provably maximally powerful GNN under the neighborhood aggregation framework. An
interesting direction for future work is to go beyond neighborhood aggregation (or message passing)
in order to pursue possibly even more powerful architectures for learning with graphs. To complete
the picture, it would also be interesting to understand and improve the generalization properties of
GNNs as well as better understand their optimization landscape.

10

Published as a conference paper at ICLR 2019

ACKNOWLEDGMENTS

This research was supported by NSF CAREER award 1553284, a DARPA D3M award and DARPA
DSO’s Lagrange program under grant FA86501827838. This research was also supported in part by
NSF, ARO MURI, Boeing, Huawei, Stanford Data Science Initiative, and Chan Zuckerberg Biohub.
Weihua Hu was supported by Funai Overseas Scholarship. We thank Prof. Ken-ichi Kawarabayashi
and Prof. Masashi Sugiyama for supporting this research with computing resources and providing
great advice. We thank Tomohiro Sonobe and Kento Nozawa for managing servers. We thank Rex
Ying and William Hamilton for helpful feedback. We thank Simon S. Du, Yasuo Tabei, Chengtao Li,
and Jingling Li for helpful discussions and positive comments.

REFERENCES

James Atwood and Don Towsley. Diffusion-convolutional neural networks. In Advances in Neural
Information Processing Systems (NIPS), pp. 1993–2001, 2016.

László Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing, pp. 684–697. ACM, 2016.

László Babai and Ludik Kucera. Canonical labelling of graphs in linear average time. In Foundations
of Computer Science, 1979., 20th Annual Symposium on, pp. 39–46. IEEE, 1979.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. In Advances in Neural Information Processing
Systems (NIPS), pp. 4502–4510, 2016.

Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12(4):389–410, 1992.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):27, 2011.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in Neural Information Processing Systems
(NIPS), pp. 3844–3852, 2016.

Brendan L Douglas. The weisfeiler-lehman method and graph isomorphism testing. arXiv preprint
arXiv:1101.5211, 2011.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. pp. 2224–2232, 2015.

Sergei Evdokimov and Ilia Ponomarenko. Isomorphism of coloured graphs with slowly increasing
multiplicity of jordan blocks. Combinatorica, 19(3):321–333, 1999.

Michael R Garey. A guide to the theory of np-completeness. Computers and intractability, 1979.

Michael R Garey and David S Johnson. Computers and intractability, volume 29. wh freeman New
York, 2002.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning (ICML),
pp. 1273–1272, 2017.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems (NIPS), pp. 1025–1035, 2017a.

William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods and
applications. IEEE Data Engineering Bulletin, 40(3):52–74, 2017b.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2):
251–257, 1991.

11

Published as a conference paper at ICLR 2019

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning (ICML), pp.
448–456, 2015.

Sergey Ivanov and Evgeny Burnaev. Anonymous walk embeddings. In International Conference on
Machine Learning (ICML), pp. 2191–2200, 2018.

Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and Patrick Riley. Molecular graph
convolutions: moving beyond fingerprints. Journal of computer-aided molecular design, 30(8):
595–608, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations (ICLR), 2017.

Tao Lei, Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Deriving neural architectures from
sequence and graph kernels. pp. 2024–2033, 2017.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. In International Conference on Learning Representations (ICLR), 2016.

Ryan L Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Janossy pool-
ing: Learning deep permutation-invariant functions for variable-size inputs. arXiv preprint
arXiv:1811.01900, 2018.

J. A. Nelder and R. W. M. Wedderburn. Generalized linear models. Journal of the Royal Statistical
Society, Series A, General, 135:370–384, 1972.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural networks
for graphs. In International Conference on Machine Learning (ICML), pp. 2014–2023, 2016.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE, 1(2):4, 2017.

Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pascanu, Peter
Battaglia, and Timothy Lillicrap. A simple neural network module for relational reasoning. In
Advances in neural information processing systems, pp. 4967–4976, 2017.

Adam Santoro, Felix Hill, David Barrett, Ari Morcos, and Timothy Lillicrap. Measuring abstract
reasoning in neural networks. In International Conference on Machine Learning, pp. 4477–4486,
2018.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
Computational capabilities of graph neural networks. IEEE Transactions on Neural Networks, 20
(1):81–102, 2009a.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009b.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(Sep):
2539–2561, 2011.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

12

Published as a conference paper at ICLR 2019

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations
(ICLR), 2018.

Saurabh Verma and Zhi-Li Zhang. Graph capsule convolutional neural networks. arXiv preprint
arXiv:1805.08090, 2018.

Boris Weisfeiler and AA Lehman. A reduction of a graph to a canonical form and an algebra arising
during this reduction. Nauchno-Technicheskaya Informatsia, 2(9):12–16, 1968.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
Conference on Machine Learning (ICML), pp. 5453–5462, 2018.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1365–1374.
ACM, 2015.

Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. In Advances in Neural
Information Processing Systems (NIPS), 2018.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R Salakhutdinov,
and Alexander J Smola. Deep sets. In Advances in Neural Information Processing Systems, pp.
3391–3401, 2017.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In AAAI Conference on Artificial Intelligence, pp. 4438–4445,
2018.

13

Published as a conference paper at ICLR 2019

A PROOF FOR LEMMA 2

Proof. Suppose after k iterations, a graph neural network A has A(G1) 6= A(G2) but the WL test
cannot decide G1 and G2 are non-isomorphic. It follows that from iteration 0 to k in the WL test,
G1 and G2 always have the same collection of node labels. In particular, because G1 and G2 have
the same WL node labels for iteration i and i + 1 for any i = 0, ..., k − 1, G1 and G2 have the
same collection, i.e. multiset, of WL node labels

{
l
(i)
v

}
as well as the same collection of node

neighborhoods
{(
l
(i)
v ,
{
l
(i)
u : u ∈ N (v)

})}
. Otherwise, the WL test would have obtained different

collections of node labels at iteration i+1 for G1 and G2 as different multisets get unique new labels.

The WL test always relabels different multisets of neighboring nodes into different new labels. We
show that on the same graph G = G1 or G2, if WL node labels l(i)v = l

(i)
u , we always have GNN

node features h(i)v = h
(i)
u for any iteration i. This apparently holds for i = 0 because WL and GNN

starts with the same node features. Suppose this holds for iteration j, if for any u, v, l(j+1)
v = l

(j+1)
u ,

then it must be the case that(
l(j)v ,

{
l(j)w : w ∈ N (v)

})
=
(
l(j)u ,

{
l(j)w : w ∈ N (u)

})
By our assumption on iteration j, we must have(

h(j)v ,
{
h(j)w : w ∈ N (v)

})
=
(
h(j)u ,

{
h(j)w : w ∈ N (u)

})
In the aggregation process of the GNN, the same AGGREGATE and COMBINE are applied. The
same input, i.e. neighborhood features, generates the same output. Thus, h(j+1)

v = h
(j+1)
u . By

induction, if WL node labels l(i)v = l
(i)
u , we always have GNN node features h(i)v = h

(i)
u for any

iteration i. This creates a valid mapping φ such that h(i)v = φ(l
(i)
v) for any v ∈ G. It follows from

G1 and G2 have the same multiset of WL neighborhood labels that G1 and G2 also have the same
collection of GNN neighborhood features{(

h(i)v ,
{
h(i)u : u ∈ N (v)

})}
=
{(
φ(l(i)v),

{
φ(l(i)u) : u ∈ N (v)

})}
Thus,

{
h
(i+1)
v

}
are the same. In particular, we have the same collection of GNN node features{

h
(k)
v

}
forG1 andG2. Because the graph level readout function is permutation invariant with respect

to the collection of node features, A(G1) = A(G2). Hence we have reached a contradiction.

B PROOF FOR THEOREM 3

Proof. Let A be a graph neural network where the condition holds. Let G1, G2 be any graphs which
the WL test decides as non-isomorphic at iteration K. Because the graph-level readout function
is injective, i.e., it maps distinct multiset of node features into unique embeddings, it sufficies to
show that A’s neighborhood aggregation process, with sufficient iterations, embeds G1 and G2 into
different multisets of node features. Let us assume A updates node representations as

h(k)v = φ
(
h(k−1)v , f

({
h(k−1)u : u ∈ N (v)

}))
with injective funtions f and φ. The WL test applies a predetermined injective hash function g to
update the WL node labels l(k)v :

l(k)v = g
(
l(k−1)v ,

{
l(k−1)u : u ∈ N (v)

})
We will show, by induction, that for any iteration k, there always exists an injective function ϕ such
that h(k)v = ϕ

(
l
(k)
v

)
. This apparently holds for k = 0 because the initial node features are the same

14

Published as a conference paper at ICLR 2019

for WL and GNN l
(0)
v = h

(0)
v for all v ∈ G1, G2. So ϕ could be the identity function for k = 0.

Suppose this holds for iteration k − 1, we show that it also holds for k. Substituting h(k−1)v with
ϕ
(
l
(k−1)
v

)
gives us

h(k)v = φ
(
ϕ
(
l(k−1)v

)
, f
({
ϕ
(
l(k−1)u

)
: u ∈ N (v)

}))
.

Since the composition of injective functions is injective, there exists some injective function ψ so that

h(k)v =
(
l(k−1)v ,

{
l(k−1)u : u ∈ N (v)

})
Then we have

h(k)v = ψ ◦ g−1g
(
l(k−1)v ,

{
l(k−1)u : u ∈ N (v)

})
= ψ ◦ g−1

(
l(k)v

)
ϕ = ◦ g−1 is injective because the composition of injective functions is injective. Hence for
any iteration k, there always exists an injective function ϕ such that h(k)v = ϕ

(
l
(k)
v

)
. At the K-th

iteration, the WL test decides that G1 and G2 are non-isomorphic, that is the multisets
{
l
(K)
v

}
are

different for G1 and G2. The graph neural network A’s node embeddings
{
h
(K)
v

}
=
{
ϕ
(
l
(K)
v

)}
must also be different for G1 and G2 because of the injectivity of ϕ.

C PROOF FOR LEMMA 4

Proof. Before proving our lemma, we first show a well-known result that we will later reduce our
problem to: Nk is countable for every k ∈ N, i.e. finite Cartesian product of countable sets is
countable. We observe that it suffices to show N× N is countable, because the proof then follows
clearly from induction. To show N× N is countable, we construct a bijection φ from N× N to N as

φ (m,n) = 2m−1 · (2n− 1)

Now we go back to proving our lemma. If we can show that the range of any function g defined on
multisets of bounded size from a countable set is also countable, then the lemma holds for any g(k)
by induction. Thus, our goal is to show that the range of such g is countable. First, it is clear that the
mapping from g(X) to X is injective because g is a well-defined function. It follows that it suffices
to show the set of all multisets X ⊂ X is countable.

Since the union of two countable sets is countable, the following set X ′ is also countable.

X ′ = X ∪ {e}

where e is a dummy element that is not in X . It follows from the result we showed above, i.e., Nk is
countable for every k ∈ N, that X ′k is countable for every k ∈ N. It remains to show there exists an
injective mapping from the set of multisets in X to X ′k for some k ∈ N.

We construct an injective mapping h from the set of multisets X ⊂ X to X ′k for some k ∈ N as
follows. Because X is countable, there exists a mapping Z : X → N from x ∈ X to natural numbers.
We can sort the elements x ∈ X by z(x) as x1, x2, ..., xn, where n = |X|. Because the multisets X
are of bounded size, there exists k ∈ N so that |X| < k for all X . We can then define h as

h (X) = (x1, x2, ..., xn, e, e, e...) ,

where the k−n coordinates are filled with the dummy element e. It is clear that h is injective because
for any multisets X and Y of bounded size, h(X) = h(Y) only if X is equivalent to Y . Hence it
follows that the range of g is countable as desired.

15

Published as a conference paper at ICLR 2019

D PROOF FOR LEMMA 5

Proof. We first prove that there exists a mapping f so that
∑
x∈X

f(x) is unique for each multiset X of

bounded size. Because X is countable, there exists a mapping Z : X → N from x ∈ X to natural
numbers. Because the cardinality of multisets X is bounded, there exists a number N ∈ N so that
|X| < N for all X . Then an example of such f is f(x) = N−Z(x). This f can be viewed as a
more compressed form of an one-hot vector or N -digit presentation. Thus, h(X) =

∑
x∈X

f(x) is an

injective function of multisets.

φ
(∑

x∈X f(x)
)

is permutation invariant so it is a well-defined multiset function. For any multiset
function g, we can construct such φ by letting φ

(∑
x∈X f(x)

)
= g(X). Note that such φ is

well-defined because h(X) =
∑
x∈X

f(x) is injective.

E PROOF OF COROLLARY 6

Proof. Following the proof of Lemma 5, we consider f(x) = N−Z(x), where N and Z : X → N
are the same as defined in Appendix D. Let h(c,X) ≡ (1 + ε) · f(c) +

∑
x∈X f(x). Our goal is

show that for any (c′, X ′) 6= (c,X) with c, c′ ∈ X and X,X ′ ⊂ X , h(c,X) 6= h(c′, X ′) holds, if
ε is an irrational number. We prove by contradiction. For any (c,X), suppose there exists (c′, X ′)
such that (c′, X ′) 6= (c,X) but h(c,X) = h(c′, X ′) holds. Let us consider the following two
cases: (1) c′ = c but X ′ 6= X , and (2) c′ 6= c. For the first case, h(c,X) = h(c,X ′) implies∑

x∈X f(x) =
∑

x∈X′ f(x). It follows from Lemma 5 that the equality will not hold, because with
f(x) = N−Z(x), X ′ 6= X implies

∑
x∈X f(x) 6=

∑
x∈X′ f(x). Thus, we reach a contradiction. For

the second case, we can similarly rewrite h(c,X) = h(c′, X ′) as

ε · (f(c)− f(c′)) =

(
f(c′) +

∑
x∈X′

f(x)

)
−

(
f(c) +

∑
x∈X

f(x)

)
. (E.1)

Because ε is an irrational number and f(c)− f(c′) is a non-zero rational number, L.H.S. of Eq. E.1
is irrational. On the other hand, R.H.S. of Eq. E.1, the sum of a finite number of rational numbers, is
rational. Hence the equality in Eq. E.1 cannot hold, and we have reached a contradiction.

For any function g over the pairs (c,X), we can construct such ϕ for the desired decomposition
by letting ϕ

(
(1 + ε) · f(c) +

∑
x∈X f(x)

)
= g(c,X). Note that such ϕ is well-defined because

h(c,X) = (1 + ε) · f(c) +
∑

x∈X f(x) is injective.

F PROOF FOR LEMMA 7

Proof. Let us consider the example X1 = {1, 1, 1, 1, 1} and X2 = {2, 3}, i.e. two different multisets
of positive numbers that sum up to the same value. We will be using the homogeneity of ReLU.

Let W be an arbitrary linear transform that maps x ∈ X1, X2 into Rn. It is clear that, at the same
coordinates, Wx are either positive or negative for all x because all x in X1 and X2 are positive. It
follows that ReLU(Wx) are either positive or 0 at the same coordinate for all x in X1, X2. For the
coordinates where ReLU(Wx) are 0, we have

∑
x∈X1

ReLU (Wx) =
∑

x∈X2
ReLU (Wx). For the

coordinates where Wx are positive, linearity still holds. It follows from linearity that∑
x∈X

ReLU (Wx) = ReLU

(
W
∑
x∈X

x

)
where X could be X1 or X2. Because

∑
x∈X1

x =
∑

x∈X2
x, we have the following as desired.∑

x∈X1

ReLU (Wx) =
∑
x∈X2

ReLU (Wx)

16

Published as a conference paper at ICLR 2019

G PROOF FOR COROLLARY 8

Proof. Suppose multisets X1 and X2 have the same distribution, without loss of generality, let us
assume X1 = (S,m) and X2 = (S, k · m) for some k ∈ N≥1, i.e. X1 and X2 have the same
underlying set and the multiplicity of each element in X2 is k times of that in X1. Then we have
|X2| = k|X1| and

∑
x∈X2

f(x) = k ·
∑

x∈X1
f(x). Thus,

1

|X2|
∑
x∈X2

f(x) =
1

k · |X1|
· k ·

∑
x∈X1

f(x) =
1

|X1|
∑
x∈X1

f(x)

Now we show that there exists a function f so that 1
|X|
∑

x∈X f(x) is unique for distributionally
equivalent X . Because X is countable, there exists a mapping Z : X → N from x ∈ X to natural
numbers. Because the cardinality of multisets X is bounded, there exists a number N ∈ N so that
|X| < N for all X . Then an example of such f is f(x) = N−2Z(x).

H PROOF FOR COROLLARY 9

Proof. Suppose multisets X1 and X2 have the same underlying set S, then we have

max
x∈X1

f(x) = max
x∈S

f(x) = max
x∈X2

f(x)

Now we show that there exists a mapping f so that maxx∈X f(x) is unique for Xs with the same
underlying set. Because X is countable, there exists a mapping Z : X → N from x ∈ X to natural
numbers. Then an example of such f : X → R∞ is defined as fi(x) = 1 for i = Z(x) and fi(x) = 0
otherwise, where fi(x) is the i-th coordinate of f(x). Such an f essentially maps a multiset to its
one-hot embedding.

I DETAILS OF DATASETS

We give detailed descriptions of datasets used in our experiments. Further details can be found in
(Yanardag & Vishwanathan, 2015).

Social networks datasets. IMDB-BINARY and IMDB-MULTI are movie collaboration datasets.
Each graph corresponds to an ego-network for each actor/actress, where nodes correspond to ac-
tors/actresses and an edge is drawn betwen two actors/actresses if they appear in the same movie.
Each graph is derived from a pre-specified genre of movies, and the task is to classify the genre
graph it is derived from. REDDIT-BINARY and REDDIT-MULTI5K are balanced datasets where
each graph corresponds to an online discussion thread and nodes correspond to users. An edge was
drawn between two nodes if at least one of them responded to another’s comment. The task is to
classify each graph to a community or a subreddit it belongs to. COLLAB is a scientific collaboration
dataset, derived from 3 public collaboration datasets, namely, High Energy Physics, Condensed
Matter Physics and Astro Physics. Each graph corresponds to an ego-network of different researchers
from each field. The task is to classify each graph to a field the corresponding researcher belongs to.

Bioinformatics datasets. MUTAG is a dataset of 188 mutagenic aromatic and heteroaromatic nitro
compounds with 7 discrete labels. PROTEINS is a dataset where nodes are secondary structure
elements (SSEs) and there is an edge between two nodes if they are neighbors in the amino-acid
sequence or in 3D space. It has 3 discrete labels, representing helix, sheet or turn. PTC is a dataset
of 344 chemical compounds that reports the carcinogenicity for male and female rats and it has 19
discrete labels. NCI1 is a dataset made publicly available by the National Cancer Institute (NCI) and
is a subset of balanced datasets of chemical compounds screened for ability to suppress or inhibit the
growth of a panel of human tumor cell lines, having 37 discrete labels.

17

On Geodesically Convex Formulations for the
Brascamp-Lieb Constant

Suvrit Sra
Massachusetts Institute of Technology (MIT), Cambridge, MA, USA

Nisheeth K. Vishnoi
École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Ozan Yıldız
École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Abstract
We consider two non-convex formulations for computing the optimal constant in the Brascamp-
Lieb inequality corresponding to a given datum and show that they are geodesically log-concave
on the manifold of positive definite matrices endowed with the Riemannian metric corresponding
to the Hessian of the log-determinant function. The first formulation is present in the work of
Lieb [15] and the second is new and inspired by the work of Bennett et al. [5]. Recent work
of Garg et al. [12] also implies a geodesically log-concave formulation of the Brascamp-Lieb
constant through a reduction to the operator scaling problem. However, the dimension of the
arising optimization problem in their reduction depends exponentially on the number of bits
needed to describe the Brascamp-Lieb datum. The formulations presented here have dimensions
that are polynomial in the bit complexity of the input datum.

2012 ACM Subject Classification Theory of computation → Nonconvex optimization, Theory
of computation → Convex optimization

Keywords and phrases Geodesic convexity, positive definite cone, geodesics, Brascamp-Lieb
constant

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2018.25

Acknowledgements We thank Ankit Garg for useful discussions on operator scaling and its
connections to Brascamp-Lieb constant.

1 Introduction

The Brascamp-Lieb Inequality. Brascamp and Lieb [7] presented a class of inequalities that
generalize many well-known inequalities and, as a consequence, have played an important
role in various mathematical disciplines. Formally, they presented the following class of
inequalities where each inequality is described by a “datum”, referred to as the Brascamp-Lieb
datum.

I Definition 1 (The Brascamp-Lieb Inequality, Datum, Constant). Let n, m, and (nj)j∈[m] be
positive integers and p := (pj)j∈[m] be non-negative real numbers. Let B := (Bj)j∈[m] be an
m-tuple of linear transformations where Bj is a surjective linear transformation from Rn to
Rnj . The corresponding Brascamp-Lieb datum is denoted by (B, p). The Brascamp-Lieb
inequality states that for each Brascamp-Lieb datum (B, p) there exists a constant C(B, p)
(not necessarily finite) such that for any selection of real-valued, non-negative, Lebesgue

© Suvrit Sra, Nisheeth K. Vishnoi, and Ozan Yıldız;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2018).
Editors: Eric Blais, Klaus Jansen, José D. P. Rolim, and David Steurer; Article No. 25; pp. 25:1–25:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.25

http://creativecommons.org/licenses/by/3.0/

http://www.dagstuhl.de/lipics/

http://www.dagstuhl.de

25:2 On Geodesically Convex Formulations for the Brascamp-Lieb Constant

measurable functions fj where fj : Rnj → R,

∫
x∈Rn

 ∏
j∈[m]

fj(Bjx)pj

 dx ≤ C(B, p)
∏
j∈[m]

(∫
x∈Rnj

fj(x)dx
)pj

. (1)

The smallest constant that satisfies (1) for any choice of f := (fj)j∈[m] satisfying the
properties mentioned above is called the Brascamp-Lieb constant and is denoted by BL(B, p).
A Brascamp-Lieb datum (B, p) is called feasible if BL(B, p) is finite, otherwise, it is called
infeasible. For a given m-tuple B, the set of real vectors p such that (B, p) is feasible is
denoted by PB.

Applications of the Brascamp-Lieb inequality extend beyond functional analysis and appear
in convex geometry [3], information theory [8],[16],[17], machine learning [14], and theoretical
computer science [11, 10].

Mathematical Aspects of the Brascamp-Lieb Inequality. A Brascamp-Lieb inequality is
non-trivial only when (B, p) is a feasible Brascamp-Lieb datum. Therefore, it is of interest
to characterize feasible Brascamp-Lieb data and compute the corresponding Brascamp-Lieb
constant. Lieb [15] showed that one needs to consider only Gaussian functions as inputs for
(1). This result suggests the following characterization of the Brascamp-Lieb constant as an
optimization problem. For a positive integer k, let Sk+ be the space of real-valued, symmetric,
positive semi-definite (PSD) matrices of dimension k × k.

I Theorem 2 (Gaussian maximizers [15]). Let (B, p) be a Brascamp-Lieb datum with Bj ∈
Rnj×n for each j ∈ [m]. Let A := (Aj)j∈[m] with Aj ∈ Snj

+ , and consider the function

BL(B, p;A) :=
∏
j∈[m] det(Aj)pj

det(
∑
j∈[m] pjB

>
j AjBj)

)1/2

. (2)

Then, the Brascamp-Lieb constant for (B, p), BL(B, p) is equal to sup
A∈×j∈[m] S

nj
+

BL(B, p;A).

Bennett et al. [5] proved the following necessary and sufficient conditions for the feasibility
of a Brascamp-Lieb datum.

I Theorem 3 (Feasibility of Brascamp-Lieb Datum [5], Theorem 1.15). Let (B, p) be a
Brascamp-Lieb datum with Bj ∈ Rnj×n for each j ∈ [m]. Then, (B, p) is feasible if and only
if following conditions hold:
1. n =

∑
j∈[m] pjnj, and

2. dim(V) ≤
∑
j∈[m] pj dim(BjV) for any subspace V of Rn.

Theorem 3 introduces infinitely many linear constraints on p as V varies over different
subspaces of Rn. However, there are only finitely many different linear restrictions as
dim(BjV) can only take integer values from [nj]. Consequently, this theorem implies that
PB is a convex set and, in particular, a polytope. It is referred to as the Brascamp-Lieb
polytope, see e.g. [4] the “rank one” case (nj = 1 for all j) and [5] for the general case. Some
of the above inequality constraints are tight for any p ∈ PB such as the inequality constraints
induced by Rn and the trivial subspace, while others can be strict for some p ∈ PB. If p
lies on the boundary of PB, then there should be some non-trivial subspaces V such that
the induced inequality constraints are tight for p. This leads to the definition of critical
subspaces and simple Brascamp-Lieb datums.

S. Sra, N. K. Vishnoi, and O. Yıldız 25:3

I Definition 4 (Critical Subspaces and Simple Brascamp-Lieb Data,[9], [5], Definition 1.12).
Let (B, p) be a feasible Brascamp-Lieb datum with Bj ∈ Rnj×n for each j ∈ [m]. Then, a
subspace V of Rn is called critical if

dim(V) =
∑
j∈[m]

pj dim(BjV).

(B, p) is called simple if there is no non-trivial proper subspace of Rn which is critical.

For a fixed B, simple Brascamp-Lieb data correspond to points p that lie in the relative
interior of the Brascamp-Lieb polytope PB. One important property of simple Brascamp-Lieb
data is that there exists a maximizer for BL(B, p;A). This was proved by Bennett et al. [5] by
analyzing Lieb’s formulation (2). This analysis also leads to a characterization of maximizers
of BL(B, p;A).

I Theorem 5 (Characterization of Maximizers[5], Theorem 7.13). Let (B, p) be a Brascamp-
Lieb datum with Bj ∈ Rnj×n and pj > 0 for all j ∈ [m]. Let A := (Aj)j∈[m] be an m-tuple
of positive semidefinite matrices with Aj ∈ Rnj×nj and let M :=

∑
j∈[m] pjB

>
j AjBj. Then,

the following statements are equivalent,
1. A is a global maximizer for BL(B, p;A) as in (2).
2. A is a local maximizer for BL(B, p;A).
3. M is invertible and A−1

j = BjM
−1B>j for each j ∈ [m].

Furthermore, the global maximizer A for BL(B, p;A) exists and is unique up to scalar if and
only if (B, p) is simple.

Computational Aspects of the Brascamp-Lieb Inequality. One of the computational ques-
tions concerning the Brascamp-Lieb inequality is: Given a Brascamp-Lieb datum (B, p), can
we compute BL(B, p) in time that is polynomial in the number of bits required to represent
the datum? Since computing BL(B, p) exactly may not be possible due to the fact that
this number may not be rational even if the datum (B, p) is, one seeks an arbitrarily good
approximation. Formally, given the entries of B and p in binary, and an ε > 0, compute a
number Z such that

BL(B, p) ≤ Z ≤ (1 + ε) BL(B, p)

in time that is polynomial in the combined bit lengths of B and p and log 1/ε.
There are a few obstacles to this problem: (a) Checking if a given Brascamp-Lieb datum

is feasible is not known to be in P. (b) The formulation of the Brascamp-Lieb constant by
Lieb [15] as in (2) is neither concave nor log-concave. Thus, techniques developed in the
context of linear and convex optimization do not seem to be directly applicable.

A step towards the computability of BL(B, p) was taken recently by Garg et al. [12] where
they presented a pseudo-polynomial time algorithm for (a) and a pseudo-polynomial time
algorithm to compute BL(B, p). The running time of this algorithm to compute BL(B, p)
up to multiplicative error 1 +ε has a polynomial dependency to ε−1 and the magnitude of the
denominators in the components of p rather than the number of bits required to represent
them. Garg et al. presented a reduction of the problem of computing BL(B, p) to the
problem of computing the “capacity” in an “operator scaling” problem considered by Gurvits
[13]. Roughly, in the operator scaling problem, given a representation of a linear mapping
from PSD matrices to PSD matrices, the goal is to compute the minimum “distortion” of
this mapping; see Section A for their reduction from Brascamp-Lieb to operator scaling. The

APPROX/RANDOM 2018

25:4 On Geodesically Convex Formulations for the Brascamp-Lieb Constant

operator scaling problem is also not a concave or log-concave optimization problem. However,
operator scaling is known to be “geodesically” log-concave; see [1].

Geodesic convexity is an extension of convexity with respect to straight lines in Euclidean
spaces to geodesics in Riemannian manifolds. Since all the problems mentioned so far are
defined on positive definite matrices, the natural manifold to consider is the space of positive
definite matrices with a particular Riemannian metric: the Hessian of the − log det function;
see section 2. Geodesics are analogs of straight lines on a manifold and, roughly, a function
f on is said to be geodesically convex if the average of its values at the two endpoints of any
geodesic is at least its value at its mid-point.

The reduction of Garg et al. [12], thus, leads to a geodesically log-concave formulation
to compute BL(B, p). However, this construction does not lead to an optimization problem
whose dimension is polynomial in the input bit length as the size of constructed positive linear
operator in the operator scaling problem depends exponentially on the bit lengths of the
entries of p. More precisely, if pj = cj/c for integers (cj)j∈[m] and c, then the aforementioned
construction results in operators over the space of real-valued, symmetric, positive definite
(PD) matrices of dimension (nc)× (nc), Snc++.

Our Contribution. Our first result is that Lieb’s formulation presented in Theorem 2 is
jointly geodesically log-concave with respect to inputs (Aj)j∈[m].

I Theorem 6 (Geodesic Log-Concavity of Lieb’s Formulation). Let (B, p) be a feasible
Brascamp-Lieb datum with Bj ∈ Rnj×n for each j ∈ [m]. Then, BL(B, p;A) is jointly
geodesically log-concave with respect to A := (Aj)j∈[m] where BL(B, p; A) is defined in (2).

This formulation leads to a geodesically convex optimization problem on×j∈[m] S
nj

++ that
captures the Brascamp-Lieb constant.

Subsequently, we present a new formulation for the Brascamp-Lieb constant by com-
bining Lieb’s result with observations made by Bennett et al. [5] about maximizers of
BL(B, p; A); see Theorem 5. [5] showed that if A = (Aj)j∈[m] is a maximizer to (2), then
Aj = (BjM−1B>j)−1 for each j ∈ [m], where

M :=
∑
j∈[m]

pjB
>
j AjBj .

Thus, we can write each Aj as a function of M and obtain, 2 log(BL(B, p;A(M))) equals

∑
j∈[m]

pj log det((BjM−1B>j)−1)− log det

∑
j∈[m]

pjB
>
j (BjM−1B>j)−1Bj

 . (3)

One can show that the expressions log det((BjM−1B>j)−1) for each j ∈ [m] and
log det

(∑
j∈[m] pjB

>
j (BjM−1B>j)−1Bj

)
are geodesically concave functions of M in the

positive definite cone. However, the expression in (3) being a difference, is not geodesically
concave with respect to M in general. However, if A is a global maximizer of BL(B, p;A),
then we also have that

M =
∑
j∈[m]

pjB
>
j (BjM−1B>j)−1Bj .

Combining these two observations, we obtain the following geodesically concave optimization
problem for computing the Brascamp-Lieb constant.

S. Sra, N. K. Vishnoi, and O. Yıldız 25:5

I Definition 7 (A Geodesically Log-Concave Formulation for Computation of the Brascsamp-Lieb
Constant). Let (B, p) be a feasible Brascamp-Lieb datum with Bj ∈ Rnj×n for each j ∈ [m].
Let FB, p(X) : Sn++ → R be defined as follows,

FB,p(X) := log det(X)−
∑
j∈[m]

pj log det(BjXB>j). (4)

The following theorem establishes the geodesic concavity of FB,p and its equivalence to
BL(B, p;A).

I Theorem 8 (Properties of FB,p). Let (B, p) be a feasible Brascamp-Lieb datum with
Bj ∈ Rnj×n for each j ∈ [m]. The function FB,p(X) as defined in (4) has following
properties;
1. FB,p is geodesically concave.
2. If (B, p) is simple, then sup

X∈Sn
++

FB,p(X) is attained. Moreover, if X? is a maximizer

of FB,p, then exp(1
2FB,p(X?)) = BL(B, p) and A? = ((BjX?B>j)−1)j∈[m] maximizes

BL(B, p; A?).
Our results lead to a natural question: is there a polynomial time algorithm based on
techniques from geodesic optimization to compute the Brascamp-Lieb constant. For the case
when nj = 1 for all j, or the rank-one case, a polynomial time algorithm to compute the
Brascamp-Lieb constant is known; see [23, 25]. This algorithm relies on the observation that
the dual of the problem to compute the Brascamp-Lieb constant is the problem of optimizing
an entropy maximizing probability distribution on the vertices of the Brascamp-Lieb polytope
where the marginals of the probability distribution should correspond to the given point p.
This algorithm computes BL(B, p) up to multiplicative error 1 + ε in poly(m, 〈B, p〉, log ε−1)
where 〈B, p〉 denotes the bit complexity of B, p. The main technical result is to show that
for any p in the polytope, an ε-approximate solution to a function like FB,p can be found in
a ball of radius that is polynomial in the bit-complexity of B and p. To extend this rank-one
result to a higher rank already seems non-trivial due to a couple of reasons. (a) Lack of a
separation oracle to the Brascamp-Lieb polytope in general, and (b) lack of an interpretation
of FB,p as an optimization problem over the Brascamp-Lieb polytope. The hope is that our
formulation might lead to such an optimization interpretation of the Brascamp-Lieb constant
over the Brascamp-Lieb polyhedron and, consequently, lead to polynomial time algorithms
following the general approach of [25].

2 The Positive Definite Cone, its Riemannian Geometry, and
Geodesic Convexity

The Metric. Consider the set of positive definite matrices Sd++ as a subset of Rd×d with
the inner product 〈X,Y 〉 := Tr(X>Y) for X,Y ∈ Rd×d. At any point X ∈ Sd++, the tangent
space consists of all d× d real symmetric matrices. There is a natural metric g on this set
that gives it a Riemannian structure: For X ∈ Sd++ and two symmetric matrices ν, ξ

gX(ν, ξ) := Tr(X−1νX−1ξ). (5)

It is an exercise in differentiation to check that this metric arises as the Hessian of the
following function ϕ : Sd++ → R:

ϕ(X) := − log detX.

APPROX/RANDOM 2018

25:6 On Geodesically Convex Formulations for the Brascamp-Lieb Constant

Hence, Sd++ endowed with the metric g is not only a Riemannian manifold but a Hessian
manifold [21]. The study of this metric on Sd++ goes back at least to Siegel [22]; see also the
book of Bhatia [6].

Geodesics on Sd
++. If X,Y ∈ Sd++ and γ : [0, 1]→ Sd++ is a smooth curve between X and

Y , then the arc-length of γ is given by the (action) integral

L(γ) :=
∫ 1

0

√
gγ(t)

(
dγ(t)
dt

,
dγ(t)
dt

)
dt. (6)

The geodesic between X and Y is the unique smooth curve between X and Y with the
smallest arc-length [26]. The following theorem asserts that between any two points in Sd++,
there is a geodesic that connects them. In other words, Sd++ is a geodesically convex set.
Moreover, there exists a closed form expression for the geodesic between two points, a formula
that is useful for calculations.

I Theorem 9 (Geodesics on Sd++ [6], Theorem 6.1.6). For X,Y ∈ Sd++, the exists a unique
geodesic between X and Y , and this geodesic is parametrized by the following equation:

X#tY := X1/2(X−1/2Y X−1/2)tX1/2 (7)

for t ∈ [0, 1].

Geodesic Convexity. One definition of convexity of a function f in a Euclidean space is
that the average of the function at the endpoints of each line in the domain is at least
the value of the function at the average point on the line. Geodesic convexity is a natural
extension of this notion of convexity from Euclidean spaces to Riemannian manifolds that
are geodesically convex. A set in the manifold is said to be geodesically convex if, for every
pair of points in the set, the geodesic combining these points lies entirely in the set.

I Definition 10 (Geodesically Convex Sets). A set S ⊆ Sd++ is called geodesically convex if
for any X,Y ∈ S and t ∈ [0, 1], X#tY ∈ S.

A function defined on a geodesically convex set is said to be geodesically convex if the average
of the function at the endpoints of any geodesic in the domain is at least the value of the
function at the average point on the geodesic.

I Definition 11 (Geodesically Convex Functions). Let S ⊆ Sd++ be a geodesically convex set.
A function f : S → R is called geodesically convex if for any X,Y ∈ Sd++ and t ∈ [0, 1],

f(X#tY) ≤ (1− t)f(X) + tf(Y). (8)

f is called geodesically concave if −f is geodesically convex.

An important point regarding geodesic convexity is that a non-convex function might be
geodesically convex or vice-versa. In general, one cannot convert a geodesically convex
function to a convex function by a change of variables. A well-known example for this is
the log det(X) function whose concavity a classical result from the matrix calculus. On the
other hand, a folklore result is that log det(X) is both geodesically convex and geodesically
concave on the space of positive definite matrices with the metric (5).

I Proposition 12 (Geodesic Linearity of log det). The log det(X) function is geodesically
linear, i.e, it is both geodesically convex and geodesically concave over Sn++.

S. Sra, N. K. Vishnoi, and O. Yıldız 25:7

Proof. Let X,Y ∈ Sn++ and t ∈ [0, 1]. Then,

log det(X#tY) Theorem 9= log det(X1/2(X−1/2Y X−1/2)tX1/2)
=(1− t) log det(X) + t log det(Y).

Therefore, log det(X) is a geodesically linear function over the positive definite cone with
respect to the metric in (5). J

Henceforth, when we mention geodesic convexity, it is with respect to the metric in (5).
Geodesically convex functions share some properties with usual convex functions. One such
property is the relation between local and global minimizers.

I Theorem 13 (Minimizers of Geodesically Convex Functions [20], Theorem 6.1.1). Let S ⊆ Sd++
be a geodesically convex set and f : S → R be a geodesically convex function. Then, any local
minimum point of f is also a global minimum of f . More precisely, if x? := arg minx∈O f(x)
for some open geodesically convex subset O of S, then f(x?) = infx∈S f(x).

Geometric Mean of Matrices and Linear Maps. While the function log det(P) is geodesic-
ally linear, our proof of Theorem 6 relies on the geodesic convexity of
log det(

∑
j∈[m] pjB

>
j AjBj). A simple but important observation is that, if (B, p) is feasible,

then pjB>j AjBj is a strictly positive linear map for each j as proved below.

I Lemma 14 (Strictly Linear Maps Induced by Feasible Brascamp-Lieb Datums). Let (B, p) be
a Brascamp-Lieb datum with Bj ∈ Rnj×n for each j ∈ [m] such that

∑
j∈[m] pjnj = n and

dim(Rn) ≤
∑
j∈[m] pj dim(BjRn). Then, Φj(X) := B>j XBj is a strictly positive linear map

for each j ∈ [m].

Theorem 3 shows that any feasible Brascamp-Lieb datum satisfies both conditions. Further-
more non-feasible Brascamp-Lieb data can also satisfy these conditions as second condition
on Theorem 3 enforced for only the Rn.

Proof. Let us assume that for some j0 ∈ [m], Φj0(X) is not a strictly positive linear map.
Then, there exists X0 ∈ Sn++ such that Φj0(X0) is not positive definite. Thus, there exists
v ∈ Rnj0 such that v>Φj0(X0)v ≤ 0. Equivalently, (B>j0

v)>X0(B>j0
v) ≤ 0. Since X0 is

positive definite, we get B>j0
v = 0. Hence, v>Bj0B

>
j0
v = 0. Consequently, the rank of Bj0 is

at most nj0 − 1 and dim(Bj0Rn) < nj0 . Therefore,

n = dim(Rn) ≤
∑
j∈[m]

pj dim(BjRn) <
∑
j∈[m]

pjnj = n,

by the hypothesis, a contradiction. Consequently, for any j ∈ [m], Φj(X) := B>j XBj is
strictly positive linear whenever (B, p) satisfies conditions

∑
j∈[m] pjnj = n and dim(Rn) ≤∑

j∈[m] pj dim(BjRn). J

The joint geodesic convexity of log det(
∑
j∈[m] pjB

>
j AjBj) follows from a more general

observation (that we prove) that asserts that if Φjs are strictly positive linear maps from Snj

+
to Sn+, then log det(

∑
j∈[m] Φj(Aj)) is geodesically convex. Sra and Hosseini [24] observed

this when m = 1. Their result also follows from a result of Ando [2] about “geometric means”
that is also important for us and we explain it next.

The geometric mean of two matrices was introduced by Pusz and Woronowicz [19]. If
P,Q ∈ Sd++, then the geometric mean of P and Q is defined as

P#1/2Q = P 1/2(P−1/2QP−1/2)1/2P 1/2. (9)

APPROX/RANDOM 2018

25:8 On Geodesically Convex Formulations for the Brascamp-Lieb Constant

By abuse of notation, we drop 1/2 and denote geometric mean by P#Q. Recall that, the
geodesic convexity of a function f : Sd++ → R is equivalent to for any P,Q ∈ Sd++ and
t ∈ [0, 1],

f(P#tQ) ≤ (1− t)f(P) + tf(Q).

If f is continuous, then the geodesic convexity of f can be deduced from the following:

∀P,Q ∈ Sd++, f(P#Q) ≤ 1/2f(P) + 1/2f(Q).

Ando proved the following result about the effect of a strictly positive linear map on the
geometric mean of two matrices.

I Theorem 15 (Effect of a Linear Map over Geometric Mean [2], Theorem 3). Let Φ : Sd+ → Sd′

+
be a strictly positive linear map. If P,Q ∈ Sd++, then

Φ(P#Q) � Φ(P)#Φ(Q). (10)

The monotonicity of logdet (P � Q implies log det(P) ≤ log det(Q)) and the multiplicativity
of the determinant, combined with Theorem 15, imply the following result.

I Corollary 16 (Geodesic Convexity of the Logarithm of Linear Maps[24], Corollary 12). If
Φ : Sd+ → Sd′

+ is a strictly positive linear map, then log det(Φ(P)) is geodesically convex.

While the proof of Theorem 8 uses Theorem 16, it is not enough for the proof of The-
orem 6. Instead of geodesic convexity of log det(Φ(P)), the joint geodesic convexity of
log det(

∑
j∈[m] Φj(Pj)) is needed where Φj : Snj

+ → Sn+ is a linear map for each j ∈ [m].
We conclude this section with the following two results on a maximal characterization of
the geometric mean and the effect of positive linear maps on positive definiteness of block
diagonal matrices.

I Theorem 17 (Maximal Characterization of the Geometric Mean, see e.g. [6], Theorem 4.1.1).
Let P,Q ∈ Sd++. The geometric mean of P and Q can be characterized as follows,

P#Q = max
{
Y ∈ Sd++

∣∣∣∣ [P Y

Y Q

]
� 0

}
,

where the maximal element is with respect to Loewner partial order.

I Proposition 18 (Effect of Positive Linear Maps, see e.g. [6], Exercise 3.2.2). Let Φ : Sd+ → Sd′

+
be a strictly positive linear map and P,Q,R ∈ Sd+. If[

P R

R Q

]
� 0, then

[
Φ(P) Φ(R)
Φ(R) Φ(Q)

]
� 0.

3 Proof of Theorem 6

Let (B, p) be a feasible Brascamp-Lieb datum with Bj ∈ Rnj×n and A := (Aj)j∈[m] with
Aj ∈ Snj

++ be the input of BL(B, p;A) as defined in (2). To prove the joint geodesic convexity
of BL(B, p;A) with respect to A we extend Theorem 16 and Theorem 15 from linear maps to
“jointly linear maps”. We use the term jointly linear maps to refer to multivariable functions
of the form

∑
j∈[m] Φj(Pj) where each Φj is a strictly positive linear map for each j ∈ [m].

In particular, the term
∑
j∈[m] pjB

>
j AjBj in (2) is a jointly linear map.

S. Sra, N. K. Vishnoi, and O. Yıldız 25:9

The extension of Theorem 15 is presented in Theorem 20 and its proof is based on the
maximal characterization of geometric mean (Theorem 17) and the effect of positive linear
maps on the positive definiteness of block matrices (Theorem 18). We follow the proof of
Theorem 15 for each Φj , but instead of concluding Φj(Pj#Qj) � Φj(Pj)#Φj(Qj) from the
maximality of geometric mean, we sum the resulting inequalities. Subsequently, Theorem 20
follows from the maximality of geometric mean. Lemma 21 is an extension of Theorem 16
and follows directly from Theorem 20.

I Definition 19 (Jointly linear map). Let Φ : Sn1
+ × · · · × Snm

+ → Sn+. We say that Φ is a
jointly linear map if there exist strictly positive linear maps Φj : Snj

+ → Sn+ such that

Φ(P1, . . . , Pk) :=
∑
j∈[k]

Φj(Pj). (11)

Now, we state the extension of Theorem 15.

I Theorem 20 (Effect of Jointly Linear Maps over Geometric Means). Let Φ : Sn1
+ ×· · ·×S

nm
+ →

Sn+ be a jointly linear map. Then,

Φ(G) � Φ(P)#Φ(Q)

where P := (Pj)j∈[m], Q := (Qj)j∈[m], and G := (Gj)j∈[m] with Pj , Qj ∈ Snj

++ and Gj :=
Pj#Qj.

The following is a corollary of the theorem above and a generalization of Theorem 16.

I Corollary 21 (Joint Geodesic Convexity of Logarithm of Jointly Linear Maps). If Φ : Sn1
+ ×

· · · × Snm
+ → Sn+ is a jointly linear map, then

g(P1, . . . , Pm) := log det(Φ(P1, . . . , Pm)) (12)

is jointly geodesically convex in Sn1
++ × · · · × Snm

++.

Proof of Corollary 21. We show that g is jointly geodesically mid-point convex. Theorem
20 implies that

Φ(G) � Φ(P)#Φ(Q) (13)

for any P := (Pj)j∈[m] and Q := (Qj)j∈[m] with Pj , Qj ∈ Snj

++. Therefore,

g(G) (12)= log det(Φ(G))
≤ log det(Φ(P)#Φ(Q)) (monotonicity of log det and (13))
≤1/2 log det(Φ(P)) + 1/2 log det(Φ(Q)) (multiplicativity of det)

(12)= 1/2 (g(P) + g(Q)) .

Thus, g satisfies mid-point geodesic convexity. Consequently, we establish the geodesic
convexity of g using the continuity of g. J

The proof of Theorem 6 is a simple application of Corollary 21 and Theorem 12.

Proof of Theorem 6. We show that BL(B, p;A) is jointly geodesically mid-point log-concave
with respect to A. In other words, we show that for arbitrary P = (Pj)j∈[m], Q = (Qj)j∈[m]

− log BL(B, p;G) ≤ −1/2 (log BL(B, p;P) + log BL(B, p;Q))

APPROX/RANDOM 2018

25:10 On Geodesically Convex Formulations for the Brascamp-Lieb Constant

where G = (Gj)j∈[m] with Gj := Pj#Qj , being the midpoint of geodesic combining Pj to
Qj . This implies that BL(B, p;A) is jointly geodesically log-concave with respect to A due
to the continuity of BL(B, p;A) with respect to A.

Let Φj(Pj) := pjB
>
j PjBj . Φj is strictly positive linear map by Lemma 14. Then,

Φ(P) :=
∑
j∈[m]

pjB
>
j PjBj is jointly linear, as Φ(P) =

∑
j∈[m]

Φj(Pj). Hence, log det(Φ(P)) is

jointly geodesically convex by Corollary 21. Also, log det(X) is geodesically linear (Theorem
12). Thus, for any P := (Pj)j∈[m], Q := (Qj)j∈[m] and G := (Gj)j∈[m] with Gj := Pj#Qj
we have

− log BL(B, p;G) (2)= 1/2(log det(Φ(G))−
∑
j∈[m]

pj log det(Gj))

(12)
≤ 1/2(1/2(log det(Φ(P)) + log det(Φ(Q)))−

∑
j∈[m]

pj log det(Gj))

=1/2(1/2(log det(Φ(P))−
∑
j∈[m]

pj log det(Pj)) (Theorem 12)

+ 1/2(log det(Φ(Q))−
∑
j∈[m]

pj log det(Qj)))

(2)= − 1/2(log det BL(B, p;P) + log det BL(B, p;Q)).

This concludes the proof. J

Now we prove Theorem 20. This proof is based on the proof of Theorem 15 and depends on
the maximality of geometric mean (Theorem 17) and effects of positive linear maps on block
matrices (Theorem 18).

Proof of Theorem 20. Φ is a jointly linear map by the assumption. Thus, there exist linear
maps Φj : Snj

+ → Sn+ such that Φ(P) =
∑
j∈[m] Φj(Pj). Theorem 17 implies for each j ∈ [m],

0 �
[
Pj Gj
Gj Qj

]
.

Since Φj ’s are strictly positive linear maps, Theorem 18 implies that for each j ∈ [m],

0 �
[

Φj(Pj) Φj(Gj)
Φj(Gj) Φj(Qj)

]
.

The dimension of these block matrices is 2n× 2n for each j ∈ [m]. Thus we can sum these
inequalities and the summation leads to

0 �
∑
j∈[m]

[
Φj(Pj) Φj(Gj)
Φj(Gj) Φj(Qj)

]
=

∑
j∈[m]

Φj(Pj)
∑
j∈[m]

Φj(Gj)∑
j∈[m]

Φj(Gj)
∑
j∈[m]

Φj(Qj)

 (11)=
[
Φ(P) Φ(G)
Φ(G) Φ(Q)

]
. (14)

Theorem 17 and (14) imply that Φ(G) � Φ(P)#Φ(Q). J

4 Proof of Theorem 8

Let (B, p) be a feasible Brascamp-Lieb datum with Bj ∈ Rnj×n. Let A := (Aj)j∈[m] with
Aj ∈ Snj

++ be the input of BL(B, p;A) as defined in (2). The proof of Theorem 8 first
establishes the geodesic concavity of FB,p as defined in (4) when (B, p) is feasible. Next,

S. Sra, N. K. Vishnoi, and O. Yıldız 25:11

it establishes the relation between global maximizers of FB,p(X) and global maximizers of
BL(B, p;A), as well as the relation between supX∈Sn

++
FB,p(X) and BL(B, p) when (B, p) is

simple.
Feasibility of (B, p) implies the linear maps BjXB>j are strictly positive linear for each

j ∈ [m] (Lemma 14). Consequently, − log det(BjXB>j) is geodesically concave by Theorem
16 for each j ∈ [m]. Also, log det(X) is geodesically concave by Theorem 12. Thus, FB,p(X) is
geodesically concave as a sum of geodesically concave functions with non-negative coefficients.

The geodesic concavity of FB,p implies that any local maximum is also a global maximum
(Theorem 13). Consequently, we investigate the points where all directional derivatives of
FB,p vanish, the critical points of FB,p. A simple calculation involving the first derivative
shows that any critical point X of FB,p should satisfy

X−1 =
∑
j∈[m]

pjB
>
j (BjXB>j)−1Bj .

Theorem 5 implies that we can construct a global maximizer of BL(B, p;A) from X by setting
Aj := (BjXB>j)−1. Furthermore, we can construct a critical point of FB,p using a global
maximizer of BL(B, p;A) by setting X := (

∑
j∈[m] pjB

>
j AjBj)−1. Theorem 5 guarantees

the existence of a global maximizer of BL(B, p;A) if (B, p) is simple. Thus, if (B, p) is simple,
then supX FB,p(X) should be attained. We can deduce

sup
X
FB,p(X) = 2 log BL(B, p)

from the construction of FB,p and the relation between maximizers of FB,p and BL(B, p;A).
The second part of the proof Theorem 8 depends on well-known identities from matrix

calculus. We present these identities for the convenience of the reader and refer the interested
readers to the matrix cookbook [18] for more details.
I Proposition 22. Let X(t), Y (t) be differentiable functions from R to d × d invertible
symmetric matrices. Let U ∈ Rd′×d, V ∈ Rd×d′′ , W ∈ Rd×d be matrices which do not depend
on t. Then, the following identities hold:

d log det(X(t))
dt

=Tr
(
X(t)−1 dX(t)

dt

)
(15)

dUX(t)V
dt

=U dX(t)
dt

V (16)

dtW

dt
=W. (17)

Proof of Theorem 8. We start by showing that FB,p(X) is geodesically concave. The
feasibility of (B, p) implies BjXB>j is a strictly positive linear map for each j ∈ [m] (Lemma
14). Thus, Theorem 16 yields that for any X,Y ∈ Sn++,

log det(Bj(X#Y)B>j) ≤ 1/2 log det(BjXB>j) + 1/2 log det(BjY B>j). (18)

Combining this with the geodesic linearity of log det(X) (Theorem 12), we obtain

FB,p(X#Y) = log det(X#Y)−
∑
j∈[m]

pj log det(Bj(X#Y)B>j)

≥1/2(log det(X)−
∑
j∈[m]

pj log det(BjXB>j))

+ 1/2(log det(Y)−
∑
j∈[m]

pj log det(BjY B>j))

=1/2FB,p(X) + 1/2FB,p(Y)

APPROX/RANDOM 2018

25:12 On Geodesically Convex Formulations for the Brascamp-Lieb Constant

Therefore, FB,p(X) is geodesically concave.
Now, we can show the second part of the theorem. The geodesic concavity of FB,p implies

any local maximum of FB,p is a global maximum of FB,p. A local maximum of FB,p is
achieved at X if it is a critical point of FB,p. If X is a critical point of FB,p, then for any
symmetric matrix Q, the directional derivative of FB,p at X in the direction of Q should be
0. In other words, if ζ(t) := X + tQ and f(t) := FB,p(ζ(t)), then df

dt

∣∣∣
t=0

should be 0 for any

Q. Let us compute df
dt ,

df

dt

(4)= d

dt
log det(ζ(t))−

∑
j∈[m]

pj
d

dt
log det(Bjζ(t)B>j)

(15)= Tr
(
ζ(t)−1 dζ(t)

dt

)
−
∑
j∈[m]

pjTr (Bjζ(t)B>j)−1 dBjζ(t)B>j
dt

)
(16)= Tr

(
ζ(t)−1 dζ(t)

dt

)
−
∑
j∈[m]

pjTr
(

(Bjζ(t)B>j)−1Bj
dζ(t)
dt

B>j

)
(17)= Tr(ζ(t)−1Q)−

∑
j∈[m]

pjTr((Bjζ(t)B>j)−1BjQB
>
j).

Hence, the directional derivative of FB,p(X) in the direction of Q, df
dt

∣∣∣
t=0

is

Tr(X−1Q)−
∑
j∈[m]

pjTr((BjXB>j)−1BjQB
>
j). (19)

If directional derivates of FB,p vanish at X, then (19) should be 0 for any symmetric matrix
Q. Consequently,

Tr(Q[X−1 −
∑
j∈[m]

pjB
>
j (BjXB>j)−1Bj]) = 0.

This observation leads to

X−1 =
∑
j∈[m]

pjB
>
j (BjXB>j)−1Bj . (20)

If (B, p) is simple, then there exists an input A? = (Aj)j∈[m] such that A−1
j = BjM

−1B>j
where M =

∑
j∈[m] pjB

>
j AjBj by Theorem 5. Consequently, M satisfies

M =
∑
j∈[m]

pjB
>
j (BjM−1B>j)−1Bj . (21)

If X? := M−1, then X? satisfies (20) due to (21). Thus, X? is a critical point of FB,p(X)
and FB,p attains its maximal value at X?. Furthermore, the maximizer A? of BL(B, p;A) is
equal to ((BjX?B>j)−1)j∈[m]. Finally,

FB,p(X?) (4)= log det(X?)−
∑
j∈[m]

pj log det(BjX?B>j)

= log det((
∑
j∈[m]

pjB
>
j (BjX?B>j)−1Bj)−1)−

∑
j∈[m]

pj log det(BjX?B>j)

= log det((
∑
j∈[m]

pjB
>
j AjBj)−1)−

∑
j∈[m]

pj log det(A−1
j)

=
∑
j∈[m]

pj log det(Aj)− log det(
∑
j∈[m]

pjB
>
j AjBj).

Therefore, BL(B, p;A?) = exp(1
2FB,p(X?)). J

S. Sra, N. K. Vishnoi, and O. Yıldız 25:13

References
1 Zeyuan Allen-Zhu, Garg Ankit, Yuanzhi Li, Rafael Oliveira, and Avi Wigderson. Oper-

ator scaling via geodesically convex optimization, invariant theory and polynomial identity
testing. In Proceedings of the 50th Annual ACM Symposium on Theory of Computing, Los
Angeles, CA, USA, June 25-29, 2018. To appear. arXiv:arXiv:1804.01076.

2 Tsuyoshi Ando. Concavity of certain maps on positive definite matrices and applications to
Hadamard products. Linear Algebra and its Applications, 26:203–241, 1979. doi:10.1016/
0024-3795(79)90179-4.

3 Keith Ball. Volumes of sections of cubes and related problems. In Geometric Aspects of
Functional Analysis, pages 251–260. Springer, 1989.

4 Franck Barthe. On a reverse form of the Brascamp-Lieb inequality. Inventiones mathem-
aticae, 134(2):335–361, 1998.

5 Jonathan Bennett, Anthony Carbery, Michael Christ, and Terence Tao. The Brascamp-
Lieb inequalities: finiteness, structure and extremals. Geometric and Functional Analysis,
17(5):1343–1415, 2008.

6 Rajendra Bhatia. Positive definite matrices. Princeton University Press, 2009.
7 Herm Jan Brascamp and Elliott H Lieb. Best constants in Young’s inequality, its converse,

and its generalization to more than three functions. Advances in Mathematics, 20(2):151–
173, 1976.

8 Eric A Carlen and Dario Cordero-Erausquin. Subadditivity of the entropy and its relation
to Brascamp–Lieb type inequalities. Geometric and Functional Analysis, 19(2):373–405,
2009.

9 Eric A. Carlen, Elliott. H. Lieb, and Michael Loss. A sharp analog of Young’s inequality
on SN and related entropy inequalities. The Journal of Geometric Analysis, 14(3):487–520,
Sep 2004. doi:10.1007/BF02922101.

10 Zeev Dvir, Ankit Garg, Rafael Mendes de Oliveira, and József Solymosi. Rank bounds for
design matrices with block entries and geometric applications. Discrete Analysis, 2018:5,
Mar 2018. doi:10.19086/da.3118.

11 Zeev Dvir, Shubhangi Saraf, and Avi Wigderson. Breaking the quadratic barrier for 3-
LCC’s over the reals. In Proceedings of the 46th Annual ACM Symposium on Theory of
Computing, Los Angeles, CA, USA, May 31- June 3, 2014, pages 784–793, New York, NY,
USA, 2014. doi:10.1145/2591796.2591818.

12 Ankit Garg, Leonid Gurvits, Rafael Mendes de Oliveira, and Avi Wigderson. Algorithmic
and optimization aspects of Brascamp-Lieb inequalities, via operator scaling. In Proceedings
of the 49th Annual ACM Symposium on Theory of Computing, Montreal, QC, Canada, June
19-23, 2017, pages 397–409, 2017. doi:10.1145/3055399.3055458.

13 Leonid Gurvits. Classical complexity and quantum entanglement. Journal of Computer
and System Sciences, 69(3):448–484, 2004. Special Issue on STOC 2003. doi:10.1016/
j.jcss.2004.06.003.

14 Moritz Hardt and Ankur Moitra. Algorithms and hardness for robust subspace recovery.
In Conference on Learning Theory, pages 354–375, 2013.

15 Elliott H Lieb. Gaussian kernels have only Gaussian maximizers. Inventiones Mathematicae,
102(1):179–208, 1990.

16 Jingbo Liu, Thomas A. Courtade, Paul W. Cuff, and Sergio Verdú. Smoothing Brascamp-
Lieb inequalities and strong converses for common randomness generation. In IEEE In-
ternational Symposium on Information Theory, Barcelona, Spain, July 10-15, 2016, pages
1043–1047. IEEE, 2016. doi:10.1109/ISIT.2016.7541458.

17 Jingbo Liu, Thomas A. Courtade, Paul W. Cuff, and Sergio Verdú. Information-theoretic
perspectives on Brascamp-Lieb inequality and its reverse. CoRR, abs/1702.06260, 2017.
arXiv:1702.06260.

APPROX/RANDOM 2018

http://arxiv.org/abs/arXiv:1804.01076

http://dx.doi.org/10.1016/0024-3795(79)90179-4

http://dx.doi.org/10.1016/0024-3795(79)90179-4

http://dx.doi.org/10.1007/BF02922101

http://dx.doi.org/10.19086/da.3118

http://dx.doi.org/10.1145/2591796.2591818

http://dx.doi.org/10.1145/3055399.3055458

http://dx.doi.org/10.1016/j.jcss.2004.06.003

http://dx.doi.org/10.1016/j.jcss.2004.06.003

http://dx.doi.org/10.1109/ISIT.2016.7541458

http://arxiv.org/abs/1702.06260

25:14 On Geodesically Convex Formulations for the Brascamp-Lieb Constant

18 Kaare Brandt Petersen, Michael Syskind Pedersen, et al. The matrix cookbook. Technical
University of Denmark, 7(15):510, 2008.

19 W. Pusz and S.L. Woronowicz. Functional calculus for sesquilinear forms and the puri-
fication map. Reports on Mathematical Physics, 8(2):159–170, 1975. doi:10.1016/0034-
4877(75)90061-0.

20 Tamás Rapcsák. Geodesic convex functions, pages 61–86. Springer US, Boston, MA, 1997.
doi:10.1007/978-1-4615-6357-0_6.

21 Hirohiko Shima. The geometry of Hessian structures. World Scientific Publishing, 2007.
22 Carl Ludwig Siegel. Symplectic geometry. American Journal of Mathematics, 65(1):1–86,

1943. URL: http://www.jstor.org/stable/2371774.
23 Mohit Singh and Nisheeth K Vishnoi. Entropy, optimization and counting. In Proceedings

of the forty-sixth annual ACM symposium on Theory of computing, pages 50–59. ACM,
2014.

24 Suvrit Sra and Reshad Hosseini. Conic geometric optimization on the manifold of positive
definite matrices. SIAM Journal on Optimization, 25(1):713–739, 2015.

25 Damian Straszak and Nisheeth K. Vishnoi. Computing maximum entropy distributions
everywhere. ArXiv e-prints, 2017. arXiv:1711.02036.

26 Nisheeth K Vishnoi. Geodesic convex optimization: Differentiation on manifolds, geodesics,
and convexity, Jun 2018. URL: https://nisheethvishnoi.files.wordpress.com/2018/
06/geodesicconvexity.pdf.

A An Exponential-Sized Geodesically Convex Formulation from
Operator Scaling

In this section, we describe the operator scaling problem and the reduction of Garg et al. [12]
from the computation of the Brascasmp-Lieb constant to the computation of the “capacity”
of a positive operator.

The Operator Scaling Problem and its Geodesic Convexity. In the operator scaling
problem [13], one is given a linear operator T (X) :=

∑
j∈[m] T

>
j XTj through the tuple of

matrices Tjs and the goal is to find square matrices L and R such that∑
j∈[m]

T̂>j T̂j = I and
∑
j∈[m]

T̂j T̂
>
j = I, (22)

where T̂j := LTjR. The matrices L and R can be computed by solving the following
optimization problem.

I Definition 23 (Operator Capacity). Let T : Sd++ → Sd′

++ be a linear operator, then the
capacity of T is

cap(T) := inf
det(X)=1

det
(
d′

d
T (X)

)
. (23)

In particular, if X?
T is a minimizer of (23) and Y ?T = T (X?

T)−1, then (22) holds if we let
L := (Y ?T)1/2 and R := (X?

T)1/2; see [13] for details. Operator capacity is known to be
geodesically log-convex, see e.g. [1], Lemma C.1.

http://dx.doi.org/10.1016/0034-4877(75)90061-0

http://dx.doi.org/10.1016/0034-4877(75)90061-0

http://dx.doi.org/10.1007/978-1-4615-6357-0_6

http://www.jstor.org/stable/2371774

http://arxiv.org/abs/1711.02036

https://nisheethvishnoi.files.wordpress.com/2018/06/geodesicconvexity.pdf

https://nisheethvishnoi.files.wordpress.com/2018/06/geodesicconvexity.pdf

S. Sra, N. K. Vishnoi, and O. Yıldız 25:15

The Reduction. Let (B, p) be a Brascamp-Lieb datum with Bj ∈ Rnj×n for each j ∈ [m].
Garg et al. [12] proved that if the exponent p = (pj)j∈[m] is a rational vector, then one
can construct an operator scaling problem from (B, p). Let pj = cj/c where cjs are non-
negative integers and c is a positive integer, the common denominator for all the pjs. Their
reduction, outlined below, results in an operator TB,p : Snc++ → Sn++ with the property that
cap(TB,p) = 1/BL(B,p)2.

The operator TB,p is constructed with cj copies of the matrix Bj for each j ∈ [m]. In order
to easily refer these copies, let us define m′ :=

∑
j∈[m] cj , and the function δ : [m′] → [m].

δ(i) is defined as the integer j such that,∑
k<j

ck < i ≤
∑
k≤j

ck.

Let Zij be an nδ(i)×n matrix all of whose entries are zero when δ(i) 6= j and Bδ(i) if δ(i) = j,
for i, j ∈ [m′]. Define nc× n matrices Tj for j ∈ [m] as follows:

Tj :=

 Z1j
...

Zm′j

 ,
and define the linear operator TB,p : Snc++ → Sn++ as

TB,p(X) :=
∑
j∈[m′]

T>j XTj . (24)

I Theorem 24 (Reduction from Brascamp-Lieb to Operator Scaling[12], Lemma 4.4.). Let
(B, p) be a Brascamp-Lieb a datum with Bj ∈ Rnj×n and pj = cj/c where c, cj ∈ Z+ for each
j ∈ [m]. The capacity of the operator TB,p defined in (24) satisfies cap(TB,p) = 1/BL(B,p)2.

While this reduction gives a geodesically log-concave formulation to compute the Brascamp-
Lieb constant, the dimension of the optimization problem is exponentially large in the bit
complexity of the Brascamp-Lieb datum. Consequently, a truly polynomial time algorithm
for the computation of the Brascamp-Lieb constant does not follow from any black-box
optimization method for geodesically convex functions or polynomial time algorithms for
operator capacity; e.g. the algorithm presented in [1].

APPROX/RANDOM 2018

Proceedings of Machine Learning Research vol 75:1–21, 2018

An Estimate Sequence for Geodesically Convex Optimization

Hongyi Zhang HONGYIZ@MIT.EDU
BCS and LIDS, Massachusetts Institute of Technology

Suvrit Sra SUVRIT@MIT.EDU

EECS and LIDS, Massachusetts Institute of Technology

Abstract
We propose a Riemannian version of Nesterov’s Accelerated Gradient algorithm (RAGD), and show
that for geodesically smooth and strongly convex problems, within a neighborhood of the minimizer
whose radius depends on the condition number as well as the sectional curvature of the manifold,
RAGD converges to the minimizer with acceleration. Unlike the algorithm in (Liu et al., 2017) that
requires the exact solution to a nonlinear equation which in turn may be intractable, our algorithm
is constructive and computationally tractable1. Our proof exploits a new estimate sequence and a
novel bound on the nonlinear metric distortion, both ideas may be of independent interest.
Keywords: Riemannian optimization; geodesically convex optimization; Nesterov’s accelerated
gradient method; nonlinear optimization

1. Introduction

Convex optimization theory has been a fruitful area of research for decades, with classic work such
as the ellipsoid algorithm (Khachiyan, 1980) and the interior point methods (Karmarkar, 1984).
However, with the rise of machine learning and data science, growing problem sizes have shifted the
community’s focus to first-order methods such as gradient descent and stochastic gradient descent.
Over the years, impressive theoretical progress has also been made here, helping elucidate problem
characteristics and bringing insights that drive the discovery of provably faster algorithms, notably
Nesterov’s accelerated gradient descent (Nesterov, 1983) and variance reduced incremental gradient
methods (e.g., Johnson and Zhang, 2013; Schmidt et al., 2013; Defazio et al., 2014).

Outside convex optimization, however, despite some recent progress on nonconvex optimization
our theoretical understanding remains limited. Nonetheless, nonconvexity pervades machine learning
applications and motivates identification and study of specialized structure that enables sharper
theoretical analysis, e.g., optimality bounds, global complexity, or faster algorithms. Some examples
include, problems with low-rank structure (Boumal et al., 2016b; Ge et al., 2017; Sun et al., 2017;
Kawaguchi, 2016); local convergence rates (Ghadimi and Lan, 2013; Reddi et al., 2016; Agarwal et al.,
2016; Carmon et al., 2016); growth conditions that enable fast convergence (Polyak, 1963; Zhang
et al., 2016; Attouch et al., 2013; Shamir, 2015); and nonlinear constraints based on Riemannian
manifolds (Boumal et al., 2016a; Zhang and Sra, 2016; Zhang et al., 2016; Mishra and Sepulchre,
2016), or more general metric spaces (Ambrosio et al., 2014; Bacák, 2014).

In this paper, we focus on nonconvexity from a Riemannian viewpoint and consider gradient
based optimization. In particular, we are motivated by Nesterov’s accelerated gradient method (Nes-

1. as long as Riemannian gradient, exponential map and its inverse are computationally tractable, which is the case for
many matrix manifolds (Absil et al., 2009).

c© 2018 H. Zhang & S. Sra.

AN ESTIMATE SEQUENCE FOR GEODESICALLY CONVEX OPTIMIZATION

terov, 1983), a landmark result in the theory of first-order optimization. By introducing an ingenious
“estimate sequence” technique, Nesterov (1983) devised a first-order algorithm that provably outper-
forms gradient descent, and is optimal (in a first-order oracle model) up to constant factors. This
result bridges the gap between the lower and upper complexity bounds in smooth first-order convex
optimization (Nemirovsky and Yudin, 1983; Nesterov, 2004).

Following this seminal work, other researchers also developed different analyses to explain the
phenomenon of acceleration. However, both the original proof of Nesterov and all other existing
analyses rely heavily on the linear structure of vector spaces. Therefore, our central question is:

Is linear space structure necessary to achieve acceleration?

Given that the iteration complexity theory of gradient descent generalizes to Riemannian mani-
folds (Zhang and Sra, 2016), it is tempting to hypothesize that a Riemannian generalization of
accelerated gradient methods also works. However, the nonlinear nature of Riemannian geometry
poses significant obstructions to either verify or refute such a hypothesis. The aim of this paper is to
study existence of accelerated gradient methods on Riemannian manifolds, while identifying and
tackling key obstructions and obtaining new tools for global analysis of optimization on Riemannian
manifolds as a byproduct.

It is important to note that in a recent work (Liu et al., 2017), the authors claimed to have
developed Nesterov-style methods on Riemannian manifolds and analyzed their convergence rates.
Unfortunately, this is not the case, since their algorithm requires the exact solution to a nonlinear
equation (Liu et al., 2017, (4) and (5)) on the manifold at every iteration. In fact, solving this
nonlinear equation itself can be as difficult as solving the original optimization problem.

1.1. Related work

The first accelerated gradient method in vector space along with the concept of estimate sequence is
proposed by Nesterov (1983); (Nesterov, 2004, Chapter 2.2.1) contains an expository introduction. In
recent years, there has been a surging interest to either develop new analysis for Nesterov’s algorithm
or invent new accelerated gradient methods. In particular, Su et al. (2014); Flammarion and Bach
(2015); Wibisono et al. (2016) take a dynamical system viewpoint, modeling the continuous time limit
of Nesterov’s algorithm as a second-order ordinary differential equation. Allen-Zhu and Orecchia
(2014) reinterpret Nesterov’s algorithm as the linear coupling of a gradient step and a mirror descent
step, which also leads to accelerated gradient methods for smoothness defined with non-Euclidean
norms. Arjevani et al. (2015) reinvent Nesterov’s algorithm by considering optimal methods for
optimizing polynomials. Bubeck et al. (2015) develop an alternative accelerated method with a
geometric explanation. Lessard et al. (2016) use theory from robust control to derive convergence
rates for Nesterov’s algorithm.

The design and analysis of Riemannian optimization algorithms as well as some historical
perspectives were covered in details in (Absil et al., 2009), although the analysis only focused on
local convergence. The first global convergence result was derived in (Udriste, 1994) under the
assumption that the Riemannian Hessian is positive definite. Zhang and Sra (2016) established the
globally convergence rate of Riemannian gradient descent algorithm for optimizing geodesically
convex functions on Riemannian manifolds. Other nonlocal analyses of Riemannian optimization
algorithms include stochastic gradient algorithm (Zhang and Sra, 2016), fast incremental algorithm
(Zhang et al., 2016; Kasai et al., 2016), proximal point algorithm (Ferreira and Oliveira, 2002) and

2

AN ESTIMATE SEQUENCE FOR GEODESICALLY CONVEX OPTIMIZATION

trust-region algorithm (Boumal et al., 2016a). Absil et al. (2009, Chapter 2) also surveyed some
important applications of Riemannian optimization.

1.2. Summary of results

In this paper, we make the following contributions:

1. We propose the first computationally tractable accelerated gradient algorithm that, within
a radius from the minimizer that depends on the condition number and sectional curvature
bounds, is provably faster than gradient descent methods on Riemannian manifolds with
bounded sectional curvatures. (Algorithm 2, Theorem 11)

2. We analyze the convergence of this algorithm using a new estimate sequence, which relaxes
Nesterov’s original assumption and also generalizes to Riemannian optimization. (Lemma 4)

3. We develop a novel bound related to the bi-Lipschitz property of exponential maps on Rieman-
nian manifolds. This fundamental geometric result is essential for our convergence analysis,
but should also have other interesting applications. (Theorem 10)

2. Background

We briefly review concepts in Riemannian geometry that are related to our analysis; for a thorough
introduction one standard text is (e.g. Jost, 2011). A Riemannian manifold (M, g) is a real smooth
manifoldM equipped with a Riemannain metric g. The metric g induces an inner product structure on
each tangent space TxM associated with every x ∈M. We denote the inner product of u, v ∈ TxM
as 〈u, v〉 , gx(u, v); and the norm of u ∈ TxM is defined as ‖u‖x ,

√
gx(u, u); we omit the

index x for brevity wherever it is obvious from the context. The angle between u, v is defined
as arccos 〈u,v〉‖u‖‖v‖ . A geodesic is a constant speed curve γ : [0, 1] → M that is locally distance
minimizing. An exponential map Expx : TxM→M maps v in TxM to y onM, such that there
is a geodesic γ with γ(0) = x, γ(1) = y and γ̇(0) , d

dtγ(0) = v. If between any two points in
X ⊂ M there is a unique geodesic, the exponential map has an inverse Exp−1x : X → TxM and
the geodesic is the unique shortest path with ‖Exp−1x (y)‖ = ‖Exp−1y (x)‖ the geodesic distance
between x, y ∈ X . Parallel transport is the Riemannian analogy of vector translation, induced by the
Riemannian metric.

Let u, v ∈ TxM be linearly independent, so that they span a two dimensional subspace of TxM.
Under the exponential map, this subspace is mapped to a two dimensional submanifold of U ⊂M.
The sectional curvature κ(x,U) is defined as the Gauss curvature of U at x, and is a critical concept
in the comparison theorems involving geodesic triangles (Burago et al., 2001).

The notion of geodesically convex sets, geodesically (strongly) convex functions and geodesically
smooth functions are defined as straightforward generalizations of the corresponding vector space
objects to Riemannian manifolds. In particular,
• A set X is called geodesically convex if for any x, y ∈ X , there is a geodesic γ with γ(0) =
x, γ(1) = y and γ(t) ∈ X for t ∈ [0, 1].
• We call a function f : X → R geodesically convex (g-convex) if for any x, y ∈ X and any

geodesic γ such that γ(0) = x, γ(1) = y and γ(t) ∈ X for all t ∈ [0, 1], it holds that

f(γ(t)) ≤ (1− t)f(x) + tf(y).

3

AN ESTIMATE SEQUENCE FOR GEODESICALLY CONVEX OPTIMIZATION

It can be shown that if the inverse exponential map is well-defined, an equivalent definition
is that for any x, y ∈ X , f(y) ≥ f(x) + 〈gx,Exp−1x (y)〉, where gx is the gradient of f at x
(in this work we assume f is differentiable). A function f : X → R is called geodesically
µ-strongly convex (µ-strongly g-convex) if for any x, y ∈ X and gradient gx, it holds that

f(y) ≥ f(x) + 〈gx,Exp−1x (y)〉+ µ
2‖Exp−1x (y)‖2.

• We call a vector field g : X → Rd geodesically L-Lipschitz (L-g-Lipschitz) if for any
x, y ∈ X ,

‖g(x)− Γxyg(y)‖ ≤ L‖Exp−1x (y)‖,

where Γxy is the parallel transport from y to x. We call a differentiable function f : X → R
geodesically L-smooth (L-g-smooth) if its gradient is L-g-Lipschitz, in which case we have

f(y) ≤ f(x) + 〈gx,Exp−1x (y)〉+ L
2 ‖Exp−1x (y)‖2.

Throughout our analysis, for simplicity, we make the following standing assumptions:

Assumption 1 X ⊂M is a geodesically convex set where the exponential map Exp and its inverse
Exp−1 are well defined.
Assumption 2 The sectional curvature in X is bounded, i.e. |κ(x, ·)| ≤ K,∀x ∈ X .

Assumption 3 f is geodesically L-smooth, µ-strongly convex, and assumes its minimum inside X .

Assumption 4 All the iterates remain in X .

With these assumptions, the problem being solved can be stated formally as minx∈X⊂M f(x).

3. Proposed algorithm: RAGD

Algorithm 1: Riemannian-Nesterov(x0, γ0, {hk}T−1k=0 , {βk}
T−1
k=0)

Parameters: initial point x0 ∈ X , γ0 > 0, step sizes {hk ≤ 1
L}, shrinkage parameters {βk > 0}

initialize v0 = x0
for k = 0, 1, . . . , T − 1 do

Compute αk ∈ (0, 1) from the equation α2
k = hk · ((1− αk)γk + αkµ)

Set γk+1 = (1− αk)γk + αkµ

1 Choose yk = Expxk

(
αkγk

γk+αkµ
Exp−1xk (vk)

)
Compute f(yk) and gradf(yk)

2 Set xk+1 = Expyk (−hkgradf(yk))

3 Set vk+1 = Expyk

(
(1−αk)γk
γk+1

Exp−1yk (vk)− αk
γk+1

gradf(yk)
)

Set γk+1 = 1
1+βk

γk+1

end
Output: xT

Our proposed optimization procedure is shown in Algorithm 1. We assume the algorithm is
granted access to oracles that can efficiently compute the exponential map and its inverse, as well as
the Riemannian gradient of function f . In comparison with Nesterov’s accelerated gradient method

4

AN ESTIMATE SEQUENCE FOR GEODESICALLY CONVEX OPTIMIZATION

vk
yk
xk

x∗

vk+1
yk+1 xk+1

Exp−1yk (xk)

Exp−1yk (vk)

gradf(yk)

Exp−1yk (xk+1)

Exp−1yk (vk+1)

TykM

Figure 1: Illustration of the geometric quantities in Algorithm 1. Left: iterates and minimizer x∗

with yk’s tangent space shown schematically. Right: the inverse exponential maps of
relevant iterates in yk’s tangent space. Note that yk is on the geodesic from xk to vk
(Algorithm 1, Line 1); Exp−1yk (xk+1) is in the opposite direction of gradf(yk) (Algorithm
1, Line 2); also note how Exp−1yk (vk+1) is constructed (Algorithm 1, Line 3).

in vector space (Nesterov, 2004, p.76), we note two important differences: first, instead of linearly
combining vectors, the update for iterates is computed via exponential maps; second, we introduce a
paired sequence of parameters {(γk, γk)}T−1k=0 , for reasons that will become clear when we analyze
the convergence of the algorithm.

Algorithm 1 provides a general scheme for Nesterov-style algorithms on Riemannian manifolds,
leaving the choice of many parameters to users’ preference. To further simplify the parameter choice
as well as the analysis, we note that the following specific choice of parameters

γ0 ≡ γ =

√
β2 + 4(1 + β)µh− β√
β2 + 4(1 + β)µh+ β

· µ, hk ≡ h,∀k ≥ 0, βk ≡ β > 0,∀k ≥ 0,

which leads to Algorithm 2, a constant step instantiation of the general scheme. We leave the proof
of this claim as a lemma in the Appendix.

Algorithm 2: Constant Step Riemannian-Nesterov(x0, h, β)
Parameters: initial point x0 ∈ X , step size h ≤ 1

L , shrinkage parameter β > 0
initialize v0 = x0

set α =

√
β2+4(1+β)µh−β

2 , γ =

√
β2+4(1+β)µh−β√
β2+4(1+β)µh+β

· µ, γ = (1 + β)γ

for k = 0, 1, . . . , T − 1 do
Choose yk = Expxk

(
αγ

γ+αµExp−1xk (vk)
)

Set xk+1 = Expyk (−hgradf(yk))

Set vk+1 = Expyk

(
(1−α)γ

γ Exp−1yk (vk)− α
γ gradf(yk)

)
end
Output: xT

We move forward to analyzing the convergence properties of these two algorithms in the fol-
lowing two sections. In Section 4, we first provide a novel generalization of Nesterov’s estimate
sequence to Riemannian manifolds, then show that if a specific tangent space distance comparison

5

AN ESTIMATE SEQUENCE FOR GEODESICALLY CONVEX OPTIMIZATION

inequality (8) always holds, then Algorithm 1 converges similarly as its vector space counterpart. In
Section 5, we establish sufficient conditions for this tangent space distance comparison inequality
to hold, specifically for Algorithm 2, and show that under these conditions Algorithm 2 converges
in O

(√
L
µ log(1/ε)

)
iterations, a faster rate than the O

(
L
µ log(1/ε)

)
complexity of Riemannian

gradient descent.

4. Analysis of a new estimate sequence

First introduced in (Nesterov, 1983), estimate sequences are central tools in establishing the accelera-
tion of Nesterov’s method. We first note a weaker notion of estimate sequences for functions whose
domain is not necessarily a vector space.

Definition 1 A pair of sequences {Φk(x) : X → R}∞k=0 and {λk}∞k=0 is called a (weak) estimate
sequence of a function f(x) : X → R, if λk → 0 and for all k ≥ 0 we have:

Φk(x
∗) ≤ (1− λk)f(x∗) + λkΦ0(x

∗). (1)

This definition relaxes the original definition proposed by Nesterov (2004, def. 2.2.1), in that the
latter requires Φk(x) ≤ (1 − λk)f(x) + λkΦ0(x) to hold for all x ∈ X , whereas our definition
only assumes it holds at the minimizer x∗. We note that similar observations have been made, e.g.,
in (Carmon et al., 2017). This relaxation is essential for sparing us from fiddling with the global
geometry of Riemannian manifolds.

However, there is one major obstacle in the analysis – Nesterov’s construction of quadratic
function sequence critically relies on the linear metric and does not generalize to nonlinear space.
An example is given in Figure 2, where we illustrate the distortion of distance (hence quadratic
functions) in tangent spaces. The key novelty in our construction is inequality (4) which allows
a broader family of estimate sequences, as well as inequality (8) which handles nonlinear metric
distortion and fulfills inequality (4). Before delving into the analysis of our specific construction, we
recall how to construct estimate sequences and note their use in the following two lemmas.

Lemma 2 Let us assume that:

1. f is geodesically L-smooth and µ-strongly geodesically convex on domain X .

2. Φ0(x) is an arbitrary function on X .

3. {yk}∞k=0 is an arbitrary sequence in X .

4. {αk}∞k=0: αk ∈ (0, 1),
∑∞

k=0 αk =∞.

5. λ0 = 1.

Then the pair of sequences {Φk(x)}∞k=0, {λk}∞k=0 which satisfy the following recursive rules:

λk+1 = (1− αk)λk, (2)

Φk+1(x) = (1− αk)Φk(x) + αk

[
f(yk) + 〈gradf(yk),Exp−1yk (x)〉+

µ

2
‖Exp−1yk (x)‖2

]
, (3)

Φk+1(x
∗) ≤ Φk+1(x

∗), (4)

is a (weak) estimate sequence.

6

AN ESTIMATE SEQUENCE FOR GEODESICALLY CONVEX OPTIMIZATION

The proof is similar to (Nesterov, 2004, Lemma 2.2.2) which we include in Appendix B.

Lemma 3 If for a (weak) estimate sequence {Φk(x) : X → R}∞k=0 and {λk}∞k=0 we can find a
sequence of iterates {xk}, such that

f(xk) ≤ Φ∗k ≡ min
x∈X

Φk(x),

then f(xk)− f(x∗) ≤ λk(Φ0(x
∗)− f(x∗))→ 0.

Proof By Definition 1 we have f(xk) ≤ Φ∗k ≤ Φk(x
∗) ≤ (1 − λk)f(x∗) + λkΦ0(x

∗). Hence
f(xk)− f(x∗) ≤ λk(Φ0(x

∗)− f(x∗))→ 0.

Lemma 3 immediately suggest the use of (weak) estimate sequences in establishing the convergence
and analyzing the convergence rate of certain iterative algorithms. The following lemma shows that a
weak estimate sequence exists for Algorithm 1. Later in Lemma 6, we prove that the sequence {xk}
in Algorithm 1 satisfies the requirements in Lemma 3 for our estimate sequence.

Lemma 4 Let Φ0(x) = Φ∗0 + γ0
2 ‖Exp−1y0 (x)‖2. Assume for all k ≥ 0, the sequences {γk}, {γk},

{vk}, {Φ∗k} and {αk} satisfy

γk+1 = (1− αk)γk + αkµ, (5)

vk+1 = Expyk

(
(1− αk)γk
γk+1

Exp−1yk (vk)−
αk
γk+1

gradf(yk)

)
(6)

Φ∗k+1 = (1− αk) Φ∗k + αkf(yk)−
α2
k

2γk+1

‖gradf(yk)‖2

+
αk(1− αk)γk

γk+1

(µ
2
‖Exp−1yk (vk)‖2 + 〈gradf(yk),Exp−1yk (vk)〉

)
, (7)

γk+1‖Exp−1yk+1
(x∗)− Exp−1yk+1

(vk+1)‖2 ≤ γk+1‖Exp−1yk (x∗)− Exp−1yk (vk+1)‖2, (8)

αk ∈ (0, 1),

∞∑
k=0

αk =∞, (9)

then the pair of sequence {Φk(x)}∞k=0 and {λk}∞k=0, defined by

Φk+1(x) = Φ∗k+1 +
γk+1

2
‖Exp−1yk+1

(x)− Exp−1yk+1
(vk+1)‖2, (10)

λ0 = 1, λk+1 = (1− αk)λk. (11)

is a (weak) estimate sequence.

Proof Recall the definition of Φk+1(x) in Equation (3). We claim that if Φk(x) = Φ∗k+
γk
2 ‖Exp−1yk (x)−

Exp−1yk (vk)‖2, then we have Φk+1(x) ≡ Φ∗k+1 +
γk+1

2 ‖Exp−1yk (x) − Exp−1yk (vk+1)‖2. The proof
of this claim requires a simple algebraic manipulation as is noted as Lemma 5. Now using the
assumption (8) we immediately get Φk+1(x

∗) ≤ Φk+1(x
∗). By Lemma 2 the proof is complete.

We verify the specific form of Φk+1(x) in Lemma 5, whose proof can be found in the Appendix C.

7

AN ESTIMATE SEQUENCE FOR GEODESICALLY CONVEX OPTIMIZATION

Lemma 5 For all k ≥ 0, if Φk(x) = Φ∗k + γk
2 ‖Exp−1yk (x) − Exp−1yk (vk)‖2, then with Φk+1

defined as in (3), γk+1 as in (5), vk+1 as in Algorithm 1 and Φ∗k+1 as in (7) we have Φk+1(x) ≡
Φ∗k+1 +

γk+1

2 ‖Exp−1yk (x)− Exp−1yk (vk+1)‖2.

The next lemma asserts that the iterates {xk} of Algorithm 1 satisfy the requirement that the function
values f(xk) are upper bounded by Φ∗k defined in our estimate sequence.

Lemma 6 Assume Φ∗0 = f(x0), and {Φ∗k} be defined as in (7) with {xk} and other terms defined
as in Algorithm 1. Then we have Φ∗k ≥ f(xk) for all k ≥ 0.

The proof is standard. We include it in Appendix D for completeness. Finally, we are ready to state
the following theorem on the convergence rate of Algorithm 1.

Theorem 7 (Convergence of Algorithm 1) For any given T ≥ 0, assume (8) is satisfied for all
0 ≤ k ≤ T , then Algorithm 1 generates a sequence {xk}∞k=0 such that

f(xT)− f(x∗) ≤ λT
(
f(x0)− f(x∗) +

γ0
2
‖Exp−1x0 (x∗)‖2

)
(12)

where λ0 = 1 and λk =
∏k−1
i=0 (1− αi).

Proof The proof is similar to (Nesterov, 2004, Theorem 2.2.1). We choose Φ0(x) = f(x0) +
γ0
2 ‖Exp−1y0 (x)‖2, hence Φ∗0 = f(x0). By Lemma 4 and Lemma 6, the assumptions in Lemma 3 hold.

It remains to use Lemma 3.

5. Local fast rate with a constant step scheme

By now we see that almost all the analysis of Nesterov’s generalizes, except that the assumption
in (8) is not necessarily satisfied. In vector space, the two expressions both reduce to x∗ − vk+1

and hence (8) trivially holds with γ = γ. On Riemannian manifolds, however, due to the nonlinear
Riemannian metric and the associated exponential maps, ‖Exp−1yk+1

(x∗) − Exp−1yk+1
(vk+1)‖ and

‖Exp−1yk (x∗) − Exp−1yk (vk+1)‖ in general do not equal (illustrated in Figure 2). Bounding the
difference between these two quantities points the way forward for our analysis, which is also our
main contribution in this section. We start with two lemmas comparing a geodesic triangle and the
triangle formed by the preimage of its vertices in the tangent space, in two constant curvature spaces:
hyperbolic space and the hypersphere.

Lemma 8 (bi-Lipschitzness of the exponential map in hyperbolic space) Let a, b, c be the side
lengths of a geodesic triangle in a hyperbolic space with constant sectional curvature −1, and A is
the angle between sides b and c. Furthermore, assume b ≤ 1

4 , c ≥ 0. Let4āb̄c̄ be the comparison
triangle in Euclidean space, with b̄ = b, c̄ = c, Ā = A, then

ā2 ≤ a2 ≤ (1 + 2b2)ā2. (13)

Proof The proof of this lemma contains technical details that deviate from our main focus; so we
defer them to the appendix. The first inequality is well known. To show the second inequality, we
have Lemma 13 and Lemma 14 (in Appendix) which in combination complete the proof.

We also state without proof that by the same techniques one can show the following result holds.

8

AN ESTIMATE SEQUENCE FOR GEODESICALLY CONVEX OPTIMIZATION

Exp−1yk (vk+1)

T
y
kM

yk

Exp−1yk (x∗)

x∗

vk+1

yk+1

vk+1

Exp−1yk+1
(vk+1)

yk+1 yk

Tyk+1M x∗

Exp−1yk+1
(x∗)

Figure 2: A schematic illustration of the geometric quantities in Theorem 10. Tangent spaces
of yk and yk+1 are shown in separate figures to reduce cluttering. Note that even on
a sphere (which has constant positive sectional curvature), d(x∗, vk+1), ‖Exp−1yk (x∗) −
Exp−1yk (vk+1)‖ and ‖Exp−1yk+1

(x∗)− Exp−1yk+1
(vk+1)‖ generally do not equal.

Lemma 9 (bi-Lipschitzness of the exponential map on hypersphere) Let a, b, c be the side lengths
of a geodesic triangle in a hypersphere with constant sectional curvature 1, and A is the angle
between sides b and c. Furthermore, assume b ≤ 1

4 , c ∈ [0, π2]. Let4āb̄c̄ be the comparison triangle
in Euclidean space, with b̄ = b, c̄ = c, Ā = A, then

a2 ≤ ā2 ≤ (1 + 2b2)a2. (14)

Albeit very much simplified, spaces of constant curvature are important objects to study, because
often their properties can be generalized to general Riemannian manifolds with bounded curvature,
specifically via the use of powerful comparison theorems in metric geometry (Burago et al., 2001).
In our case, we use these two lemmas to derive a tangent space distance comparison theorem for
Riemannian manifolds with bounded sectional curvature.

Theorem 10 (Multiplicative distortion of squared distance on Riemannian manifold)
Let x∗, vk+1, yk, yk+1 ∈ X be four points in a g-convex, uniquely geodesic set X where the
sectional curvature is bounded within [−K,K], for some nonnegative number K. Define bk+1 =

max
{
‖Exp−1yk (x∗)‖, ‖Exp−1yk+1

(x∗)‖
}

. Assume bk+1 ≤ 1
4
√
K

for K > 0 (otherwise bk+1 < ∞),
then we have

‖Exp−1yk+1
(x∗)− Exp−1yk+1

(vk+1)‖2 ≤ (1 + 5Kb2k+1)‖Exp−1yk (x∗)− Exp−1yk (vk+1)‖2. (15)

Proof The high level idea is to think of the tangent space distance distortion on Riemannian manifolds
of bounded curvature as a consequence of bi-Lipschitzness of the exponential map. Specifically,
note that4ykx∗vk+1 and4yk+1x

∗vk+1 are two geodesic triangles in X , whereas ‖Exp−1yk (x∗)−
Exp−1yk (vk+1)‖ and ‖Exp−1yk+1

(x∗)− Exp−1yk+1
(vk+1)‖ are side lengths of two comparison triangles

in vector space. Since X is of bounded sectional curvature, we can apply comparison theorems.
First, we consider bound on the distortion of squared distance in a Riemannian manifold with

constant curvature −K. Note that in this case, the hyperbolic law of cosines becomes

cosh(
√
Ka) = cosh(

√
Kb) cosh(

√
Kc)− sinh(

√
Kb) sinh(

√
Kc) cos(A),

9

AN ESTIMATE SEQUENCE FOR GEODESICALLY CONVEX OPTIMIZATION

which corresponds to the geodesic triangle in hyperbolic space with side lengths
√
Ka,
√
Kb,
√
Kc,

with the corresponding comparison triangle in Euclidean space having lengths
√
Kā,
√
Kb̄,
√
Kc̄.

Apply Lemma 8 we have (
√
Ka)2 ≤ (1+2(

√
Kb)2)(

√
Kā)2, i.e. a2 ≤ (1+2Kb2)ā2. Now consider

the geodesic triangle 4ykx∗vk+1. Let ã = ‖Exp−1vk+1
(x∗)‖, b = ‖Exp−1yk (vk+1)‖ ≤ bk+1, c =

‖Exp−1yk (x∗)‖, A = ∠x∗ykvk+1, so that ‖Exp−1yk (x∗) − Exp−1yk (vk+1)‖2 = b2 + c2 − 2bc cos(A).
By Toponogov’s comparison theorem (Burago et al., 2001), we have ã ≤ a hence

‖Exp−1vk+1
(x∗)‖2 ≤

(
1 + 2Kb2k+1

)
‖Exp−1yk (x∗)− Exp−1yk (vk+1)‖2. (16)

Similarly, using the spherical law of cosines for a space of constant curvature K

cos(
√
Ka) = cos(

√
Kb) cos(

√
Kc) + sin(

√
Kb) sin(

√
Kc) cos(A)

and Lemma 9 we can show ā2 ≤ (1 + 2Kb2)a2, where ā is the side length in Euclidean space
corresponding to a. Hence by our uniquely geodesic assumption and (Meyer, 1989, Theorem
2.2, Remark 7), with similar reasoning for the geodesic triangle 4yk+1x

∗vk+1, we have a ≤
‖Exp−1vk+1

(x∗)‖, so that

‖Exp−1yk+1
(x∗)− Exp−1yk+1

(vk+1)‖2 ≤
(
1 + 2Kb2k+1

)
a2 ≤

(
1 + 2Kb2k+1

)
‖Exp−1vk+1

(x∗)‖2. (17)

Finally, combining inequalities (16) and (17), and noting that (1 + 2Kb2k+1)
2 = 1 + 4Kb2k+1 +

(4Kb2k+1)Kb
2 ≤ 1 + 5Kb2k+1, the proof is complete.

Theorem 10 suggests that if bk+1 ≤ 1
4
√
K

, we could choose β ≥ 5Kb2k+1 and γ ≤ 1
1+βγ to

guarantee Φk+1(x
∗) ≤ Φk+1(x

∗). It then follows that the analysis holds for k-th step. Still, it is
unknown that under what conditions can we guarantee Φk+1(x

∗) ≤ Φk+1(x
∗) hold for all k ≥ 0,

which would lead to a convergence proof. We resolve this question in the next theorem.

Theorem 11 (Local fast convergence) With Assumptions 1, 2, 3, 4, denote D = 1
20
√
K

(µ
L

) 3
4 and

assume Bx∗,D := {x ∈ M : d(x, x∗) ≤ D} ⊆ X . If we set h = 1
L , β = 1

5

√
µ
L and x0 ∈ Bx∗,D,

then Algorithm 2 converges; moreover, we have

f(xk)− f(x∗) ≤
(

1− 9

10

√
µ

L

)k (
f(x0)− f(x∗) +

µ

2
‖Exp−1x0 (x∗)‖2

)
. (18)

Proof sketch. Recall that in Theorem 7 we already establish that if the tangent space distance
comparison inequality (8) holds, then the general Riemannian Nesterov iteration (Algorithm 1) and
hence its constant step size special case (Algorithm 2) converge with a guaranteed rate. By the
tangent space distance comparison theorem (Theorem 10), the comparison inequality should hold if
yk and x∗ are close enough. Indeed, we use induction to assert that with a good initialization, (8)
holds for each step. Specifically, for every k > 0, if yk is close to x∗ and the comparison inequality
holds until the (k − 1)-th step, then yk+1 is also close to x∗ and the comparison inequality holds
until the k-th step. We postpone the complete proof until Appendix F.

10

AN ESTIMATE SEQUENCE FOR GEODESICALLY CONVEX OPTIMIZATION

6. Discussion

In this work, we proposed a Riemannian generalization of the accelerated gradient algorithm and
developed its convergence and complexity analysis. For the first time (to the best of our knowledge),
we show gradient based algorithms on Riemannian manifolds can be accelerated, at least in a
neighborhood of the minimizer. Central to our analysis are the two main technical contributions of
our work: a new estimate sequence (Lemma 4), which relaxes the assumption of Nesterov’s original
construction and handles metric distortion on Riemannian manifolds; a tangent space distance
comparison theorem (Theorem 10), which provides sufficient conditions for bounding the metric
distortion and could be of interest for a broader range of problems on Riemannian manifolds.

Despite not matching the standard convex results, our result exposes the key difficulty of analyzing
Nesterov-style algorithms on Riemannian manifolds, an aspect missing in previous work. Critically,
the convergence analysis relies on bounding a new distortion term per each step. Furthermore, we
observe that the side length sequence d(yk, vk+1) can grow much greater than d(yk, x

∗), even if we
reduce the “step size” hk in Algorithm 1, defeating any attempt to control the distortion globally
by modifying the algorithm parameters. This is a benign feature in vector space analysis, since (8)
trivially holds nonetheless; however it poses a great difficulty for analysis in nonlinear space. Note
the stark contrast to (stochastic) gradient descent, where the step length can be effectively controlled
by reducing the step size, hence bounding the distortion terms globally (Zhang and Sra, 2016).

A topic of future interest is to study whether assumption (8) can be further relaxed, while
maintaining that overall the algorithm still converges. By bounding the squared distance distortion
in every step, our analysis provides guarantee for the worst-case scenario, which seems unlikely to
happen in practice. It would be interesting to conduct experiments to see how often (8) is violated
versus how often it is loose. It would also be interesting to construct some adversarial problem case
(if any) and study the complexity lower bound of gradient based Riemannian optimization, to see if
geodesically convex optimization is strictly more difficult than convex optimization. Generalizing
the current analysis to non-strongly g-convex functions is another interesting direction.

Acknowledgments

The authors thank the anonymous reviewers for helpful feedback. This work was supported in part
by NSF-IIS-1409802 and the DARPA Lagrange grant.

References
P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix manifolds. Princeton

University Press, 2009.

Naman Agarwal, Zeyuan Allen Zhu, Brian Bullins, Elad Hazan, and Tengyu Ma. Finding approximate local
minima for nonconvex optimization in linear time. CoRR, abs/1611.01146, 2016.

Zeyuan Allen-Zhu and Lorenzo Orecchia. Linear coupling: An ultimate unification of gradient and mirror
descent. arXiv:1407.1537, 2014.

Luigi Ambrosio, Nicola Gigli, Giuseppe Savaré, et al. Metric measure spaces with Riemannian Ricci curvature
bounded from below. Duke Mathematical Journal, 163(7):1405–1490, 2014.

Yossi Arjevani, Shai Shalev-Shwartz, and Ohad Shamir. On lower and upper bounds for smooth and strongly
convex optimization problems. arXiv:1503.06833, 2015.

11

AN ESTIMATE SEQUENCE FOR GEODESICALLY CONVEX OPTIMIZATION

Hedy Attouch, Jérôme Bolte, and Benar Fux Svaiter. Convergence of descent methods for semi-algebraic and
tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods.
Mathematical Programming, 137(1-2):91–129, 2013.

Miroslav Bacák. Convex analysis and optimization in Hadamard spaces, volume 22. Walter de Gruyter GmbH
& Co KG, 2014.

Nicolas Boumal, P-A Absil, and Coralia Cartis. Global rates of convergence for nonconvex optimization on
manifolds. arXiv:1605.08101, 2016a.

Nicolas Boumal, Vlad Voroninski, and Afonso Bandeira. The non-convex Burer-Monteiro approach works on
smooth semidefinite programs. In Advances in Neural Information Processing Systems, pages 2757–2765,
2016b.

Sébastien Bubeck, Yin Tat Lee, and Mohit Singh. A geometric alternative to Nesterov’s accelerated gradient
descent. arXiv:1506.08187, 2015.

Dmitri Burago, Yuri Burago, and Sergei Ivanov. A course in metric geometry, volume 33. American
Mathematical Society Providence, 2001.

Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Accelerated methods for non-convex
optimization. CoRR, abs/1611.00756, 2016.

Yair Carmon, Oliver Hinder, John C Duchi, and Aaron Sidford. " convex until proven guilty": Dimension-free
acceleration of gradient descent on non-convex functions. arXiv preprint arXiv:1705.02766, 2017.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient method with
support for non-strongly convex composite objectives. In Advances in Neural Information Processing
Systems, pages 1646–1654, 2014.

OP Ferreira and PR Oliveira. Proximal point algorithm on Riemannian manifolds. Optimization, 51(2):
257–270, 2002.

Nicolas Flammarion and Francis Bach. From averaging to acceleration, there is only a step-size. In Conference
on Learning Theory, pages 658–695, 2015.

Rong Ge, Chi Jin, and Yi Zheng. No spurious local minima in nonconvex low rank problems: A unified
geometric analysis. arXiv:1704.00708, 2017.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In
Advances in Neural Information Processing Systems, pages 315–323, 2013.

Jürgen Jost. Riemannian Geometry and Geometric Analysis. Springer Science & Business Media, 2011.

Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In Proceedings of the
sixteenth annual ACM symposium on Theory of computing, pages 302–311. ACM, 1984.

Hiroyuki Kasai, Hiroyuki Sato, and Bamdev Mishra. Riemannian stochastic variance reduced gradient on
Grassmann manifold. arXiv:1605.07367, 2016.

Kenji Kawaguchi. Deep learning without poor local minima. In Advances in Neural Information Processing
Systems, pages 586–594, 2016.

12

AN ESTIMATE SEQUENCE FOR GEODESICALLY CONVEX OPTIMIZATION

Leonid G Khachiyan. Polynomial algorithms in linear programming. USSR Computational Mathematics and
Mathematical Physics, 20(1):53–72, 1980.

Laurent Lessard, Benjamin Recht, and Andrew Packard. Analysis and design of optimization algorithms via
integral quadratic constraints. SIAM Journal on Optimization, 26(1):57–95, 2016.

Yuanyuan Liu, Fanhua Shang, James Cheng, Hong Cheng, and Licheng Jiao. Accelerated first-order methods
for geodesically convex optimization on Riemannian manifolds. In Advances in Neural Information
Processing Systems, pages 4875–4884, 2017.

Wolfgang Meyer. Toponogov’s theorem and applications. SMR, 404:9, 1989.

Bamdev Mishra and Rodolphe Sepulchre. Riemannian preconditioning. SIAM Journal on Optimization, 26(1):
635–660, 2016.

Arkadiı̆ Semenovich Nemirovsky and David Borisovich Yudin. Problem complexity and method efficiency in
optimization. Wiley, 1983.

Yurii Nesterov. A method of solving a convex programming problem with convergence rate O(1/k2). In
Soviet Mathematics Doklady, volume 27(2), pages 372–376, 1983.

Yurii Nesterov. Introductory lectures on convex optimization, volume 87. Springer Science & Business Media,
2004.

B.T. Polyak. Gradient methods for the minimisation of functionals. USSR Computational Mathematics and
Mathematical Physics, 3(4):864–878, January 1963.

Sashank J. Reddi, Ahmed Hefny, Suvrit Sra, Barnabás Póczos, and Alexander J. Smola. Stochastic variance
reduction for nonconvex optimization. In Proceedings of the 33nd International Conference on Machine
Learning, ICML, pages 314–323, 2016.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic average
gradient. arXiv:1309.2388, 2013.

Ohad Shamir. A Stochastic PCA and SVD Algorithm with an Exponential Convergence Rate. In International
Conference on Machine Learning (ICML-15), pages 144–152, 2015.

Weijie Su, Stephen Boyd, and Emmanuel Candes. A differential equation for modeling Nesterov’s accelerated
gradient method: Theory and insights. In Advances in Neural Information Processing Systems, pages
2510–2518, 2014.

Ju Sun, Qing Qu, and John Wright. Complete dictionary recovery over the sphere I: Overview and the
geometric picture. IEEE Transactions on Information Theory, 63(2):853–884, 2017.

Constantin Udriste. Convex functions and optimization methods on Riemannian manifolds, volume 297.
Springer Science & Business Media, 1994.

Andre Wibisono, Ashia C Wilson, and Michael I Jordan. A variational perspective on accelerated methods in
optimization. Proceedings of the National Academy of Sciences, page 201614734, 2016.

Hongyi Zhang and Suvrit Sra. First-order methods for geodesically convex optimization. In 29th Annual
Conference on Learning Theory (COLT), pages 1617–1638, 2016.

Hongyi Zhang, Sashank J. Reddi, and Suvrit Sra. Riemannian SVRG: Fast stochastic optimization on
Riemannian manifolds. In Advances in Neural Information Processing Systems 29, 2016.

13

AN ESTIMATE SEQUENCE FOR GEODESICALLY CONVEX OPTIMIZATION

Appendix A. Constant step scheme

Lemma 12 Pick βk ≡ β > 0. If in Algorithm 1 we set

hk ≡ h,∀k ≥ 0, γ0 ≡ γ =

√
β2 + 4(1 + β)µh− β√
β2 + 4(1 + β)µh+ β

· µ,

then we have

αk ≡ α =

√
β2 + 4(1 + β)µh− β

2
, γk+1 ≡ (1 + β)γ, γk+1 ≡ γ, ∀k ≥ 0. (19)

Proof Suppose that γk = γ, then from Algorithm 1 we have αk is the positive root of

α2
k − (µ− γ)hαk − γh = 0.

Also note

µ− γ =
βα

(1 + β)h
, and γ =

α2

(1 + β)h
, (20)

hence

αk =
(µ− γ)h+

√
(µ− γ)2h2 + 4γh

2

=
βα

2(1 + β)
+

1

2

√
β2α2

(1 + β)2
+

4α2

1 + β

= α

Furthermore, we have

γk+1 = (1− αk)γk + αkµ = (1− α)γ + αµ

= γ + (µ− γ)α = γ + β
α2

(1 + β)h

= (1 + β)γ

and γk+1 = 1
1+βγk+1 = γ. Since γk = γ holds for k = 0, by induction the proof is complete.

Appendix B. Proof of Lemma 2

Proof The proof is similar to (Nesterov, 2004, Lemma 2.2.2) except that we introduce Φk+1 as
an intermediate step in constructing Φk+1(x). In fact, to start we have Φ0(x) ≤ (1 − λ0)f(x) +
λ0Φ0(x) ≡ Φ0(x). Moreover, assume (1) holds for some k ≥ 0, i.e. Φk(x

∗)−f(x∗) ≤ λk(Φ0(x
∗)−

f(x∗)), then

Φk+1(x
∗)− f(x∗) ≤ Φk+1(x

∗)− f(x∗)

≤ (1− αk)Φk(x
∗) + αkf(x∗)− f(x∗)

= (1− αk)(Φk(x
∗)− f(x∗))

≤ (1− αk)λk(Φ0(x
∗)− f(x∗))

= λk+1(Φ0(x
∗)− f(x∗)),

14

AN ESTIMATE SEQUENCE FOR GEODESICALLY CONVEX OPTIMIZATION

where the first inequality is due to our construction of Φk+1(x) in (4), the second inequality due to
strong convexity of f . By induction we have Φk(x

∗) ≤ (1− λk)f(x∗) + λkΦ0(x
∗) for all k ≥ 0. It

remains to note that condition 4 ensures λk → 0.

Appendix C. Proof of Lemma 5

Proof We prove this lemma by completing the square:

Φk+1(x) = (1− αk)
(

Φ∗k +
γk
2
‖Exp−1yk (x)− Exp−1yk (vk)‖2

)
+ αk

(
f(yk) + 〈gradf(yk),Exp−1yk (x)〉+

µ

2
‖Exp−1yk (x)‖2

)
=
γk+1

2
‖Exp−1yk (x)‖2 +

〈
αkgradf(yk)− (1− αk) γkExp−1yk (vk),Exp−1yk (x)

〉
+ (1− αk)

(
Φ∗k +

γk
2
‖Exp−1yk (vk)‖2

)
+ αkf(yk)

=
γk+1

2

∥∥∥∥Exp−1yk (x)−
(

(1− αk)γk
γk+1

Exp−1yk (vk)−
αk
γk+1

gradf(yk)

)∥∥∥∥2 + Φ∗k+1

= Φ∗k+1 +
γk+1

2

∥∥Exp−1yk (x)− Exp−1yk (vk+1)
∥∥2

where the third equality is by completing the square with respect to Exp−1yk (x) and use the definition
of Φ∗k+1 in (7), the last equality is by the definition of yk in Algorithm 1, and Φk+1(x) is minimized

if and only if x = Expyk

(
(1−αk)γk
γk+1

Exp−1yk (vk)− αk
γk+1

gradf(yk)
)

= vk+1.

Appendix D. Proof of Lemma 6

Proof For k = 0, Φ∗k ≥ f(xk) trivially holds. Assume for iteration k we have Φ∗k ≥ f(xk), then
from definition (7) we have

Φ∗k+1 ≥ (1− αk) f(xk) + αkf(yk)−
α2
k

2γk+1

‖gradf(yk)‖2 +
αk(1− αk)γk

γk+1

〈gradf(yk),Exp−1yk (vk)〉

≥ f(yk)−
α2
k

2γk+1

‖gradf(yk)‖2 + (1− αk)
〈

gradf(yk),
αkγk
γk+1

Exp−1yk (vk) + Exp−1yk (xk)

〉
= f(yk)−

α2
k

2γk+1

‖gradf(yk)‖2

= f(yk)−
hk
2
‖gradf(yk)‖2,

15

AN ESTIMATE SEQUENCE FOR GEODESICALLY CONVEX OPTIMIZATION

where the first inequality is due to Φ∗k ≥ f(xk), the second due to f(xk) ≥ f(yk)+〈gradf(yk),Exp−1yk (xk)〉
by g-convexity, and the equalities follow from Algorithm 1. On the other hand, we have the bound

f(xk+1) ≤ f(yk) + 〈gradf(yk),Exp−1yk (xk+1)〉+
L

2
‖Exp−1yk (xk+1)‖2

= f(yk)− hk
(

1− Lhk
2

)
‖gradf(yk)‖2

≤ f(yk)−
hk
2
‖gradf(yk)‖2 ≤ Φ∗k+1,

where the first inequality is by the L-smoothness assumption, the equality from the definition of
xk+1 in Algorithm 1 Line 2, and the second inequality from the assumption that hk ≤ 1

L . Hence by
induction, Φ∗k ≥ f(xk) for all k ≥ 0.

Appendix E. Proof of Lemma 8

Lemma 13 Let a, b, c be the side lengths of a geodesic triangle in a hyperbolic space with constant
sectional curvature−1, andA is the angle between sides b and c. Furthermore, assume b ≤ 1

4 , c ≥
1
2 .

Let4āb̄c̄ be the comparison triangle in Euclidean space, with b̄ = b, c̄ = c, Ā = A, then

a2 ≤ (1 + 2b2)ā2 (21)

Proof We first apply (Zhang and Sra, 2016, Lemma 5) with κ = −1 to get

a2 ≤ c

tanh(c)
b2 + c2 − 2bc cos(A).

We also have
ā2 = b2 + c2 − 2bc cos(A).

Hence we get

a2 − ā2 ≤
(

c

tanh(c)
− 1

)
b2.

It remains to note that for b ≤ 1
4 , c ≥

1
2 ,

2a2 ≥ 2(c− b)2 ≥ 2

(
c− 1

4

)
≥ c

tanh(1/2)
− 1 ≥ c

tanh(c)
− 1,

which implies a2 ≤ (1 + 2b2)ā2.

Lemma 14 Let a, b, c be the side lengths of a geodesic triangle in a hyperbolic space with constant
sectional curvature−1, andA is the angle between sides b and c. Furthermore, assume b ≤ 1

4 , c ≤
1
2 .

Let4āb̄c̄ be the comparison triangle in Euclidean space, with b̄ = b, c̄ = c, Ā = A, then

a2 ≤ (1 + b2)ā2 (22)

16

AN ESTIMATE SEQUENCE FOR GEODESICALLY CONVEX OPTIMIZATION

Proof Recall the law of cosines in Euclidean space and hyperbolic space:

ā2 = b̄2 + c̄2 − 2b̄c̄ cos Ā, (23)

cosh a = cosh b cosh c− sinh b sinh c cosA, (24)

and the Taylor series expansion:

coshx =

∞∑
n=0

1

(2n)!
x2n, sinhx =

∞∑
n=0

1

(2n+ 1)!
x2n+1. (25)

We let b̄ = b, c̄ = c, Ā = A, from Eq. (23) we have

cosh ā = cosh
(√

b2 + c2 − 2bc cosA
)

(26)

It is widely known that ā ≤ a. Now we use Eq. (25) to expand the RHS of Eq. (24) and Eq. (26),
and compare the coefficients for each corresponding term bicj in the two series. Without loss of
generality, we assume i ≥ j; the results for condition i < j can be easily obtained by the symmetry
of b, c. We expand Eq. (24) as

cosh a =

(∞∑
n=0

1

(2n)!
b2n

)(∞∑
n=0

1

(2n)!
c2n

)

−

(∞∑
n=0

1

(2n+ 1)!
b2n+1

)(∞∑
n=0

1

(2n+ 1)!
c2n+1

)
cosA

where the coefficient α(i, j) of bicj is

α(i, j) =

1

(2p)!(2q)! , if p, q ∈ N and i = 2p, j = 2q,
cosA

(2p+1)!(2q+1)! , if p, q ∈ N and i = 2p+ 1, j = 2q + 1,

0, otherwise.
(27)

Similarly, we expand Eq. (26) as

cosh ā =

∞∑
n=0

1

(2n)!

(
b2 + c2 − 2bc cosA

)n
where the coefficient ᾱ(i, j) of bicj is

ᾱ(i, j) =

∑q

k=0 (p+q
p−k,q−k,2k)(2 cosA)

2k

(2p+2q)! , if p, q ∈ N and i = 2p, j = 2q,∑q
k=0 (p+q+1

p−k,q−k,2k+1)(2 cosA)
2k+1

(2p+2q+2)! , if p, q ∈ N and i = 2p+ 1, j = 2q + 1,

0, otherwise.

(28)

17

AN ESTIMATE SEQUENCE FOR GEODESICALLY CONVEX OPTIMIZATION

We hence calculate their absolute difference

|α(i, j)− ᾱ(i, j)|

=

∑q

k=0 (p+q
p−k,q−k,2k)2

2k(1−(cosA)2k)
(2p+2q)! , if p, q ∈ N and i = 2p, j = 2q,∑q

k=0 (p+q+1
p−k,q−k,2k+1)2

2k+1(1−(cosA)2k)| cosA|
(2p+2q+2)! , if p, q ∈ N and i = 2p+ 1, j = 2q + 1,

0, otherwise.

≤

∑q

k=0 (p+q
p−k,q−k,2k)2

2kk

(2p+2q)! sin2A, if p, q ∈ N and i = 2p, j = 2q,∑q
k=0 (p+q+1

p−k,q−k,2k+1)2
2k+1k

(2p+2q+2)! sin2A, if p, q ∈ N and i = 2p+ 1, j = 2q + 1,

0, otherwise.

≤

q
∑q

k=0 (p+q
p−k,q−k,2k)2

2k

(2p+2q)! sin2A, if p, q ∈ N and i = 2p, j = 2q,
q
∑q

k=0 (p+q+1
p−k,q−k,2k+1)2

2k+1

(2p+2q+2)! sin2A, if p, q ∈ N and i = 2p+ 1, j = 2q + 1,

0, otherwise.

=

q

(2p)!(2q)! sin2A, if p, q ∈ N and i = 2p, j = 2q,
q

(2p+1)!(2q+1)! sin2A, if p, q ∈ N and i = 2p+ 1, j = 2q + 1,

0, otherwise.
(29)

where the two equalities are due to Lemma 15, the first inequality due to the following fact

1− (cosA)2m =
(
1− (cosA)2

) (
1 + (cosA)2 + (cosA)4 + · · ·+ (cosA)2(m−1)

)
= sin2A

(
1 + (cosA)2 + (cosA)4 + · · ·+ (cosA)2(m−1)

)
≤ m sin2A

By setting q = 0, we see that in the Taylor series of cosh a− cosh ā, any term that does not include
a factor of c2 cancels out. By the symmetry of b, c, any term that does not include a factor of b2

also cancels out. The term with the lowest order of power is thus 1
4b

2c2 sin2A. Since we have
c ≤ 1

2 , b ≤
1
4 , the terms |α(i, j)− ᾱ(i, j)|bicj must satisfy

∑
i,j

|α(i, j)− ᾱ(i, j)|bicj ≤

1

4
+

∑
i+j=2k,
i,j≥2,k≥3

i+ j

2(i!)(j!)

1

22k−4

 b2c2 sin2A

≤

1

4
+
∑
k≥3

1

22k−3

 b2c2 sin2A ≤ 1

2
b2c2 sin2A

=
1

2
b2ā2 sin2C ≤ 1

2
ā2b2

where the first inequality follows from Eq. (29) and is due to min(p, q) ≤ i+j
2 , the second inequality

is due to
∑

i+j=2k
i≥2,j≥2

i+j
(i!)(j!) ≤

(2k)2

(k!)2
≤ 1 for k ≥ 3 and the last equality is due to Euclidean law of

sines. We thus get

cosh a− cosh ā ≤
∑
i,j

|α(i, j)− ᾱ(i, j)|bicj sin2A ≤ 1

2
b2ā2 (30)

18

AN ESTIMATE SEQUENCE FOR GEODESICALLY CONVEX OPTIMIZATION

On the other hand, from the Taylor series of cosh we have

cosh a− cosh ā =
∞∑
n=0

a2n − ā2n

(2n)!
≥ 1

2
(a2 − ā2),

hence a2 ≤ (1 + b2)ā2.

Lemma 15 (Two multinomial identities) For p, q ∈ N, p ≥ q, we have

(2p+ 2q)!

(2p)!(2q)!
=

q∑
k=0

(
p+ q

p− k, q − k, 2k

)
22k (31)

(2p+ 2q + 2)!

(2p+ 1)!(2q + 1)!
=

q∑
k=0

(
p+ q + 1

p− k, q − k, 2k + 1

)
22k+1 (32)

Proof We prove the identities by showing that the LHS and RHS correspond to two equivalent ways
of counting the same quantity. For the first identity, consider a set of 2p + 2q balls bi each with a
unique index i = 1, . . . , 2p+ 2q, we count how many ways we can put them into boxes B1 and B2,
such that B1 has 2p balls and B2 has 2q balls. The LHS is obviously a correct count. To get the RHS,
note that we can first put balls in pairs, then decide what to do with each pair. Specifically, there are
p+ q pairs {b2i−1, b2i}, and we can partition the counts by the number of pairs of which we put one
of the two balls in B2. Note that this number must be even. If there are 2k such pairs, which gives us
2k balls in B2, we still need to choose 2(q − k) pairs of which both balls are put in B2, and the left
are p− k pairs of which both balls are put in B1. The total number of counts given k is thus(

p+ q

p− k, q − k, 2k

)
22k

because we can choose either ball in each of the 2k pairs leading to 22k possible choices. Summing
over k we get the RHS. Hence the LHS and the RHS equal. The second identity can be proved with
essentially the same argument.

Appendix F. Proof of Theorem 11

Proof The base case. First we verify that y0, y1 is sufficiently close to x∗ so that the comparison
inequality (8) holds at step k = 0. In fact, since y0 = x0 by construction, we have

‖Exp−1y0 (x∗)‖ = ‖Exp−1x0 (x∗)‖ ≤ 1

4
√
K
, 5K‖Exp−1y0 (x∗)‖2 ≤ 1

80

(µ
L

) 3
2 ≤ β. (33)

To bound ‖Exp−1y1 (x∗)‖, observe that y1 is on the geodesic between x1 and v1. So first we bound
‖Exp−1x1 (x∗)‖ and ‖Exp−1v1 (x∗)‖. Bound on ‖Exp−1x1 (x∗)‖ comes from strong g-convexity:

‖Exp−1x1 (x∗)‖2 ≤ 2

µ
(f(x1)− f(x∗)) ≤ 2

µ
(f(x0)− f(x∗)) +

γ

µ
‖Exp−1x0 (x∗)‖2

≤ L+ γ

µ
‖Exp−1x0 (x∗)‖2,

19

AN ESTIMATE SEQUENCE FOR GEODESICALLY CONVEX OPTIMIZATION

whereas bound on ‖Exp−1v1 (x∗)‖ utilizes the tangent space distance comparison theorem. First, from
the definition of Φ1 we have

‖Exp−1y0 (x∗)− Exp−1y0 (v1)‖2 =
2

γ
(Φ1(x

∗)− Φ∗1) ≤
2

γ
(Φ0(x

∗)− f(x∗)) ≤ L+ γ

γ
‖Exp−1x0 (x∗)‖2

Then note that (33) implies that the assumption in Theorem 10 is satisfied when k = 0, thus we have

‖Exp−1v1 (x∗)‖2 ≤ (1 + β)‖Exp−1y0 (x∗)− Exp−1y0 (v1)‖2 ≤
2(L+ γ)

γ
‖Exp−1x0 (x∗)‖2.

Together we have

‖Exp−1y1 (x∗)‖ ≤ ‖Exp−1x1 (x∗)‖+
αγ

γ + αµ
‖Exp−1x1 (v1)‖

≤ ‖Exp−1x1 (x∗)‖+
αγ

γ + αµ

(
‖Exp−1x1 (x∗)‖+ ‖Exp−1v1 (x∗)‖

)
≤

√
L+ γ

µ
‖Exp−1x0 (x∗)‖+

αγ

γ + αµ

(√
L+ γ

µ
+

√
2(L+ γ)

µ

)
‖Exp−1x0 (x∗)‖

≤

(
1 +

1 +
√

2

2

)√
L+ γ

µ
‖Exp−1x0 (x∗)‖

≤ 1

10
√
K

(µ
L

) 1
4 ≤ 1

4
√
K

(34)

which also implies

5K‖Exp−1y1 (x∗)‖2 ≤ 1

20

√
µ

L
≤ β (35)

By (34), (35) and Theorem 10 it is hence guaranteed that

γ‖Exp−1y1 (x∗)− Exp−1y1 (v1)‖2 ≤ γ‖Exp−1y0 (x∗)− Exp−1y0 (v1)‖2.

The inductive step. Assume that for i = 0, . . . , k − 1, (8) hold simultaneously, i.e.:

γ‖Exp−1yi+1
(x∗)− Exp−1yi+1

(vi+1)‖2 ≤ γ‖Exp−1yi (x∗)− Exp−1yi (vi+1)‖2, ∀i = 0, . . . , k − 1

and also that ‖Exp−1yk (x∗)‖ ≤ 1
10
√
K

(µ
L

) 1
4 . To bound ‖Exp−1yk+1

(x∗)‖, observe that yk+1 is on the

geodesic between xk+1 and vk+1. So first we bound ‖Exp−1xk+1
(x∗)‖ and ‖Exp−1vk+1

(x∗)‖. Note that
due to the sequential nature of the algorithm, statements about any step only depend on its previous
steps, but not any step afterwards. Since (8) hold for steps i = 0, . . . , k − 1, the analysis in the
previous section already applies for steps i = 0, . . . , k− 1. Therefore by Theorem 7 and the proof of
Lemma 6 we know

f(x∗) ≤ f(xk+1) ≤ Φ∗k+1 ≤ Φk+1(x
∗) ≤ f(x∗) + (1− α)k+1(Φ0(x

∗)− f(x∗))

≤ Φ0(x
∗) = f(x0) +

γ

2
‖Exp−1x0 (x∗)‖2

20

AN ESTIMATE SEQUENCE FOR GEODESICALLY CONVEX OPTIMIZATION

Hence we get f(xk+1) − f(x∗) ≤ Φ0(x
∗) − f(x∗) and γ

2‖Exp−1yk (x∗) − Exp−1yk (vk+1)‖2 ≡
Φk+1(x

∗)− Φ∗k+1 ≤ Φ0(x
∗)− f(x∗). Bound on ‖Exp−1xk+1

(x∗)‖ comes from strong g-convexity:

‖Exp−1xk+1
(x∗)‖2 ≤ 2

µ
(f(xk+1)− f(x∗)) ≤ 2

µ
(f(x0)− f(x∗)) +

γ

µ
‖Exp−1x0 (x∗)‖2

≤ L+ γ

µ
‖Exp−1x0 (x∗)‖2,

whereas bound on ‖Exp−1vk+1
(x∗)‖ utilizes the tangent space distance comparison theorem. First,

from the definition of Φk+1 we have

‖Exp−1yk (x∗)−Exp−1yk (vk+1)‖2 =
2

γ
(Φk+1(x

∗)−Φ∗k+1) ≤
2

γ
(Φ0(x

∗)−f(x∗)) ≤ L+ γ

γ
‖Exp−1x0 (x∗)‖2

Then note that the inductive hypothesis implies that

‖Exp−1vk+1
(x∗)‖2 ≤ (1 + β)‖Exp−1yk (x∗)− Exp−1yk (vk+1)‖2 ≤

2(L+ γ)

γ
‖Exp−1x0 (x∗)‖2

Together we have

‖Exp−1yk+1
(x∗)‖ ≤ ‖Exp−1xk+1

(x∗)‖+
αγ

γ + αµ
‖Exp−1xk+1

(vk+1)‖

≤ ‖Exp−1xk+1
(x∗)‖+

αγ

γ + αµ

(
‖Exp−1xk+1

(x∗)‖+ ‖Exp−1vk+1
(x∗)‖

)
≤

√
L+ γ

µ
‖Exp−1x0 (x∗)‖+

αγ

γ + αµ

(√
L+ γ

µ
+

√
2(L+ γ)

µ

)
‖Exp−1x0 (x∗)‖

≤

(
1 +

1 +
√

2

2

)√
L+ γ

µ
‖Exp−1x0 (x∗)‖

≤ 1

10
√
K

(µ
L

) 1
4 ≤ 1

4
√
K

which also implies that

5K‖Exp−1yk+1
(x∗)‖2 ≤ 1

20

√
µ

L
≤ β

By the two lines of equations above and Theorem 10 it is guaranteed that ‖Exp−1yk+1
(x∗)‖ ≤

1
10
√
K

(µ
L

) 1
4 and also

γ‖Exp−1yk+1
(x∗)− Exp−1yk+1

(vk+1)‖2 ≤ γ‖Exp−1yk (x∗)− Exp−1yk (vk+1)‖2.

i.e. (8) hold for i = 0, . . . , k. This concludes the inductive step.
By induction, (8) hold for all k ≥ 0, hence by Theorem 7, Algorithm 2 converges, with

αi ≡ α =

√
β2 + 4(1 + β)µh− β

2
=

√
µh

2

(√
1

25
+ 4

(
1 +

√
µh

5

)
− 1

5

)
≥ 9

10

√
µ

L
.

21

ar
X

iv
:1

90
7.

03
92

2v
2

 [
cs

.L
G

]
 2

9
O

ct
 2

01
9

Are deep ResNets provably

better than linear predictors?

Chulhee Yun
MIT

Cambridge, MA 02139
chulheey@mit.edu

Suvrit Sra
MIT

Cambridge, MA 02139
suvrit@mit.edu

Ali Jadbabaie
MIT

Cambridge, MA 02139
jadbabai@mit.edu

Abstract

Recent results in the literature indicate that a residual network (ResNet) composed
of a single residual block outperforms linear predictors, in the sense that all local
minima in its optimization landscape are at least as good as the best linear pre-
dictor. However, these results are limited to a single residual block (i.e., shallow
ResNets), instead of the deep ResNets composed of multiple residual blocks. We
take a step towards extending this result to deep ResNets. We start by two motivat-
ing examples. First, we show that there exist datasets for which all local minima
of a fully-connected ReLU network are no better than the best linear predictor,
whereas a ResNet has strictly better local minima. Second, we show that even at
the global minimum, the representation obtained from the residual block outputs
of a 2-block ResNet do not necessarily improve monotonically over subsequent
blocks, which highlights a fundamental difficulty in analyzing deep ResNets. Our
main theorem on deep ResNets shows under simple geometric conditions that,
any critical point in the optimization landscape is either (i) at least as good as the
best linear predictor; or (ii) the Hessian at this critical point has a strictly negative
eigenvalue. Notably, our theorem shows that a chain of multiple skip-connections
can improve the optimization landscape, whereas existing results study direct skip-
connections to the last hidden layer or output layer. Finally, we complement our re-
sults by showing benign properties of the “near-identity regions” of deep ResNets,
showing depth-independent upper bounds for the risk attained at critical points as
well as the Rademacher complexity.

1 Introduction

Empirical success of deep neural network models has sparked a huge interest in the theory of deep
learning, but a concrete theoretical understanding of deep learning still remains elusive. From the
optimization point of view, the biggest mystery is why gradient-based methods find close-to-global
solutions despite nonconvexity of the empirical risk.

There have been several attempts to explain this phenomenon by studying the loss surface of the
risk. The idea is to find benign properties of the empirical or population risk that make optimization
easier. So far, the theoretical investigation as been mostly focused on vanilla fully-connected neural
networks [1, 8, 10, 11, 18, 20, 22–29, 31]. For example, Kawaguchi [8] proved that “local minima
are global minima” property holds for squared error empirical risk of linear neural networks (i.e.,
no nonlinear activation function at hidden nodes). Other results on deep linear neural networks
[10, 27, 29, 31] have extended [8]. However, it was later theoretically and empirically shown that
“local minima are global minima” property no longer holds in nonlinear neural networks [20, 29] for
general datasets and activations.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

http://arxiv.org/abs/1907.03922v2

Moving beyond fully-connected networks, there is an increasing body of analysis dedicated to study-
ing residual networks (ResNets). A ResNet [6, 7] is a special type of neural network that gained
widespread popularity in practice. While fully-connected neural networks or convolutional neural
networks can be viewed as a composition of nonlinear layers x 7→ Φ(x), a ResNet consists of a
series of residual blocks of the form x 7→ g(x + Φ(x)), where Φ(x) is some feedforward neural
network and g(·) is usually taken to be identity [7]. Given these identity skip-connections, the output
of a residual block is a feedforward network Φ(x) plus the input x itself, which is different from
fully-connected neural networks. The motivation for this architecture is to let the network learn only
the residual of the input.

ResNets are very popular in practice, and it has been argued that they have benign loss landscapes
that make optimization easier [12]. Recently, Shamir [21] showed that ResNets composed of a single
residual block have “good” local minima, in the sense that any local minimum in the loss surface
attains a risk value at least as good as the one attained by the best linear predictor. A subsequent
result [9] extended this result to non-scalar outputs, with weaker assumptions on the loss function.
However, these existing results are limited to a single residual block, instead of deep ResNets formed
by composing multiple residual blocks. In light of these results, a natural question arises: can these
single-block results be extended to multi-block ResNets?

There are also another line of works that consider network architectures with “skip-connections.”
Liang et al. [13, 14] consider networks of the form x 7→ fS(x) + fD(x) where fS(x) is a “shortcut”
network with one or a few hidden nodes, and they show that under some conditions this shortcut
network eliminates spurious local minima. Nguyen et al. [19] consider skip-connections from hid-
den nodes to the output layer, and show that if the number of skip-connections to output layer is
greater than or equal to the dataset size, the loss landscape has no spurious local valleys. However,
skip-connections in these results are all connections directly to output, so it remains unclear whether
a chain of multiple skip-connections can improve the loss landscape.

There is also another line of theoretical results studying what happens in the near-identity regions
of ResNets, i.e., when the residual part Φ is “small” for all layers. Hardt and Ma [5] proved that for
linear ResNets x 7→ (I + AL) · · · (I + A1)x, any critical point in the region {‖Al‖ < 1 for all l}
is a global minimum. The authors also proved that any matrix R with positive determinant can be
decomposed into products of I + Al, where ‖Al‖ = O(1/L). Bartlett et al. [3] extended this re-
sult to nonlinear function space, and showed similar expressive power and optimization properties
of near-identity regions; however, their results are on function spaces, so they don’t imply that the
same properties hold for parameter spaces. In addition, an empirical work by Zhang et al. [30]
showed that initializing ResNets in near-identity regions also leads to good empirical performance.
For the residual part Φ of each block, they initialize the last layer of Φ at zero, and scale the ini-
tialization of the other layers by a factor inversely proportional to depth L. This means that each
Φ at initialization is zero, hence the network starts in the near-identity region. Their experiments
demonstrate that ResNets can be stably trained without batch normalization, and trained networks
match the generalization performance of the state-of-the-art models. These results thus suggest that
understanding optimization and generalization of ResNets in near-identity regions is a meaningful
and important question.

1.1 Summary of contributions

This paper takes a step towards answering the questions above. In Section 3, we start with two
motivating examples showing the advantage of ResNets and the difficulty of deep ResNet analysis:

◮ The first example shows that there exists a family of datasets on which the squared error loss
attained by a fully-connected neural network is at best the linear least squares model, whereas a
ResNet attains a strictly better loss than the linear model. This highlights that the guarantee on
the risk value of local minima is indeed special to residual networks.

◮ In the single-block case [21], we have seen that the “representation” obtained at the residual
block output x + Φ(x) has an improved linear fit compared to the raw input x. Then, in multi-
block ResNets, do the representations at residual block outputs improve monotonically over
subsequent blocks as we proceed to the output layer? The second example shows that it is not
necessarily the case; we give an example where the linear fit with representations by the output
of residual blocks does not monotonically improve over blocks. This highlights the difficulty of
ResNet analysis, and shows that [21] cannot be directly extended to multi-block ResNets.

2

Using new techniques, Section 4 extends the results in [21] to deeper ResNets, under some simple
geometric conditions on the parameters.

◮ We consider a deep ResNet model that subsumes [21] as a special case, under the same as-
sumptions on the loss function. We prove that if two geometric conditions called “representation
coverage” and “parameter coverage” are satisfied, then a critical point of the loss surface satisfies
at least one of the following: 1) the risk value is no greater than the best linear predictor, 2) the
Hessian at the critical point has a strictly negative eigenvalue. We also provide an architectural
sufficient condition for the parameter coverage condition to hold.

Finally, Section 5 shows benign properties of deep ResNets in the near-identity regions, in both
optimization and generalization aspects. Specifically,

◮ In the absence of the geometric conditions above, we prove an upper bound on the risk values
at critical points. The upper bound shows that if each residual block is close to identity, then
the risk values at its critical points are not too far from the risk value of the best linear model.
Crucially, we establish that the distortion over the linear model is independent of network size,
as long as each blocks are near-identity.

◮ We provide an upper bound on the Rademacher complexity of deep ResNets. Again, we observe
that in the near-identity region, the upper bound is independent of network size, which is difficult
to achieve for fully-connected networks [4].

2 Preliminaries

In this section, we briefly introduce the ResNet architecture and summarize our notation.

Given positive integers a and b, where a < b, [a] denotes the set {1, 2, . . . , a} and [a : b] denote
{a, a + 1, . . . , b − 1, b}. Given a vector x, ‖x‖ denotes its Euclidean norm. For a matrix M , by
‖M‖ and ‖M‖F we mean its spectral norm and Frobenius norm, respectively. Let λmin(M) be the
minimum eigenvalue of a symmetric matrix M . Let col(M) be the column space of a matrix M .

Let x ∈ Rdx be the input vector. We consider an L-block ResNet fθ(·) with a linear output layer:

h0(x) = x,

hl(x) = hl−1(x) + Φl
θ(hl−1(x)), l = 1, . . . , L,

fθ(x) = w
ThL(x).

We use bold-cased symbols to denote network parameter vectors/matrices, and θ to denote the col-
lection of all parameters. As mentioned above, the output of l-th residual block is the input hl−1(x)
plus the output of the “residual part” Φl

θ
(hl−1(x)), which is some feedforward neural network. The

specific structure of Φl
θ
: Rdx 7→ Rdx considered will vary depending on the theorems. After L such

residual blocks, there is a linear fully-connected layer parametrized by w ∈ Rdx , and the output of
the ResNet is scalar-valued.

Using ResNets, we are interested in training the network under some distribution P of the input and
label pairs (x, y) ∼ P , with the goal of minimizing the loss ℓ(fθ(x); y). More concretely, the risk
function R(θ) we want to minimize is

R(θ) := E(x,y)∼P [ℓ(fθ(x); y)] ,

where ℓ(p; y) : R 7→ R is the loss function parametrized by y. If P is an empirical distribution by a
given set of training examples, this reduces to an empirical risk minimization problem. Let ℓ′(·; y)
and ℓ′′(·; y) be first and second derivatives of ℓ, whenever they exist.

We will state our results by comparing against the risk achieved by linear predictors. Thus, let Rlin

be the risk value achieved by the best linear predictor:

Rlin := inf
t∈Rdx

E(x,y)∼P
[
ℓ(tTx; y)

]
.

3 Motivating examples

Before presenting the main theoretical results, we present two motivating examples. The first one
shows the advantage of ResNets over fully-connected networks, and the next one highlights that deep
ResNets are difficult to analyze and techniques from previous works cannot be directly applied.

3

Table 1: Lower bounds on R1(θ
∗
1), if w∗

1 > 0

−b∗1/w
∗
1 in: Error by constant part Error by linear part Lower bound

(−∞, 0) 0 8ρ2/15 8ρ2/15
[0, 1) 0 8ρ2/15 8ρ2/15
[1, 2) 1/12 7ρ2/15 7ρ2/15 + 1/12
[2, 3) 4ρ2/9 + 2ρ/3 + 1/3 ρ2/9 5ρ2/9 + 2ρ/3 + 1/3
[3, 4) ρ2/2 + ρ/3 + 5/6 0 ρ2/2 + ρ/3 + 5/6
[4, 5) 4ρ2/5 + 4ρ/3 + 5/3 0 4ρ2/5 + 4ρ/3 + 5/3
[5,∞) ρ2 + 7ρ/3 + 35/12 0 ρ2 + 7ρ/3 + 35/12

3.1 All local minima of fully-connected networks can be worse than a linear predictor

Although it is known that local minima of 1-block ResNets are at least as good as linear predictors,
can this property hold also for fully-connected networks? Can a local minimum of a fully-connected
network be strictly worse than a linear predictor? In fact, we present a simple example where all
local minima of a fully-connected network are at best as good as linear models, while a residual
network has strictly better local minima.

Consider the following dataset with six data points, where ρ > 0 is a fixed constant:

X = [0 1 2 3 4 5] , Y = [−ρ 1− ρ 2 + ρ 3− ρ 4 + ρ 5 + ρ] .

Let xi and yi be the i-th entry of X and Y , respectively. We consider two different neural networks:
f1(x; θ1) is a fully-connected network parametrized by θ1 = (w1, w2, b1, b2), and f2(x; θ2) is a
ResNet parametrized by θ2 = (w, v, u, b, c), defined as

f1(x; θ1) = w2σ(w1x+ b1) + b2, f2(x; θ2) = w(x + vσ(ux + b)) + c,

where σ(t) = max{t, 0} is ReLU activation. In this example, all parameters are scalars.

With these networks, our goal is to fit the dataset under squared error loss. The empirical risk
functions we want to minimize are given by

R1(θ1) :=
1

6

6∑

i=1

(w2σ(w1xi+ b1)+ b2− yi)
2, R2(θ2) :=

1

6

6∑

i=1

(w(xi+ vσ(uxi+ b))+ c− yi)
2,

respectively. It is easy to check that the best empirical risk achieved by linear models x 7→ wx + b
is Rlin = 8ρ2/15. It follows from [21] that all local minima of R2(·) have risk values at most
Rlin. For this particular example, we show that the opposite holds for the fully-connected network,
whereas for the ResNet there exists a local minimum strictly better than Rlin.

Proposition 1. Consider the dataset X and Y as above. If ρ ≤
√
5/4, then any local minimum

θ
∗
1 of R1(·) satisfies R1(θ

∗
1) ≥ Rlin, whereas there exists a local minimum θ

∗
2 of R2(·) such that

R2(θ
∗
2) < Rlin.

Proof The function f1(x; θ1) is piece-wise continuous, and consists of two pieces (unless w1 = 0
or w2 = 0). If w1 > 0, the function is linear for x ≥ −b1/w1 and constant for x ≤ −b1/w1. For
any local minimum θ

∗
1, the empirical risk R1(θ

∗
1) is bounded from below by the risk achieved by

fitting the linear piece and constant piece separately, without the restriction of continuity. This is
because we are removing the constraint that the function f1(·) has to be continuous.

For example, if w∗
1 > 0 and −b∗1/w

∗
1 = 1.5, then its empirical risk R1(θ

∗
1) is at least the error

attained by the best constant fit of (x1, y1), (x2, y2), and the best linear fit of (x3, y3), . . . , (x6, y6).
For all possible values of −b∗1/w

∗
1 , we summarize in Table 1 the lower bounds on R1(θ

∗
1). It is easy

to check that if ρ ≤
√
5/4, all the lower bounds are no less than 8ρ2/15. The case where w∗

1 < 0
can be proved similarly, and the case w∗

1 = 0 is trivially worse than 8ρ2/15 because f1(x; θ
∗
1) is a

constant function.

For the ResNet part, it suffices to show that there is a point θ2 such that R2(θ2) < 8ρ2/15,
because then its global minimum will be strictly smaller than 8ρ2/15. Choose v = 0.5ρ,

4

u = 1, and b = −3. Given input X , the output of the residual block x 7→ x + vσ(ux + b) is
[0 1 2 3 4 + 0.5ρ 5 + ρ] =: H . Using this, we choose w and c that linearly fit H and Y .

Using the optimal w and c, a straightforward calculation gives R2(θ2) =
ρ2(12ρ2+82ρ+215)
21ρ2+156ρ+420 , and it

is strictly smaller than 8ρ2/15 on ρ ∈ (0,
√
5/4].

3.2 Representations by residual block outputs do not improve monotonically

Consider a 1-block ResNet. Given a dataset X and Y , the residual block transformsX intoH , where
H is the collection of outputs of the residual block. Let err(X,Y) be the minimum mean squared
error from fitting X and Y with a linear least squares model. The result that a local minimum of
a 1-block ResNet is better than a linear predictor can be stated in other words: the output of the
residual block produces a “better representation” of the data, so that err(H,Y) ≤ err(X,Y).

For a local minimum of a L-layer ResNet, our goal is to prove that err(HL, Y) ≤ err(X,Y),
where Hl, l ∈ [L] is the collection of output of l-th residual block. Seeing the improvement of
representation in 1-block case, it is tempting to conjecture that each residual block monotonically
improves the representation, i.e., err(HL, Y) ≤ err(HL−1, Y) ≤ · · · ≤ err(H1, Y) ≤ err(X,Y).
Our next example shows that this monotonicity does not necessarily hold.

Consider a dataset X = [1 2.5 3] and Y = [1 3 2], and a 2-block ResNet

h1(x) = x+ v1σ(u1x+ b1), h2(x) = h1(x) + v2σ(u2h1(x) + b2), f(x) = wh2(x) + c,

where σ denotes ReLU activation. We choose

v1 = 1, u1 = 1, b1 = −2, v2 = −4, u2 = 1, b2 = −3.5, w = 1, c = 0.

With these parameter values, we have H1 = [1 3 4] and H2 = [1 3 2]. It is evident that the
network output perfectly fits the dataset, and err(H2, Y) = 0. Indeed, the chosen set of parameters
is a global minimum of the squared loss empirical risk. Also, by a straightforward calculation we get
err(X,Y) = 0.3205 and err(H1, Y) = 0.3810, so err(H1, Y) > err(X,Y). This shows that the
conjecture err(H2, Y) ≤ err(H1, Y) ≤ err(X,Y) is not true, and it also implies that an induction-
type approach showing err(H2, Y) ≤ err(H1, Y) and then err(H1, Y) ≤ err(X,Y) will never be
able to prove err(H2, Y) ≤ err(X,Y).

In fact, application of the proof techniques in [21] only shows that err(H2, Y) ≤ err(H1, Y), so
a comparison of err(H2, Y) and err(X,Y) does not follow. Further, our example shows that even
err(H1, Y) > err(X,Y) is possible, showing that theoretically proving err(H2, Y) ≤ err(X,Y)
is challenging even for L = 2. In the next section, we present results using new techniques to
overcome this difficulty and prove err(HL, Y) ≤ err(X,Y) under some geometric conditions.

4 Local minima of deep ResNets are better than linear predictors

Given the motivating examples, we now present our first main result, which shows that under certain
geometric conditions, each critical point of ResNets has benign properties: either (i) it is as good as
the best linear predictor; or (ii) it is a strict saddle point.

4.1 Problem setup

We consider an L-block ResNet whose residual parts Φl
θ
(·) are defined as follows:

Φ1
θ(t) = V 1φ

1
z(t), and Φl

θ(t) = V lφ
l
z(U lt), l = 2, . . . , L.

We collect all parameters into θ := (w,V 1,V 2,U2, . . . ,V L,UL, z). The functions φl
z : Rml →

Rnl denote any arbitrary function parametrized by z that are differentiable almost everywhere. They
could be fully-connected ReLU networks, convolutional neural networks, or any combination of
such feed-forward architectures. We even allow different φl

z’s to share parameters in z. Note that

m1 = dx by the definition of the architecture. The matrices U l ∈ Rml×dx and V l ∈ Rdx×nl form
linear fully-connected layers. Note that if L = 1, the network boils down to x 7→ w

T (x+V 1φ
1
z(x)),

which is exactly the architecture considered by Shamir [21]; we are considering a deeper extension
of the previous paper.

For this section, we make the following mild assumption on the loss function:

5

Assumption 4.1. The loss function ℓ(p; y) is a convex and twice differentiable function of p.

This assumption is the same as the one in [21]. It is satisfied by standard losses such as square error
loss and logistic loss.

4.2 Theorem statement and discussion

We now present our main theorem on ResNets. Theorem 2 outlines two geometric conditions under
which it shows that the critical points of deep ResNets have benign properties.

Theorem 2. Suppose Assumption 4.1 holds. Let

θ
∗ := (w∗,V ∗

1,V
∗
2,U

∗
2, . . . ,V

∗
L,U

∗
L, z

∗)

be any twice-differentiable critical point of R(·). If

• E(x,y)∼P
[
ℓ′′(fθ∗(x); y)hL(x)hL(x)

T
]

is full-rank; and

• col
([
(U∗

2)
T · · · (U∗

L)
T
])

(Rdx ,

then at least one of the following inequalities holds:

• R(θ∗) ≤ Rlin.

• λmin(∇2
R(θ∗)) < 0.

The proof of Theorem 2 is deferred to Appendix A. Theorem 2 shows that if the two geometric
and linear-algebraic conditions hold, then the risk function value for fθ∗ is at least as good as the
best linear predictor, or there is a strict negative eigenvalue of the Hessian at θ∗ so that it is easy
to escape from this saddle point. A direct implication of these conditions is that if they continue
to hold over the optimization process, then with curvature sensitive algorithms we can find a local
minimum no worse than the best linear predictor; notice that our result holds for general losses and
data distributions.

As noted earlier, if L = 1, our ResNet reduces down to the one considered in [21]. In this case,
the second condition is always satisfied because it does not involve the first residual block. In fact,
our proof reveals that in the L = 1 case, any critical point with w∗ 6= 0 satisfies R(θ∗) ≤ Rlin

even without the first condition, which recovers the key implication of [21, Theorem 1]. We again
emphasize that Theorem 2 extends the previous result.

Theorem 2 also implies something noteworthy about the role of skip-connections in general. Ex-
isting results featuring beneficial impacts of skip-connections or parellel shortcut networks on opti-
mization landscapes require direct connection to output [13, 14, 19] or the last hidden layer [21]. The
multi-block ResNet we consider in our paper is fundamentally different from other works; the skip-
connections connect input to output through a chain of multiple skip-connections. Our paper proves
that multiple skip-connections (as opposed to direct) can also improve the optimization landscape
of neural networks, as was observed empirically [12].

We now discuss the conditions. We call the first condition the representation coverage condition,
because it requires that the representation hL(x) by the last residual block “covers” the full space

Rdx so that E(x,y)∼P
[
ℓ′′(fθ(x); y)hL(x)hL(x)

T
]

is full rank. Especially in cases where ℓ is strictly
convex, this condition is very mild and likely to hold in most cases.

The second condition is the parameter coverage condition. It requires that the subspace spanned
by the rows of U

∗
2, . . . ,U

∗
L is not the full space Rdx . This condition means that the param-

eters U
∗
2, . . . ,U

∗
L do not cover the full feature space Rdx , so there is some information in the

data/representation that this network “misses,” which enables us to easily find a direction to improve
the parameters.

These conditions stipulate that if the data representation is “rich” enough but the parameters do not
cover the full space, then there is always a sufficient room for improvement. We also note that

there is an architectural sufficient condition
∑L

l=2 ml < dx for our parameter coverage condition to
always hold, which yields the following noteworthy corollary:

6

Corollary 3. Suppose Assumption 4.1 holds. For a ResNet fθ(·) that satisfies
∑L

l=2 ml < dx, let
θ
∗ be a twice-differentiable critical point of R(·). Then, the conclusion of Theorem 2 holds as long

as E(x,y)∼P
[
ℓ′′(fθ∗(x); y)hL(x)hL(x)

T
]

is full-rank.

Example. Consider a deep ResNet with very simple residual blocks: h 7→ h+ vlσ(u
T
l h), where

vl,ul ∈ Rdx are vectors and σ is ReLU activation. Even this simple architecture is a universal
approximator [15]. Notice that Corollary 3 applies to this architecture as long as the depth L ≤ dx.

The reader may be wondering what happens if the coverage conditions are not satisfied. In particular,
if the parameter coverage condition is not satisfied, i.e., col

([
(U∗

2)
T · · · (U ∗

L)
T
])

= Rdx , we
conjecture that since the parameters already cover the full feature space, the critical point should be
of “good” quality. However, we leave a weakening/removal of our geometric conditions to future
work.

5 Benign properties in near-identity regions of ResNets

This section studies near-identity regions in optimization and generalization aspects, and shows
interesting bounds that hold in near-identity regions. We first show an upper bound on the risk value
at critical points, and show that the bound is Rlin plus a size-independent (i.e., independent of depth
and width) constant if the Lipschitz constants of Φl

θ
’s satisfy O(1/L). We then prove a Rademacher

complexity bound on ResNets, and show that the bound also becomes size-independent if Φl
θ

is
O(1/L)-Lipschitz.

5.1 Upper bound on the risk value at critical points

Even without the geometric conditions in Section 4, can we prove an upper bound on the risk value
of critical points? We prove that for general architectures, the risk value of critical points can be
bounded above by Rlin plus an additive term. Surprisingly, if each residual block is close to identity,
this additive term becomes depth-independent.

In this subsection, the residual parts Φl
θ
(·) of ResNet can have any general feedforward architecture:

Φl
θ(t) = φl

z(t), l = 1, . . . , L.

The collection of all parameters is simply θ := (w, z). We make the following assumption on the

functions φl
z : Rdx 7→ Rdx :

Assumption 5.1. For any l ∈ [L], the residual part φl
z is ρl-Lipschitz, and ρl(0) = 0.

For example, this assumption holds for φl
z(t) = V lσ(U lt), where σ is ReLU activation. In this

case, ρl depends on the spectral norm of V l and U l.

We also make the following assumption on the loss function ℓ:

Assumption 5.2. The loss function ℓ(p; y) is a convex differentiable function of p. We also assume
that ℓ(p; y) is µ-Lipschitz;, i.e., |ℓ′(p; y)| ≤ µ for all p.

Under these assumptions, we prove a bound on the risk value attained at critical points of ResNets.

Theorem 4. Suppose Assumptions 5.1 and 5.2 hold. Let θ∗ be any critical point of R(·). Let

t̂ ∈ Rdx be any vector that attains the best linear fit, i.e., Rlin = E(x,y)∼P
[
ℓ(t̂Tx; y)

]
. Then, for

any critical point θ∗ of R(·),

R(θ∗) ≤ Rlin + µ‖t̂‖
(∏L

l=1
(1 + ρl)− 1

)
E(x,y)∼P [‖x‖].

The proof can be found in Appendix B. Theorem 4 provides an upper bound on R(θ∗) for critical
points, without any conditions as in Theorem 2. Of course, depending on the values of constants, the

bound could be way above Rlin. However, if ρl = O(1/L), the term
∏L

l=1(1+ρl) is bounded above
by a constant, so the additive term in the upper bound becomes size-independent. Furthermore, if

ρl = o(1/L), the term
∏L

l=1(1 + ρl) → 1 as L → ∞, so the additive term in the upper bound
diminishes to zero as the network gets deeper. This result indicates that the near-identity region has
a good optimization landscape property that any critical point has a risk value that is not too far off
from Rlin.

7

5.2 Radamacher complexity of ResNets

In this subsection, we consider ResNets with the following residual part:

Φl
θ(t) = V lσ(U lt), l = 1, . . . , L,

where σ is ReLU activation, V l ∈ Rdx×dl ,U l ∈ Rdl×dx . For this architecture, we prove an upper
bound on empirical Rademacher complexity that is size-independent in the near-identity region.

Given a set S = (x1, . . . , xn) of n samples, and a class F of real-valued functions defined on X ,
the empirical Rademacher complexity or Rademacher averages of F restricted to S (denoted as
F|S) is defined as

R̂n(F|S) = Eǫ1:n

[
sup
f∈F

1

n

n∑

i=1

ǫif(xi)

]
,

where ǫi, i = 1, . . . n, are i.i.d. Rademacher random variables (i.e., Bernoulli coin flips with proba-
bility 0.5 and outcome ±1).

We now state the main result, which proves an upper bound on the Rademacher averages of the class
of ResNet functions on a compact domain and norm-bounded parameters.

Theorem 5. Given a set S = (x1, . . . , xn), suppose ‖xi‖ ≤ B for all i ∈ [n]. Define the function
class FL of L-block ResNet with parameter constraints as:

FL := {fθ : Rdx 7→ R | ‖w‖ ≤ 1, and ‖V l‖F , ‖U l‖F ≤ Ml for all l ∈ [L]}.

Then, the empirical Rademacher complexity satisfies

R̂n(FL|S) ≤
B
∏L

l=1(1 + 2M2
l)√

n
.

The proof of Theorem 5 is deferred to Appendix C. The proof technique used in Theorem 5 is
to “peel off” the blocks: we upper-bound the Rademacher complexity of a l-block ResNet with
that of a (l − 1)-block ResNet multiplied by 1 + 2M2

l . Consider a fully-connected network x 7→
WLσ(WL−1 · · ·σ(W 1x) · · ·), where W l’s are weight matrices and σ is ReLU activation. The

same “peeling off” technique was used in [16], which showed a bound of O
(
B · 2L

∏L
l=1 Cl/

√
n
)

,

where Cl is the Frobenius norm bound of W l. As we can see, this bound has an exponential
dependence on depth L, which is difficult to remove. Other results [2, 17] reduced the dependence
down to polynomial, but it wasn’t until the work by Golowich et al. [4] that a size-independent bound

became known. However, their size-independent bound has worse dependence on n (O(1/n1/4))
than other bounds (O(1/

√
n)).

In contrast, Theorem 5 shows that for ResNets, the upper bound easily becomes size-independent as

long as Ml = O(1/
√
L), which is surprising. Of course, for fully-connected networks, the upper

bound above can also be made size-independent by forcing Cl ≤ 1/2 for all l ∈ [L]. However, in
this case, the network becomes trivial, meaning that the output has to be very close to zero for any
input x. In case of ResNets, the difference is that the bound can be made size-independent even for
non-trivial networks.

6 Conclusion

We investigated the question whether local minima of risk function of a deep ResNet are better
than linear predictors. We showed two motivating examples showing 1) the advantage of ResNets
over fully-connected networks, and 2) difficulty in analysis of deep ResNets. Then, we showed
that under geometric conditions, any critical point of the risk function of a deep ResNet has benign
properties that it is either better than linear predictors or the Hessian at the critical point has a strict
negative eigenvalue. We supplement the result by showing size-independent upper bounds on the
risk value of critical points as well as empirical Rademacher complexity for near-identity regions
of deep ResNets. We hope that this work becomes a stepping stone on deeper understanding of
ResNets.

8

Acknowledgments

All the authors acknowledge support from DARPA Lagrange. Chulhee Yun also thanks Korea Foun-
dation for Advanced Studies for their support. Suvrit Sra also acknowledges support from an NSF-
CAREER grant and an Amazon Research Award.

References

[1] P. Baldi and K. Hornik. Neural networks and principal component analysis: Learning from
examples without local minima. Neural networks, 2(1):53–58, 1989.

[2] P. L. Bartlett, D. J. Foster, and M. J. Telgarsky. Spectrally-normalized margin bounds for neural
networks. In Advances in Neural Information Processing Systems, pages 6240–6249, 2017.

[3] P. L. Bartlett, S. N. Evans, and P. M. Long. Representing smooth functions as compositions
of near-identity functions with implications for deep network optimization. arXiv preprint
arXiv:1804.05012, 2018.

[4] N. Golowich, A. Rakhlin, and O. Shamir. Size-independent sample complexity of neural net-
works. arXiv preprint arXiv:1712.06541, 2017.

[5] M. Hardt and T. Ma. Identity matters in deep learning. In International Conference on Learning
Representations, 2017.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778,
2016.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In European
Conference on Computer Vision, pages 630–645. Springer, 2016.

[8] K. Kawaguchi. Deep learning without poor local minima. In Advances in Neural Information
Processing Systems, pages 586–594, 2016.

[9] K. Kawaguchi and Y. Bengio. Depth with nonlinearity creates no bad local minima in resnets.
arXiv preprint arXiv:1810.09038, 2018.

[10] T. Laurent and J. Brecht. Deep linear networks with arbitrary loss: All local minima are global.
In International Conference on Machine Learning, pages 2908–2913, 2018.

[11] T. Laurent and J. von Brecht. The multilinear structure of ReLU networks. arXiv preprint
arXiv:1712.10132, 2017.

[12] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. Visualizing the loss landscape of neural
nets. In Advances in Neural Information Processing Systems, pages 6389–6399, 2018.

[13] S. Liang, R. Sun, J. D. Lee, and R. Srikant. Adding one neuron can eliminate all bad local
minima. In Advances in Neural Information Processing Systems, pages 4355–4365, 2018.

[14] S. Liang, R. Sun, Y. Li, and R. Srikant. Understanding the loss surface of neural networks
for binary classification. In International Conference on Machine Learning, pages 2840–2849,
2018.

[15] H. Lin and S. Jegelka. ResNet with one-neuron hidden layers is a universal approximator.
arXiv preprint arXiv:1806.10909, 2018.

[16] B. Neyshabur, R. Tomioka, and N. Srebro. Norm-based capacity control in neural networks.
In Conference on Learning Theory, pages 1376–1401, 2015.

[17] B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro. Exploring generalization in deep
learning. In Advances in Neural Information Processing Systems, pages 5947–5956, 2017.

[18] Q. Nguyen and M. Hein. The loss surface of deep and wide neural networks. In Proceedings of
the 34th International Conference on Machine Learning, volume 70, pages 2603–2612, 2017.

9

[19] Q. Nguyen, M. C. Mukkamala, and M. Hein. On the loss landscape of a class of deep neural
networks with no bad local valleys. arXiv preprint arXiv:1809.10749, 2018.

[20] I. Safran and O. Shamir. Spurious local minima are common in two-layer ReLU neural net-
works. arXiv preprint arXiv:1712.08968, 2017.

[21] O. Shamir. Are ResNets provably better than linear predictors? arXiv preprint
arXiv:1804.06739, 2018.

[22] D. Soudry and Y. Carmon. No bad local minima: Data independent training error guarantees
for multilayer neural networks. arXiv preprint arXiv:1605.08361, 2016.

[23] G. Swirszcz, W. M. Czarnecki, and R. Pascanu. Local minima in training of neural networks.
arXiv preprint arXiv:1611.06310, 2016.

[24] C. Wu, J. Luo, and J. D. Lee. No spurious local minima in a two hidden unit ReLU network.
In International Conference on Learning Representations Workshop, 2018.

[25] B. Xie, Y. Liang, and L. Song. Diverse neural network learns true target functions. arXiv
preprint arXiv:1611.03131, 2016.

[26] X.-H. Yu and G.-A. Chen. On the local minima free condition of backpropagation learning.
IEEE Transactions on Neural Networks, 6(5):1300–1303, 1995.

[27] C. Yun, S. Sra, and A. Jadbabaie. Global optimality conditions for deep neural networks. In
International Conference on Learning Representations, 2018.

[28] C. Yun, S. Sra, and A. Jadbabaie. Efficiently testing local optimality and escaping saddles for
ReLU networks. In International Conference on Learning Representations, 2019.

[29] C. Yun, S. Sra, and A. Jadbabaie. Small nonlinearities in activation functions create bad local
minima in neural networks. In International Conference on Learning Representations, 2019.

[30] H. Zhang, Y. N. Dauphin, and T. Ma. Fixup initialization: Residual learning without normal-
ization. In International Conference on Learning Representations (ICLR), 2019.

[31] Y. Zhou and Y. Liang. Critical points of neural networks: Analytical forms and landscape
properties. In International Conference on Learning Representations, 2018.

10

A Proof of Theorem 2

Before we begin the proof, let us introduce more notation. Since we only consider
a single critical point, for simplicity of notation we denote the critical point as θ =
(w,V 1,V 2,U2, . . . ,V L,UL, z), without ∗. For l ∈ [2 : L], let Jl(x) := ∇φl

z(U lhl−1(x)) ∈
Rnl×ml , i.e., J l(x) is the Jacobian matrix of φl

z(·) evaluated at U lhl−1(x), whenever it exists.

Also, let U := col
([
U

T
2 · · · U

T
L

])
(Rdx .

The proof is divided into two cases: 1) if w /∈ U , and 2) if w ∈ U . For Case 1,
we will show that R(θ∗) ≤ Rlin; we also note that our representation coverage condition

rank(E(x,y)∼P
[
ℓ′′(fθ(x); y)hL(x)hL(x)

T
]
) = dx is not required for Case 1. For Case 2, we

will show that at least one of R(θ∗) ≤ Rlin or λmin(∇2
R(θ∗)) < 0 has to hold.

Case 1: If w /∈ U . From standard matrix calculus, we can calculate the partial derivatives of R
with respect to w and V l’s. Since θ is a critical point we have

∂R

∂w
(θ) = E [ℓ′(fθ(x); y)hL(x)] = 0,

∂R

∂V l
(θ) = E

[
ℓ′(fθ(x); y)

L∏

k=l+1

(I +U
T
k Jk(x)

T
V

T
k)wφl

z(Ulhl−1(x))
T

]
= 0, l = 2, . . . , L,

∂R

∂V 1
(θ) = E

[
ℓ′(fθ(x); y)

L∏

k=2

(I +U
T
k Jk(x)

T
V

T
k)wφ1

z(x)
T

]
= 0.

For V 2, . . . ,V L, note that we can arrange terms and express the partial derivatives as

∂R

∂V l
(θ) = wE

[
ℓ′(fθ(x); y)φ

l
z(Ulhl−1(x))

]T
+

L∑

k=l+1

U
T
k Ek = 0, (1)

where Ek ∈ Rml×nl are appropriately defined matrices. Note that any column of
∑L

k=l+1 U
T
kEk

is in U . Since w /∈ U , the sum being zero (1) implies that E
[
ℓ′(fθ(x); y)φl

z(Ulhl−1(x))
]
= 0

(because w /∈ U already implies that w 6= 0), for all l ∈ [2 : L]. Similarly, we have

E
[
ℓ′(fθ(x); y)φ1

z(x)
]
= 0.

Now, from E [ℓ′(fθ(x); y)hL(x)] = 0,

0 =E [ℓ′(fθ(x); y)hL(x)]

=E
[
ℓ′(fθ(x); y)

(
hL−1(x) + V Lφ

L
z (ULhL−1(x))

)]

=E [ℓ′(fθ(x); y)hL−1(x)] + V LE
[
ℓ′(fθ(x); y)φ

L
z (ULhL−1(x))

]

=E [ℓ′(fθ(x); y)hL−1(x)] = · · · = E [ℓ′(fθ(x); y)x] .

Recall that by convexity, ℓ(p; y) − ℓ(q; y) ≤ ℓ′(p; y)(p − q). Now for any t ∈ Rdx , we can apply
this inequality for p = fθ(x) = w

ThL(x) and q = tTx:

E [ℓ(fθ(x); y)]− E
[
ℓ(tTx; y)

]
≤ E

[
ℓ′(fθ(x); y)(w

ThL(x) − tTx)
]

= w
TE [ℓ′(fθ(x); y)hL(x)]− tTE [ℓ′(fθ(x); y)x] = 0.

Thus, E [ℓ(fθ(x); y)] ≤ E
[
ℓ(tTx; y)

]
for all t, so taking infimum over t gives R(θ∗) ≤ Rlin.

Case 2: If w ∈ U . For this case, we will consider the Hessian of R with respect to w and V l, for
each l ∈ [L]. We will show that if E

[
ℓ′(fθ(x); y)φl

z(Ulhl−1(x))
]
6= 0, then λmin(∇2

R(θ)) < 0.

This implies that if E
[
ℓ′(fθ(x); y)φl

z(Ulhl−1(x))
]
= 0 for all l ∈ [L], then by the same argument

as in Case 1 we have R(θ∗) ≤ Rlin; otherwise, we have λmin(∇2
R(θ)) < 0.

Because θ is a twice-differentiable critical point of R(·), if we apply perturbation δ to θ and do
Taylor expansions, what we get is

R(θ + δ) = R(θ) + 1
2δ

T∇2
R(θ)δ + o(‖δ‖2). (2)

11

So, if we apply a particular form of perturbation δ, calculate R(θ + δ), and then show that the
sum of all second-order perturbation terms are negative for such a δ, it is equivalent to showing
1
2δ

T∇2
R(θ)δ < 0, hence λmin(∇2

R(θ)) < 0.

Now fix any l ∈ [2 : L], and consider perturbing w by ǫ and V l by ∆, while leaving all other

parameters unchanged. We will choose ∆ = αβT , where α ∈ Rdx is chosen from α ∈ U⊥, the
orthogonal complement of U , and β ∈ Rnl will be chosen later. We will now compute R(θ + δ)
directly from the network architecture. The residual block output h1(x), . . . , hl−1(x) stays invariant
after perturbation because their parameters didn’t change. For l-th residual block, the output after

perturbation, denoted as h̃l(x), becomes

h̃l(x) = hl(x) +∆φl
z(U lhl−1(x)).

The next residual block output is

h̃l+1(x) = h̃l(x) + V l+1φ
l+1
z (U l+1h̃l(x))

= hl(x) +∆φl
z(U lhl−1(x)) + V l+1φ

l+1
z

(
U l+1hl(x) +U l+1∆φl

z(U lhl−1(x))
)

(a)
= hl(x) +∆φl

z(U lhl−1(x)) + V l+1φ
l+1
z (U l+1hl(x))

= hl+1(x) +∆φl
z(U lhl−1(x)),

where (a) used the fact that U l+1∆ = U l+1αβ
T = 0 because α ∈ U⊥. We can propagate this up

to h̃L(x) and similarly show h̃L(x) = hL(x) +∆φl
z(U lhl−1(x)). Using this, the network output

after perturbation, denoted as fθ+δ(·), is

fθ+δ(x) = (w + ǫ)T
(
hL(x) +∆φl

z(U lhl−1(x))
)

= fθ(x) + ǫ
ThL(x) +w

T
∆φl

z(U lhl−1(x)) + ǫ
T
∆φl

z(U lhl−1(x))
(b)
= fθ(x) + ǫ

ThL(x) + ǫ
T
∆φl

z(U lhl−1(x)),

where (b) used wT
∆ = wTαβT = 0 because w ∈ U and α ∈ U⊥. Using this, the risk function

value after perturbation is

R(θ + δ) = E [ℓ(fθ+δ(x); y)]

= E
[
ℓ(fθ(x) + ǫ

ThL(x) + ǫ
T
∆φl

z(U lhl−1(x)); y)
]

(c)
= E

[
ℓ(fθ(x); y) + ℓ′(fθ(x); y)

(
ǫ
ThL(x) + ǫ

T
∆φl

z(U lhl−1(x))
)

+ 1
2ℓ

′′(fθ(x); y)
(
ǫ
ThL(x)

)2
+ o(‖δ‖2)

]

(d)
= R(θ) + E

[
ℓ′(fθ(x); y)ǫ

T
∆φl

z(U lhl−1(x)) +
1
2ℓ

′′(fθ(x); y)
(
ǫ
ThL(x)

)2]
+ o(‖δ‖2),

where (c) used Taylor expansion of ℓ(·; y) and (d) used that E[ℓ′(fθ(x); y)hL(x)] =
∂R
∂w (θ) = 0.

Comparing with the expansion (2), the second term in the RHS corresponds to the second-order

perturbation 1
2δ

T∇2
R(θ)δ.

Now note that

E
[
ℓ′(fθ(x); y)ǫ

T
∆φl

z(U lhl−1(x)) +
1
2ℓ

′′(fθ(x); y)
(
ǫ
ThL(x)

)2]

=ǫ
T
∆E

[
ℓ′(fθ(x); y)φ

l
z(U lhl−1(x))

]
+ 1

2ǫ
TE
[
ℓ′′(fθ(x); y)hL(x)hL(x)

T
]
ǫ.

Let A := E[ℓ′′(fθ(x); y)hL(x)hL(x)
T] and b := E

[
ℓ′(fθ(x); y)φl

z(U lhl−1(x))
]

for simplity.
By the representation coverage condition of the theorem A is full-rank, hence invertible. We
can choose ǫ = −A−1

∆b to minimize the expression above, then the minimum value we get is

− 1
2b

T
∆

TA−1
∆b.

First, note that A is positive definite, and so is A−1. If b 6= 0, we can choose β = b, so

∆b = αβT b = ‖b‖2 α 6= 0, so − 1
2b

T
∆

TA−1
∆b < 0. This proves that λmin(∇2

R(θ)) < 0

if E
[
ℓ′(fθ(x); y)φl

z(U lhl−1(x))
]
6= 0, as desired.

The case when l = 1 can be done similarly, by perturbing w and V 1. This finishes the proof.

12

B Proof of Theorem 4

Since we only consider a single critical point, we denote the critical point as θ = (w, z), without ∗.
By the same argument as in Case 1 of Proof of Theorem 2, we can use convexity of ℓ to get the
following bound:

E [ℓ(fθ(x); y)]− E
[
ℓ(t̂Tx; y)

]
≤ E

[
ℓ′(fθ(x); y)(w

ThL(x) − t̂Tx)
]

= (w − t̂)TE [ℓ′(fθ(x); y)hL(x)] + t̂TE [ℓ′(fθ(x); y)(hL(x)− x)]

(a)
= t̂TE

[
ℓ′(fθ(x); y)

∑L

l=1
φl
z(hl−1(x))

]

≤ µ‖t̂‖
L∑

l=1

E
[
‖φl

z(hl−1(x))‖
]
,

where (a) used the fact that E [ℓ′(fθ(x); y)hL(x)] =
∂R
∂w = 0. Now, for any fixed l ∈ [L], using

Assumption 5.1 we have

‖φl
z(hl−1(x))‖ ≤ ρl‖hl−1(x))‖

≤ ρl(‖hl−2(x)‖+ ‖φl−1
z (hl−2(x))‖)

≤ ρl(1 + ρl−1)‖hl−2(x)‖

≤ · · · ≤ ρl

l−1∏

k=1

(1 + ρk)‖x‖.

Substituting this bound to the one above, we get

R(θ)−Rlin ≤ µ‖t̂‖E [‖x‖]
L∑

l=1

ρl

l−1∏

k=1

(1 + ρk) = µ‖t̂‖E [‖x‖]
(∏L

k=1
(1 + ρk)− 1

)
.

C Proof of Theorem 5

First, we collect the symbols used in this section. Given a real number p, define [p]+ := max{p, 0}
and [p]− := max{−p, 0}. Notice that |p| = [p]+ + [p]−. Recall that given a vector x, let ‖x‖
denotes its Euclidean norm. Recall also that given a matrix M , let ‖M‖ denote its spectral norm,
and ‖M‖F denote its Frobenius norm.

The proof is done by a simple induction argument using the “peeling-off” technique used for
Rademacher complexity bounds for neural networks. Before we start, let us define the function
class of hidden layer representations, for 0 ≤ l ≤ L:

Hl := {hl : R
dx 7→ Rdx | ‖V j‖F , ‖U j‖F ≤ Mj for all j ∈ [l]},

defined with the same bounds as used in FL. Note that H0 is a singleton with the identity mapping
x 7→ x. Also, define Fl to be the class of functions represented by a l-block ResNet (0 ≤ l ≤ L):

Fl := {x 7→ wThl(x) | ‖w‖ ≤ 1, hl ∈ Hl}.

Note that if l = L, this recovers the definition of FL in the theorem statement. Since

F0 := {x 7→ wTx | ‖w‖ ≤ 1},

it is well-known that R̂n(F0|S) ≤ B√
n

. The rest of the proof is done by proving the following:

R̂n(Fl|S) ≤ (1 + 2M2
l)R̂n(Fl−1|S),

for l ∈ [L].

13

Fix any l ∈ [L]. Then, by the definition of Rademacher complexity,

nR̂n(Fl|S) = Eǫ1:n

 sup
‖w‖≤1,
hl∈Hl

n∑

i=1

ǫiw
Thl(xi)

=Eǫ1:n

 sup

‖w‖≤1,
hl−1∈Hl−1

sup
‖V l‖F

≤Ml

‖U l‖F
≤Ml

n∑

i=1

ǫiw
T (hl−1(xi) + V lσ(U lhl−1(xi)))

≤Eǫ1:n

 sup

‖w‖≤1,
hl−1∈Hl−1

n∑

i=1

ǫiw
Thl−1(xi)

+ Eǫ1:n

 sup

‖w‖≤1,
hl−1∈Hl−1

sup
‖V l‖F

≤Ml

‖U l‖F
≤Ml

n∑

i=1

ǫiw
T
V lσ(U lhl−1(xi))

︸ ︷︷ ︸
=:A

.

The first term in RHS is nR̂n(Fl−1|S) by definition. It is left to show an upper bound for the second
term in RHS, which we will call A .

First, because ‖w‖ ≤ 1 and ‖V l‖ ≤ ‖V l‖F ≤ Ml, we have ‖V T
l w‖ ≤ Ml. So, by using dual

norm,

A = E

sup
‖v‖≤Ml,

‖U l‖F
≤Ml

hl−1∈Hl−1

vT
n∑

i=1

ǫiσ(U lhl−1(xi))

= MlE

 sup
‖U l‖F

≤Ml,
hl−1∈Hl−1

∥∥∥∥∥

n∑

i=1

ǫiσ(U lhl−1(xi))

∥∥∥∥∥

 .

Let uT
1 , u

T
2 , . . . , u

T
k be the rows of U l. Then, by positive homogeneity of ReLU σ, we have

∥∥∥∥∥

n∑

i=1

ǫiσ(U lhl−1(xi))

∥∥∥∥∥

2

=

k∑

j=1

‖uj‖2
(

n∑

i=1

ǫiσ

(
uT
j hl−1(xi)

‖uj‖

))2

.

The supremum of this quantity over u1, . . . , uk under the constraint that ‖U l‖2F =
∑k

j=1 ‖uj‖2 ≤
M2

l is attained when ‖uj‖ = Ml for some j and ‖uj′‖ = 0 for all other j′ 6= j. This means that

A

Ml
= E

 sup
‖U l‖F

≤Ml,
hl−1∈Hl−1

∥∥∥∥∥

n∑

i=1

ǫiσ(U lhl−1(xi))

∥∥∥∥∥

 = E

 sup

‖u‖≤Ml,
hl−1∈Hl−1

∣∣∣∣∣

n∑

i=1

ǫiσ(u
Thl−1(xi))

∣∣∣∣∣

= E

 sup

‖u‖≤Ml,
hl−1∈Hl−1

[
n∑

i=1

ǫiσ(u
Thl−1(xi))

]

+

+

[
n∑

i=1

ǫiσ(u
Thl−1(xi))

]

−

≤ E

 sup

‖u‖≤Ml,
hl−1∈Hl−1

[
n∑

i=1

ǫiσ(u
Thl−1(xi))

]

+

+ E

 sup

‖u‖≤Ml,
hl−1∈Hl−1

[
n∑

i=1

ǫiσ(u
Thl−1(xi))

]

−

(a)
= 2E

 sup

‖u‖≤Ml,
hl−1∈Hl−1

[
n∑

i=1

ǫiσ(u
Thl−1(xi))

]

+

 (b)
= 2E

 sup

‖u‖≤Ml,
hl−1∈Hl−1

n∑

i=1

ǫiσ(u
Thl−1(xi))

+

(c)
= 2E

 sup

‖u‖≤Ml,
hl−1∈Hl−1

n∑

i=1

ǫiσ(u
Thl−1(xi))

(d)

≤ 2E

 sup

‖u‖≤Ml,
hl−1∈Hl−1

n∑

i=1

ǫiu
Thl−1(xi)

 ,

where equality (a) is due to symmetry of Rademacher random variables and (b) uses sup [t]+ =
[sup t]+. Equality (c) uses the fact that the supremum is nonnegative, because setting u = 0 al-

ready gives
∑n

i=1 ǫiσ(u
Thl−1(xi)) = 0. Inequality (d) uses contraction property of Rademacher

complexity.

14

Lastly, one can notice that

E

 sup

‖u‖≤Ml,
hl−1∈Hl−1

n∑

i=1

ǫiu
Thl−1(xi)

 = MlE

 sup

‖w‖≤1,
hl−1∈Hl−1

n∑

i=1

ǫiw
Thl−1(xi)

 = MlnR̂n(Fl−1|S).

This establishes
A ≤ 2M2

l nR̂n(Fl−1|S),
which leads to the conclusion that

R̂n(Fl|S) ≤ (1 + 2M2
l)R̂n(Fl−1|S),

as desired.

15

Competitive Contagion with Sparse
Seeding

Milad Siami ∗,∗∗ Amir Ajorlou ∗ and Ali Jadbabaie ∗

∗ Institute for Data, Systems, and Society, Massachusetts Institute of
Technology, Cambridge, MA 02139 USA.

(e-mails: {siami, ajorlou, jadbabai}@mit.edu)
∗∗ Electrical & Computer Engineering Department, Northeastern

University, Boston, MA 02115 USA.

Abstract: This paper studies a strategic model of marketing and product diffusion in social
networks. We consider two firms offering substitutable products which can improve their market
share by seeding the key individuals in the market. Consumers update their consumption level
for each of the two products as the best response to the consumption of their neighbors in
the previous period. This results in linear update dynamics for the product consumption. Each
consumer receives externality from the consumption of each neighbor where the strength of
the externality is higher for consumption of the products of the same firm. We represent the
above setting as a duopoly game between the firms and introduce a novel framework that
allows for sparse seeding to emerge as an equilibrium strategy. We then study the effect of the
network structure on the optimal seeding strategies and the extent to which the strategies can
be sparsified. In particular, we derive conditions under which near Nash equilibrium strategies
can asymptotically lead to sparse seeding in large populations. The results are illustrated using
a core-periphery network.

Keywords: Network, Sparsification, Seeding, Game Theory.

1. INTRODUCTION

Over the past few years, the problem of influence and
spread in networks has been subject to intense study
(Ballester et al., 2006; Bharathi et al., 2007; Galeotti and
Goyal, 2009; Kempe et al., 2003, 2005; Chasparis and
Shamma, 2010; Vetta, 2002). Furthermore, modeling and
analysis of the spread of new strategies and behaviors
via local coordination games has been an ongoing field
of research (Ellison, 1993; Kandori et al., 1993; Harsanyi
and Selten, 1988; Young, 1993, 2001, 2002; Montanari and
Saberi, 2010; Kleinberg, 2007). For example, in López-
Pintado (2006) the authors show that the contagion of
an action in a random network depends on the distri-
bution of the connectivities. In Amini et al. (2009), au-
thors provide an upper bound on the proportion of agents
adopting a new product assuming a threshold model for
product adoption. Montanari and Saberi (2010) studies
the diffusion of innovation in social networks based on
the dynamics of coordination games and shows that in-
novation spreads much more slowly on well-connected
network structures dominated by long-range links than in
low-dimensional ones dominated by geographic proximity,
contrasting some earlier works on epidemic models (e.g.,
(Ganesh et al., 2005; Draief et al., 2006)).

A game theoretic model of competition and product adop-
tion has been proposed in Goyal and Kearns (2012). The
authors use the proposed model to come up with upper
bounds on the price of anarchy and show how network

1 This research was supported in part by a Vannevar Bush Fellow-
ship from the Office of Secretary of Defense, DARPA Lagrange, and
ARO MURI W911NF-12-1-0509.

structure may increase the gap between the initial budgets.
Similarly, in Bimpikis et al. (2013), the authors propose
a game theoretic model for competition between firms,
where firms can target their marketing budgets toward
attracting individual consumers embedded in a social net-
work. They subsequently provide conditions under which it
is optimal for the firms to asymmetrically target a subset
of the individuals. As another relevant work, (Chasparis
and Shamma, 2010) considers a dynamical model of pref-
erences in a duopoly setting and characterize optimal poli-
cies for both finite and infinite time horizons, studying the
effect of endogenous network influences as well as network
uncertainties. The equilibria of network games with linear
best response dynamics have been completely character-
ized in Bramoullé et al. (2014). Considering a monopoly
setting, optimal pricing policies are derived in Candogan
et al. (2012) assuming quadratic utility functions for the
agents, which is a common theme in game-theoretic social
network analysis as also previously used in Ballester et al.
(2006); Corbo et al. (2007) for instance.

Despite the tremendous development made in the past
decade (see e.g., (Seeman and Singer, 2013; Fazeli et al.,
2017; Bharathi et al., 2007; Montanari and Saberi, 2010;
Chasparis and Shamma, 2010)), influence maximization
algorithms are typically devised under idealized assump-
tions regarding accessibility of individual consumers for
targeted advertisement (e.g., via seeding) as well as the
linearity of the cost function with respect to the size of
the influence on individual’s consumption behavior. In
practice, however, firms often have direct access only to
a small subset of consumers. In addition, the extent to

which firms can influence consumption behavior of con-
sumers is limited, no matter how much they spend on
seeding/advertisement. This can be more formally stated
as diminishing returns on changes in individual consump-
tion levels, which we model by assuming a convex seeding
cost function in our work. It seems also quite compelling
to investigate approaches that can support sparse seeding
as (at least) near-optimal marketing strategies, in order to
account for the limitations in directly accessing individuals
especially in large populations. 2

In this paper, we study strategic competition between two
firms seeking to maximize their product consumption in a
network. The consumption of each product by each agent
is the result of her myopic best response to the previous
consumptions of her peers. A firm can thus improve its
market share by targeting its advertising budget toward
seeding key individuals in the network, whose consumption
of the product can in turn incentivize their peers to
consume more of the same product, subsequently affecting
the consumption behavior of the individuals all over the
network via inter-agent influences. We model the problem
above as a fixed-sum game between the two firms, where
each firm tries to maximize a utility function which is a
discounted sum of its product consumption over time less a
seeding cost which is appropriately chosen to account for
the diminishing return in seeding/advertisement budget
as well. We characterize the unique Nash equilibrium
of the resulting duopoly game in terms of the network
structure and the market price. The resultant seeding
strategy typically prescribes seeding all the agents (in an
amount proportional to their influence), which is rather
an infeasible task. As a remedy, we propose studying the
ε-equilibria of the game and derive conditions under which
such equilibria can asymptotically lead to sparse seeding
strategies in large populations.

The rest of this paper is organized as follows: in Section 2,
we present basic mathematical notations. In Section 3, we
introduce our model and update dynamics for agents by
applying the myopic best response. We then study the
game played between the firms and how they decide to seed
key individuals in Section 4. Next, we define a near-Nash
equilibrium concept as a relaxation of the standard Nash
equilibrium with the aim of expanding the equilibrium
set to include sparse seeding strategies in Section 5. In
Section 6, we consider the case of a large population
and characterize network structures for which a pair of
sparse seeding strategies can be asymptotically realized.
The results are illustrated via an example in Section 7.
Finally, in Section 8, we conclude the paper.

2. MATHEMATICAL NOTATIONS

Throughout the paper, the discrete time index is denoted
by k. The sets of real (integer), positive real (integer), and
strictly positive real (integer) numbers are represented by
R (Z), R+ (Z+) and R++ (Z++), respectively. The set of
natural numbers {i ∈ Z++ : i ≤ n} is denoted by [n].
Bold letters, such as x or s, stand for real-valued vectors.
Capital letters, such as A or B, stand for real-valued
matrices. We use ‖x‖2 to denote the `2-norm of vector x.
We denote the number of nonzero elements in vector x by

2 By sparse seeding we mean only seeding a subset of consumers with
an infinitesimal size compared to the size of the whole population.

‖x‖0. The n-by-n identity matrix is denoted by In. Also,
we represent the n-by-1 vector of ones by 1n and the n-by-1
and n-by-n matrices of zeros by 0n and 0n×n, respectively.
The transpose of matrix A is denoted by A>. For two
matrices A and B, we denote the Hadamard product by
A ◦B and the Kronecker product by A⊗B.

3. SPREAD DYNAMICS

We consider a social network consisting of a group of n
consumers (agents) denoted by V = [n]. The relationship
among agents is given by a weighted directed graph G =
(V, E , w). The weighted adjacency matrix of G is denoted
by G where its i, j-th entry denoted by gij = w((i, j)) if
(i, j) ∈ E otherwise gij = 0. Link weight gij presents the
strength of the influence of agent j on i.

We assume there are two competing firms producing
product a and b, respectively. Let din

i =
∑
j gij and

dout
i =

∑
j gji denote the in-degree and out-degree of

node i, respectively. Assume x̄i(k) and xi(k) denote agent
i’s consumption of product a and b at time k ∈ Z++,
respectively. The initial consumption of agent i from each
product is determined by the effort made by each firm in
seeding/marketing its product to agent i at time 0, and
are denoted by s̄i and si. We refer to s̄i and si as the
control/seeding of firm a and b on agent i, respectively. The
relation between the controls and the states is motivated
by (Chasparis and Shamma, 2010) on social networks. We
consider a convex cost function c(s) for seeding to reflect
the diminishing return of seeding/advertisement budget on
changing the consumption behavior in the population. The
cost c(s) reflects the monetary value required to increase
the consumption of the agents in the population by amount
s. For the sake of simplicity, we develop our results for a
quadratic cost function of the form c(s) = 1

2‖s‖
2
2.

The total utility of agent i from taking action xi is given
by

ui(x̄i(k), x̄−i(k)) = αx̄i(k)− 1

2
(x̄i(k))

2

+ x̄i(k)
∑
j∼i

gij
(
x̄j(k) + βxj(k)

)
− p x̄i(k)

where 0 ≤ β < 1. In the above equation x̄−i denotes
an action vector of all agents but agent i. The first
part of the utility (αx̄i(k) − 1

2 (x̄i(k))
2
) represents the

normalized second order approximation of a concave self-
utility function, as is commonly used in the literature.
The fact that externality is weaker for consuming different
products is captured by β < 1. Finally, the price p
represents the common market price for the products.
3.1 Myopic Best Response Dynamics

We assume agents repeatedly apply myopic best response
to the consumption levels of their neighbors in the previous
stage to update their consumption of each product, that
is,

x̄i(k + 1) ∈ arg max
x∈Rn

+

ui (x, x̄−i(k)) ,

and
xi(k + 1) ∈ arg max

x∈Rn
+

ui
(
x,x−i(k)

)
.

Consumption levels for agent i at time k+ 1 thus find the
following linear dynamics:

x̄i(k + 1) = (α− p) +
∑
j∼i

gij
(
x̄j(k) + βxj(k)

)
.

and

xi(k + 1) = (α− p) +
∑
j∼i

gij
(
xj(k) + βx̄j(k)

)
.

This results in the following closed-form update dynamics:{
x̄(k + 1) = (α− p)1n + Gx̄(k) + βGx(k)

x(k + 1) = (α− p)1n + Gx(k) + βGx̄(k)
(1)

where x̄(0) = s̄ and x(0) = s.

Assumption 1. We assume α ≥ p to guarantee that x̄i(k)
and xi(k) are non-negative for all feasible initial seedings.

In the next section, we show how firms can exploit the
structure of the network to maximize their product con-
sumption, and we then characterize the unique Nash equi-
librium of the game played between these two firms.

We first recall the definition of the Katz-Bonacich central-
ity measure.

Definition 1. For a given attenuation factor α less than the
reciprocal of the absolute value of the largest eigenvalue
of the adjacency matrix G ∈ Rn×n+ , the Katz-Bonacich
centrality is given by

ckatz(G,α) =
(
In − αG>

)−1
1n.

Definition 2. For a given subset S ⊆ V, we define an
indicator binary n× 1 vector 1S as follows:

1S = [si]n×1, si =

{
1 if i ∈ S
0, i ∈ [n] \ S

We then use these definitions in the next section to
characterize equilibrium strategies in a duopoly game
between the firms.

4. OPTIMAL SEEDING STRATEGIES

This section describes the game between two firms where
each firm aims to maximize the consumption of its product
over an infinite horizon. Each firm can invest in promoting
its product by seeding some of the agents. Initial seeding
could be viewed as free offers to promote the product
in the social networks. We thus consider the problem
of deriving optimal advertising policies for the spread of
innovations/consumption in a network. In Chasparis and
Shamma (2010), an analytical solution to the optimal
advertising problem in the absence of a competing firm is
provided, and it is shown that the solution can be related
to previously introduced centrality measures in sociology.

We define the utility of each firm as the discounted sum
of its product consumption over time minus the squared
norm of its seeding, which are defined formally as follows:

Ū = p

(∞∑
k=1

δk1>n x̄(k)

)
− 1

2
‖s̄‖22, (2)

and

U = p

(∞∑
k=1

δk1>nx(k)

)
− 1

2
‖s‖22. (3)

Definition 3. A pair of seeding strategies (s̄?, s?) ∈ Rn+ ×
Rn+ is said to be a Nash equilibrium of the duopoly game
described above if none of the players can improve her
payoff by unilaterally deviating from her strategy. That is,

U(s̄?, s) ≤ U(s̄?, s?), ∀ s ∈ Rn+,

and
Ū(s̄, s?) ≤ Ū(s̄?, s?), ∀ s̄ ∈ Rn+.

Assumption 2. We assume that the absolute value of the
largest eigenvalue of G is less than or equal to Λmax where

0 < Λmax <
1

δ(1 + β)
.

We then use Assumption 2 to get well-defined centrality
measures for the graph with adjacency G, and make the
matrix pencil in Definition 1 invertible.

In the following lemma, an equilibrium strategy for the
duopoly game between the firms is characterized based on
the node centrality measures.

Lemma 1. Consider two firms with closed-form update
dynamics 1, and utility functions Ū and U given by (2)
and (3), respectively. The sensitivity of the utilities with
respect to the individual seedings are given by

∂Ū

∂s̄i
= p ci − s̄i,

and
∂U

∂si
= p ci − si,

where cnew = [c1, . . . , cn]> with

cnew =
1

2
ckatz (G, δ(1− β)) +

1

2
ckatz (G, δ(1 + β)) . (4)

Proof 1. Let us define the following Jacobian matrices for
firm a as follows:

x̄(k) :=
∂(x̄(k))

∂s̄
,

and

X̄(k) :=
∂
∑k
t=1 δ

tx̄(t)

∂s̄
=

k∑
t=1

δtx̄(t). (5)

Similarly, we define the following Jacobian matrices for
firm b:

x(k) :=
∂(x(k))

∂s̄
,

and

X(k) :=
∂
∑k
t=1 δ

tx(t)

∂s̄
=

k∑
t=1

δtx(t). (6)

Next, we write the update dynamics for x̄ and x according
to their definitions and update dynamics (1):{

x̄(k + 1) = x̄(k)G> + x(k)βG>

x(k + 1) = x(k)G> + x̄(k)βG>
(7)

Then, based on update dynamics (7), (5) and (6) we get{
X̄(∞)− x̄(0) = δX̄(∞)G> + δX(∞)βG>

X(∞)− x(0) = δX(∞)G> + δX̄(∞)βG>

where x̄(0) = In, and x(0) = 0n×n. We can rewrite (8) in
the following compact form

[
X̄(∞) X(∞)

](
I2n − δ

[
G> βG>

βG> G>

])
= [In 0n×n] .

From this, it follows that

X̄(∞) =
[
In 0n×n

](
I2n − δ

[
G> βG>

βG> G>

])−1 [
In

0n×n

]
. (9)

We then use the following property to simplify (9)

(A⊗B)(C ⊗D) = (AC)⊗ (BD). (10)

Let us define

A :=

[
G> βG>

βG> G>

]
=

[
1 β
β 1

]
⊗G>. (11)

based on (10) and (11), we get

At =

([
1 β
β 1

]
⊗G>

)t
=

[
1 β
β 1

]t
⊗ (G>)t. (12)

With a simple calculation we get:

[1 0]

[
1 β
β 1

]t [
1
0

]
=

1

2

(
(1− β)t + (1 + β)t

)
. (13)

Next by expanding (I − δA)−1 and then applying (10),
(12), and (13), it follows that

[In 0n×n]

(
I2n − δ

[
G> βG>

βG> G>

])−1 [
1n
0n

]
=

1

2

(
In − δ(1− β)G>

)−1

1n

+
1

2

(
In − δ(1 + β)G>

)−1

1n

=
1

2
ckatz (G, δ(1− β)) +

1

2
ckatz (G, δ(1 + β)) .

By substituting (9) in (15), we have

X(∞)1n =
1

2
ckatz (G, δ(1− β)) +

1

2
ckatz (G, δ(1 + β)) .

(14)
From (2), we get

∂Ū

∂s̄
= p X̄(∞)1n − s̄. (15)

Finally, by substituting (14) in (15), we get the desired
result.

Theorem 1. Consider two firms with closed-form update
dynamics (1), and utility functions Ū and U given by (2)
and (3), respectively. The game between firms admits the
unique symmetric Nash equilibrium of the form

s̄? = s? = pcnew,

where bi-product centrality vector cnew is given by (4).

Proof 2. The proof is a direct consequence of Lemma 1.

5. SPARSE SEEDING

In what follows, we first define a near-Nash equilibrium
concept as a relaxation of the standard Nash equilibrium
defined in Definition 3, with the aim of expanding the
equilibrium set to include sparse seeding strategies (cf.
(Daskalakis et al., 2006)). In what follows, we will make
this statement formal.

Definition 4. Given ε ∈ R+, a pair of seeding strategies
(s̄?, s?) ∈ Rn+ × Rn+ is said to be ε-equilibrium of the
duopoly game described in Section 4 if none of the players
can improve her payoff by an amount more than ε fraction
of her current payoff, by unilaterally deviating from her
strategy. That is,

U(s̄?, s) ≤ (1 + ε)U(s̄?, s?), ∀ s ∈ Rn+,

and
Ū(s̄, s?) ≤ (1 + ε) Ū(s̄?, s?), ∀ s̄ ∈ Rn+.

Every Nash Equilibrium is equivalent to a ε-equilibrium
where ε = 0.

The next lemma provides a closed-form expression for the
utility functions of the firms when there is not any seeding.

Lemma 2. Assume s̄ = s = 0n, then the utility of firm a
is reduced to

Ū(0n,0n) =
(αp− p2)δ

1− δ
1>n ckatz(G, δ(1 + β)),

where centrality ckatz(G, ·) is given by Definition 1.

Proof 3. Let us assume s̄ = s = 0n, then
∞∑
k=1

δk
[
x̄(k)
x(k)

]
=

δ(α− p)
1− δ

(I2n − δA)
−1

[
1n
1n

]
,

where A is given by (11). With a simple calculation we
get:

[1 0]

[
1 β
β 1

]k [
1
1

]
= (1 + β)k.

Then, based on the definition of the utility, we have

Ū(0n,0n) =
δ(α− p)

1− δ
[1 0] (I2n − δA)

−1

[
1
1

]
= p

δ(α− p)
1− δ

1>n ckatz(G, δ(1 + β)).

Theorem 2. Consider two firms with closed-form update
dynamics (1), and utility functions Ū and U given by (2)
and (3), respectively. For any given sets S̄,S ⊆ [n], the
game between the firms admits a ε-equilibrium of the form

s̄? = p (cnew ◦ 1S̄), and s? = p (cnew ◦ 1S), (16)

where cnew is given by (4), if and only if

ε ≥ max(τ̄ , τ),

where

τ̄ :=

∑
i/∈S̄ c

2
i

δ(α−p)
2p(1−δ)1

>
n ckatz(G, δ(1 + β)) +

∑
i∈S̄ c

2
i

,

τ :=

∑
i/∈S c

2
i

δ(α−p)
2p(1−δ)1

>
n ckatz(G, δ(1 + β)) +

∑
i∈S c

2
i

,

and centrality ckatz is given in Definition 1.

Proof 4. We first show that

max
s̄∈Rn

+

(
Ū(s̄, s?)− Ū(s̄?, s?)

)
=

1

2
p2
∑
i/∈S

c2i , (17)

which results in the following best response for firm a

s̄i = pci, (18)

where i ∈ [n]. Therefore, using (18), the superposition
property, and Lemma 2, it follows that

max
s̄∈Rn

+

Ū(s̄, s?) = Ū(0n,0n) +
1

2
p2
∑
i/∈S

c2i

=
(αp− p2)δ

1− δ
1>n ckatz(G, δ(1 + β)) +

1

2
p2
∑
i/∈S

c2i .(19)

Then using (17), (19) and Definition 4, we get the desired
result.

6. ASYMPTOTICALLY REALIZABLE SPARSE
EQUILIBRIA

In this section, we consider the case of a large population
for which n→∞. We characterize network structures for
which a pair of sparse seeding strategies can be realized as
the limit of a sequence of ε-equilibria with ε→ 0. In what
follows, we will make this statement formal.

Definition 5. We call a pair of ε-equilibrium seeding
strategies (s̄?, s?) asymptotically sparse-realizable (ASR)
if and only if ‖s̄?‖0 = O(1), ‖s?‖0 = O(1) and ε = o(1). 3

We begin our analysis by a lemma that presents a nec-
essary and sufficient condition for a pair of strategies be
asymptotically sparse-realizable in terms of the bi-product
centrality (4).

Lemma 3. A pair of strategies (s̄?, s?) is asymptotically
sparse-realizable if and only if

max

{ ∑
i/∈S̄ c

2
i∑

i∈[n] c
2
i

,

∑
i/∈S c

2
i∑

i∈[n] c
2
i

}
= o(1), (20)

where c = [c1, · · · , cn]> is given by (4), S̄ = {i | s̄?i 6= 0},
|S̄| = O(1), S = {i | s̄?i 6= 0}, and |S| = O(1).

Proof 5. We first start with the fact that ε = o(1) if and
only if ε

ε+1 = o(1). Therefore, the pair of ε-equilibrium
seeding strategies is asymptotically sparse-realizable if and
only if ∑

i/∈S c
2
i

δ(α−p)
2p(1−δ)1

>
n ckatz(G, δ(1 + β)) +

∑
i∈[n] c

2
i

= o(1).

Let us recall

c = [c1, · · · , cn]>

:=
1

2
ckatz (G, δ(1− β)) +

1

2
ckatz (G, δ(1 + β)) ,

where a = [a1, · · · , an]> := ckatz (G, δ(1− β)), and
b = [b1, · · · , bn]> := ckatz (G, δ(1 + β)). It can be seen
that ∑

i∈[n]

ai ≤ 2
∑
i∈[n]

ci ≤ 2
∑
i∈[n]

c2i ,

where in the last inequality, we use the fact that ci ≥ 1.∑
i/∈S c

2
i∑

i∈[n] c
2
i

≥

∑
i/∈S c

2
i∑

i∈[n] c
2
i + κ

∑
i∈[n] ai

≥

∑
i/∈S c

2
i

(1 + 2κ)
∑

i∈[n] c
2
i

where κ = δ(α−p)
2p(1−δ) ≥ 0.

As the next result, we derive a necessary condition for the
existence of asymptotically sparse-realizable equilibrium
strategies.

Proposition 1. Let dout
max = maxi∈[n] d

out
i , and suppose that

δ(1 + β) dout
max < 1.

Then, there exists no pair of ε-equilibrium seeding strate-
gies that is asymptotically sparse-realizable.

Proof 6. It can be seen that

1 + δβdouti ≤ ci ≤
1− δβdoutmax

(1− δ(1 + β)doutmax)(1− δ(1− β)doutmax)
,

3 Given functions f(·) and g(·), the asymptotic notations f(n) =

O(g(n)) and f(n) = o(g(n)) mean lim supn→∞
∣∣ f(n)
g(n)

∣∣ < ∞ and

limn→∞
∣∣ f(n)
g(n)

∣∣ = 0, respectively.

m

1
2

m−1. . .

..
.

. .
.

g

g
g

2m

m+1

m+2

2m−1

. . .

..
.

. .
.

g

g
g

3m

2m+1

2m+2

3m−1. . .

..
.

. .
.

g

g
g

g

g

g

Fig. 1. A core-periphery network consisting of three com-
munities each with one role model that influences ev-
ery community member by g. Each role model herself
is influenced by the role model of another community
by amount g.

where c = [c1, · · · , cn] is given by (4). Therefore, using
these inequalities, it can be seen that if δ(1 + β)dout

max < 1
then ci’s are bounded; therefore (20) does not hold. This
completes the proof.

This result implies that networks with bounded out-
degree (i.e., dout

max = O(1)) are not asymptotically sparse-
realizable.

We conclude this section by stating a sufficient condition
for the existence of asymptotically sparse-realizable equi-
librium strategies.

Proposition 2. Suppose that the pair of seeding strategies
(16) is asymptotically sparse-realizable. Then,

max
i∈[n]

ci = O(n),

where c = [c1, · · · , cn]> is given by (4).

Proof 7. The proof is a direct consequence of Lemma 3.

7. DISCUSSION

We illustrate our results using a core-periphery network
structure, that is a network with few highly interconnected
and many sparsely connected nodes.

Consider a network consisting of χ communities of size m
denoted by Cr = {(r − 1)m+ 1, · · · , rm} for r ∈ [χ].
Consumption levels of the agents within each community
are influenced by an agent called a role model that induces
an externality effect of magnitude g on each consumer.
Consumption levels of role models themselves are each
influenced by the consumption of a role model in another
community whose structure is assumed to form a cycle. Let
agent rm be the role model in community Cr for r ∈ [χ].
The corresponding entries of the adjacency matrix G are
given by

gij=

g, for i ∈ Cr \ {rm} and j = rm

g, for (i, j)∈{((r+1)m, rm)|r∈ [χ−1]}∪{(m,χm)}
0, otherwise

The case χ = 3 is depicted in Fig. 1.

Characterizing the equilibrium seeding strategies (both
Nash equilibrium and ε-equilibria) requires finding cen-

trality vectors

a =
(
In − δ(1− β)G>

)−1
1n,

and
b =

(
In − δ(1 + β)G>

)−1
1n,

where n = χm. Let aL and aF be the corresponding
centralities of a role model and a periphery consumer in
a, respectively. A periphery consumer does not induce
externality on any other consumer, resulting in a centrality
of aF = 1. For a role model, on the other hand, from the
definition of Katz-Bonacich centrality we can obtain

aL = 1 + (m− 1)δ(1− β)g + δ(1− β)gaL,

resulting in aL = 1+(m−1)δ(1−β)g
1−δ(1−β)g . Similarly, we can find

bF = 1 and bL = 1+(m−1)δ(1+β)g
1−δ(1+β)g .

Applying Theorem 1, the symmetric Nash equilibrium
strategy thus involves seeding a periphery consumer by
s?F = s̄?F = p, and every role model by an amount of

s?L = s̄?L =

p

2

(
1+(m−1)δ(1−β)g

1− δ(1− β)g
+

1+(m−1)δ(1+β)g

1− δ(1 + β)g

)
.(21)

Keeping the number of communities χ fixed and shifting
m→∞, we can use Lemma 3 to verify that seeding only
the χ role models according to (21) is an asymptotically
sparse-realizable equilibrium strategy. Finally, Assump-
tion 2 requires δ(1+β)λmax(G) < 1 which can be satisfied
if δ(1+β)g < 1 noting that λmax(G) = g (this follows from
din
i = g for all i ∈ [n]).

8. CONCLUSION AND FUTURE WORK

We proposed and studied a strategic model of marketing
and product consumption in social networks. Two firms
offer substitutable products and compete to maximize the
consumption of their products in a social network. Con-
sumers are myopic and update their consumption level as
the best response to the consumption of their neighbors in
the previous period. This results in linear update dynamics
for the product consumption. Moreover, each consumer re-
ceives externality from the consumption of each neighbor;
the externality is stronger for consumption of the same
product. Firms can improve their market share by seeding
the key consumers in the market, as their consumption will
incentivize the consumption of the same product by their
peers given the inter-agent externalities, which in turn can
affect the consumption behavior all over the network. We
represented the above setting as a duopoly game between
the firms and introduced a novel framework that allows for
sparse seeding to asymptotically emerge as an equilibrium
strategy. We then studied the effect of the network struc-
ture on the optimal seeding strategies and the extent to
which these strategies could be sparsified, under the pro-
posed equilibrium concept. In particular, we derive neces-
sary and sufficient conditions under which ε-Nash equilib-
rium strategies can asymptotically lead to sparse seeding
in large populations. The results were demonstrated using
a large core-periphery network structure with few highly
connected and many sparsely connected nodes. Extending
our analysis to time-varying seeding strategies (recurring
seeding), networks with uncertainties (e.g., in valuations
of consumers about the products), and oligopoly setting
are some of the potential venues for future research.

REFERENCES

Amini, H., Draief, M., and Lelarge, M. (2009). Marketing in a
random network. Network Control and Optimization, 17–25.

Ballester, C., Calvó-Armengol, A., and Zenou, Y. (2006). Who’s
who in networks. wanted: the key player. Econometrica, 74(5),
1403–1417.

Bharathi, S., Kempe, D., and Salek, M. (2007). Competitive
influence maximization in social networks. Internet and Network
Economics, 4858, 306–311.

Bimpikis, K., Ozdaglar, A., and Yildiz, E. (2013). Competing over
networks. submitted for publication.

Bramoullé, Y., Kranton, R., and D’amours, M. (2014). Strategic
interaction and networks. The American Economic Review,
104(3), 898–930.

Candogan, O., Bimpikis, K., and Ozdaglar, A. (2012). Optimal
pricing in networks with externalities. Operations Research, 60(4),
883–905.

Chasparis, G. and Shamma, J. (2010). Control of preferences in social
networks. In Proceedings of 49th IEEE Conference on Decision
and Control (CDC), 6651–6656.

Corbo, J., Calvó-Armengol, A., and Parkes, D. (2007). The im-
portance of network topology in local contribution games. In in
Proceedings of the 3rd international conference on Internet and
network economics, 388–395. Springer-Verlag.

Daskalakis, C., Mehta, A., and Papadimitriou, C. (2006). A note
on approximate nash equilibria. In International Workshop on
Internet and Network Economics, 297–306. Springer.

Draief, M., Ganesh, A., and Massoulié, L. (2006). Thresholds
for virus spread on networks. In in Proceedings of the 1st
international conference on Performance evaluation methodolgies
and tools, 51.

Ellison, G. (1993). Learning, local interaction, and coordination.
Econometrica: Journal of the Econometric Society, 61(5), 1047–
1071.

Fazeli, A., Ajorlou, A., and Jadbabaie, A. (2017). Competitive dif-
fusion in social networks: Quality or seeding? IEEE Transactions
on Control of Network Systems, 4(3), 665–675.

Galeotti, A. and Goyal, S. (2009). Influencing the influencers: a
theory of strategic diffusion. The RAND Journal of Economics,
40(3), 509–532.

Ganesh, A., Massoulié, L., and Towsley, D. (2005). The effect of
network topology on the spread of epidemics. In INFOCOM
2005. 24th Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings IEEE, volume 2, 1455–
1466.

Goyal, S. and Kearns, M. (2012). Competitive contagion in networks.
In Proceedings of the 44th symposium on Theory of Computing,
759–774.

Harsanyi, J. and Selten, R. (1988). A general theory of equilibrium
selection in games. MIT Press Books, 1.

Kandori, M., Mailath, G., and Rob, R. (1993). Learning, mutation,
and long run equilibria in games. Econometrica: Journal of the
Econometric Society, 61(1), 29–56.

Kempe, D., Kleinberg, J., and Tardos, É. (2003). Maximizing the
spread of influence through a social network. In Proceedings of
the ninth ACM SIGKDD international conference on Knowledge
discovery and data mining, 137–146.

Kempe, D., Kleinberg, J., and Tardos, É. (2005). Influential nodes in
a diffusion model for social networks. Automata, Languages and
Programming, 3580, 1127–1138.

Kleinberg, J. (2007). Cascading behavior in networks: Algorithmic
and economic issues. Algorithmic game theory, 24, 613–632.

López-Pintado, D. (2006). Contagion and coordination in random
networks. International Journal of Game Theory, 34(3), 371–381.

Montanari, A. and Saberi, A. (2010). The spread of innovations in
social networks. Proceedings of the National Academy of Sciences,
107(47), 20196–20201.

Seeman, L. and Singer, Y. (2013). Adaptive seeding in social
networks. In Foundations of Computer Science (FOCS), 2013
IEEE 54th Annual Symposium on, 459–468. IEEE.

Vetta, A. (2002). Nash equilibria in competitive societies, with
applications to facility location, traffic routing and auctions. In
The 43rd Annual IEEE Symposium on Foundations of Computer
Science, 416–425.

Young, H.P. (2002). The diffusion of innovations in social networks.
Economy as an Evolving Complex System. Proceedings volume in
the Santa Fe Institute studies in the sciences of complexity, 3,
267–282.

Young, H. (1993). The evolution of conventions. Econometrica:
Journal of the Econometric Society, 61(1), 57–84.

Young, H. (2001). Individual strategy and social structure: An
evolutionary theory of institutions. Princeton University Press.

A Separation Principle for Joint Sensor and Actuator Scheduling
with Guaranteed Performance Bounds

Milad Siami and Ali Jadbabaie

Abstract— We study the problem of jointly designing a sparse
sensor and actuator schedule for linear dynamical systems while
guaranteeing a control/estimation performance that approxi-
mates the fully sensed/actuated setting. We further prove a sep-
aration principle, showing that the problem can be decomposed
into finding sensor and actuator schedules separately. However,
it is shown that this problem cannot be efficiently solved or
approximated in polynomial, or even quasi-polynomial time for
time-invariant sensor/actuator schedules; instead, we develop a
framework for a time-varying sensor/actuator schedule for a
given large-scale linear system with guaranteed approximation
bounds using deterministic polynomial-time algorithms. Our
main result is to provide a polynomial-time joint actuator and
sensor schedule that on average selects only a constant number
of sensors and actuators at each time step, irrespective of
the dimension. The key idea is to sparsify the controllability
and observability Gramians while providing approximation
guarantees for Hankel singular values.

I. INTRODUCTION

One of the main challenges in realizing the promise of
smart urban mobility is localization, perception, mapping
and control with a myriad of sensors and actuators, e.g.,
camera sensors, data from 3-D mapping, LIDAR, electric
motor, valve, etc. A key obstacle to this vision is the
information overload, and the computational complexity of
perception, mapping, and control using a large set of sensing
and actuating modalities. A possible solution is to find a
sparse yet important subset of sensors (actuators) and use
those instead of using all available measurements (actuators)
[1]–[3]. When the dimension of the state is large, finding the
optimal yet low cardinality subset of features is like finding a
needle in a haystack: the problem is computationally difficult
and provably NP-Hard.

Often we are interested in reducing the control complex-
ity, operation cost, and maintenance cost by not using all
available actuators and sensors. The choice of sensors and
actuators affect the performance, computational cost, and
costs of the control system. As it is shown recently in [4]
and [5], the problem of finding a sparse set of input variables
such that the resulting system is controllable, is NP-hard.
Even the presumably easier problem of approximating the
minimum number better than a constant multiplicative factor

This research was supported in part by Vannevar Bush Fellowship from
the Office of Secretary of Defense.

M. Siami and A. Jadbabaie are with the Institute for Data, Systems, and
Society, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
(e-mail: siami, jadbabai@mit.edu).

M. Siami is with the Electrical & Computer Engineering De-
partment, Northeastern University, Boston, MA 02115 USA (e-mail:
m.siami@northeastern.edu).

of log n is also NP-hard. Other results in the literature have
shown network controllability by exploring approximation
algorithms for the closely related subset selection problem
[4], [6], [7]. More recently, some of the authors showed
that even the problem of finding a sparse set of actuators
to guarantee reachability of a particular state is hard and
even hard to approximate [8].

Over the past few years, controllability and observability
properties of complex dynamical networks have been sub-
jects of intense study in the controls community [4], [6],
[7], [9]–[17]. This interest stems from the need to steer or
observe the state of large-scale, networked systems such as
power grids [18], social networks, biological and genetic
regulatory networks [19]–[21], and traffic networks [22].
Previous studies have been mainly focused on solving the
optimal sensor/actuator selection problem using the greedy
heuristic, as approximations of the corresponding sparse-
subset selection problem. However, in [23], we develop
a framework to design a sparse actuator schedule for a
given large-scale linear system with guaranteed performance
bounds using deterministic polynomial-time and randomized
approximately linear-time algorithms, and we gain new fun-
damental insights into approximating various performance
metrics compared to the case when all actuators are chosen.
In [24], the authors show that a separation principle holds
for the Linear-Quadratic-Gaussian (LQG) control problem.

In this paper, we build upon our previous work [23] and
consider the problem of jointly designing the sparse sensor
and actuator schedule for linear dynamical systems, to ensure
desired performance and sparsity levels of active sensors and
actuators in time and space. The joint sensor and actuator
(S/A) scheduling problem involves selecting an appropriate
number, activation time, position, and type of sensors and ac-
tuators. We show that by carefully designing a time-varying
joint S/A selection strategy, one can choose, on average a
constant number of sensors and actuators at each time, to
approximate the Hankel singular values of the system, while
sparsifying the sensor and actuator sets. One of our main
contributions is to show that the classical time-varying joint
S/A scheduling problem (originally studied by Athans in
1972 [25]), can be solved via random sampling. We also
propose an alternative to submodularity-based methods and
instead use recent advances in theoretical computer science.

More importantly, we prove that a separation principle
holds for the problem of jointly sparsifying the sensor and
actuator set with performance guarantees. We show that
the joint S/A scheduling problem can be divided into two

separate problems: the sparse sensor schedule and the sparse
actuator schedule.

II. PRELIMINARIES AND DEFINITIONS

Mathematical Notations: Throughout the paper, discrete
time index is denoted by k. The sets of real (integer), and
positive real (integer) are represented by R (Z), and R+ (Z+),
respectively. The set of natural numbers {i ∈ Z : 1 ≤
i ≤ n} is denoted by [n]. The cardinality of a set σ is
denoted by card(σ). Capital letters, such as A or B, stand
for real-valued matrices. Sn+ is the positive definite cone of
n-by-n matrices. The n-by-n identity matrix is denoted by I .
Notation A � B is equivalent to matrix B−A being positive
semi-definite. The n eigenvalues of A ∈ Rn×n are shown
by λ1(A), λ2(A), · · · , λn(A). The transpose of matrix A is
denoted by A>. The rank of matrix A is referred to by
rank(A).

Linear Systems, Gramian and Hankel Matrices: We start
with the canonical linear discrete-time, time-invariant dy-
namics

x(k + 1) = Ax(k) + B u(k), (1)
y(k) = Cx(k), (2)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and k ∈ Z+.
The state matrix A describes the underlying structure of the
system and the interaction strength between the agents, input
matrix B represents how the control input enters the system,
and output matrix C shows how output vector y relates to
the state vector.

The controllability and observability matrices at time t are
given by

R(t) =
[
B AB A2B · · · At−1B

]
, (3)

and

O(t) =

C
CA
CA2

· · ·
CAt−1

 , (4)

respectively. It is well-known that from a numerical stand-
point it is better to characterize controllability and observ-
ability in terms of the Gramian matrices at time t defined as
follows:

P(t) =
t−1∑
i=0

AiBB>(Ai)> = R(t)R>(t), (5)

and

Q(t) =
t−1∑
i=0

(Ai)>C>CAi = O>(t)O(t). (6)

Assumption 1: Throughout the paper, we assume that the
system (1)-(2) is an n-state minimal realization (i.e., the
reachability and controllability matrices have full row rank).
However, all results presented in this paper can be modi-
fied/extended to uncontrollable and unobservable systems.

For given linear systems (1)-(2), the Hankel matrix is
defined as the doubly infinite matrix

H =

H1 H2 H3 · · ·
H2 H3 H4 · · ·
H3 H4 H5 · · ·
...

...
...

. . .

=

C
CA
CA2

...

 [B AB A2B · · ·
]

= OR,

where Hk = CAk−1B. The Hankel matrix can be viewed as
a mapping between the past inputs and future outputs via the
initial state x(0). Since H = OR and due to Assumption 1,
it follows that rank(H) = n. The n nonzero singular values
of H can be computed by solving two Lyapunov equations
(for controllability and observability Gramians) as follows

σi(H) =
√
λi(HH>) = σi(PQ) = λi(Q

1
2PQ 1

2).

The Hankel matrix has a special structure: the elements
(blocks) in lines parallel to the anti-diagonal are identical. It
is well-known that the singular values of the Hankel matrix
of a linear system are fundamental invariants of the system,
denoting the most controllable and observable modes [26]. It
is well known that the states corresponding to small nonzero
Hankel singular values are difficult to control and observe at
the same time.

The Hankel norm gives the L2-gain from past inputs to
future outputs, and measures the extent to which past inputs
effect future outputs of the system. If the input u(k) = 0 for
k ≥ 0 and the output is y(k), then the Hankel norm is given
by

‖G(z)‖H := sup
u−∈L2(−∞,0)

‖y+‖L2(0,∞)

‖u−‖L2(−∞,0)

=
√
λmax(PQ) = σmax(H),

where G(z) is a transfer function of dynamics (1)-(2). In this
work, we focus on the time-t Hankel matrix

H(t) =

H1 H2 H3 · · · Ht

H2 H3 H4 · · · Ht+1

H3 H4 H5 · · · Ht+2

· · ·
Ht Ht+1 Ht+2 · · · H2t−1

=

C
CA
CA2

· · ·
CAt−1

 [B AB A2B · · · At−1B
]

= O(t)R(t).

Particularly, we have

σi(H(t)) =
√
λi(H(t)H>(t)) = σi(P(t)Q(t))

= λi(Q
1
2 (t)P(t)Q 1

2 (t)).

Remark 1: One way to lower the computational complex-
ity of simulations of large-scale dynamical systems is finding
a reduced-order model. A common technique for model
order reduction is the optimal Hankel-norm approximation.
This method provides the best approximation of the original
system in the Hankel semi-norm and received significant
attention and related development in the 1980s [27]. The
corresponding state-space realization is the balanced real-
ization where P̃ = Q̃ = diag(σ1, · · · , σn) as proposed by
Moore [28]. In standard model reduction, first we obtain
the balanced realization, and then the least observable and
controllable modes are truncated. However, for sparse S/A
schedule, we sparsify inputs and outputs in space and time
(the number of states does not change) and we utilize a
different canonical state realization (see Section V).

Hankel-based Performance Metrics: Similar to the sys-
temic notions introduced in [23], [29], we define various
performance metrics that capture both controllability and ob-
servability properties of the system. These measures are real-
valued operators defined on the set of all linear dynamical
systems governed by (1)-(2) and quantify various measures
of the performance. All of the metrics depend on the symmet-
ric combination of Gramians (i.e. Q 1

2 (t)P(t)Q 1
2 (t)) which

is a positive definite matrix. Therefore, one can define a
systemic Hankel-based performance measure as an operator
on the set of Gramian matrices of all n-state minimal
realization systems, which we represent by Sn+. For many
popular choices of ρ, one can see that they satisfy the
following properties: (i) Homogeneity: ρ(κA) = κρ(A)
for all κ > 1, and (ii) Monotonicity: if A � B, then
ρ(A) ≤ ρ(B); and we call them systemic. For example,
the squared Hankel-norm of the system at time t which is
defined by

ρ(Q 1
2 (t)P(t)Q 1

2 (t)) := λmax(Q 1
2 (t)P(t)Q 1

2 (t)),

is systemic. We note that similar criteria have been developed
in the experiment design literature [30]–[32].

III. MATRIX RECONSTRUCTION AND SPARSIFICATION

The key idea in [33] and [23] is to approximate the time-t
controllability Gramian as a sparse sum of rank-1 matrices,
while controlling the approximation error. To this end, a key
lemma is used in [23] from the sparsification literature [34]
to find sparse actuator or sensor schedules. However, in the
present work, we are interested in designing a joint sparse
schedule for both sensor and actuator sets; for this, we need
to modify a key lemma, known as the Dual Set Lemma in
[34] to approximate the time-t Hankel singular values.

In what follows, we state the lemma and the necessary
modification. We then use this result later to design a
deterministic algorithm for a joint sparse S/A schedule.
More specifically, we need to control the singular values of
the product of two matrices which can be written as the
symmetrized combination of the two matrices (see Section
V). Each one of these matrices is a sparse sum of rank-

1 matrices and they reflect controllability and observability
properties of the chosen sparse S/A set.

Theorem 1 and Algorithm 1 formalize the procedure of
iteratively adding one vector at a time and forming two
Gramian matrices.

Theorem 1: Let V = {v1, . . . , vt1} and U =
{u1, . . . , ut2} be two sets such that

∑t1
i=1 viv

>
i = X and∑t2

i=1 uiu
>
i = In where vi, ui ∈ Rn (n < t1, t2). Given

integer numbers κ1 and κ2 with n < κ1 ≤ t1 and n < κ2 ≤
t2, Algorithm 1 computes a set of weights si ≥ 0 and ri ≥ 0,
such that(

t1∑
i=1

siviv
>
i

) 1
2
(

t2∑
i=1

riuiu
>
i

)(
t1∑
i=1

siviv
>
i

) 1
2

� e−(ε1+ε2)X,

(
t1∑
i=1

siviv
>
i

) 1
2
(

t2∑
i=1

riuiu
>
i

)(
t1∑
i=1

siviv
>
i

) 1
2

� eε1+ε2X,

card {si 6= 0 | i ∈ [t1]} ≤ κ1,

and
card {ri 6= 0 | i ∈ [t2]} ≤ κ2,

where

ε1 := 2 tanh−1
(√

n

κ1

)
, and ε2 := 2 tanh−1

(√
n

κ2

)
.

Roughly speaking, the algorithm is based on choosing
vectors in a greedy fashion that satisfy a set of desired
properties at each step, leading to bounds on Hankel singular
values. We first define two barriers or potential functions as
follows:

φ(µ,A) =

n∑
i=1

1

λi(A)− µ
, (7)

and

φ̄(µ̄, Ā) =
n∑
i=1

1

µ̄− λi(Ā)
. (8)

These potential functions quantify how far the eigenvalues
of A and Ā are from the barriers µ and µ̄. These potential
functions blow up as any eigenvalue nears the barriers;
moreover, they show the locations of all the eigenvalues
concurrently. We then define two parameters L and U as
follows:

L(v, δ,A, µ) =

v>
(
A− (µ+ δ)In

)−2
v

φ(µ+ δ,A)− φ(µ,A)
− v>

(
A− (µ+ δ)In

)−1
v,

and

U(u, δ̄, Ā, µ̄) =

u>((µ̄+ δ̄)In − Ā)−2u

φ̄(µ̄, Ā)− φ̄(µ̄+ δ̄, Ā)
+ u>

(
(µ̄+ δ̄)In − Ā

)−1
u.

The potential functions (7) and (8) are chosen to guide
the selection of vectors and scalings at each step τ and to

ensure steady progress of the algorithm. Small values of
these potentials indicate that the eigenvalues of Ā and A
do not gather near µ̄ and µ, respectively. At each iteration,
we increase the upper barrier µ̄ by a fixed constant δ̄ and the
lower barrier µ̄ by another fixed constant δ. It can be shown
that as long as the potentials remain bounded, there must
exist (at every step τ) a choice of an index j and weights sj
and rj so that the addition of the associated rank-1 matrices
to Ā and A, and the increments of barriers do not increase
either potential and keep all the eigenvalues of the updated
matrix between the barriers (see Algorithm 1). Repeating
these steps ensures steady growth of all the eigenvalues and
yields the desired result.

This algorithm is tailored from an algorithm from
[34] (which is deterministic and requires at most
O
(
(κ1t1 + κ2t2)n2

)
) steps for joint sparse S/A selections.

We view this algorithm as a subroutine acting on sets U and
V as

s, r = GenDualSet(V,U, κ1, κ2).

In the next section, we show how various Hankel-based
measures can be approximated by selecting a sparse set of
actuators and sensors.

IV. JOINT SPARSE S/A SCHEDULING PROBLEMS

For given linear system (1)-(2) with a general underlying
structure, the joint S/A scheduling problem seeks to construct
a schedule of the control inputs and sensor outputs that keeps
the number of active actuators and sensors much less than
the fully sensed/actuated system such that the Hankel-based
performance matrices of the original and the new systems
are similar in an appropriately defined sense. Specifically,
given a canonical linear, time-invariant system (1)-(2) with
m actuators, p sensors and Gramians P(t), Q(t) at time
t, our goal is to find a joint sparse S/A schedule such
that the resulting system with Hankel matrix Hs(t) is well-
approximated, i.e.,∣∣∣∣log ρ

(
Q

1
2 (t)P(t)Q

1
2 (t)

)
− log ρ

(
Q

1
2
s (t)Ps(t)Q

1
2
s (t)

)∣∣∣∣ ≤ ε, (9)

where ρ is any systemic performance metric that quantifies
the performance of the system for example as the L2-gain
from past inputs to future outputs, and ε ≥ 0 is the approxi-
mation factor. The systemic performance metrics are defined
based on the Hankel singular values, and we will show that
“close” controllability and observability Gramian matrices
result in approximately the same values. Our goal here is to
answer the following questions: (1) What are the minimum
numbers of actuators and sensors that need to be chosen to
achieve a good approximation of the system where the full
sets of actuators and sensors utilized? (2) What is the relation
between the numbers of selected actuators and sensors and
performance loss? (3) Does a sparse approximation schedule
exist with at most constant numbers of active actuators and
sensors at each time? (4) What is the time complexity of
choosing the subsets of actuators and sensors with guaranteed
performance bounds?

Algorithm 1: A Modified Dual Set Spectral Sparsification
GenDualSet(V, U, κ1, κ2).

Input : V = [v1, . . . , vt1] ∈ Rn×t1 , with V V > = X
U = [u1, . . . , ut2] ∈ Rn×t2 , with UU> = In
κ1 ∈ Z+, with n < κ1 ≤ t1
κ2 ∈ Z+, with n < κ2 ≤ t2

Output: s = [s1, s2, . . . , st1] ∈ R1×t1
+ with ‖s‖0 ≤ κ1

r = [r1, r2, . . . , rt2] ∈ R1×t2
+ with ‖r‖0 ≤ κ2

1 Set s(0) = 0t1×1, A(0) = Ā(0) = 0n×n, δ = 1, δ̄ =
1+

√
n
κ1

1−
√

n
κ1

2 for τ = 0 : κ1 − 1 do
3 µ(τ) = τ −√κ1n
4 µ̄(τ) = δ̄ (τ +

√
κ1n)

5 Find an index j such that

U(X−
1
2 vj , δ̄, Ā(τ), µ̄(τ)) ≤ L(X−

1
2 vj , δ,A(τ), µ(τ))

6 Set ∆ =

2
(
U(X−

1
2 vj , δ̄, Ā(τ), µ̄(τ)) + L(X−

1
2 vj , δ,A(τ), µ(τ))

)−1

7 Update the j-th component of s(τ):

s(τ + 1) = s(τ) + ∆ej ,

8 A(τ + 1) = A(τ) + ∆X−
1
2 vjv

>
j X
− 1

2

9 Ā(τ + 1) = Ā(τ) + ∆X−
1
2 uju

>
j X
− 1

2

10 end

11 Set r(0) = 0t2×1, A(0) = Ā(0) = 0n×n, δ = 1, δ̄ =
1+

√
n
κ2

1−
√

n
κ2

12 for τ = 0 : κ2 − 1 do
13 µ(τ) = τ −√κ2n
14 µ̄(τ) = δ̄ (τ +

√
κ2n)

15 Find an index j such that

U(uj , δ̄, Ā(τ), µ̄(τ)) ≤ L(uj , δ,A(τ), µ(τ))

16 Set ∆ = 2
(
U(uj , δ̄, Ā(τ), µ̄(τ)) + L(uj , δ,A(τ), µ(τ))

)−1

17 Update the j-th component of r(τ):

r(τ + 1) = r(τ) + ∆ej ,

18 A(τ + 1) = A(τ) + ∆uju
>
j

19 Ā(τ + 1) = Ā(τ) + ∆uju
>
j

20 end

21 return s = κ−1
1

(
1 +

√
n
κ1

)−1

s(κ1),

r = κ−1
2

(
1 +

√
n
κ2

)−1

r(κ2)

In the rest of this paper, we show how some fairly recent
advances in theoretical computer science and the probabilis-
tic method can be utilized to answer these questions.

V. A WEIGHTED JOINT SPARSE S/A SCHEDULE

As a starting point, we allow for scaling of the selected
input and output signals while keeping the input and output
scaling bounded. The input and output scalings allow for
an extra degree of freedom that could allow for further
sparsification of the sensor/actuator set. Given (1)-(2), we
define a weighted, joint sensor and actuator schedule by
σ =

(
{σ(s)

k }
t−1
k=0, {σ

(a)
k }

t−1
k=0

)
, where

σ(s)
k = {i| si(k) > 0, i ∈ [p]} ⊆ [p],

σ(a)
k = {i| ai(k) > 0, i ∈ [m]} ⊆ [m],

and non-negative input and output scalings (i.e., ai(k) ≥ 0,
si(k) ≥ 0). The resulting system with this schedule is

x(k + 1) = Ax(k) +
∑
i∈σ(a)

k

ai(k) bi ui(k), (10)

y(k) =
∑
i∈σ(s)

k

si(k) ei ci x(k), (11)

where bi’s are columns of matrix B ∈ Rn×m, ci’s are rows
of matrix C ∈ Rp×n, and ei’s are the standard basis for
Rn; scaling ai(k) ≥ 0 shows the strength of the i-th control
input at time k; and similarly si(k) ≥ 0 shows the strength
of the i-th output at time k. Equivalently, the dynamics can
be rewritten as

x(k + 1) = Ax(k) + B(k)u(k), (12)
y(k) = C(k)x(k), (13)

with time-varying input and output matrices

B(k) = B Λ(k),

and C(k) = Γ(k)C, where Λ(k) and Γ(k) are
diagonal, and their nonzero diagonal entries show
selected actuators and sensors at time k, which
means Λ(k) = diag (a1(k), · · · , am(k)), and
Γ(k) = diag (s1(k), · · · , sp(k)).

The controllability Gramian and observability Gramian at
time t for this system can be rewritten as

Ps(t) =
t−1∑
k=0

∑
j∈σ(a)

k

a2j (k)
(
At−k−1bj

) (
At−k−1bj

)>
, (14)

and

Qs(t) =
t−1∑
k=0

∑
j∈σ(s)

k

s2j (k)
(
cjA

t−k−1)> (cjAt−k−1) . (15)

Our goal is to reduce the numbers of active sensors ds and
actuators da on average, where

ds :=

∑t−1
k=0 card

{
σ(s)
k

}
t

, (16)

and

da :=

∑t−1
k=0 card

{
σ(a)
k

}
t

, (17)

such that the Hankel matrix of the fully actuated/sensed
system, is “close” to the Hankel matrix of the new sparsely
actuated/sensed system. Of course, this approximation will
require horizon lengths that are potentially longer than the
dimension of the state.

Assumption 2: Throughout this paper, we assume the
horizon length is fixed and is given by t ≥ n.

The definition below formalizes the meaning of approxi-
mation.

Definition 1 ((ε, ds)-sensor schedule): We call system

(10)-(11) the (ε, ds)-sensor schedule for system (1)-(2) if
and only if

e−εQ(t) � Qs(t) � eεQ(t), (18)

where Q(t) and Qs(t) are the observability Gramian matri-
ces of systems (1)-(2) and (10)-(11), respectively. Parameter
ds is defined by (16) as the average number of active sensors,
and ε ∈ (0, 1) is the approximation factor.

Next we define the (ε, da)-actuator schedule for dynamical
system (1)-(2).

Definition 2 ((ε, da)-actuator schedule): We call system
(10)-(11) the (ε, da)-actuator schedule of system (1)-(2) if
and only if

e−ε P(t) � Ps(t) � eε P(t), (19)

where P(t) and Ps(t) are the controllability Gramian matri-
ces of (1)-(2) and (10)-(11), respectively, and parameter da
is defined by (17) as the average number of active actuators,
and ε ∈ (0, 1) is the approximation factor.

We now define the joint sparse S/A schedule for system
(1)-(2) based on the Hankel singular values of the system.

Definition 3 ((ε, ds, da)-joint S/A schedule): We call sys-
tem (10)-(11) the (ε, ds, da)-joint S/A schedule of system
(1)-(2) if and only if

e−ε
(
Q(t)

1
2P(t)Q 1

2 (t)
)
� Q

1
2
s (t)Ps(t)Q

1
2
s (t)

� eε
(
Q 1

2 (t)P(t)Q 1
2 (t)

)
,

where P , Q, Ps, and Qs are the controllability and observ-
ability Gramians of (1)-(2) and (10)-(11), respectively, and
parameters ds and da are the average number of active sensors
and actuators, and ε ∈ (0, 1) is the approximation factor.
The Hankel singular values can be computed from
the reachability and observability Gramians. Note that
Q 1

2 (t)P(t)Q 1
2 (t) and P(t)Q(t) share the same eigenvalues.

Therefore, the k-th largest Hankel singular values of system
(12)-(13) are bounded from below and above by e±ε times
the k-th largest Hankel singular values of system (12)-(13).

Remark 2: The Hankel singular values reflect the joint
controllability and observability of the balanced states. The
Hankel singular values of the fully actuated and sensed
system (1)-(2) are well-approximated by the Hankel singular
values of the joint S/A schedule.

Construction Results: The next theorem constructs a so-
lution for the sparse weighted S/A scheduling problem in
polynomial time.

Theorem 2: Given the time horizon t ≥ n, model (1)-(2),
da > 1 and ds > 1, Algorithm 2 deterministically constructs
a joint S/A schedule such that the resulting system (12)-(13)
is a (ε, ds, da)-approximation of (1)-(2) with ε = εs + εa,
where εs = 2 tanh−1

(√
n
dst

)
, and εa = 2 tanh−1

(√
n
dat

)
,

in at most O
(
(pds +mda)(tn)2

)
operations.

Tradeoffs: Theorem 2 illustrates a tradeoff between the
average numbers of active actuators and sensors (i.e., da
and ds) and the time horizon t (also known as the time-
to-control). This implies that the reduction in the average

Algorithm 2: A deterministic greedy-based algorithm to construct
a sparse weighted S/A schedule (Theorem 2).

Input : A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, t, ds, and da

Output: si(k) ≥ 0 for (i, k + 1) ∈ [m]× [t]
ai(k) ≥ 0 for (i, k + 1) ∈ [p]× [t]

1 R(t) :=
[
B AB A2B · · · At−1B

]
2 O>(t) :=

[
C> A>C> (A2)>C> · · · (At−1)>C>

]>
3 Set V =

(
R(t)R>(t)

) 1
2 O>(t)

4 Set U =
(
R(t)R>(t)

)− 1
2 R(t)

5 Run s, a = GenDualSet(V, U, dst, dat)

6 return si(k) :=
√
ri+pk for (i, k + 1) ∈ [p]× [t]

7 ai(k) :=
√
si+mk for (i, k + 1) ∈ [m]× [t]

numbers of active actuators and sensors comes at the expense
of increasing time horizon t in order to get the same approxi-
mation factor ε. Moreover, the approximation becomes more
accurate as t, ds, da are increased. Indeed, increasing ds and
da will require more active sensors and actuators, and larger
t requires a larger observation and control time window.

The separation principle: We next state our main theorem
that shows that to design a joint sparse S/A schedule, it is
enough to design two separate schedules: the sparse sensor
schedule and the sparse actuator schedule. Thus, the joint
S/A scheduling problem can be broken into two decoupled
parts, that facilitates the design process.

Theorem 3 (main theorem): To obtain (ε, ds, da)-joint S/A
schedule of linear system (12)-(13), it is sufficient to first
design an (ε1, ds)-sensor schedule and then design an (ε −
ε1, da)-actuator schedule with ε1 < ε.

VI. CONCLUDING REMARKS

In this paper, we studied the problem of designing a
joint sparse S/A schedule of linear dynamical systems that
retains the full observability and controllability of the system.
Based on recent advances in matrix reconstruction and graph
sparsification literature, we provide a polynomial-time joint
S/A schedule for a discrete time linear dynamical system.
This joint S/A schedule on average selects only a constant
number of sensors and actuators at each time step, while
guaranteeing a control/estimation performance that approx-
imates the fully sensed/actuated setting. We further prove
the validity of separation principle for the system, showing
that the problem can be decomposed into finding sensor and
actuator schedules separately.

REFERENCES

[1] N. Matni and V. Chandrasekaran, “Regularization for design,” IEEE
Transactions on Automatic Control, vol. 61, no. 12, pp. 3991–4006,
2016.

[2] A. Argha, S. W. Su, A. Savkin, and B. Celler, “A framework for
optimal actuator/sensor selection in a control system,” International
Journal of Control, pp. 1–19, 2017.

[3] F. Fahroo and M. A. Demetriou, “Optimal actuator/sensor location
for active noise regulator and tracking control problems,” Journal of
Computational and Applied Mathematics, vol. 114, no. 1, pp. 137–
158, 2000.

[4] A. Olshevsky, “Minimal controllability problems,” IEEE Transactions
on Control of Network Systems, vol. 1, no. 3, pp. 249–258, Sept 2014.

[5] V. Tzoumas, M. A. Rahimian, G. J. Pappas, and A. Jadbabaie,
“Minimal actuator placement with bounds on control effort,” IEEE
Transactions Control of Network Systems, vol. 3, no. 1, pp. 67–78,
2016.

[6] T. H. Summers, F. L. Cortesi, and J. Lygeros, “On submodularity and
controllability in complex dynamical networks,” IEEE Transactions
on Control of Network Systems, vol. 3, no. 1, pp. 91–101, 2016.

[7] S. Pequito, S. Kar, and A. P. Aguiar, “On the complexity of the
constrained input selection problem for structural linear systems,”
Automatica, vol. 62, pp. 193–199, 2015.

[8] A. Jadbabaie, A. Olshevsky, G. J. Pappas, and V. Tzoumas, “Minimal
reachability is hard to approximate,” arXiv preprint arXiv:1710.10244,
2017.

[9] F. Pasqualetti, S. Zampieri, and F. Bullo, “Controllability metrics,
limitations and algorithms for complex networks,” IEEE Transactions
on Control of Network Systems, vol. 1, no. 1, pp. 40–52, 2014.

[10] Y.-Y. Liu and A.-L. Barabási, “Control principles of complex systems,”
Reviews of Modern Physics, vol. 88, no. 3, p. 035006, 2016.

[11] P. V. Chanekar, N. Chopra, and S. Azarm, “Optimal actuator placement
for linear systems with limited number of actuators,” in 2017 American
Control Conference (ACC), May 2017, pp. 334–339.

[12] P. Müller and H. Weber, “Analysis and optimization of certain qualities
of controllability and observability for linear dynamical systems,”
Automatica, vol. 8, no. 3, pp. 237–246, 1972.

[13] V. Tzoumas, M. A. Rahimian, G. J. Pappas, and A. Jadbabaie,
“Minimal actuator placement with bounds on control effort,” IEEE
Transactions on Control of Network Systems, vol. 3, no. 1, pp. 67–78,
2016.

[14] A. Olshevsky, “Minimum input selection for structural controllability,”
in 2015 American Control Conference (ACC), July 2015, pp. 2218–
2223.

[15] S. Pequito, G. Ramos, S. Kar, A. P. Aguiar, and J. Ramos, “The robust
minimal controllability problem,” Automatica, vol. 82, pp. 261 – 268,
2017.

[16] E. Nozari, F. Pasqualetti, and J. Cortés, “Time-invariant versus time-
varying actuator scheduling in complex networks,” in 2017 American
Control Conference (ACC), May 2017, pp. 4995–5000.

[17] A. Yazıcıoğlu, W. Abbas, and M. Egerstedt, “Graph distances and
controllability of networks,” IEEE Transactions on Automatic Control,
vol. 61, no. 12, pp. 4125–4130, 2016.

[18] A. Chakrabortty and M. D. Ilić, Control and optimization methods for
electric smart grids. Springer, 2011, vol. 3.

[19] F. A. Chandra, G. Buzi, and J. Doyle, “Glycolytic oscillations and
limits on robust efficiency,” Science, vol. 333, no. 6039, pp. 187–192,
2011.

[20] L. Marucci, D. A. Barton, I. Cantone, M. A. Ricci, M. P. Cosma,
S. Santini, D. di Bernardo, and M. di Bernardo, “How to turn a genetic
circuit into a synthetic tunable oscillator, or a bistable switch,” PLoS
One, vol. 4, no. 12, p. e8083, 2009.

[21] I. Rajapakse, M. Groudine, and M. Mesbahi, “What can systems theory
of networks offer to biology?” PLoS computational biology, vol. 8,
no. 6, p. e1002543, 2012.

[22] M. Siami and J. Skaf, “Structural analysis and optimal design of dis-
tributed system throttlers,” IEEE Transactions on Automatic Control,
vol. 63, no. 12, pp. 540–547, Feb. 2018.

[23] A. Jadbabaie, A. Olshevsky, and M. Siami, “Deterministic and
randomized actuator scheduling with guaranteed performance bounds,”
CoRR, vol. abs/1805.00606, 2018. [Online]. Available: http://arxiv.
org/abs/1805.00606

[24] V. Tzoumas, L. Carlone, G. J. Pappas, and A. Jadbabaie, “Sensing-
constrained LQG control,” in 2018 Annual American Control Confer-
ence (ACC). IEEE, 2018, pp. 197–202.

[25] M. Athans, “On the determination of optimal costly measurement
strategies for linear stochastic systems,” Automatica, vol. 8, no. 4,
pp. 397–412, 1972.

[26] A. C. Antoulas, Approximation of large-scale dynamical systems.
Siam, 2005, vol. 6.

[27] K. Glover, “Model reduction: a tutorial on hankel-norm methods and
lower bounds on L2 errors,” IFAC Proceedings Volumes, vol. 20, no. 5,
pp. 293–298, 1987.

[28] B. Moore, “Principal component analysis in linear systems: Control-
lability, observability, and model reduction,” IEEE Transactions on
Automatic Control, vol. 26, no. 1, pp. 17–32, February 1981.

[29] M. Siami and N. Motee, “Network abstraction with guaranteed per-
formance bounds,” IEEE Transactions on Automatic Control, vol. 63,
no. 11, 2018.

[30] S. N. Ravi, V. Ithapu, S. Johnson, and V. Singh, “Experimental design
on a budget for sparse linear models and applications,” in International
Conference on Machine Learning, 2016, pp. 583–592.

[31] O. Kempthorne, The design and analysis of experiments. Wiley, 1952.
[32] Z. Allen-Zhu, Y. Li, A. Singh, and Y. Wang, “Near-optimal design

of experiments via regret minimization,” in Proceedings of the 34th
International Conference on Machine Learning, vol. 70. PMLR, 06–
11 Aug 2017, pp. 126–135.

[33] A. Jadbabaie, A. Olshevsky, and M. Siami, “Limitations and
tradeoffs in minimum input selection problems,” in 2018 Annual
American Control Conference, ACC 2018, Milwaukee, WI, USA,
June 27-29, 2018, 2018, pp. 185–190. [Online]. Available: https:
//doi.org/10.23919/ACC.2018.8431306

[34] C. Boutsidis, P. Drineas, and M. Magdon-Ismail, “Near-optimal
column-based matrix reconstruction,” SIAM Journal on Computing,
vol. 43, no. 2, pp. 687–717, 2014.

[35] A. W. Marcus, D. A. Spielman, and N. Srivastava, “Interlacing families
ii: Mixed characteristic polynomials and the kadison-singer problem,”
Annals of Mathematics, pp. 327–350, 2015.

Non-Bayesian Social Learning with Uncertain Models over
Time-Varying Directed Graphs

César A. Uribe, James Z. Hare, Lance Kaplan, and Ali Jadbabaie

Abstract— We study the problem of non-Bayesian social
learning with uncertain models, in which a network of agents
seek to cooperatively identify the state of the world based on
a sequence of observed signals. In contrast with the existing
literature, we focus our attention on the scenario where the
statistical models held by the agents about possible states of the
world are built from finite observations. We show that existing
non-Bayesian social learning approaches may select a wrong
hypothesis with non-zero probability under these conditions.
Therefore, we propose a new algorithm to iteratively construct
a set of beliefs that indicate whether a certain hypothesis is
supported by the empirical evidence. This new algorithm can
be implemented over time-varying directed graphs, with non-
doubly stochastic weights.

I. INTRODUCTION

Non-Bayesian social learning has emerged as a topic
of interest as it captures a variety of computational and
cognitive constraints and biases that agents may have in a
making cooperative decisions [1]–[3]. In contrast to Bayesian
approaches [4], [5], non-Bayesian learning assumes agents
have bounded rationality and the information aggregation
mechanism differs from the Bayesian setting. The main
objective is then to design belief update rules that iterative
aggregate information (e.g. weighted averages) from neigh-
bors and private observations, and asymptotically behaves as
if all information was available at centrally [6]–[8].

Formally, given a state of the world θ∗, a group of agents
following a non-Bayesian social learning approach, receive
private observations and communicate with other agents in
the network to agree on a state, from a set Θ, that best
explains the observed signals. This task is achieved by using
statistical models for each member of the hypothesis set
and sequentially testing whether the observed signals are
distributed according to one of the models, which in turn
corresponds to one possible state of the world. In [6], [8],
this process is described as a group of m agents trying to

This research was sponsored by the DARPA Lagrange, Vannevar Bush
Fellowship, and OSD LUCI programs. The views and conclusions contained
in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Army
Research Laboratory or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

C.A.U and A.J. are with the Laboratory for Information and De-
cision Systems (LIDS), and the Institute for Data, Systems, and So-
ciety (IDSS), Massachusetts Institute of Technology, Cambridge, MA
({cauribe,jadbabai}@mit.edu). J.Z.H. (james.z.hare31@gmail.com) and
L.K. (lance.m.kaplan@us.army.mil) are with the Army Research Laboratory,
Adelphi, MD .

solve collectively the following optimization problem:

min
θ∈Θ

m∑
i=1

DKL

(
P iθ∗‖P iθ

)
, (1)

where each agent sequentially receives observations from a
random variable distributed according to an unknown P iθ∗ , P iθ
is the statistical model an agent i holds about hypothesis θ,
and DKL(P‖Q) is the Kullback-Leibler divergence between
distributions P and Q.

The solution of problem (1) has been extensively studied
for different graph connectivity assumptions, topologies,
observation models, robustness, for which consistency, and
both asymptotic and non-asymptotic convergence rates has
been established [9]–[16]. However, one required property
for existing results is that every agent knows the statistical
models corresponding to each of the hypothesis in the
hypotheses set precisely. This is referred to as dogmatic
knowledge of the hypotheses. That is, for each θ ∈ Θ, every
agent can evaluate the likelihood of an observed signal given
that θ is the state of the world. As a result, existing algorithms
are shown to concentrate beliefs asymptotically around the
hypotheses that solves (1).

In this paper, we focus on the case where the statistical
models of each of the hypotheses are built from finite
empirical evidence. Thus, there is uncertainty about the
models. For example, the probability of certain events under
a hypothesis must be estimated from finite amounts of
data. Agents need to consider statistical uncertainty about
the likelihood functions. Taking such uncertainty into ac-
count has been previously studied in possibility theory [17],
probability intervals [18], fuzzy set theory [19], and belief
functions [20], [21] where the likelihood function parameters
are expressed within a fixed interval. In this work we model
uncertainty in the likelihood function parameters as a second-
order probability density function [22], [23]. Such that the
parameters are uniformly distributed when the prior evidence
is 0 and becomes concentrated around the ground truth
distribution as more prior evidence is collected.

Figure 1 presents a toy example, on a centralized scenario
that will help us motivate and explain the distributed learning
problem with uncertain models. Consider you are given a
finite set of labeled and weighted dice, where each die
corresponds to a possible state of the world. You are allowed
to roll each die a finite number of times, not necessarily
the same number for each die. One can build a statistical
model for each die from the histograms generated by the
observed outcomes. Then, you are given a new unlabeled
die, corresponding to the current state of the world, and you

ar
X

iv
:1

90
9.

04
25

5v
1

 [
m

at
h.

O
C

]
 1

0
Se

p
20

19

STAGE 1

Rθ1 rolls Rθ2 rolls Rθ3 rolls Rθ4 rolls

θ1 θ2 θ3 θ4

H
is

to
gr

am
s

, , ,{ }
STAGE 2

∈
Sequential

Rolls

θ1 θ2 θ3 θ4

µk(θ)

Fig. 1. A toy example of non-Bayesian learning with uncertain models.
One is given four dice (green, red, purple, and blue), each representing a
class or possible state of the world from a set Θ = {θ1, θ2, θ3, θ4}. Each
of the dice can be rolled a finite number of times (Rθ1 , Rθ2 , Rθ3 , Rθ4)
and the outcomes are recorded in histograms. Then, a new die is given,
corresponding to the state of the world θ∗, and one is tasked to identify it
by assigning this new die to one state from Θ from sequential rolls of the
new die.

are asked to assign this new die to one of the classes of
the observed dice in the previous stage. Clearly, if one has
an access to the outcomes of an infinite number of rolls
of the original dice set, a perfect statistical model can be
built, and the task reduces to classical hypothesis testing.
Given that one only has access to a possibly non-uniform
finite number of realizations, the built statistical models are
themselves uncertain, and such uncertainty must be taken
into account in order to select the state of the world.

The contributions of this paper are as follows: We propose
a new belief update rule that allows a network of agents
to collectively agree on the set of hypotheses with prior
evidence that is consistent with the state of the world.
Moreover, this new update rule can be implemented over
networks with time-varying and directed links, without re-
quiring doubly stochastic weights, or balanced graphs. To do
so, we proposed an uncertain likelihood ratio function that
takes into account the uncertainty generated by the finite
evidence when building the statistical models for each of the
hypothesis. We show that the proposed update rule converges
to the distributed likelihood ratio test of the true distribution
of the state of the world given the observations in the learning
stage.

Notation: Subscripts denote time indices and make use of
the letter k. Agent indices are represented as superscripts and
use the letters i or j. The i-th row and j-th column entry
of a matrix A is denoted as [A]ij . Moreover, for a sequence
of matrices {Ak} we denote Ak:t = AkAk−1 · · ·At+1At for
k ≥ t. We use node and agent interchangeably.

II. PROBLEM FORMULATION, ALGORITHM, AND
RESULTS

In this section, we describe the problem formulation of
non-Bayesian social learning with uncertain models. Then,
we present the proposed algorithm, and finally we state our
main result about the convergence of the proposed method.

Consider a group of m agents connected over a network,
with possibly time-varying and directed links, that seek to
cooperatively identify a state of the world θ∗ ∈ Θ from a
finite set of states (i.e., hypotheses) Θ = (θ1, θ2, . . . , θM).
Each agent i sequentially receives independent and iden-
tically distributed symbols {Sik} from a finite set S =
(s1, s2, . . . , sN), where at any time instant k ≥ 0, the
probability of agent i observing symbol sl ∈ S is [piθ∗]l,
thus

∑N
l=1[piθ∗]l = 1 for all i. Note that the vectors piθ∗ are

unknown to agents. Moreover, the assumption of identical
distribution is made for the observations of each agent, but in
general different agents could observe symbols with different
distributions. An agent records this information as a variable
[nik]l which counts the number of times the symbol sl has
been observed up to time k.

In order to identify the state of the world, each agent
requires a statistical model for each hypothesis θ ∈ Θ.
Traditionally, it is assumed each agent holds a family of
distributions Pi = (piθ; θ ∈ Θ), where a hypothesis θ being
the state of the world implies that piθ = piθ∗ . Thus, the
main underlying assumption is that an agent has perfect
(or dogmatic) knowledge of the statistical model of every
hypothesis. However, in this paper we relax this assumption
and incorporate uncertainty about the family of statistical
models Pi. We opt to explicitly consider that the statistical
models representing the hypotheses are obtained via a finite
set of prior experiments.

Every agent i, before starting the social learning process,
has access to a realization of a set of multinomial random
variables (Ziθ; θ ∈ Θ), where Ziθ ∼ Mutinomial(piθ, R

i
θ)

where piθ is the vector of probabilities characterizing hy-
pothesis θ and Riθ ≥ 0 is the number of independent trials,
each of which leads to a success for one of M categories.
Effectively, a realization ziθ of the random variable Ziθ
contains, at each coordinate, the number of times a particular
symbol appeared out of Riθ trials. Therefore, each agent uses
the tuples {(Ziθ), Rθ} to build its uncertain statistical model.
This process will be described later in Section III.

Agents interact over a possibly time-varying directed net-
work, represented as a sequence of graphs {Gk = (V,Ek)},
where V = (1, . . . ,m) is the set of nodes, and Ek is the
set of directed edges available at time k with (j, i) ∈ Ek
implying that node j can send information (to be defined
later) to agent i at time k. We denote as dik the out-degree
of a node i at time k, that is the number of nodes that node
i can send information to at time instant k. Moreover, we
denote N i

k ⊆ V as the subset of nodes that node i receives
information from at time k.

We propose an algorithm for the distributed cooperative
learning of the state of the world θ∗. As we will see later in

Section III, given the uncertain statistical models about the
hypothesis set, we relax the learning condition and switch
our attention to an algorithm that provides information about
how much the received information is explained by each of
the hypotheses.

Each agent i updates its belief µik(θ) on each hypotheses
θ ∈ Θ at time k, using a new symbol sik+1 , and the beliefs
received from its incoming neighbors, i.e., (µjk s.t. (j, i) ∈
Ek). Therefore, each agent i at any time instant k has access
to the tuple {sik, nik, ziθ, Riθ, µ

j
k; θ ∈ Θ, (j, i) ∈ Ek}.

We propose the following update rule:

yik+1 =
∑
j∈Nik

yjk
djk+1

, (2a)

µik+1(θ) =

 ∏
j∈Nik

µjk(θ)

y
j
k

d
j
k
+1 `iθ(s

i
k+1, n

i
k+1)

 1

yi
k+1

, (2b)

where yi0 = 1 for all i, and

`iθ(s
i
k, n

i
k) =

(
[Zθ]sik+[nik]sik

)
(M+k−1)(

Riθ+k+M−1
)

[nik]sik
. (3)

Remark 1: Algorithm 2 is inspired by [15]. However, note
that beliefs µik(θ) as beliefs, are consistent with the literature.
However, they are not a probability distribution over the
hypothesis space, and as such do not add up to one. Later in
Section III we will provide an explanation for this particular
surrogate likelihood function (3).

Assumption 1: The sequence of graphs {Gk} is B-
strongly-connected, i.e., there is an integer B ≥ 1 such that
the graph

(
V,
⋃(k+1)B−1
i=kB Ei

)
is connected for all k ≥ 0.

Next, we state our main result about the convergence
properties of the update rule 2.

Theorem 1: Let Assumption 1 hold. Then, the update rule
in 2 has the following property:

lim
k→∞

logµik(θ) =
1

m

m∑
j=1

log
Dirichlet(pjθ∗ ;Zjθ + 1)

Dirichlet(pjθ∗ ; 1)
a.s.

where Dirichlet(x;α) = 1
Beta(α)

∏
παi−1
i , and Beta(α) =

Γ(
∑M
i=1 αi)/

∏M
i=1 Γ(αi) is the multidimensional Beta func-

tion.
Theorem 1 shows that log-beliefs, generated by the up-

date rule 2 on a hypothesis θ for every agent, converge
asymptotically to the average log-likelihood ratio value of
the distribution corresponding to the state of the world, with
the prior empirical evidence counts as parameters. Note that
this average has equal weights on the contributions of each
of the agents, even-though we have not assumed the network
is balanced. Moreover, this result also indicates that even if
some agents do not have informative signals to build the
statistical models for the hypothesis set, the information is
aggregated over the network. Finally, note that if an agent
does not have access to prior evidence Ziθ its isolated belief
will be around 1 for all hypothesis. As the size of the prior
evidence increases, the belief on the wrong hypothesis goes

to zero, and the belief on the correct hypothesis converges
to a positive value. That positive value is larger for larger
amounts of prior evidence.

III. CENTRALIZED ESTIMATION WITH UNCERTAIN
MODELS

In this section, we analyze the effects of having uncertain
models, in the sense that the family of distributions (piθ; θ ∈
Θ) is not known precisely, but rather it is estimated from
the realization of the random variable Ziθ. For simplicity
of exposition, we will focus on the case of a single agent,
thus super indices will not be used. Later in Section IV, we
will analyze the dynamics of the multi-agent case which will
provide a proof for our result in Theorem 1.

Consider the vector pθ as a set of parameters to be
estimated from the realization of the multinomial random
variable Zθ. Recall that the probability mass function of the
Multinomial distribution with parameters p and n evaluated
at a point x, such that

∑
xi = n and xi is a non-negative

integer, is defined as Multinomial(x; p, n) = n!∏
xi!

∏
pxii .

Assuming a uniform Dirichlet prior on the parameters pθ,
i.e., P (pθ) = Dirichlet(pθ; 1), it follows that the posterior is

P (pθ | Zθ) = Dirichlet(pθ;Zθ+1). (4)

Now, given the posterior distribution over the set of
parameters for each of the hypotheses, one can define the sur-
rogate likelihood function for hypotheses θ as the expected
likelihood when the expectation is taken with respect to the
parameter being distributed according to (4), i.e.,

ˆ̀
θ(Sk+1|Zθ) = Eν∼P (pθ|Zθ)Pν(Sk+1)

=

∫
Pν(Sk+1)P (ν | Zθ)dν

=

∫
νSk+1

Dirichlet(ν;Zθ+1)dSM

=
[Zθ]Sk+1

+ 1

Rθ +M
, (5)

where dSM denotes integrating ν = [ν1, . . . , νM] with
respect to the (M−1) simplex. Therefore, under this con-
struction, the surrogate likelihood is effectively the empirical
distribution (or histogram) generated by the information
provided by the random variable Zθ. More importantly,
it follows from the strong law of large numbers that
limRθ→∞

ˆ̀
θ(Sk|Zθ) = [pθ]Sk , ∀θ ∈ Θ, k ≥ 1. a.s.

Figure 2 shows a geometric interpretation of the process
of defining the surrogate likelihood functions. The triangle
represents the probability simplex over the distributions of
the signals, thus, each point in the simplex is a distribution.
Initially, if no data about the hypothesis has been acquired,
both hypotheses will be in the same point in the simplex,
namely the point corresponding to the uniform distribution,
drawn as a black dot in the middle of the simplex. As Rθ1
and Rθ2 increases, the location of the surrogate likelihoods
follows a path that ends at the correct location of the
distribution for the hypothesis.

Given the assumption that Rθ1 and Rθ2 are finite, their
relative location with respect to the hypothesis θ∗ might

pθ∗=pθ2

ˆ̀
θ2(·|Zθ2)

pθ1

ˆ̀
θ1(·|Zθ1)

Fig. 2. Geometric interpretation of the learning problem with uncertain
likelihoods. The outer triangle represents the probability simplex over the
distributions of the signals Sk . The filled circle represents the location of the
hypothesis θ1, and the filled star represents the location of the probability θ2
that is also θ∗. The white filled circle represents the location of the surrogate
likelihood of hypothesis θ1 for a specific realization of Zθ1 . The white filled
star represents the location of the surrogate likelihood of hypothesis θ2 for
a specific realization of Zθ2 .

not be preserved. For example, in Figure 2, hypothesis
θ2 is the true hypothesis. However, given some particular
realizations of Zθ1 and Zθ2 , the distribution ˆ̀

θ1(·|Zθ1) could
be “closer” to pθ∗ than the distribution ˆ̀

θ2(·|Zθ2). This result
is formalized in the following proposition.

Proposition 2: Consider two finite probability distribu-
tions pθ1 and pθ2 , and their surrogate likelihood functions
ˆ̀
θ1(·|Zθ1) and ˆ̀

θ2(·|Zθ2) defined as in (5). Then, there exists
non negative integers Rθ1 and Rθ2 such that

Prob
(
DKL(pθ∗‖ˆ̀θ1(·|Zθ1)) < DKL(pθ∗‖ˆ̀θ∗(·|Zθ2))

)
> 0.

Proposition 2 can be achieved in this following example.
Suppose that the agent has collected some evidence for θ1

and the path in Fig. 2 leads the white circle to a position
in the upper half of the triangle. Then, if the agent has zero
prior evidence for θ2, the proposition is true.

One consequence of Proposition 2 is that an agent us-
ing surrogate likelihoods instead of the precise likelihood
functions may discard a true hypothesis with a non-zero
probability.

Corollary 3: Consider the following update rule, with
µ0(θ) > 0 for all θ ∈ Θ:

µk+1(θ) =
ˆ̀
θ(Sk+1|Zθ)µk(θ)∑

ν∈Θ
ˆ̀
ν(Sk+1|Zν)µk(ν)

,

where Sk ∼ pθ∗ . Then, there exists finite Rθ1 and Rθ2 such
that Prob (limk→∞ µk(θ∗) = 0) > 0.

In the next subsection, we propose a different form of
surrogate likelihood function in order to overcome the proba-
bility of erroneously discarding the correct hypothesis due to
the finiteness of the data from which the surrogate likelihoods
are constructed.

A. The Uncertain Likelihood Ratio

In order to avoid the asymptotic convergence to an erro-
neous hypothesis, as presented in Corollary 3, we propose
the following alternative to construct a surrogate likelihood
function, which we will denote as the uncertain likelihood
ratio. Initially, assume that the agent not only has access to
the most recent realization of Sk+1, but recalls the histogram
of all the signals observed so far, i.e., it has access to the
counts of how many times a symbol has appeared up to time
k+1. We will denote this count as nk+1, where [nk+1]l is
the number of times the symbol sl has been observed.

Similarly as in (5), we will proceed to define the uncertain
likelihood ratio as the posterior predictive distribution of the
likelihood of the signal when the parameter is distributed
according to the posterior distribution in (4). However, now
that we have access to nk+1, we can consider nk+1 as our
new signal, which will be the realization of a Multinomial
random variable Nk with parameters pθ∗ and k.

Therefore, we define

ˆ̀
θ(Nk+1|Zθ) = Eν∼P (pθ|Zθ)Pν(Nk+1)

=

∫
Pν(Nk+1)P (ν | Zθ)dν

=

∫
Multinomial(Nk+1; ν, k)Dirichlet(ν;Zθ+1)dSM

=
k!Γ(Rθ+M)

Γ(k+Rθ+M)

M∏
i=1

Γ([Nk+1]i+[Zθ]i+1)

[Nk+1]i!Γ([Zθ]i+1)
. (6)

Note that the surrogate likelihood in (6) is precisely a
Dirichlet-Multinomial distribution with parameters Zθ+1.
Recall that the Dirichlet-Multinomial probability mass func-
tion, with parameters α and n, is defined as as

Dirichlet-Multinomial(x;α, n) =
n!Γ(

∑
αi)

Γ(n+
∑
αi)

∏ Γ(xi+αi)

xi!Γ(αi)
.

Finally, we propose the uncertain likelihood ratio function
as the ratio between the surrogate likelihood function in (6),
and the surrogate likelihood function in (6) given no prior
evidence for the hypothesis set, i.e., Zθ = 0 or complete
uncertainty. Thus, the uncertain likelihood function for the
histogram of the signals observed up to time k+1 is defined
as

Λθ(Nk+1|Zθ) =
ˆ̀
θ(Nk+1|Zθ)
ˆ̀
θ(Nk+1|0)

=
Beta(Zθ+Nk+1+1)Beta(1)

Beta(Zθ+1)Beta(Nk+1+1)

=
Dirichlet-Multinomial(Nk+1;Zθ+1, k+1)

Dirichlet-Multinomial(Nk+1; 1, k+1)
. (7)

B. The Asymptotic Behavior of the Ratio of Dirichlet-
Multinomial Distributions

In this subsection, we derive some asymptotic properties
of the ratio between two Dirichlet-Multinomial likelihood
functions.

Initially, consider a sequence of random variables {Xk ∼
Multinomial(p, k)}, and define the random variable

Yk =
Dirichlet-Multinomial(Xk;α, n)

Dirichlet-Multinomial(Xk;β, n)
, (8)

where α = [α1, · · · , αM], and β = [β1, · · · , βM] are vectors
with strictly positive entries.

The next lemma describes the asymptotic behavior of the
random variable Yk.

Lemma 4: The random variable Yk in (8) has the follow-
ing property:

lim
k→∞

Yk = Dirichlet(p;α+1)/Dirichlet(p;β+1), a.s.
Proof: We can explicitly write the likelihood ratio as

Dirichlet-Multinomial(Xk;α, n)

Dirichlet-Multinomial(Xk;β, n)
=

Γ(
∑
αi)

Γ(
∑
βi)

Γ(k+
∑
αi)

Γ(k+
∑
βi)

M∏
i=1

Γ([Xk]i+αi)
Γ([Xk]i+βi)

Γ(αi)
Γ(βi)

.

Moreover, we can approximate the ratio of Gamma func-
tions using Stirling’s series [24], where

Γ

(
k+

M∑
i=1

αi

)/
Γ

(
k+

M∑
i=1

βi

)

= k

M∑
i=1

(αi-βi)
(

1+(

M∑
i=1

(αi−βi))(
M∑
i=1

(αi−βi)−1)/2k+O(1/k2)

)
,

and
Γ ([Xk]i+αi)

Γ ([Xk]i+βi)

= [Xk]αi−βii

(
1+

(αi−βi)(αi−βi−1)

2[Xk]i
+O([Xk]−2

i)

)
.

Therefore,∏M
i=1 Γ([Xk]i+αi)

Γ
(
k+
∑M
i=1 αi

) =
M∏
i=1

(
[Xk]i
k

)αi
·O
(

1+
1

k

)
,

and ∏M
i=1 Γ([Xk]i+βi)

Γ
(
k+
∑M
i=1 βi

) =

M∏
i=1

(
[Xk]i
k

)βi
·O
(

1+
1

k

)
.

Furthermore, it holds that
Dirichlet-Multinomial(Xk;α, k)

Dirichlet-Multinomial(Xk;β, k)

=

Γ(
∑M
i=1 αi)∏M

i=1 Γ(αi)

∏M
i=1

(
[Xk]i
k

)αi
·O
(
1+ 1

k

)
Γ(

∑M
i=1 βi)∏M

i=1 Γ(βi)

∏M
i=1

(
[Xk]i
k

)βi
·O
(
1+ 1

k

)
=

Γ(
∑M
i=1 αi)∏M

i=1 Γ(αi)

∏M
i=1

(
[Xk]i
k

)αi−1

·O
(
1+ 1

k

)
Γ(

∑M
i=1 βi)∏M

i=1 Γ(βi)

∏M
i=1

(
[Xk]i
k

)βi−1

·O
(
1+ 1

k

)
=

Dirichlet(Xk/k;α) ·O
(
1+ 1

k

)
Dirichlet(Xk/k;β) ·O

(
1+ 1

k

) .
Finally, note that by the strong law of large number it

follows that

lim
k→∞

Yk = lim
k→∞

Dirichlet(Xk/k;α) ·O
(
1+ 1

k

)
Dirichlet(Xk/k;β) ·O

(
1+ 1

k

)

=
Dirichlet(p;α)

Dirichlet(p;β)
, a.s.

It immediately follows from Lemma 4 and (7) that

lim
k→∞

Λθ(Nk|Zθ) =
Beta(1)

Beta(Zθ+1)

M∏
i=1

[pθ∗]
[Zθ]i
i , a.s.

(9)

C. An Iterative Representation of the Uncertain Likelihood
Ratio

We have defined the uncertain likelihood ratio and ana-
lyzed its asymptotic behavior. However, the random variable
Nk, which counts the realizations observed up to time k,
is not independent across the time. Clearly, the counts at
time k+1 depends on the counts at time k. This hinders
the execution of a sequential algorithm that uses the most
recent observations and the counts so far. Thus, the next
lemma writes the ratio uncertain likelihood as a product of
likelihoods.

Lemma 5: The uncertain likelihood ration in (7) can be
expressed as Λθ(Nk|Zθ) =

∏k
t=1 `θ(St, Nt), where Sk is

the symbol observed at time k, and

`θ(St, Nt) =
([Zθ]St+[Nt]St) (M+t−1)

(Rθ+t+M−1) ([Nt]St)
.

Proof: Initially, note that trivially it holds that

Λθ(Nk|Zθ) =
k∏
t=1

Λθ(Nt|Zθ)
Λθ(Nt−1|Zθ)

.

Moreover
Λθ(Nt|Zθ)

Λθ(Nt−1|Zθ)
=

Beta(Zθ+Nt+1)Beta(Nt−1+1)

Beta(Nt+1)Beta(Zθ+Nt−1+1)
.

Also, note that

Beta(Zθ+Nt+1)

Beta(Zθ+Nt−1+1)
=

∏
Γ([Zθ]St+[Nt]St+1)

Γ(Rθ+t+M)∏
Γ([Zθ]St+[Nt−1]St+1)

Γ(Rθ+t−1+M)

=
[Zθ]St+[Nt]St
(Rθ+t+M−1)

,

and

Beta(Nt+1)

Beta(Nt−1+1)
=

∏
Γ(Nit+1)

Γ(t+M)∏
Γ(Nit−1+1)

Γ(t−1+M)

=
[Nt]St

(t+M−1)
.

Note that we have used the fact that [Nt]l = [Nt−1]l for
l 6= St, otherwise, [Nt]St = [Nt−1]St + 1.

Moreover, the following result follows from Lemma 5.
Corollary 6: The random variable `iθ(St, Nt) has the fol-

lowing property: limk→∞ `iθ(Sk, Nk) = 1 almost surely.
Proof: The desired result follows from the strong law

of large numbers and the definition of `iθ(St, Nt).
With this results at hand, in the next section we prove our

main result in Theorem 1. We show that a belief update rule
based on the derived uncertain likelihood ratio will converge
to a value that is proportional to the probability of observing
the prior empirical evidence signal Zθ under the unknown
probability law of the state of the world θ∗.

IV. CONVERGENCE OF NON-BAYESIAN SOCIAL
LEARNING WITH UNCERTAIN MODELS

In this section, we provide the proof for our main result
in Theorem 1, which states that the proposed algorithm
generates a sequence of beliefs, such that the belief fn
a hypothesis converges asymptotically to the average log-
likelihood ratio of the true distribution of the observations,
given the empirical evidence for that specific hypothesis.

Initially, we recall a number of auxiliary lemmas that will
help us build the proof of Theorem 1.

Lemma 7 (Corollary 2.a in [25]): Let the graph
sequence {Gk}, with Gk = (Ek, V) be uniformly strongly
connected, and define the matrix Ak as

[Ak]ij =

{
1

djk+1
if (j, i) ∈ Ek,

0 otherwise.

Then, there is a sequence {φk} of stochastic vectors such
that, | [Ak:t]ij −φik| ≤ Cλk−t for all k ≥ t ≥ 0, for C is
a positive constant and λ ∈ (0, 1).

Lemma 8 (Corollary 2.b in [25]): Let the graph
sequence {Gk} satisfy Assumption 1. Define

δ , inf
k≥0

(
min

1≤i≤n
[Ak:01m]i

)
. (10)

Then, δ ≥ 1/mmB , and if all Gk with B = 1 are regular,
then δ = 1. Furthermore, the sequence φk from Lemma 7
satisfies φjk ≥ δ/m for all k ≥ 0, j = 1, . . . ,m.

Lemma 9 (Lemma 3.1 in [26]): Let {γk} be a scalar se-
quence. If limk→∞ γk = γ and 0 ≤ β ≤ 1, then
limk→∞

∑k
l=0 β

k−lγl = γ/(1−β).
Now, we are ready to state the proof of our main result in

Theorem 1.
Proof: [Theorem 1] It follows from (2b) that

yik+1 log
(
µik+1(θ)

)
=
∑
j∈Ni

k

yjk logµjk(θ)

djk+1
+ log `iθ(S

i
k+1, N

i
k+1)

=

m∑
j=1

[Ak]ijy
j
k logµjk(θ)+ log `iθ(S

i
k+1, N

i
k+1).

By defining the new vector variables [ϕk(θ)]i =
yik log

(
µik(θ)

)
and [Lk(θ)]i = log `iθ(S

i
k, N

i
k), it holds that

ϕk+1(θ) = Akϕk(θ)+Lk+1(θ)

= Ak:0ϕ0(θ)+

k∑
t=1

Ak:tLt(θ)+Lk+1(θ). (11)

Add and subtract Σkt=1φk1
′Lt(θ) from (11), then

ϕk+1(θ) = Ak:0ϕ0(θ)+

k∑
t=1

Ak:tLt(θ)+Lk+1(θ)

−
k∑
t=1

φk1
′Lt(θ)+

k∑
t=1

φk1
′Lt(θ)

=

k∑
t=1

Dk:tLt(θ)+Lk+1(θ)+

k∑
t=1

φk1
′Lt(θ),

where we have assumed that without loss of generality that
µi0(θ) = 1 for all i ∈ V , and Dk:t = Ak:t−φk1′.

Similarly, note that yik+1 = [Dk:01]i+φ
i
km.

Therefore, we have that

logµik+1(θ) =

k∑
t=1

[Dk:tLt(θ)]i+[Lk+1(θ)]i+
t−1∑
τ=1

φik1
′Lt(θ)

[Dk:01]i+φikm
,

and by adding and subtracting we obtain

logµik+1(θ) =

k∑
t=1

[Dk:tLt(θ)]i+[Lk+1(θ)]i+
k∑
t=1

φik1
′Lt(θ)

[Dk:01]i+φikm

− 1

m

k∑
t=1

1′Lt(θ)+
1

m

k∑
t=1

1′Lt(θ)

=

m

(
k∑
t=1

[Dk:tLt(θ)]i+[Lk+1(θ)]i+
k∑
t=1

φik1
′Lt(θ)

)
m ([Dk:01]i+φikm)

−

(
[Dk:01]i+φ

i
km
)(k∑

t=1

1′Lt(θ)

)
m ([Dk:01]i+φikm)

+
1

m

k∑
t=1

1′Lt(θ)

=

k∑
t=1

[Dk:tLt(θ)]i+[Lk+1(θ)]i

[Dk:01]i+φikm
−

[Dk:01]i

(
k∑
t=1

1′Lt(θ)

)
m ([Dk:01]i+φikm)

+
1

m

k∑
t=1

1′Lt(θ).

Thus,∣∣∣∣ logµik+1(θ)− 1

m

k∑
t=1

1′Lt(θ)

∣∣∣∣
=

∣∣∣∣
k∑
t=1

[Dk:tLt(θ)]i+[Lk+1(θ)]i

[Dk:01]i+φikm
−

[Dk:01]i

(
k∑
t=1

1′Lt(θ)

)
m ([Dk:01]i+φikm)

∣∣∣∣
≤ 1

δ

k∑
t=1

∣∣∣∣[Dk:tLt(θ)]i

∣∣∣∣+1

δ

∣∣∣∣[Lk+1(θ)]i

∣∣∣∣
+

1

mδ

∣∣∣∣[Dk:01]i

(
k∑
t=1

1′Lt(θ)

)∣∣∣∣
≤ 1

δ

k∑
t=1

λk−t‖Lt(θ)‖1+
1

δ

∣∣∣∣[Lk+1(θ)]i

∣∣∣∣+1

δ
λk

k∑
t=1

‖Lt(θ)‖1

where we have used Lemma 7 to bound Dk:t and ob-
tain [Dk:01]i + φikm ≥ δ. Note that, δ ≥ 1/mmB from
Lemma 8.

Also, note that [Lk+1(θ)]i is upper bounded, thus, it
follows from Lemma 9, that limk→∞

∑k
t=1 λ

k−t‖Lt(θ)‖1 =
0, almost surely, and limk→∞[Lk+1(θ)]i = 0, almost surely.

Furthermore, note that [Lk+1(θ)]i is upper bounded, thus,

lim
k→∞

λk
k∑
t=1

‖Lt(θ)‖1 = 0 a.s.

Finally, it follows from the Lemma 5 that

lim
k→∞

1

m

k∑
t=1

1′Lt(θ) = lim
k→∞

log

 m∏
j=1

Λθ(N
j
k |Z

j
θ)1/m

The desired result follows continuity of the logarithm
function and (9).

V. NUMERICAL ANALYSIS

In this section, we validate the convergence properties of
our proposed algorithm. Assume the agents are connected
over the graph shown in Figure 3 [16], which has been
shown to be a pathological case of a graph that satisfies
Assumption 1. The agents’ receive a private signal at each
time step drawn from K = 2 categories and their goal is to
infer the θ ∈ Θ = {θ1, θ2} that best describes the ground
truth θ∗ = θ2.

Fig. 3. A directed graph with large mixing time.

Agents collect prior evidence Riθ for each hypothesis
within two categories, Low, i.e. Riθ ∈ [0, 100], and High, i.e.
Riθ ∈ [1000, 10000]. Then, the agents observe measurements
drawn from the distribution piθ∗ and update their belief as
in (2). We run N = 10 Monte Carlo simulations and the
average difference between the agents beliefs and (9) is
evaluated.

Figures 4(a) and 4(b) shows the result for 10, 20, and 30
agents with both Low and High evidence. Figure 4(a) shows
that when the agents have a low amount of prior evidence, the
same decreasing behavior is seen by all network sizes once
the uncertain likelihood updates (3) converge to a value close
to 1. This also shows that the transition time for this to occur
increases as the number of agents increases, which supports
recent theoretical evidence that the network influence is
transient in nature [27]. Furthermore, as the agents evidence
increases, the rate of convergence dramatically increases and
becomes exponential. Figure 4(b) provides the same result,
except this is for the ground truth hypothesis. Here, the lower
the amount of evidence results in a faster rate of convergence
than a high amount of prior evidence. This is because as the
amount of prior evidence increases, (9) becomes larger and
it takes longer for the beliefs to reach the convergence point.

The beliefs of a hypothesis that are consistent with the
state of the world will converge to a value greater than 0,
while the beliefs of the remaining hypotheses diverge to −∞.
This result is seen in Table I for all network sizes with high
evidence. While, when the agents have low prior evidence,
the beliefs of the state of the world converge to a value close
to 0 as predicted. Thus, as the amount of evidence increases,
the agents become more certain of the hypothesis that best
describes the state of the world.

VI. CONCLUSIONS

We proposed a new algorithm for non-Bayesian social
learning over time-varying directed graphs and uncertain

100 101 102 103 104 105 106

Time k

10-10

10-5

100

105

1010

10 Agents Low Evidence

10 Agents High Evidence

20 Agents Low Evidence

20 Agents High Evidence

30 Agents Low Evidence

30 Agents High Evidence

(a) θ1 6= θ∗ convergence

100 101 102 103 104 105 106

Time k

10-10

10-5

100

105

1010

10 Agents Low Evidence

10 Agents High Evidence

20 Agents Low Evidence

20 Agents High Evidence

30 Agents Low Evidence

30 Agents High Evidence

(b) θ2 = θ∗ convergence

Fig. 4. Simulation results of Algorithm (2) for the graph in Fig. 3.

TABLE I
AVERAGE POINT OF CONVERGENCE, I.E. 1

m

∑m
i=1 log

(
µiT (θ)

)
Prior Evidence

Low High
θ1 θ2 θ1 θ2

10 Agents -8.28 0.96 -645 3.55
20 Agents -8.61 1.03 -659 3.42
30 Agents -8.05 1.05 -648 3.46

models. Contrary to existing literature, we analyze the effects
of uncertainty in the statistical models of the hypotheses
when they are built from empirical and finite evidence. We
show that classical algorithms will select wrong hypotheses
with non-zero probability. The proposed algorithm is shown
to converge to the average value of a log-likelihood ratio
between the unknown distribution of the state of the world
given the empirical evidence. Moreover, doubly stochastic
weights are not required, and the proposed method converges
to the mean of the log-likelihood ratios among all the nodes
in the network. Future work requires a study of convergence
rates and the effects on uncertainty in the non-asymptotic
performance of cooperative learning with uncertain models.
Furthermore, it is necessary to study the explicit effects of
the network topology on the convergence rates.

REFERENCES

[1] A. Jadbabaie, P. Molavi, A. Sandroni, and A. Tahbaz-Salehi, “Non-
Bayesian social learning,” Games and Economic Behavior, vol. 76,
no. 1, pp. 210–225, 2012.

[2] P. Molavi, A. Tahbaz-Salehi, and A. Jadbabaie, “A Theory of Non-
Bayesian Social Learning,” Econometrica, vol. 86, no. 2, pp. 445–490,
2018.

[3] L. G. Epstein, J. Noor, and A. Sandroni, “Non-Bayesian learning,” The
BE Journal of Theoretical Economics, vol. 10, no. 1, 2010, article 3.

[4] D. Acemoglu, M. A. Dahleh, I. Lobel, and A. Ozdaglar, “Bayesian
learning in social networks,” The Review of Economic Studies, vol. 78,
no. 4, pp. 1201–1236, 2011.

[5] D. Gale and S. Kariv, “Bayesian learning in social networks,” Games
and Economic Behavior, vol. 45, no. 2, pp. 329–346, 2003.

[6] A. Nedić, A. Olshevsky, and C. A. Uribe, “Fast convergence rates for
distributed non-Bayesian learning,” IEEE Transactions on Automatic
Control, vol. 62, no. 11, pp. 5538–5553, Nov 2017.

[7] S. Shahrampour, A. Rakhlin, and A. Jadbabaie, “Distributed detection:
Finite-time analysis and impact of network topology,” IEEE Transac-
tions on Automatic Control, vol. 61, no. 11, pp. 3256–3268, Nov 2016.

[8] A. Nedić, A. Olshevsky, and C. A. Uribe, “Distributed learning for
cooperative inference,” arXiv preprint arXiv:1704.02718, 2017.

[9] ——, “A tutorial on distributed (non-Bayesian) learning: Problem,
algorithms and results,” in 55th IEEE Conference on Decision and
Control (CDC), Dec 2016, pp. 6795–6801.

[10] C. A. Uribe and A. Jadbabaie, “On Increasing Self-Confidence in Non-
Bayesian Social Learning over Time-Varying Directed Graphs,” arXiv
preprint arXiv:1812.09819, 2018.

[11] S. Shahrampour and A. Jadbabaie, “Exponentially fast parameter
estimation in networks using distributed dual averaging,” in 52nd IEEE
Conference on Decision and Control (CDC), Dec 2013, pp. 6196–
6201.

[12] A. Lalitha, A. Sarwate, and T. Javidi, “Social learning and distributed
hypothesis testing,” in 2014 IEEE International Symposium on Infor-
mation Theory, June 2014, pp. 551–555.

[13] M. A. Rahimian, S. Shahrampour, and A. Jadbabaie, “Learning
without recall by random walks on directed graphs,” in 2015 54th
IEEE Conference on Decision and Control (CDC), Dec 2015, pp.
5538–5543.

[14] L. Su and N. H. Vaidya, “Non-Bayesian learning in the presence
of Byzantine agents,” in International Symposium on Distributed
Computing. Springer, 2016, pp. 414–427.

[15] A. Nedić, A. Olshevsky, and C. A. Uribe, “Network independent
rates in distributed learning,” in Proceedings of the American Control
Conference, 2016, pp. 1072–1077.

[16] ——, “Distributed Gaussian learning over time-varying directed
graphs,” in 2016 50th Asilomar Conference on Signals, Systems and
Computers, Nov 2016, pp. 1710–1714.

[17] D. Dubois and H. Prade, “Possibility theory,” in Computational
complexity. Springer, 2012, pp. 2240–2252.

[18] P. Walley, “Statistical inferences based on a second-order possibility
distribution,” International Journal of General System, vol. 26, no. 4,
pp. 337–383, 1997.

[19] L. A. Zadeh et al., “Fuzzy sets,” Information and control, vol. 8, no. 3,
pp. 338–353, 1965.

[20] G. Shafer, A mathematical theory of evidence. Princeton university
press, 1976, vol. 42.

[21] P. Smets and R. Kennes, “The transferable belief model,” Artificial
intelligence, vol. 66, no. 2, pp. 191–234, 1994.

[22] P. Walley, “Inferences from multinomial data: learning about a bag of
marbles,” Journal of the Royal Statistical Society. Series B (Method-
ological), pp. 3–57, 1996.

[23] A. Jøsang, Subjective Logic: A formalism for reasoning under uncer-
tainty. Springer Publishing Company, Incorporated, 2018.

[24] A. Laforgia and P. Natalini, “On the asymptotic expansion of a
ratio of gamma functions,” Journal of Mathematical Analysis and
Applications, vol. 389, no. 2, pp. 833 – 837, 2012.

[25] A. Nedić and A. Olshevsky, “Distributed optimization over time-
varying directed graphs,” IEEE Transactions on Automatic Control,
vol. 60, no. 3, pp. 601–615, 2015.

[26] S. S. Ram, A. Nedić, and V. V. Veeravalli, “Distributed stochastic
subgradient projection algorithms for convex optimization,” Journal
of Optimization Theory and Applications, vol. 147, no. 3, pp. 516–
545, 2010.

[27] A. Olshevsky, I. C. Paschalidis, and A. Spiridonoff, “Robust
asynchronous stochastic gradient-push: asymptotically optimal and
network-independent performance for strongly convex functions,”
arXiv preprint arXiv:1811.03982, 2018.

Non-Bayesian Social Learning with Gaussian Uncertain Models

James Z. Hare, César A. Uribe, Lance Kaplan, and Ali Jadbabaie

Abstract— Non-Bayesian social learning theory provides a
framework for distributed inference of a group of agents in-
teracting over a social network by sequentially communicating
and updating beliefs about the unknown state of the world
through likelihood updates from their observations. Typically,
likelihood models are assumed known precisely. However, in
many situations the models are generated from sparse training
data due to lack of data availability, high cost of collec-
tion/calibration, limits within the communications network,
and/or the high dynamics of the operational environment.
Recently, social learning theory was extended to handle those
model uncertainties for categorical models. In this paper, we
introduce the theory of Gaussian uncertain models and study
the properties of the beliefs generated by the network of agents.
We show that even with finite amounts of training data, non-
Bayesian social learning can be achieved and all agents in
the network will converge to a consensus belief that provably
identifies the best estimate for the state of the world given the
set of prior information.

I. INTRODUCTION

The setting of non-Bayesian social learning [1] often
assumes that there is a network of boundedly rational agents
who are receiving private observations, communicating, and
updating beliefs about the model that best represents the
underlying truth. In this framework, the beliefs are assumed
to be sufficient statistics for what individuals know about the
state of the world, and the update is known to suffer from
imperfect recall [2], which significantly simplifies combining
the agents beliefs as compared to Bayesian social learning
theory, at the expense of “double counting” information [3]–
[6].

The literature of non-Bayesian social learning theory typ-
ically studies various social learning rules that allows the
agents to sequentially combine and update their beliefs in
a manner that aggregates all of the information available in
the network. Much of the learning rules developed consider
that each agent combines their neighbors’ beliefs using a
weighted arithmetic [7]–[9] or a geometric average [1],
[10]. Then, the beliefs are updated by scaling the combined
beliefs by the likelihood of their new observation given
that the particular model is the ground truth. Variations of
these learning rules have been proposed to handle fixed
and time-varying graphs [11], weakly-connected graphs [12],
[13], increasing self-confidence [14], compact hypotheses
sets [15], and adversarial attacks [16], [17].

This research was sponsored by the DARPA Lagrange, Vannevar Bush
Fellowship, and OSD LUCI programs.

J.Z.H. and L.K. ({james.z.hare.civ, lance.m.kaplan.civ}@mail.mil) are
with the U.S. Army Research Laboratory, Adelphi, MD. C.A.U and A.J.
are with the Laboratory for Information and Decision Systems (LIDS), and
the Institute for Data, Systems, and Society (IDSS), Massachusetts Institute
of Technology, Cambridge, MA ({cauribe,jadbabai}@mit.edu).

There are several variations of these social learning rules
proposed in the literature which aim to improve the learning
rate of the agents. These include using one-step memory [18],
observation reuse [17], [19], and most recently the min-
rule [20]. Although the current literature has made significant
advances in this problem, they all assume that the statistical
models used to evaluate the likelihoods are known precisely.
This assumption requires that the agents collect a large set
of training exemplars to ensure that the estimated models
provide an accurate representation. However, in many situa-
tions, the amount of training data available may be limited or
too expensive to collect, requiring that the agents incorporate
their uncertainty into the likelihood models.

Modeling uncertainty has been previously studied in the
fields of possibility theory [21], probability intervals [22],
and belief functions [23], [24] by extending probability the-
ory and expressing the likelihood model parameters within
a fixed interval. Other approaches follow a Bayesian frame-
work by modeling the uncertainty in the likelihood model pa-
rameters as a second-order probability density function [25],
[26], which is typically a conjugate prior of the underlying
statistical model. Then, the uncertain likelihood model can
be computed as the posterior predictive distribution [27].

Recently, the concept of uncertain models for observa-
tions drawn from an unknown multinomial distribution was
proposed and was included in a social learning setting
[28], which was later extended to time-varying directed
graphs [11]. This technique proposed an uncertain likelihood
ratio as the likelihood model to test the consistency of
the prior evidence (training data) with the measurement
sequence (testing data) [11], [28]. The uncertain likelihood
ratio is defined as a standard likelihood ratio test, except
as a ratio of the posterior predictive distribution conditioned
on the prior evidence to the posterior predictive distribu-
tion conditioned on zero prior evidence (or non-informative
prior). In this regard, the beliefs generated by the social
learning rules are evaluated on their own merit. Applying
this approach in the limiting condition when the amount
of prior evidence grows unboundedly, the agents accurately
infer the ground truth model and achieve the same result as
traditional non-Bayesian social learning theory. Additionally,
when the amount of prior evidence is finite, uncertain models
generalize the problem allowing for a measure of confidence
in the inference results.

In this work, we expand upon the idea of uncertain models
[28] to address the scenario when measurements are real-
valued and drawn from a Gaussian distribution. We derive
the general Gaussian uncertain model for situations where
the mean and precision are unknown and implement this

ar
X

iv
:1

91
0.

11
25

1v
1

 [
st

at
.M

E
]

 2
4

O
ct

 2
01

9

model into a standard non-Bayesian social learning rule.
We found that the beliefs of every agent converge to the
centralized solution, which is a geometric average of their
individual uncertain likelihood ratios. Furthermore, as the
agents’ amount of prior evidence grows unboundedly, the
beliefs with Gaussian uncertain models are the same as tra-
ditional non-Bayesian social learning theory. This indicates
that Gaussian uncertain models can successfully be used as
a general inference test for any amount of prior evidence.

The remainder of this paper is organized as follows. First,
in Section II we present the problem, our proposed algorithm,
and the main results. Then, we derive the Gaussian uncertain
models in Section III and the uncertain likelihood update
utilized in the social learning rule in Section IV. Then, we
outline the process of proving the main results, in Section V.
Finally, we provide a numerical analysis in Section VI to
empirically validate our results and conclude the paper in
Section VII.

Notation: Bold symbols represent a vector/matrix, while
a non-bold symbol represents its element. The indexes i and
j represent agents and t represents time. We abbreviate the
terminology independent identically distributed as i.i.d.. We
use [A]ij to represent the entry of matrix A′s ith row and
jth column. The empty set is denoted as ∅. The Gaussian
distribution is

N (ω|µ, λ−1) =

√
λ√
2π
e−

λ(ω−µ)2
2 , (1)

and the Gaussian-gamma distribution is

NG(x, λ|µ, κ, α, β) =
βα
√
κ

Γ(α)
√

2π
λα−

1
2 e−βλe−

κλ(x−µ)2
2 .

(2)

We denote the Kullback-Liebler (KL) divergence as

DKL(p(x)‖q(x)) = −
∫
p(x) log

(
p(x)

q(x)

)
dx, (3)

where p(x) and q(x) are two continuous probability distri-
butions over x ∈ R.

II. PROBLEM FORMULATION, SOCIAL LEARNING RULE,
AND MAIN RESULT

A. Hypotheses, signals, and prior evidence

Consider a network of m agents connected over a social
network who are trying to infer the unknown state of
the world θ∗ from a finite set of states (or hypotheses)
Θ = {θ1, ..., θm}. At each time step t ≥ 1, we as-
sume that each agent i collects an i.i.d. private observation
ωit ∈ R sampled from an unknown Gaussian distribution
Piθ∗ = N (·|µiθ∗ , λ−1iθ∗) with mean µiθ∗ and precision λiθ∗ =
1/σ2

iθ∗
1. We denote the set of measurements received up to

time t as Ωi1:t, where the measurements are independent
across the agents.2 The overall goal of the agents is to

1It is possible to generalize this to within Rn, however, this condition is
out of the scope of this paper and will be considered as future work

2In general, each agent may have a different measurement model or
sensing capability from one another. This can result in µiθ∗ and λiθ∗
varying between agents.

Fig. 1. Geometric interpretation of uncertain models: The outer square
represents a continuous probability space of the distributions of signals ωit.
The solid square and star represent the true distribution for hypothesis θ1 and
θ2 respectively, while the open square and star are the uncertain distributions
for θ1 and θ2, where θ2 is θ∗. The open circle in the center represents
the model of complete ignorance. The uncertain distribution is a mixture
between P (·|∅) and Pθ , which depends on the amount of prior evidence
collected. Zero prior evidence causes the location of P̂ (·|rθ) to be P̂ (·|∅),
while an infinite amount of prior evidence causes it to be located at Pθ .
Then, as measurements are received, the distributions P̂ (·|rθ1), P̂ (·|rθ2),
and P̂ (·|∅) traverse through the probability space until they eventually
collapse on Pθ∗ with an infinite amount of measurements. We define the
uncertain likelihood ratio Λθ = P̂ (·|rθ)/P̂ (·|∅) as our consistency test,
where a hypothesis with prior evidence consistent with the ground truth
will have a shorter trajectory from P̂ (·|rθ) to Pθ∗ than P̂ (·|∅) to Pθ∗ .

collectively agree on the hypothesis that best matches the
ground truth distribution.

Traditionally, each agent undergoes a training phase where
they collect a sufficiently large amount of labeled training
data to accurately estimate the parameters µiθ and λiθ of
the distribution Piθ = N (·|µiθ, λ−1iθ) for each hypothesis θ.
This results in a precisely known statistical model for each
θ. However, this work considers that the agents collect a
varying amount of prior evidence (training data) for each
hypothesis, which may lead to inaccurate estimates of the
parameters, requiring uncertain statistical models.

Consider that an agent i has access to a hypothesis θ ∈ Θ
and collects Riθ ≥ 0 drawn from the distribution Piθ =
N (·|µiθ, λ−1iθ), where µiθ and λiθ are unknown. This results
in a set of Riθ training samples riθ = {rikθ}∀k∈{1,...,Riθ}
which are then used to estimate the parameter µiθ and λ−1iθ .

Instead of adopting a frequentist’s interpretation and sim-
ply estimating the parameters by the sample mean and
variance, this work implements a Bayesian approach that
exploits conjugate distributions to estimate the posterior
distribution of µ and λ conditioned on the prior evidence
riθ. Since the family of statistical models is assumed to
be Gaussian with unknown mean and variance, a natural
conjugate distribution is the Gaussian-gamma distribution
[29]. Then, we estimate the uncertain likelihood using the
parameters posterior distribution by predicting the likelihood
of the measurement sequence give the prior evidence, i.e.,
P̂ (Ωi1:t|riθ), as the posterior predictive distribution [27]. An
example of the uncertain likelihood is shown in Fig. 1.

Typically in hypothesis testing [29], the likelihoods are
normalized over the set of hypotheses and the hypothesis
with the maximum likelihood is selected as the ground truth.
This can also be thought of as the likelihood distribution
closest to the ground truth in the probability space, see
Fig. 1. However, in the uncertain case, the posterior pre-
dictive distribution for each hypothesis is computed with

a varying amount of prior evidence making them incom-
mensurable [28]. Thus, we normalize the uncertain like-
lihood by another posterior predictive distribution of the
measurement sequence, except here we use a noninformative
Gaussian-gamma prior [30] having zero prior evidence, i.e.,
P̂ (Ωi1:t|riθ = ∅). This uncertain likelihood ratio Λiθ =
P̂ (·|riθ)/P̂ (·|∅) acts as our uncertain statistical model and
is derived in Section III. The uncertain likelihood ratio is a
consistency test between the prior evidence and the measure-
ment sequence. It quantifies the amount of evidence to accept
or reject the hypothesis that a model θ is distinguishable
from the ground truth θ∗. The set of hypotheses that are
indistinguishable from the ground truth for the i-th agent is

Θ∗i = {θ|N (·|µi,θ, λ−1i,θ) = N (·|µi,θ∗ , λ−1i,θ∗) ∀θ ∈ Θ}.

We can visually interpret the uncertain likelihood ratio
in Fig. 1. As an agent collects measurements, the uncertain
distributions P̂ (·|rθ1), P̂ (·|rθ2), and P̂ (·|∅) inch their way
closer to Pθ∗ , where their rate depends on the amount of
prior evidence collected. The number of time steps that the
uncertain distribution is closer/further to Pθ∗ than P̂ (·|∅)
governs much greater than 1 or closer to 0 the uncertain
likelihood ratio will be, respectively. Thus, our consistency
test, presented in Section III, accepts/rejects hypotheses with
shorter/longer trajectories of P̂ (·|rθ) → Pθ∗ than P̂ (·|∅) →
Pθ∗ , respectively.

B. Social Learning Rule

Next, we propose the distributed inference algorithm for
a group of agents interacting over a social network. Initially
at time t = 0, each agent i constructs a belief µi0(θ) = 1
for each hypothesis θ ∈ Θ, where each belief represents an
aggregated uncertain likelihood ratio discussed above and
presented in Section III. Then, for each time step t ≥ 1,
each agent sequentially communicates their beliefs to their
neighbors, receives a new observation, and updates their
beliefs using a social learning rule.

We assume that the agents interact over a network modeled
as an undirected graph G = (M, E),3 whereM = {1, ...,m}
is the set of agents and E is the set of edges between agents.
If agents i and j can communicate their beliefs to each other,
then (i, j) ∈ E . We denote agent i’s set of neighbors as
Mi = {j|(j, i) ∈ E ,∀j ∈ M} and each edge is assumed to
be weighted and modeled as an adjacency matrix A, where
[A]ij > 0 if (i, j) ∈ E .

During each time step t ≥ 1, each agent i has access to the
information ψit(θ) = {ωit+1, riθ, µit(θ), {µjt(θ)}∀j∈Mi}
for each hypothesis θ. Then, agent i updates their belief
µit+1(θ) using the following update rule:

µit+1(θ) = `iθ(ωit+1|Ωi1:t)
∏
j∈Mi

µjt(θ)
[A]ij , (4)

where the product on the right hand side of (4) represents a
geometric average of their neighbors beliefs and `iθ(ωit+1)

3Note that the results herein hold for directed graphs as long as the the
graph satisfies Assumption 1.

is the Gaussian uncertain likelihood update defined as4

`iθ(ωit+1) =
Γ(αRiθ+t+1)Γ(αt)β

αt+1

t+1 β
αRiθ+t
Riθ+t

Γ(αt+1)Γ(αRiθ+t)β
αt
t β

αRiθ+t+1

Riθ+t+1

· (κt+1κRiθ+t)
1/2

(κtκRiθ+t+1)1/2
. (5)

For simplicity of presentation, we postpone the explicit
definition of the uncertain likelihood update parameters to
Sections III and IV in (9), (13), and (15). Note that κ
and α represent a count of the data items, while β is a
centralized sum of squares for the set of these data items.
This is a closed form expression of a ratio of predictive
posterior distributions, where the numerator is the expected
value of N (ωit+1|µ, λ−1) taken over the Gaussian-gamma
distribution conditioned on the prior evidence riθ and the
measurement sequence Ωi1:t and the denominator is the
expected value of N (ωit+1|µ, λ−1) taken over the Gaussian-
gamma distribution conditioned on only the measurement
sequence Ωi1:t.

This function is designed such that the product of Gaussian
uncertain likelihood updates

∏t+1
τ=1 `iθ(ωiτ) is equal to the

uncertain likelihood ratio at time t+1. Therefore, the beliefs
µit+1(θ) represent an aggregated geometric average of all of
the agents individual uncertain likelihood ratios.

Next, we provide some assumptions that allow us to
quantify where the beliefs generated by the update rule (4)
converge asymptotically with Gaussian uncertain models.

Assumption 1: The graph G and matrix A are such that:
(a) A is doubly-stochastic with [A]ij = aij > 0 for i 6= j if

and only if (i, j) ∈ E.
(b) A has positive diagonal entries, aii > 0 for all i ∈ V .
(c) The graph G is connected.

Assumption 1 states that the adjacency matrix is ergordic,
i.e., aperiodic and irreducible, and is a common assumption
in the literature [18]. This allows every agent to communicate
their beliefs throughout the entire network.

Assumption 2: There is at least one agent that can distin-
guish any θ 6= θ∗ so that ∩i∈MΘ∗i = {θ∗}.
Assumption 2 guarantees that the collective group of agents
can determine θ∗. As a consequence of Theorem 2 below,
these agents can determine θ∗ with infinite prior evidence
(ie., precise models) as t→∞.

C. Main Results

Now we are ready to present the properties of the beliefs
generated using the update rule given by (4).

Theorem 1: Let Assumption 1 hold. Then, the beliefs
generated using the update rule (4) have the following
property:

lim
t→∞

µit(θ) =

 m∏
j=1

Λ̃jθ

 1
m

(6)

4Here, we have simplified the notation and will only provide the condi-
tioned measurements Ωi1:t when necessary.

for all i ∈M with probability 1 where

Λ̃jθ =
N (rjθ|µjθ∗ , λ−1jθ∗)

P (rjθ)
, (7)

is agent j’s asymptotic uncertain likelihood ratio and

P̂ (rjθ) =
Γ(αRjθ)β

α0
0 (2π)−

Rjθ
2

Γ(α0)β
αRθ
Rjθ

(
κ0
κRjθ

) 1
2

, (8)

is the posterior predictive distribution of the prior evidence
conditioned on a noninformative prior with parameters

κRjθ = κ0 +Rjθ, αRjθ = α0 +
Rjθ
2
,

βRjθ = β0 +
Rjθ
2

(
s2jθ +

κ0(r̄jθ − µ0)2

κRjθ

)
, (9)

r̄jθ = (
∑Rjθ
k=1 rjkθ)/Rjθ, s2jθ = (

∑Rjθ
k=1(rjkθ − r̄jθ)2)/Rjθ,

µ0 = 0, α0 = 1, β0 = 1, and κ0 = 1.
Theorem 1 states that the beliefs converge to the geometric

average of the agents’ asymptotic uncertain likelihood ratio,
which is the likelihood of the prior evidence conditioned on
the true parameters, normalized by the total probability of the
prior evidence. When the agents have a finite amount of prior
evidence, the beliefs converge to a finite value, i.e. µit(θ) ∈
(0,∞), where a value much greater than 1 indicates that the
prior evidence is consistent with the ground truth. However,
when the amount of prior evidence grows unboundedly, the
agents beliefs have the following properties.

Theorem 2: Let Assumption 1 hold and every agents’
amount of prior evidence grows unboundedly. Then, the
belief generated using the update rule (4) have the following
properties:

lim
t→∞,Riθ→∞

µit(θ)→∞, if θ ∈ Θ∗j ∀j ∈M, and

lim
t→∞,Riθ→∞

µit(θ) = 0, if ∃j ∈M s.t. θ /∈ Θ∗j , (10)

with probability 1 and in probability respectively.
Given Assumption 2, when the agents’ likelihood models

use an infinite amount of prior evidence, the agents’ beliefs
for a hypothesis that is not the ground truth will converge to
zero via Theorem 2. Likewise, the belief in the ground truth
hypotheses goes diverges to infinity. An outline of the proofs
for Theorem 1 and Theorem 2 are presented in Section V.

Given that the above properties hold for update rule (4),
the agents can use their beliefs to determine if there is
sufficient evidence to accept or reject a hypothesis θ. As
the amount of prior evidence goes to infinity, only the
ground truth hypothesis will be accepted while the others are
rejected, which is consistent with traditional non-Bayesian
social learning theory.

III. GAUSSIAN UNCERTAIN MODELS

In this section, we derive the Gaussian uncertain likelihood
ratio, discuss the uncertain likelihood ratio test, and present
the asymptotic properties of the uncertain likelihood ratio.

A. Uncertain Likelihood Ratio

As stated in Section II, each agent i has collected a set of
prior evidence riθ for each hypothesis θ ∈ Θ to estimate the
distribution of µ and λ in the training phase. This is achieved
by computing the posterior conjugate distribution of µ and
λ conditioned on the prior evidence riθ as follows.

f(µ, λ|riθ) =
1

P̂ (riθ)
N (riθ|µ, λ)NG (µ, λ|φ0)

= NG (µ, λ|φRiθ) , (11)

whereNG (µ, λ|φ0) is a noninformative conjugate prior with
parameters φ0 = {µ0, κ0, α0, β0}5 and P̂ (riθ) is the total
probability of the prior evidence provided in (8); the posterior
distribution parameters in φRiθ = {µRiθ , κRiθ , αRiθ , βRiθ}
are µRiθ = (κ0µ0 +Riθ r̄iθ)/(κ0 +Riθ) and (9).

The parameters of the prior distribution NG (µ, λ|φ0) are
ideally chosen to be noninformative. A common approach in
the literature is to use Jeffreys prior [31], which suggests to
set µ0 = 0, κ0 = 0, α0 = 0, β0 = 0 to assign a uniform
distribution over the parameter space. However, this would
lead to an improper posterior conjugate prior and cannot be
chosen. In this work, we chose to utilize µ0 = 0, κ0 = 1,
α0 = 1, and β0 = 1 based on an empirical analysis that
found that smaller values of κ0, α0, and β0 cause the beliefs
for hypothesis θ 6= θ∗ at time t = 1 to jump to a value
� 1, requiring a larger amount of prior evidence to reject
the hypothesis. A detailed analysis of the parameter effects
on the overall inference will be studied as a future work.

Next, the agent collects a sequence of measurements
Ω1:t = {ω1, ..., ωt} in the testing phase and computes the
uncertain likelihood. Following the derivation in [32], the
uncertain likelihood is modeled as the posterior predictive
distribution of the measurement sequence conditioned on the
prior evidence,

P̂ (Ωi1:t|riθ) =

∫ ∞
0

∫
R
N (Ωi1:t|µ, λ)f(µ, λ|riθ)dµdλ

=
Γ(αRiθ+t)β

αRiθ
Riθ

(2π)−t/2κ
1/2
Riθ

Γ(αRiθ)β
αRiθ+t
Riθ+t

κ
1/2
Riθ+t

, (12)

where the prior parameters are provided in (9) and

µRiθ+t =
κRiθµRiθ + tω̄it

κRiθ + t
, κRiθ+t = κ0 +Riθ + t

αRiθ+t = α0 +
Riθ + t

2
,

βRiθ+t = βRiθ +
sit − tω̄2

it

2
+
κRiθ t(ω̄it − µRiθ)2

2κRiθ+t
(13)

with sit = sit−1 + ω2
it and ω̄it = (ω̄it−1(t − 1) + ωit)/t

s.t. si0 = 0 and ω̄i0 = 0. This model can be thought of
as the expected value of the likelihood of the measurement
sequence N (Ωi1:t|µ, λ) taken over the prior distribution
f(µ, λ|riθ), i.e., P̂ (Ωi1:t|riθ) = Ef(µ,λ|riθ)[N (Ωi1:t|µ, λ)].

5With an abuse of notation, throughout this work we will use φ to
represent the parameters of the Gaussian-gamma distribution.

When the agent has Riθ < ∞ and the number of ob-
servations grows unboundedly, the distribution P̂ (Ωi1:t|riθ)
eventually becomes Piθ∗ with probability 1 due to the strong
law of large numbers, as seen in Fig. 1. While when the
amount of prior evidence grows unboundedly, P̂ (·|riθ) =
N (·|µiθ, λ−1iθ) with probability 1 and remains a fixed point
in Fig. 1 ∀t ≥ 1.

As shown in [28] and stated in Section II, hypotheses with
varying amounts of prior evidence are incommensurable and
must be evaluated on their own merit. Thus, the uncertain
likelihood (12) is normalized by the model of complete igno-
rance, i.e., the uncertain likelihood with zero prior evidence,
to form the uncertain likelihood ratio,

Λiθ(t) =
P̂ (Ωi1:t|riθ)

P̂ (Ωi1:t|riθ = ∅)

=
Γ(α0)Γ(αRiθ+t)β

αt
t β

αRiθ
Riθ

Γ(αt)Γ(αRiθ)β
α0
0 β

αRiθ+t
Riθ+t

(
κRiθκt
κRiθ+tκ0

) 1
2

, (14)

where

κt = κ0 + t, αt = α0 +
t

2
,

βt = β0 +
sit − tω̄2

it

2
+
κ0t(ω̄it − µ0)2

2κt
. (15)

The model of complete ignorance represents the ex-
pected value of N (Ωi1:t|µ, λ) taken over a noninfor-
matative Gaussian-gamma distribution, i.e., P̂ (Ωi1:t|riθ =
∅) = ENG(µ,λ|φ0)[N (Ωi1:t|µ, λ)]. Just like the uncer-
tain likelihood, P̂ (Ωi1:t|riθ = ∅) eventually collapses to
N (·|µiθ∗ , λ−1iθ∗) with probability 1 as seen in Fig. 1.

Then, the agent can infer if the measurement sequence is
consistent with the prior evidence collected for hypothesis θ
by utilizing an uncertain likelihood ratio test based on the
following insights:

1) If Λθ(t) converges to a value above one, there is
evidence to accept that θ is consistent with θ∗. Higher
values indicate more evidence to accept θ as θ∗.

2) If Λθ(t) converges to a value below one, there is
evidence to reject that θ is θ∗. Lower values indicate
more evidence to reject θ as θ∗.

3) If Λθ(t) converges to a value near one, there is not
enough evidence to accept or reject θ as θ∗.

As a practical matter, one can define a threshold υ > 1 so
that the hypothesis is deemed accepted, rejected or unsure if
Λθ(t) ≥ υ, Λθ(t) < 1/υ and 1/υ ≤ Λθ(t) < υ, respectively.
The exact choice of thresholds is application dependent to
balance the number of false positives and false negatives.

B. Properties of the uncertain likelihood ratio

Next, we provide the properties of the Gaussian uncertain
likelihood ratio that are necessary for our main results.

Lemma 3: The uncertain likelihood ratio (14) of hypoth-
esis θ converges to Λ̃iθ with probability 1 as t→∞, where
Λ̃iθ is the asymptotic uncertain likelihood ratio (7).

Proof: First, we note that the denominator in (14) is
actually the total probability of the measurement sequence,

i.e.,

P̂ (Ωi1:t) =

∫ ∞
0

∫
R
N (Ωi1:t|µ, λ−1)NG (µ, λ|φ0) dµdλ.

Then, utilizing Bayes rule, we can express (14) as

Λiθ(t) =

∫ ∞
0

∫
R

NG(µ, λ|Ωi1:t)N (riθ|µ, λ−1)

P̂ (riθ)
dµdλ,

where we used the fact that

NG(µ, λ|Ωi1:t) =
N (Ωi1:t|µ, λ−1)NG (µ, λ|φ0)

P̂ (Ωi1:t)
.

Then, as the number of measurements grows unboundedly,
the means of NG(µ, λ|Ωi1:t) are limt→∞ E[µ] = µiθ∗ ,
and limt→∞ E[λ] = limt→∞(αt)/(βt) = λiθ∗ , while the
variances are limt→∞ var(µ) = limt→∞(βt)/(κt(αt−1)) =
0, and limt→∞ var(λ) = limt→∞(αt)/(β

2
t) = 0 with prob-

ability 1 due to the strong law of large numbers. This means
that NG(µ, λ|Ω1:t) collapses to a Dirac-delta function cen-
tered at the means as time goes to infinity, i.e., δ(µ−µiθ∗ , λ−
λiθ∗). Thus, limt→∞ Λiθ(t) = N (riθ|µiθ∗ , λ−1iθ∗)/P̂ (riθ)
with probability 1.

This result then leads to the following corollary when the
amount of prior evidence collected grows unboundedly.

Corollary 4: When the amount of prior evidence grows
unboundedly, the uncertain likelihood ratio (14) of hypothe-
sis θ has the following property:

lim
Riθ→∞

Λ̃iθ →∞, if µiθ = µiθ∗ and λiθ = λiθ∗ , and

lim
Riθ→∞

Λ̃iθ = 0, if either µiθ 6= µiθ∗ or λiθ 6= λiθ∗ . (16)

Proof: First, (14) can be rewritten as

lim
t→∞,Riθ→∞

Λiθ(t) = lim
Riθ→∞

NG(µiθ∗ , λiθ∗ |riθ)
NG(µiθ∗ , λiθ∗ |φ0)

(17)

where the right hand side was achieved by multiplying and
dividing (7) by NG(µiθ∗ , λiθ∗ |φ0) and applying Bayes rule.
Then, following the approach in the proof of Lemma 3,
limRiθ→∞NG(µiθ∗ , λiθ∗ |φRiθ)→ δ(µiθ−µiθ∗ , λiθ−λiθ∗)
with probability 1 due to the strong law of large numbers.
Then, since NG(µiθ∗ , λiθ∗ |φ0) is a strictly positive distri-
bution ∀µ and λ, Λiθ(t) will diverge to ∞ if µiθ = µiθ∗
and λiθ = λiθ∗ , or converge to 0 if either µiθ 6= µiθ∗ or
λiθ 6= λiθ∗ .

Lemma 3 and Corollary 4 provide insights into where an
individual agents uncertain likelihood ratio converges, which
can be used to design υ in the uncertain likelihood ratio test.

Furthermore, Corollary 4 can visually be interpreted in
Fig. 1, where as Riθ → ∞, the uncertain distributions
P̂ (·|rθ1) and P̂ (·|rθ2) are fixed points located at the solid
shapes and P̂ (·|∅) continues to follow its trajectory. For θ2
the expected Λiθ(t) will be greater than 1 for all t since it
is always closer to Pθ∗ than P̂ (·|∅), causing it to diverge to
∞. Whereas for θ1, there is always going to be a finite time
T where ∀t > T , P̂ (·|∅) is closer to Pθ∗ than Pθ1 . Thus,
the expected Λiθ(t) will be less than 1 and will eventually
converge to 0.

IV. GAUSSIAN UNCERTAIN LIKELIHOOD UPDATE

In the previous section, the Gaussian uncertain model was
presented where we assumed that an agent i has received
the entire measurement sequence up to time t, i.e., Ωi1:t.
However, in the social setting, each agent receives a new
measurement ωit at each time step t, requiring a recursive
formulation of the Λiθ(t) that allows for new information.
Particularly, we can express the uncertain likelihood at each
time t as follows:

Λiθ(t) =
t∏

τ=1

Λiθ(τ)

Λiθ(τ − 1)
=

t∏
τ=1

`iθ(ωiτ). (18)

The uncertain likelihood update `iθ(ωit) ensures that the
agents beliefs are an aggregated mixture of each agents
Λiθ(t) ∀i ∈ M. Next, we discuss the properties of the
uncertain likelihood update `iθ(ωit) that enable our main
result.

Lemma 5: The uncertain likelihood update has the follow-
ing properties with probability 1:

1) limt→∞ `iθ(ωit) = 1 when Riθ <∞, and
2) limt→∞,Riθ→∞ `iθ(ω|Ωi1:t−1) = N (ω|µiθ,λiθ)

N (ω|µiθ∗ ,λiθ∗)
.

Proof: We first prove condition 1. Generally, the
uncertain likelihood update (5) can be written as follows.

`iθ(ωit) =

∫∞
0

∫
R
N (ωit|µ,λ)N (Ωi1:t−1|µ,λ)NG(µ,λ|φRiθ)dµdλ∫∞

0

∫
RN (Ωi1:t−1|µ,λ)NG(µ,λ|φRiθ)dµdλ∫∞

0

∫
R
N (ωit|µ,λ)N (Ωi1:t−1|µ,λ)NG(µ,λ|φ0)dµdλ∫∞

0

∫
RN (Ωi1:t−1|µ,λ)NG(µ,λ|φ0)dµdλ

=

∫∞
0

∫
RN (ωit|µ, λ)NG(µ, λ|φRiθ+t−1)dµdλ∫∞

0

∫
RN (ωit|µ, λ)NG(µ, λ|φt−1)dµdλ

,

(19)

where the first line is achieved due to i.i.d. measurements,
while the second line is an application of Bayes’ rule. As
illustrated in the proof of Lemma 3, as the measurement
sequence grows unboundedly, limt→∞NG(µ, λ|φt−1) =
δ(µ − µiθ∗ , λ − λiθ∗) and limt→∞NG(µ, λ|φRiθ+t−1) =
δ(µ − µiθ∗ , λ − λiθ∗) with probability 1 since Riθ < ∞.
Thus,

lim
t→∞

`iθ(ω|Ωi1:t−1) =
N (ω|µiθ∗ , λiθ∗)
N (ω|µiθ∗ , λiθ∗)

= 1.

Next, we prove condition 2 when the amount of prior
evidence grows unboundedly. Following the same logic as
above, limRiθ→∞NG(µ, λ|riθ) = δ(µ − µiθ, λ − λiθ) with
probability 1. Then, the `iθ(ω) simplifies to

lim
Riθ→∞

`iθ(ωit) =
N (ωit|µiθ, λiθ)∫∞

0

∫
RN (ωit|µ, λ)NG(µ, λ|φt−1)dµdλ

.

(20)

Thus, as the number of private signals grows unboundedly,
the uncertain likelihood update converges to

lim
t→∞,Riθ→∞

`iθ(ω|Ωit−1) =
N (ω|µiθ, λiθ)
N (ω|µiθ∗ , λiθ∗)

, (21)

with probability 1 for any ω ∈ R.
Corollary 6: When Riθ →∞ and riθ is drawn from the

ground truth distribution, i.e., µiθ = µiθ∗ and λiθ = λiθ∗ ,

then the uncertain likelihood update converges to 1 with
probability 1 as t→∞.

These properties are critical in proving that the beliefs of
every agent converge (or diverge). When the agents have a
finite amount of prior evidence, the combined beliefs are
updated using `iθ(ωit) = 1, which turns the social learning
rule (4) into a consensus geometric average. Whereas, when
the agents prior evidence grows unboundedly, we can express
the beliefs as a function of the expected value of the log-
uncertain likelihood update captured in the following lemma.

Lemma 7: The expected value of the log-uncertain like-
lihood update when the agent i’s amount of prior evidence
grows unboundedly has the following properties,

E[log(`iθ(ωit))] = DKL

(
N (·|µiθ∗ , λ−1iθ∗)‖P̂ (·|Ωi1:t−1)

)
−

DKL

(
N (·|µiθ∗ , λ−1iθ∗)‖N (·|µiθ, λ−1iθ))

)
,

(22)

where

P̂ (·|Ωi1:t−1) =

∫ ∞
0

∫
R
N (ω|µ, λ)NG(µ, λ|φ0)dµdλ (23)

is a student-t distribution [32] and

lim
t→∞

E[log(`iθ(ωit))] = −DKL(N (·|µiθ∗ , λ−1
iθ∗)‖N (·|µiθ, λ−1

iθ))).

(24)
Proof: First, the proof of Lemma 5 showed that Riθ →

∞, the uncertain likelihood update is

`iθ(ωit) =
N (ωit|µiθ, λ−1iθ)

P̂ (ωit|Ωi1:t−1)
,

with probability 1. Then, the expected value of the log-
uncertain likelihood update is

E[log(`iθ(ωit))] =∫
R
N (ω|µiθ∗ , λ−1iθ) log

(
N (ω|µiθ, λ−1iθ)

P̂ (ω|Ωi1:t−1)

)
dω. (25)

After adding and subtracting
N (ω|µiθ∗ , λ−1iθ) log(N (ω|µiθ∗ , λ−1iθ)) inside the integral,
we achieve

E[log(`iθ(ω))] = DKL(N (·|µjθ∗ , λ−1jθ∗)‖P̂ (·|Ωi1:t−1))−
DKL(N (·|µjθ∗ , λ−1jθ∗)‖N (·|µjθ, λ−1jθ))).

Then, as t → ∞, P̂ (·|Ωi1:t−1) converges to a Guassian
distribution N (·|µiθ∗ , λ−1iθ∗) with probability 1 due to the
strong law of large numbers. Thus, our desired result is
achieved since

lim
t→∞

DKL(N (·|µjθ∗ , λ−1jθ∗)‖P̂ (·|Ωi1:t−1)) = 0. (26)

Lemma 7 indicates that as time t be-
comes very large, `iθ(ω) behaves as
exp(−DKL(N (·|µiθ∗ , λ−1iθ∗)‖N (·|µiθ, λ−1iθ)) + ε) for
some ε > 0, where ε → 0 as t → ∞. This means that
if DKL(N (·|µiθ∗ , λ−1iθ∗)‖N (·|µiθ, λ−1iθ)) > ε, then the
expected beliefs will decrease exponentially based on the
KL divergence. This result is necessary to prove Theorem 2.

Finally, we provide the final property of the uncertain
likelihood update that is necessary to prove our main result.

Lemma 8: The uncertain likelihood update is finite and
lower bounded by a positive value with probability 1, i.e.,
`iθ(ωit) > 0 and finite ∀t with probability 1, for any t ≥ 0,
and any realization ωit and i ∈M.

Proof: First, for a finite t and Riθ, we note that `iθ(ωit)
(19) is a ratio of posterior predictive distribution, which are
continuous functions, strictly positive ∀ωit ∈ R, and proper.
Then, when Riθ → ∞ and t is finite, `iθ(ωit) becomes
(20), which has the same properties since the numerator is a
Gaussian distribution. Furthermore, in the limiting condition
when both t→∞ and Riθ →∞, `iθ(ω) becomes a ratio of
Gaussian distributions with the same properties (21). Thus,
in all three scenarios, `iθ(ω) can never be 0 or ∞ since the
distributions are proper and strictly positive.

V. OUTLINE OF THE PROOFS OF THEOREMS 1 AND 2

In this section, we will outline how to prove the main
results. However, we will not explicitly show the details of
the proofs due to space requirements.

A. Sketch of Theorem 1 Proof

To prove convergence, we must show a t → ∞
‖ log(µt(θ)) − ((

∑m
j=1 log(Λ̃jθ))/m)11′‖ → 0 with

probability 1, where µt(θ) is a vector of the agents
beliefs and 1 is a vector of all ones. Noting that
log(µt(θ)) =

∑t
τ=0 At−τ log(`θ(ωτ)) and using (18),

we can bound this absolute difference as
∑t
τ=0 ‖At−τ −

(11′)/m‖‖ log(`θ(ωτ))‖, where `iθ(ωτ) is a vector of the
individual uncertain likelihood updates. Noting that as t →
∞, log(`iθ(ωt))→ 0 and ‖At−(11′)/m‖ <

√
2mλt, where

λ < 1 is the second largest eigenvalue of the adjacency
matrix, we can directly use Lemma 3.1 in [33] to achieve our
desired result. Thus, the beliefs converge to the centralized
solution.

B. Sketch of Theorem 2 Proof

Starting with the condition θi = θ∗i for all i ∈ M, we
first show that the log-beliefs diverge to infinity following
the same logic as in the sketch of Theorem 1 proof above.
Using the fact that the uncertain likelihood ratio diverges to
Λiθ →∞ according to Corollary 4; the uncertain likelihood
update converges to `iθ(ω) = 1 according to Corollary 6
and is finite according to Lemma 8, we can follow the same
process as above to achieve the desired result.

For the condition θi 6= θ∗i for at least one agent i,
we first expand the log-belief equation log(µt(θ)) =∑t
τ=0 At−τ log(`iθ(ωt)) into a sum of three terms,∑T1

τ=0 At−τ log(`iθ(ωτ)),
∑t−T2

τ=T1+1 At−τ log(`iθ(ωτ)),
and

∑t
τ=t−T2

At−τ log(`iθ(ωτ)). We know that because
log(`iθ(ωit)) is finite according to Lemma 8, the first and
third terms are finite. Then, we can pick T1 and T2 large
enough such that | log(`iθ(ωiT1

))− E[log(`iθ(ω))]| < ε and
‖At−τ − (11′)/m‖ < ε for some ε > 0. Then, using the
law of large numbers, we upper bound the second term by
(t − T1 − T2)(1

m

∑m
i=1 E[log(`iθ(ω))] + εB) where B > 0

(a) θ1 = θ∗ (b) θ2 6= θ∗

10
-1

10
0

Fig. 2. Evolution of beliefs updated using (4) with 30 agents connected
in a directed cycle graph with self-loops.

is finite and E[log(`iθ(ω))] is the negative KL divergence
between θ and θ∗. Since ε can be made arbitrarily small
by picking larger T ’s, this upper bound goes to −∞ as
t→∞. Then, since the exponential function is continuous,
the beliefs converge to 0.

VI. SIMULATION STUDY

In this section, we empirically validate the convergence
properties presented in Theorems 1 and 2. We simulate
a network of |M| ∈ [10, 20, 30] agents connected in an
directed cycle graph with self-loops such that the weight on
each edge is 0.5. The agents have a finite set of hypotheses
Θ = {θ1, θ2}, where the true parameters for each hypothesis
are µiθ1 = 0, λiθ1 = 0.5, µiθ2 = 0, and λiθ2 = 0.4 ∀i ∈ M
so that θ∗ = θ1. At each time step t ≥ 1, each agent receives
a measurement drawn from the ground truth distribution with
mean µiθ∗ = 0 and precision λiθ∗ = 0.5 ∀i ∈ M. In
the training phase, the amount of prior evidence collected
by each agent is randomly chosen within three categories,
Low Evidence with Riθ ∈ [0, 100], High Evidence with
Riθ ∈ [103, 104], and Infinite Evidence where we set Riθ
to a very large number. Then, the network is simulated for
T = 106 time steps with the belief update rule (4).

First, in Fig. 2, we present the evolution of beliefs for each
agent, category of evidence, and hypothesis. Additionally,
the dotted lines represent the beliefs point of convergence,
i.e., (

∏m
j=1 Λ̃jθ)

1
m , present in Theorem 1. As seen, the

amount of prior evidence directly effects the beliefs point
of convergence. When the prior evidence is low, the beliefs
converge to a value near 1 since their initialized uncertain
likelihood model is close to the model of complete ignorance.
Then, as the amount of evidence increases, the uncertain
likelihood model becomes closer to the truth distribution
of the hypothesis, causing the beliefs to converge to a
larger or smaller value. Furthermore, as the evidence grows
unboundedly, the beliefs of θ1 trend toward ∞, while the
beliefs of θ2 converge to 0, as presented in Theorem 2.

Fig. 2 also indicates that the beliefs are converging to
(
∏m
j=1 Λ̃jθ)

1
m . To further validate this result, we simulated

the network of agents with a fixed amount of prior ev-
idence within each of the three categories for 50 Monte
Carlo simulation runs, where during each run, a new set
of measurements were drawn by each agent. Then, we
computed the average log-difference between the beliefs and
the centralized solution as seen in Fig. 3. The speed of

10
0

10
2

10
4

10
6

10
-2

10
0

A
v
g
.
L
o
g
-D

if
fe

re
n
c
e

10 Agents High Ev.

20 Agents High Ev.

30 Agents High Ev.

10 Agents Low Ev.

20 Agents Low Ev.

30 Agents Low Ev.

(a) θ1 = θ∗

10
0

10
2

10
4

10
6

10
-2

10
0

10
2

A
v
g
.
L
o
g
-D

if
fe

re
n
c
e

(b) θ2 6= θ∗

Fig. 3. The ensemble average difference between the log-beliefs
log(µit(θ)) and the log-centralized solution (

∑m
j=1 log(Λ̃jθ))/m over

the m ∈ {10, 20, 30} agents and 50 Monte Carlo runs.

convergence seems relatively unaffected by the number of
agents. On the other hand, as the amount of prior evidence
increases, the log-difference is larger at a given value of t
because the converged values are larger/smaller for θ1/θ2.
Also, it takes longer to burn off the effects of the larger
prior evidence. Still, the log-difference continues to decay
as t increases, indicating convergence.

VII. CONCLUSION AND FUTURE WORK

In this work, we explored the properties of non-Bayesian
social learning with Gaussian uncertain models, where the
amount of prior evidence collected to estimate the mean
and variance of the statistical models may vary between 0
and ∞. We built upon the concept of multinomial uncertain
models [28] and have concluded that the Gaussian and
multinomial uncertain models have the same underlying
properties that allow a group of social agents to perform
distributed inference. The main difference between the two
approaches is that the uncertain likelihood update and the
beliefs point of convergence differs. However, this difference
does not influence the learning process.

For future work, we seek to understand the noninformative
prior parameters and identify values that enhance inference
decisions. We also plan to extend the analysis to other
parametric distributions for real-valued measurements and
understand for what family of distributions the convergence
properties still hold. Finally, we plan to consider non-
parametric distributions.

REFERENCES

[1] A. Jadbabaie, P. Molavi, A. Sandroni, and A. Tahbaz-Salehi, “Non-
Bayesian social learning,” Games and Economic Behavior, vol. 76,
no. 1, pp. 210–225, 2012.

[2] P. Molavi, A. Tahbaz-Salehi, and A. Jadbabaie, “A theory of non-
Bayesian social learning,” Econometrica, vol. 86, no. 2, pp. 445–490,
2018.

[3] D. Gale and S. Kariv, “Bayesian learning in social networks,” Games
and Economic Behavior, vol. 45, no. 2, pp. 329–346, 2003.

[4] D. Acemoglu, M. A. Dahleh, I. Lobel, and A. Ozdaglar, “Bayesian
learning in social networks,” The Review of Economic Studies, vol. 78,
no. 4, pp. 1201–1236, 2011.

[5] Y. Kanoria and O. Tamuz, “Tractable Bayesian social learning on
trees,” IEEE Journal on Selected Areas in Communications, vol. 31,
no. 4, pp. 756–765, 2013.

[6] M. A. Rahimian, A. Jadbabaie, and E. Mossel, “Complexity of
Bayesian belief exchange over a network,” in IEEE Conference on
Decision and Control. IEEE, 2017, pp. 2611–2616.

[7] K. R. Rad and A. Tahbaz-Salehi, “Distributed parameter estimation
in networks,” in IEEE Conference on Decision and Control. IEEE,
2010, pp. 5050–5055.

[8] M. A. Rahimian, P. Molavi, and A. Jadbabaie, “(non-) Bayesian
learning without recall,” in IEEE Conference on Decision and Control.
IEEE, 2014, pp. 5730–5735.

[9] A. Lalitha, T. Javidi, and A. D. Sarwate, “Social learning and
distributed hypothesis testing,” IEEE Transactions on Information
Theory, vol. 64, no. 9, pp. 6161–6179, 2018.

[10] S. Shahrampour and A. Jadbabaie, “Exponentially fast parameter
estimation in networks using distributed dual averaging,” in IEEE
Conference on Decision and Control. IEEE, 2013, pp. 6196–6201.

[11] C. A. Uribe, J. Z. Hare, L. Kaplan, and A. Jadbabaie, “Non-Bayesian
social learning with uncertain models over time-varying directed
graphs,” arXiv preprint arXiv:1909.04255, 2019.

[12] H. Salami, B. Ying, and A. H. Sayed, “Social learning over weakly
connected graphs,” IEEE Transactions on Signal and Information
Processing over Networks, vol. 3, no. 2, pp. 222–238, 2017.

[13] ——, “Belief control strategies for interactions over weakly-connected
graphs,” arXiv preprint arXiv:1801.05479, 2018.

[14] C. A. Uribe and A. Jadbabaie, “On increasing self-confidence in non-
Bayesian social learning over time-varying directed graphs,” in 2019
American Control Conference. IEEE, 2019, pp. 3532–3537.

[15] A. Nedić, A. Olshevsky, and C. A. Uribe, “Distributed learning for
cooperative inference,” arXiv preprint arXiv:1704.02718, 2017.

[16] J. Hare, C. Uribe, L. Kaplan, and A. Jadbabaie, “On malicious agents
in non-Bayesian social learning with uncertain models,” in ISIF/IEEE
International Conference on Information Fusion, 2019.

[17] L. Su and N. H. Vaidya, “Defending non-Bayesian learning against
adversarial attacks,” Distributed Computing, pp. 1–13, 2018.

[18] A. Nedić, A. Olshevsky, and C. A. Uribe, “Fast convergence rates for
distributed non-Bayesian learning,” IEEE Transactions on Automatic
Control, vol. 62, no. 11, pp. 5538–5553, 2017.

[19] M. Bhotto and W. P. Tay, “Non-Bayesian social learning with observa-
tion reuse and soft switching,” ACM Transactions on Sensor Networks,
vol. 14, no. 2, p. 14, 2018.

[20] A. Mitra, J. A. Richards, and S. Sundaram, “A new approach to dis-
tributed hypothesis testing and non-Bayesian learning: Improved learn-
ing rate and Byzantine-resilience,” arXiv preprint arXiv:1907.03588,
2019.

[21] D. Dubois and H. Prade, “Possibility theory,” in Computational
complexity. Springer, 2012, pp. 2240–2252.

[22] P. Walley, “Statistical inferences based on a second-order possibility
distribution,” International Journal of General System, vol. 26, no. 4,
pp. 337–383, 1997.

[23] G. Shafer, A mathematical theory of evidence. Princeton university
press, 1976, vol. 42.

[24] P. Smets and R. Kennes, “The transferable belief model,” Artificial
intelligence, vol. 66, no. 2, pp. 191–234, 1994.

[25] P. Walley, “Inferences from multinomial data: learning about a bag of
marbles,” Journal of the Royal Statistical Society. Series B (Method-
ological), pp. 3–57, 1996.

[26] A. Jøsang, Subjective Logic: A formalism for reasoning under uncer-
tainty. Springer Publishing Company, Incorporated, 2018.

[27] D. B. Rubin et al., “Bayesianly justifiable and relevant frequency
calculations for the applied statistician,” The Annals of Statistics,
vol. 12, no. 4, pp. 1151–1172, 1984.

[28] J. Z. Hare, C. A. Uribe, L. Kaplan, and A. Jadbabaie, “Non-
Bayesian social learning with uncertain models,” arXiv preprint
arXiv:1909.09228, 2019.

[29] M. H. DeGroot, Optimal statistical decisions. John Wiley & Sons,
2005, vol. 82.

[30] A. Gelman et al., “Prior distributions for variance parameters in
hierarchical models (comment on article by browne and draper),”
Bayesian analysis, vol. 1, no. 3, pp. 515–534, 2006.

[31] H. Jeffreys, The theory of probability. OUP Oxford, 1998.
[32] K. P. Murphy, “Conjugate Bayesian analysis of Gaussian distribution,”

The University of British Columbia, Tech. Rep., 2007.
[33] S. S. Ram, A. Nedić, and V. V. Veeravalli, “Distributed stochastic

subgradient projection algorithms for convex optimization,” Journal
of optimization theory and applications, vol. 147, no. 3, pp. 516–545,
2010.

1

Non-Bayesian Social Learning
with Uncertain Models

James Z. Hare*, César A. Uribe*, Lance Kaplan Fellow, IEEE, Ali Jadbabaie Fellow, IEEE

Abstract—Non-Bayesian social learning theory provides a
framework that models distributed inference for a group of
agents interacting over a social network. In this framework,
each agent iteratively forms and communicates beliefs about an
unknown state of the world with their neighbors using a learning
rule. Existing approaches assume agents have access to precise
statistical models (in the form of likelihoods) for the state of the
world. However in many situations, such models must be learned
from finite data. We propose a social learning rule that takes into
account uncertainty in the statistical models using second-order
probabilities. Therefore, beliefs derived from uncertain models
are sensitive to the amount of past evidence collected for each
hypothesis. We characterize how well the hypotheses can be tested
on a social network, as consistent or not with the state of the
world. We explicitly show the dependency of the generated beliefs
with respect to the amount of prior evidence. Moreover, as the
amount of prior evidence goes to infinity, learning occurs and is
consistent with traditional social learning theory.

Index Terms—non-Bayesian Social Learning, Uncertainty, Dis-
tributed Inference, Social Networks

I. INTRODUCTION

The theory of Non-Bayesian Social Learning [1] has gained
increasing attention over the past few years as a scalable
approach that models distributed inference of a group of agents
interacting over a social network. Individually, each agent in
the network may not be able to infer the true state of the
world. Also, agents may only observe a small fraction of the
total information, leading to conflicting beliefs. Additionally,
the agent’s measurement process or sensing modalities may
lead to ambiguous decisions, to further hinder the inference
problem. Thus, non-Bayesian social learning theory provides
a framework that allows for heterogeneous data aggregation,
enabling every agent in the network to form a consensus belief
on the true state of the world.

In this framework, each agent repeatedly forms and commu-
nicates their beliefs about an unknown state of the world with
their neighbors using a social learning rule and the likelihood
of a new observation conditioned on predefined statistical
models. The social learning rule assumes bounded rationality,
i.e., the beliefs of the agent’s neighbors are sufficient statis-
tics, also known as imperfect recall [2], which considerably

J. Hare and L. Kaplan are with the Signal and Image processing branch
of the US Army Research Laboratory, Adelphi, MD 20783 USA (e-mail:
james.z.hare31@gmail.com, lance.m.kaplan@us.army.mil). C.A. Uribe and A.
Jadbabaie are with the Laboratory for Information and Decision Systems,
and the Institute for Data, Systems, and Society, Massachusetts Institute
of Technology, Cambridge, MA 02139 USA (email: cauribe@mit.edu, jad-
babai@mit.edu). This research was sponsored by a Vannevar Bush Fellowship
and OSD LUCI programs.

*JZH and CAU contributed equally.

simplifies computing the joint beliefs. Calculating the joint
beliefs does not require knowledge of the network structure,
inter-dependencies, or historical beliefs of every agent in
the network as in Bayesian social learning theory [3]–[6].
Furthermore, imperfect recall has been shown to guarantee the
agents’ beliefs converge to the global Bayesian result almost
surely [1].

One of the major assumptions in the current literature,
is that the statistical models of each hypothesis are known
precisely. This assumption requires that the agents collect a
sufficiently large set of labeled training data to accurately
model the parameters of the statistical models. However, in
some situations, (e.g. data is too expensive/impossible to
collect or the measurement process is imprecise) the agents
may only receive labeled data for a subset of states, or an
insufficient amount of training data, which leads to uncertain
model parameters.

In this work, we present a new non-Bayesian social learning
method that takes into account uncertainties in the statistical
models (i.e., hypotheses or likelihood functions). Classically,
inferences are made by normalizing the statistical models over
the set of hypotheses. In the uncertain case, the amount of
prior evidence for each hypothesis may vary, causing the
uncertain models to change significantly, making them incom-
mensurable. We propose a generalized model that reflects the
amount of prior evidence collected. We build up our results
from the concept of uncertain likelihood ratios for decision
making under uncertainty [7], [8]. This allows us to evaluate
the consistency of the prior evidence with the observation
sequence to judge each hypothesis on its own merit. We
study the convergence properties of the proposed method
for two standard social aggregating rules, log-linear [2] and
DeGroot [1]. We show that when the agents have a finite
amount of prior evidence, the agents’ beliefs asymptotically
converge to a finite value between zero and infinity, which
represents the consistency of the hypothesis with respect to
the ground truth. Furthermore, we show that we can exactly
quantify the point of convergence for update rules based on
log-linear aggregation. Finally, we show that as the amount
of prior evidence grows unboundedly, the beliefs of every
hypothesis inconsistent with the ground truth converge to zero.
This indicates that learning is possible with uncertain models
and is consistent with classical non-Bayesian social learning
theory.

The remainder of this paper is organized as follows. First,
in Section II we present a review of the current literature in
non-Bayesian social learning theory and uncertainty modeling.
Then, we describe the problem and main results in Section

ar
X

iv
:1

90
9.

09
22

8v
2

 [
cs

.A
I]

 2
7

Se
p

20
19

2

III. Next, we derive the uncertain statistical models in Section
IV. In Section V, we implement the uncertain models into
the log-linear update rule and formally prove the main result.
Then in Section VI, we study the properties of the DeGroot-
style update rule with the uncertain likelihood ratio. Finally,
we provide a numerical analysis in Section VII to empirically
validate our results and conclude the paper in Section VIII.

Notation: Bold symbols represent a vector/matrix, while a
non-bold symbol represents its element. We use the indexes 𝑖
and 𝑗 to represent agents, 𝑡 to constitute the time step, and 𝑘
to index the category. We use [A]𝑖𝑗 to represent the entry of
matrix A’s 𝑖th row and 𝑗th column. We denote 𝑋

𝑃→ 𝑌 to
represent that the sequence 𝑋 converges in probability to 𝑌 .
Furthermore, we abbreviate the terminology almost surely by
a.s. and independent identically distributed as i.i.d..

II. LITERATURE REVIEW

A. Non-Bayesian Social Learning

Much of the learning algorithms developed in the literature
have been derived using distributed optimization strategies
for a group of agents, which typically utilize gradient-decent
methods [9]. These approaches construct their decentralized
algorithm using a consensus strategy [10]–[12] or a diffusion
strategy [13]–[16] to ensure that the agents learn the true
state. At the same time, non-Bayesian social learning methods
[1] were developed to perform distributed inference of a true
state using a DeGroot-style [17] (arithmetic average) learning
rule, where it has been shown in [18] that the Bayesian
learning approach is linked to the distributed optimization
framework. Since then, this learning rule has been studied
in strongly-connected and weakly-connected graphs which
characterized the beliefs rate of convergence [19] and the
effects of influential agents on the resulting beliefs [20],
respectively. Furthermore, this rule has been identified as a
boundary condition that ensures learning [2].

The DeGroot-style learning rule was then extended by a
stream of papers that studied a geometric average learning
rule known as the log-linear rule [21]–[25]. These works found
that the agents will converge to the “Bayesian Peer Influence”
heuristic [26] in finite time for fixed graphs [2], [23], time-
varying undirected graphs [27], and time-varying directed
graphs [24], [28]. Much of the focus has been on developing
learning rules that improve the convergence rate of the beliefs
[24], [28]. This has lead to the development of the log-linear
learning rule with one-step memory [22], [27], observation
reuse [29], and the accumulation of all observations [30].
However, the common assumption in the literature is that
the likelihood functions are known precisely. Thus, this paper
studies the Log-linear and DeGroot-style learning rules with
uncertain models.

B. Uncertainty Models

Modeling the uncertainty in statistical models has been
approached from many different philosophies, including pos-
sibility theory [31]–[33], probability intervals [34]–[36], and
belief theory [37], [38]. These approaches extend traditional

probability calculus to encompass uncertainty into the model
parameters. This was then extended to the theory of subjective
logic [7], which constructs a subjective belief of the model that
can be mapped into a second-order probability distribution.

Second-order probability distributions [39], [40] are typi-
cally modeled as the conjugate prior of the first-order distri-
bution, which does not complicate the overall analysis and
allows for a reduction in uncertainty as more information
becomes available. In particular, an example of a second-
order distribution is the Dirichlet distribution who’s shape
is governed by the amount of prior evidence collected. This
has led to the development of the imprecise Dirichlet process
[31], [34], [36], which allows the likelihood parameters to be
modeled within upper and lower probability bounds.

From a Bayesian point of view, this approach was also
studied by constructing the likelihood based on the posterior
predictive distribution [8], [41]. This lead to many approaches
on how to correctly construct the prior distribution to provide
non-informative information and allow the posterior distri-
butions to be data-dominated [42] (see [43] for a detailed
review). However, these studies did not consider the problem
of developing a prior based on the amount of prior information
available. In this work we utilize the Bayesian point of view
which computes the likelihood based on the posterior pre-
dictive distribution, while borrowing concepts from subjective
logic to model the prior Dirichlet distribution.

III. PROBLEM FORMULATION, ALGORITHMS AND
RESULTS

A. Signals, Hypotheses, and Uncertain Models

Consider a network of 𝑚 agents interacting over a social
network, who are trying to collectively infer and agree on the
unknown state of the world 𝜃* ∈ Θ, where Θ = {𝜃1, ..., 𝜃𝑆}
is the set of possible states of the world. The agents gain
information about the state 𝜃* via a sequence of realizations
of an i.i.d. random variable conditioned on the state of the
world being 𝜃*. Thus, given such observations, the agents seek
to identify a hypothesis (i.e., a distribution for the random
variable generating the observations), that best explains the
observations and therefore the state of the world.

Each agent 𝑖 seeks to infer the underlying state of the
world 𝜃* by sequentially collecting independent private signals
{𝜔𝑖𝑡}𝑡≥1, with 𝜔𝑖𝑡 ∈ Ω = {1, . . . ,𝐾} and 𝐾 > 2 possible
mutually exclusive outcomes, where the probability of observ-
ing an outcome 𝑘 ∈ Ω is 𝜋𝑘𝑖𝜃* . Moreover, an agent keeps track
of these realizations via a histogram n𝑖𝑡 = {𝑛𝑖1𝑡, ..., 𝑛𝑖𝐾𝑡},
s.t.
∑︀𝐾

𝑘=1 𝑛𝑖𝑘𝑡 = 𝑡 and 𝑛𝑖𝑘𝑡 is the number of occurrences of
category 𝑘 up to time 𝑡.

The vector n𝑖𝑡 is a realization of 𝑡 draws from a multinomial
distribution with parameters 𝜋𝑖𝜃* . We call this distribution
𝑃𝑖𝜃* . However, our main assumption is that agents do not
have a precise statistical model for the possible states of the
world, i.e., the values of {𝜋𝑖𝜃}∀𝜃∈Θ are partially unknown
by the agents. Only limited information is available for each
possible state of the world and decisions are made over uncer-
tain likelihood models. We will assume that agents construct
these uncertain likelihood models from available prior partial

3

information acquired via private signals for each possible state
of the world. For a hypothesis 𝜃, an agent 𝑖 has available
𝑅𝑖𝜃 independent trials. This provides the agent with a set of
counts r𝑖𝜃 = {𝑟𝑖1𝜃, ..., 𝑟𝑖𝐾𝜃}, denoted as the prior evidence
of hypothesis 𝜃, where 𝑟𝑖𝑘𝜃 ∈ [0,∞) is the number of occur-
rences of outcome 𝑘 ∈ Ω and

∑︀𝐾
𝑘=1 𝑟𝑖𝑘𝜃 = 𝑅𝑖𝜃. Thus, the

vector of counts r𝑖𝜃 is a realization of a multinomial random
variable with parameters 𝑅𝑖𝜃 and 𝜋𝑖𝜃 for 𝑖 ∈ {1, . . . ,𝑚} and
𝜃 ∈ Θ. Furthermore, when 𝑅𝑖𝜃 is finite (not sufficiently large),
the vector 𝜋𝑖𝜃 is uncertain, and an agent cannot compute the
probability distribution precisely.

To clarify the model above consider that an agent 𝑖 is handed
a set of 𝐾 sided dice labeled 1, ..., 𝑆. Each die 𝑠 represents
a hypothesis 𝜃𝑠 ∈ Θ and the parameters 𝜋𝑖𝜃𝑠 represents the
set of probabilities of the die landing on each face. The agent
only has access to each die for a small amount of time, where
they roll the die and collect the counts of each face during
each roll to construct the sets r𝑖𝜃 ∀𝜃 ∈ Θ. Then, all of the
dice are collected and a new unlabeled die is presented to the
agent. The goal of the agent is to identify which of the 𝑆
hypotheses best matches the distribution observed by rolling
the new die. This is the main object of study of this paper: the
design of a distributed algorithm that allows a group of agents
to construct consistent beliefs about a set of hypotheses based
on uncertain likelihood models.

B. Social Learning with Uncertain Models
Given the prior evidence for the set of hypotheses, the

sequence of private observations and the interactions with the
other agents in the network, an agent iteratively constructs
beliefs over the hypotheses set Θ. We will denote the belief of
an agent 𝑖 about a hypothesis 𝜃 at a time 𝑡 as 𝜇𝑖𝑡(𝜃). Moreover,
the belief of agent 𝑖 about hypothesis 𝜃 at time 𝑡+ 1 will be
a function of the tuple {r𝑖𝜃,n𝑖𝑡, {𝜇𝑗𝑡(𝜃)}𝑗∈M𝑖}, where M𝑖 is
the set of agents (or neighbors) that can send information to
agent 𝑖.

We propose the following belief update rule, based on
uncertain likelihood models,

𝜇𝑖𝑡+1(𝜃) = ℓ𝑖𝜃(n𝑖𝑡, 𝜔𝑖𝑡+1|r𝑖𝜃)
∏︁

𝑗∈M𝑖

𝜇𝑗𝑡(𝜃)
[A]𝑖𝑗 , (1)

where

ℓ𝑖𝜃(n𝑖𝑡, 𝑘|r𝑖𝜃) =
(𝑟𝑖𝑘𝜃 + 𝑛𝑖𝑘𝑡 + 1)(𝑡+𝐾 − 1)

(𝑅𝑖𝜃 + 𝑡+𝐾 − 1)(𝑛𝑖𝑘𝑡 + 1)
, (2)

𝜇𝑖0(𝜃) = 1 ∀𝑖 ∈ {1, ...,𝑚}, and [A]𝑖𝑗 is the weight agent 𝑖
assigns to the belief shared by agent 𝑗.

Equation (1) is an aggregation step (a weighted geometric
mean), and a normalized uncertain likelihood non-Bayesian
update, where Equation (2) is the uncertain likelihood ratio
update based on the observed signal at time 𝑡. This proposed
belief update rule will be motivated in Section V.

Note that the generated beliefs are not probability distribu-
tions since they are not normalized over the set of hypotheses
Θ as in traditional non-Bayesian social learning. Rather, the
generated beliefs with uncertain likelihoods represents the
consistency of the hypothesis with the ground truth given
the accumulated prior evidence. A detailed description of the
proposed inference rule will be presented in Section IV.

C. Assumptions and Definitions

The agents social interactions are modeled as an exchange
of beliefs over a weighted undirected graph 𝒢 = (M,E),
which consists of the set of agents M = {1, ...,𝑚} and a set
of edges E. An edge is defined as the connection between
agent 𝑖 and 𝑗 and is denoted by the ordered pair (𝑖, 𝑗) ∈ E.
The weights along each edge form an adjacency matrix, A,
which represents the amount of influence that agent 𝑖 has on
agent 𝑗 (and vise versa) such that [A]𝑖𝑗 > 0 if (𝑖, 𝑗) ∈ E
and [A]𝑖𝑗 = 0 if (𝑖, 𝑗) /∈ E. Furthermore, the set of neighbors
of agent 𝑖 is defined as M𝑖 = {𝑗 ∈ M|(𝑖, 𝑗) ∈ E} and we
assume that the agents within M𝑖 report their beliefs truthfully.

Assumption III.1. The graph 𝒢 is undirected and connected.
Moreover, the corresponding adjacency matrix A is doubly
stochastic and aperiodic. Note that A is irreducible due to
connectivity.

Assumption III.1 is common among the consensus literature
and allows the agents interactions to be represented by a
Markov Chain. This guarantees convergence of the graph to
a fully connected network and defines bounds on the second
largest eigenvalue based on the number of agents [27]. Note
that it is not always possible to derive a directed graph with
a doubly stochastic adjacency matrix (as provided in [44])
especially in a distributed manner. However, if the graph
is undirected, then the distributed agents can construct a
Lazy Metropolis matrix to form a doubly stochastic matrix.
Furthermore, time-varying directed graphs can form doubly
stochastic matrices using the push-sum algorithm [45].

Assumption III.2. Each agent 𝑖 at time 𝑡 = 0 has their
counter for the observations of their private signals set to
𝑛𝑖𝑘0 = 0 for all 𝑖 ∈ M and 𝑘 ∈ Ω. This enables
the definition of the prior uncertain probability distributioñ︀𝒫𝑖(0) = { ̃︀𝑃𝑖𝜃(n𝑖0 = 0|r𝑖𝜃)}∀𝜃∈Θ at time 𝑡 = 0, which are
derived from the marginal of a second-order distribution of the
probabilities 𝜋𝑖𝜃 given the prior evidence r𝑖𝜃 (to be derived
in Section IV).

Definition III.3. When agent 𝑖 collects an infinite (or a
sufficiently large) amount of prior evidence for hypothesis 𝜃,
the probabilities 𝜋𝑖𝜃 are known precisely and we say that
the agent has a epistemically certain statistical model for the
hypothesis 𝜃, i.e., ̃︀𝒫𝑖(0) = {𝑃𝑖𝜃(n𝑖0 = 0|𝜋𝑖𝜃)}∀𝜃∈Θ.

The precise definitions of the uncertain and certain likeli-
hood models for a multinomial distribution will be formally
introduced in Section IV. Note that the usage of certain sta-
tistical models is the same as dogmatic opinions in subjective
logic [7].

We assume that the agents have calibrated their measure-
ment models to allow them to distinctly identify the categories
observed. However, it may be too expensive for the agents to
conduct a sufficient number of trials to identify the probabil-
ities 𝜋𝑖𝜃 of each hypothesis 𝜃 precisely.

Additionally, we allow the amount of prior evidence col-
lected for each hypothesis can vary between hypotheses and
agents, i.e. 𝑅𝑖𝜃 ̸= 𝑅𝑖̂︀𝜃 for any ̂︀𝜃 ̸= 𝜃 and 𝑅𝑖𝜃 ̸= 𝑅𝑗𝜃

for any 𝑖 ̸= 𝑗. This means that the distributions within

4

̃︀𝒫𝑖 are incommensurable, causing the traditional approach of
normalizing ̃︀𝑃𝑖𝜃 over the set of ̃︀𝒫𝑖 to produce errors as an
unintended consequence. Thus, we propose to normalize each
distribution by a common vacuous probability model that
statistically models the agents ignorance of hypothesis 𝜃, i.e.,̃︀𝑃𝑖𝜃(0|r𝑖𝜃 = 0). A thorough discussion of this concept is
presented in Section IV.

Furthermore, we assume that the agent may face an identi-
fication problem due to (i) a varying amount of prior evidence
and (ii) non-informative observations. The first condition is
an effect of the proposed uncertain models, while the second
condition is caused when multiple hypotheses ̂︀Θ have the same
probability distribution as the ground truth state of the world,
s.t. ̂︀Θ = {𝜃 ∈ Θ|𝜋𝑖𝜃 = 𝜋𝑖𝜃*}. However, for every hypothesiŝ︀𝜃 ∈ ̂︀Θ, we assume that there exists another agent 𝑗 that has
informative observations for ̂︀𝜃, s.t. 𝜋𝑗𝜃 ̸= 𝜋𝑗𝜃* . Thus, the
agents must collaborate to unequivocally identify the true state
of the world.

Finally, we make the following assumption on the agents
initial beliefs for each hypothesis.

Assumption III.4. The agents initial beliefs 𝜇𝑖0(𝜃) = 1 ∀𝑖 ∈
{1, ...,𝑚} and ∀𝜃 ∈ Θ.

Assumption III.4 allows the agents to express vacuous initial
beliefs for each hypothesis based on the model of complete
ignorance achieved by normalizing the uncertain probability
distribution by the vacuous condition. This is also required to
ensure that the beliefs evolve with time.

Next, we provide a definition of the posterior probability
distribution of hypothesis 𝜃 for a centralized network.

Definition III.5. The centralized uncertain likelihood is the
determination of the probability of the observations from
all agents conditioned on the historical evidence for each
hypothesis:

̃︀𝑃𝜃(n1𝑡,n2𝑡, ...,n𝑚𝑡|r1𝜃, r2𝜃, ..., r𝑚𝜃) =

𝑚∏︁
𝑖=1

̃︀𝑃𝜃(n𝑖𝑡|r𝑖𝜃). (3)

Note that the decomposition of the centralized uncertain
likelihood as the product of uncertain probabilities is only pos-
sible because the private signals as observations or evidence
from training are statistically independent of each other and
agents do not share their evidences r𝑖𝜃. As shown latter, the
centralized uncertain likelihood and uncertain probabilities are
sensitive to the amount of evidence, and it is more meaningful
to normalize this value by the probability of the observations
conditioned on no (or vacuous) historical evidence to form the
centralized uncertain likelihood ratio:

𝑚∏︁
𝑖=1

Λ𝑖𝜃(𝑡) =
𝑚∏︁
𝑖=1

̃︀𝑃𝑖𝜃(n𝑖𝑡|r𝑖𝜃)̃︀𝑃𝑖𝜃(n𝑖𝑡|0)
. (4)

The centralized uncertain likelihood ratio is achieved in
a centralized network where a central node observes all of
information. This distribution acts as the benchmark that the
distributed agents should strive to achieve.

D. Main Result

We now present the main result of the paper. This result
shows that the beliefs updated using the dynamics in Equation
(1) converge to a value with a one-to-one correspondence
to the centralized uncertain likelihood ratio. The theorem is
proven in Section V.

Theorem III.6. Let Assumptions III.1, III.2, and III.4 hold.
Then, the beliefs generated by the update rule (1) have the
following property

lim
𝑡→∞

𝜇𝑖𝑡(𝜃) =

⎛⎝ 𝑚∏︁
𝑗=1

̃︀Λ𝑗𝜃

⎞⎠ 1
𝑚

, a.s. (5)

where

̃︀Λ𝑗𝜃 = lim
𝑡→∞

Λ𝑗𝜃(𝑡) =
𝐵(1)

𝐵(r𝑗𝜃 + 1)

𝐾∏︁
𝑘=1

(𝜋𝑗𝑘𝜃*)𝑟𝑗𝑘𝜃 , a.s. (6)

Theorem III.6 states that the beliefs generated by the update
rule (1) converges almost surely to the 𝑚th root of the product
of the asymptotic uncertain likelihood ratio ̃︀Λ𝑖𝜃 derived in
Section IV. Thus, with an abuse of notation, we will refer to
the point of convergence of the beliefs 𝜇𝑖𝑡(𝜃) in the remainder
of the paper as the centralized uncertain likelihood ratio.

Note that the centralized uncertain likelihood ratio ranges
between [0,∞) depending on the amount of prior evidence
collected by the agents. When the agents have collected a
finite amount of prior evidence, the probabilities 𝜋𝑖𝜃 ∀𝑖 =
1, ..,𝑚 are uncertain, which results in the beliefs, 𝜇𝑖𝑡(𝜃) ∀𝑖 =
1, ...,𝑚, converging to a finite value within (0,∞). Whereas,
if the agents have collected an infinite amount of evidence,
the probabilities 𝜋𝑖𝜃 are certain (known precisely) and the
beliefs will converge to 0 or diverge to ∞. This result will be
presented in Section V.

The current literature identifies the hypothesis that mini-
mizes the Kullback-Liebler (KL) divergence between the cer-
tain likelihood and the ground truth distribution. This allows
only the beliefs of one hypothesis to converge to 1, while the
remaining beliefs converge to 0, which allows for learning. Our
result differs from the current literature, in that our uncertain
beliefs converge to a finite value and multiple hypotheses
may be accepted. However, when the agents are certain, only
the hypothesis with a distribution that exactly matches the
ground truth will be accepted, while any divergence between
the distributions will cause the hypothesis to be rejected. This
result follows the current literature under the closed world
assumption that one of the predefined hypotheses is the ground
truth.

Next, we will present the derivation of the uncertain likeli-
hood ratio and its properties, as well as define a test to evaluate
the consistency of each hypothesis with the private signals.

IV. UNCERTAIN MODELS DERIVATION

In this section, we derive the uncertain models as a solution
to incorporate the uncertainty about the statistical models for a
set of hypotheses. For simplicity of exposition, throughout this
section we will ignore the network, and assume the centralized

5

scenario, i.e., there is only one agent. Thus, we will drop the 𝑖
in our notation. Later in Section V we will extend our results
to the distributed network setup.

A. Uncertain Likelihood Function via the Posterior Predictive
Distribution

We model the uncertainty in the parameters of the multino-
mial distribution as a second-order probability density func-
tion. Similar approaches to modeling uncertainty have been
presented in [39], [46] and [40]. As stated in Section III-A, an
agent is assumed to construct its statistical model of hypothesis
𝜃 based on the prior evidence r𝜃. Particularly, we are interested
in a modified likelihood function that captures the uncertainty
about the parameters 𝜋𝜃 for each hypothesis based on finite
samples.

Before the prior evidence r𝜃 is presented, the agent is
assumed to have uniform prior belief about {𝜋𝑘𝜃}𝐾𝑘=1, thus
{𝜋𝑘𝜃}𝐾𝑘=1 could be any point in the 𝐾-dimensional simplex,

𝒮𝐾 =

{︃
𝜋

⃒⃒⃒⃒ 𝐾∑︁
𝑘=0

𝜋𝑘 = 1 and 𝜋𝑘 > 0 for 𝑘 = 1, . . . ,𝐾

}︃
,

with equal probability. However, once r𝜃 is available, the
agent updates its beliefs and constructs a posterior belief about
{𝜋𝑘𝜃}𝐾𝑘=1. Particularly, if we assume the prior belief follows
the uniform distribution over 𝒮𝑘, and we observe r𝜃 drawn
from the multinomial distribution for hypothesis 𝜃, then the
posterior belief is

𝑓(𝜋𝜃|r𝜃) =
∏︀𝐾

𝑘=1 𝜋
𝑟𝑘𝜃

𝑘𝜃

𝐵(r𝜃 + 1)
s.t. 𝜋 ∈ 𝒮𝐾 , (7)

where 𝐵(𝛼1, ..., 𝛼𝐾) =
∏︀𝐾

𝑘=1 Γ(𝛼𝑘)/Γ(
∑︀𝐾

𝑘=1 𝛼𝑘) is the 𝐾-
dimensional Beta function [34]. The Dirichlet distribution is
the conjugate prior of the multinomial distribution, which
provides an algebraic convenience, and allows us to model
the uncertainty of each parameter in the set 𝜋𝜃 as a second-
order probability density function. Clearly, as the number of
observations in r𝜃 increases, the posterior belief concentrates
around 𝜋𝜃.

In the social learning process an agent has collected 𝑡 signals
𝜔1:𝑡 and has constructed its histogram n𝑡. If the probabilities
𝜋𝜃 are know absolutely, the agent would compute 𝑃𝜃(n𝑡|𝜋𝜃)
as its likelihood function for the signal n𝑡 given hypothesis 𝜃.
However, in the uncertain condition, we must incorporate the
finite knowledge about 𝜃 as ̃︀𝑃𝜃(n𝑡|r𝜃).

We propose the use of the posterior predictive distribution
as the likelihood in lieu of the imprecisely known likelihood
𝑃𝜃. The posterior predictive distribution accounts for the
uncertainty on 𝜋𝜃, and it is calculated by marginalizing the
distribution of n𝑡 over the possible distributions of 𝜋𝜃 given
r𝜃, i.e., ̃︀𝑃𝜃(n𝑡|r𝜃) =

∫︁
𝒮𝐾

𝑃𝜃(n𝑡|𝜋𝜃)𝑓(𝜋𝜃|r𝜃)𝑑𝜋𝜃,

=

∫︁
𝒮𝐾

𝐾∏︁
𝑘=1

𝜋𝑛𝑘𝑡

𝑘𝜃 𝑓(𝜋𝜃|r𝜃)𝑑𝜋𝜃,

=
𝐵(r𝜃 + n𝑡 + 1)

𝐵(r𝜃 + 1)
. (8)

The uncertain likelihood function ̃︀𝑃𝜃 represents the probability
of the number of counts n𝑡 of each category realized by the
measurement sequence 𝜔1:𝑡 conditioned on the prior evidence
r𝜃 for hypothesis 𝜃.

B. The Effects of Normalization with Uncertain Hypotheses

Typically in Bayesian inference, a normalization step is used
to ensure that the values are between [0, 1]. Next, we will show
that an update rule generated by using the posterior predictive
distribution, as the uncertainty likelihood function, i.e.,

𝜇𝑡(𝜃) =
̃︀𝑃𝜃(n𝑡|r𝜃)𝜇0(𝜃)∑︀

𝜈∈Θ
̃︀𝑃𝜈(n𝑡|r𝜈)𝜇0(𝜈)

, (9)

is not robust to having dissimilar amounts of evidence for the
different hypotheses. Thus, the following proposition holds.

Proposition IV.1. Consider the update rule (9), with 𝜇0(𝜃) >
0 ∀𝜃 ∈ Θ ∈ {𝜃*, 𝜃}. Then, there exists a finite 𝑅𝜃* and 𝑅𝜃

such that 𝑃𝑟𝑜𝑏(lim𝑡→∞ 𝜇𝑡(𝜃) > lim𝑡→∞ 𝜇𝑡(𝜃
*)) > 0.

Proposition IV.1 states that due to the finite amount of
evidence collected by the agent, the ground truth hypothesis
will be rejected with a probability greater than 0. This occurs
due to the following properties. First, if an insufficient amount
of prior evidence is collected for hypothesis 𝜃 = 𝜃*, there is
a probability greater than 0 that the histograms r𝜃 generated
mismatch the ground truth parameters 𝜋𝜃* . Additionally, there
is a probability greater than 0 that the histograms generated for
a hypothesis ̂︀𝜃 ̸= 𝜃* could match the ground truth parameters.
Thus, the hypothesis ̂︀𝜃 would appear to be a better fit and be
selected over the ground truth 𝜃.

The second issue relates to the amount of prior evidence
collected. Consider that the prior evidence for each hypothesis
is consistent with their respective probability distribution, i.e.,
r𝜃 = 𝑅𝜃𝜋𝜃. However, consider that the amount of prior
evidence collected for the ground truth hypothesis, say 𝜃1,
is smaller than some hypothesis 𝜃2. Then, there is a chance
that the belief update rule (9) of 𝜃2 will be greater than 𝜃1, as
illustrated in Figure 1.

As seen in Figure 1(a), when 𝑅𝜃1 = 45 and 𝑅𝜃2 ∈
[100, 1250], lim𝑡→∞ 𝜇𝑡(𝜃2) > lim𝑡→∞ 𝜇𝑡(𝜃1), the ground
truth will be rejected. However, as the amount of prior
evidence increases to 𝑅𝜃1 = 65 in Figure 1(b) and 𝑅𝜃1 = 85
in Figure 1(c), the range of 𝑅𝜃2 that allows 𝜃1 to be rejected
decreases. Thus, there are scenarios that allow the probability
of rejecting the ground truth to be greater than 0 when using
the update rule (9). Therefore, we cannot normalize over the
set of hypotheses.

We propose that the agents compare the posterior predictive
distribution ̃︀𝑃𝜃 to the model of complete ignorance, i.e., the
vacuous probability model. The vacuous probability model
assumes that the agent has collected zero prior evidence for
each hypothesis and strictly evaluates (8) with parameters
r𝜃 = 0. This model considers that each probability 𝜋𝑖𝑘𝜃 is
uniformly distributed in the simplex and represents complete
uncertainty. Note that it follows from (8) that

̃︀𝑃𝜃(n𝑡|r𝜃 = 0) =
𝐵(n𝑡 + 1)

𝐵(1)
. (10)

6

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

(a)

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

(b)

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

(c)
Fig. 1. The normalized posterior predictive distribution (8) using the update rule (9) versus the amount of evidence for hypothesis 𝜃2 when 𝜇0(𝜃1) =
𝜇0(𝜃2) = 1 and the evidence for hypothesis 𝜃1 is: (a) 𝑅𝜃1 = 45, (b) 𝑅𝜃1 = 65, and (c) 𝑅𝜃1 = 85.

Thus, we define the Uncertain Likelihood Ratio as follows.

Definition IV.2 (Uncertain Likelihood Ratio). The uncertain
likelihood ratio is the posterior predictive distribution normal-
ized by the vacuous probability model, i.e. 𝑅𝜃 = 0, as follows:

Λ𝜃(𝑡) =
̃︀𝑃𝜃(n𝑡|r𝜃)̃︀𝑃𝜃(n𝑡|0)

=
𝐵(r𝜃 + n𝑡 + 1)𝐵(1)

𝐵(r𝜃 + 1)𝐵(n𝑡 + 1)
. (11)

Since the agent has different amounts of prior evidence
for each hypothesis, the uncertain likelihood ratio cannot be
evaluated over the set of all hypothesis as in (9). Thus, we
propose that the agent evaluates each hypothesis individually
utilizing the Uncertain Likelihood Ratio Test.

Definition IV.3 (Uncertain Likelihood Ratio Test). The uncer-
tain likelihood ratio test is a likelihood ratio test that utilizes
the uncertain likelihood ratio to evaluate the consistency of
the prior evidence of hypothesis 𝜃 with the ground truth 𝜃*.
This test results in the following conclusions:

1) If Λ𝜃(𝑡) converges to a value above one, there is
evidence to accept that 𝜃 is consistent with the ground
truth 𝜃*. Higher values indicate more evidence to accept
𝜃 as being equivalent to the ground truth.

2) If Λ𝜃(𝑡) converges to a value below one, there is
evidence to reject that 𝜃 is the ground truth 𝜃*. Lower
values indicate more evidence to reject 𝜃 as 𝜃*.

3) If Λ𝜃(𝑡) converges to a value near one, there is not
enough evidence to accept or reject 𝜃 as 𝜃*.

As a practical matter, one can define a threshold 𝜐 > 1 so
that the hypothesis is deemed accepted, rejected or unsure if
Λ𝜃(𝑡) ≥ 𝜐, Λ𝜃(𝑡) < 1/𝜐 and 1/𝜐 ≤ Λ𝜃(𝑡) < 𝜐, respectively.1

The exact choice of thresholds is application dependent to
balance the number of false positives and false negatives.
Furthermore, the choice of threshold may be chosen based
on the amount of prior evidence the agent has for hypothesis
𝜃. The construction of this threshold and its effects on the
overall inference is out of the scope of this paper and thus left
for future work.

The uncertain likelihood ratio test incorporates a third
conclusion into the traditional likelihood ratio test which is
a direct result of the agents uncertainty in the hypothesis. The
current literature assumes a closed world and that the agent
must select the hypothesis that best matches the observed
data. However, when uncertainty is incorporated, the agents

1This choice of thresholds induces a set of symmetric thresholds ± log(𝜐)
for log (Λ𝜃(𝑡)) ∈ (−∞,∞).

should judge each hypothesis on its own merits, i.e., how
well it matches the observations relative to the historical
evidence about that hypothesis. For some hypotheses, there
may not be enough evidence to accept or reject it. Furthermore,
there may be evidence to accept multiple hypotheses, but the
wrong hypothesis exhibits a larger uncertain likelihood ratio
as evident in Figure 1. Therefore, the inference problem is
reformulated to accept the following set of hypotheses:̂︀Θ = {𝜃 ∈ Θ|Λ𝜃(𝑡) > 𝜐}. (12)

C. Asymptotic Behavior of the Centralized Uncertain Likeli-
hood Ratio

The inference drawn from the uncertain likelihood ratio
test depends on the amount of prior evidence collected by
the agent. This subsection studies the asymptotic properties of
the uncertain likelihood ratio as 𝑡 → ∞. Particularly, we will
assume a centralized scenario where there is only one agent,
and we will observe the asymptotic behavior of its beliefs.

Lemma IV.4. The uncertain likelihood ratio in (11) of hy-
pothesis 𝜃 has the following property

̃︀Λ𝜃 = lim
𝑡→∞

Λ𝜃(𝑡) =
𝐵(1)

𝐵(r𝜃 + 1)

𝐾∏︁
𝑘=1

𝜋𝑟𝑘𝜃

𝑘𝜃* , a.s., (13)

where r𝜃 is the prior evidence about hypothesis 𝜃 and 𝜋𝜃*

are the ground truth probabilities.

Proof. First, the uncertain likelihood ratio can be expressed
as

Λ𝜃(𝑡) =
𝐵(1)Γ(𝑡+𝐾)

∏︀𝐾
𝑘=1 Γ(𝑟𝑘𝜃 + 𝑛𝑘𝑡 + 1)

𝐵(r𝜃 + 1)Γ(𝑅𝜃 + 𝑡+𝐾)
∏︀𝐾

𝑘=1 Γ(𝑛𝑘𝑡 + 1)
.

For a large 𝑡, we can approximate the ratio of gamma
functions using Stirling’s series [47], where

Γ(𝑥+ 𝛼)

Γ(𝑥+ 𝛽)
= 𝑥𝛼−𝛽

(︂
1 +

(𝛼− 𝛽)(𝛼− 𝛽 − 1)

2𝑥
+𝑂(𝑥−2)

)︂
.

Thus,

Γ(𝑟𝑘𝜃 + 𝑛𝑘𝑡 + 1)

Γ(𝑛𝑘𝑡 + 1)
= 𝑛𝑟𝑘𝜃

𝑘𝑡

(︂
1 +

𝑟𝑘𝜃(𝑟𝑘𝜃 − 1)

2𝑛𝑘𝑡
+𝑂(𝑛−2

𝑘𝑡)

)︂
∀𝑘 ∈ Ω, and

Γ(𝑡+𝐾)

Γ(𝑡+𝐾 +𝑅𝜃)
= 𝑡−𝑅𝜃

(︂
1 +

−𝑅𝜃(−𝑅𝜃 − 1)

2𝑡
+𝑂(𝑡−2)

)︂
.

7

100 101 102 103 104 105
10-10

10-5

100

Fig. 2. Asymptotic uncertain likelihood ratio vs. the amount of prior evidence
𝑅𝜃 for various hypothesis 𝜃 that differ from the ground truth 𝜃* with varying
degrees of divergence. These curves assume that r𝜃 = 𝑅𝜃𝜋𝜃 .

Then, the limit of the uncertain likelihood ratio as 𝑡 → ∞
becomes

lim
𝑡→∞

Λ𝜃(𝑡) = lim
𝑡→∞

𝑡−𝑅𝜃

(︂
1 +

−𝑅𝜃(−𝑅𝜃 − 1)

2𝑡
+𝑂(𝑡−2)

)︂
·

𝐾∏︁
𝑘=1

𝑛𝑟𝑘𝜃

𝑘𝑡

(︂
1 +

𝑟𝑘𝜃(𝑟𝑘𝜃 − 1)

2𝑛𝑘𝑡
+𝑂(𝑛−2

𝑘𝑡)

)︂
· 𝐵(1)

𝐵(r𝜃 + 1)
.

Note that

lim
𝑡→∞

(︂
1 +

𝑟𝑘𝜃(𝑟𝑘𝜃 − 1)

2𝑛𝑘𝑡
+𝑂(𝑛−2

𝑘𝑡)

)︂
= 1,

and

lim
𝑡→∞

(︂
1 +

𝑅𝜃(𝑅𝜃 + 1)

2𝑡
+𝑂(𝑡−2)

)︂
= 1.

Then,

lim
𝑡→∞

Λ𝜃(𝑡) =
𝐵(1)

𝐵(r𝜃 + 1)

𝐾∏︁
𝑘=1

𝜋𝑟𝑘𝜃

𝑘𝜃* ,

with probability 1 by the strong law of large numbers.

The effect of the prior evidence on ̃︀Λ𝜃 can be seen in
Figure 2, where the asymptotic uncertain likelihood ratio vs.
the amount of prior evidence 𝑅𝜃 is presented for various
hypotheses. In this example, we consider 𝐾 = 2 and that the
ground truth probabilities are 𝜋𝜃* = {0.6, 0.4}. Each curve in
Figure 2 represents ideal conditions where the prior evidence
is r𝜃 = {𝜋, (1−𝜋)}𝑅𝜃, for 𝜋 ∈ {0.1, 0.2, ..., 0.9}. This result
shows that for a finite amount of prior evidence, ̃︀Λ𝜃 converges
to a finite value between (0,∞). Additionally, this shows that
for small amounts of prior evidence, there are some hypotheses
that produce an asymptotic uncertain likelihood ratio that is
greater than 1. Although, as the amount of prior evidence
increases, the hypotheses with r𝜃

𝑅𝜃
̸= 𝜋𝜃* eventually decrease

to 0.
This result shows the effect of drawing conclusions using

uncertain models. If the agent does not have enough prior evi-
dence about a hypothesis, the asymptotic uncertain likelihood
ratio will converge to a value around 1, which falls into the
third conclusion of the uncertain likelihood ratio test. As the
amount of prior evidence increases, the asymptotic uncertain
likelihood ratio for hypotheses with a small KL divergence,

i.e., 𝐷𝐾𝐿(
r𝜃
𝑅𝜃

||𝜋𝜃*) ≈ 0, will converge to a value bigger
than 1, which results in the agent accepting the hypotheses.
However, as the KL divergence and the amount of prior
evidence increases, the asymptotic uncertain likelihood ratio
converges to a value less than 1, which is therefore rejected
according to the uncertain likelihood ratio test.

Furthermore, Figure 2 provides an understanding of the
asymptotic uncertain likelihood ratio as the amount of evi-
dence increases to infinity, i.e., the agent becomes certain. This
result is analytically characterized in the following Corollary.

Corollary IV.4.1. For an infinite amount of prior evidence,
i.e., 𝑅𝜃 → ∞, the asymptotic uncertain likelihood ratio, ̃︀Λ𝜃,
diverges to

lim
𝑡→∞

̃︀Λ𝜃(𝑡) = ∞ 𝑖𝑓 𝜋𝜃 = 𝜋𝜃* a.s., and (14)

converges to

lim
𝑡→∞

̃︀Λ𝜃(𝑡) = 0 𝑖𝑓 𝜋𝜃 ̸= 𝜋𝜃* a.s. (15)

Proof. First, by (13), the uncertain likelihood ratio converges
to a function of a Dirichlet distribution evaluated at the
ground truth probabilities 𝜋𝜃* , i.e., ̃︀Λ𝜃 = 𝐵(1)𝑓(𝜋𝜃* |r𝜃). The
expected value and variance of 𝑓(𝜋𝜃* |r𝜃) are 𝐸[𝜋𝑘𝜃] =

𝑟𝑘𝜃+1
𝑅𝜃+𝐾

and 𝑉 𝑎𝑟[𝜋𝑘𝜃] =
(𝑟𝑘𝜃+1)(𝑅𝜃−𝑟𝑘𝜃+𝐾−1)
(𝑅𝜃+𝐾)2(𝑅𝜃+𝐾+1) . Then, as 𝑅𝜃 → ∞,

𝐸[𝜋𝑘𝜃] → 𝜋𝑘𝜃 and 𝑉 𝑎𝑟[𝜋𝑘𝜃] → 0 a.s. due to the strong
law of large numbers. Therefore, 𝑓(𝜋𝜃* |𝑟𝜃) = 𝛿(𝜋𝑘𝜃* − 𝜋𝑘𝜃)
a.s., where 𝛿(·) is the Dirac delta function. This causes
the asymptotic uncertain likelihood ratio to diverge to ∞ if
𝜋𝜃* = 𝜋𝜃 and converge to 0 if 𝜋𝜃* ̸= 𝜋𝜃.

Corollary IV.4.1 shows the relationship of the uncertain
likelihood ratio with the assumption typically presented in
non-Bayesian social learning literature. When the amount of
prior evidence tends to infinity, the set of hypotheses with
𝜋𝜃 = 𝜋𝜃* will be accepted, while the remaining hypotheses
will be rejected since ̃︀Λ𝜃 = 0. This becomes the classical
result, except that our definition of the uncertain likelihood
ratio ranges from [0,∞) rather than [0, 1]. Therefore, our
uncertain model generalizes the certain likelihood assumption
by forming an analytical expression of the likelihood as a
function of the prior evidence.

Overall, one can view the amount of prior evidence 𝑅𝜃 as
the amount of precision for knowledge about 𝜋𝜃. Larger 𝑅𝜃

provides the opportunity for a larger uncertain likelihood ratio
as long as 𝜋𝜃 = 𝜋𝜃* . However, larger 𝑅𝜃 also means that
the uncertain likelihood ratio is more likely to drop below
one as the divergence between 𝜋𝜃 and 𝜋𝜃* increases. As
𝑅𝜃 → ∞, any small divergence is enough for the uncertain
likelihood ratio to go to zero. One could view the idea that
traditional social learning actually selects the hypothesis that
has the smallest KL divergence with the observations (e.g.,
see [24]) as an admission that the underlying models 𝜋𝜃 are
not precise enough to match the ground truth precisely. The
uncertain likelihood ratio developed in this section provides
a formal method to evaluate the hypotheses based upon that
lack of precision.

8

V. DISTRIBUTED NON-BAYESIAN LEARNING WITH
UNCERTAIN MODELS

Thus far, we have derived the uncertain likelihood ratio for
an agent 𝑖 that has received a set of measurements 𝜔𝑖1:𝑡 up to
time 𝑡 > 1. However, in non-Bayesian social learning theory,
the agent’s belief 𝜇𝑖𝑡(𝜃) is updated using the likelihood of the
measurement 𝜔𝑖𝑡+1 given that hypothesis 𝜃 is the ground truth,
not the uncertain likelihood ratio over the entire sequence of
measurements. Therefore, in order to incorporate the uncertain
likelihood ratio into non-Bayesian social learning, we must
derive the uncertain likelihood ratio update function.

Lemma V.1. Given that agent 𝑖 receives the measurement
𝜔𝑖𝑡 = 𝑘 at time 𝑡, then the uncertain likelihood ratio update
function ℓ𝑖𝜃(n𝑖𝑡−1, 𝑘|r𝑖𝜃) at time 𝑡 is defined as

ℓ𝑖𝜃(n𝑖𝑡−1, 𝑘|r𝑖𝜃) =
(𝑟𝑖𝑘𝜃 + 𝑛𝑖𝑘𝑡−1 + 1)

(𝑅𝑖𝜃 + 𝑡+𝐾 − 1)

(𝐾 + 𝑡− 1)

(𝑛𝑖𝑘𝑡−1 + 1)

=
̂︀𝜋𝑟𝑖𝑘𝜃̂︀𝜋0

, (16)

where ̂︀𝜋𝑟𝑖𝑘𝜃
= 𝑟𝑖𝑘𝜃+𝑛𝑖𝑘𝑡−1+1

𝑅𝑖𝜃+𝑡+𝐾−1 and ̂︀𝜋0 = 𝑛𝑖𝑘𝑡−1+1
𝐾+𝑡−1 are estimates

of the private signal probabilities incorporating the prior
evidence and not, respectively. This allows the uncertain
likelihood ratio to be expressed in the following recursive form

Λ𝑖𝜃(𝑡) = ℓ𝑖𝜃(n𝑖𝑡−1, 𝑘|r𝑖𝜃)Λ𝑖𝜃(𝑡− 1). (17)

Proof. The uncertain likelihood ratio update is derived by
expressing Λ𝑖𝜃(𝑡) as a series of telescoping products.

Λ𝑖𝜃(𝑡) =

𝑡∏︁
𝜏=1

ℓ𝑖𝜃(n𝑖𝜏−1, 𝑘|r𝑖𝜃) =
𝑡∏︁

𝜏=1

Λ𝑖𝜃(𝜏)

Λ𝑖𝜃(𝜏 − 1)
,

since Λ𝑖𝜃(0) = 1. Therefore,

ℓ𝑖𝜃(n𝑖𝜏−1, 𝑘|r𝑖𝜃) =
Λ𝑖𝜃(𝜏)

Λ𝑖𝜃(𝜏 − 1)

=
𝐵(r𝑖𝜃 + n𝑖𝜏 + 1)𝐵(n𝑖𝜏−1 + 1)

𝐵(n𝑖𝜏 + 1)𝐵(r𝑖𝜃 + n𝑖𝜏−1 + 1)

=
Γ(𝑅𝑖𝜃 +𝐾 +

∑︀𝐾
𝑘=1 𝑛𝑖𝑘𝜏−1)Γ(𝐾 +

∑︀𝐾
𝑘=1 𝑛𝑖𝑘𝜏)

Γ(𝑅𝑖𝜃 +𝐾 +
∑︀𝐾

𝑘=1 𝑛𝑖𝑘𝜏)Γ(𝐾 +
∑︀𝐾

𝑘=1 𝑛𝑖𝑘𝜏−1)

·
𝐾∏︁

𝑘=1

Γ(𝑟𝑖𝑘𝜃 + 𝑛𝑖𝑘𝜏 + 1)Γ(𝑛𝑖𝑘𝜏−1 + 1)

Γ(𝑟𝑖𝑘𝜃 + 𝑛𝑖𝑘𝜏−1 + 1)Γ(𝑛𝑖𝑘𝜏 + 1)
(18)

Then, if 𝜔𝑖𝜏 = 𝑘 is received, 𝑛𝑖𝑘𝜏 = 𝑛𝑖𝑘𝜏−1 + 1 and
𝑛𝑖�̄�𝜏 = 𝑛𝑖�̄�𝜏−1 for all 𝑘 ∈ Ω∖{𝑘}. Recall that

∑︀𝐾
𝑘=1 𝑛𝑖𝑘𝑡 = 𝑡.

Therefore because Γ(𝑥+ 1) = 𝑥Γ(𝑥), (18) simplifies to

ℓ𝑖𝜃(n𝑖𝜏−1, 𝑘|r𝑖𝜃) =
(𝑟𝑖𝑘𝜃 + 𝑛𝑖𝑘𝜏−1 + 1)(𝐾 + 𝜏 − 1)

(𝑅𝑖𝜃 + 𝜏 +𝐾 − 1)(𝑛𝑖𝑘𝜏−1 + 1)
.

The likelihood of the measurement 𝜔𝑖𝑡+1 given that hypoth-
esis 𝜃 is the ground truth provides the following intuition. The
numerator ̂︀𝜋𝑟𝑖𝑘𝜃

represents the estimate of 𝜋𝑖𝑘𝜃 given the prior
evidence 𝑟𝑖𝑘𝜃 and accumulated counts 𝑛𝑖𝑘𝜃, while the denomi-
nator ̂︀𝜋0 represents the estimate of 𝜋𝑖𝑘𝜃* given 0 prior evidence
and the accumulated counts 𝑛𝑖𝑘𝜃. The estimate ̂︀𝜋0 → 𝜋𝑖𝑘𝜃* as
𝑡 → ∞ a.s. due to the strong law of large number, whereas

the estimate ̂︀𝜋𝑟𝑖𝑘𝜃
will converge based on the amount of prior

evidence. If the prior evidence is finite, ̂︀𝜋𝑟𝑖𝑘𝜃
→ 𝜋𝑖𝑘𝜃* as

𝑡 → ∞ a.s., while as 𝑅𝑖𝜃 → ∞, ̂︀𝜋𝑟𝑖𝑘𝜃
→ 𝜋𝑖𝑘𝜃 ∀𝑡 > 0 a.s.

due to the strong law of large numbers. These properties are
captured in the following lemmas.

Lemma V.2. The likelihood of the measurement 𝜔𝑖𝑡+1 = 𝑘
given that hypothesis 𝜃* is the ground truth has the following
properties:

1) For finite evidence 𝑅𝑖𝜃, lim𝑡→∞ ℓ𝑖𝜃(n𝑖𝑡, 𝑘|r𝑖𝜃) = 1,
∀𝑘 ∈ Ω a.s., and

2) For infinite evidence (i.e., 𝑅𝑖𝜃 → ∞),
lim𝑡→∞ ℓ𝑖𝜃(n𝑖𝑡, 𝑘|r𝑖𝜃) = 𝜋𝑖𝑘𝜃

𝜋𝑖𝑘𝜃*
, ∀𝑘 ∈ Ω a.s..

Proof. First, since each private signal 𝜔𝑖𝜏 ∈ 𝜔𝑖1:𝑡 is i.i.d.
and drawn from the 𝐾-state multinomial distribution with
probabilities 𝜋𝑖𝜃* , the strong law of large numbers leads to
𝑛𝑖𝑘𝑡

𝑡 → 𝜋𝑖𝑘𝜃* for all 𝑘 ∈ Ω a.s. Then, since ̂︀𝜋0 =
𝑛𝑖𝑘𝑡

𝑡 𝑡+1

𝑡+𝐾−1
and is continuous at 𝜋𝑖𝑘𝜃* , ̂︀𝜋0(

𝑛𝑖𝑘𝑡

𝑡) → 𝜋𝑖𝑘𝜃* with probability
1 as 𝑡 → ∞. Similarly, when the prior evidence is finite
and since ̂︀𝜋𝑟𝑖𝑘𝜃

=
𝑟𝑖𝑘𝜃+

𝑛𝑖𝑘𝑡
𝑡 𝑡+1

𝑅𝑖𝜃+𝑡+𝐾−1 is continuous at 𝜋𝑖𝑘𝜃* , then̂︀𝜋𝑟𝑖𝑘𝜃
(𝑛𝑖𝑘𝑡

𝑡) → 𝜋𝑖𝑘𝜃* with probability 1 as 𝑡 → ∞. Thus, when
the prior evidence is finite and 𝜋𝑖𝑘𝜃* > 0, condition 1 holds.
Furthermore, if 𝜋𝑖𝑘𝜃* = 0, the private signal 𝜔𝑖𝑡 = 𝑘 will
never be received when 𝜃 = 𝜃*. Thus ̂︀𝜋𝑟𝑖𝑘𝜃

= ̂︀𝜋0 as they both
go to zero as 𝑡 → ∞ and condition 1 still holds.

When the amount of prior evidence for hypothesis 𝜃 tends
to infinity and is drawn from the distribution 𝜋𝑖𝜃, the strong
law of large numbers leads to 𝑟𝑖𝑘𝜃

𝑅𝑖𝜃
→ 𝜋𝑖𝑘𝜃 with probability 1.

Then, since ̂︀𝜋𝑟𝑖𝑘𝜃
=

𝑟𝑖𝑘𝜃
𝑅𝑖𝜃

𝑅𝑖𝜃+
𝑛𝑖𝑘𝑡

𝑡 𝑡+1

𝑅𝑖𝜃+𝑡+𝐾−1 is continuous at 𝑟𝑖𝑘𝜃

𝑅𝑖𝜃
=

𝜋𝑖𝑘𝜃, ̂︀𝜋𝑟𝑖𝑘𝜃
(𝑟𝑖𝑘𝜃

𝑅𝑖𝜃
) → 𝜋𝑖𝑘𝜃 with probability 1 as 𝑅𝑖𝜃 → ∞.

Then, as 𝑡 → ∞, ̂︀𝜋0(
𝑛𝑖𝑘𝑡

𝑡) → 𝜋𝑖𝑘𝜃* with probability 1 as
stated above. Therefore condition 2 holds. When 𝜋𝑖𝑘𝜃* = 0,
the likelihood ratio goes to infinity, but the private signal 𝜔𝑖𝑡 =
𝑘 will never be received as 𝜃* is the ground truth.

This immediately results in the following corollary.

Corollary V.2.1. When the agent is certain, i.e., 𝑅𝑖𝜃 → ∞,
and r𝑖𝜃 is drawn from the distribution 𝜋𝑖𝜃 = 𝜋𝑖𝜃* , then the
likelihood update of the measurement 𝜔𝑖𝑡+1 = 𝑘 converges to

lim
𝑡→∞,𝑅𝑖𝜃→∞

ℓ𝑖𝜃(n𝑖𝑡, 𝜔𝑖𝑡+1|r𝑖𝜃) = 1, a.s. (19)

The above lemma and corollary show that modeling with
uncertainty results in a likelihood function that varies with
time. Furthermore, Lemma V.2 condition 2 and Corollary V.2.1
show that in the certain case, the numerator of the likelihood
function is a constant and is modeled in the same manner as
the traditional non-Bayesian social learning theory. Thus, the
proposed uncertain likelihood ratio translates to a likelihood
function that models uncertain and certain conditions based
on the amount of prior evidence.

Therefore, at time 𝑡 > 1, agent 𝑖 will combine their
neighbors’ beliefs of hypothesis 𝜃 at time 𝑡 and update their
belief of 𝜃 using the likelihood update (2) of the private signal
at time 𝑡 + 1 according to (1). Then, the agent can interpret
hypothesis 𝜃 using the uncertain likelihood ratio test, except
Λ𝑖𝜃(𝑡) is now replaced with the agents belief 𝜇𝑖𝑡(𝜃).

9

A. Asymptotic Behavior on Arbitrary Graphs

Next, we present the proof of main results in Theorem III.6.
First, we begin by providing three auxiliary lemmas. The first
lemma provides a result about the convergence of a product
of doubly stochastic matrices provided in [27].

Lemma V.3 (Lemma 5 in [27]). For a stationary doubly
stochastic matrix, we have for all 𝑡 > 0⃦⃦⃦⃦

A𝑡 − 1

𝑚
11′
⃦⃦⃦⃦
6

√
2𝑚𝜆𝑡 (20)

where ‖ · ‖ is the spectral norm, 𝜆 = 1 − 𝜂
4𝑚2 , and 𝜂 is a

positive constant s.t. if 𝐴𝑖𝑗 > 0, then 𝐴𝑖𝑗 > 𝜂.

The above lemma shows that every element of a repeated
product of a doubly stochastic matrices will converge to 1/𝑚.
Next, we present the bounds of the likelihood update to show
that ℓ𝑖𝜃(𝜔𝑖𝑡) is bounded.

Lemma V.4. For an uncertain likelihood, i.e., 𝑅𝑖𝜃 < ∞, the
likelihood update is bounded as follows.

1

𝑅𝑖𝜃 +𝐾
6 ℓ𝑖𝜃(n𝑖𝑡−1, 𝜔𝑖𝑡|r𝑖𝜃) 6 max

𝑘∈Ω
(𝑟𝑖𝑘𝜃) + 1. (21)

Proof. Consider that the agent 𝑖 has received 𝑛𝑖𝑘𝑡−1 ∈ [0, 𝑡−1]
private signals for attribute 𝑘 and 𝑛𝑖�̄�𝑡−1 = 𝑡− 1−𝑛𝑖𝑘𝑡−1 for
other signals up to time 𝑡 − 1 where 𝑘 = Ω ∖ {𝑘}. Then, if
agent 𝑖 receives 𝜔𝑖𝑡 = 𝑘 at time 𝑡, the log of the likelihood
update is

log(ℓ𝑖𝜃(n𝑖𝑡−1, 𝑘|r𝑖𝜃) = log ((𝑟𝑖𝑘𝜃 + 𝑛𝑖𝑘𝑡−1 + 1)(𝑡+𝐾 − 1))

− log ((𝑅𝑖𝜃 + 𝑡+𝐾 − 1)(𝑛𝑖𝑘𝑡−1 + 1)) .

The partial derivatives of the update with respect to 𝑛𝑖𝑘𝑡−1 is

𝜕 log(ℓ𝑖𝜃(n𝑖𝑡−1, 𝑘|r𝑖𝜃))
𝜕𝑛𝑖𝑘𝑡−1

=
1

(𝑟𝑖𝑘𝜃 + 𝑛𝑖𝑘𝑡−1 + 1)
− 1

(𝑛𝑖𝑘𝑡−1 + 1)

=
−𝑟𝑖𝑘𝜃

(𝑟𝑖𝑘𝜃 + 𝑛𝑖𝑘𝑡−1 + 1)(𝑛𝑖𝑘𝑡−1 + 1)
< 0.

Therefore, since the function log(ℓ𝑖𝜃(n𝑖𝑡−1, 𝑘|r𝑖𝜃)) is
monotonically decreasing with respect to 𝑛𝑖𝑘𝑡−1, the maxi-
mum and minimum occur at 𝑛𝑖𝑘𝑡−1 = 0 and 𝑛𝑖𝑘𝑡−1 = 𝑡− 1,
respectively. To maximize the update, setting 𝑛𝑖𝑘𝑡−1 = 0 leads
to

log(ℓ𝑖𝜃(n𝑖𝑡−1, 𝑘|r𝑖𝜃)) = log ((𝑟𝑖𝑘𝜃 + 1)(𝑡+𝐾 − 1))

− log ((𝑅𝑖𝜃 + 𝑡+𝐾 − 1))

so that the derivative of the log-update with respect to 𝑡 is

𝑑 log(ℓ𝑖𝜃(n𝑖𝑡−1, 𝑘|r𝑖𝜃))
𝑑𝑡

=
𝑅𝑖𝜃

(𝑅𝑖𝜃 + 𝑡+𝐾 − 1)(𝑡+𝐾 − 1)
> 0.

So the update is maximized by letting 𝑡 → ∞
so that log(ℓ𝑖𝜃(n𝑖𝑡−1, 𝑘|r𝑖𝜃)) 6 log(𝑟𝑖𝑘𝜃 + 1) 6
log (max𝑘∈Ω(𝑟𝑖𝑘𝜃) + 1). Now to minimize the update, setting
𝑛𝑖𝑘𝑡−1 = 𝑡− 1 leads to

log(ℓ𝑖𝜃(n𝑖𝑡−1, 𝑘|r𝑖𝜃)) = log ((𝑟𝑖𝑘𝜃 + 𝑡)(𝑡+𝐾 − 1))

− log ((𝑅𝑖𝜃 + 𝑡+𝐾 − 1)𝑡) .

Now log(𝑡+𝐾−1)− log(𝑡) > 0 and log(𝑟𝑖𝑘𝜃+𝑡)− log(𝑅𝑖𝜃+
𝑡+𝐾−1) is minimized over 𝑡 > 1 at 𝑡 = 1 so that log(𝑟𝑖𝑘𝜃+

𝑡)− log(𝑅𝑖𝜃 + 𝑡+𝐾 − 1) > log(𝑟𝑖𝑘𝜃 +1)− log(𝑅𝑖𝜃 +𝐾) >
− log(𝑅𝑖𝜃 +𝐾). Thus, log(ℓ𝑖𝜃(n𝑖𝑡−1, 𝑘|r𝑖𝜃)) > − log(𝑅𝑖𝜃 +
𝐾) for all 𝑘 ∈ Ω.

Finally, we recall Lemma 3.1 from [48], which provides a
convergence property of scalar sequences.

Lemma V.5 (Lemma 3.1 in [48]). Let {𝛾𝑘} be a scalar
sequence. If lim𝑘→∞ 𝛾𝑘 = 𝛾 and 0 ≤ 𝛽 ≤ 1, then
lim𝑘→∞

∑︀𝑘
𝑙=0 𝛽

𝑘−𝑙𝛾𝑙 =
𝛾

1−𝛽 .

Proof of Theorem III.6. With the above lemmas stated, we
can now prove Theorem III.6. First, we prove that the beliefs
converge to the 𝑚th root of the product of uncertain likelihood
ratios, i.e.,

lim
𝑡→∞

⃦⃦⃦⃦
⃦log(𝜇𝑡(𝜃))− log

(︃
(
𝑚∏︁
𝑖=1

Λ𝑖𝜃(𝑡))
1
𝑚

)︃
1

⃦⃦⃦⃦
⃦ = 0, (22)

where for vectors ‖ · ‖ is the standard 2-norm. Thus, since

log(𝜇𝑡(𝜃)) =
𝑡∑︁

𝜏=1

A𝑡−𝜏 log (ℓ𝜃(𝜔𝜏)) , and

log

(︃
(

𝑚∏︁
𝑖=1

Λ𝑖𝜃(𝑡))
1
𝑚

)︃
1 =

1

𝑚
11′

𝑡∑︁
𝜏=1

log(ℓ𝜃(𝜔𝜏)),

(23)

where with a slight abuse of notation, ℓ𝜃(𝜔𝜏) =
[ℓ1𝜃(n1𝜏−1, 𝜔1𝜏 |r1𝜃), ..., ℓ𝑚𝜃(n𝑚𝜏−1, 𝜔𝑚𝜏 |r𝑚𝜃)]

′, (22) can be
rewritten as

⃦⃦⃦⃦
⃦log(𝜇𝑡(𝜃))− log

(︃
(
𝑚∏︁
𝑖=1

Λ𝑖𝜃(𝑡))
1
𝑚

)︃
1

⃦⃦⃦⃦
⃦ 6

𝑡∑︁
𝜏=1

⃦⃦⃦⃦
A𝑡−𝜏 − 1

𝑚
11′
⃦⃦⃦⃦
‖log (ℓ𝜃(𝜔𝜏))‖ 6

√
2𝑚

(︃
𝑡∑︁

𝜏=0

𝜆𝑡−𝜏 ‖log (ℓ𝜃(𝜔𝜏))‖ − 𝜆𝑡 ‖log (ℓ𝜃(𝜔0))‖

)︃
, (24)

where (24) follows from Lemma V.3. Furthermore, since
lim𝑡→∞ ‖log (ℓ𝜃(𝜔0))‖ = 0 a.s. from Lemma V.2, then

lim
𝑡→∞

𝑡∑︁
𝜏=0

𝜆𝑡−𝜏 ‖log (ℓ𝜃(𝜔𝜏))‖ = 0

a.s. from Lemma V.5. Finally, since 𝜆 < 1 and ‖log (ℓ𝜃(𝜔0))‖
is bounded according to Lemma V.4

lim
𝑡→∞

𝜆𝑡 ‖log (ℓ𝜃(𝜔0))‖ = 0 a.s..

Then, by the continuity of the logarithmic function, this

implies that lim𝑡→∞ 𝜇𝑡(𝜃)/
(︁∏︀𝑚

𝑗=1 Λ𝑗𝜃(𝑡)
)︁1/𝑚

= 1 a.s. and
the desired result is achieved.

B. Learning with Certain Likelihoods

Next, we present the results for when the agents are certain,
i.e., 𝑅𝑖𝜃 → ∞. First, we will consider the scenario when
hypothesis 𝜃 is the ground truth for all agents, i.e., 𝜋𝑖𝜃 = 𝜋𝑖𝜃*

∀𝑖 ∈ M. Then, we will present the condition when hypothesis

10

𝜃 is not the ground truth for at least one agent 𝑖, i.e., 𝜋𝑖𝜃 ̸=
𝜋𝑖𝜃* .

Corollary V.5.1. Let Assumptions III.1 and III.4 hold and
𝜋𝑖𝜃 = 𝜋𝑖𝜃* ∀𝑖 ∈ M. Then, the beliefs generated using the
update rule (1) with infinite evidence diverge to the following.

lim
𝑡→∞

𝜇𝑖𝑡(𝜃) = ∞, a.s. (25)

Proof. By Corollary V.2.1, lim𝑡→∞ ℓ𝑖𝜃(n𝑖𝑡−1, 𝜔𝑖𝑡|r𝑖𝜃) = 1
a.s.. As a result, the proof of Theorem III.6 still applies and
𝜇𝑖𝑡(𝜃) = (

∏︀𝑚
𝑖=1 Λ𝑖𝜃(𝑡))

1
𝑚 as 𝑡 → ∞ with probability 1. Now

by Lemma IV.4.1, Λ𝑖𝜃(𝑡) = ∞ for each 𝑖 as 𝑡 → ∞ and
𝑅𝑖𝜃 → ∞. Thus, the geometric mean is also diverging to ∞
a.s..

Lemma V.6. Let Assumption III.1 and III.4 hold and at least
one agent 𝑖 ∈ M has a set of probabilities s.t. 𝜋𝑖𝜃 ̸= 𝜋𝑖𝜃* .
Then, the beliefs generated by the update rule (1) allow for
learning, i.e., they converge in probability to

𝜇𝑖𝑡(𝜃)
𝑃→ 0. (26)

Before proving Lemma V.6, we must first present the
following lemma which provides an upper bound of the certain
likelihood update.

Lemma V.7. For a finite time 𝑡, the certain likelihood update
is bounded above by

ℓ𝑖𝜃(n𝑖𝑡−1, 𝜔𝑖𝑡|r𝑖𝜃) 6 (𝑡+𝐾 − 1) < ∞ (27)

Proof. First, by inspection of (16) for the certain condition
such that ℓ𝑖𝜃(n𝑖𝑡−1, 𝜔𝑖𝑡|r𝑖𝜃) = 𝜋𝑖𝑘𝜃

𝑡+𝐾−1
𝑛𝑖𝑘𝑡−1+1 , it is clear that

the maximum occurs when an attribute 𝑘 ∈ Ω has not been
received up to time 𝑡 − 1. In other words, the term 𝑡+𝐾−1

𝑛𝑖𝑘𝑡−1+1
is maximized when 𝑛𝑖𝑘𝑡−1 = 0, resulting in the likelihood
update being bounded by (𝑡+𝐾 − 1) because 𝜋𝑖𝑘𝜃 6 1. For
any finite value of 𝑡 this value is the highest possible value
for the update.

Now that the likelihood update is shown to be bounded by
a finite value for finite 𝑡, we can now prove Lemma V.6.

Proof of Lemma V.6. Starting with (23) the log-beliefs 𝜇𝑖𝑡(𝜃)
can be written as

log(𝜇𝑡(𝜃)) =
𝑇∑︁

𝜏=1

A𝑡−𝜏 log (ℓ𝜃(𝜔𝜏))

+
𝑡∑︁

𝜏=𝑇+1

(︂
A𝑡−𝜏 − 1

𝑚
11′
)︂
log (ℓ𝜃(𝜔𝜏))

+
1

𝑚

𝑡∑︁
𝜏=𝑇+1

11′ log (ℓ𝜃(𝜔𝜏)) . (28)

Now because A is doubly stochastic, ‖A‖ = 1 and the norm
of the first term in the right hand side of (28) is bounded by⃦⃦⃦⃦
⃦

𝑇∑︁
𝜏=1

A𝑡−𝜏 log (ℓ𝜃(𝜔𝜏))

⃦⃦⃦⃦
⃦ ≤

𝑇∑︁
𝜏=1

‖log (ℓ𝜃(𝜔𝜏))‖

≤
𝑇∑︁

𝜏=1

√
𝑚(𝜏 +𝐾 − 1)

=
√
𝑚𝑇

(︂
1

2
(𝑇 + 1) + (𝐾 − 1)

)︂
,

where the second line is the result of the upper bound for the
possible update value given in Lemma V.7. As long as 𝑇 is
finite this first term is finite.

By Lemma V.2, log (ℓ𝑖𝜃(n𝑖𝜏−1, 𝜔𝜏 |r𝑖𝜃)) → log
(︁

𝜋𝑖𝑘𝜃

𝜋𝑖𝑘𝜃*

)︁
a.s., and so for any 𝜖 > 0 and 𝛿 > 0 there exist a finite value
𝑇 such that | log (ℓ𝑖𝜃(n𝑖𝜏−1, 𝜔𝜏 |r𝑖𝜃))− log

(︁
𝜋𝑖𝑘𝜃

𝜋𝑖𝑘𝜃*

)︁
| < 𝜖 with

probability greater than 1 − 𝛿. Thus the second term on the
right hand side of (28) with probability greater than 1 − 𝛿 is
bounded by⃦⃦⃦⃦

⃦
𝑡∑︁

𝜏=𝑇+1

(︂
A𝑡−𝜏 − 1

𝑚
11′
)︂
log (ℓ𝜃(𝜔𝜏))

⃦⃦⃦⃦
⃦

≤
𝑡∑︁

𝜏=𝑇+1

⃦⃦⃦⃦
A𝑡−𝜏 − 1

𝑚
11′
⃦⃦⃦⃦
‖log (ℓ𝜃(𝜔𝜏))‖

≤
√
2𝑚

(︃
𝑡∑︁

𝜏=𝑇+1

𝜆𝑡−𝜏

)︃
(𝐿+ 𝜖) ≤

√
2𝑚

(1− 𝜆)
(𝐿+ 𝜖),

where 𝐿 = max𝑖,𝑘∈Ω*
𝑖

⃒⃒⃒
log
(︁

𝜋𝑖𝑘𝜃

𝜋𝑖𝑘𝜃*

)︁⃒⃒⃒
is the largest converged

value that is realizable, i.e, Ω*
𝑖 is the set of all 𝑘 values such

that 𝜋𝑖𝑘𝜃* > 0. Because 𝐿 is finite, the second term in (28) is
also finite.

Finally, each element for the third term on the right hand
side of (28) can be reexpressed as

1

𝑚

𝑡∑︁
𝜏=𝑇+1

𝑚∑︁
𝑖=1

log (ℓ𝑖𝜃(n𝑖𝜏−1, 𝜔𝑖𝜏 |r𝑖𝜃))

=
1

𝑚

𝑡∑︁
𝜏=𝑇+1

𝑚∑︁
𝑖=1

(︂
log

(︂
𝜋𝑖𝜔𝑖𝜏𝜃

𝜋𝑖𝜔𝑖𝜏𝜃*

)︂
+ 𝑒𝑖𝜏

)︂
,

≤ (𝑡− 𝑇)

(︃
1

(𝑡− 𝑇)

(︃
𝑡∑︁

𝜏=𝑇+1

1

𝑚

𝑚∑︁
𝑖=1

log

(︂
𝜋𝑖𝜔𝑖𝜏𝜃

𝜋𝑖𝜔𝑖𝜏𝜃*

)︂)︃
+ 𝜖

)︃
,

(29)

where 𝑒𝑖𝜏 = log (ℓ𝑖𝜃(n𝑖𝜏−1, 𝜔𝑖𝜏 |r𝑖𝜃)) − log
(︁

𝜋𝑖𝜔𝑖𝜏 𝜃

𝜋𝑖𝜔𝑖𝜏 𝜃*

)︁
is the

error and |𝑒𝑖𝜏 | 6 𝜖, which leads to the second line. Due the
strong law of large numbers, the bound for the third term
converges with probability one to

(𝑡− 𝑇)

(︃
− 1

𝑚

𝑚∑︁
𝑖=1

𝐷𝐾𝐿(𝜋𝑖𝜃* ||𝜋𝑖𝜃) + 𝜖

)︃
. (30)

11

In other words, for 𝑡 sufficiently large with probability 1− 𝛿

log(𝜇𝑖𝑡(𝜃)) ≤
√
𝑚
𝑇

2
(𝑇 + 1) + 𝑇 (𝐾 − 1) +

√
2𝑚

(1− 𝜆)
(𝐿+ 𝜖)

+(𝑡− 𝑇)

(︃
− 1

𝑚

𝑚∑︁
𝑖=1

𝐷𝐾𝐿(𝜋𝑖𝜃* ||𝜋𝑖𝜃) + 2𝜖

)︃
Since 1

𝑚

∑︀𝑚
𝑖=1 𝐷𝐾𝐿(𝜋𝑖𝜃* ||𝜋𝑖𝜃) > 0 as 𝜋𝜃* ̸= 𝜋𝜃, and 𝜖

can be made smaller by making 𝑇 larger, the upper bound
is diverging to −∞ as 𝑡 increases. Thus, the log-belief is
diverging to −∞ as 𝑡 → ∞. Because the exponential is
continuous, the beliefs converge in probability to zero.

Corollary V.5.1 and Lemma V.6 show that in order for the
agents to learn the ground truth precisely, all of the agents must
have certain probability distributions that match the ground
truth exactly. While if a single agent disagrees, then the beliefs
will converge to 0. Therefore, this result is consistent with
the traditional non-Bayesian social learning literature except
that the hypothesis that matches the ground truth diverges to
infinity instead of converging to 1. Thus, the design of the
uncertain likelihood ratio still preserves the consensus result
while allowing the agents to consider uncertain scenarios.

After expanding the beta functions and applying Stirling’s
approximation, it can be shown that the certain likelihood ratio
for large 𝑡 behaves as

Λ𝑖𝜃(𝑡) = 𝐶𝑡𝛼𝑒−𝑡𝐷𝐾𝐿(𝜋𝑖𝜃* ||𝜋𝑖𝜃), (31)

where 𝐶 and 𝛼 are constants. Note that in the centalized
uncertain likelihood ratio is the product of the individual
uncertain likelihood ratios. Without any divergence between
𝜋𝑖𝜃 and 𝜋𝑖𝜃* for all agents, the uncertain likelihood ratio goes
to infinity sub-exponentially as 𝑡𝛼. It only takes any divergence
between 𝜋𝑖𝜃 and 𝜋𝑖𝜃* at a single agent to drive the centralized
uncertain likelihood ratio to zero as the decay to zero is
exponential. Essentially, a hypothesis 𝜃 that is consistent with
the observations can never be declared as the absolute ground
truth as any new certain agent whose model for that hypothesis
is inconsistent with their observation would drive the uncertain
likelihood ratio to zero. Rather, one can only state that the
hypothesis is consistent with the ground truth as no counter
example has been observed. On the other hand, once a counter
example is found by any agent, one can state unequivocally
that the hypothesis is not the ground truth. No finite number
of agents such that 𝜋𝑖𝜃 = 𝜋𝑖𝜃* can drive the belief to be
non-zero.

For the more general uncertain case, the updates ℓ𝑖𝜃(𝜔𝑖𝑡)
as given by (16) begin as ratios of the expected value of 𝜋𝑖𝜃

based upon the prior evidence r𝑖𝜃 over that based upon the
observations n𝑖𝑡 . As time evolves, the numerator of the ratio
transitions from an estimate of 𝜋𝑖𝜃 to that of 𝜋𝑖𝜃* . On the
other hand, the denominator is going to an estimate of 𝜋𝑖𝜃* .
The larger the amount of prior evidence 𝑅𝑖𝜃, the longer it
takes for the transition to occur. Before the transition, the
uncertain likelihood ratio behaves like the certain case. After
the transition, the updates converge to one, which cause the
uncertain likelihood ratio to level out. If 𝜃 ̸= 𝜃*, whether or
not the uncertain likelihood ratio converges to a value larger

or less than one depends on whether or not the divergence
between the 𝜋’s is able to overwhelm the 𝑡𝛼 growth before
the updates become close to one. This in turn depends on
the amount of prior evidence. Less prior evidence means that
𝜃 may not be distinguished from 𝜃* given the precision of
the evidence. The simulations in Section VII will demonstrate
these properties.

VI. THE EFFECTS OF DEGROOT AGGREGATION FOR
UNCERTAIN MODELS

Next, we will consider a DeGroot-style update rule and
present the effects of the beliefs with uncertain likelihood
models. The DeGroot-style update rule consists of taking the
weighted arithmetic average of the agents prior beliefs instead
of the geometric average. Thus, the DeGroot-style update rule
with uncertain likelihood models is defined as,

𝜇𝑖𝑡+1(𝜃) = ℓ𝑖𝜃(n𝑖𝑡, 𝜔𝑖𝑡+1|r𝑖𝜃)
∑︁
𝑗∈M𝑖

[A]𝑖𝑗𝜇𝑗𝑡(𝜃). (32)

First, let us consider the asymptotic properties of the beliefs
generated using the update rule (32) with a finite amount of
prior evidence.

Lemma VI.1. Let Assumptions III.1, III.2, and III.4 hold.
Then, the beliefs generated using the update rule (32) have
the following property with probability 1:

lim
𝑡→∞

𝜇𝑖𝑡(𝜃) >

(︃
𝑚∏︁
𝑖=1

Λ̃𝑖𝜃

)︃ 1
𝑚

. (33)

Proof. To prove this, we will first compare the beliefs gen-
erated from the update rule (32), denoted 𝜇

[𝐷𝐺]
𝑡 (𝜃), with the

beliefs generated for the update rule (1), denoted 𝜇
[𝐿𝐿]
𝑡 (𝜃).

Then, by induction, we have the following. At 𝑡 = 0, the
agents beliefs are initialized to the same value, 𝜇[𝐷𝐺]

0 (𝜃) =

𝜇
[𝐿𝐿]
0 (𝜃) = 1 and 𝜇

[𝐷𝐺]
0 (𝜃) > 𝜇

[𝐿𝐿]
0 (𝜃) is true. Given that

𝜇
[𝐷𝐺]
𝑡−1 (𝜃) > 𝜇

[𝐿𝐿]
𝑡−1 (𝜃) is true for time 𝑡 − 1, the log of the

beliefs from the DeGroot and LL rules ag time 𝑡 respectively
becomes

log(𝜇
[𝐷𝐺]
𝑖𝑡 (𝜃)) = log(ℓ𝑖𝜃(n𝑖𝑡, 𝜔𝑖𝑡+1|r𝑖𝜃))

+ log

⎛⎝ 𝑚∑︁
𝑗=1

[A]𝑖𝑗𝜇
[𝐷𝐺]
𝑗𝑡−1(𝜃)

⎞⎠ ,

log(𝜇
[𝐿𝐿]
𝑖𝑡 (𝜃)) = log(ℓ𝑖𝜃(n𝑖𝑡, 𝜔𝑖𝑡+1|r𝑖𝜃))

+
𝑚∑︁
𝑗=1

[A]𝑖𝑗 log
(︁
𝜇
[𝐿𝐿]
𝑗𝑡−1(𝜃)

)︁
Using Jensen’s inequality, log(

∑︀𝑚
𝑗=1[A]𝑖𝑗𝜇

[𝐷𝐺]
𝑗𝑡−1(𝜃)) >∑︀𝑚

𝑗=1[A]𝑖𝑗 log(𝜇
[𝐷𝐺]
𝑗𝑡−1(𝜃)) since the logarithm is a

concave function. Since
∑︀𝑚

𝑗=1[A]𝑖𝑗 log(𝜇
[𝐷𝐺]
𝑗𝑡−1(𝜃)) >∑︀𝑚

𝑗=1[A]𝑖𝑗 log(𝜇
[𝐿𝐿]
𝑗𝑡−1(𝜃)), 𝜇

[𝐷𝐺]
𝑡 (𝜃) > 𝜇

[𝐿𝐿]
𝑡 (𝜃). By

induction, 𝜇
[𝐷𝐺]
𝑡 (𝜃) > 𝜇

[𝐿𝐿]
𝑡 (𝜃) is true ∀𝑡 > 0, and

asymptotically we can say that

lim
𝑡→∞

𝜇
[𝐷𝐺]
𝑖𝑡 (𝜃) > lim

𝑡→∞
𝜇
[𝐿𝐿]
𝑖𝑡 (𝜃) =

(︃
𝑚∏︁
𝑖=1

Λ̃𝑖𝜃

)︃ 1
𝑚

12

with probability 1.

Lemma VI.1 shows that the beliefs generated from the
DeGroot-style update rule will always be greater than or equal
to the 𝑚th root of the centralized uncertain likelihood ratio.
This means that the interpretation of the beliefs using the
update rule (1) and the DeGroot rule (32) are not the same.
Nevertheless the simulations in Section VII demonstrates that
the DeGroot rule reaches consensus but is non-commutative
because the order in which the private signals are received af-
fects where the belief converges. Thus, a further understanding
of the beliefs point of convergence is necessary to identify
thresholds that allow for the use of the uncertain likelihood
ratio test. This will be studied as a future work.

The certain likelihood conditions presented next indicate
that the DeGroot rule still enables learning. Additionally, we
derive the beliefs asymptotic convergence rate for a fully
connected network and show that learning with the update rule
(32) is slower than learning with (1). First, noting the result
of the uncertain DeGroot-style update rule, we can conclude
the following corollary.

Corollary VI.1.1. Let Assumptions III.1 and III.4 hold and
𝜋𝑖𝜃 = 𝜋𝑖𝜃* ∀𝑖 ∈ M. Then, the beliefs generated using the
update rule (32) and infinite evidence diverge to the following.

lim
𝑡→∞

𝜇𝑖𝑡(𝜃) = ∞, a.s. (34)

Proof. This can be directly seen from Lemma VI.1 and
Corollary V.5.1.

Next, we will derive the point of convergence when at least
one agent 𝑖 has a certain set of probabilities s.t. 𝜋𝑖𝜃 ̸= 𝜋𝑖𝜃* .
First, we provide the following lemma that describes the
properties of the beliefs updated using the DeGroot-style
learning rule for a fully connected network.

Lemma VI.2. Let Assumption III.4 hold, the network graph
be fully connected, i.e. A = 1

𝑚11′, and there exists a 𝜃 s.t.
𝜋𝑖𝜃 ̸= 𝜋𝑖𝜃* for at least one agent 𝑖. Then, the beliefs generated
by the update rule (32) with infinite evidence asymptotically
convergence to zero at a geometric rate determined by the
Centralized Average (CA) divergence, i.e., for all 𝑖 ∈ M

lim
𝑡→∞

1

𝑡
𝜇𝑖𝑡(𝜃) = −𝐷𝐶𝐴(Π𝜃* ||Π𝜃), (35)

where

𝐷𝐶𝐴(Π𝜃* ||Π𝜃) = −
𝐾∑︁

𝑘1=1

· · ·
𝐾∑︁

𝑘𝑚=1

𝜋1𝑘1𝜃* · · ·𝜋𝑚𝑘𝑚𝜃*

· log
(︂

1

𝑚

(︂
𝜋1𝑘1𝜃

𝜋1𝑘1𝜃*
+ · · ·+ 𝜋𝑚𝑘𝑚𝜃

𝜋𝑚𝑘𝑚𝜃*

)︂)︂
(36)

and Π𝜃 = {𝜋𝑖𝜃}∀𝑖∈M is the set of probabilities of all agents.

Proof. First, from Lemma V.2 condition 2, the likelihood
updates converge to the ratio of the probabilities for 𝜃 and 𝜃*.
Since the logarithm and average operations are continuous, we
know that for any 𝜖 > 0 and 𝛿 > 0, there exists a finite 𝑇 s.t.
for 𝑡 > 𝑇 the log average likelihood update is bounded as⃒⃒⃒⃒
⃒log

(︃
1

𝑚

𝑚∑︁
𝑖=1

ℓ𝑖𝜃(n𝑖𝑡−1𝜔𝑖𝑡|r𝑖𝜃)

)︃
− log

(︃
1

𝑚

𝑚∑︁
𝑖=1

𝜋𝑖𝜔𝑖𝑡𝜃

𝜋𝑖𝜔𝑖𝑡𝜃*

)︃⃒⃒⃒⃒
⃒ ≤ 𝜖

with probability at least 1 − 𝛿. Also, we know that 𝜇𝑇 (𝜃)
is bounded since ℓ𝑖𝜃(n𝑖𝑡−1, 𝜔𝑖𝑡|r𝑖𝜃) is bound by Lemma V.7
and converging to within ℓ𝑖𝜃(n𝑖𝑡−1, 𝑘|r𝑖𝜃) < 𝜋𝑖𝑘𝜃

𝜋𝑖𝑘𝜃*
+ 𝜖 with

probability at least 1−𝛿. Now, the beliefs generated using the
update rule (32) at times times 𝑡 and 𝑇 are related as

𝜇𝑡(𝜃) = L𝜃(𝜔𝑡)AL𝜃(𝜔𝑡−1) · · ·AL𝜃(𝜔𝑇+1)A𝜇𝑇 (𝜃)

= L𝜃(𝜔𝑡)
1

𝑚
11′L𝜃(𝜔𝑡−1) · · ·

1

𝑚
11′L𝜃(𝜔𝑇+1)

·

(︃
1

𝑚

𝑚∑︁
𝑖=1

𝜇𝑖𝑇 (𝜃)

)︃
1

=
𝑡∏︁

𝜏=𝑇+1

(︃
1

𝑚

𝑚∑︁
𝑖=1

ℓ𝑖𝜃(n𝑖𝜏−1𝜔𝑖𝜏 |r𝑖𝜃)

)︃(︃
1

𝑚

𝑚∑︁
𝑖=1

𝜇𝑖𝑇 (𝜃)

)︃
(37)

where L𝜃(𝜔𝜏) = 𝑑𝑖𝑎𝑔(ℓ1𝜃(n1𝜏−1, 𝜔1𝜏 |r1𝜃), ...,
ℓ𝑚𝜃(n𝑚𝜏−1, 𝜔𝑚𝜏 |r𝑚𝜃)). We then take the logarithm of
both sides of the above equation and use the knowledge that
the log-updates are bounded in probability to determine that
the bounds with probability at least 1 − 𝛿 for the log-beliefs
are

𝐺(𝑡;𝑇)− (𝑡− 𝑇)𝜖 ≤ 𝑙𝑜𝑔 (𝜇𝑡(𝜃)) ≤ 𝐺(𝑡;𝑇) + (𝑡− 𝑇)𝜖,

where

𝐺(𝑡;𝑇) = log

(︃
1

𝑚

𝑚∑︁
𝑖=1

𝜇𝑖𝑇 (𝜃)

)︃
+

𝑡∑︁
𝜏=𝑇+1

log

(︃
1

𝑚

𝑚∑︁
𝑖=1

𝜋𝑖𝜔𝑖𝜏𝜃

𝜋𝑖𝜔𝑖𝜏𝜃*

)︃
.

Note that the first term 𝐺(𝑡, 𝑇) is finite and constant with
respect to 𝑡. Using the law of large numbers the asymptotic
convergence rate is bounded with probability at least 1− 𝛿 as

𝐷𝐶𝐴(Π𝜃* ||Π𝜃)−𝜖 ≤ − lim
𝑡→∞

1

𝑡
log (𝜇𝑡(𝜃)) ≤ 𝐷𝐶𝐴(Π𝜃* ||Π𝜃)+𝜖.

Note that 𝜖 can be made arbitrarily small by setting 𝑇 larger.
Thus, the convergence rate converges in probability to

lim
𝑡→∞

1

𝑡
log (𝜇𝑡(𝜃)) = −𝐷𝐶𝐴(Π𝜃* ||Π𝜃).

This shows that even for the DeGroot-style rule, any diver-
gence between 𝜋𝑖𝜃 and 𝜋𝑖𝜃* causes the beliefs to decrease at
a rate larger than the sub-exponential growth rate. This is state
formally in the following corollary.

Corollary VI.2.1. Let Assumption III.4 hold and the network
graph be fully connected, i.e., A = 1

𝑚11′, and at least one
agent 𝑖 has a set of probabilities s.t. 𝜋𝑖𝜃 ̸= 𝜋𝑖𝜃* . Then, the
beliefs generated by the update rule (32) with infinite evidence
allows for learning, i.e., they converge in probability to

lim
𝑡→∞

𝜇𝑖𝑡(𝜃) = 0. (38)

Now, let us compare this result to a network updating their
beliefs using the log-linear rule (1) in the following lemma.

Lemma VI.3. Assuming a network with a doubly stochastic
aperiodic matrix A and a certain set of probabilities such
that there exists a 𝜃 s.t. 𝜋𝑖𝜃 ̸= 𝜋𝑖𝜃* for at least one agent
𝑖, the log-linear beliefs (1) converge in probability to zero at

13

a geometric rate determined by the average Kullback-Leibler
divergence, i.e.,

lim
𝑡→∞

1

𝑡
log (𝜇𝑡(𝜃)) = − 1

𝑚

𝑚∑︁
𝑖=1

𝐷𝐾𝐿(𝜋𝑖𝜃* ||𝜋𝑖𝜃). (39)

for 𝑖 ∈ M. Furthermore, this convergence rate is faster than
that of the DeGroot rule (32) for a fully connected graph where
A = 1

𝑚11′, i.e.,

1

𝑚

𝑚∑︁
𝑖=1

𝐷𝐾𝐿(𝜋𝑖𝜃* ||𝜋𝑖𝜃) > 𝐷𝐶𝐴(Π𝜃* ||Π𝜃) > 0. (40)

Proof. The proof of Lemma V.6 provides the starting point to
prove the first part of this theorem. The log belief at time 𝑡
is expressed by (28). For any 𝜖 > 0 and 𝛿 > 0 there exists a
value of 𝑇 such that the first two terms on the right side of
(28) are constant with respect to 𝑡 and finite with probability
at least 1−𝛿. The upper bound for third term is given by (29).
By the same argument to get to this upper bound, it is clear
that the lower bound can be given by replacing 𝜖 with −𝜖, and
thus with probability at least 1− 𝛿,⃒⃒⃒⃒
⃒log (𝜇𝑖𝑡(𝜃))− 𝐶 +

(︃
1

𝑚

𝑚∑︁
𝑖=1

𝑡∑︁
𝜏=𝑇+1

log

(︂
𝜋𝑖𝜔𝑖𝜏𝜃

𝜋𝑖𝜔𝑖𝜏𝜃*

)︂)︃⃒⃒⃒⃒
⃒ ≤ 𝜖 (41)

for any 𝑖 ∈ M where 𝐶 represents the finite constant
incorporating the first two terms in (28). As 𝑡 → ∞, the law
of large numbers leads to the bounds for convergence rate as

1

𝑚

𝑚∑︁
𝑖=1

𝐷𝐾𝐿(𝜋𝑖𝜃* ||𝜋𝑖𝜃)− 𝜖 ≤ − lim
𝑡→∞

log (𝜇𝑖𝑡(𝜃))

≤ 1

𝑚

𝑚∑︁
𝑖=1

𝐷𝐾𝐿(𝜋𝑖𝜃* ||𝜋𝑖𝜃) + 𝜖. (42)

Note that 𝜖 can be made arbitrarily small by increasing the
value of 𝑇 in (28); thus proving the first part of the theorem.

Next, we will prove (40). First, we prove that the CA di-
vergence is non-negative using Jensen’s inequality as follows:

𝐷𝐶𝐴(Π𝜃* ||Π𝜃) = −𝐸𝜃*

[︃
log

(︃
1

𝑚

𝑚∑︁
𝑖=1

𝜋𝑖𝜃

𝜋𝑖𝜃*

)︃]︃
,

> log

(︃
1

𝑚

𝑚∑︁
𝑖=1

𝐸𝜃*
[︂
𝜋𝑖𝜃

𝜋𝑖𝜃*

]︂)︃
,

= log(1) = 0, (43)

with equality only when 𝜋𝑖𝜃 = 𝜋𝑖𝜃* , ∀𝑖 ∈ 𝑁 . Then, we
prove that the CA divergence is upper bounded by the average
Kullback-Leibler divergence using Jensen’s inequality, i.e.,

1

𝑚

𝑚∑︁
𝑖=1

𝐷𝐾𝐿(𝜋𝑖𝜃* ||𝜋𝑖𝜃) = −𝐸𝜃*

[︃
1

𝑚

𝑚∑︁
𝑖=1

log

(︂
𝜋𝑖𝜃

𝜋𝑖𝜃*

)︂]︃

> −𝐸𝜃*

[︃
log

(︃
1

𝑚

𝑚∑︁
𝑖=1

𝜋𝑖𝜃

𝜋𝑖𝜃*

)︃]︃
= 𝐷𝐶𝐴(Π𝜃* ||Π𝜃). (44)

with equality only when 𝜋𝑖𝜃 = 𝜋𝑖𝜃* , ∀𝑖 ∈ M.

These results indicate that the DeGroot-style update rule
learns that a hypothesis is not the ground truth at a slower

rate than the log-linear update rule (1). Additionally, we found
(through empirical evaluation) that the DeGroot belief for
uncertain likelihood models reach a consensus and converge
to finite value as the simulations in Section VII indicates. This
is because the uncertain likelihood ratio update functions ℓ𝑖𝜃
are converging to one. For the certain likelihood condition,
the DeGroot rule allows for learning for a fully connected
network, as shown in Corollaries VI.1.1 and VI.2.1. Actually,
the DeGroot-style rule is able to do this for any network
satisfying Assumption III.1 as indicated next.

Theorem VI.4. Let Assumptions III.1 and III.4 hold. Then, the
beliefs generated by the update rule (32) with infinite evidence
converge in probability to:

lim
𝑡→∞

𝜇𝑖𝑡(𝜃) = 0 if ∃𝑗 ∈ M s.t. 𝜋𝑗𝜃 ̸= 𝜋𝑗𝜃* . (45)

Proof. The beliefs at time 𝑡 can be expressed in matrix-vector
form as

𝜇𝑡(𝜃) = L𝜃(𝜔𝑡)A · · ·L𝜃(𝜔2)AL𝜃(𝜔1)A𝜇0(𝜃)

=
𝑡∏︁

𝜏=𝑇+1

(L𝜃(𝜔𝜏)A)𝜇𝑇 (𝜃),

where L𝜃(𝜔𝜏) = 𝑑𝑖𝑎𝑔(ℓ1𝜃(n1𝜏−1, 𝜔1𝜏 |r1𝜃), ...,
ℓ𝑚𝜃(n𝑚𝜏−1, 𝜔𝑚𝜏 |r𝑚𝜃)), the initial belief 𝜇0(𝜃) = 1
and

𝜇𝑇 (𝜃) =
𝑇∏︁

𝜏=1

(L𝜃(𝜔𝜏)A)1.

For any finite value of 𝑇 , it is clear that 𝜇𝑇 (𝜃) is finite
because it can be bounded by a finite number since the norms
‖L𝜃(𝜔𝜏)‖ ≤ (𝑇 + 𝐾 − 1) for 1 6 𝜏 6 𝑇 via Lemma V.7
and ‖A‖ = 1. From Lemma V.2 condition 2, it is known that
for any 𝜖 > 0 and 𝛿 > 0 there exist a finite 𝑇 such that
with probability at least 1− 𝛿, ℓ𝑖𝜃(n𝑖𝜏 , 𝜔𝑖𝜏 |r𝑖𝜃) ≤

𝜋𝑖𝜔𝑖𝜏 𝜃

𝜋𝑖𝜔𝑖𝜏 𝜃*
+ 𝜖

and 𝐸𝜃*
[ℓ𝑖𝜃(n𝑖𝜏 , 𝜔𝑖𝜏 |r𝑖𝜃)] ≤ 1 + 𝜖. Let 𝐸𝜃*

𝜒𝜈
[·] represent the

expectation over the private signals for specific segments in
time so that 𝜒𝜈 = {𝜔𝑖𝜏 |𝑖 ∈ M, 𝜏 = 𝑇 + 𝑍1 + 𝜈𝑍2 for
𝑍1 = 1, . . . , 𝜈 − 1 and 𝑍2 = 0, 1, . . . }. Now because all
the elements of the A and L𝜃 matrices are non-negative, for
𝑍 > 0 with probability at least 1− 𝛿

𝐸𝜃*

𝜒𝜈
[𝜇𝑇+𝜈𝑍(𝜃)]

= L𝜃(𝜔𝑇+𝜈𝑍)A
𝑇+𝜈𝑍−1∏︁

𝜏=𝑇+𝜈(𝑍−1)+1

(︁
𝐸𝜃*

[L𝜃(𝜔𝜏)]A
)︁

·L𝜃(𝜔𝑇+𝜈(𝑍−1))A

𝑇+𝜈(𝑍−1)−1∏︁
𝜏=𝑇+𝜈(𝑍−2)+1

(︁
𝐸𝜃*

[L𝜃(𝜔𝜏)]A
)︁

L𝜃(𝜔𝑇+𝜈(𝑍−2))A · · ·L𝜃(𝜔𝑇+𝜈)A

·
𝑇+𝜈−1∏︁
𝜏=𝑇++1

(︁
𝐸𝜃*

[L𝜃(𝜔𝜏)]A
)︁
𝜇𝑇 (𝜃)

≤ (1 + 𝜖)𝑍(𝜈−1)L𝜃(𝜔𝑇+𝜈𝑍)A
𝜈L𝜃(𝜔𝑇+𝜈(𝑍−1))A

𝜈

· · ·L𝜃(𝜔𝑇+𝜈)A
𝜈𝜇𝑇 (𝜃).

14

 1

 2

 3

 4

 5 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

Fig. 3. Example of the network structure considered in the numerical analysis.

By Lemma 5 in [27], each element of A𝜈 is bounded above
by [A𝜈]𝑖𝑗 ≤ 1

𝑚 +
√
2𝑚𝜆𝜈 . Thus,

𝐸𝜃*

𝜒𝜈
[𝜇𝑇+𝜈𝑍(𝜃)]

≤ (1 + 𝜖)𝑍(𝜈−1)
(︁
1 +

√
2𝑚𝜆𝜈

)︁𝑍
L𝜃(𝜔𝑇+𝜈𝑍)

1

𝑚
11′L𝜃(𝜔𝑇+𝜈(𝑍−1))

1

𝑚
11′ · · ·L𝜃(𝜔𝑇+𝜈)

1

𝑚
11′𝜇𝑇 (𝜃)

= (1 + 𝜖)𝑍(𝜈−1)
(︁
1 +

√
2𝑚𝜆𝜈

)︁𝑍
·

𝑍∏︁
𝑧=1

(︃
1

𝑚

𝑚∑︁
𝑖=1

ℓ𝑖𝜃(𝜔𝑖(𝑇+𝜈𝑧))

)︃
1

𝑚

𝑚∑︁
𝑖=1

𝜇𝑖𝑇 (𝜃)L𝜃(𝜔𝑇+𝜈)1.

Since ℓ𝑖𝜃(n𝑖𝑡−1, 𝜔𝑖𝑡|r𝑖𝜃) =
𝜋𝑖𝜔𝑖𝑡𝜃

𝜋𝑖𝜔𝑖𝑡𝜃*
as 𝑡 → ∞, then

log
(︀

1
𝑚

∑︀𝑚
𝑖=1 ℓ𝑖𝜃(n𝑖𝑡−1, 𝜔𝑖𝑡|r𝑖𝜃)

)︀
= log

(︁
1
𝑚

∑︀𝑚
𝑖=1

𝜋𝑖𝜔𝑖𝑡𝜃

𝜋𝑖𝜔𝑖𝑡𝜃*

)︁
a.s.. Using the fact that log(1 + 𝑥) 6 𝑥 for 𝑥 > 0, it is easy
to see that for 𝑇 sufficiently large, the log expected belief can
be bounded with probability at least 1− 𝛿 as

log
(︁
𝐸𝜃*

𝜒𝜈
[𝜇𝑇+𝜈𝑍(𝜃)]

)︁
≤ 𝑍

(︁
𝜈𝜖+

√
2𝑚𝜆𝜈

)︁
+

𝑍∑︁
𝑧=1

log

(︃
1

𝑚

𝑚∑︁
𝑖=1

𝜋𝑖𝜔𝑖(𝑇+𝜈𝑧)𝜃

𝜋𝑖𝜔𝑖(𝑇+𝜈𝑧)𝜃*

)︃
+ 𝐶,

where 𝐶 = log
(︀

1
𝑚

∑︀𝑚
𝑖=1 𝜇𝑖𝑇 (𝜃)

)︀
+

log (ℓ𝜃(n𝑖𝑇+𝜈−1𝜔𝑖𝑇+𝜈 |r𝑖𝜃)) is a finite constant. By the
law of large numbers for sufficiently large 𝑍,

log
(︁
𝐸𝜃*

𝜒𝜈
[𝜇𝑇+𝜈𝑍(𝜃)]

)︁
≤ 𝑍

(︁
(𝜈 − 1)𝜖+

√
2𝑚𝜆𝜈 −𝐷𝐶𝐴(Π𝜃* ||Π𝜃)

)︁
+ 𝐶.

Since the centralized average divergence is positive as 𝜋𝑖𝜃 ̸=
𝜋𝑖𝜃* for at least one agent 𝑖, 𝜖 and 𝜈 can be chosen
such that 𝜈𝜖 +

√
2𝑚𝜆𝜈 < 𝐷𝐶𝐴(Π𝜃* ||Π𝜃) and the bounds

diverges to −∞ with probability at least 1 − 𝛿. Thus,
lim𝑍→∞ 𝐸𝜃*

𝜒𝜈
[𝜇𝑇+𝜈𝑍(𝜃)]

𝑃→ 0. Finally, the beliefs are always
bounded below by zero, and so convergence of the expectation
to zero also implies that 𝜇𝑡(𝜃)

𝑃→ ∞.

In summary, DeGroot-style social learning with finite prior
evidence does not in general lead to the same beliefs as
the centralized uncertain likelihood ratio, unlike the learning
rule in (1). Nevertheless for infinite evidence, learning is
still achieved. For the general case as the uncertain update
ℓ𝑖𝜃(n𝑖𝑡−1, 𝜔𝑖𝑡|r𝑖𝜃) transitions from a certain-like update to
a value of one more slowly as more prior evidence 𝑅𝑖𝜃 is
available, more prior evidence leads to a larger chance that

TABLE I
SET OF HYPOTHESES Θ

𝜃1 𝜃2 𝜃3 𝜃4
𝜋𝑖𝜃 {0.6, 0.4} {0.55, 0.45} {0.5, 0.5} {0.4, 0.6}

𝐷𝐾𝐿(𝜋𝑖𝜃||𝜋𝑖𝜃*) 0 0.0051 0.0204 0.0811

beliefs using the DeGroot-style rule will converge to a value
greater than one when 𝜃 = 𝜃* and a value less than one when
𝜃 ̸= 𝜃*. The experiments in Section VII empirically show that
the interpretation of the beliefs as a uncertain likelihood ratio
via Definition IV.3 is still meaningful even though it is less so
than for the social aggregation rule given by (1).

VII. NUMERICAL ANALYSIS

Next, we present a simulation study of a group of 𝑚 = 20
agents applying the proposed algorithms to empirically vali-
date the results. In this study, we considered that the agents
are socially connected according to an undirected random
geometric graph shown in Figure 3. The weights of the
adjacency matrix were constructed using a lazy metropolis
matrix [27] to ensure that the network is doubly stochastic.

Then, we considered three scenarios based on the amount
of prior evidence randomly collected within the following
categories: Low, i.e., 𝑅𝑖𝜃 ∈ [0, 100], High, i.e., 𝑅𝑖𝜃 ∈
[1000, 10000], and Infinite, i.e., 𝑅𝑖𝜃 → ∞. Within each
scenario, each agent randomly selects 𝑅𝑖𝜃 and collects a set of
prior evidence for each hypothesis 𝜃 ∈ Θ = {𝜃1, 𝜃2, 𝜃3, 𝜃4},
where the parameters of each hypothesis are shown in Table I.
Then, each learning algorithm is simulated for 𝑁 = 50 Monte
Carlo runs, where the amount of prior evidence, the set of
prior evidence, and the measurement sequence is randomly
generated during each run.

First, we present the agents’ beliefs for both learning rules
in Figure 4 for a single Monte Carlo run. These figures
show that the amount of prior evidence directly effects the
point of convergence of both learning rules. As the evidence
increases, the point of convergence increases for 𝜃1 = 𝜃*

and decreases for 𝜃 ̸= 𝜃*. Additionally, the log-linear beliefs
with finite evidence are converging to (

∏︀𝑚
𝑗=1

̃︀Λ𝑗𝜃)
1
𝑚 , while the

DeGroot beliefs are converging to something larger as stated
in Theorem III.6 and Lemma VI.1 respectively. This indicates
that we could select a threshold that allows for accurate
inference with log-linear. However, this is not necessarily the
case for the DeGroot model since the beliefs can converge to
a value > 1, as seen for 𝜃2. The properties of the DeGroot
learning rule requires further study as future work.

Furthermore, these figures show that when the agents are
certain, learning occurs as stated in Corollaries V.5.1, V.6,
and VI.1.1 and Theorem VI.4. Additionally, we can see that
the certain beliefs generated by the DeGroot rule decrease to
0 at a slower rate than the log-linear beliefs as indicated in
Lemma VI.3.

Next, we studied error statistics to validate the results pre-
sented in the previous sections, as seen in Tables II, III, and IV.
First, we consider the maximum error between the uncertain
likelihood ratio and the asymptotic uncertain likelihood ratio,
i.e., 𝑒Λ𝑡

(𝜃) = max𝑖∈ℳ,𝑚𝑐∈{1,...,𝑁} |Λ𝑖𝜃(𝑇,𝑚𝑐) − ̃︀Λ𝑖𝜃(𝑚𝑐)|,
to empirically validate Lemma IV.4 as seen in Table II. Note

15

100 102 104 106

t

100

(a) Log-linear 𝜃1

100 102 104 106

t

10-10

100

104 105 106
2

2.5

3

(b) Log-linear 𝜃2

100 102 104 106

t

10-50

100

104 105 106
1

1.5

(c) Log-linear 𝜃3

100 102 104 106

t

10-200

100

104 105 106
10-2

10-1

(d) Log-linear 𝜃4

100 102 104 106

t

100

(e) DeGroot 𝜃1

100 102 104 106

t

10-10

100

104 105 106
100
101
102

(f) DeGroot 𝜃2

100 102 104 106

t

10-50

100

104 105 106
100

102

(g) DeGroot 𝜃3

100 102 104 106

t

10-200

100

104 105 106

100

(h) DeGroot 𝜃4

10-1 100

Fig. 4. Belief evolution of the Log-linear (1) and DeGroot (32) update rules for hypotheses 𝜃1, 𝜃2, 𝜃3, and 𝜃4.

TABLE II
MAXIMUM ERROR STATISTICS FOR THE UNCERTAIN LIKELIHOOD RATIO.

𝑒Λ𝑡 (𝜃)
Time step 𝑇 = 103 𝑇 = 106

L
ow

𝜃1 2.27◇ 0.045◇

𝜃2 7.39◇ 0.060◇

𝜃3 11.15◇ 0.086◇

𝜃4 100.93◇ 0.125◇

H
ig

h

𝜃1 267.91◇ 0.557◇

𝜃2 23.28 0.424
𝜃3 7.64 1.2e-5
𝜃4 2.2e-12 0.00*

In
fin

ite

𝜃1 n/a◇ n/a◇
𝜃2 25.38 0.00*
𝜃3 0.366 0.00*
𝜃4 1.3e-16 0.00*

◇Values are normalized by ̃︀Λ𝑖𝜃

*Values are less than 10−16

that we have normalized the values when the beliefs converge
to a value greater than 1, while we do not normalize the values
when the beliefs are converging to a value close to 0 to avoid
divide by 0 singularities.

These results show that as time increases, the error decreases
significantly, suggesting that the uncertain likelihood ratio
is converging to ̃︀Λ𝑖𝜃. Then, as the KL divergence and the
amount of evidence increases, the error for hypotheses 𝜃 ̸= 𝜃*

further decreases until the error is < 10−16, while the error
slightly increases for hypotheses 𝜃1. This is because ̃︀Λ𝑖𝜃1

increases which requires additional time steps for the uncertain
likelihood ratio to reach the convergence point. Furthermore,
we cannot compute the error for a certain likelihood ratio of
𝜃1 since ̃︀Λ𝑖𝜃1 is diverging to infinity. However, the median
ratio Λ𝑖𝜃(𝑇 = 106)/Λ𝑖𝜃(𝑇 = 103) = 31.55, indicating that
the likelihood ratios are diverging to infinity.

The second error statistic shows that the agents
converge to a consensus belief, i.e., 𝑒𝑐𝑜𝑛𝜇𝑡

(𝜃) =
max𝑖∈ℳ,𝑚𝑐∈{1,..,𝑁} |𝜇𝑖𝑡(𝜃,𝑚𝑐) − �̄�𝑇 (𝜃,𝑚𝑐)|, where
�̄�𝑇 (𝜃,𝑚𝑐) = 1

𝑚

∑︀𝑚
𝑗=1 𝜇𝑗𝑡(𝜃,𝑚𝑐) is the average belief of

the agents during the Monte Carlo run 𝑚𝑐. These results
are shown for the log-linear and DeGroot-style learning

TABLE III
MAXIMUM ERROR STATISTICS FOR THE LOG-LINEAR UPDATE RULE.

𝑒𝑐𝑜𝑛𝜇𝑡
(𝜃) 𝑒𝑐𝑒𝑛𝜇𝑡

(𝜃)
Time step 𝑇 = 103 𝑇 = 106 𝑇 = 103 𝑇 = 106

L
ow

𝜃1 0.072◇ 6.1𝑒− 5◇ 0.144◁ 3.9𝑒− 3◁

𝜃2 0.086◇ 1.2𝑒− 4◇ 0.267◁ 5.6𝑒− 3◁

𝜃3 0.132◇ 1.1𝑒− 4◇ 0.403◁ 8.8𝑒− 3◁

𝜃4 0.236◇ 1.6𝑒− 4◇ 1.001◁ 1.7𝑒− 2◁

H
ig

h

𝜃1 0.241◇ 6.5𝑒− 4◇ 0.802◁ 0.132◁

𝜃2 1.477 1.6e-11 0.239 2.1e-14
𝜃3 6.3e-5 0.00* 7.2e-7 0.00*
𝜃4 0.00* 0.00* 0.00* 0.00*

In
fin

ite

𝜃1 0.340◇ 9.3𝑒− 3◇ 𝑛/𝑎◁ 𝑛/𝑎◁

𝜃2 0.504 0 0.105 0
𝜃3 8.7e-7 0 9.3e-8 0
𝜃4 0.00* 0 0.00* 0

◇Values are normalized by �̄�𝑇 (𝜃)
◁Values are normalized by (

∏︀𝑚
𝑖=1

̃︀Λ𝑖𝜃)
1/𝑚

*Values are less than 10−16

rules in Tables III and IV respectively. Similar to 𝑒Λ𝑡
(𝜃),

we normalized the results where the beliefs converge to a
value greater than 1. These tables show that as the number of
time steps increases, the error between the agents decreases
significantly, thus suggesting that the agents are forming a
consensus belief with both rules. Furthermore, it can be seen
that the errors between the log-linear and DeGroot beliefs are
similar, which suggests that the learning rules are correlated.

Finally, Tables III and IV show the error between the
agents’ beliefs and the centralized uncertain likelihood
ratio, i.e., 𝑒𝑐𝑒𝑛𝜇𝑡

(𝜃) = max𝑖∈ℳ,𝑚𝑐∈{1,...,𝑁} |𝜇𝑖𝑡(𝜃,𝑚𝑐) −
(
∏︀𝑚

𝑗=1
̃︀Λ𝑗𝜃(𝑚𝑐))

1
𝑚 |, to empirically validate Theorem III.6

and Lemma VI.1. Similar to the previous results, we have
normalized the values where the beliefs converge to a value
greater than 1. The results for the log-linear rule indicate
that the beliefs are converging to the centralized uncertain
likelihood ratio, while the DeGroot beliefs are converging to a
value much larger. When the agents are certain, both learning
rules result in beliefs that are converging to 0 for hypotheses
𝜃 ̸= 𝜃*. Although we cannot evaluate this result for 𝜃1, we can
see that the median of the ratio of beliefs 𝜇𝑖106(𝜃1)/𝜇𝑖103(𝜃1)

16

TABLE IV
MAXIMUM ERROR STATISTICS FOR THE DEGROOT-STYLE UPDATE RULE.

𝑒𝑐𝑜𝑛𝜇𝑡
(𝜃) 𝑒𝑐𝑒𝑛𝜇𝑡

(𝜃)
Time step 𝑇 = 103 𝑇 = 106 𝑇 = 103 𝑇 = 106

L
o w

𝜃1 0.072◇ 6.1𝑒− 5◇ 5.497◁ 5.638◁

𝜃2 0.081◇ 1.2𝑒− 4◇ 5.492◁ 5.850◁

𝜃3 0.138◇ 1.1𝑒− 4◇ 27.69 25.73
𝜃4 0.243◇ 1.6𝑒− 4◇ 25.73 25.68

H
ig

h

𝜃1 0.266◇ 6.5𝑒− 4◇ 19.80◁ 111.52◁

𝜃2 0.751◇ 4.7𝑒− 3◇ 694.79 1.0e4
𝜃3 1.761◇ 9.4𝑒− 3◇ 2.4e3 687.76
𝜃4 132.43 1.8e-5 269.21 1.5e-3

In
fin

ite

𝜃1 0.371◇ 9.3𝑒− 3◇ 𝑛/𝑎◁ 𝑛/𝑎◁

𝜃2 765.33 0.00* 2.0e3 0.00*
𝜃3 1.75e3 0.00* 3.8e3 0.00*
𝜃4 36.91 0.00* 74.41 0.00*

◇Values are normalized by �̄�𝑇 (𝜃)
◁Values are normalized by (

∏︀𝑚
𝑖=1

̃︀Λ𝑖𝜃)
1/𝑚

*Values are less than 10−16

is 33.03 and 880.90 for log-linear and DeGroot respectively,
indicating that the beliefs are diverging to infinity.

VIII. CONCLUSION

This work presents the properties of uncertain models in
non-Bayesian social learning theory where a group of agents
are collaborating together to identify the unknown ground truth
hypothesis. Uncertainty arises in many situations where an
agent cannot acquire enough prior evidence about a hypothesis
to develop precise statistical models. To accommodate for
uncertainty, we derived an approximate statistical model for
each hypothesis based on the partial information available to
a single agent and studied the convergence properties of a
group of agents that compute a belief for each hypothesis using
a log-linear update rule. We found that when the agents are
uncertain, the group forms a consensus belief, albeit different
than traditional social beliefs. However, when the agents are
certain, the beliefs generated using our uncertain models allow
for learning and achieves results consistent with the literature.

We then found that agents can also learn in the certain
condition with a DeGroot-style rule, but cannot quantify the
convergence point in the uncertain condition. Furthermore, the
beliefs generated using the DeGroot-style rule converge at a
rate much slower than the log-linear rule.

As a future work, we will study the effects of malicious
agents where preliminary results are presented in [49]. Build-
ing on analysis of DeGroot-style rules, we will aim to quantify
their convergence point as well as those of other aggregation
rules. Additionally, we aim to understand how the uncertain
likelihood ratio test trades off type I and II errors as a function
of prior evidence.

REFERENCES

[1] A. Jadbabaie, P. Molavi, A. Sandroni, and A. Tahbaz-Salehi, “Non-
Bayesian social learning,” Games and Economic Behavior, vol. 76, no. 1,
pp. 210–225, 2012.

[2] P. Molavi, A. Tahbaz-Salehi, and A. Jadbabaie, “A theory of non-
Bayesian social learning,” Econometrica, vol. 86, no. 2, pp. 445–490,
2018.

[3] D. Gale and S. Kariv, “Bayesian learning in social networks,” Games
and Economic Behavior, vol. 45, no. 2, pp. 329–346, 2003.

[4] D. Acemoglu, M. A. Dahleh, I. Lobel, and A. Ozdaglar, “Bayesian
learning in social networks,” The Review of Economic Studies, vol. 78,
no. 4, pp. 1201–1236, 2011.

[5] Y. Kanoria and O. Tamuz, “Tractable Bayesian social learning on trees,”
IEEE Journal on Selected Areas in Communications, vol. 31, no. 4, pp.
756–765, 2013.

[6] M. A. Rahimian, A. Jadbabaie, and E. Mossel, “Complexity of Bayesian
belief exchange over a network,” in Decision and Control (CDC), 2017
IEEE 56th Annual Conference on. IEEE, 2017, pp. 2611–2616.

[7] A. Jøsang, Subjective logic. Springer, 2016.
[8] D. B. Rubin, “Bayesianly justifiable and relevant frequency calculations

for the applied statistician,” The Annals of Statistics, vol. 12, no. 4, pp.
1151–1172, 1984.

[9] K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact diffusion for
distributed optimization and learning—part i: Algorithm development,”
IEEE Transactions on Signal Processing, vol. 67, no. 3, pp. 708–723,
2018.

[10] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, p. 48, 2009.

[11] S. Kar and J. M. Moura, “Convergence rate analysis of distributed gossip
(linear parameter) estimation: Fundamental limits and tradeoffs,” IEEE
Journal of Selected Topics in Signal Processing, vol. 5, no. 4, pp. 674–
690, 2011.

[12] S. Kar, J. M. Moura, and K. Ramanan, “Distributed parameter estimation
in sensor networks: Nonlinear observation models and imperfect com-
munication,” IEEE Transactions on Information Theory, vol. 58, no. 6,
pp. 3575–3605, 2012.

[13] C. G. Lopes and A. H. Sayed, “Incremental adaptive strategies over
distributed networks,” IEEE Transactions on Signal Processing, vol. 55,
no. 8, pp. 4064–4077, 2007.

[14] J. Chen and A. H. Sayed, “Diffusion adaptation strategies for distributed
optimization and learning over networks,” IEEE Transactions on Signal
Processing, vol. 60, no. 8, pp. 4289–4305, 2012.

[15] ——, “On the learning behavior of adaptive networks—part i: Transient
analysis,” IEEE Transactions on Information Theory, vol. 61, no. 6, pp.
3487–3517, 2015.

[16] ——, “On the learning behavior of adaptive networks—part ii: Perfor-
mance analysis,” IEEE Transactions on Information Theory, vol. 61,
no. 6, pp. 3518–3548, 2015.

[17] M. H. DeGroot, “Reaching a consensus,” Journal of the American
Statistical Association, vol. 69, no. 345, pp. 118–121, 1974.

[18] S. Shahrampour and A. Jadbabaie, “Exponentially fast parameter es-
timation in networks using distributed dual averaging,” in 52nd IEEE
Conference on Decision and Control. IEEE, 2013, pp. 6196–6201.

[19] P. Molavi, A. Jadbabaie, K. R. Rad, and A. Tahbaz-Salehi, “Reaching
consensus with increasing information,” IEEE Journal of Selected Topics
in Signal Processing, vol. 7, no. 2, pp. 358–369, 2013.

[20] H. Salami, B. Ying, and A. H. Sayed, “Social learning over weakly
connected graphs,” IEEE Transactions on Signal and Information Pro-
cessing over Networks, vol. 3, no. 2, pp. 222–238, 2017.

[21] K. R. Rad and A. Tahbaz-Salehi, “Distributed parameter estimation in
networks,” in 49th IEEE Conference on Decision and Control (CDC).
IEEE, 2010, pp. 5050–5055.

[22] M. A. Rahimian, P. Molavi, and A. Jadbabaie, “(non-) Bayesian learning
without recall,” in 53rd IEEE Conference on Decision and Control.
IEEE, 2014, pp. 5730–5735.

[23] S. Shahrampour, A. Rakhlin, and A. Jadbabaie, “Distributed detection:
Finite-time analysis and impact of network topology,” IEEE Transactions
on Automatic Control, vol. 61, no. 11, pp. 3256–3268, 2015.

[24] A. Nedić, A. Olshevsky, and C. A. Uribe, “Nonasymptotic convergence
rates for cooperative learning over time-varying directed graphs,” in
American Control Conference (ACC), 2015. IEEE, 2015, pp. 5884–
5889.

[25] A. Lalitha, T. Javidi, and A. D. Sarwate, “Social learning and distributed
hypothesis testing,” IEEE Transactions on Information Theory, vol. 64,
no. 9, pp. 6161–6179, 2018.

[26] G. Levy and R. Razin, “Information diffusion in networks with the
Bayesian peer influence heuristic,” Games and Economic Behavior, vol.
109, pp. 262–270, 2018.

[27] A. Nedić, A. Olshevsky, and C. A. Uribe, “Fast convergence rates for
distributed non-Bayesian learning,” IEEE Transactions on Automatic
Control, vol. 62, no. 11, pp. 5538–5553, 2017.

[28] ——, “Network independent rates in distributed learning,” in 2016
American Control Conference (ACC). IEEE, 2016, pp. 1072–1077.

[29] M. Bhotto and W. P. Tay, “Non-Bayesian social learning with observa-
tion reuse and soft switching,” ACM Transactions on Sensor Networks
(TOSN), vol. 14, no. 2, p. 14, 2018.

[30] L. Su and N. H. Vaidya, “Defending non-Bayesian learning against
adversarial attacks,” Distributed Computing, pp. 1–13, 2018.

17

[31] D. Dubois and H. Prade, “Possibility theory, probability theory and
multiple-valued logics: A clarification,” Annals of mathematics and
Artificial Intelligence, vol. 32, no. 1-4, pp. 35–66, 2001.

[32] G. J. Klir, Uncertainty and information: Foundations of generalized
information theory. John Wiley & Sons, 2005.

[33] D. Dubois and H. Prade, “Possibility theory,” in Computational com-
plexity. Springer, 2012, pp. 2240–2252.

[34] P. Walley, “Inferences from multinomial data: learning about a bag of
marbles,” Journal of the Royal Statistical Society. Series B (Methodolog-
ical), pp. 3–57, 1996.

[35] ——, “Statistical inferences based on a second-order possibility distri-
bution,” International Journal of General System, vol. 26, no. 4, pp.
337–383, 1997.

[36] J.-M. Bernard, “An introduction to the imprecise Dirichlet model for
multinomial data,” International Journal of Approximate Reasoning,
vol. 39, no. 2-3, pp. 123–150, 2005.

[37] G. Shafer, A mathematical theory of evidence. Princeton university
press, 1976, vol. 42.

[38] P. Smets and R. Kennes, “The transferable belief model,” Artificial
intelligence, vol. 66, no. 2, pp. 191–234, 1994.

[39] P. Gärdenfors and N.-E. Sahlin, “Unreliable probabilities, risk taking,
and decision making,” Synthese, vol. 53, no. 3, pp. 361–386, 1982.

[40] T. Chávez, “Modeling and measuring the effects of vagueness in decision
models,” IEEE Transactions on Systems, Man, and Cybernetics-Part A:
Systems and Humans, vol. 26, no. 3, pp. 311–323, 1996.

[41] X.-L. Meng, “Posterior predictive 𝑝-values,” The Annals of Statistics,
vol. 22, no. 3, pp. 1142–1160, 1994.

[42] F. Tuyl, R. Gerlach, K. Mengersen et al., “Posterior predictive arguments
in favor of the Bayes-Laplace prior as the consensus prior for binomial
and multinomial parameters,” Bayesian analysis, vol. 4, no. 1, pp. 151–
158, 2009.

[43] R. E. Kass and L. Wasserman, “The selection of prior distributions by
formal rules,” Journal of the American Statistical Association, vol. 91,
no. 435, pp. 1343–1370, 1996.

[44] B. Gharesifard and J. Cortés, “When does a digraph admit a doubly
stochastic adjacency matrix?” in Proceedings of the 2010 American
Control Conference. IEEE, 2010, pp. 2440–2445.

[45] A. Nedić and A. Olshevsky, “Stochastic gradient-push for strongly
convex functions on time-varying directed graphs,” IEEE Transactions
on Automatic Control, vol. 61, no. 12, pp. 3936–3947, 2016.

[46] A. Jøsang, “A logic for uncertain probabilities,” International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 9, no. 03,
pp. 279–311, 2001.

[47] A. Laforgia and P. Natalini, “On the asymptotic expansion of a ratio of
gamma functions,” Journal of mathematical analysis and applications,
vol. 389, no. 2, pp. 833–837, 2012.

[48] S. S. Ram, A. Nedić, and V. V. Veeravalli, “Distributed stochastic
subgradient projection algorithms for convex optimization,” Journal of
optimization theory and applications, vol. 147, no. 3, pp. 516–545, 2010.

[49] J. Hare, C. Uribe, L. Kaplan, and A. Jadbabaie, “On malicious agents
in non-Bayesian social learning with uncertain models,” in ISIF/IEEE
International Conference on Information Fusion, 2019.

Published as a conference paper at ICLR 2019

EFFICIENTLY TESTING LOCAL OPTIMALITY AND
ESCAPING SADDLES FOR RELU NETWORKS

Chulhee Yun, Suvrit Sra & Ali Jadbabaie
Massachusetts Institute of Technology
Cambridge, MA 02139, USA
{chulheey,suvrit,jadbabai}@mit.edu

ABSTRACT

We provide a theoretical algorithm for checking local optimality and escaping
saddles at nondifferentiable points of empirical risks of two-layer ReLU networks.
Our algorithm receives any parameter value and returns: local minimum, second-
order stationary point, or a strict descent direction. The presence ofM data points
on the nondifferentiability of the ReLU divides the parameter space into at most
2M regions, which makes analysis difficult. By exploiting polyhedral geometry,
we reduce the total computation down to one convex quadratic program (QP) for
each hidden node, O(M) (in)equality tests, and one (or a few) nonconvex QP. For
the last QP, we show that our specific problem can be solved efficiently, in spite
of nonconvexity. In the benign case, we solve one equality constrained QP, and
we prove that projected gradient descent solves it exponentially fast. In the bad
case, we have to solve a few more inequality constrained QPs, but we prove that
the time complexity is exponential only in the number of inequality constraints.
Our experiments show that either benign case or bad case with very few inequality
constraints occurs, implying that our algorithm is efficient in most cases.

1 INTRODUCTION

Empirical success of deep neural networks has sparked great interest in the theory of deep models.
From an optimization viewpoint, the biggest mystery is that deep neural networks are successfully
trained by gradient-based algorithms despite their nonconvexity. On the other hand, it has been
known that training neural networks to global optimality is NP-hard (Blum & Rivest, 1988). It is also
known that even checking local optimality of nonconvex problems can be NP-hard (Murty & Kabadi,
1987). Bridging this gap between theory and practice is a very active area of research, and there have
been many attempts to understand why optimization works well for neural networks, by studying the
loss surface (Baldi & Hornik, 1989; Yu & Chen, 1995; Kawaguchi, 2016; Soudry & Carmon, 2016;
Nguyen & Hein, 2017; 2018; Safran & Shamir, 2018; Laurent & Brecht, 2018; Yun et al., 2019;
2018; Zhou & Liang, 2018; Wu et al., 2018; Shamir, 2018) and the role of (stochastic) gradient-
based methods (Tian, 2017; Brutzkus & Globerson, 2017; Zhong et al., 2017; Soltanolkotabi, 2017;
Li & Yuan, 2017; Zhang et al., 2018; Brutzkus et al., 2018; Wang et al., 2018; Li & Liang, 2018; Du
et al., 2018a;b;c; Allen-Zhu et al., 2018; Zou et al., 2018; Zhou et al., 2019).

One of the most important beneficial features of convex optimization is the existence of an optimality
test (e.g., norm of the gradient is smaller than a certain threshold) for termination, which gives us
a certificate of (approximate) optimality. In contrast, many practitioners in deep learning rely on
running first-order methods for a fixed number of epochs, without good termination criteria for the
optimization problem. This means that the solutions that we obtain at the end of training are not
necessarily global or even local minima. Yun et al. (2018; 2019) showed efficient and simple global
optimality tests for deep linear neural networks, but such optimality tests cannot be extended to
general nonlinear neural networks, mainly due to nonlinearity in activation functions.

Besides nonlinearity, in case of ReLU networks significant additional challenges in the analysis arise
due to nondifferentiability, and obtaining a precise understanding of the nondifferentiable points is
still elusive. ReLU activation function h(t) = max{t, 0} is nondifferentiable at t = 0. This means
that, for example, the function f(w, b) := (h(wTx + b) − 1)2 is nondifferentiable for any (w, b)
satisfyingwTx+b = 0. See Figure 1 for an illustration of how the empirical risk of a ReLU network

1

Published as a conference paper at ICLR 2019

0

5

10

1

15

20

25

0

v

-1
1

w

0.5
0

-0.5-2 -1
-1.5

(a) A 3-d surface plot of f(w, v).

-1.5 -1 -0.5 0 0.5 1

w

-1.5

-1

-0.5

0

0.5

1

v

(b) Nondifferentiable points on (w, v) plane.

Figure 1: An illustration of the empirical risk of a ReLU network. The plotted function is f(w, v) :=
(h(w − v + 1) − 2)2 + (h(2w + v + 1) − 1)2 + (h(w + 2v + 1) − 0.5)2, where h is the ReLU
function. (a) A 3-d surface plot of the function. One can see that there are sharp ridges in the
function. (b) A plot of nondifferentiable points on the (w, v) plane. The blue line correspond to the
line w − v + 1 = 0, the red to 2w + v + 1 = 0, and the yellow to w + 2v + 1 = 0.

looks like. Although the plotted function does not exactly match the definition of empirical risk we
study in this paper, the figures help us understand that the empirical risk is continuous but piecewise
differentiable, with affine hyperplanes on which the function is nondifferentiable.

Such nondifferentiable points lie in a set of measure zero, so one may be tempted to overlook them
as “non-generic.” However, when studying critical points we cannot do so, as they are precisely
such “non-generic” points. For example, Laurent & Brecht (2018) study one-hidden-layer ReLU
networks with hinge loss and note that except for piecewise constant regions, local minima always
occur on nonsmooth boundaries. Probably due to difficulty in analysis, there have not been other
works that handle such nonsmooth points of losses and prove results that work for all points. Some
theorems (Soudry & Carmon, 2016; Nguyen & Hein, 2018) hold “almost surely”; some assume
differentiability or make statements only for differentiable points (Nguyen & Hein, 2017; Yun et al.,
2019); others analyze population risk, in which case the nondifferentiability disappears after taking
expectation (Tian, 2017; Brutzkus & Globerson, 2017; Du et al., 2018b; Safran & Shamir, 2018; Wu
et al., 2018).

1.1 SUMMARY OF OUR RESULTS

In this paper, we take a step towards understanding nondifferentiable points of the empirical risk of
one-hidden-layer ReLU(-like) networks. Specifically, we provide a theoretical algorithm that tests
second-order stationarity for any point of the loss surface. It takes an input point and returns:

(a) The point is a local minimum; or
(b) The point is a second-order stationary point (SOSP); or
(c) A descent direction in which the function value strictly decreases.

Therefore, we can test whether a given point is a SOSP. If not, the test extracts a guaranteed direc-
tion of descent that helps continue minimization. With a proper numerical implementation of our
algorithm (although we leave it for future work), one can run a first-order method until it gets stuck
near a point, and run our algorithm to test for optimality/second-order stationarity. If the point is an
SOSP, we can terminate without further computation over many epochs; if the point has a descent
direction, our algorithm will return a descent direction and we can continue on optimizing. Note that
the descent direction may come from the second-order information; our algorithm even allows us to
escape nonsmooth second-order saddle points. This idea of mixing first and second-order methods
has been explored in differentiable problems (see, for example, Carmon et al. (2016); Reddi et al.
(2017) and references therein), but not for nondifferentiable ReLU networks.

The key computational challenge in constructing our algorithm for nondifferentiable points is posed
by data points that causes input 0 to the ReLU hidden node(s). Such data point bisects the parameter
space into two halfspaces with different “slopes” of the loss surface, so one runs into nondifferen-

2

Published as a conference paper at ICLR 2019

tiability. We define these data points to be boundary data points. For example, in Figure 1b, if the
input to our algorithm is (w, v) = (−2/3, 1/3), then there are two boundary data points: “blue” and
“red.” If there are M such boundary data points, then in the worst case the parameter space divides
into 2M regions, or equivalently, there are 2M “pieces” of the function that surround the input point.
Of course, naively testing each region will be very inefficient; in our algorithm, we overcome this
issue by a clever use of polyhedral geometry. Another challenge comes from the second-order test,
which involves solving nonconvex QPs. Although QP is NP-hard in general (Pardalos & Vavasis,
1991), we prove that the QPs in our algorithm are still solved efficiently in most cases. We further
describe the challenges and key ideas in Section 2.1.

Notation. For a vector v, [v]i denotes its i-th component, and ‖v‖H :=
√
vTHv denotes a semi-

norm where H is a positive semidefinite matrix. Given a matrix A, we let [A]i,j , [A]i,·, and [A]·,j
be A’s (i, j)-th entry, the i-th row, and the j-th column, respectively.

2 PROBLEM SETTING AND KEY IDEAS

We consider a one-hidden-layer neural network with input dimension dx, hidden layer width dh, and
output dimension dy . We are given m pairs of data points and labels (xi, yi)

m
i=1, where xi ∈ Rdx

and yi ∈ Rdy . Given an input vector x, the output of the network is defined as Y (x) := W2h(W1x+
b1) + b2, where W2 ∈ Rdy×dh , b2 ∈ Rdy , W1 ∈ Rdh×dx , and b1 ∈ Rdh are the network parameters.
The activation function h is “ReLU-like,” meaning h(t) := max{s+t, 0} + min{s−t, 0}, where
s+ > 0, s− ≥ 0 and s+ 6= s−. Note that ReLU and Leaky-ReLU are members of this class. In
training neural networks, we are interested in minimizing the empirical risk

R((Wj , bj)
2
j=1) =

∑m

i=1
`(Y (xi), yi) =

∑m

i=1
`(W2h(W1xi + b1) + b2, yi),

over the parameters (Wj , bj)
2
j=1, where `(w, y) : Rdy × Rdy 7→ R is the loss function. We make

the following assumptions on the loss function and the training dataset:
Assumption 1. The loss function `(w, y) is twice differentiable and convex in w.

Assumption 2. No dx + 1 data points lie on the same affine hyperplane.

Assumption 1 is satisfied by many standard loss functions such as squared error loss and cross-
entropy loss. Assumption 2 means, if dx = 2 for example, no three data points are on the same line.
Since real-world datasets contain noise, this assumption is also quite mild.

2.1 CHALLENGES AND KEY IDEAS

In this section, we explain the difficulties at nondifferentiable points and ideas on overcoming them.
Our algorithm is built from first principles, rather than advanced tools from nonsmooth analysis.

Bisection by boundary data points. Since the activation function h is nondifferentiable at 0, the
behavior of data points at the “boundary” is decisive. Consider a simple example dh = 1, so W1 is a
row vector. IfW1xi+b1 6= 0, then the sign of (W1+∆1)xi+(b1+δ1) for any small perturbations ∆1

and δ1 stays invariant. In contrast, when there is a point xi on the “boundary,” i.e., W1xi + b1 = 0,
then the slope depends on the direction of perturbation, leading to nondifferentiability. As mentioned
earlier, we refer to such data points as boundary data points. When ∆1xi + δ1 ≥ 0,

h((W1 +∆1)xi+(b1 +δ1)) = h(∆1xi+δ1) = s+(∆1xi+δ1) = h(W1xi+b1)+s+(∆1xi+δ1),

and similarly, the slope is s− for ∆1xi + δ1 ≤ 0. This means that the “gradient” (as well as higher
order derivatives) of R depends on direction of (∆1, δ1).

Thus, every boundary data point xi bisects the space of perturbations (∆j , δj)
2
j=1 into two halfs-

paces by introducing a hyperplane through the origin. The situation is even worse if we have M
boundary data points: they lead to a worst case of 2M regions. Does it mean that we need to test all
2M regions separately? We show that there is a way to get around this issue, but before that, we first
describe how to test local minimality or stationarity for each region.

Second-order local optimality conditions. We can expand R((Wj +∆j , bj +δj)
2
j=1) and obtain

the following Taylor-like expansion for small enough perturbations (see Lemma 2 for details)

R(z + η) = R(z) + g(z, η)T η + 1
2η
TH(z, η)η + o(‖η‖2), (1)

3

Published as a conference paper at ICLR 2019

where z is a vectorized version of all parameters (Wj , bj)
2
j=1 and η is the corresponding vector

of perturbations (∆j , δj)
2
j=1. Notice now that in (1), at nondifferentiable points the usual Taylor

expansion does not exist, but the corresponding “gradient” g(·) and “Hessian” H(·) now depend
on the direction of perturbation η. Also, the space of η is divided into at most 2M regions, and
g(z, η) andH(z, η) are piecewise-constant functions of η whose “pieces” correspond to the regions.
One could view this problem as 2M constrained optimization problems and try to solve for KKT
conditions at z; however, we provide an approach that is developed from first principles and solves
all 2M problems efficiently.

Given this expansion (1) and the observation that derivatives stay invariant with respect to scaling
of η, one can note that (a) g(z, η)T η ≥ 0 for all η, and (b) ηTH(z, η)η ≥ 0 for all η such that
g(z, η)T η = 0 are necessary conditions for local optimality of z, thus z is a “SOSP” (see Defini-
tion 2.2). The conditions become sufficient if (b) is replaced with ηTH(z, η)η > 0 for all η 6= 0 such
that g(z, η)T η = 0. In fact, this is a generalized version of second-order necessary (or sufficient)
conditions, i.e.,∇f = 0 and∇2f � 0 (or∇2f � 0), for twice differentiable f .

Efficiently testing SOSP for exponentially many regions. Motivated from the second-order ex-
pansion (1) and necessary/sufficient conditions, our algorithm consists of three steps:

(a) Testing first-order stationarity (in the Clarke sense, see Definition 2.1),
(b) Testing g(z, η)T η ≥ 0 for all η,
(c) Testing ηTH(z, η)η ≥ 0 for {η | g(z, η)T η = 0}.

The tests are executed from Step (a) to (c). Whenever a test fails, we get a strict descent direction
η, and the algorithm returns η and terminates. Below, we briefly outline each step and discuss how
we can efficiently perform the tests. We first check first-order stationarity because it makes Step (b)
easier. Step (a) is done by solving one convex QP per each hidden node. For Step (b), we formulate
linear programs (LPs) per each 2M region, so that checking whether all LPs have minimum cost of
zero is equivalent to checking g(z, η)T η ≥ 0 for all η. Here, the feasible sets of LPs are pointed
polyhedral cones, whereby it suffices to check only the extreme rays of the cones. It turns out that
there are only 2M extreme rays, each shared by 2M−1 cones, so testing g(z, η)T η ≥ 0 can be done
with only O(M) inequality/equality tests instead of solving exponentially many LPs. In Step (b),
we also record the flat extreme rays, which are defined to be the extreme rays with g(z, η)T η = 0,
for later use in Step (c).

In Step (c), we test if the second-order perturbation ηTH(·)η can be negative, for directions where
g(z, η)T η = 0. Due to the constraint g(z, η)T η = 0, the second-order test requires solving con-
strained nonconvex QPs. In case where there is no flat extreme ray, we need to solve only one
equality constrained QP (ECQP). If there exist flat extreme rays, a few more inequality constrained
QPs (ICQPs) are solved. Despite NP-hardness of general QPs (Pardalos & Vavasis, 1991), we prove
that the specific form of QPs in our algorithm are still tractable in most cases. More specifically,
we prove that projected gradient descent on ECQPs converges/diverges exponentially fast, and each
step takesO(p2) time (p is the number of parameters). In case of ICQPs, it takesO(p3 +L32L) time
to solve the QP, where L is the number of boundary data points that have flat extreme rays (L ≤M).
Here, we can see that if L is small enough, the ICQP can still be solved in polynomial time in p. At
the end of the paper, we provide empirical evidences that the number of flat extreme rays is zero or
very few, meaning that in most cases we can solve the QP efficiently.

2.2 PROBLEM-SPECIFIC NOTATION AND DEFINITION

In this section, we define a more precise notion of generalized stationary points and introduce some
additional symbols that will be helpful in streamlining the description of our algorithm in Section 3.
Since we are dealing with nondifferentiable points of nonconvex R, usual notions of (sub)gradients
do not work anymore. Here, Clarke subdifferential is a useful generalization (Clarke et al., 2008):
Definition 2.1 (FOSP, Theorem 6.2.5 of Borwein & Lewis (2010)). Suppose that a function f(z) :
Ω 7→ R is locally Lipschitz around the point z∗ ∈ Ω, and differentiable in Ω \ W where W has
Lebesgue measure zero. Then the Clarke differential of f at z∗ is

∂zf(z∗) := cvxhull{limk∇f(zk) | zk → z∗, zk /∈ W}.

If 0 ∈ ∂zf(z∗), we say z∗ is a first-order stationary point (FOSP).

4

Published as a conference paper at ICLR 2019

From the definition, we can note that Clarke subdifferential ∂zR(z∗) is the convex hull of all the
possible values of g(z∗, η) in (1). For parameters (Wj , bj)

2
j=1, let ∂Wj

f(z∗) and ∂bjf(z∗) be the
Clarke differential w.r.t. to Wj and bj , respectively. They are the projection of ∂zf(z∗) onto the
space of individual parameters. Whenever the point z∗ is clear (e.g. our algorithm), we will omit
(z∗) from f(z∗). Next, we define second-order stationary points for the empirical risk R. Notice
that this generalizes the definition of SOSP for differentiable functions f : ∇f = 0 and∇2f � 0.
Definition 2.2 (SOSP). We call z∗ is a second-order stationary point (SOSP) of R if (1) z∗ is a
FOSP, (2) g(z∗, η)T η ≥ 0 for all η, and (3) ηTH(z∗, η)η ≥ 0 for all η such that g(z∗, η)T η = 0.

Given an input data point x ∈ Rdx , we define O(x) := h(W1x + b1) to be the output of hidden
layer. We note that the notation O(·) is overloaded with the big O notation, but their meaning will
be clear from the context. Consider perturbing parameters (Wj , bj)

2
j=1 with (∆j , δj)

2
j=1, then the

perturbed output Ỹ (x) of the network and the amount of perturbation dY (x) can be expressed as

dY (x) := Ỹ (x)− Y (x) = ∆2O(x) + δ2 + (W2 + ∆2)J(x)(∆1x+ δ1),

where J(x) can be thought informally as the “Jacobian” matrix of the hidden layer. The matrix
J(x) ∈ Rdh×dh is diagonal, and its k-th diagonal entry is given by

[J(x)]k,k :=

{
h′([W1x+ b1]k) if [W1x+ b1]k 6= 0

h′([∆1x+ δ1]k) if [W1x+ b1]k = 0,

where h′ is the derivative of h. We define h′(0) := s+, which is okay because it is always multiplied
with zero in our algorithm. For boundary data points, [J(x)]k,k depends on the direction of pertur-
bations [∆1 δ1]k,·, as noted in Section 2.1. We additionally define dY1(x) and dY2(x) to separate
the terms in dY (x) that are linear in perturbations versus quadratic in perturbations.

dY1(x) := ∆2O(x) + δ2 +W2J(x)(∆1x+ δ1), dY2(x) := ∆2J(x)(∆1x+ δ1).

For simplicity of notation for the rest of the paper, we define for all i ∈ [m] := {1, . . . ,m},

x̄i :=
[
xTi 1

]T ∈ Rdx+1, ∇`i := ∇w`(Y (xi), yi), ∇2`i := ∇2
w`(Y (xi), yi).

In our algorithm and its analysis, we need to give a special treatment to the boundary data points.
To this end, for each node k ∈ [dh] in the hidden layer, define boundary index set Bk as

Bk := {i ∈ [m] | [W1xi + b1]k = 0} .
The subspace spanned by vectors x̄i for in i ∈ Bk plays an important role in our tests; so let us
define a symbol for it, as well as the cardinality of Bk and their sum:

Vk := span{x̄i | i ∈ Bk}, Mk := |Bk|, M :=
∑dh

k=1
Mk.

For k ∈ [dh], let vTk ∈ R1×(dx+1) be the k-th row of [∆1 δ1], and uk ∈ Rdy be the k-th column of
∆2. Next, we define the total number of parameters p, and vectorized perturbations η ∈ Rp:

p := dy + dydh + dh(dx + 1), ηT :=
[
δT2 uT1 · · · uTdh vT1 · · · vTdh

]
.

Also let z ∈ Rp be vectorized parameters (Wj , bj)
2
j=1, packed in the same order as η.

Define a matrix Ck :=
∑
i/∈Bk

h′([W1xi + b1]k)∇`ix̄Ti ∈ Rdy×(dx+1). This quantity appears mul-
tiplie times and does not depend on the perturbation, so it is helpful to have a symbol for it.

We conclude this section by presenting one of the implications of Assumption 2 in the following
lemma, which we will use later. The proof is simple, and is presented in Appendix B.1.
Lemma 1. If Assumption 2 holds, thenMk ≤ dx and the vectors {x̄i}i∈Bk

are linearly independent.

3 TEST ALGORITHM FOR SECOND-ORDER STATIONARITY

In this section, we present SOSP-CHECK in Algorithm 1, which takes an arbitrary tuple (Wj , bj)
2
j=1

of parameters as input and checks whether it is a SOSP. We first present a lemma that shows the ex-
plicit form of the perturbed empirical risk R(z+η) and identify first and second-order perturbations.
The proof is deferred to Appendix B.2.

5

Published as a conference paper at ICLR 2019

Algorithm 1 SOSP-CHECK (Rough pseudocode)

Input: A tuple (Wj , bj)
2
j=1 of R(·).

1: Test if ∂W2R = {0dy×dh} and ∂b2R = {0dy}.
2: for k ∈ [dh] do
3: if Mk > 0 then
4: Test if 0T

dx+1 ∈ ∂[W1 b1]k,·R.
5: Test if gk(z, vk)T vk ≥ 0 for all vk via testing extreme rays ṽk of polyhedral cones.
6: Store extreme rays ṽk s.t. gk(z, ṽk)T ṽk = 0 for second-order test.
7: else
8: Test if ∂[W1 b1]k,·R = {0T

dx+1}.
9: end if

10: end for
11: For all η’s s.t. g(z, η)T η = 0, test if ηTH(z, η)η ≥ 0.
12: if ∃η 6= 0 s.t. g(z, η)T η = 0 and ηTH(z, η)η = 0 then
13: return SOSP.
14: else
15: return Local Minimum.
16: end if

Lemma 2. For small enough perturbation η,

R(z + η) = R(z) + g(z, η)T η + 1
2η
TH(z, η)η + o(‖η‖2),

where g(z, η) and H(z, η) satisfy

g(z, η)T η =
∑

i
∇`Ti dY1(xi) =

〈∑
i
∇`iO(xi)

T ,∆2

〉
+
〈∑

i
∇`i, δ2

〉
+

dh∑
k=1

gk(z, vk)T vk,

ηTH(z, η)η =
∑

i
∇`Ti dY2(xi) + 1

2

∑
i
‖dY1(xi)‖2∇2`i

,

and gk(z, vk)T := [W2]T·,k
(
Ck +

∑
i∈Bk

h′(x̄Ti vk)∇`ix̄Ti
)
. Also, g(z, η) and H(z, η) are piece-

wise constant functions of η, which are constant inside each polyhedral cone in space of η.

Rough pseudocode of SOSP-CHECK is presented in Algorithm 1. As described in Section 2.1, the
algorithm consists of three steps: (a) testing first-order stationarity (b) testing g(z, η)T η ≥ 0 for all
η, and (c) testing ηTH(z, η)η ≥ 0 for {η | g(z, η)T η = 0}. If the input point satisfies the second-
order sufficient conditions for local minimality, the algorithm decides it is a local minimum. If the
point only satisfies second-order necessary conditions, it returns SOSP. If a strict descent direction
η is found, the algorithm terminates immediately and returns η. A brief description will follow, but
the full algorithm (Algorithm 2) and a full proof of correctness are deferred to Appendix A.

3.1 TESTING FIRST-ORDER STATIONARITY (LINES 1, 4, AND 8)

Line 1 of Algorithm 1 corresponds to testing if ∂W2R and ∂b2R are singletons with zero. If not, the
opposite direction is a descent direction. More details are in Appendix A.1.1.

Test for W1 and b1 is more difficult because g(z, η) depends on ∆1 and δ1 when there are boundary
data points. For each k ∈ [dh], Line 4 (if Mk > 0), and Line 8 (if Mk = 0) test if 0Tdx+1 is
in ∂[W1 b1]k,·R. Note from Definition 2.1 and Lemma 2 that ∂[W1 b1]k,·R is the convex hull of all
possible values of gk(z, vk)T . If Mk > 0, 0 ∈ ∂[W1 b1]k,·R can be tested by solving a convex QP:

minimize{si}i∈Bk
‖[W2]T·,k(Ck +

∑
i∈Bk

si∇`ix̄Ti)‖22
subject to min{s−, s+} ≤ si ≤ max{s−, s+}, ∀i ∈ Bk.

(2)

If the solution {s∗i }i∈Bk
does not achieve zero objective value, then we can directly return a descent

direction. For details please refer to FO-SUBDIFF-ZERO-TEST (Algorithm 3) and Appendix A.1.2.

3.2 TESTING g(z, η)T η ≥ 0 FOR ALL η (LINES 5–6)

Linear program formulation. Lines 5–6 are about testing if gk(z, vk)T vk ≥ 0 for all directions
of vk. If 0Tdx+1 ∈ ∂[W1 b1]k,·R, with the solution {s∗i } from QP (2) we can write gk(z, vk)T as

gk(z, vk)T =[W2]T·,k

(
Ck +

∑
i∈Bk

h′(x̄Ti vk)∇`ix̄Ti
)

=[W2]T·,k

(∑
i∈Bk

(
h′(x̄Ti vk)− s∗i

)
∇`ix̄Ti

)
.

6

Published as a conference paper at ICLR 2019

Every i ∈ Bk bisects Rdx+1 into two halfspaces, x̄Ti vk ≥ 0 and x̄Ti vk ≤ 0, in each of which
h′(x̄Ti vk) stays constant. Note that by Lemma 1, x̄i’s for i ∈ Bk are linearly independent. So, given
Mk boundary data points, they divide the space Rdx+1 of vk into 2Mk polyhedral cones.

Since gk(z, vk)T is constant in each polyhedral cones, we can let σi ∈ {−1,+1} for all i ∈ Bk, and
define an LP for each {σi}i∈Bk

∈ {−1,+1}Mk :

minimize
vk

[W2]T·,k
(∑

i∈Bk
(sσi
− s∗i)∇`ix̄Ti

)
vk

subject to vk ∈ Vk, σix̄
T
i vk ≥ 0, ∀i ∈ Bk.

(3)

Solving these LPs and checking if the minimum value is 0 suffices to prove gk(z, vk)T vk ≥ 0 for all
small enough perturbations. The constraint vk ∈ Vk is there because any vk /∈ Vk is also orthogonal
to gk(z, vk). It is equivalent to dx + 1 − Mk linearly independent equality constraints. So, the
feasible set of LP (3) has dx + 1 linearly independent constraints, which implies that the feasible set
is a pointed polyhedral cone with vertex at origin. Since any point in a pointed polyhedral cone is a
conical combination (linear combination with nonnegative coefficients) of extreme rays of the cone,
checking nonnegativity of the objective function for all extreme rays suffices. We emphasize that
we do not solve the LPs (3) in our algorithm; we just check the extreme rays.

Computational efficiency. Extreme rays of a pointed polyhedral cone in Rdx+1 are computed
from dx linearly independent active constraints. For each i ∈ Bk, the extreme ray v̂i,k ∈ Vk ∩
span{x̄j | j ∈ Bk \ {i}}⊥ must be tested whether gk(z, v̂i,k)T v̂i,k ≥ 0, in both directions. Note
that there are 2Mk extreme rays, and one extreme ray v̂i,k is shared by 2Mk−1 polyhedral cones.
Moreover, x̄Tj v̂i,k = 0 for j ∈ Bk \ {i}, which indicates that

gk(z, v̂i,k)T v̂i,k = (sσi,k
− s∗i)[W2]T·,k∇`ix̄Ti v̂i,k, where σi,k = sign(x̄Ti v̂i,k),

regardless of {σj}j∈Bk\{i}. Testing an extreme ray can be done with a single inequality test instead
of 2Mk−1 separate tests for all cones! Thus, this extreme ray approach instead of solving individual
LPs greatly reduces computation, from O(2Mk) to O(Mk).

Testing extreme rays. For the details of testing all possible extreme rays, please refer to
FO-INCREASING-TEST (Algorithm 4) and Appendix A.2. FO-INCREASING-TEST computes all
possible extreme rays ṽk and tests if they satisfy gk(z, ṽk)T ṽk ≥ 0. If the inequality is not satisfied
by an extreme ray ṽk, then this is a descent direction, so we return ṽk. If the inequality holds with
equality, it means this is a flat extreme ray, and it needs to be checked in second-order test, so we
save this extreme ray for future use.

How many flat extreme rays (gk(z, ṽk)T ṽk = 0) are there? Presence of flat extreme rays introduce
inequality constraints in the QP that we solve in the second-order test. It is ideal not to have them,
because in this case there are only equality constraints, so the QP is easier to solve. Lemma A.1 in
Appendix A.2 shows the conditions for having flat extreme rays; in short, there is a flat extreme ray
if [W2]T·,k∇`i = 0 or s∗i = s+ or s−. For more details, please refer to Appendix A.2.

3.3 TESTING ηTH(z, η)η ≥ 0 FOR {η | g(z, η)T η = 0} (LINES 11–16)

The second-order test checks ηTH(z, η)η ≥ 0 for “flat” η’s satisfying g(z, η)T η = 0. This is
done with help of the function SO-TEST (Algorithm 5). Given its input {σi,k}k∈[dh],i∈Bk

, it defines
fixed “Jacobian” matrices Ji for all data points and equality/inequality constraints for boundary data
points, and solves the QP of the following form:

minimizeη
∑
i∇`Ti ∆2Ji(∆1xi + δ1)+ 1

2

∑
i ‖∆2O(xi) + δ2 +W2Ji(∆1xi+δ1)‖2∇2`i

,

subject to [W2]T·,kuk=[W1 b1]k,·vk, ∀k ∈ [dh],

x̄Ti vk = 0, ∀k ∈ [dh],∀i ∈ Bk s.t. σi,k = 0,
σi,kx̄

T
i vk ≥ 0, ∀k ∈ [dh],∀i ∈ Bk s.t. σi,k ∈ {−1,+1}.

(4)

Constraints and number of QPs. There are dh equality constraints of the form [W2]T·,kuk =

[[W1]k,· [b1]k] vk. These equality constraints are due to the nonnegative homogeneous property
of activation h; i.e., scaling [W1]k,· and [b1]k by α > 0 and scaling [W2]·,k by 1/α yields exactly

7

Published as a conference paper at ICLR 2019

the same network. So, these equality constraints force η to be orthogonal to the loss-invariant di-
rections. This observation is stated more formally in Lemma A.2, which as a corollary shows that
any differentiable FOSP of R always has rank-deficient Hessian. The other constraints make sure
that the union of feasible sets of QPs is exactly {η | g(z, η)T η = 0} (please see Lemma A.3 in
Appendix A.3 for details). It is also easy to check that these constraints are all linearly independent.

If there is no flat extreme ray, the algorithm solves just one QP with dh +M equality constraints. If
there are flat extreme rays, the algorithm solves one QP with dh + M equality constraints, and 2K

more QPs with dh +M − L equality constraints and L inequality constraints, where

K :=

dh∑
k=1

∣∣{i ∈Bk | [W2]T·,k∇`i = 0}
∣∣ , L :=

dh∑
k=1

|{i ∈Bk | v̂i,k or −v̂i,k is a flat ext. ray}| . (5)

Recall from Section 3.2 that i ∈ Bk has a flat extreme ray if [W2]T·,k∇`i = 0 or s∗i = s+ or s−;
thus, K ≤ L ≤M . Please refer to Appendix A.3 for more details.

Efficiency of solving the QPs (4). Despite NP-hardness of general QPs, our specific form of
QPs (4) can be solved quite efficiently, avoiding exponential complexity in p. After solving QP (4),
there are three (disjoint) termination conditions:

(T1) ηTQη > 0 whenever η ∈ S, η 6= 0, or
(T2) ηTQη ≥ 0 whenever η ∈ S, but ∃η 6= 0, η ∈ S such that ηTQη = 0, or
(T3) ∃η such that η ∈ S and ηTQη < 0,

where S is the feasible set of QP. With the following two lemmas, we show that the termination
conditions can be efficiently tested for ECQPs and ICQPs. First, the ECQPs can be iteratively
solved with projected gradient descent, as stated in the next lemma.

Lemma 3. Consider the QP, where Q ∈ Rp×p is symmetric and A ∈ Rq×p has full row rank:

minimizeη
1
2η
TQη subject to Aη = 0q

Then, projected gradient descent (PGD) updates

η(t+1) = (I −AT (AAT)−1A)(I − αQ)η(t)

with learning rate α < 1/λmax(Q) converges to a solution or diverges to infinity exponentially fast.
Moreover, with random initialization, PGD correctly checks conditions (T1)–(T3) with probability 1.

The proof is an extension of unconstrained case (Lee et al., 2016), and is deferred to Appendix B.3.
Note that it takes O(p2q) time to compute (I−AT (AAT)−1A)(I−αQ) in the beginning, and each
update takes O(p2) time. It is also surprising that the convergence rate does not depend on q.

In the presence of flat extreme rays, we have to solve QPs involving L inequality constraints. We
prove that our ICQP can be solved in O(p3 +L32L) time, which implies that as long as the number
of flat extreme rays is small, the problem can still be solved in polynomial time in p.

Lemma 4. Consider the QP, where Q ∈ Rp×p is symmetric, A ∈ Rq×p and B ∈ Rr×p have full
row rank, and

[
AT BT

]
has rank q + r:

minimizeη ηTQη subject to Aη = 0q, Bη ≥ 0r.

Then, there exists a method that checks whether (T1)–(T3) in O(p3 + r32r) time.

In short, we transform η to define an equivalent problem, and use classical results in copositive
matrices (Martin & Jacobson, 1981; Seeger, 1999; Hiriart-Urruty & Seeger, 2010); the problem can
be solved by computing the eigensystem of a (p−q−r)×(p−q−r) matrix, and testing copositivity
of an r × r matrix. The proof is presented in Appendix B.4.

Concluding the test. During all calls to SO-TEST, whenever any QP terminated with (T3), then
SOSP-CHECK immediately returns the direction and terminates. After solving all QPs, if any of
SO-TEST calls finished with (T2), then we conclude SOSP-CHECK with “SOSP.” If all QPs termi-
nated with (T1), then we can return “Local Minimum.”

8

Published as a conference paper at ICLR 2019

Table 1: Summary of experimental results

(dx, dh,m) # Runs Sum M (Avg.) Sum L (Avg.) Sum K (Avg.) P{L > 0}
(10, 1, 1000) 40 290 (7.25) 0 (0) 0 (0) 0
(10, 1, 10000) 40 371 (9.275) 1 (0.025) 0 (0) 0.025
(100, 1, 1000) 40 1,452 (36.3) 0 (0) 0 (0) 0
(100, 1, 10000) 40 2,976 (74.4) 2 (0.05) 0 (0) 0.05
(100, 10, 10000) 40 24,805 (620.125) 4 (0.1) 0 (0) 0.1
(1000, 1, 10000) 40 14,194 (354.85) 0 (0) 0 (0) 0
(1000, 10, 10000) 40 42,334 (1,058.35) 37 (0.925) 1 (0.025) 0.625

4 EXPERIMENTS

For experiments, we used artificial datasets sampled iid from standard normal distribution, and
trained 1-hidden-layer ReLU networks with squared error loss. In practice, it is impossible to get
to the exact nondifferentiable point, because they lie in a set of measure zero. To get close to those
points, we ran Adam (Kingma & Ba, 2014) using full-batch (exact) gradient for 200,000 iterations
and decaying step size (start with 10−3, 0.2× decay every 20,000 iterations). We observed that
decaying step size had the effect of “descending deeper into the valley.”

After running Adam, for each k ∈ [dh], we counted the number of approximate boundary data
points satisfying |[W1xi + b1]k| < 10−5, which gives an estimate of Mk. Moreover, for these
points, we solved the QP (2) using L-BFGS-B (Byrd et al., 1995), to check if the terminated points
are indeed (approximate) FOSPs. We could see that the optimal values of (2) are close to zero
(≤ 10−6 typically, ≤ 10−3 for largest problems). After solving (2), we counted the number of s∗i ’s
that ended up with 0 or 1. The number of such s∗i ’s is an estimate of L −K. We also counted the
number of approximate boundary data points satisfying |[W2]T·,k∇`i| < 10−4, for an estimate of K.

We ran the above-mentioned experiments for different settings of (dx, dh,m), 40 times each. We
fixed dy = 1 for simplicity. For large dh, the optimizer converged to near-zero minima, making
∇`i uniformly small, so it was difficult to obtain accurate estimates of K and L. Thus, we had to
perform experiments in settings where the optimizer converged to minima that are far from zero.

Table 1 summarizes the results. Through 280 runs, we observed that there are surprisingly many
boundary data points (M) in general, but usually there are zero or very few (maximum was 3) flat
extreme rays (L). This observation suggests two important messages: (1) many local minima are
on nondifferentiable points, which is the reason why our analysis is meaningful; (2) luckily, L is
usually very small, so we only need to solve ECQPs (L = 0) or ICQPs with very small number of
inequality constraints, which are solved efficiently (Lemmas 3 and 4). We can observe that M , L,
and K indeed increase as model dimensions and training set get larger, but the rate of increase is not
as fast as dx, dh, and m.

5 DISCUSSION AND FUTURE WORK

We provided a theoretical algorithm that tests second-order stationarity and escapes saddle points,
for any points (including nondifferentiable ones) of empirical risk of shallow ReLU-like networks.
Despite difficulty raised by boundary data points dividing the parameter space into 2M regions, we
reduced the computation to dh convex QPs,O(M) equality/inequality tests, and one (or a few more)
nonconvex QP. In benign cases, the last QP is equality constrained, which can be efficiently solved
with projected gradient descent. In worse cases, the QP has a few (say L) inequality constraints,
but it can be solved efficiently when L is small. We also provided empirical evidences that L is
usually either zero or very small, suggesting that the test can be done efficiently in most cases. A
limitation of this work is that in practice, exact nondifferentiable points are impossible to reach,
so the algorithm must be extended to apply the nonsmooth analysis for points that are “close” to
nondifferentiable ones. Also, current algorithm only tests for exact SOSP, while it is desirable to
check approximate second-order stationarity. These extensions must be done in order to implement
a robust numerial version of the algorithm, but they require significant amount of additional work;
thus, we leave practical/robust implementation as future work. Also, extending the test to deeper
neural networks is an interesting future direction.

9

Published as a conference paper at ICLR 2019

ACKNOWLEDGMENTS

This work was supported by the DARPA Lagrange Program. Suvrit Sra also acknowledges support
from an Amazon Research Award.

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. arXiv preprint arXiv:1811.03962, 2018.

Pierre Baldi and Kurt Hornik. Neural networks and principal component analysis: Learning from
examples without local minima. Neural networks, 2(1):53–58, 1989.

Avrim Blum and Ronald L Rivest. Training a 3-node neural network is NP-complete. In Proceedings
of the 1st International Conference on Neural Information Processing Systems, pp. 494–501. MIT
Press, 1988.

Jonathan Borwein and Adrian S Lewis. Convex analysis and nonlinear optimization: theory and
examples. Springer Science & Business Media, 2010.

Alon Brutzkus and Amir Globerson. Globally optimal gradient descent for a ConvNet with gaussian
inputs. In International Conference on Machine Learning, pp. 605–614, 2017.

Alon Brutzkus, Amir Globerson, Eran Malach, and Shai Shalev-Shwartz. SGD learns over-
parameterized networks that provably generalize on linearly separable data. In International
Conference on Learning Representations, 2018.

Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory algorithm for
bound constrained optimization. SIAM Journal on Scientific Computing, 16(5):1190–1208, 1995.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Accelerated methods for non-convex
optimization. arXiv preprint arXiv:1611.00756, 2016.

Francis H Clarke, Yuri S Ledyaev, Ronald J Stern, and Peter R Wolenski. Nonsmooth analysis and
control theory, volume 178. Springer Science & Business Media, 2008.

Simon S Du, Jason D Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. arXiv preprint arXiv:1811.03804, 2018a.

Simon S Du, Jason D Lee, Yuandong Tian, Aarti Singh, and Barnabas Poczos. Gradient descent
learns one-hidden-layer CNN: Dont be afraid of spurious local minima. In International Confer-
ence on Machine Learning, pp. 1338–1347, 2018b.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018c.

J-B Hiriart-Urruty and Alberto Seeger. A variational approach to copositive matrices. SIAM review,
52(4):593–629, 2010.

Kenji Kawaguchi. Deep learning without poor local minima. In Advances in Neural Information
Processing Systems, pp. 586–594, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas Laurent and James Brecht. The multilinear structure of ReLU networks. In International
Conference on Machine Learning, pp. 2914–2922, 2018.

Jason D Lee, Max Simchowitz, Michael I Jordan, and Benjamin Recht. Gradient descent only
converges to minimizers. In Conference on Learning Theory, pp. 1246–1257, 2016.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. In Advances in Neural Information Processing Systems, pp. 8168–
8177, 2018.

10

Published as a conference paper at ICLR 2019

Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with ReLU activa-
tion. In Advances in Neural Information Processing Systems, pp. 597–607, 2017.

Duncan Henry Martin and David Harris Jacobson. Copositive matrices and definiteness of quadratic
forms subject to homogeneous linear inequality constraints. Linear Algebra and its Applications,
35:227–258, 1981.

Katta G Murty and Santosh N Kabadi. Some NP-complete problems in quadratic and nonlinear
programming. Mathematical programming, 39(2):117–129, 1987.

Quynh Nguyen and Matthias Hein. The loss surface of deep and wide neural networks. In Pro-
ceedings of the 34th International Conference on Machine Learning, volume 70, pp. 2603–2612,
2017.

Quynh Nguyen and Matthias Hein. Optimization landscape and expressivity of deep CNNs. In
International Conference on Machine Learning, pp. 3727–3736, 2018.

Panos M Pardalos and Stephen A Vavasis. Quadratic programming with one negative eigenvalue is
NP-hard. Journal of Global Optimization, 1(1):15–22, 1991.

Sashank J Reddi, Manzil Zaheer, Suvrit Sra, Barnabas Poczos, Francis Bach, Ruslan Salakhutdi-
nov, and Alexander J Smola. A generic approach for escaping saddle points. arXiv preprint
arXiv:1709.01434, 2017.

Itay Safran and Ohad Shamir. Spurious local minima are common in two-layer ReLU neural net-
works. In International Conference on Machine Learning, pp. 4430–4438, 2018.

Alberto Seeger. Eigenvalue analysis of equilibrium processes defined by linear complementarity
conditions. Linear Algebra and its Applications, 292(1-3):1–14, 1999.

Ohad Shamir. Are ResNets provably better than linear predictors? In Advances in Neural Informa-
tion Processing Systems, pp. 505–514, 2018.

Mahdi Soltanolkotabi. Learning ReLUs via gradient descent. In Advances in Neural Information
Processing Systems, pp. 2007–2017, 2017.

Daniel Soudry and Yair Carmon. No bad local minima: Data independent training error guarantees
for multilayer neural networks. arXiv preprint arXiv:1605.08361, 2016.

Yuandong Tian. An analytical formula of population gradient for two-layered ReLU network and its
applications in convergence and critical point analysis. In International Conference on Machine
Learning, pp. 3404–3413, 2017.

Gang Wang, Georgios B Giannakis, and Jie Chen. Learning ReLU networks on linearly separable
data: Algorithm, optimality, and generalization. arXiv preprint arXiv:1808.04685, 2018.

Chenwei Wu, Jiajun Luo, and Jason D Lee. No spurious local minima in a two hidden unit ReLU
network. In International Conference on Learning Representations Workshop, 2018.

Xiao-Hu Yu and Guo-An Chen. On the local minima free condition of backpropagation learning.
IEEE Transactions on Neural Networks, 6(5):1300–1303, 1995.

Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Global optimality conditions for deep neural networks.
In International Conference on Learning Representations, 2018.

Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Small nonlinearities in activation functions create bad
local minima in neural networks. In International Conference on Learning Representations, 2019.

Xiao Zhang, Yaodong Yu, Lingxiao Wang, and Quanquan Gu. Learning one-hidden-layer ReLU
networks via gradient descent. arXiv preprint arXiv:1806.07808, 2018.

Kai Zhong, Zhao Song, Prateek Jain, Peter L Bartlett, and Inderjit S Dhillon. Recovery guarantees
for one-hidden-layer neural networks. In International Conference on Machine Learning, pp.
4140–4149, 2017.

11

Published as a conference paper at ICLR 2019

Yi Zhou and Yingbin Liang. Critical points of neural networks: Analytical forms and landscape
properties. In International Conference on Learning Representations, 2018.

Yi Zhou, Junjie Yang, Huishuai Zhang, Yingbin Liang, and Vahid Tarokh. SGD converges to global
minimum in deep learning via star-convex path. In International Conference on Learning Repre-
sentations, 2019.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Stochastic gradient descent optimizes
over-parameterized deep ReLU networks. arXiv preprint arXiv:1811.08888, 2018.

12

Published as a conference paper at ICLR 2019

Algorithm 2 SOSP-CHECK

Input: A tuple (Wj , bj)
2
j=1 of R(·).

1: if
∑m
i=1∇`i

[
O(xi)

T 1
]
6= 0dy×(dh+1) then

2: return [∆2 δ2]← −
∑m
i=1∇`i

[
O(xi)

T 1
]
, ∆1 ← 0dh×dx , δ1 ← 0dh .

3: end if
4: for k ∈ [dh] do
5: if Mk > 0 then
6: {s∗i }i∈Bk

← FO-SUBDIFF-ZERO-TEST(k)
7: ṽTk ← [W2]T·,k(Ck +

∑
i∈Bk

s∗i∇`ix̄Ti).
8: if ṽk 6= 0dx+1 then
9: return vk ← −ṽk, ∀k′ ∈ [dh] \ {k}, vk′ ← 0dx+1, ∆2 ← 0dy×dh , δ2 ← 0dy .

10: end if
11: (decr, ṽk, {Si,k}i∈Bk

)← FO-INCREASING-TEST(k, {s∗i }i∈Bk
).

12: if decr = True then
13: return vk ← ṽk, ∀k′ ∈ [dh] \ {k}, vk′ ← 0dx+1, ∆2 ← 0dy×dh , δ2 ← 0dy .
14: end if
15: else if [W2]T·,kCk 6= 0Tdx+1 then
16: return vk ← −CTk [W2]·,k, ∀k′ ∈ [dh] \ {k}, vk′ ← 0dx+1, ∆2 ← 0dy×dh , δ2 ← 0dy .
17: end if
18: end for
19: (decr,sosp, (∆j , δj)

2
j=1)← SO-TEST({0}k∈[dh],i∈Bk

).

20: if decr = True then return (∆j , δj)
2
j=1.

21: end if
22: if M 6= 0 and {Si,k}k∈[dh],i∈Bk

6= {{0}}k∈[dh],i∈Bk
then

23: for each element {σi,k}k∈[dh],i∈Bk
∈
∏
k∈[dh]

∏
i∈Bk

Si,k do
24: (decr,sospTemp, (∆j , δj)

2
j=1)← SO-TEST({σi,k}k∈[dh],i∈Bk

).

25: if decr = True then return (∆j , δj)
2
j=1.

26: end if
27: sosp← sosp ∨ sospTemp
28: end for
29: end if
30: if sosp = True then return SOSP.
31: else return Local Minimum.
32: end if

Algorithm 3 FO-SUBDIFF-ZERO-TEST

Input: k ∈ [dh]
1: Solve the following optimization problem and get optimal solution {s∗i }i∈Bk

:

minimize{si}i∈Bk
‖[W2]T·,k(Ck +

∑
i∈Bk

si∇`ix̄Ti)‖22
subject to min{s−, s+} ≤ si ≤ max{s−, s+}, ∀i ∈ Bk,

(2)

2: return {s∗i }i∈Bk
.

A FULL ALGORITHMS AND PROOF OF CORRECTNESS

In this section, we present the detailed operation of SOSP-CHECK (Algorithm 2), and its helper
functions FO-SUBDIFF-ZERO-TEST, FO-INCREASING-TEST, and SO-TEST (Algorithm 3–5).

In the subsequent subsections, we provide a more detailed proof of the correctness of Algorithm 2.
Recall that, by Lemmas 1 and 2, Mk := |Bk| ≤ dx and vectors {x̄i}i∈Bk

are linearly independent.
Also, we can expand R(z + η) so that

R(z + η) = R(z) + g(z, η)T η + 1
2η
TH(z, η)η + o(‖η‖2),

13

Published as a conference paper at ICLR 2019

Algorithm 4 FO-INCREASING-TEST

Input: k ∈ [dh], {s∗i }i∈Bk

1: for all i ∈ Bk do
2: Define Si,k ← ∅.
3: Get a vector v̂i,k ∈ Vk ∩ span{x̄j | j ∈ Bk \ {i}}⊥.
4: for ṽk ∈ {v̂i,k,−v̂i,k} do
5: Define σi,k ← sign(x̄Ti ṽk).
6: if (sσi,k

− s∗i)[W2]T·,k∇`ix̄Ti ṽk < 0 then
7: return (True, ṽk, {∅}i∈Bk

)
8: else if (sσi,k

− s∗i)[W2]T·,k∇`ix̄Ti ṽk = 0 then
9: Si,k ← Si,k ∪ {σi,k}.

10: end if
11: end for
12: If Si,k = ∅, Si,k ← {0}.
13: end for
14: return (False,0dx+1, {Si,k}i∈Bk

).

Algorithm 5 SO-TEST

Input: {σi,k}k∈[dh],i∈Bk

1: For all i ∈ [m], define diagonal matrices Ji ∈ Rdh×dh such that for k ∈ [dh],

[Ji]k,k ←

h′([N(xi)]k) if i ∈ [m] \Bk
sσi,k

if i ∈ Bk and σi,k ∈ {−1,+1}
0 if i ∈ Bk and σi,k = 0.

2: Solve the following QP. If there is no solution, get a descent direction (∆∗j , δ
∗
j)2
j=1.

minimize
η

∑
i

∇`Ti ∆2Ji(∆1xi+δ1)+ 1
2

∑
i

‖∆2O(xi)+δ2+W2Ji(∆1xi+δ1)‖2∇2`i
,

subject to [W2]T·,kuk=[W1 b1]k,·vk, ∀k ∈ [dh],

x̄Ti vk = 0, ∀k ∈ [dh],∀i ∈ Bk s.t. σi,k = 0,
σi,kx̄

T
i vk ≥ 0, ∀k ∈ [dh],∀i ∈ Bk s.t. σi,k ∈ {−1,+1}.

(4)

3: if There is no solution then return (True,False, (∆∗j , δ
∗
j)2
j=1).

4: else if QP has nonzero minimizers then return (False,True,0)
5: else return (False,False,0)
6: end if

where g(z, η) and H(z, η) satisfy

g(z, η)T η =
∑

i
∇`Ti dY1(xi) =

〈∑
i
∇`iO(xi)

T ,∆2

〉
+
〈∑

i
∇`i, δ2

〉
+

dh∑
k=1

gk(z, vk)T vk,

ηTH(z, η)η =
∑

i
∇`Ti dY2(xi) + 1

2

∑
i
‖dY1(xi)‖2∇2`i

,

and gk(z, vk)T := [W2]T·,k
(
Ck +

∑
i∈Bk

h′(x̄Ti vk)∇`ix̄Ti
)
.

A.1 TESTING FIRST-ORDER STATIONARITY (LINES 1–3, 6–10 AND 15–17)

A.1.1 TEST OF FIRST-ORDER STATIONARITY FOR W2 AND b2 (LINES 1–3)

Lines 1–3 of Algorithm 2 correspond to testing if ∂W2R = {0dy×dh} and ∂b2R = {0dy}. If they
are not all zero, the opposite direction is a descent direction, as Line 2 returns. To see why, suppose∑m
i=1∇`i

[
O(xi)

T 1
]
6= 0dy×(dh+1). Then choose perturbations

[∆2 δ2] = −
∑m

i=1
∇`i

[
O(xi)

T 1
]
, ∆1 = 0dh×dx , δ1 = 0dh .

14

Published as a conference paper at ICLR 2019

If we apply perturbation (γ∆j , γδj)
2
j=1 where γ > 0, we can immediately check that dY1(xi) =

∆2O(xi) + δ2 and dY2(xi) = 0. So,

g(z, η)T η =
∑m

i=1
∇`Ti (∆2O(xi) + δ2) =

〈∑m

i=1
∇`i

[
O(xi)

T 1
]
, [∆2 δ2]

〉
= −O(γ),

ηTH(z, η)η = 1
2

∑
i
dY1(xi)

T∇2`idY1(xi) = O(γ2) ≥ 0.

and also that
∑m
i=1 ‖dY (xi)‖22 = O(γ2). Then, by scaling γ sufficiently small we can achieve

R(z + η) < R(z), which disproves that (Wj , bj)
2
j=1 is a local minimum.

A.1.2 TEST OF FIRST-ORDER STATIONARITY FOR W1 AND b1 (LINES 6–10 AND 15–17)

Test for W1 and b1 is more difficult because g(z, η) depends on ∆1 and δ1 when there are boundary
data points. Recall that vTk (k ∈ [dh]) is the k-th row of [∆1 δ1]. Then note from Lemma 2 that∑m

i=1
∇`Ti (W2J(xi)(∆1xi + δ1)) =

∑dh

k=1
gk(z, vk)T vk,

where gk(z, vk)T := [W2]T·,k
(
Ck +

∑
i∈Bk

h′(x̄Ti vk)∇`ix̄Ti
)
. Thus we can separate k’s and treat

them individually.

Test for zero gradient. Recall the definition Mk := |Bk|. If Mk = 0, there is no boundary data
point for k-th hidden node, so the Clarke subdifferential with respect to [W1 b1]k,·, is {CTk [W2]·,k}.
Lines 15–17 handle this case; if the singleton element in the subdifferential is not zero, its opposite
direction is a descent direction, so return that direction, as in Line 16.

Test for zero in subdifferential. For the case Mk > 0, we saw that for boundary data points
i ∈ Bk, h′([∆1xi + δ1]k) = h′(x̄Ti vk) ∈ {s−, s+} depends on vk. Lines 6–10 test if 0Tdx+1 is in
the Clarke subdifferential of R with respect to [W1]k,· and [b1]k. Since the subdifferential is used
many times, we give it a specific name Dk := ∂[W1 b1]k,·R. By observing that Dk is the convex hull
of all possible values of gk(z, vk)T ,

Dk :=

{
[W2]T·,k

(
Ck +

∑
i∈Bk

si∇`ix̄Ti
)
| min{s−, s+} ≤ si ≤ max{s−, s+}, ∀i ∈ Bk

}
.

Testing 0Tdx+1 ∈ Dk is done by FO-SUBDIFF-ZERO-TEST in Algorithm 3. It solves a convex
QP (2), and returns {s∗i }i∈Bk

.

If 0Tdx+1 ∈ Dk, {s∗i }i∈Bk
will satisfy ṽTk := [W2]T·,k(Ck +

∑
i∈Bk

s∗i∇`ix̄Ti) = 0Tdx+1. Suppose
0Tdx+1 /∈ Dk. Then, ṽk is the closest vector in Dk from the origin, so 〈ṽk, v〉 > 0 for all vT ∈ Dk.
Choose perturbations

vk = −ṽk, vk′ = 0dx+1 for all k′ ∈ [dh] \ {k}, ∆2 = 0dy×dh , δ2 = 0dy ,

and apply perturbation (γ∆j , γδj)
2
j=1 where γ > 0. With this perturbation, we can check that

g(z, η)T η =
∑m

i=1
∇`Ti dY1(xi) = −γ[W2]T·,k

(
Ck +

∑
i∈Bk

h′(−x̄Ti ṽk)∇`ix̄Ti
)
ṽk,

and since h′(−x̄Ti ṽk) ∈ {s−, s+} for i ∈ Bk, we have

[W2]T·,k

(
Ck +

∑
i∈Bk

h′(−x̄Ti ṽk)∇`ix̄Ti
)
∈ Dk,

and 〈ṽk, v〉 > 0 for all vT ∈ Dk shows that g(z, η)T η is strictly negative with magnitude O(γ). It
is easy to see that ηTH(z, η)η = O(γ2), so by scaling γ sufficiently small we can disprove local
minimality of (Wj , bj)

2
j=1.

15

Published as a conference paper at ICLR 2019

A.2 TESTING g(z, η)T η ≥ 0 FOR ALL η (LINES 11–14)

Linear program formulation. Lines 11–14 are essentially about testing if gk(z, vk)T vk ≥ 0 for
all directions vk. If 0Tdx+1 ∈ Dk, with the solution {s∗i }i∈Bk

from FO-SUBDIFF-ZERO-TEST we
can write gk(z, vk)T as

gk(z, vk)T = [W2]T·,k

(
Ck +

∑
i∈Bk

h′(x̄Ti vk)∇`ix̄Ti

)
= [W2]T·,k

(∑
i∈Bk

(
h′(x̄Ti vk)− s∗i

)
∇`ix̄Ti

)
.

For any i ∈ Bk, h′(x̄Ti vk) ∈ {s−, s+} changes whenever the sign of x̄Ti vk changes. Every i ∈ Bk
bisects Rdx+1 into two halfspaces, x̄Ti vk ≥ 0 and x̄Ti vk ≤ 0, in each of which h′(x̄Ti vk) stays
constant. Note that by Lemma 1, x̄i’s for i ∈ Bk are linearly independent. So, given Mk linearly
independent x̄i’s, they divide the space Rdx+1 of vk into 2Mk polyhedral cones.

Since gk(z, vk)T is constant in each polyhedral cone, we can let σi ∈ {−1,+1} for all i ∈ Bk, and
define an LP for each {σi}i∈Bk

∈ {−1,+1}Mk :

minimize
vk

[W2]T·,k
(∑

i∈Bk
(sσi
− s∗i)∇`ix̄Ti

)
vk

subject to vk ∈ Vk, σix̄
T
i vk ≥ 0, ∀i ∈ Bk.

(3)

Solving these LPs and checking if the minimum value is 0 suffices to prove gk(z, vk)T vk ≥ 0 for all
small enough perturbations. Recall that Vk := span{x̄i | i ∈ Bk} and dim(Vk) = Mk. Note that
any component of vk that is orthogonal to Vk is also orthogonal to gk(z, vk), so it does not affect
the objective function of any LP (3). Thus, the constraint vk ∈ Vk is added to the LP (3), which is
equivalent to adding dx+1−Mk linearly independent equality constraints. The feasible set of LP (3)
has dx + 1 linearly independent equality/inequality constraints, which implies that the feasible set
is a pointed polyhedral cone with vertex at origin. Since any point in a pointed polyhedral cone is a
conical combination (linear combination with nonnegative coefficients) of extreme rays of the cone,
checking nonnegativity of the objective function for all extreme rays suffices. We emphasize that we
do not solve the LPs (3) in our algorithm; we just check the extreme rays.

Computational efficiency. Extreme rays of a pointed polyhedral cone in Rdx+1 are computed
from dx linearly independent active constraints. Line 3 of Algorithm 4 is exactly computing such
extreme rays: v̂i,k ∈ Vk ∩ span{x̄j | j ∈ Bk \ {i}}⊥ for each i ∈ Bk, tested in both directions.

Note that there are 2Mk extreme rays, and one extreme ray v̂i,k is shared by 2Mk−1 polyhedral
cones. Moreover, x̄Tj v̂i,k = 0 for j ∈ Bk \ {i}, which indicates that

gk(z, v̂i,k)T v̂i,k = (sσi,k
− s∗i)[W2]T·,k∇`ix̄Ti v̂i,k, where σi,k = sign(x̄Ti v̂i,k),

regardless of {σj}j∈Bk\{i}. This observation is used in Lines 6 and 8 of Algorithm 4. Testing
gk(z, ṽk)T ṽk ≥ 0 for an extreme ray ṽk can be done with a single inequality test instead of 2Mk−1

separate tests for all cones! Thus, this extreme ray approach instead of solving individual LPs greatly
reduces computation, from O(2Mk) to O(Mk).

Algorithm operation in detail. Testing all possible extreme rays is exactly what
FO-INCREASING-TEST in Algorithm 4 is doing. Output of FO-INCREASING-TEST is a tu-
ple of three items: a boolean, a (dx + 1)-dimensional vector, and a tuple of Mk sets. Whenever
we have a descent direction, it returns True and the descent direction ṽk. If there is no descent
direction, it returns False and the sets {Si,k}i∈Bk

.

For both direction of extreme rays ṽk = v̂i,k and ṽk = −v̂i,k (Line 4), we check if gk(z, ṽk)T ṽk ≥ 0.
Whenever it does not hold (Lines 6–7), ṽk is a descent direction, so FO-INCREASING-TEST returns
it with True. Line 13 of Algorithm 2 uses that ṽk to return perturbations, so that scaling by small
enough γ > 0 will give us a point with R(z+γη) < R(z). If equality holds (Lines 8–9), this means
ṽk is a direction of perturbation satisfying g(z, η)T η = 0, so this direction needs to be checked if
ηTH(z, η)η ≥ 0 too. In this case, we add the sign of boundary data point x̄i to Si,k for future use
in the second-order test. The operation with Si,k will be explained in detail in Appendix A.3. After
checking if gk(z, ṽk)T ṽk ≥ 0 holds for all extreme rays, FO-INCREASING-TEST returns False
with {Si,k}i∈Bk

.

16

Published as a conference paper at ICLR 2019

Counting flat extreme rays. How many of these extreme rays satisfy gk(z, ṽk)T ṽk = 0? Presence
of such flat extreme rays introduce inequality constraints in the QP that we will solve in SO-TEST
(Algorithm 5). It is ideal not to have flat extreme rays, because in this case there are only equality
constraints, so the QP is easier to solve. The following lemma shows conditions for existence of flat
extreme rays as well as output of Algorithm 4.

Lemma A.1. Suppose 0Tdx+1 ∈ Dk and all extreme rays ṽk satisfy gk(z, ṽk)T ṽk ≥ 0. Consider all
i ∈ Bk, and its corresponding v̂i,k ∈ Vk ∩ span{x̄j | j ∈ Bk \ {i}}⊥.

1. If [W2]T·,k∇`i = 0, then both extreme rays v̂i,k and −v̂i,k are flat extreme rays, and Si,k =

{−1,+1} at the end of Algorithm 4.

2. If [W2]T·,k∇`i 6= 0 and s∗i = s+ (or s−), one (and only) of ṽk ∈ {v̂i,k,−v̂i,k} that satisfies
sign(x̄Ti ṽk) = +1 (or −1) is a flat extreme ray, and Si,k = {+1} (or {−1}) at the end of
Algorithm 4.

3. If [W2]T·,k∇`i 6= 0 and s∗i 6= s±, both v̂i,k and −v̂i,k are not flat extreme rays, and Si,k =

{0} at the end of Algorithm 4.

Proof First note that we already assumed that all extreme rays ṽk satisfy gk(z, ṽk)T ṽk ≥ 0, so
SOSP-CHECK will reach Line 14 at the end. Also note that x̄i’s in i ∈ Bk are linearly independent
(by Lemma 1), so x̄Ti v̂i,k 6= 0.

If [W2]T·,k∇`i = 0, then (sσi,k
−s∗i)[W2]T·,k∇`ix̄Ti ṽk = 0 regardless of ṽk, so both v̂i,k and−v̂i,k are

flat extreme rays. If [W2]T·,k∇`i 6= 0 and s∗i = s+, ṽk ∈ {v̂i,k,−v̂i,k} that satisfies sign(x̄Ti ṽk) =
+1 gives σi,k = +1, so sσi,k

= s∗i . Thus, ṽk is a flat extreme ray. The case with s∗i = s− is proved
similarly. If [W2]T·,k∇`i 6= 0 and s∗i 6= s+, none of (s± − s∗i), [W2]T·,k∇`i, and x̄Ti v̂i,k are zero, so
v̂i,k and −v̂i,k cannot be flat.

Let B(j)
k ⊆ Bk denote the set of indices i ∈ Bk satisfying conditions in Lemma A.1.j (j = 1, 2, 3).

Note thatB(j)
k ’s partition the setBk. We denote the union ofB(1)

k andB(2)
k byB(1,2)

k , and similarly,
B

(2,3)
k := B

(2)
k ∪ B

(3)
k . We can see from the lemma that |Si,k| = 2 for i ∈ B(1)

k , and |Si,k| = 1 for
i ∈ B(2,3)

k . Also, it follows from the definition of K and L (5) that

K =

dh∑
k=1

|B(1)
k |, L =

dh∑
k=1

|B(1)
k |+ |B

(2)
k |.

Connection to KKT conditions. As a side remark, we provide connections of our tests to the well-
known KKT conditions. Note that the equality gk(z, vk)T = [W2]T·,k

(∑
i∈Bk

(sσi
− s∗i)∇`ix̄Ti

)
for

σix̄
T
i vk ≥ 0, ∀i ∈ Bk corresponds to the KKT stationarity condition, where (sσi

− s∗i)[W2]T·,k∇`i’s
correspond to the Lagrange multipliers for inequality constraints. Then, testing extreme rays
is equivalent to testing dual feasibility of Lagrange multipliers, and having zero dual variables
([W2]T·,k∇`i = 0 or s∗i = s+ or s−, resulting in flat extreme rays) corresponds to having degen-
eracy in the complementary slackness condition.

As mentioned in Section 2.1, given that g(z, η) and H(z, η) are constant functions of η in each
polyhedral cone, one can define inequality constrained optimization problems and try to solve for
KKT conditions for z directly. However, this also requires solving 2M problems. The strength
of our approach is that by solving the QPs (2), we can automatically compute the exact Lagrange
multipliers for all 2M subproblems, and dual feasibility is also tested in O(M) time.

A.3 TESTING ηTH(z, η)η ≥ 0 FOR {η | g(z, η)T η = 0} (LINES 19–32)

The second-order test checks ηTH(z, η)η ≥ 0 for “flat” η’s satisfying g(z, η)T η = 0. This is done
with help of the function SO-TEST in Algorithm 5. Given its input {σi,k}k∈[dh],i∈Bk

, it defines
fixed “Jacobian” matrices Ji for all data points and equality/inequality constraints for boundary data
points, and solves the QP (4).

17

Published as a conference paper at ICLR 2019

Equality/inequality constraints. In the QP (4), there are dh equality constraints of the form
[W2]T·,kuk = [[W1]k,· [b1]k] vk. These equality constraints are due to the nonnegative homoge-
neous property of activation function h: scaling [W1]k,· and [b1]k by α > 0 and scaling [W2]·,k
by 1/α yields exactly the same network. This observation is stated more precisely in the following
lemma.
Lemma A.2. Suppose z is a FOSP (differentiable or not) of R(·). Fix any k ∈ [dh], and define
perturbation η as

uk = −[W2]·,k, vk = [[W1]k,· [b1]k]
T
, uk′ = 0, vk′ = 0 for all k′ 6= k, δ2 = 0.

Then, g(z, η)T η = ηTH(z, η)η = 0.

The proof of Lemma A.2 can be found in Appendix B.5. A corollary of this lemma is that any
differentiable FOSP of R always has rank-deficient Hessian, and the multiplicity of zero eigenvalue
is at least dh. Hence, these dh equality constraints on uk’s and vk’s force η to be orthogonal to the
loss-invariant directions.

The equality constraints of the form x̄Ti vk = 0 are introduced when σi,k = 0; this happens for
boundary data points i ∈ B

(3)
k . Therefore, there are M − L additional equality constraints. The

inequality constraints come from i ∈ B
(1,2)
k . So there are L inequality constraints. Now, the

following lemma proves that feasible sets defined by these equality/inequality constraints added
to (4) exactly correspond to the regions where gk(z, vk)T vk = 0. Recall from Lemma A.1 that
Si,k = {−1,+1} for i ∈ B(1)

k , Si,k = {−1} or {+1} for i ∈ B(2)
k , and Si,k = {0} for i ∈ B(3)

k .
Lemma A.3. Let {σi,k}i∈B(2)

k

be the only element of
∏
i∈B(2)

k

Si,k. Then, in SO-TEST,⋃
{σi,k}

i∈B(1)
k

∈
∏

i Si,k

{
vk | ∀i ∈ B(3)

k , x̄Ti vk = 0, and ∀i ∈ B(1,2)
k , σi,kx̄

T
i vk ≥ 0

}

=
{
vk | ∀i ∈ B(3)

k , x̄Ti vk = 0, and ∀i ∈ B(2)
k , σi,kx̄

T
i vk ≥ 0

}
=
{
vk | gk(z, vk)T vk = 0

}
.

The proof of Lemma A.3 is in Appendix B.6.

In total, there are dh + M − L equality constraints and L inequality constraints in each nonconvex
QP. It is also easy to check that these constraints are all linearly independent.

How many QPs do we solve? Note that in Line 19, we call SO-TEST with {σi,k}k∈[dh],i∈Bk
= 0,

which results in a QP (4) with dh + M equality constraints. This is done even when we have flat
extreme rays, just to take a quick look if a descent direction can be obtained without having to deal
with inequality constraints.

If there exist flat extreme rays (Line 22), the algorithm calls SO-TEST for each element of∏
k∈[dh]

∏
i∈Bk

Si,k. Recall that |Si,k| = 2 for i ∈ B(1)
k , so∣∣∣∣∏k∈[dh]

∏
i∈Bk

Si,k

∣∣∣∣ = 2K .

In summary, if there is no flat extreme ray, the algorithm solves just one QP with dh + M equality
constraints. If there are flat extreme rays, the algorithm solves one QP with dh + M equality
constraints, and 2K QPs with dh +M −L equality constraints and L inequality constraints. This is
also an improvement from the naive approach of solving 2M QPs.

Concluding the test. After solving the QP, SO-TEST returns result to SOSP-CHECK. The al-
gorithm returns two booleans and one perturbation tuple. The first is to indicate that there is no
solution, i.e., there is a descent direction that leads to −∞. Whenever there was any descent direc-
tion then we immediately return the direction and terminate. The second boolean is to indicate that
there are nonzero η that satisfies ηTH(z, η)η = 0. After solving all QPs, if any of SO-TEST calls
found out η 6= 0 such that g(z, η)T η = 0 and ηTH(z, η)η = 0, then we conclude SOSP-CHECK
with “SOSP.” If all QPs terminated with unique minimum at zero, then we can conclude “Local
Minimum.”

18

Published as a conference paper at ICLR 2019

B PROOF OF LEMMAS

B.1 PROOF OF LEMMA 1

By definition, we have [W1]k,·xi + [b1]k = 0 for all i ∈ Bk, meaning that they are all on the same
hyperplane [W1]k,·x + [b1]k = 0. By the assumption, we cannot have more than dx points on the
hyperplane.

Next, assume for the sake of contradiction that the Mk := |Bk| data points x̄i’s are linearly depen-
dent, i.e., there exists a1, . . . , aMk

∈ R, not all zero, such that

Mk∑
i=1

ai

[
xi
1

]
= 0 =⇒ a1 = −

Mk∑
i=2

ai =⇒
Mk∑
i=2

ai(xi − x1) = 0,

where a2, . . . , aMk
are not all zero. This implies that theseMk points xi’s are on the same (Mk−2)-

dimensional affine space. To see why, consider for example the case Mk = 3: a2(x2 − x1) =
−a3(x3−x1), meaning that they have to be on the same line. By adding any dx+1−Mk additional
xi’s, we can see that dx + 1 points are on the same (dx − 1)-dimensional affine space, i.e., a
hyperplane in Rdx . This contradicts Assumption 2.

B.2 PROOF OF LEMMA 2

From Assumption 1, `(w, y) is twice differentiable and convex in w. By Taylor expansion of `(·) at
(Y (xi), yi),

R(z + η) =
∑m

i=1
`(Y (xi) + dY (xi), yi)

=
∑m

i=1
`(Y (xi), yi) +∇`Ti dY (xi) + 1

2dY (xi)
T∇2`idY (xi) + o(‖η‖2)

= R(z) +
m∑
i=1

∇`Ti dY1(xi) +
m∑
i=1

∇`Ti dY2(xi) + 1
2

m∑
i=1

‖dY1(xi)‖2∇2`i
+ o(‖η‖2),

where the first-order term
∑m
i=1∇`Ti dY1(xi) =

∑m
i=1∇`Ti (∆2O(xi)+δ2 +W2J(xi)(∆1xi+δ1))

can be further expanded to show∑m

i=1
∇`Ti (∆2O(xi) + δ2) =

〈
∆2,

∑
i
∇`iO(xi)

T
〉

+
〈
δ2,
∑

i
∇`i
〉
,∑m

i=1
∇`Ti (W2J(xi)(∆1xi + δ1)) = tr

(∑m

i=1
J(xi)W

T
2 ∇`ix̄Ti

[
∆T

1

δT1

])
=

dh∑
k=1

[W2]T·,k

(
m∑
i=1

[J(xi)]k,k∇`ix̄Ti

)
vk =

dh∑
k=1

[W2]T·,k

(
Ck +

∑
i∈Bk

h′(x̄Ti vk)∇`ix̄Ti
)
vk.

Also, note that in each of the 2M divided region (which is a polyhedral cone) of η, J(xi) stays
constant for all i ∈ [m]; thus, g(z, η) and H(z, η) are piece-wise constant functions of η. Specif-
ically, since the parameter space is partitioned into polyhedral cones, we have g(z, η) = g(z, γη)
and H(z, η) = H(z, γη) for any γ > 0.

B.3 PROOF OF LEMMA 3

Suppose that w1, w2, . . . , wq are orthonormal basis of row(A). Choose wq+1, . . . , wp so that
w1, w2, . . . , wp form an orthonormal basis of Rp. Let W be an orthogonal matrix whose columns
are w1, w2, . . . , wp, and Ŵ be an submatrix of W whose columns are wq+1, . . . , wp. With this
definition, note that I −AT (AAT)−1A = ŴŴT .

Suppose that we are given η(t) satisfying Aη(t) = 0. Then we can write η(t) = Ŵµ(t), where
µ(t) ∈ Rp−q and [µ(t)]i = wTi+qη

(t). Define µ(t+1) likewise. Then, noting η(t) = ŴŴT η(t) gives

Ŵµ(t+1) = η(t+1) = η(t) − αŴŴTQŴµ(t) = Ŵ (I − αŴTQŴ)µ(t).

19

Published as a conference paper at ICLR 2019

Define C := ŴTQŴ ∈ R(p−q)×(p−q), and then write its eigen-decomposition C = V SV T and
denote its eigenvectors as ν1, . . . , νp−q and its corresponding eigenvalues λ1, . . . , λp−q . Then note

µ(t+1) = (I − αC)µ(t) = (I − αV SV T)

p−q∑
i=1

(νTi µ
(t))νi =

p−q∑
i=1

(1− αλi)(νTi µ(t))νi

=

p−q∑
i=1

(1− αλi)2(νTi µ
(t−1))νi = · · · =

p−q∑
i=1

(1− αλi)t+1(νTi µ
(0))νi.

This proves that this iteration converges or diverges exponentially fast. Starting from the initial
point η(0) = Ŵµ(0), the component of µ(0) that corresponds to negative eigenvalue blows up ex-
ponentially fast, those corresponding to positive eigenvalue shrinks to zero exponentially fast (if
α < 1/λmax(C)), and those with zero eigenvalue will stay invariant. Therefore, if there exists
λi < 0, then η(t) blows up to infinity quickly and finds an η such that ηTQη < 0 (T3). If all λi ≥ 0,
it converges exponentially fast to Ŵ

∑
i:λi=0(νTi µ

(0))νi (T2). If all λi > 0, η(t) → 0 (T1).

It is left to prove that α < 1/λmax(Q) guarantees convergence, as stated. To this end, it suffices to
show that λmax(Q) ≥ λmax(C). Note that

C = ŴTQŴ = ŴTWWTQWWT Ŵ = [0 I]WTQW

[
0
I

]
.

Using the facts that λmax(Q) = λmax(WTQW) and C is a principal submatrix of WTQW ,

λmax(Q) = max
x

xTWTQWx

xTx
≥ max
x:[x]1:q=0

xTWTQWx

xTx
= λmax(C).

Also, if we start at a random initial point (e.g., sample from a Gaussian in Rp and project to
row(A)⊥), then with probability 1 we have νTi µ

(0) 6= 0 for all i ∈ [p − q], so we will get the
correct convergence/divergence result almost surely.

B.4 PROOF OF LEMMA 4

B.4.1 PRELIMINARIES

Before we prove the complexity lemma, we introduce the definitions of copositivity and Pareto
spectrum, which are closely related concepts to our specific form of QP.
Definition B.1. Let Q ∈ Rr×r be a symmetric matrix. We say that Q is copositive if ηTQη ≥ 0 for
all η ≥ 0. Moreover, strict copositivity means that ηTQη > 0 for all η ≥ 0, η 6= 0.

Testing whether Q is not copositive known to be NP-complete (Murty & Kabadi, 1987); it is cer-
tainly a difficult problem. There is a method testing cositivity of Q in O(r32r) time which uses
its Pareto spectrum Π(Q). The following is the definition of Pareto spectrum, taken from Seeger
(1999); Hiriart-Urruty & Seeger (2010).
Definition B.2. Consider the problem

minimize
η≥0,‖η‖2=1

ηTQη.

KKT conditions for the above problem gives us a complementarity system

η ≥ 0, Qη − λη ≥ 0, ηT (Qη − λη) = 0, ‖η‖2 = 1, (6)

where λ ∈ R is viewed as a Lagrange multiplier associated with ‖η‖2 = 1. The number λ ∈ R is
called a Pareto eigenvalue of Q if (6) admits a solution η. The set of all Pareto eigenvalues of Q,
denoted as Π(Q), is called the Pareto spectrum of Q.

The next lemma reveals the relation of copositivity and Pareto spectrum:
Lemma B.1 (Theorem 4.3 of Hiriart-Urruty & Seeger (2010)). A symmetric matrix Q is copositive
(or strictly copositive) if and only if all the Pareto eigenvalues of Q are nonnegative (or strictly
positive).

20

Published as a conference paper at ICLR 2019

Now, the following lemma tells us how to compute Pareto spectrum of Q.
Lemma B.2 (Theorem 4.1 of Seeger (1999)). Let Q be a matrix of order r. Consider a nonempty
index set J ⊆ [r]. Given J , QJ refers to the principal submatrix of Q with the rows and columns
of Q indexed by J . Let 2[r] \ ∅ denote the set of all nonempty subsets of [r]. Then λ ∈ Π(Q) if and
only if there exists an index set J ∈ 2[r] \ ∅ and a vector ξ ∈ R|J| such that

QJξ = λξ, ξ ∈ int(R|J|+),
∑
j∈J

[Q]i,j [ξ]j ≥ 0 for all i /∈ J.

In such a case, the vector η ∈ Rr by

[η]j =

{
[ξ]j if j ∈ J,
0 if j /∈ J

is a Pareto-eigenvector of Q associated to the Pareto eigenvalue λ.

These lemmas tell us that the Pareto spectrum of Q can be calculated by computing eigensystems of
all 2r − 1 possible QJ , which takes O(r32r) time in total, and from this we can determine whether
a symmetric Q is copositive.

B.4.2 PROOF OF THE LEMMA

With the preliminary concepts presented, we now start proving our Lemma 4. We will first transform
η to eliminate the equality constraints and obtain an inequality constrained problem of the form
minimizew:B̄w≥0 w

TRw. From there, we can use the theorems from Martin & Jacobson (1981),
which tell us that by testing positive definiteness of a (p−q−r)×(p−q−r) matrix and copositivity
of a r × r matrix we can determine which of the three categories the QP falls into. Transforming η
and testing positive definiteness take O(p3) time and testing copositivity takes O(r32r) time, so the
test in total is done in O(p3 + r32r) time.

We now describe how to transform η and get an equivalent optimization problem of the form we
want. We assume without loss of generality that A = [A1 A2] where A1 ∈ Rq×q is invertible. If
not, we can permute components of η. Then make a change of variables

η = TA

[
w̄
w

]
:=

[
A−1

1 −A−1
1 A2

0(p−q)×q Ip−q

] [
w̄
w

]
, so that ATA

[
w̄
w

]
= [I 0]

[
w̄
w

]
= w̄.

Consequently, the constraint Aη = 0 becomes w̄ = 0. Now partition B = [B1 B2], where
B1 ∈ Rr×q . Also let R be the principal submatrix of TTAQTA composed with the last p − q rows
and columns. It is easy to check that

minimizeη ηTQη
subject to Aη = 0q, Bη ≥ 0r.

≡ minimizew wTRw
subject to (B2 −B1A

−1
1 A2)w ≥ 0r.

Let us quickly check if B2 −B1A
−1
1 A2 has full row rank. One can observe that[

A1 A2

B1 B2

]
=

[
Iq 0

B1A
−1
1 Ir

] [
A1 A2

0 B2 −B1A
−1
1 A2

]
.

It follows from the assumption rank(
[
AT BT

]
) = q + r that B̄ := B2 − B1A

−1
1 A2 has rank r,

which means it has full row rank.

Before stating the results from Martin & Jacobson (1981), we will transform the problem a bit fur-
ther. Again, assume without loss of generality that B̄ =

[
B̄1 B̄2

]
where B̄1 ∈ Rr×r is invertible.

Define another change of variables as the following:

w = TBν :=

[
B̄−1

1 −B̄−1
1 B̄2

0(p−q−r)×r Ip−q−r

] [
ν1

ν2

]
, TTBRTB =:

[
R̄11 R̄12

R̄T12 R̄22

]
=: R̄.

Consequently, we get

minimizew wTRw
subject to B̄w ≥ 0r.

≡ minimizew νT R̄ν = νT1 R̄11ν1 + 2νT1 R̄12ν2 + νT2 R̄22ν2

subject to ν1 ≥ 0r.

Given this transformation, we are ready to state the lemmas.

21

Published as a conference paper at ICLR 2019

Lemma B.3 (Theorem 2.2 of Martin & Jacobson (1981)). If B̄ =
[
B̄1 B̄2

]
, with B̄1 r× r invert-

ible, then with R̄ij’s given as above, wTRw > 0 whenever B̄w ≥ 0, w 6= 0 if and only if

• R̄22 is positive definite, and

• R̄11 − R̄12R̄
−1
22 R̄

T
12 is strictly copositive.

Lemma B.4 (Theorem 2.1 of Martin & Jacobson (1981)). If B̄ =
[
B̄1 B̄2

]
, with B̄1 r× r invert-

ible, then with R̄ij’s given as above, wTRw ≥ 0 whenever B̄w ≥ 0 if and only if

• R̄22 is positive semidefinite, null(R̄22) ⊆ null(R̄12), and

• R̄11 − R̄12R̄
†
22R̄

T
12 is copositive,

where R̄†22 is a pseudoinverse of R̄22.

Using Lemmas B.3 and B.4, we now describe how to test our given QP and declare one of (T1),
(T2), or (T3). First, we compute the eigensystem of R̄22 and see which of the following disjoint
categories it belongs to:

(PD1) All eigenvalues λ1, . . . , λp−q−r of R̄22 satisfy λi > 0.

(PD2) ∀i, λi ≥ 0, but ∃i such that λi = 0, and ∀ν2 s.t. R̄22ν2 = 0, we have R̄12ν2 = 0.
(PD3) ∀i, λi ≥ 0, but ∃i such that λi = 0, and ∃ν2 s.t. R̄22ν2 = 0 but R̄12ν2 6= 0.
(PD4) ∃i such that λi < 0, i.e., ∃ν2 such that νT2 R̄22ν2 < 0.

If the test comes out (PD3) or (PD4), then we can immediately declare (T3) without having to look at
copositivity. This is because if we get (PD4), we can choose ν1 = 0 so that νT R̄ν = νT2 R̄22ν2 < 0.
In case of (PD3), one can fix any ν1 satisfying νT1 R̄12ν2 6= 0, and by scaling ν2 to positive or
negative we can get νT R̄ν → −∞. Notice that once we have these ν satisfying νT R̄ν < 0, we can
recover η from ν by backtracking the transformations.

Next, compute the Pareto spectrum of S := R̄11 − R̄12R̄
†
22R̄

T
12 and check which case S belongs to:

(CP1) S = R̄11 − R̄12R̄
†
22R̄

T
12 is strictly copositive.

(CP2) S is copositive, but ∃ν1 ≥ 0, ν1 6= 0 such that νT1 Sν1 = 0.
(CP3) ∃ν1 ≥ 0 such that νT1 Sν1 < 0.

Here, ν1’s are Pareto eigenvectors of S defined in Lemma B.2. If we have (CP3), we can declare
(T3) because one can fix ν2 = −R̄†22R

T
12ν1 and get νT R̄ν = νT1 Sν1 < 0. If the tests come out

(PD1) and (CP1), by Lemma B.3 we have (T1). For the remaining cases, we conclude (T2).

B.5 PROOF OF LEMMA A.2

With the given η,

∆1 =

 0(k−1)×dx
[W1]k,·

0(dh−k)×dx

 , δ1 =

[
0k−1

[b1]k
0dh−k

]
, ∆2 =

[
0dy×(k−1) −[W2]·,k 0dy×(dh−k)

]
.

It is straightforward to check that for all i ∈ [m],

dY1(xi) = ∆2O(xi) +W2J(xi)(∆1xi + δ1) = −[O(xi)]k[W2]·,k +W2

[
0k−1

[O(xi)]k
0dh−k

]
= 0.

From this, g(z, η)T η =
∑
i∇`Ti dY1(xi) = 0. For the second order terms,

ηTH(z, η)η =
m∑
i=1

∇`Ti dY2(xi) + 1
2

m∑
i=1

‖dY1(xi)‖2∇2`i
=
∑m

i=1
∇`Ti ∆2J(xi)(∆1xi + δ1)

=
∑m

i=1
∇`Ti (−[O(xi)]k[W2]·,k) = −

(∑m

i=1
[O(xi)]k∇`Ti

)
[W2]·,k.

From the fact that z is a FOSP of R, it follows that
∑
i∇`iO(xi)

T = 0, so ηTH(z, η)η = 0.

22

Published as a conference paper at ICLR 2019

B.6 PROOF OF LEMMA A.3

The first equality is straightforward, because it follows from Si,k = {−1,+1} for all i ∈ B(1)
k that

taking union of {x̄Ti vk ≤ 0} and {x̄Ti vk ≥ 0} will eliminate the inequality constraints for i ∈ B(1)
k .

For the next equality, we start by expressing U1 :=
{
vk | gk(z, vk)T vk = 0

}
as a linear combination

of its linearly independent components. The set U1 can be expressed in the following form:

U1 = {v⊥ +
∑
i∈B(1)

k

αiv̂i,k +
∑
i∈B(2)

k

βiv̂i,k | v⊥ ∈ V⊥k ,∀i ∈ B
(1)
k , αi ∈ R, and ∀i ∈ B(2)

k , βi ≥ 0},

where v̂i,k ∈ Vk ∩ span{x̄j | j ∈ Bk \ {i}}⊥ for all i ∈ B(1,2)
k . Additionally, for i ∈ B(2)

k , v̂i,k is
in the direction that satisfies σi,k = sign(x̄Ti v̂i,k). To see why U1 can be expressed in such a form,
first note that at the moment SO-TEST is executed, it is already given that the point z is a FOSP. So,
for any perturbation vk we have gk(z, vk) ∈ Vk, and gk(z, vk)T v⊥ = 0 for any v⊥ ∈ V⊥k . For the
remaining components, please recall FO-INCREASING-TEST and Lemma A.1; v̂i,k are flat extreme
rays, so they are the ones satisfying gk(z, vk)T vk = 0.

It remains to show that U2 := {vk | ∀i ∈ B(3)
k , x̄Ti vk = 0, and ∀i ∈ B(2)

k , σi,kx̄
T
i vk ≥ 0} = U1.

We show this by proving U1 ⊆ U2 and Uc1 ⊆ Uc2 .

To show the first part, we start by noting that for any v⊥ ∈ V⊥k , x̄Ti v⊥ = 0 for i ∈ B(2,3)
k because

x̄i ∈ Vk for these i’s. Also, for all i ∈ B(1)
k , it follows from the definition of v̂i,k that x̄Tj v̂i,k = 0 for

all j ∈ B(2,3)
k . Similarly, for all i ∈ B(2)

k , x̄Tj v̂i,k = 0 for all j ∈ B(2,3)
k \ {i}, and σi,kx̄Ti v̂i,k > 0.

Therefore, any vk ∈ U1 must satisfy all constraints in U2, hence U1 ⊆ U2.

For the next part, we prove that vk ∈ Uc1 violates at least one constraint in U2. Observe that the
whole vector space Rp can be expressed as

Rp = {v⊥ +
∑

i∈B(1)
k

αiv̂i,k +
∑

i∈B(2)
k

βiv̂i,k + w | w ∈ Vk ∩ span{v̂i,k, i ∈ B(1,2)
k }⊥,

v⊥ ∈ V⊥k ,∀i ∈ B
(1)
k , αi ∈ R, and ∀i ∈ B(2)

k , βi ∈ R}.

Therefore, any vk ∈ Uc1 either has a nonzero component w in Vk ∩ span{v̂i,k, i ∈ B
(1,2)
k }⊥ or

there exists i ∈ B
(k)
2 such that βi < 0. By definition, v̂i,k ∈ span{x̄j | j ∈ B

(3)
k }⊥ for any

i ∈ B
(1,2)
k , which implies that Vk ∩ span{v̂i,k, i ∈ B

(1,2)
k }⊥ = span{x̄j | j ∈ B

(3)
k }. Thus, a

nonzero component w ∈ span{x̄j | j ∈ B(3)
k } will violate some equality constraints in U2. Next, in

case where ∃i ∈ B(k)
2 such that βi < 0, this violates the inequality constraint corresponding to i.

23

Batched Large-scale Bayesian Optimization in High-dimensional Spaces

Zi Wang Clement Gehring Pushmeet Kohli Stefanie Jegelka
MIT CSAIL MIT CSAIL DeepMind MIT CSAIL

Abstract

Bayesian optimization (BO) has become an effec-
tive approach for black-box function optimization
problems when function evaluations are expensive
and the optimum can be achieved within a rela-
tively small number of queries. However, many
cases, such as the ones with high-dimensional in-
puts, may require a much larger number of obser-
vations for optimization. Despite an abundance of
observations thanks to parallel experiments, cur-
rent BO techniques have been limited to merely
a few thousand observations. In this paper, we
propose ensemble Bayesian optimization (EBO)
to address three current challenges in BO simul-
taneously: (1) large-scale observations; (2) high
dimensional input spaces; and (3) selections of
batch queries that balance quality and diversity.
The key idea of EBO is to operate on an ensem-
ble of additive Gaussian process models, each of
which possesses a randomized strategy to divide
and conquer. We show unprecedented, previously
impossible results of scaling up BO to tens of
thousands of observations within minutes of com-
putation.

1 Introduction

Global optimization of black-box and non-convex functions
is an important component of modern machine learning.
From optimizing hyperparameters in deep models to solv-
ing inverse problems encountered in computer vision and
policy search for reinforcement learning, these optimiza-
tion problems have many important applications in ma-
chine learning and its allied disciplines. In the past decade,
Bayesian optimization has become a popular approach for
global optimization of non-convex functions that are expen-
sive to evaluate. Recent work addresses better query strate-
gies (Kushner, 1964; Moc̆kus, 1974; Srinivas et al., 2012;

Proceedings of the 21st International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2018, Lanzarote, Spain. PMLR:
Volume 84. Copyright 2018 by the author(s).

Hennig and Schuler, 2012; Hernández-Lobato et al., 2014;
Wang et al., 2016a; Kawaguchi et al., 2015), techniques for
batch queries (Desautels et al., 2014; González et al., 2016),
and algorithms for high dimensional problems (Wang et al.,
2016b; Kandasamy et al., 2015).

Despite the above-mentioned successes, Bayesian optimiza-
tion remains somewhat impractical, since it is typically
coupled with expensive function estimators (Gaussian pro-
cesses) and non-convex acquisition functions that are hard
to optimize in high dimensions and sometimes expensive to
evaluate. To alleviate these difficulties, recent work explored
the use of random feature approximations (Snoek et al.,
2015; Lakshminarayanan et al., 2016) and sparse Gaus-
sian processes (McIntire et al., 2016), but, while improving
scalability, these methods still suffer from misestimation
of confidence bounds (an essential part of the acquisition
functions), and expensive or inaccurate Gaussian process
(GP) hyperparameter inference. Indeed, to the best of our
knowledge, Bayesian optimization is typically limited to a
few thousand evaluations (Lakshminarayanan et al., 2016).
Yet, reliable search and estimation for complex functions
in very high-dimensional spaces may well require more
evaluations. With the increasing availability of parallel com-
puting resources, large number of function evaluations are
possible if the underlying approach can leverage the paral-
lelism. Comparing to the millions of evaluations possible
(and needed) with local methods like stochastic gradient de-
scent, the scalability of global Bayesian optimization leaves
large room for desirable progress. In particular, the lack of
scalable uncertainty estimates to guide the search is a major
roadblock for huge-scale Bayesian optimization.

In this paper, we propose ensemble Bayesian optimization
(EBO), a global optimization method targeted to high dimen-
sional, large scale parameter search problems whose queries
are parallelizable. Such problems are abundant in hyper
and control parameter optimization in machine learning and
robotics (Calandra, 2017; Snoek et al., 2012). EBO relies
on two main ideas that are implemented at multiple levels:
(1) we use efficient partition-based function approximators
(across both data and features) that simplify and acceler-
ate search and optimization; (2) we enhance the expressive
power of these approximators by using ensembles and a
stochastic approach. We maintain an evolving (posterior)

ar
X

iv
:1

70
6.

01
44

5v
4

 [
st

at
.M

L
]

 1
6

M
ay

 2
01

8

Batched Large-scale Bayesian Optimization in High-dimensional Spaces

distribution over the (infinite) ensemble and, in each itera-
tion, draw one member to perform search and estimation.

In particular, we use a new combination of three types of
partition-based approximations: (1-2) For improved GP esti-
mation, we propose a novel hierarchical additive GP model
based on tile coding (a.k.a. random binning or Mondrian
forest features). We learn a posterior distribution over ker-
nel width and the additive structure; here, Gibbs sampling
prevents overfitting. (3) To accelerate the sampler, which
depends on the likelihood of the observations, we use an ef-
ficient, randomized block approximation of the Gram matrix
based on a Mondrian process. Sampling and query selection
can then be parallelized across blocks, further accelerating
the algorithm.

As a whole, this combination of simple, tractable structure
with ensemble learning and randomization improves effi-
ciency, uncertainty estimates and optimization. Moreover,
we show that our realization of these ideas offers an alter-
native explanation for global optimization heuristics that
have been popular in other communities, indicating possible
directions for further theoretical analysis. Our empirical
results demonstrate that EBO can speed up the posterior
inference by 2-3 orders of magnitude (400 times in one
experiment) compared to the state-of-the-art, without sacri-
ficing quality. Furthermore, we demonstrate the ability of
EBO to handle sample-intensive hard optimization problems
by applying it to real-world problems with tens of thousands
of observations.

Related Work There has been a series of works address-
ing the three big challenges in BO: selecting batch evalua-
tions (Contal et al., 2013; Desautels et al., 2014; González
et al., 2016; Wang et al., 2017; Daxberger and Low, 2017),
high-dimensional input spaces (Wang et al., 2016b; Djo-
longa et al., 2013; Li et al., 2016; Kandasamy et al., 2015;
Wang et al., 2017; Wang and Jegelka, 2017), and scalability
(Snoek et al., 2015; Lakshminarayanan et al., 2016; McIn-
tire et al., 2016). Although these three problems tend to
co-occur, this paper is the first (to the best of our knowledge)
to address all three challenges jointly in one framework.

Most closely related to parts of this paper is (Wang et al.,
2017), but our algorithm significantly improves on that work
in terms of scalability (see Sec. 4.1 for an empirical compar-
ison), and has fundamental technical differences. First, the
Gibbs sampler by Wang et al. (2017) only learns the additive
structure but not the kernel parameters, while our sampler
jointly learns both of them. Second, our proposed algorithm
partitions the input space for scalability and parallel infer-
ence. We achieve this by a Mondrian forest. Third, as a
result, our method automatically generates batch queries,
while the other work needs an explicit batch strategy.

Other parts of our framework are inspired by the Mondrian
forest (Lakshminarayanan et al., 2016), which partitions the

input space via a Mondrian tree and aggregates trees into a
forest. The closely related Mondrian kernels (Balog et al.,
2016) use random features derived from Mondrian forests
to construct a kernel. Such a kernel, in fact, approximates
a Laplace kernel. In fact, Mondrian forest features can be
considered a special case of the popular tile coding features
widely used in reinforcement learning (Sutton and Barto,
1998; Albus et al., 1975). Lakshminarayanan et al. (2016)
showed that, in low-dimensional settings, Mondrian forest
kernels scale better than the regular GP and achieve good
uncertainty estimates in many low-dimensional problems.

Besides Mondrian forests, there is a rich literature on sparse
GP methods to address the scalability of GP regression
(Seeger et al., 2003; Snelson and Ghahramani, 2006; Titsias,
2009; Hensman et al., 2013). However, these methods are
mostly only shown to be useful when the input dimension
is low and there exist redundant data points, so that induc-
ing points can be selected to emulate the original posterior
GP well. However, data redundancy is usually not the case
in high-dimensional Bayesian optimization. Recent appli-
cations of sparse GPs in BO (McIntire et al., 2016) only
consider experiments with less than 80 function evaluations
in BO and do not show results on large scale observations.
Another approach to tackle large scale GPs distributes the
computation via local experts (Deisenroth and Ng, 2015).
However, this is not very suitable for the acquisition function
optimization needed in Bayesian optimization, since every
valid prediction needs to synchronize the predictions from
all the local experts. Our paper is also related to Gramacy
and Lee (2008). While Gramacy and Lee (2008) focuses on
modeling non-stationary functions with treed partitions, our
work integrates tree structures and Bayesian optimization in
a novel way.

2 Background and Challenges

Consider a simple but high-dimensional search space X =
[0, R]D ⊆ RD. We aim to find a maximizer x∗ ∈
arg maxx∈X f(x) of a black-box function f : X → R.

Gaussian processes. Gaussian processes (GPs) are pop-
ular priors for modeling the function f in Bayesian opti-
mization. They define distributions over functions where
any finite set of function values has a multivariate Gaussian
distribution. A Gaussian process GP(µ, κ) is fully specified
by a mean function µ(·) and covariance (kernel) function
κ(·, ·). Let f be a function sampled from GP(0, κ). Given
observationsDn = {(xt, yt)}nt=1 where yt ∼ N (f(xt), σ),
we obtain the posterior mean and variance of the function as

µn(x) = κn(x)T(Kn + σ2I)−1yn, (2.1)

σ2
n(x) = κ(x,x)− κn(x)T(Kn + σ2I)−1κn(x) (2.2)

via the kernel matrix Kn = [κ(xi,xj)]xi,xj∈Dn
and

κn(x) = [κ(xi,x)]xi∈Dn
(Rasmussen and Williams,

Zi Wang, Clement Gehring, Pushmeet Kohli, Stefanie Jegelka

2006). The log data likelihood for Dn is given by

log p(Dn) = −1

2
yT
n(Kn + σ2I)−1yn

− 1

2
log |Kn + σ2I| − n

2
log 2π. (2.3)

While GPs provide flexible, broadly applicable function
estimators, the O(n3) computation of the inverse (Kn +
σ2I)−1 and determinant |Kn + σ2I| can become major
bottlenecks as n grows, for both posterior function value
predictions and data likelihood estimation.

Additive structure. To reduce the complexity of the
vanilla GP, we assume a latent decomposition of the
input dimensions [D] = {1, . . . , D} into disjoint sub-
spaces, namely,

⋃M
m=1Am = [D] and Ai ∩ Aj = ∅

for all i 6= j, i, j ∈ [M]. As a result, the func-
tion f decomposes as f(x) =

∑
m∈[M] fm(xAm) (Kan-

dasamy et al., 2015). If each component fm is drawn
independently from GP(µ(m), κ(m)) for all m ∈ [M],
the resulting f will also be a sample from a GP: f ∼
GP(µ, κ), with µ(x) =

∑
m∈[M] µm(xAm), κ(x, x′) =∑

m∈[M] κ
(m)(xAm , x′

Am).

The additive structure reduces sample complexity and helps
BO to search more efficiently and effectively since the ac-
quisition function can be optimized component-wise. But it
remains challenging to learn a good decomposition structure
{Am}. Recently, Wang et al. (2017) proposed learning via
Gibbs sampling. This sampler takes hours for merely a few
hundred points, because it needs a vast number of expensive
data likelihood computations.

Random features. It is possible use random fea-
tures (Rahimi et al., 2007) to approximate the GP kernel and
alleviate the O(n3) computation in Eq. (2.1) and Eq. (2.3).
Let φ : X 7→ RDR be the (scaled) random feature opera-
tor and Φn = [φ(x1), · · · ,φ(xn)]T ∈ Rn×DR . The GP
posterior mean and variance can be written as

µn(x) = σ−2φ(x)TΣnΦ
T
nyn, (2.4)

σ2
n(x) = φ(x)TΣnφ(x), (2.5)

where Σn = (ΦT
nΦnσ

−2 + I)−1. By the Woodbury matrix
identity and the matrix determinant lemma, the log data
likelihood becomes

log p(Dn) =
σ−4

2
yT
nΦnΣnΦ

T
nyn

− 1

2
log |Σ−1n | −

σ−2

2
yT
nyn −

n

2
log 2πσ2. (2.6)

The number of random features necessary to approximate
the GP well in general increases with the number of observa-
tions (Rudi et al., 2017). Hence, for large-scale observations,
we cannot expect to solely use a fixed number of features.

Moreover, learning hyperparameters for random features is
expensive: for Fourier features, the computation of Eq. (2.6)
means re-computing the features, plus O(D3

R) for the in-
verse and determinant. With Mondrian features (Laksh-
minarayanan et al., 2016), we can learn the kernel width
efficiently by adding more Mondrian blocks, but this proce-
dure is not well compatible with learning additive structure,
since the whole structure of the sampled Mondrian features
will change. In addition, we typically need a forest of trees
for a good approximation.

Tile coding. Tile coding (Sutton and Barto, 1998; Albus
et al., 1975) is a k-hot encoding widely used in reinforce-
ment learning as an efficient set of non-linear features. In
its simplest form, tile coding is defined by k partitions, re-
ferred to as layers. An encoded data point becomes a binary
vector with a non-zero entry for each bin containing the data
point. There exists methods for sampling random partitions
that allow to approximate various kernels, such as the ‘hat’
kernel (Rahimi et al., 2007), making tile coding well suited
for our purposes.

Variance starvation. It is probably not surprising that us-
ing finite random features to learn the function distribution
will result in a loss in accuracy (Forster, 2005). For example,
we observed that, while the mean predictions are preserved
reasonably well around regions where we have observations,
both mean and confidence bound predictions can become
very bad in regions where we do not have observations, once
there are more observations than features. We refer to this
underestimation of variance scale compared to mean scale,
illustrated in Fig. 1, as variance starvation.

3 Ensemble Bayesian Optimization

Next, we describe an approach that scales Bayesian Op-
timization when parallel computing resources are avail-
able. We name our approach, outlined in Alg.1, Ensemble
Bayesian optimization (EBO). At a high level, EBO uses a
(stochastic) series of Mondrian trees to partition the input
space, learn the kernel parameters of a GP locally, and ag-
gregate these parameters. Our forest hence spans across BO
iterations.

In the t-th iteration of EBO in Alg. 1, we use a Mondrian
process to randomly partition the search space into J parts
(line 4), where J can be dependent on the size of the ob-
servations Dt−1. For the j-th partition, we have a subset
Djt−1 of observations. From those observations, we learn
a local GP with random tile coding and additive structure,
via Gibbs sampling (line 6). For conciseness, we refer to
such GPs as TileGPs. The probabilistic tile coding can be
replaced by a Mondrian grid that approximates a Laplace
kernel (Balog and Teh, 2015). Once a TileGP is learned lo-
cally, we can run BO with the acquisition function η in each
partition to generate a candidate set of points, and, from

Batched Large-scale Bayesian Optimization in High-dimensional Spaces

x
0 0.5 1

f(
x
)

-10

-5

0

5

10

3σ
µ
f

x
0 0.5 1

f(
x
)

-150

-100

-50

0

50

3σ
µ
f

x
0 0.5 1

f(
x
)

-10

-5

0

5

10

3σ
µ
f

x
0 0.5 1

f(
x
)

-20

0

20

3σ
µ
f

(a) (b) (c) (d)

Figure 1: We use 1000 Fourier features to approximate a 1D GP with a squared exponential kernel. The observations are
samples from a function f (red line) drawn from the GP with zero mean in the range [−10, 0.5]. (a) Given 100 sampled
observations (red circles), the Fourier features lead to reasonable confidence bounds. (b) Given 1000 sampled observations
(red circles), the quality of the variance estimates degrades. (c) With additional samples (5000 observations), the problem is
exacerbated. The scale of the variance predictions relative to the mean prediction is very small. (d) For comparison, the
proper predictions of the original full GP conditioned on the same 5000 observations as (c). Variance starvation becomes a
serious problem for random features when the size of data is close to or larger than the size of the features.

those, select a batch that is both informative (high-quality)
and diverse (line 14).

Algorithm 1 Ensemble Bayesian Optimization (EBO)
1: function EBO (f,D0)
2: Initialize z, k
3: for t = 1, · · · , T do
4: {Xj}Jj=1 ←MONDRIAN([0, R]D, z, k, J)
5: parfor j = 1, · · · , J do
6: zj , kj ← GIBBSSAMPLING(z, k | Dj

t−1)

7: ηjt−1(·)←ACQUISITION (Dj
t−1, z

j , kj)
8: {Am}Mm=1 ← DECOMPOSITION(zj)
9: for m = 1, · · · ,M do

10: xAm
tj ← argmax

x∈XAm
j

ηjt−1(x)

11: end for
12: end parfor
13: z ← SYNC({zj}Jj=1), k ← SYNC({kj}Jj=1)

14: {xtb}Bb=1 ← FILTER ({xtj}Jj=1 | z, k)
15: parfor b = 1, · · · , B do
16: ytb ← f(xtb)
17: end parfor
18: Dt ← Dt−1 ∪ {xtb, ytb}Bb=1

19: end for
20: end function

Since, in each iteration, we draw an input space partition
and update the kernel width and the additive structure, the
algorithm may be viewed as implicitly and stochastically
running BO on an ensemble of GP models. In the following,
we describe our model and the procedures of Alg. 1 in
detail. In the Appendix, we show an illustration how EBO
optimizes a 2D function.

3.1 Partitioning the input space via a Mondrian
process

When faced with a “big” problem, a natural idea is to divide
and conquer. For large scale Bayesian optimization, the
question is how to divide without losing the valuable local

β λ k

f

z θ α

y x

DL

D

Figure 2: The graphical model for TileGP, a GP with ad-
ditive and tile kernel partitioning structure. The parameter
λ controls the rate for the number of cuts k of the tilings
(inverse of the kernel bandwidth); the parameter z controls
the additive decomposition of the input feature space.

information that gives good uncertainty measures. In EBO,
we use a Mondrian process to divide the input space and the
observed data, so that nearby data points remain together in
one partition, preserving locality1. The Mondrian process
uses axis-aligned cuts to divide the input space [0, R]D into
a set of partitions {Xj}Jj=0 where ∪jXj = [0, R]D and
Xi∩Xj = ∅, ∀i 6= j. Each partition Xj can be conveniently
described by a hyperrectangle [lj1, h

j
1]×· · ·×[ljD, h

j
D], which

facilitates the efficient use of tile coding and Mondrian grids
in a TileGP. In the next section, we define a TileGP and
introduce how its parameters are learned.

3.2 Learning a local TileGP via Gibbs sampling

For the j-th hyperrectangle partition Xj = [lj1, h
j
1]× · · · ×

[ljD, h
j
D], we use a TileGP to model the function f locally.

We use the acronym “TileGP” to denote the Gaussian pro-
cess model that uses additive kernels, with each component
represented by tilings. We show the details of the genera-
tive model for TileGP in Alg. 2 and the graphical model in
Fig. 3.2 with fixed hyper-parameters α, β0, β1. The main
difference to the additive GP model used in (Wang et al.,

1We include the algorithm for input space partitioning in the
appendix.

Zi Wang, Clement Gehring, Pushmeet Kohli, Stefanie Jegelka

2017) is that TileGP constructs a hierarchical model for the
random features (and hence, the kernels), while Wang et al.
(2017) do not consider the kernel parameters to be part of
the generative model. The random features are based on tile
coding or Mondrian grids, with the number of cuts gener-
ated by D Poisson processes on [ljd, h

j
d] for each dimension

d = 1, · · · , D. On the i-th layer of the tilings, tile coding

samples the offset δ from a uniform distribution U [0,
hj
d−l

j
d

kdi
]

and places the cuts uniformly starting at δ + ljd. The Mon-
drian grid samples kdi cut locations uniformly randomly
from [ljd, h

j
d]. Because of the data partition, we always have

more features than observations, which can alleviate the
variance starvation problem described in Section 2.

We can use Gibbs sampling to efficiently learn the cut pa-
rameter k and decomposition parameter z by marginalizing
out λ and θ. Notice that both k and z take discrete values;
hence, unlike other continuous GP parameterizations, we
only need to sample discrete variables for Gibbs sampling.

Algorithm 2 Generative model for TileGP
1: Draw mixing proportions θ ∼ DIR(α)
2: for d = 1, · · · , D do
3: Draw additive decomposition zd ∼ MULTI(θ)
4: Draw Poisson rate parameter λd ∼ GAMMA(β0, β1)
5: for i = 1, · · · , L do
6: Draw number of cuts kdi ∼ POISSON(λd(h

j
d − l

j
d))

7:

{
Draw offset δ ∼ U [0,

h
j
d
−l

j
d

kdi
] Tile Coding

Draw cut locations b ∼ U [ljd, h
j
d] Mondrian Grids

8: end for
9: end for

10: Construct the feature projection φ and the kernel κ = φTφ
from z and sampled tiles

11: Draw function f ∼ GP(0, κ)
12: Given input x, draw function value y ∼ N (f(x), σ)

Given the observations Dt−1 in the j-th hyperrectangle par-
tition, the posterior distribution of the (local) parameters
λ, k, z, θ is

p(λ, k, z, θ | Dt−1;α, β)

∝ p(Dt−1 | z, k)p(z | θ)p(k | λ)p(θ;α)p(λ;β).

Marginalizing over the Poisson rate parameter λ and the
mixing proportion θ gives

p(k, z | Dt−1;α, β)

∝ p(Dt−1|z, k)

∫
p(z|θ)p(θ;α) dθ

∫
p(k|λ)p(λ;β) dλ

∝ p(Dt−1 | z, k)
∏
m

Γ(|Am|+ αm)

Γ(αm)

×
∏
d

Γ(β1 + |kd|)
(
∏L
i=1 kdi!)(β0 + L)β1+|kd|

where |kd| =
∑L
i=1 kdi. Hence, we only need to sample k

and z when learning the hyperparameters of the TileGP ker-

nel. For each dimension d, we sample the group assignment
zd according to

p(zd = m | Dt−1, k, z¬d;α) ∝ p(Dt−1 | z, k)p(zd | z¬d)
∝ p(Dt−1 | z, k)(|Am|+ αm). (3.1)

We sample the number of cuts kdi for each dimension d and
each layer i from the posterior

p(kdi | Dt−1, k¬di, z;β) ∝ p(Dt−1 | z, k)p(kdi | k¬di)

∝ p(Dn | z, k)Γ(β1 + |kd|)
(β0 + L)kdikdi!

. (3.2)

If distributed computing is available, each hyperrectangle
partition of the input space is assigned a worker to manage
all the computations within this partition. On each worker,
we use the above Gibbs sampling method to learn the ad-
ditive structure and kernel bandwidth jointly. Conditioned
on the observations associated with the partition on the
worker, we use the learned posterior TileGP to select the
most promising input point in this partition, and eventually
send this candidate input point back to the main process
together with the learned decomposition parameter z and
the cut parameter k. In the next section, we introduce the
acquisition function we used in each worker and how to
filter the recommended candidates from all the partitions.

3.3 Acquisition functions and filtering

In this paper, we mainly focus on parameter search prob-
lems where the objective function is designed by an expert
and the global optimum or an upper bound on the function
is known. While any BO acquisition functions can be used
within the EBO framework, we use an acquisition function
from (Wang and Jegelka, 2017) to exploit the knowledge
of the upper bound. Let f∗ be such an upper bound, i.e.,
∀x ∈ X , f∗ ≥ f(x). Given the observations Djt−1 associ-
ated with the j-th partition of the input space, we minimize

the acquisition function ηjt−1(x) =
f∗−µj

t−1(x)

σj
t−1(x)

. Since the

kernel is additive, we can optimize ηjt−1(·) separately for
each additive component. Namely, for the m-th compo-
nent of the additive structure, we optimize ηjt−1(·) only on
the active dimensions Am. This resembles a block coordi-
nate descent, and greatly facilitates the optimization of the
acquisition function.

Filtering. Once we have a proposed uery point from
each partition, we select B of them according to the scor-
ing function ξ(X) = log detKX −

∑B
b=1 η(xb) where

X = {xb}Bb=1. We use the log determinant term to force di-
versity and η to maintain quality. We maximize this function
greedily. In some cases, the number of partitions J can be
smaller than the batch size B. In this case, one may either
use just J candidates, or use batch BO on each partition.
We use the latter, and discuss details in the appendix.

Batched Large-scale Bayesian Optimization in High-dimensional Spaces

-2 0 2 4
-2

-1

0

1

2

3

4

-2 0 2 4
-2

-1

0

1

2

3

4

-2 0 2 4
-2

-1

0

1

2

3

4

-2 0 2 4
-2

-1

0

1

2

3

4

1 observation 3 observations

(a) (b) (c) (d)

Figure 3: Posterior mean function (a, c) and GP-UCB acquisition function (b, d) for an additive GP in 2D. The maxima
of the posterior mean and acquisition function are at the points resulting from an exchange of coordinates between “good”
observed points (-1,0) and (2,2).

3.4 Efficient data likelihood computation and
parameter synchronization

For the random features, we use tile coding due to its sparsity
and efficiency. Since non-zero features can be found and
computed by binning, the computational cost for encoding
a data point scales linearly with dimensions and number of
layers. The resulting representation is sparse and convenient
to use. Additionally, the number of non-zero features is
quite small, which allows us to efficiently compute a sparse
Cholesky decomposition of the inner product (Gram matrix)
or the outer product of the data. This allows us to efficiently
compute the data likelihoods.

In each iteration t, after the batch workers return the learned
decomposition indicator zb and the number of tiles kb, b ∈
[B], we synchronize these two parameters (line 13 of Alg. 1).
For the number of tiles k, we set kd to be the rounded
mean of {kbd}Bb=1 for each dimension d ∈ [D]. For the
decomposition indicator, we use correlation clustering to
cluster the input dimensions.

3.5 Relations to Mondrian kernels, random binning
and additive Laplace kernels

Our model described in Section 3.2 can use tile coding and
Mondrian grids to construct the kernel. Tile coding and
Mondrian grids are also closely related to Mondrian Fea-
tures and Random Binning: All of the four kinds of random
features attempt to find a sparse random feature representa-
tion for the raw input x based on the partition of the space
with the help of layers. We illustrate the differences between
one layer of the features constructed by tile coding, Mon-
drian grids, Mondrian features and random binning in the
appendix. Mondrian grids, Mondrian features and random
binning all converge to the Laplace kernel as the number of
layers L goes to infinity. The tile coding kernel, however,
does not approximate a Laplace kernel. Our model with
Mondrian grids approximates an additive Laplace kernel:

Lemma 3.1. Let the random variable kdi ∼

POISSON(λdR) be the number of cuts in the Mon-
drian grids of TileGP for dimension d ∈ [D] and
layer i ∈ [L]. The TileGP kernel κL satisfies
lim
L→∞

κL(x,x′) = 1
M

∑M
m=1 e

λdR|xAm−x′Am |, where

{Am}Mm=1 is the additive decomposition.

We prove the lemma in the appendix. Balog et al. (2016)
showed that in practice, the Mondrian kernel constructed
from Mondrian features may perform slightly better than
random binning in certain cases. Although it would be
possible to use a Mondrian partition for each layer of tile
coding, we only consider uniform, grid based binning with
random offests because this allows the non-zero features to
be computed more efficiently (O(1) instead of O(log k)).
Note that as more dimensions are discretized in this man-
ner, the number of features grows exponentially. However,
the number of non-zero entries can be independently con-
trolled, allowing to create sparse representations that remain
computationally tractable.

3.6 Connections to evolutionary algorithms

Next, we make some observations that connect our random-
ized ensemble BO to ideas for global optimization heuristics
that have successfully been used in other communities. In
particular, these connections offer an explanation from a BO
perspective and may aid further theoretical analysis.

Evolutionary algorithms (Back, 1996) maintain an ensem-
ble of “good” candidate solutions (called chromosomes)
and, from those, generate new query points via a number
of operations. These methods too, implicitly, need to bal-
ance exploration with local search in areas known to have
high function values. Hence, there are local operations
(mutations) for generating new points, such as random per-
turbations or local descent methods, and global operations.
While it is relatively straightforward to draw connections be-
tween those local operations and optimization methods used
in machine learning, we here focus on global exploration.

Zi Wang, Clement Gehring, Pushmeet Kohli, Stefanie Jegelka

A popular global operation is crossover: given two “good”
points x, y ∈ RD, this operation outputs a new point z
whose coordinates are a combination of the coordinates of
x and y, i.e., zi ∈ {xi, yi} for all i ∈ [D]. In fact, this
operation is analogous to BO with a (randomized) additive
kernel: the crossover strategy implicity corresponds to the
assumption that high function values can be achieved by
combining coordinates from points with high function val-
ues. For comparison, consider an additive kernel κ(x, x′) =∑M
m=1 κ

(m)(xAm , x′Am) and f(x) =
∑M
m=1 f

m(xAm).
Since each sub-kernel κ(m) is “blind” to the dimensions
in the complement ofAm, any point x′ that is close to an ob-
served high-value point x in the dimensionsAm will receive
a high value fm(x), independent of the other dimensions,
and, as a result, looks like a “good” candidate.

We illustrate this reasoning with a 2D toy example. Figure 3
shows the posterior mean prediction and GP-UCB crite-
rion f̂(x) + 0.1σ(x) for an additive kernel with A1 = {1},
A2 = {2} and κm(xm, ym) = exp(−2(xm − ym)2). High
values of the observed points generalize along the dimen-
sions “ignored” by the sub-kernels. After two good observa-
tions (−1, 0) and (2, 2), the “crossover” points (−1, 2) and
(2, 0) are local maxima of GP-UCB and the posterior mean.

In real data, we do not know the best fitting underlying
grouping structure of the coordinates. Hence, crossover
does a random search over such partitions by performing
random coordinate combinations, whereas our adaptive BO
approach maintains a posterior distribution over partitions
that adapts to the data.

4 Experiments

We empirically verify the scalability of EBO and its effec-
tiveness of using random adaptive Mondrian partitions, and
finally evaluate EBO on two real-world problems.2

4.1 Scalability of EBO

We compare EBO with a recent, state-of-the-art additive ker-
nel learning algorithm, Structural Kernel Learning (SKL)
(Wang et al., 2017). EBO can make use of parallel resources
both for Gibbs sampling and BO query selections, while
SKL can only parallelize query selections but not sampling.
Because the kernel learning part is the computationally dom-
inating factor of large scale BO, we compare the time each
method needs to run 10 iterations of Gibbs sampling with
100 to 50000 observations in 20 dimensions. We show the
timing results for the Gibbs samplers in Fig. 4(a), where
EBO uses 240 cores via the Batch Service of Microsoft
Azure. Due to a time limit we imposed, we did not finish
SKL for more than 1500 observations. EBO runs more
than 390 times faster than SKL when the observation size

2Our code is publicly available at https://github.com/
zi-w/Ensemble-Bayesian-Optimization.

10 100 240 500
Num ber of Cores

1

5

10

15

20

25

S
p

e
e

d
-u

p
 o

v
e

r
1

0
 C

o
re

s

0 100 200 300 400 500
Observat ion size (x100)

0

20

40

60

80

100

120

140

160

G
ib

b
s
 s

a
m

p
li
n

g
 t

im
e

 (
m

in
u

te
s
)

SKL

EBO

We stopped SKL after 2 hours

EBO average runtime = 61 seconds

(a) (b)

Figure 4: (a) Timing for the Gibbs sampler of EBO and
SKL. EBO is significantly faster than SKL when the ob-
servation size N is relatively large. (b) Speed-up of EBO
with 100, 240, 500 cores over EBO with 10 cores on 30,000
observations. Running EBO with 240 cores is almost 20
times faster than with 10 cores.

is 1500. Comparing the quality of learned parameter z for
the additive structure, SKL has a Rand Index of 96.3% and
EBO has a Rand Index of 96.8%, which are similar. In
Fig. 4(b), we show speed-ups for different number of cores.
EBO with 500 cores is not significantly faster than with
240 cores because EBO runs synchronized parallelization,
whose runtime is decided by the slowest core. It is often the
case that most of the cores have finished while the program
is waiting for the slowest 1 or 2 cores to finish.

4.2 Effectiveness of EBO

0 10 20 30 40 50 60

Tim e (m inutes)

0

1

2

3

4

5

6

7

R
e

g
re

t

BO-SVI

BO-Add-SVI

PBO

EBO

Figure 5: Averaged results of the regret of BO-SVI, BO-
Add-SVI, PBO and EBO on 4 different functions drawn
from a 50D GP with an additive Laplace kernel. BO-SVI
has the highest regret for all functions. Using an additive
GP within SVI (BO-Add-SVI) significantly improves over
the full kernel. In general, EBO finds a good point much
faster than the other methods.

Optimizing synthetic functions We verify the effective-
ness of using ensemble models for BO on 4 functions ran-
domly sampled from a 50-dimensional GP with an addi-
tive Laplace kernel. The hyperparameter of the Laplace
kernel is known. In each iteration, each algorithm evalu-
ates a batch of parameters of size B in parallel. We de-
note r̃t = maxx∈X f(x) − maxb∈[B] f(xt,b) as the im-

https://github.com/zi-w/Ensemble-Bayesian-Optimization

https://github.com/zi-w/Ensemble-Bayesian-Optimization

Batched Large-scale Bayesian Optimization in High-dimensional Spaces

mediate regret obtained by the batch at iteration t, and
rT = mint≤T r̃t as the regret, which captures the minimum
gap between the best point found and the global optimum
of the black-box function f .

We compare BO using SVI (Hensman et al., 2013) (BO-
SVI), BO using SVI with an additive GP (BO-Add-SVI)
and a distributed version of BO with a fixed partition (PBO)
against EBO with a randomly sampled partition in each
iteration. PBO has the same 1000 Mondrian partitions in all
the iterations while EBO can have at most 1000 Mondrian
partitions. BO-SVI uses a Laplace isotropic kernel without
any additive structure, while BO-Add-SVI, PBO, EBO all
use the known prior. More detailed experimental settings
can be found in the appendix. Our experimental results in
Fig. 5 shows that EBO is able to find a good point much
faster than BO-SVI and BO-Add-SVI; and, randomization
and the ensemble of partitions matters: EBO is much better
than PBO.

Optimizing control parameters for robot pushing We
follow Wang et al. (2017) and test our approach, EBO, on a
14 dimensional control parameter tuning problem for robot
pushing. We compare EBO, BO-SVI, BO-Add-SVI and
CEM Szita and Lörincz (2006) with the same 104 random
observations and repeat each experiment 10 times. We run
all the methods for 200 iterations, where each iteration has
a batch size of 100. We plot the median of the best re-
wards achieved by CEM and EBO at each iteration in Fig. 6.
More details on the experimental setups and the reward
function can be found in the appendix. Overall CEM and
EBO performed comparably and much better than the sparse
GP methods (BO-SVI and BO-Add-SVI). We noticed that
among all the experiments, CEM achieved a maximum re-
ward of 10.19 while EBO achieved 9.50. However, EBO
behaved slightly better and more stable than CEM as re-
flected by the standard deviation on the rewards.

10k 15k 20k 25k 30k
Number of Samples

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

R
e
w

a
rd

BO-SVI

BO-Add-SVI

CEM

EBO

Figure 6: Comparing BO-SVI, BO-Add-SVI, CEM and
EBO on a control parameter tuning task with 14 parameters.

Optimizing rover trajectories To further explore the per-
formance of our method, we consider a trajectory optimiza-
tion task in 2D, meant to emulate a rover navigation task.

We describe a problem instance by defining a start posi-
tion s and a goal position g as well as a cost function
over the state space. Trajectories are described by a set
of points on which a BSpline is to be fitted. By integrat-
ing the cost function over a given trajectory, we can com-
pute the trajectory cost c(x) of a given trajectory solution
x ∈ [0, 1]60. We define the reward of this problem to be
f(x) = c(x) + λ(‖x0,1 − s‖1 + ‖x59,60 − g‖1) + b. This
reward function is non smooth, discontinuous, and con-
cave over the first two and last two dimensions of the input.
These 4 dimensions represent the start and goal position
of the trajectory. The results in Fig. 7 showed that CEM
was able to achieve better results than the BO methods on
these functions, while EBO was still much better than the
BO alternatives using SVI. More details can be found in the
appendix.

10k 15k 20k 25k 30k 35k
Number of Samples

6

4

2

0

2

4

R
e
w

a
rd

BO-SVI

BO-Add-SVI

CEM

EBO

Figure 7: Comparing BO-SVI, BO-Add-SVI, CEM and
EBO on a 60 dimensional trajectory optimization task.

5 Conclusion

Many black box function optimization problems are intrin-
sically high-dimensional and may require a huge number of
observations in order to be optimized well. In this paper, we
propose a novel framework, ensemble Bayesian optimiza-
tion, to tackle the problem of scaling Bayesian optimization
to both large numbers of observations and high dimensions.
To achieve this, we propose a new framework that jointly in-
tegrates randomized partitions at various levels: our method
is a stochastic method over a randomized, adaptive ensem-
ble of partitions of the input data space; for each part, we use
an ensemble of TileGPs, a new GP model we propose based
on tile coding and additive structure. We also developed an
efficient Gibbs sampling approach to learn the latent vari-
ables. Moreover, our method automatically generates batch
queries. We empirically demonstrate the effectiveness and
scalability of our method on high dimensional parameter
search tasks with tens of thousands of observation data.

Zi Wang, Clement Gehring, Pushmeet Kohli, Stefanie Jegelka

Acknowledgements

We gratefully acknowledge support from NSF CAREER
award 1553284, NSF grants 1420927 and 1523767, from
ONR grant N00014-14-1-0486, and from ARO grant
W911NF1410433. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of our
sponsors.

References
James S Albus et al. A new approach to manipulator control:

The cerebellar model articulation controller (CMAC).
Journal of Dynamic Systems, Measurement and Control,
97(3):220–227, 1975.

Thomas Back. Evolutionary algorithms in theory and prac-
tice: evolution strategies, evolutionary programming, ge-
netic algorithms. Oxford university press, 1996.

Matej Balog and Yee Whye Teh. The Mondrian process
for machine learning. arXiv preprint arXiv:1507.05181,
2015.

Matej Balog, Balaji Lakshminarayanan, Zoubin Ghahra-
mani, Daniel M Roy, and Yee Whye Teh. The Mondrian
kernel. In Uncertainty in Artificial Intelligence (UAI),
2016.

Roberto Calandra. Bayesian Modeling for Optimization and
Control in Robotics. PhD thesis, Technische Universität,
2017.

Emile Contal, David Buffoni, Alexandre Robicquet, and
Nicolas Vayatis. Parallel Gaussian process optimization
with upper confidence bound and pure exploration. In
Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, 2013.

Erik A Daxberger and Bryan Kian Hsiang Low. Distributed
batch Gaussian process optimization. In International
Conference on Machine Learning (ICML), 2017.

Marc Peter Deisenroth and Jun Wei Ng. Distributed Gaus-
sian processes. arXiv preprint arXiv:1502.02843, 2015.

Thomas Desautels, Andreas Krause, and Joel W Burdick.
Parallelizing exploration-exploitation tradeoffs in Gaus-
sian process bandit optimization. Journal of Machine
Learning Research, 2014.

Josip Djolonga, Andreas Krause, and Volkan Cevher. High-
dimensional Gaussian process bandits. In Advances in
Neural Information Processing Systems (NIPS), 2013.

Malcolm R Forster. Notice: No free lunches for anyone,
bayesians included. Department of Philosophy, Univer-
sity of Wisconsin–Madison Madison, USA, 2005.

Javier González, Zhenwen Dai, Philipp Hennig, and Neil D
Lawrence. Batch Bayesian optimization via local penal-
ization. International Conference on Artificial Intelli-
gence and Statistics (AISTATS), 2016.

Robert B Gramacy and Herbert K H Lee. Bayesian treed
Gaussian process models with an application to computer
modeling. Journal of the American Statistical Associa-
tion, 103(483):1119–1130, 2008.

Philipp Hennig and Christian J Schuler. Entropy search
for information-efficient global optimization. Journal of
Machine Learning Research, 13:1809–1837, 2012.

James Hensman, Nicolo Fusi, and Neil D Lawrence. Gaus-
sian processes for big data. In Uncertainty in Artificial
Intelligence (UAI), 2013.

José Miguel Hernández-Lobato, Matthew W Hoffman, and
Zoubin Ghahramani. Predictive entropy search for effi-
cient global optimization of black-box functions. In Ad-
vances in Neural Information Processing Systems (NIPS),
2014.

Kirthevasan Kandasamy, Jeff Schneider, and Barnabas Poc-
zos. High dimensional Bayesian optimisation and bandits
via additive models. In International Conference on Ma-
chine Learning (ICML), 2015.

Kenji Kawaguchi, Leslie Pack Kaelbling, and Tomás
Lozano-Pérez. Bayesian optimization with exponential
convergence. In Advances in Neural Information Process-
ing Systems (NIPS), 2015.

Harold J Kushner. A new method of locating the maximum
point of an arbitrary multipeak curve in the presence
of noise. Journal of Fluids Engineering, 86(1):97–106,
1964.

Balaji Lakshminarayanan, Daniel M Roy, and Yee Whye
Teh. Mondrian forests for large-scale regression when
uncertainty matters. In International Conference on Arti-
ficial Intelligence and Statistics (AISTATS), 2016.

Chun-Liang Li, Kirthevasan Kandasamy, Barnabás Póczos,
and Jeff Schneider. High dimensional Bayesian optimiza-
tion via restricted projection pursuit models. In Interna-
tional Conference on Artificial Intelligence and Statistics
(AISTATS), 2016.

Mitchell McIntire, Daniel Ratner, and Stefano Ermon.
Sparse Gaussian processes for Bayesian optimization.
In Uncertainty in Artificial Intelligence (UAI), 2016.

J. Moc̆kus. On Bayesian methods for seeking the extremum.
In Optimization Techniques IFIP Technical Conference,
1974.

Ali Rahimi, Benjamin Recht, et al. Random features for
large-scale kernel machines. In Advances in Neural In-
formation Processing Systems (NIPS), 2007.

Carl Edward Rasmussen and Christopher KI Williams.
Gaussian Processes for Machine Learning. 2006.

Alessandro Rudi, Raffaello Camoriano, and Lorenzo
Rosasco. Generalization properties of learning with ran-
dom features. In Advances in Neural Information Pro-
cessing Systems (NIPS), 2017.

Batched Large-scale Bayesian Optimization in High-dimensional Spaces

Matthias Seeger, Christopher Williams, and Neil Lawrence.
Fast forward selection to speed up sparse Gaussian pro-
cess regression. In Artificial Intelligence and Statistics 9,
2003.

Edward Snelson and Zoubin Ghahramani. Sparse Gaussian
processes using pseudo-inputs. In Advances in Neural
Information Processing Systems (NIPS), 2006.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practi-
cal Bayesian optimization of machine learning algorithms.
In Advances in Neural Information Processing Systems
(NIPS), 2012.

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros,
Nadathur Satish, Narayanan Sundaram, Mostofa Patwary,
Mr Prabhat, and Ryan Adams. Scalable Bayesian opti-
mization using deep neural networks. In International
Conference on Machine Learning, 2015.

Niranjan Srinivas, Andreas Krause, Sham M Kakade, and
Matthias W Seeger. Information-theoretic regret bounds
for Gaussian process optimization in the bandit setting.
IEEE Transactions on Information Theory, 2012.

Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction. MIT press Cambridge, 1998.

István Szita and András Lörincz. Learning tetris using the
noisy cross-entropy method. Learning, 18(12), 2006.

Michalis K Titsias. Variational learning of inducing vari-
ables in sparse Gaussian processes. In International Con-
ference on Artificial Intelligence and Statistics (AISTATS),
2009.

Zi Wang and Stefanie Jegelka. Max-value entropy search
for efficient Bayesian optimization. In International Con-
ference on Machine Learning (ICML), 2017.

Zi Wang, Bolei Zhou, and Stefanie Jegelka. Optimization
as estimation with Gaussian processes in bandit settings.
In International Conference on Artificial Intelligence and
Statistics (AISTATS), 2016a.

Zi Wang, Chengtao Li, Stefanie Jegelka, and Pushmeet
Kohli. Batched high-dimensional Bayesian optimization
via structural kernel learning. In International Conference
on Machine Learning (ICML), 2017.

Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson,
and Nando de Feitas. Bayesian optimization in a billion
dimensions via random embeddings. Journal of Artificial
Intelligence Research, 55:361–387, 2016b.

Zi Wang, Clement Gehring, Pushmeet Kohli, Stefanie Jegelka

A An Illustration of EBO

We give an illustration of the proposed EBO algorithm on a
2D function shown in Fig. 8. This function is a sample from
a 2D TileGP, where the decomposition parameter is z =
[0, 1], the cut parameter is (inverse bandwidth) k = [10, 10],
and the noise parameter is σ = 0.01.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

−3.244
−2.707
−2.170
−1.633
−1.096
−0.559
−0.023
0.514
1.051
1.588

Figure 8: The 2D additive function we optimized in Fig. 9.
The global maximum is marked with “+”.

The global maximum of this function is at (0.27, 0.41). In
this example, EBO is configured to have at least 20 data
points on each partition, at most 50 Mondrian partitions, and
100 layers of tiles to approximate the Laplace kernel. We
run EBO for 10 iterations with 20 queries each batch. The
results are shown in Fig. 9. In the first iteration, EBO has
no information about the function; hence it spreads the 10
queries (blue dots) “evenly” in the input domain to collect
information. In the 2nd iteration, based on the evaluations
on the selected points (yellow dots), EBO chooses to query
batch points (blue dots) that have high acquisition values,
which appear to be around the global optimum and some
other high valued regions. As the number of evaluations
exceeds 20, the minimum number of data points on each
partition, EBO partitions the input space with a Mondrian
process in the following iterations. Notice that each iteration
draws a different partition (shown as the black lines) from
the Mondrian process so that the results will not “over-fit”
to one partition setting and the computation can remain
efficient. In each partition, EBO runs the Gibbs sampling
inference algorithm to fit a local TileGP and uses batched
BO select a few candidates. Then EBO uses a filter to decide
the final batch of candidate queries (blue dots) among all
the recommended ones from each partition as described in
Sec. C.

B Partitioning the input space via a
Mondrian process

Alg. 3 shows the full ‘Mondrian partitioning” algorithm, i.e.,
the input space partitioning strategy mentioned in Section

3.1.

Algorithm 3 Mondrian Partitioning
1: function MONDRIANPARTITIONING (V,Np, S)
2: while |V | < Np do
3: pj ← length(vj) ·max(0, |Dj | − S), ∀vj ∈ V
4: if pj = 0,∀j then
5: break
6: end if
7: Sample vj ∼ pj∑

j pj
, vj ∈ V

8: Sample a dimension d ∼ h
j
d
−l

j
d∑

d h
j
d
−l

j
d

, d ∈ [D]

9: Sample cut location uj
d ∼ U [ljd, h

j
d]

10: vj(left) ← [lj1, h
j
1]×· · ·× [ljd, u

j
d]×· · ·××[l

j
D, h

j
D]

11: vj(right) ← [lj1, h
j
1]×· · ·×[u

j
d, h

j
d]×· · ·××[l

j
D, h

j
D]

12: V ← V ∪ {vj(left), vj(right)} \ vj
13: end while
14: return V
15: end function

In particular, we denote the maximum number of Mondrian
partitions by Np (usually the worker pool size in the exper-
iments) and the minimum number of data points in each
partition to be S. The set of partitions computed by the
Mondrian tree (a.k.a. the leaves of the tree), V , is initial-
ized to be the function domain V = {[0, R]D}, the root of
the tree. For each vj ∈ V described by a hyperrectangle
[lj1, h

j
1] × · · · × [ljD, h

j
D], the length of vj is computed to

be length(vj) =
∑D
d=1(hjd − l

j
d). The observations asso-

ciated with vj is Dj . Here, for all (x, y) ∈ Dj , we have
x ∈ [lj1−ε, h

j
1+ε]×· · ·× [ljD−ε, h

j
D+ε], where ε controls

the how many neighboring data points to consider for the
partition vj . In our experiments, ε is set to be 0. Alg. 3
is different from Algorithm 1 and 2 of Lakshminarayanan
et al. (2016) in the stop criterion. Lakshminarayanan et al.
(2016) uses an exponential clock to count down the time of
splitting the leaves of the tree, while we split the leaves until
the number of Mondrian partitions reaches Np or there is
no partition that have more than S data points. We designed
our stop criterion this way to balance the efficiency of EBO
and the quality of selected points. Usually EBO is faster
with larger number of partitions Np (i.e., more parallel com-
puting resources) and the quality of the selections are better
with larger size of observations on each partition (S).

C Budget allocation and batched BO

In the EBO algorithm, we first use a batch of workers to
learn the local GPs and recommend potential good candidate
points from the local information. Then we aggregate the
information of all the workers, and use a filter to select the
points to evaluate from the set of points recommended by
all the workers based on the aggregated information on the
function.

There are two important details we did not have space to dis-

Batched Large-scale Bayesian Optimization in High-dimensional Spaces

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

t=1 t=2 t=3 t=4 t=5

t=6 t=7 t=8 t=9 t=10

Figure 9: An example of 10 iterations of EBO on a 2D toy example plotted in Fig. 8. The selections in each iteration are
blue and the existing observations orange. EBO quickly locates the region of the global optimum while still allocating
budget to explore regions that appear promising (e.g. around the local optimum (1.0, 0.4)).

cuss in the main paper: (1) how many points to recommend
from each local worker (budget allocation); and (2) how to
select a batch of points from the Mondrian partition on each
worker. Usually in the beginning of the iterations, we do not
have a lot of Mondrian partitions (since we stop splitting a
partition once it reaches a minimum number of data points).
Hence, it is very likely that the number of partitions J is
smaller than the size of the batch. Hence we need to allocate
the budget of recommendations from each worker properly
and use batched BO for each Mondrian partition.

Budget allocation In our current version of EBO, we did
the budget allocation using a heuristic, where we would
like to generate at least 2B recommendations from all the
workers, and each worker gets the budget proportional to a
score, the sum of the Mondrian partition volume (volume of
the domain of the partition) and the best function value of
the partition.

Batched BO For batched BO, we also use a heuristic
where the points achieving the top n acquisition function
values are always included and the other ones come from
random points selected in that partition. For the optimiza-
tion of the acquisition function over each block of dimen-
sions, we sample 1000 points in the low dimensional space
associated with the additive component and minimize the
acquisition function via L-BFGS-B starting from the point
that gives the best acquisition value. We add the optimized
arg min to the 1000 points and sort them according to their
acquisition values, and then select the top n random ones,
and combine with the sorted selections from other additive
components. Other batched BO methods can also be used

and can potentially improve upon our results.

D Relations to Mondrian Kernels and
Random Binning

TileGP can use Mondrian grids or (our version of) tile cod-
ing to achieve efficient parameter inference for the decom-
position z and the number of cuts k (inverse of kernel band-
width). Mondrian grids and tile coding are closely related to
Mondrian kernels and random binning, but there are some
subtle differences. We illustrate the differences between one

Tile coding Mondrian Grid Random Binning Mondrain Feature

Figure 10: Illustrations of (our version of) tile coding, Mon-
drian Grid, random binning and Mondrian feature.

layer of the features constructed by tile coding, Mondrian
grid, Mondrian feature and random binning in Fig. 10. For
each layer of (our version of) tile coding, we sample a posi-
tive integer k (number of cuts) from a Poisson distribution
parameterized by λR, and then set the offset to be a constant
uniformly randomly sampled from [0, Rk]. For each layer of
the Mondrian grid, the number of cuts k is sampled tile in
coding, but instead of using an offset and uniform cuts, we
put the cuts at locations independently uniformly randomly
from [0, R]. Random binning does not sample k cuts but
samples the distance δ between neighboring cuts by drawing

Zi Wang, Clement Gehring, Pushmeet Kohli, Stefanie Jegelka

δ ∼ GAMMA(2, λR). Then, it samples the offset from [0, δ]
and finally places the cuts. All of the above-mentioned three
types of random features can work individually for each
dimension and then combine the cuts from all dimensions.
The Mondrian feature (Mondrian forest features to be ex-
act), contrast, partitions the space jointly for all dimensions.
More details of Mondrian features can be found in Laksh-
minarayanan et al. (2016); Balog et al. (2016). For all of
these four types of random features and for each layer of the
total L layers, the kernel is κL(x,x′) = 1

L

∑L
l=1 χl(x,x

′)
where

χl(x,x
′) =

{
1 x and x′ are in the same cell on the layer l
0 otherwise

(D.1)

For the case where the kernel has M additive components,
we simply use the tiling for each decomposition and nor-
malize by LM instead of L. More precisely, we have
κL(x,x′) = 1

LM

∑M
m=1

∑M
l=1 χl(x

Am ,x′Am).

We next prove the lemma mentioned in Section 3.5.
Lemma 3.1. Let the random variable kdi ∼ POISSON(λdR)
be the number of cuts in the Mondrian grids of TileGP for
dimension d ∈ [D] and layer i ∈ [L]. The kernel of TileGP
κL satisfies lim

L→∞
κL(x,x′) = 1

M

∑M
m=1 e

λdR|xAm−x′Am |,

where {Am}Mm=1 is the additive decomposition.

Proof. When constructing the Mondrian grid for each layer
and each dimension, one can think of the process of getting
another cut as a Poisson point process on the interval [0, R],
where the time between two consecutive cuts is modeled as
an exponential random variable. Similar to Proposition 1
in Balog et al. (2016), we have lim

L→∞
κ
(m)
L (xAm ,x′Am) =

E[no cut between xd and x′d,∀d ∈ Am] =

e−λdR|xAm−x′Am |. By the additivity of the kernel, we have
lim
L→∞

κL(x,x′) = 1
M

∑M
m=1 e

λdR|xAm−x′Am |.

E Experiments

Verifying the acquisition function As introduced in Sec-
tion 3.3, we used a different acquisition function optimiza-
tion technique from (Kandasamy et al., 2015; Wang and
Jegelka, 2017). In (Kandasamy et al., 2015; Wang and
Jegelka, 2017), the authors used the fact that each additive
component is by itself a GP. Hence, they did posterior infer-
ence on each additive component and Bayesian optimization
independently from other additive components. In this work,
we use the full GP with the additive kernel to derive its ac-
quisition function and optimize it with a block coordinate
optimization procedure, where the blocks are selected ac-
cording to the decomposition of the input dimensions. One
reason we did this instead of following (Kandasamy et al.,
2015; Wang and Jegelka, 2017) is that we observed the

over-estimation of variance for each additive component if
inferred independently from others. We conjecture that this
over-estimation could result in an invalid regret bound for
Add-GP-UCB (Kandasamy et al., 2015). Nevertheless, we
found that using the block coordinate optimization for the
acquisition function on the full GP is actually very help-
ful. In Figure. 11, we compare the acquisition function
we described in Section 3.3 (denoted as BlockOpt) with
Add-GP-UCB (Kandasamy et al., 2015), Add-MES-R and
Add-MES-G (Wang and Jegelka, 2017) on the same ex-
periment described in the first experiment of Section 6.5
of (Wang and Jegelka, 2017), averaging over 20 functions.
Notice that we used the maximum value of the function as
part of our acquisition function in our approach (BlockOpt).
Add-GP-UCB, ADD-MES-R and ADD-MES-G cannot use
this max-value information even if they have access to it,
because then they don’t have a strategy to deal with “credit
assignment”, which assigns the maximum value to each
additive component. We found that BlockOpt is able to find
a solution as well as or even better than the best of the three
competing approaches.

d=10 d=20 d=30

d=50 d=100

100 200 300 400 500

t

-10

0

10

20

30

r t

100 200 300 400 500

t

-20

0

20

40

60

r t

100 200 300 400 500

t

0

20

40

60

80

r t

100 200 300 400 500

t

0

20

40

60

80

100

r t

100 200 300 400 500

t

0

50

100

150

200

r t

Add-GP-UCB

Add-MES-R

Add-MES-G

BlockOpt

Figure 11: Comparing different acquisition functions for
BO with an additive GP. Our strategy, BlockOpt, achieves
comparable or better results than other methods.

Scalability of EBO For EBO, the maximum number of
Mondrian partitions is set to be 1000 and the minimum
number of data points in each Mondrian partition is 100.
The function that we used to test was generated from a fully
partitioned 20 dimensional GP with an additive Laplace
kernel (|Am| = 1,∀m).

Effectiveness of EBO In this experiment, we sampled 4
functions from a 50-dimensional GP with additive kernel.
Each component of the additive kernel is a Laplace kernel,
whose lengthscale parameter is set to be 0.1, variance scale
to be 1 and active dimensions are around 1 to 4. Namely,
the kernel we used is κ(x, x′) =

∑M
i=1 κ

(m)(xAm , x′Am)

where κ(m)(xAm , x′Am) = e
|xAm−x′Am |

0.1 ,∀m. The domain
of the function is [0, 1]50. We implemented the BO-SVI and
BO-Add-SVI using the same acquisition function and batch

Batched Large-scale Bayesian Optimization in High-dimensional Spaces

selection strategy as EBO but with SVI-GP (Hensman et al.,
2013) and SVI-GP with additive kernels instead of TileGPs.
We used the SVI-GP implemented in ? and defined the
additive Laplace kernel according to the priors of the tested
functions. For both BO-SVI and BO-Add-SVI, we used
100 batchsize, 200 inducing points and the parameters were
optimized for 100 iterations. For EBO, we set the minimum
size of data points on each Mondrian partition to be 100.
We set the maximum number of Mondrian partitions to be
1000 for both EBO and PBO. The evaluations of the test
functions are negligible, so the timing results in Figure 5
reflect the actual runtime of each method.

Optimizing control parameters for robot pushing We
implemented the simulation of pushing two objects
with two robot hands in the Box2D physics engine ?.
The 14 parameters specifies the location and rotation of
the robot hands, pushing speed, moving direction and
pushing time. The lower limit of these parameters is
[−5,−5,−10,−10, 2, 0,−5,−5,−10,−10, 2, 0,−5,−5]
and the upper limit is
[5, 5, 10, 10, 30, 2π, 5, 5, 10, 10, 30, 2π, 5, 5]. Let the
initial positions of the objects be si0, si1 and the ending
positions be se0, se1. We use sg0 and sg1 to denote the goal
locations for the two objects. The reward is defined to be
r = ‖sg0−si0‖+‖sg1−si1‖−‖sg0−se0‖−‖sg1−se1‖,
namely, the progress made towards pushing the objects to
the goal.

We compare EBO, BO-SVI, BO-Add-SVI and CEM Szita
and Lörincz (2006) with the same 104 random observa-
tions and repeat each experiment 10 times. All the methods
choose a batch of 100 parameters to evaluate at each itera-
tion. CEM uses the top 30% of the 104 initial observations
to fit its initial Gaussian distribution. At the end of each
iteration in CEM, 30% of the new observations with top
values were used to fit the new distribution. For all the BO
based methods, we use the maximum value of the reward
function in the acquisition function. The standard deviation
of the observation noise in the GP models is set to be 0.1.
We set EBO to have Modrian partitions with fewer than 150
data points and constrain EBO to have no more than 200
Mondrian partitions. In EBO, we set the hyper parameters
α = 1.0, β = [5.0, 5.0], and the Mondrian observation off-
set ε = 0.05. In BO-SVI, we used 100 batchsize in SVI, 200
inducing points and 500 iterations to optimize the data like-
lihood with 0.1 step rate and 0.9 momentum. BO-Add-SVI
used the same parameters as BO-SVI, except that BO-Add-
SVI uses 3 outer loops to randomly select the decomposition
parameter z and in each loop, it uses an inner loop of 50
iterations to maximize the data likelihood over the kernel
parameters. The batch BO strategy used in BO-SVI and
BO-Add-SVI is identical to the one used in each Mondrian
partition of EBO.

We run all the methods for 200 iterations, where each itera-

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Figure 12: An example trajectory found by EBO.

tion has a batch size of 100. In total, each method obtains
2× 104 data points in addition to the 104 initializations.

Optimizing rover trajectories We illustrate the problem
in Fig. 12 with an example trajectory found by EBO. We
set the trajectory cost to be −20.0 for any collision, λ to be
−10.0 and the constant b = 5.0. This reward function is
non smooth, discontinuous, and concave over the first two
and last two dimensions of the input. These 4 dimensions
represent the start and goal position of the trajectory. We
maximize the reward function f over the points on the tra-
jectory. All the methods choose a batch of 500 trajectories
to evaluate. Each method is initialized with 104 trajecto-
ries randomly uniformly selected from [0, 1]60 and their
reward function values. We again compare EBO with BO-
SVI, BO-Add-SVI and CEM (Szita and Lörincz, 2006). All
the methods choose a batch of 500 trajectories to evaluate.
Each method is initialized with 104 trajectories randomly
uniformly selected from [0, 1]60 and their reward function
values. The initializations are the same for each method,
and we repeat the experiments 5 times. CEM uses the top
30% of the 104 initial observations to fit its initial Gaussian
distribution. At the end of each iteration in CEM, 30% of
the new observations with top values were used to fit the
new distribution. For all the BO based methods, we use the
maximum value of the reward function, 5.0, in the acqui-
sition function. The standard deviation of the observation
noise in the GP models is set to be 0.01. We set EBO to
attempt to have Modrian partitions with fewer than 100
data points, with a hard constraint of no more than 1000
Mondrian partitions. In EBO, we set the hyper parameters
α = 1.0, β = [2.0, 5.0], and the Mondrian observation off-
set ε = 0.01. In BO-SVI, we used 100 batchsize in SVI, 200
inducing points and 500 iterations to optimize the data like-
lihood with 0.1 step rate and 0.9 momentum. BO-Add-SVI
used the same parameters as BO-SVI, except that BO-Add-
SVI uses 3 outer loops to randomly select the decomposition

Zi Wang, Clement Gehring, Pushmeet Kohli, Stefanie Jegelka

parameter z and in each loop, it uses an inner loop of 50
iterations to maximize the data likelihood over the kernel
parameters. The batch BO strategy used in BO-SVI and
BO-Add-SVI is identical to the one used in each Mondrian
partition of EBO.

F Discussion

F.1 Failure modes of EBO

EBO is a general framework for running large scale batched
BO in high-dimensional spaces. Admittedly, we made some
compromises in our design and implementation to scale up
BO to a degree that conventional BO approaches cannot
deal with. In the following, we list some limitations and
aspects that we can improve in EBO in our future work.

• EBO partitions the space into smaller regions
{[lj , hj]}Jj=1 and only uses the observations within
[lj − ε, hj + ε] to do inference and Bayesian optimiza-
tion. It is hard to determine the value of ε. If ε is large,
we may have high computational cost for the operations
within each region. But if ε is very small, we found that
some selected BO points are on the boundaries of the
regions, partially because of the large uncertainty on
the boundaries. We used ε = 0 in our experiments, but
the results can be improved with a more appropriate ε.

• Because of the additive structure, we need to optimize
the acquisition function for each additive component.
As a result, EBO has increased computational cost
when there are more than 50 additive components, and
it becomes harder for EBO to optimize functions more
than a few hundred dimensions. One solution is to
combine the additive structure with a low dimensional
projection approach (Wang et al., 2016b). We can also
simply run block coordinate descent on the acquisition
function, but it is harder to ensure that the acquisition
function is fully optimized.

F.2 Importance of avoiding variance starvation

Neural networks have been applied in many applications and
received success for tasks including regression and classifi-
cation. While researchers are still working on the theoretical
understanding, one hyoothesis is that neural networks “over-
fit” ?. Due to the similarity between the test and training
set in the reported experiments in, for example, the com-
puter vision community, overfitting may seem to be less
of a problem. However, in active learning (e.g. Bayesian
optimization), we do not have a “test set”. We require the
model to generalize well across the search space, and using
the classic neural network may be detrimental to the data
selection process, because of variance starvation (see Sec-
tion 2). Gaussian processes, on the contrary, are good at

estimating confidence bounds and avoid overfitting. How-
ever, the scaling of Gaussian processes is hard in general.
We would like to reinforce the awareness about the impor-
tance of estimating confidence of the model predictions on
new queries, i.e., avoiding variance starvation.

F.3 Future directions

Possible future directions include analyzing theoretically
what should be the best input space partition strategy, batch
worker budget distribution strategy, better ways of predict-
ing variance in a principled way (not necessarily GP), better
ways of doing small scale BO and how to adapt it to large
scale BO. Moreover, add-GP is only one way of reducing
the function space, and there could be others suitable ones
too.

Escaping Saddle Points in Constrained Optimization

Aryan Mokhtari

MIT
Cambridge, MA 02139
aryanm@mit.edu

Asuman Ozdaglar

MIT
Cambridge, MA 02139
asuman@mit.edu

Ali Jadbabaie

MIT
Cambridge, MA 02139
jadbabai@mit.edu

Abstract

In this paper, we study the problem of escaping from saddle points in smooth
nonconvex optimization problems subject to a convex set C. We propose a generic
framework that yields convergence to a second-order stationary point of the prob-
lem, if the convex set C is simple for a quadratic objective function. Specifically,
our results hold if one can find a ⇢-approximate solution of a quadratic program
subject to C in polynomial time, where ⇢ < 1 is a positive constant that depends
on the structure of the set C. Under this condition, we show that the sequence
of iterates generated by the proposed framework reaches an (✏, �)-second order
stationary point (SOSP) in at most O(max{✏�2, ⇢�3��3}) iterations. We further
characterize the overall complexity of reaching an SOSP when the convex set C
can be written as a set of quadratic constraints and the objective function Hessian
has a specific structure over the convex set C. Finally, we extend our results to the
stochastic setting and characterize the number of stochastic gradient and Hessian
evaluations to reach an (✏, �)-SOSP.

1 Introduction

There has been a recent revival of interest in non-convex optimization, due to obvious applications
in machine learning. While the modern history of the subject goes back six or seven decades, the
recent attention to the topic stems from new applications as well as availability of modern analytical
and computational tools, providing a new perspective on classical problems. Following this trend, in
this paper we focus on the problem of minimizing a smooth nonconvex function over a convex set as
follows:

minimize f(x), subject to x 2 C, (1)

where x 2 Rd is the decision variable, C ⇢ Rd is a closed convex set, and f : Rd ! R is a twice
continuously differentiable function over C. It is well known that finding a global minimum of
Problem (1) is hard. Equally well-known is the fact that for certain nonconvex problems, all local
minimizers are global. These include, for example, matrix completion [24], phase retrieval [42], and
dictionary learning [43]. For such problems, finding a global minimum of Problem (1) reduces to the
problem of finding one of its local minima.

Given the well-known hardness results in finding stationary points, recent focus has shifted in
characterizing approximate stationary points. When the objective function f is convex, finding an
✏-first-order stationary point is often sufficient since it leads to finding an approximate local (and
hence global) minimum. However, in the nonconvex setting, even when the problem is unconstrained,
i.e., C = Rd, convergence to a first-order stationary point (FOSP) is not enough as the critical point
to which convergence is established might be a saddle point. It is therefore natural to look at higher
order derivatives and search for a second-order stationary points. Indeed, under the assumption that
all the saddle points are strict (formally defined later), in both unconstrained and constrained settings,
convergence to a second-order stationary point (SOSP) implies convergence to a local minimum.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

While convergence to an SOSP has been thoroughly investigated in the recent literature for the
unconstrained setting, the overall complexity for the constrained setting has not been studied yet.

Contributions. Our main contribution is to propose a generic framework which generates a sequence
of iterates converging to an approximate second-order stationary point for the constrained nonconvex
problem in (1), when the convex set C has a specific structure that allows for approximate minimization
of a quadratic loss over the feasible set. The proposed framework consists of two main stages: First, it
utilizes first-order information to reach a first-order stationary point; next, it incorporates second-order
information to escape from a stationary point if it is a local maximizer or a strict saddle point. We show
that the proposed approach leads to an (✏, �)-second-order stationary point (SOSP) for Problem (1)
(check Definition 1). The proposed approach utilizes advances in constant-factor optimization of
nonconvex quadratic programs [46, 22, 44] that find a ⇢-approximate solution over C in polynomial
time, where ⇢ is a positive constant smaller than 1 that depends on the structure of C. When such
approximate solution exists, the sequence of iterates generated by the proposed framework reaches
an (✏, �)-SOSP of Problem (1) in at most O(max{✏�2, ⇢�3��3}) iterations.

We show that quadratic constraints satisfy the required condition for the convex set C if the objective
function Hessian r2f has a specific structure over the convex set C (formally described later). For this
case, we show that it is possible to achieve an (✏, �)-SOSP after at most O(max{⌧✏�2, d3m7��3})
arithmetic operations, where d is the dimension of the problem and ⌧ is the number of required
arithmetic operations to solve a linear program over C or to project a point onto C. We further extend
our results to the stochastic setting and show that we can reach an (✏, �)-SOSP after computing at
most O(max{✏�4, ✏�2⇢�4��4, ⇢�7��7}) stochastic gradients and O(max{✏�2⇢�3��3, ⇢�5��5})
stochastic Hessians.

1.1 Related work

Unconstrained case. The rich literature on nonconvex optimization provides a plethora of algorithms
for reaching stationary points of a smooth unconstrained minimization problem. Convergence to
first-order stationary points (FOSP) has been widely studied for both deterministic [35, 1, 7–10] and
stochastic settings [39, 38, 3, 32]. Stronger results which indicate convergence to an SOSP are also
established. Numerical optimization methods such as trust-region methods [13, 19, 33] and cubic
regularization algortihms [36, 11, 12] can reach an approximate second-order stationary point in a
finite number of iterations; however, typically the computational complexity of each iteration could
be relatively large due to the cost of solving trust-region or regularized cubic subproblems. Recently,
a new line of research has emerged that focuses on the overall computational cost to achieve an
SOSP. These results build on the idea of escaping from strict saddle points with perturbing the iterates
by injecting a properly chosen noise [23, 29, 30], or by updating the iterates using the eigenvector
corresponding to the smallest eigenvalue of the Hessian [7, 2, 45, 41, 1, 40, 37].

Constrained case. Asymptotic convergence to first-order and second-order stationary points for the
constrained optimization problem in (1) has been studied in the numerical optimization community
[6, 18, 21, 20]. Recently, finite-time analysis for convergence to an FOSP of the generic smooth
constrained problem in (1) has received a lot of attention. In particular, [31] shows that the sequence
of iterates generated by the update of Frank-Wolfe converges to an ✏-FOSP after O(✏�2

) iterations.
The authors of [26] consider norm of gradient mapping as a measure of non-stationarity and show that
the projected gradient method has the same complexity of O(✏�2

). Similar result for the accelerated
projected gradient method is also shown [25]. Adaptive cubic regularization methods in [14–16]
improve these results using second-order information and obtain an ✏-FOSP of Problem (1) after at
most O(✏�3/2

) iterations. Finite time analysis for convergence to an SOSP has also been studied
for linear constraints. In particular, [5] studies convergence to an SOSP of (1) when the set C is a
linear constraint of the form x � 0 and propose a trust region interior point method that obtains
an (✏,

p
✏)-SOSP in O(✏�3/2

) iterations. The work in [27] extends their results to the case that the
objective function is potentially not differentiable or not twice differentiable on the boundary of the
feasible region. The authors in [17] focus on the general convex constraint case and introduce a trust
region algorithm that requires O(✏�3

) iterations to obtain an SOSP; however, each iteration of their
proposed method requires access to the exact solution of a nonconvex quadratic program (finding
its global minimum) which, in general, could be computationally prohibitive. To the best of our
knowledge, our paper provides the first finite-time overall computational complexity analysis for
reaching an SOSP of Problem (1).

2

2 Preliminaries and Definitions

In the case of unconstrained minimization of the objective function f , the first-order and second-order
necessary conditions for a point x⇤ to be a local minimum of that are defined as rf(x⇤

) = 0d

and r2f(x⇤
) ⌫ 0d⇥d, respectively. If a point satisfies these conditions it is called a second-order

stationary point (SOSP). If the second condition becomes strict, i.e., r2f(x) � 0, then we recover
the sufficient conditions for a local minimum. However, to derive finite time convergence bounds
for achieving an SOSP, these conditions should be relaxed. In other words, the goal should be to
find an approximate SOSP where the approximation error can be arbitrarily small. For the case of
unconstrained minimization, a point x⇤ is called an (✏, �)-second-order stationary point if it satisfies
krf(x⇤

)k ✏ and r2f(x⇤
) ⌫ ��Id, where ✏ and � are arbitrary positive constants. To study the

constrained setting, we first state the necessary conditions for a local minimum of Problem (1).
Proposition 1 ([4]). If x⇤ 2 C is a local minimum of the function f over the convex set C, then

rf(x⇤
)

>
(x� x⇤

) � 0, for all x 2 C, (2)

(x� x⇤
)

>r2f(x⇤
)(x� x⇤

) � 0, for all x 2 C s. t. rf(x⇤
)

>
(x� x⇤

) = 0. (3)

The conditions in (2) and (3) are the first-order and second-order necessary optimality conditions,
respectively. By making the inequality in (3) strict, i.e., (x�x⇤

)

>r2f(x⇤
)(x�x⇤

) > 0, we recover
the sufficient conditions for a local minimum when C is a polyhedral [4]. Further, if the inequality
in (3) is replaced by (x � x⇤

)

>r2f(x⇤
)(x � x⇤

) � �kx � x⇤k2 for some � > 0, we obtain the
sufficient conditions for a local minimum of Problem (1) for any convex constraint C; see [4]. If a
point x⇤ satisfies the conditions in (2) and (3) it is an SOSP of Problem (1).

As in the unconstrained setting, the first-order and second-order optimality conditions may not be
satisfied in finite number of iterations, and we focus on finding an approximate SOSP.
Definition 1. Recall the twice continuously differentiable function f : Rd ! R and the convex
closed set C ⇢ Rd introduced in Problem (1). We call x⇤ 2 C an (✏, �)-second order stationary point
of Problem (1) if the following conditions are satisfied.

rf(x⇤
)

>
(x� x⇤

) � �✏, for all x 2 C, (4)

(x� x⇤
)

>r2f(x⇤
)(x� x⇤

) � ��, for all x 2 C s. t. rf(x⇤
)

>
(x� x⇤

) = 0. (5)

If a point only satisfies the first condition, we call it an ✏-first order stationary point.

We further formally define strict saddle points for the constrained optimization problem in (1).
Definition 2. A point x⇤ 2 C is a �-strict saddle point of Problem (1) if (i) for all x 2 C the condition
rf(x⇤

)

>
(x� x⇤

) � 0 holds, and (ii) there exists a point y such that

(y � x⇤
)

>r2f(x⇤
)(y � x⇤

) < ��, y 2 C and rf(x⇤
)

>
(y � x⇤

) = 0. (6)

According to Definitions 1 and 2 if all saddle points are �-strict and � �, any (✏, �)-SOSP of
Problem (1) is an approximate local minimum.

We emphasize that in this paper we do not assume that all saddles are strict to prove convergence to an
SOSP. We formally defined strict saddles just to clarify that if all the saddles are strict then convergence
to an approximate SOSP is equivalent to convergence to an approximation local minimum.

Our goal throughout the rest of the paper is to design an algorithm which finds an (✏, �)-SOSP of
Problem (1). To do so, we first assume the following conditions are satisfied.
Assumption 1. The gradients rf are L-Lipschitz continuous over the set C, i.e., for any x, ˜x 2 C,

krf(x)�rf(˜x)k Lkx� ˜xk. (7)

Assumption 2. The Hessians r2f are M -Lipschitz continuous over the set C, i.e., for any x, ˜x 2 C
kr2f(x)�r2f(˜x)k Mkx� ˜xk. (8)

Assumption 3. The diameter of the compact convex set C is upper bounded by a constant D, i.e.,

max

x,x̃2C
{kx� ˆxk} D. (9)

3

3 Main Result

In this section, we introduce a generic framework to reach an (✏, �)-SOSP of the non-convex function
f over the convex set C, when C has a specific structure as we describe below. In particular, we focus
on the case when we can solve a quadratic program (QP) of the form

minimize x>Ax+ b>x+ c subject to x 2 C, (10)

up to a constant factor ⇢ 1 in a finite number of arithmetic operations. Here, A 2 Rd is a symmetric
matrix, b 2 Rd is a vector, and c 2 R is a scalar. To clarify the notion of solving a problem up to a
constant factor ⇢, consider x⇤ as a global minimizer of (10). Then, we say Problem (10) is solved up
to a constant factor ⇢ 2 (0, 1] if we have found a feasible solution ˜x 2 C such that

x⇤>Ax⇤
+ b>x⇤

+ c ˜x>A˜x+ b>
˜x+ c ⇢(x⇤>Ax⇤

+ b>x⇤
+ c). (11)

Note that here w.l.o.g. we have assumed that the optimal objective function value x⇤>Ax⇤
+b>x⇤

+c
is non-positive. Larger constant ⇢ implies that the approximate solution is more accurate. If ˜x satisfies
the condition in (11), we call it a ⇢-approximate solution of Problem (10). Indeed, if ⇢ = 1 then ˜x is
a global minimizer of Problem (10).

In Algorithm 1, we introduce a generic framework that achieves an (✏, �)-SOSP of Problem (1) whose
running time is polynomial in ✏�1, ��1, ⇢�1 and d, when we can find a ⇢-approximate solution of a
quadratic problem of the form (10) in a time that is polynomial in d. The proposed scheme consists
of two major stages. In the first phase, as mentioned in Steps 2-4, we use a first-order update, i.e.,
a gradient-based update, to find an ✏-FOSP, i.e., we update the decision variable x according to a
first-order update until we reach a point xt that satisfies the condition

rf(xt)
>
(x� xt) � �✏, for all x 2 C. (12)

In Section 4, we study in detail projected gradient descent and conditional gradient algorithms for the
first order phase of the proposed framework. Interestingly, both of these algorithms require at most
O(✏�2

) iterations to reach an ✏-first order stationary point.

The second stage of the proposed scheme uses second-order information of the objective function f
to escape from the stationary point if it is a local maximum or a strict saddle point. To be more
precise, if we assume that xt is a feasible point satisfying the condition (12), we then aim to find a
descent direction by solving the following quadratic program

minimize q(u) := (u� xt)
>r2f(xt)(u� xt)

subject to u 2 C, rf(xt)
>
(u� xt) = 0, (13)

up to a constant factor ⇢ where ⇢ 2 (0, 1]. To be more specific, if we define q(u⇤
) as the optimal

objective function value of the program in (13), we focus on the cases that we can obtain a feasible
point ut which is a ⇢-approximate solution of Problem (13), i.e., ut 2 C satisfies the constraints
in (13) and

q(u⇤
) q(ut) ⇢ q(u⇤

). (14)
The problem formulation in (13) can be transformed into the quadratic program in (10); see Section 5
for more details. Note that the constant ⇢ is independent of ✏, �, and d and only depends on the
structure of the convex set C. For instance, if C is defined in terms of m quadratic constraints one can
find a ⇢ = m�2 approximate solution of (13) after at most ˜O(md3) arithmetic operations (Section 5).

After computing a feasible point ut satisfying the condition in (14), we check the quadratic objective
function value at the point ut, and if the inequality q(ut) < �⇢� holds, we follow the update

xt+1 = (1� �)xt + �ut, (15)

where � is a positive stepsize. Otherwise, we stop the process and return xt as an (✏, �)-second
order stationary point of Problem (1). To check this claim, note that Algorithm 1 stops if we reach a
point xt that satisfies the first-order stationary condition rf(xt)

>
(x� xt) � �✏, and the objective

function value for the ⇢-approximate solution of the quadratic subproblem is larger than �⇢�, i.e.,
q(ut) � �⇢�. The second condition alongside with the fact that q(ut) satisfies (14) implies that
q(u⇤

) � ��. Therefore, for any x 2 C and rf(xt)
>
(x� xt) = 0, it holds that

(x� xt)
>r2f(xt)(x� xt) � ��. (16)

4

Algorithm 1 Generic framework for escaping saddles in constrained optimization
Require: Stepsize � > 0. Initialize x0 2 C

1: for t = 1, 2, . . . do

2: if xt is not an ✏-first order stationary point then

3: Compute xt+1 using first-order information (Frank-Wolfe or projected gradient descent)
4: else

5: Find ut: a ⇢-approximate solution of (13)
6: if q(ut) < �⇢� then

7: Compute the updated variable xt+1 = (1� �)xt + �ut;
8: else

9: Return xt and stop.
10: end if

11: end if

12: end for

These two observations show that the outcome of the proposed framework in Algorithm 1 is an
(✏, �)-SOSP of Problem (1). Now it remains to characterize the number of iterations that Algorithm 1
needs to perform before reaching an (✏, �)-SOSP which we formally state in the following theorem.
Theorem 1. Consider the optimization problem defined in (1). Suppose that the conditions in
Assumptions 1-3 are satisfied. If in the first-order stage, i.e., Steps 2-4, we use the update of
Frank-Wolfe or projected gradient descent, the generic framework proposed in Algorithm 1 finds an
(✏, �)-second-order stationary point of Problem (1) after at most O(max{✏�2, ⇢�3��3}) iterations.

The result in Theorem 1 shows that if the convex constraint C is such that one can solve the quadratic
subproblem in (13) ⇢-approximately, then the proposed generic framework finds an (✏, �)-SOSP
point of Problem (1) after at most O(✏�2

) first-order and O(⇢�3��3
) second-order updates.

To prove the claim in Theorem 1, we first review first-order conditional gradient and projected gradient
algorithms and show that if the current iterate is not a first-order stationary point, by following either
of these updates the objective function value decreases by a constant of O(✏2) (Section 4). We then
focus on the second stage of Algorithm 1 which corresponds to the case that the current iterate is
an ✏-FOSP and we need to solve the quadratic program in (13) approximately (Section 5). In this
case, we show that if the iterate is not an (✏, �)-SOSP, by following the update in (15) the objective
function value decreases at least by a constant of O(⇢3�3

). Finally, by combining these two results it
can be shown that Algorithm 1 finds an (✏, �)-SOSP after at most O(max{✏�2, ⇢�3��3}) iterations.

4 First-Order Step: Convergence to a First-Order Stationary Point

In this section, we study two different first-order methods for the first stage of Algorithm 1. The result
in this section can also be independently used for convergence to an FOSP of Problem (1) satisfying

rf(x⇤
)

>
(x� x⇤

) � �✏, for all x 2 C, (17)

where ✏ > 0 is a positive constant. Although for Algorithm 1 we assume that C has a specific
structure as mentioned in (10), the results in this section hold for any closed and compact convex
set C. To keep our result as general as possible, in this section, we study both conditional gradient and
projected-based methods when they are used in the first-stage of the proposed generic framework.

4.1 Conditional gradient update

The conditional gradient (Frank-Wolfe) update has two steps. We first solve the linear program

vt = argmax

v2C
{�rf(xt)

>v}. (18)

Then, we compute the updated variable xt+1 according to the update

xt+1 = (1� ⌘)xt + ⌘vt, (19)

where ⌘ is a stepsize. In the following proposition, we show that if the current iterate is not an ✏-first
order stationary point, then by updating the variable according to (18)-(19) the objective function
value decreases. The proof of the following proposition is adopted from [31].

5

Proposition 2. Consider the optimization problem in (1). Suppose Assumptions 1 and 3 hold. Set
the stepsize in (19) to ⌘ = ✏/D2L. Then, if the iterate xt at step t is not an ✏-first order stationary
point, the objective function value at the updated variable xt+1 satisfies the inequality

f(xt+1) f(xt)� ✏2

2D2L
. (20)

The result in Proposition 2 shows that by following the update of the conditional gradient method the
objective function value decreases by O(✏2), if an ✏-FOSP is not achieved.
Remark 1. In step 3 of Algorithm 1 we first check if xt is an ✏-FOSP. This can be done by evaluating

min

x2C
{rf(xt)

>
(x� xt)} = max

x2C
{�rf(xt)

>x}+rf(xt)
>xt (21)

and comparing the optimal value with �✏. Note that the linear program in (21) is the same as the one
in (18). Therefore, by checking the first-order optimality condition of xt, the variable vt is already
computed, and we need to solve only one linear program per iteration.

4.2 Projected gradient update

The projected gradient descent (PGD) update consists of two steps: (i) descending through the
gradient direction and (ii) projecting the updated variable onto the convex constraint set. These two
steps can be combined together and the update can be explicitly written as

xt+1 = ⇡C{xt � ⌘rf(xt)}, (22)

where ⇡C(.) is the Euclidean projection onto the convex set C and ⌘ is a positive stepsize. In the
following proposition, we first show that by following the update of PGD the objective function value
decreases by a constant until we reach an ✏- FOSP. Further, we show that the number of required
iterations for PGD to reach an ✏-FOSP is of O(✏�2

).
Proposition 3. Consider Problem (1). Suppose Assumptions 1 and 3 are satisfied. Further, assume
that the gradients rf(x) are uniformly bounded by K for all x 2 C. If the stepsize of the projected
gradient descent method defined in (22) is set to ⌘ = 1/L the objective function value decreases by

f(xt+1) f(xt)� ✏2L

2(K + LD)

2
, (23)

Moreover, iterates reach a first-order stationary point satisfying (17) after at most O(✏�2
) iterations.

Proposition 3 shows that by following the update of PGD the function value decreases by O(✏2)
until we reach an ✏-FOSP. It further shows PGD obtains an ✏-FOSP satisfying (17) after at most
O(✏�2

) iterations. To the best of our knowledge, this result is also novel, since the only convergence
guarantee for PGD in [26] is in terms of number of iterations to reach a point with a gradient mapping
norm less than ✏, while our result characterizes number of iterations to satisfy (17).
Remark 2. To use the PGD update in the first stage of Algorithm 1 one needs to define a
criteria to check if xt is an ✏-FOSP or not. However, in PGD we do not solve the linear
program min

x2C{rf(xt)
>
(x � xt)}. This issue can be resolved by checking the condition

kxt � xt+1k ✏/(K + LD) which is a sufficient condition for the condition in (17). In other
words, if this condition holds we stop and xt is an ✏-FOSP; otherwise, the result in (23) holds and
the function value decreases. For more details please check the proof of Proposition 3.

5 Second-Order Step: Escape from Saddle Points

In this section, we study the second stage of the framework in Algorithm 1 which corresponds to
the case that the current iterate is an ✏-FOSP. Note that when we reach a critical point the goal is to
find a feasible point u 2 C in the tangent space rf(xt)

>
(u� xt) = 0 that makes the inner product

(u� xt)
>r2f(xt)(u� xt) smaller than ��. To achieve this goal we need to check the minimum

value of this inner product over the constraints, i.e., we need to solve the quadratic program in (13)
up to a constant factor ⇢ 2 (0, 1]. In the following proposition, we show that the updated variable
according to (15) decreases the objective function value if the condition q(ut) < �⇢� holds.

6

Proposition 4. Consider the quadratic program in (13). Let ut be a ⇢-approximate solution for
quadratic subproblem in (13). Suppose that Assumptions 2 and 3 hold. Further, set the stepsize
� = ⇢�/MD3. If the quadratic objective function value q evaluated at ut satisfies the condition
q(ut) < �⇢�, then the updated variable according to (15) satisfies the inequality

f(xt+1) f(xt)� ⇢3�3

3M2D6
. (24)

The only unanswered question is how to solve the quadratic subproblem in (13) up to a constant
factor ⇢ 2 (0, 1]. For general C, the quadratic subproblem could be NP-hard [34]; however, for some
special choices of the convex constraint C, this quadratic program (QP) can be solved either exactly or
approximately up to a constant factor. In the following section, we focus on the quadratic constraint
case, but indeed there are other classes of constraints that satisfy our required condition.

5.1 Quadratic constraints case

In this section, we focus on the case where the constraint set C is defined as the intersection of m
ellipsoids centered at the origin.1 In particular, assume that the set C is given by

C := {x 2 Rd | x>Qix 1, for all i = 1, . . . ,m}, (25)

where Qi 2 Sd+. Under this assumption, the QP in (13) can be written as

min

u

(u� xt)
>r2f(xt)(u� xt)

s.t. u>Qiu 1, for i = 1, . . . ,m and rf(xt)
>
(u� xt) = 0. (26)

Note that the equality constraint rf(xt)
>
(u� xt) = 0 does not change the hardness of the problem

and can be easily eliminated. To do so, first define a new optimization variable z := u� xt to obtain

min

z

z>r2f(xt)z

s.t. (z+ xt)
>Qi(z+ xt) 1, for i = 1, . . . ,m and rf(xt)

>z = 0, (27)

Then, find a basis for the tangent space rf(xt)
>z = 0. Indeed, using the Gramm-Schmidt procedure,

we can find an orthonormal basis for the space Rd of the form {v1, . . . ,vd�1,
rf(xt)

krf(xt)k} at the
complexity of O(d3). If we define A = [v1; . . . ;vd�1] 2 Rd⇥d�1 as the concatenation of the
vectors {v1, . . . ,vd�1}, then any vector z satisfying rf(xt)

>z = 0 can be written as z = Ay
where y 2 Rd�1. Hence, (27) is equivalent to

min

z

y>A>r2f(xt)Ay s.t. (Ay + xt)
>Qi(Ay + xt) 1, for i = 1, . . . ,m. (28)

This procedure reduces the dimension of the problem from d to d� 1. It is not hard to check that the
center of ellipsoids in (28) is �A>xt. By a simple change of variable Aˆy := Ay + xt we obtain

min

z

ˆy>A>r2f(xt)Aˆy � 2x>
t r2f(xt)Aˆy + x>

t r2f(xt)xt

s.t. ˆy>A>QiAˆy 1, for i = 1, . . . ,m. (29)

Define the matrices ˜Qi := A>QiA and Bt := A>r2f(xt)A, the vector st = �2x>
t r2f(xt)A,

and the scalar ct := x>
t r2f(xt)xt. Using these definitions the problem reduces to

min

z

q(ˆy) := ˆy>Btˆy + s>t ˆy + ct s.t. ˆy>
˜Qiˆy 1, for i = 1, . . . ,m. (30)

Note that the matrices ˜Qi 2 Sd+ are positive semidefinite, while the matrix Bt 2 Sd might be
indefinite. Indeed, the optimal objective function value of the program in (30) is equal to the optimal
objective function value of (26). Further, note that if we find a ⇢-approximate solution ˆy⇤ for (30),
we can recover a ⇢-approximate solution u⇤ for (26) using the transformation u⇤

= Aˆy⇤.
1To simplify the constant factor approximation ⇢ we assume ellipsoids are centered at the origin. If we drop

this assumption then ⇢ will depend on the maximum distance between the origin and the boundary of each of the
ellipsoids, e.g., see equation (6) in [44].

7

The program in (30) is a specific Quadratic Constraint Quadratic Program (QCQP), where all the
constraints are centered at 0. For the specific case of m = 1, the duality gap of this problem is
zero and simply by transferring the problem to the dual domain one can solve Problem (30) exactly.
In the following proposition, we focus on the general case of m � 1 and explain how to find a
⇢-approximate solution for (30).
Proposition 5. Consider Problem (30) and define qmin as the minimum objective value of the
problem. Based on the result in [22], there exists a polynomial time method that obtains a point ˆy⇤

q(ˆy⇤
) 1� ⇣

m2
(1 + ⇣)2

qmin +

✓

1� 1� ⇣

m2
(1 + ⇣)2

◆

x>
t r2f(xt)xt (31)

after at most O(d3(m log(1/�)+ log(1/⇣)+ log d)) arithmetic operations, where � is the ratio of the
radius of the largest inscribing sphere over that of the smallest circumscribing sphere of the feasible
set. Further, based on [44], using a SDP relaxation of (30) one can find a point ˆy⇤ such that

q(ˆy⇤
) 1

m
qmin +

✓

1� 1

m

◆

x>
t r2f(xt)xt. (32)

Proof. If we define the function q̃ as q̃(x) := q(x)� ct, using the approaches in [22] and [44], we
can find a ⇢ approximate solution for min

ŷ

q̃(ˆy) subject to ˆy>
˜Qiˆy 1 for i = 1, . . . ,m. In other

words, we can find a point ˆy⇤ such that q̃(ˆy⇤
) ⇢ q̃min where 0 < ⇢ < 1 and q̃min is the minimum

objective function value of q̃ over the constraint set which satisfies q̃min = qmin � ct. Replacing
q̃(ˆy⇤

) and q̃min by their definitions and regrouping the terms imply that ˆy⇤ satisfies the condition
q(ˆy⇤

) ⇢qmin + (1� ⇢)ct. Replacing ⇢ by 1�⇣
m2(1+⇣)2 (which is the constant factor approximation

shown in [22]) leads to the claim in (31), and substituting ⇢ by 1/m (which is the approximation
bound in [44]) implies the result in (32).

The result in Proposition 5 indicates that if x>
t r2f(xt)xt is non-positive, then one can find a ⇢-

approximate solution for Problem (30) and consequently Problem (26). This condition is satisfied if
we assume that max

x2C x
>r2f(x)x 0. For instance, for a concave minimization problem over

the convex set C this condition is satisfied. In fact, it can be shown that our analysis still stands even if
max

x2C x
>r2f(x)x is at most O(�). Note that this condition is significantly weaker than requiring

the function to be concave when restricted to the feasible set. The condition essentially implies that
the quadratic term in the Taylor expansion of the function evaluated at the origin should be negative
(or not too positive).
Corollary 1. Consider a convex set C which is defined as the intersection of m � 1 ellipsoids
centered at the origin. Further, assume that the objective function Hessian r2f satisfies the condition
max

x2C x
>r2f(x)x 0. Then, for ⇢ = 1/m and ⇢ = 1/m2, it is possible to find a ⇢-approximate

solution of Problem (13) in time polynomial in m and d.

By using the approach in [22], we can solve the QCQP in (29) with the approximation factor
⇢ ⇡ 1/m2 for m � 1 at the overall complexity of ˜O(md3) when the constraint C is defined as
m convex quadratic constraints. As the total number of calls to the second-order stage is at most
O(⇢�3��3

) = O(m6��3
), we obtain that the total number of arithmetic operations for the second-

order stage is at most ˜O(m7d3��3
). The constant factor can be improved to 1/m if we solve the

SDP relaxation problem suggested in [44].

6 Stochastic Extension

In this section, we focus on stochastic constrained minimization problems. Consider the optimization
problem in (1) when the objective function f is defined as an expectation of a set of stochastic
functions F : Rd ⇥ Rr ! R with inputs x 2 Rd and ⇥ 2 Rr, where ⇥ is a random variable with
probability distribution P . To be more precise, we consider the optimization problem

minimize f(x) := E [F (x,⇥)] , subject to x 2 C. (33)

Our goal is to find a point which satisfies the necessary optimality conditions with high probability.

8

Algorithm 2

Require: Stepsize �t > 0. Initialize x0 2 C
1: for t = 1, 2, . . . do

2: Compute vt = argmaxv2C{�d>
t v}

3: if d>
t (vt � xt) < �✏/2 then

4: Compute xt+1 = (1� ⌘)xt + ⌘vt

5: else

6: Find ut: a ⇢-approximate solution of
minu (u� xt)

>Ht(u� xt) s.t. u 2 C, d>
t (u� xt) r.

7: if q(ut) < �⇢�/2 then

8: Compute the updated variable xt+1 = (1� �)xt + �ut;
9: else

10: Return xt and stop.
11: end if

12: end if

13: end for

Consider the vector dt = (1/bg)
Pbg

i=1 rF (xt,✓i) and matrix Ht = (1/bH)

PbH
i=1 r2F (xt,✓i) as

stochastic approximations of the gradient rf(xt) and Hessian r2f(xt), respectively. Here bg and
bH are the gradient and Hessian batch sizes, respectively, and the vectors ✓i are the realizations of
the random variable ⇥. In Algorithm 2, we present the stochastic variant of our proposed scheme for
finding an (✏, �)-SOSP of Problem (33). Algorithm 2 differs from Algorithm 1 in using the stochastic
gradients dt and Hessians Ht in lieu of the exact gradients rf(xt) and r2f(xt) Hessians. The
second major difference is the inequality constraint in step 6. Here instead of using the constraint
d>
t (u � xt) = 0 we need to use d>

t (u � xt) r, where r > 0 is a properly chosen constant.
This modification is needed to ensure that if a point satisfies this constraint with high probability
it also satisfies the constraint rf(xt)

>
(u � xt) = 0. This modification implies that we need to

handle a linear inequality constraint instead of the linear equality constraint, which is computationally
manageable for some constraints including the case that C is a single ball constraint [28]. To prove
our main result we assume that the following conditions also hold.

Assumption 4. The variance of the stochastic gradients and Hessians are uniformly bounded by
constants ⌫2 and ⇠2, respectively, i.e., for any x 2 C and ✓ we can write

E
⇥krF (x,✓)�rf(x)k2⇤ ⌫2, E

⇥kr2F (x,✓)�r2f(x)k2⇤ ⇠2. (34)

The required conditions in Assumption 4 ensure that the variances of stochastic gradients and Hessians
are uniformly bounded above, which are customary in stochastic optimizaiton.

In the following theorem, we characterize the iteration complexity of Algorithm 2 to reach an
(✏, �)-SOSP of Problem (33) with high probability.

Theorem 2. Consider the optimization problem in (33). Suppose the conditions in Assumptions 1-4
are satisfied. If the batch sizes are bg = O(max{⇢�4��4, ✏�2}) and bH = O(⇢�2��2

) and we set
the parameter r = O(⇢2�2

), then the outcome of the proposed framework outlined in Algorithm 2
is an (✏, �)-second-order stationary point of Problem (33) with high probability. Further, the total
number of iterations to reach such point is at most O(max{✏�2, ⇢�3��3}) with high probability.

The result in Theorem 2 indicates that the total number of iterations to reach an (✏, �)-SOSP is at
most O(max{✏�2, ⇢�3��3}). As each iteration at most requires O(max{⇢�4��4, ✏�2}) stochastic
gradient and O(⇢�2��2

) stochastic Hessian evaluations, the total number of stochastic gradient
and Hessian computations to reach an (✏, �)-SOSP is of O(max{✏�2⇢�4��4, ✏�4, ⇢�7��7}) and
O(max{✏�2⇢�3��3, ⇢�5��5}), respectively.

Acknowledgment

This work was supported by DARPA Lagrange and ONR BRC Program. The authors would like to
thank Yue Sun for pointing out a missing condition in the first draft of the paper.

9

References

[1] N. Agarwal, Z. Allen Zhu, B. Bullins, E. Hazan, and T. Ma. Finding approximate local minima faster than
gradient descent. In STOC, pages 1195–1199, 2017.

[2] Z. Allen-Zhu. Natasha 2: Faster non-convex optimization than SGD. CoRR, abs/1708.08694, 2017.

[3] Z. Allen Zhu and E. Hazan. Variance reduction for faster non-convex optimization. In ICML, pages
699–707, 2016.

[4] D. P. Bertsekas. Nonlinear programming. Athena scientific Belmont, 1999.

[5] W. Bian, X. Chen, and Y. Ye. Complexity analysis of interior point algorithms for non-lipschitz and
nonconvex minimization. Math. Program., 149(1-2):301–327, 2015.

[6] J. V. Burke, J. J. Moré, and G. Toraldo. Convergence properties of trust region methods for linear and
convex constraints. Math. Program., 47(1-3):305–336, 1990.

[7] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. Accelerated methods for non-convex optimization.
CoRR, abs/1611.00756, 2016.

[8] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. ”convex until proven guilty”: Dimension-free
acceleration of gradient descent on non-convex functions. In ICML, pages 654–663, 2017.

[9] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. Lower bounds for finding stationary points i. arXiv
preprint arXiv:1710.11606, 2017.

[10] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. Lower bounds for finding stationary points ii: First-order
methods. arXiv preprint arXiv:1711.00841, 2017.

[11] C. Cartis, N. Gould, and P. Toint. Adaptive cubic regularisation methods for unconstrained optimization.
part I: motivation, convergence and numerical results. Math. Program., 127(2):245–295, 2011.

[12] C. Cartis, N. Gould, and P. Toint. Adaptive cubic regularisation methods for unconstrained optimization.
part II: worst-case function- and derivative-evaluation complexity. Math. Program., 130(2):295–319, 2011.

[13] C. Cartis, N. Gould, and P. Toint. Complexity bounds for second-order optimality in unconstrained
optimization. J. Complexity, 28(1):93–108, 2012.

[14] C. Cartis, N. Gould, and P. Toint. An adaptive cubic regularization algorithm for nonconvex optimization
with convex constraints and its function-evaluation complexity. IMA Journal of Numerical Analysis, 32(4):
1662–1695, 2012.

[15] C. Cartis, N. Gould, and P. Toint. On the evaluation complexity of cubic regularization methods for
potentially rank-deficient nonlinear least-squares problems and its relevance to constrained nonlinear
optimization. SIAM J. Opt., 23(3):1553–1574, 2013.

[16] C. Cartis, N. Gould, and P. Toint. On the evaluation complexity of constrained nonlinear least-squares
and general constrained nonlinear optimization using second-order methods. SIAM Journal on Numerical
Analysis, 53(2):836–851, 2015.

[17] C. Cartis, N. Gould, and P. Toint. Second-order optimality and beyond: Characterization and evaluation
complexity in convexly constrained nonlinear optimization. Foundations of Computational Mathematics,
pages 1–35, 2017.

[18] A. R. Conn, N. Gould, A. Sartenaer, and P. Toint. Global convergence of a class of trust region algorithms
for optimization using inexact projections on convex constraints. SIAM J. on Opt., 3(1):164–221, 1993.

[19] F. E. Curtis, D. P. Robinson, and M. Samadi. A trust region algorithm with a worst-case iteration complexity
of \mathcal {O}(\epsilonˆ{-3/2}) for nonconvex optimization. Math. Program., 162(1-2):1–32, 2017.

[20] G. Di Pillo, S. Lucidi, and L. Palagi. Convergence to second-order stationary points of a primal-dual
algorithm model for nonlinear programming. Mathematics of Operations Research, 30(4):897–915, 2005.

[21] F. Facchinei and S. Lucidi. Convergence to second order stationary points in inequality constrained
optimization. Mathematics of Operations Research, 23(3):746–766, 1998.

[22] M. Fu, Z.-Q. Luo, and Y. Ye. Approximation algorithms for quadratic programming. Journal of combina-
torial optimization, 2(1):29–50, 1998.

10

[23] R. Ge, F. Huang, C. Jin, and Y. Yuan. Escaping from saddle points - online stochastic gradient for tensor
decomposition. In COLT, pages 797–842, 2015.

[24] R. Ge, J. Lee, and T. Ma. Matrix completion has no spurious local minimum. In NIPS, pages 2973–2981,
2016.

[25] S. Ghadimi and G. Lan. Accelerated gradient methods for nonconvex nonlinear and stochastic programming.
Math. Program., 156(1-2):59–99, 2016.

[26] S. Ghadimi, G. Lan, and H. Zhang. Mini-batch stochastic approximation methods for nonconvex stochastic
composite optimization. Math. Program., 155(1-2):267–305, 2016.

[27] G. Haeser, H. Liu, and Y. Ye. Optimality condition and complexity analysis for linearly-constrained
optimization without differentiability on the boundary. Math. Program., pages 1–37, 2017.

[28] V. Jeyakumar and G. Li. Trust-region problems with linear inequality constraints: exact SDP relaxation,
global optimality and robust optimization. Mathematical Programming, 147(1-2):171–206, 2014.

[29] C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. I. Jordan. How to escape saddle points efficiently. In
ICML, pages 1724–1732, 2017.

[30] C. Jin, P. Netrapalli, and M. I. Jordan. Accelerated gradient descent escapes saddle points faster than
gradient descent. CoRR, abs/1711.10456, 2017.

[31] S. Lacoste-Julien. Convergence rate of Frank-Wolfe for non-convex objectives. arXiv preprint
arXiv:1607.00345, 2016.

[32] L. Lei, C. Ju, J. Chen, and M. I. Jordan. Non-convex finite-sum optimization via SCSG methods. In
Advances in Neural Information Processing Systems 30, pages 2345–2355, 2017.

[33] J. M. Martı́nez and M. Raydan. Cubic-regularization counterpart of a variable-norm trust-region method
for unconstrained minimization. J. Global Optimization, 68(2):367–385, 2017.

[34] K. G. Murty and S. N. Kabadi. Some np-complete problems in quadratic and nonlinear programming.
Math. Program., 39(2):117–129, 1987.

[35] Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer Science &
Business Media, 2013.

[36] Y. Nesterov and B. T. Polyak. Cubic regularization of newton method and its global performance. Math.
Program., 108(1):177–205, 2006.

[37] S. Paternain, A. Mokhtari, and A. Ribeiro. A second order method for nonconvex optimization. arXiv
preprint arXiv:1707.08028, 2017.

[38] S. J. Reddi, A. Hefny, S. Sra, B. Póczos, and A. J. Smola. Stochastic variance reduction for nonconvex
optimization. In ICML, pages 314–323, 2016.

[39] S. J. Reddi, S. Sra, B. Póczos, and A. J. Smola. Fast incremental method for smooth nonconvex optimization.
In IEEE Conference on Decision and Control, CDC, pages 1971–1977, 2016.

[40] S. J. Reddi, M. Zaheer, S. Sra, B. Póczos, F. Bach, R. Salakhutdinov, and A. J. Smola. A generic approach
for escaping saddle points. In AISTATS, pages 1233–1242, 2018.

[41] C. W. Royer and S. J. Wright. Complexity analysis of second-order line-search algorithms for smooth
nonconvex optimization. arXiv preprint arXiv:1706.03131, 2017.

[42] J. Sun, Q. Qu, and J. Wright. A geometric analysis of phase retrieval. In IEEE International Symposium
on Information Theory, ISIT 2016, pages 2379–2383, 2016.

[43] J. Sun, Q. Qu, and J. Wright. Complete dictionary recovery over the sphere I: overview and the geometric
picture. IEEE Trans. Information Theory, 63(2):853–884, 2017.

[44] P. Tseng. Further results on approximating nonconvex quadratic optimization by semidefinite programming
relaxation. SIAM Journal on Optimization, 14(1):268–283, 2003.

[45] Y. Xu and T. Yang. First-order stochastic algorithms for escaping from saddle points in almost linear time.
arXiv preprint arXiv:1711.01944, 2017.

[46] Y. Ye. On affine scaling algorithms for nonconvex quadratic programming. Math. Program., 56(1-3):
285–300, 1992.

11

Just Interpolate: Kernel “Ridgeless” Regression Can Generalize

Tengyuan Liang∗1 and Alexander Rakhlin†2

1University of Chicago, Booth School of Business
2Massachusetts Institute of Technology

Abstract

In the absence of explicit regularization, Kernel “Ridgeless” Regression with nonlinear kernels
has the potential to fit the training data perfectly. It has been observed empirically, however,
that such interpolated solutions can still generalize well on test data. We isolate a phenomenon of
implicit regularization for minimum-norm interpolated solutions which is due to a combination of
high dimensionality of the input data, curvature of the kernel function, and favorable geometric
properties of the data such as an eigenvalue decay of the empirical covariance and kernel matrices.
In addition to deriving a data-dependent upper bound on the out-of-sample error, we present
experimental evidence suggesting that the phenomenon occurs in the MNIST dataset.

1 Introduction

According to conventional wisdom, explicit regularization should be added to the least-squares
objective when the Hilbert space H is high- or infinite-dimensional (Golub et al., 1979; Wahba, 1990;
Smola and Schölkopf, 1998; Shawe-Taylor and Cristianini, 2004; Evgeniou et al., 2000; De Vito et al.,
2005; Alvarez et al., 2012):

min
f∈H

1

n

n∑
i=1

(f(xi)− yi)2 + λ‖f‖2H . (1.1)

The regularization term is introduced to avoid “overfitting” since kernels provide enough flexibility to
fit training data exactly (i.e. interpolate it). From the theoretical point of view, the regularization
parameter λ is a knob for balancing bias and variance, and should be chosen judiciously. Yet, as noted
by a number of researchers in the last few years,1 the best out-of-sample performance, empirically,
is often attained by setting the regularization parameter to zero and finding the minimum-norm
solution among those that interpolate the training data. The mechanism for good out-of-sample
performance of this interpolation method has been largely unclear (Zhang et al., 2016; Belkin et al.,
2018b).
∗tengyuan.liang@chicagobooth.edu.
†rakhlin@mit.edu
1In particular, we thank M. Belkin, B. Recht, L. Rosasco, and N. Srebro for highlighting this phenomenon.

ar
X

iv
:1

80
8.

00
38

7v
2

 [
m

at
h.

ST
]

 8
 F

eb
 2

01
9

As a concrete motivating example, consider the prediction performance of Kernel Ridge Regression
for various values2 of the regularization parameter λ on subsets of the MNIST dataset. For virtually
all pairs of digits, the best out-of-sample mean squared error is achieved at λ = 0. Contrary to the
standard bias-variance-tradeoffs picture we have in mind, the test error is monotonically decreasing
as we decrease λ (see Figure 1 and further details in Section 6).

0.0 0.2 0.4 0.6 0.8 1.0 1.2
lambda

10 1

lo
g(

er
ro

r)

Kernel Regression on MNIST

digits pair [i,j]
[2,5]
[2,9]
[3,6]
[3,8]
[4,7]

Figure 1: Test performance of Kernel Ridge Regression on pairs of MNIST digits for various values
of regularization parameter λ, normalized by variance of y in the test set (for visualization purposes).

We isolate what appears to be a new phenomenon of implicit regularization for interpolated minimum-
norm solutions in Kernel “Ridgeless” Regression. This regularization is due to the curvature of the
kernel function and “kicks in” only for high-dimensional data and for “favorable” data geometry. We
provide out-of-sample statistical guarantees in terms of spectral decay of the empirical kernel matrix
and the empirical covariance matrix, under additional technical assumptions.
Our analysis rests on the recent work in random matrix theory. In particular, we use a suitable
adaptation of the argument of (El Karoui, 2010) who showed that high-dimensional random kernel
matrices can be approximated in spectral norm by linear kernel matrices plus a scaled identity.
While the message of (El Karoui, 2010) is often taken as “kernels do not help in high dimensions,” we
show that such a random matrix analysis helps in explaining the good performance of interpolation
in Kernel “Ridgeless” Regression.

1.1 Literature Review

Grace Wahba (Wahba, 1990) pioneered the study of nonparametric regression in reproducing kernel
Hilbert spaces (RKHS) from the computational and statistical perspectives. One of the key aspects
in that work is the role of the decay of eigenvalues of the kernel (at the population level) in rates of
convergence. The analysis relies on explicit regularization (ridge parameter λ) for the bias-variance
trade-off. The parameter is either chosen to reflect the knowledge of the spectral decay at the
population level (De Vito et al., 2005) (typically unknown to statistician), or by the means of
cross-validation (Golub et al., 1979). Interestingly, the explicit formula of Kernel Ridge Regression

2We take λ ∈ {0, 0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64, 1.28}.

2

has been introduced as “kriging” in the literature before, and was widely used in Bayesian statistics
(Cressie, 1990; Wahba, 1990).
In the learning theory community, Kernel Ridge Regression is known as a special case of Support
Vector Regression (Vapnik, 1998; Shawe-Taylor and Cristianini, 2004; Vovk, 2013). Notions like
metric entropy (Cucker and Smale, 2002) or “effective dimension” (Caponnetto and De Vito, 2007)
were employed to analyze the guarantees on the excess loss of Kernel Ridge Regression, even when
the model is misspecified. We refer the readers to Györfi et al. (2006) for more details. Again,
the analysis leans crucially on the explicit regularization, as given by a careful choice of λ, for the
model complexity and approximation trade-off, and mostly focusing on the fixed dimension and
large sample size setting. However, to the best of our knowledge, the literature stays relatively quiet
in terms of what happens to the minimum norm interpolation rules, i.e., λ = 0. As pointed out by
(Belkin et al., 2018b,a), the existing bounds in nonparametric statistics and learning theory do not
apply to interpolated solution either in the regression or the classification setting. In this paper, we
aim to answer when and why interpolation in RKHS works, as a starting point for explaining the
good empirical performance of interpolation using kernels in practice (Zhang et al., 2016; Belkin
et al., 2018b).

2 Preliminaries

2.1 Problem Formulation

Suppose we observe n i.i.d. pairs (xi, yi), 1 ≤ i ≤ n, where xi are the covariates with values in a
compact domain Ω ⊂ Rd and yi ∈ R are the responses (or, labels). Suppose the n pairs are drawn
from an unknown probability distribution µ(x, y). We are interested in estimating the conditional
expectation function f∗(x) = E(y|x = x), which is assumed to lie in a Reproducing Kernel Hilbert
Space (RKHS) H. Suppose the RKHS is endowed with the norm ‖ · ‖H and corresponding positive
definite kernel K(·, ·) : Ω× Ω→ R. The interpolation estimator studied in this paper is defined as

f̂ = arg min
f∈H

‖f‖H, s.t. f(xi) = yi, ∀i . (2.1)

LetX ∈ Rn×d be the matrix with rows x1, . . . , xn and let Y be the vector of values y1, . . . , yn. Slightly
abusing the notation, we let K(X,X) = [K(xi, xj)]ij ∈ Rn×n be the kernel matrix. Extending this
definition, for x ∈ Ω we denote by K(x,X) ∈ R1×n the matrix of values [K(x, x1), . . . ,K(x, xn)].
When K(X,X) is invertible, solution to (2.1) can be written in the closed form:

f̂(x) = K(x,X)K(X,X)−1Y. (2.2)

In this paper we study the case when K(X,X) is full rank, taking (2.2) as the starting point. For
this interpolating estimator, we provide high-probability (with respect to a draw of X) upper bounds
on the integrated squared risk of the form

E(f̂(x)− f∗(x))2 ≤ φn,d(X, f∗). (2.3)

Here the expectation is over x ∼ µ and Y |X, and φn,d is a data-dependent upper bound. We remark
that upper bounds of the form (2.3) also imply prediction loss bounds for excess square loss with
respect to the class H, as E(f̂(x)− f∗(x))2 = E(f̂(x)− y)2 −E(f∗(x)− y)2.

3

2.2 Notation and Background on RKHS

For an operator A, its adjoint is denoted by A∗. For real matrices, the adjoint is the transpose. For
any x ∈ Ω, let Kx : R→ H be such that

f(x) = 〈Kx, f〉H = K∗xf. (2.4)

It follows that for any x, z ∈ Ω

K(x, z) = 〈Kx,Kz〉H = K∗xKz. (2.5)

Let us introduce the integral operator Tµ : L2
µ → L2

µ with respect to the marginal measure µ(x):

Tµf(z) =

∫
K(z, x)f(x)dµ(x), (2.6)

and denote the set of eigenfunctions of this integral operator by e(x) = {e1(x), e2(x), . . . , ep(x)},
where p could be ∞. We have that

Tµei = tiei, and
∫
ei(x)ej(x)dµ(x) = δij . (2.7)

Denote T = diag(t1, . . . , tp) as the collection of non-negative eigenvalues. Adopting the spectral
notation,

K(x, z) = e(x)∗Te(z).

Via this spectral characterization, the interpolation estimator (2.1) takes the following form

f̂(x) = e(x)∗Te(X)
[
e(X)∗Te(X)

]−1
Y . (2.8)

Extending the definition of Kx, it is natural to define the operator KX : Rn → H. Denote the
sample version of the kernel operator to be

T̂ :=
1

n
KXK

∗
X (2.9)

and the associated eigenvalues to be λj(T̂), indexed by j. The eigenvalues are the same as those
of 1

nK(X,X). It is sometimes convenient to express T̂ as the linear operator under the basis of
eigenfunctions, in the following matrix sense

T̂ = T 1/2

(
1

n
e(X)e(X)∗

)
T 1/2.

We write Eµ[·] to denote the expectation with respect to the marginal x ∼ µ. Furthermore, we
denote by

‖g‖2L2
µ

=

∫
g2dµ(x) = Eµg

2(x)

the squared L2 norm with respect to the marginal distribution. The expectation EY |X [·] denotes the
expectation over y1, . . . , yn conditionally on x1, . . . , xn.

4

3 Main Result

We impose the following assumptions:

(A.1) High dimensionality: there exists universal constants c, C ∈ (0,∞) such that c ≤ d/n ≤ C.
Denote by Σd = Eµ[xix

∗
i] the covariance matrix, assume that the operator norm ‖Σd‖op ≤ 1.

(A.2) (8 +m)-moments: zi := Σ
−1/2
d xi ∈ Rd, i = 1, . . . , n, are i.i.d. random vectors. Furthermore,

the entries zi(k), 1 ≤ k ≤ d are i.i.d. from a distribution with Ezi(k) = 0,Var(zi(k)) = 1 and
|zi(k)| ≤ C · d

2
8+m , for some m > 0.

(A.3) Noise condition: there exists a σ > 0 such that E[(f∗(x)− y)2|x = x] ≤ σ2 for all x ∈ Ω.

(A.4) Non-linear kernel: for any x ∈ Ω, K(x, x) ≤M . Furthermore, we consider the inner-product
kernels of the form

K(x, x′) = h

(
1

d
〈x, x′〉

)
(3.1)

for a non-linear smooth function h(·) : R→ R in a neighborhood of 0.

While we state the main theorem for inner product kernels, the results follow under suitable
modifications3 for Radial Basis Function (RBF) kernels of the form

K(x, x′) = h

(
1

d
‖x− x′‖2

)
. (3.2)

We postpone the discussion of the assumptions until after the statement of the main theorem.
Let us first define the following quantities related to curvature of h:

α := h(0) + h′′(0)
Tr(Σ2

d)

d2
, β := h′(0),

γ := h

(
Tr(Σd)

d

)
− h(0)− h′(0)

Tr(Σd)

d
. (3.3)

Theorem 1. Define

φn,d(X, f∗) = V + B :=
8σ2‖Σd‖op

d

∑
j

λj

(
XX∗

d + α
β 11∗

)
[
γ
β + λj

(
XX∗

d + α
β 11∗

)]2

+ ‖f∗‖2H inf
0≤k≤n

 1

n

∑
j>k

λj(KXK
∗
X) + 2M

√
k

n

 . (3.4)

Under the assumptions (A.1)-(A.4) and for d large enough, with probability at least 1 − 2δ − d−2

(with respect to a draw of design matrix X), the interpolation estimator (2.2) satisfies

EY |X‖f̂ − f∗‖2L2
µ
≤ φn,d(X, f∗) + ε(n, d). (3.5)

Here the remainder term ε(n, d) = O(d−
m

8+m log4.1 d) +O(n−
1
2 log0.5(n/δ)).

3We refer the readers to El Karoui (2010) for explicit extensions to RBF kernels.

5

A few remarks are in order. First, the upper bound is data-dependent and can serve as a certificate
(assuming that an upper bound on σ2, ‖f∗‖2H can be guessed) that interpolation will succeed. The
bound also suggests the regimes when the interpolation method should work. The two terms in
the estimate of Theorem 1 represent upper bounds on the variance and bias of the interpolation
estimator, respectively. Unlike the explicit regularization analysis (e.g. (Caponnetto and De Vito,
2007)), the two terms are not controlled by a tunable parameter λ. Rather, the choice of the
non-linear kernel K itself leads to an implicit control of the two terms through curvature of the
kernel function, favorable properties of the data, and high dimensionality. We remark that for the
linear kernel (h(a) = a), we have γ = 0, and the bound on the variance term can become very large
in the presence of small eigenvalues. In contrast, curvature of h introduces regularization through a
non-zero value of γ. We also remark that the bound “kicks in” in the high-dimensional regime: the
error term decays with both d and n.
We refer to the favorable structure of eigenvalues of the data covariance matrix as favorable geometric
properties of the data. The first term (variance) is small when the data matrix enjoys certain decay
of the eigenvalues, thanks to the implicit regularization γ. The second term (bias) is small when the
eigenvalues of the kernel matrix decay fast or the kernel matrix is effectively low rank. Note that the
quantities α, β are constants, and γ scales with (Tr(Σd)/d)2. We will provide a detailed discussion
on the trade-off between the bias and variance terms for concrete examples in Section 4.
We left the upper bound of Theorem 1 in a data-dependent form for two reasons. First, an explicit
dependence on the data tells us whether interpolation can be statistically sound on the given dataset.
Second, for general spectral decay, current random matrix theory falls short of characterizing the
spectral density non-asymptotically except for special cases (Bose et al., 2003; El Karoui, 2010).

Discussion of the assumptions

• The assumption in (A.1) that c ≤ d/n ≤ C emphasizes that we work in a high-dimensional
regime where d scales on the order of n. This assumption is used in the proof of (El Karoui,
2010), and the particular dependence on c, C can be traced in that work if desired. Rather
than doing so, we “folded” these constants into mild additional power of log d. The same goes
for the assumption on the scaling of the trace of the population covariance matrix.

• The assumption in (A.2) that Zi(k) are i.i.d. across k = 1, . . . , d is a strong assumption that is
required to ensure the favorable high-dimensional effect. Relaxing this assumption is left for
future work.

• The existence of (8 + m)-moments for |zi(k)| is enough to ensure |zi(k)| ≤ C · d
2

8+m for
1 ≤ i ≤ n, 1 ≤ k ≤ d almost surely (see, Lemma 2.2 in Yin et al. (1988)). Remark that the
assumption of existence of (8 + m)-moments in (A.2) is relatively weak. In particular, for
bounded or subgaussian variables, m =∞ and the error term ε(n, d) scales as d−1 + n−1/2, up
to log factors. See Lemma B.1 for an explicit calculation in the Gaussian case.

• Finally, as already mentioned, the main result is stated for the inner product kernel, but can
be extended to the RBF kernel using an adaptation of the analysis in (El Karoui, 2010).

6

4 Behavior of the Data-dependent Bound

In this section, we estimate, both numerically and theoretically, the non-asymptotic data-dependent
upper bound in Theorem 1 in several regimes. To illustrate the various trade-offs, we divide the
discussion into two main regimes: n > d and n < d. Without loss of generality, we take as
an illustration the non-linearity h(t) = exp(2t) and K(x, x′) = exp(2〈x, x′〉/d), with the implicit
regularization r := γ/β �

(
Tr(Σd)/d

)2. In our discussion, we take both n and d large enough so that
the residuals in Theorem 1 are negligible. The main theoretical results in this section, Corollaries 4.1
and 4.2, are direct consequences of the data-dependent bound in Theorem 1.

Case n > d We can further bound the variance and the bias, with the choice k = 0, as

V -
1

d

∑
j

λj

(
XX∗

d

)
[
r + λj

(
XX∗

d

)]2 =
1

n

d∑
j=1

λj

(
XX∗

n

)
[
d
nr + λj

(
XX∗

n

)]2 , (4.1)

B -
1

n

n∑
j=1

λj(KXK
∗
X) � r +

1

d

d∑
j=1

λj

(
XX∗

n

)
. (4.2)

We first illustrate numerically the bias-variance trade-off by varying the geometric properties of the
data in terms of the population spectral decay of x. We shall parametrize the eigenvalues of the
covariance, for 0 < κ <∞, as

λj(Σd) =
(
1− ((j − 1)/d)κ

)1/κ
, 1 ≤ j ≤ d.

The parameter κ controls approximate “low-rankness” of the data: the closer κ is to 0, the faster
does the spectrum of the data decay. This is illustrated in the top row of Figure 6 on page 19. By
letting κ→ 0, r can be arbitrary small, as

Tr(Σd)

d
�
∫ 1

0
(1− tκ)1/κdt =

Γ(1 + 1/κ)2

Γ(1 + 2/κ)
∈ [0, 1].

We will focus on three cases, κ ∈ {e−1, e0, e1}, for the decay parameter, and values d = 100,
n ∈ {500, 2000}. The data-dependent upper bounds on V and B are summarized in Table 1.
More detailed plots are postponed to Figure 6 (in this figure, we plot the ordered eigenvalues and
the spectral density for both the population and empirical covariances). Table 1 shows that as κ
increases (a slower spectral decay), the implicit regularization parameter becomes larger, resulting in
a decreasing variance and an increasing bias.
We also perform simulations to demonstrate the trade-off between bias and variance in the generaliza-
tion error. The result is shown in Figure 2. For each choice of (n, d) pair, we vary the spectral decay
of the kernel by changing gradually κ ∈ [e−2, e2], and plot the generalization error on the log scale.
We postpone the experiment details to Section 6.2, but point out important phenomenona observed
in Figures 2-3: (1) an extremely fast spectral decay (small κ) will generate insufficient implicit
regularization that would hurt the generalization performance due to a large variance term; (2) a
very slow spectral decay (large κ) will result in a large bias, which can also hurt the generalization

7

Table 1:
Case n > d: variance bound V (4.1), bias bound B (4.2)

n/d = 5 n/d = 20

Spectral Decay Implicit Reg V B V B

κ = e−1 0.005418 14.2864 0.07898 9.4980 0.07891
κ = e0 0.2525 0.4496 0.7535 0.1748 0.7538
κ = e1 0.7501 0.1868 1.6167 0.05835 1.6165

Figure 2: Generalization error as a function of varying spectral decay. Here d = 200, n =
400, 1000, 2000, 4000.

performance; (3) certain favorable spectral decay achieves the best trade-off, resulting in the best
generalization error.
We now theoretically demonstrate scalings within the n > d regime when both V and B vanish. For
simplicity, we consider Gaussian x.

Corollary 4.1 (General spectral decay: n > d). Consider general eigenvalue decay with ‖Σd‖op ≤ 1.
Then with high probability,

V -
Tr(Σ−1

d)

n
, B - r +

Tr(Σd)

d
.

To illustrate the behavior of the estimates in Corollary 4.1, consider the following assumptions on
the population covariance matrix:

Example 4.1 (Low rank). Let Σd = diag(1, . . . , 1, 0, . . . , 0) with εd ones, ε ∈ (0, 1). In this case
r = ε2, and λj(XX∗/n) ≥ (1−

√
εd/n)2 with high probability by standard results in random matrix

theory. Then

V -
εd

n

(1−
√
εd/n)2(

ε2d/n+ (1−
√
εd/n)2

)2 �
d

n
ε, B - ε2 + ε.

Therefore, as ε→ 0, both terms vanish for n > d.

8

Example 4.2 (Approx. low rank). Let Σd = diag(1, ε, . . . , ε) for small ε > 0. In this case, r = ε2

and λj(XX∗/n) ≥ ε(1−
√
d/n)2 with high probability. Then

V -
d

n

ε(1−
√
d/n)2(

ε2d/n+ ε(1−
√
d/n)2

)2 �
d

n

1

ε
, B - ε2 + ε.

For instance, for ε � (d/n)1/2, both terms vanish for n� d.

Example 4.3 (Nonparametric slow decay). Consider λj(Σd) = j−α for 0 < α < 1. Then r � d−2α.
One can bound w.h.p. (see (B.4))

V � 1

n

∫ d

0
tαdt � dα+1

n
, B - d−2α + d−α.

Balancing the two terms, one obtains a nonparametric upper bound n−
α

2α+1 . A similar analysis can
be carried out for α ≥ 1.

Case d > n In this case, we can further bound the variance and the bias, with the choice k = 0, as

V -
1

d

n∑
j=1

λj

(
XX∗

d

)
[
r + λj

(
XX∗

d

)]2 , (4.3)

B -
1

n

n∑
j=1

λj(KXK
∗
X) � r +

1

n

n∑
j=1

λj

(
XX∗

d

)
. (4.4)

We first numerically illustrate the trade-off between the variance and the bias upper bounds. We
consider three cases κ ∈ {e−1, e0, e1}, and d = 2000, n ∈ {400, 100}. As before, we find a trade-off
between V and B with varying κ; the results are summarized in Table 2. Additionally, Figure 7
provides a plot of the ordered eigenvalues, as well as spectral density for both the population and
empirical covariances. As one can see, for a general eigenvalue decay, the spectral density of the
population and the empirical covariance can be quite distinct. We again plot the generalization error
in Figure 3 as a function of κ.

Table 2:
Case d > n: variance bound V (4.3), bias bound B (4.4)

d/n = 5 d/n = 20

Spectral Decay Implicit Reg V B V B

κ = e−1 0.005028 3.9801 0.07603 0.7073 0.07591
κ = e0 0.2503 0.1746 0.7513 0.04438 0.7502
κ = e1 0.7466 0.06329 1.6106 0.01646 1.6102

We now theoretically showcase an example in the d� n regime where both V and B vanish. Again
consider x being Gaussian for simplicity.

9

Figure 3: Generalization error as a function of varying spectral decay. Here n = 200, d =
400, 1000, 2000, 4000.

Corollary 4.2 (General spectral decay: d > n). With high probability, it holds that

V -
n

d

1

4r
, B - r +

Tr(Σd)

d
.

The variance bound follows from the fact that t
(r+t)2

≤ 1
4r for all t.

Example 4.4 (Favorable spectral decay for d � n). Recall Tr(Σd)/d = r1/2. With the choice
r = (n/d)2/3, both terms vanish for d� n as

V -
n

d

1

4r
, B - r1/2.

In this case, the spectrum satisfies Tr(Σd)/d = O((n/d)1/3).

5 Proofs

To prove Theorem 1, we decompose the mean square error into the bias and variance terms
(Lemma 5.1), and provide data-dependent bound for each (Sections 5.2 and 5.3).

5.1 Bias-Variance Decomposition

The following is a standard bias-variance decomposition for an estimator. We remark that it is an
equality, and both terms have to be small to ensure the desired convergence.

Lemma 5.1. The following decomposition for the interpolation estimator (2.2) holds

EY |X‖f̂ − f∗‖2L2
µ

= V + B, (5.1)

10

where

V :=

∫
EY |X

∣∣∣K∗xKX(K∗XKX)−1(Y −E[Y |X])
∣∣∣2 dµ(x), (5.2)

B :=

∫ ∣∣∣∣K∗x [KX(K∗XKX)−1K∗X − I
]
f∗

∣∣∣∣2 dµ(x). (5.3)

Proof of Lemma 5.1. Recall the closed form solution of the interpolation estimator:

f̂(x) = K∗xKX(K∗XKX)−1Y = K(x,X)K(X,X)−1Y.

Define E = Y −E[Y |X] = Y − f∗(X). Since EY |XE = 0, we have

f̂(x)− f∗(x) = K∗xKX(K∗XKX)−1E +K∗x

[
KX(K∗XKX)−1K∗X − I

]
f∗

EY |X(f̂(x)− f∗(x))2 = EY |X

(
K∗xKX(K∗XKX)−1E

)2
+

∣∣∣∣K∗x [KX(K∗XKX)−1K∗X − I
]
f∗

∣∣∣∣2 .
Using Fubini’s Theorem,

EY |X‖f̂ − f∗‖2L2
µ

=

∫
EY |X(f̂(x)− f∗(x))2dµ(x)

=

∫
EY |X

∣∣∣K∗xKX(K∗XKX)−1E
∣∣∣2 dµ(x) +

∫ ∣∣∣∣K∗x [KX(K∗XKX)−1K∗X − I
]
f∗

∣∣∣∣2 dµ(x).

5.2 Variance

In this section, we provide upper estimates on the variance part V in (5.2).

Theorem 2 (Variance). Let δ ∈ (0, 1). Under the assumptions (A.1)-(A.4), with probability at least
1− δ − d−2 with respect to a draw of X,

V ≤ 8σ2‖Σd‖
d

∑
j

λj

(
XX∗

d + α
β 11∗

)
[
γ
β + λj

(
XX∗

d + α
β 11∗

)]2 +
8σ2

γ2
d−(4θ−1) log4.1 d, (5.4)

for θ = 1
2 −

2
8+m and for d large enough.

Remark 5.1. Let us discuss the first term in Eq. (5.4) and its role in implicit regularization induced
by the curvature of the kernel, eigenvalue decay, and high dimensionality. In practice, the data matrix
X is typically centered, so 1∗X = 0. Therefore the first term is effectively∑

j

fr

(
λj

(
XX∗

d

))
, where fr(t) :=

t

(r + t)2
≤ 1

4r
.

This formula explains the effect of implicit regularization, and captures the “effective rank” of the
training data X. We would like to emphasize that this measure of complexity is distinct from the
classical notion of effective rank for regularized kernel regression (Caponnetto and De Vito, 2007),
where the “effective rank” takes the form

∑
j gr(tj) with gr(t) = t/(r+ t), with tj is the eigenvalue of

the population integral operator T .

11

Proof of Theorem 2. From the definition of V and E[Y |X] = f∗(X),

V =

∫
EY |XTr

(
K∗xKX(K∗XKX)−1(Y − f∗(X))(Y − f∗(X))∗(K∗XKX)−1K∗XKx

)
dµ(x)

≤
∫
‖(K∗XKX)−1K∗XKx‖2‖EY |X

[
(Y − f∗(X))(Y − f∗(X))∗

]
‖dµ(x).

Due to the fact that EY |X
[
(Yi − f∗(Xi))(Yj − f∗(Xj))

]
= 0 for i 6= j, and EY |X

[
(Yi − f∗(Xi))

2
]
≤

σ2, we have that ‖EY |X
[
(Y − f∗(X))(Y − f∗(X))∗

]
‖ ≤ σ2 and thus

V ≤ σ2

∫
‖(K∗XKX)−1K∗XKx‖2dµ(x) = σ2Eµ‖K(X,X)−1K(X,x)‖2.

Let us introduce two quantities for the ease of derivation. For α, β, γ defined in (3.3), let

K lin(X,X) := γI + α11T + β
XX∗

d
∈ Rn×n, (5.5)

K lin(X,x) := β
Xx∗

d
∈ Rn×1, (5.6)

and K lin(x,X) being the transpose of K lin(X,x). By Proposition A.2, with probability at least
1− δ − d−2, for θ = 1

2 −
2

8+m the following holds∥∥∥K(X,X)−K lin(X,X)
∥∥∥ ≤ d−θ(δ−1/2 + log0.51 d).

As a direct consequence, one can see that∥∥∥K(X,X)−1
∥∥∥ ≤ 1

γ − d−θ(δ−1/2 + log0.51 d)
≤ 2

γ
, (5.7)∥∥∥K(X,X)−1K lin(X,X)

∥∥∥ ≤ 1 + ‖K(X,X)−1‖ · ‖K(X,X)−K lin(X,X)‖

≤ γ

γ − d−θ(δ−1/2 + log0.51 d)
≤ 2, (5.8)

provided d is large enough, in the sense that

d−θ(δ−1/2 + log0.51 d) ≤ γ/2.

By Lemma B.2 (for Gaussian case, Lemma B.1),

Eµ

∥∥∥K(x, X)−K lin(x, X)
∥∥∥2
≤ d−(4θ−1) log4.1 d. (5.9)

Let us proceed with the bound

V ≤ σ2Eµ‖K(X,X)−1K(X,x)‖2

≤ 2σ2Eµ‖K(X,X)−1K lin(X,x)‖2 + 2σ2
∥∥∥K(X,X)−1

∥∥∥2
·Eµ‖K(X,x)−K lin(X,x)‖2

≤ 2σ2
∥∥∥K(X,X)−1K lin(X,X)

∥∥∥2
Eµ‖K lin(X,X)−1K lin(X,x)‖2 +

8σ2

γ2
d−(4θ−1) log4.1 d

≤ 8σ2Eµ‖K lin(X,X)−1K lin(X,x)‖2 +
8σ2

γ2
d−(4θ−1) log4.1 d

12

where the the third inequality relies on (5.9) and (5.7), and the fourth inequality follows from (5.8).
One can further show that

Eµ‖K lin(X,X)−1K lin(X,x)‖2

= EµTr

([
γI + α11∗ + β

XX∗

d

]−1

β
Xx

d
β
x∗X∗

d

[
γI + α11∗ + β

XX∗

d

]−1
)

= Tr

([
γI + α11∗ + β

XX∗

d

]−1

β2XΣdX
∗

d2

[
γI + α11∗ + β

XX∗

d

]−1
)

≤ 1

d
‖Σd‖Tr

([
γI + α11∗ + β

X∗X

d

]−1

β2X
∗X

d

[
γI + α11∗ + β

X∗X

d

]−1
)

≤ 1

d
‖Σd‖Tr

([
γI + α11∗ + β

X∗X

d

]−1 [
β2X

∗X

d
+ αβ11∗

] [
γI + α11∗ + β

X∗X

d

]−1
)

=
1

d
‖Σd‖

∑
j

λj

(
XX∗

d + α
β 11∗

)
[
γ
β + λj

(
XX∗

d + α
β 11∗

)]2 .

We conclude that with probability at least 1− δ − d−2,

V ≤ 8σ2Eµ‖K lin(X,X)−1K lin(X,x)‖2 +
8σ2

γ2
d−(4θ−1) log4.1 d (5.10)

≤ 8σ2‖Σd‖
d

∑
j

λj

(
XX∗

d + α
β 11∗

)
[
γ
β + λj

(
XX∗

d + α
β 11∗

)]2 +
8σ2

γ2
d−(4θ−1) log4.1 d (5.11)

for d large enough.

5.3 Bias

Theorem 3 (Bias). Let δ ∈ (0, 1). The bias, under the only assumptions that K(x, x) ≤ M for
x ∈ Ω, and Xi’s are i.i.d. random vectors, is upper bounded as

B ≤ ‖f∗‖2H · inf
0≤k≤n

 1

n

∑
j>k

λj(K(X,X)) + 2

√
k

n

√∑n
i=1K(xi, xi)2

n

+ 3M

√
log 2n/δ

2n
, (5.12)

with probability at least 1− δ.

Proof of Theorem 3. In this proof, when there is no confusion, we use f(x) =
∑p

i=1 ei(x)fi where fi
denotes the coefficients of f under the basis ei(x). Adopting this notation, we can write f(x) = e(x)∗f
where f = [f1, f2, . . . , fp]

T also denotes a possibly infinite vector. For the bias, it is easier to work in

13

the frequency domain using the spectral decomposition. Recalling the spectral characterization in
the preliminary section,

B =

∫ ∣∣∣∣e∗(x)T 1/2
[
T 1/2e(X)(e(X)∗Te(X))−1e(X)∗T 1/2 − I

]
T−1/2f∗

∣∣∣∣2 dµ(x)

≤
∫ ∥∥∥∥[T 1/2e(X)(e(X)∗Te(X))−1e(X)∗T 1/2 − I

]
T 1/2e(x)

∥∥∥∥2

dµ(x) · ‖T−1/2f∗‖2

= ‖f∗‖2H
∫ ∥∥∥∥[T 1/2e(X)(e(X)∗Te(X))−1e(X)∗T 1/2 − I

]
T 1/2e(x)

∥∥∥∥2

dµ(x).

Here we use the fact that T−1/2f∗ =
∑

i t
−1/2
i f∗,iei and ‖T−1/2f∗‖2 =

∑
i f

2
∗,i/ti = ‖f∗‖2H. Next,

recall the empirical Kernel operator with its spectral decomposition T̂ = Û Λ̂Û∗, with Λ̂jj =
1
nλj

(
K(X,X)

)
. Denote the top k columns of Û to be Ûk, and P⊥Ûk

to be projection to the eigenspace

orthogonal to Ûk. By observing that T 1/2e(X)(e(X)∗Te(X))−1e(X)∗T 1/2 is a projection matrix, it
is clear that for all k ≤ n,

B ≤ ‖f∗‖2H
∫ ∥∥∥∥P⊥Û (T 1/2e(x)

)∥∥∥∥2

dµ(x) ≤ ‖f∗‖2H
∫ ∥∥∥∥P⊥Ûk (T 1/2e(x)

)∥∥∥∥2

dµ(x). (5.13)

We continue the study of the last quantity using techniques inspired by Shawe-Taylor and Cristianini
(2004). Denote the function g indexed by any rank-k projection Uk as

gUk(x) :=

∥∥∥∥PUk (T 1/2e(x)
)∥∥∥∥2

= Tr
(
e∗(x)T 1/2UkU

T
k T

1/2e(x)
)
. (5.14)

Clearly, ‖UkUTk ‖F =
√
k. Define the function class

Gk := {gUk(x) : UTk Uk = Ik}.

It is clear that g
Ûk
∈ Gk. Observe that g

Ûk
is a random function that depends on the data X, and

we will bound the bias term using the empirical process theory. It is straightforward to verify that

Ex∼µ

∥∥∥∥P⊥Ûk (T 1/2e(x)
)∥∥∥∥2

=

∫ ∥∥∥∥P⊥Ûk (T 1/2e(x)
)∥∥∥∥2

dµ(x),

Ên

∥∥∥∥P⊥Ûk (T 1/2e(x)
)∥∥∥∥2

=
1

n

n∑
i=1

∥∥∥∥P⊥Ûk (T 1/2e(xi)
)∥∥∥∥2

= Tr
(
P⊥
Ûk
T̂P⊥

Ûk

)
=
∑
j>k

Λ̂jj =
1

n

∑
j>k

λj(K(X,X)).

14

Using symmetrization Lemma B.4 with M = supx∈ΩK(x, x), with probability at least 1− 2δ,∫ ∥∥∥∥P⊥Ûk (T 1/2e(x)
)∥∥∥∥2

dµ(x)− 1

n

∑
j>k

λj(K(X,X))

=Eµ

∥∥∥∥P⊥Ûk (T 1/2e(x)
)∥∥∥∥2

− Ên

∥∥∥∥P⊥Ûk (T 1/2e(x)
)∥∥∥∥2

≤ sup
Uk:UTk Uk=Ik

(
E− Ên

)∥∥∥∥P⊥Uk (T 1/2e(x)
)∥∥∥∥2

≤2Eε sup
Uk:UTk Uk=Ik

1

n

n∑
i=1

εi

(∥∥∥T 1/2e(xi)
∥∥∥2
−
∥∥∥∥PUk (T 1/2e(xi)

)∥∥∥∥2
)

+ 3M

√
log 1/δ

2n

by the Pythagorean theorem. Since εi’s are symmetric and zero-mean and
∥∥∥T 1/2e(xi)

∥∥∥2
does not

depend on Uk, the last expression is equal to

2Eε sup
g∈Gk

1

n

n∑
i=1

εig(xi) + 3M

√
log 1/δ

2n
.

We further bound the Rademacher complexity of the set Gk

Eε sup
g∈Gk

1

n

n∑
i=1

εig(xi) = Eε sup
Uk

1

n

n∑
i=1

εigUk(xi)

= Eε
1

n
sup
Uk

〈
UkU

T
k ,

n∑
i=1

εiT
1/2e(xi)e

∗(xi)T
1/2

〉

≤
√
k

n
Eε

∥∥∥∥∥∥
n∑
i=1

εiT
1/2e(xi)e

∗(xi)T
1/2

∥∥∥∥∥∥
F

by the Cauchy-Schwarz inequality and the fact that ‖UkUTk ‖F ≤
√
k. The last expression is can be

further evaluated by the independence of εi’s

√
k

n

Eε

∥∥∥∥∥∥
n∑
i=1

εiT
1/2e(xi)e

∗(xi)T
1/2

∥∥∥∥∥∥
2

F

1/2

=

√
k

n

n∑
i=1

∥∥∥T 1/2e(xi)e
∗(xi)T

1/2
∥∥∥2

F

1/2

=

√
k

n

√∑n
i=1K(xi, xi)2

n
.

Therefore, for all k ≤ n, with probability at least 1− 2nδ,

B ≤ ‖f∗‖2H · inf
0≤k≤n

 1

n

∑
j>k

λj(K(X,X)) + 2

√
k

n

√∑n
i=1K(xi, xi)2

n
+ 3M

√
log 1/δ

2n

 .

15

Remark 5.2. Let us compare the bounds obtained in this paper to those one can obtain for classifi-
cation with a margin. For classification, Thm. 21 in Bartlett and Mendelson (2002) shows that the
misclassification error is upper bounded with probability at least 1− δ as

E1(yf̂(x) < 0) ≤ Eφγ(yf̂(x)) ≤ Ênφγ(yf̂(x)) +
Cδ
γ
√
n

√∑n
i=1K(xi, xi)

n

where φγ(t) := max(0, 1− t/γ) ∧ 1 is the margin loss surrogate for the indicator loss 1(t < 0). By
tuning the margin γ, one obtains a family of upper bounds.
Now consider the noiseless regression scenario (i.e. σ = 0 in (A.1)). In this case, the variance
contribution to the risk is zero, and

EY |X‖f̂ − y‖2L2
µ

= EY |X‖f̂ − f∗‖2L2
µ

= E[P⊥n f∗]
2 ≤ E[P⊥k f∗]

2

≤ Ên[P⊥k f∗]
2 + C ′δ

√
k

n

√∑n
i=1K(xi, xi)2

n

where Pk is the best-rank k projection (based on X) and P⊥k denotes its orthogonal projection. By
tuning the parameter k (similar as the 1/γ in classification), one can balance the RHS to obtain the
optimal trade-off.
However, classification is easier than regression in the following sense: f̂ can present a non-vanishing
bias in estimating f∗, but as long as the bias is below the empirical margin level, it plays no effect in
the margin loss φγ(·). In fact, for classification, under certain conditions, one can prove exponential
convergence for the generalization error (Koltchinskii and Beznosova, 2005).

6 Experiments

6.1 MNIST

In this section we provide full details of the experiments on MNIST (LeCun et al., 2010). Our first
experiment considers the following problem: for each pair of distinct digits (i, j), i, j ∈ {0, 1, . . . , 9},
label one digit as 1 and the other as −1, then fit the Kernel Ridge Regression with Gaussian kernel
k(x, x′) = exp(−‖x− x′‖2/d), where d = 784 is the dimension as analyzed in our theory (also the
default choice in Scikit-learn package (Pedregosa et al., 2011)). For each of the

(
10
2

)
= 45 pairs of

experiments, we chose λ = 0 (no regularization, interpolation estimator), λ = 0.1 and λ = 1. We
evaluated the performance on the out-of-sample test dataset, with the error metric∑

i(f̂(xi)− yi)2∑
i(ȳ − yi)2

. (6.1)

Remarkably, among all 45 experiments, no-regularization performs the best. We refer to the table in
Section C for a complete list of numerical results. For each experiment, the sample size is roughly
n ≈ 10000.
The second experiment is to perform the similar task on a finer grid of regularization parameter
λ ∈ {0, 0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64, 1.28}. Again, in all but one pair, the interpolation
estimator performs the best in out-of-sample prediction. We refer to Figure 4 for details.

16

0.0 0.2 0.4 0.6 0.8 1.0 1.2
lambda

10 1
lo

g(
er

ro
r)

Kernel Regression on MNIST

digits pair [i,j]
[2,5]
[2,6]
[2,7]
[2,8]
[2,9]

[3,5]
[3,6]
[3,7]
[3,8]
[3,9]

[4,5]
[4,6]
[4,7]
[4,8]
[4,9]

Figure 4: Test error, normalized as in (6.1). The y-axis is on the log scale.

0 20 40 60 80 100
index

10 4

10 3

10 2

lo
g(

ei
ge

nv
al

ue
)

Spectral Decay of Kernels on MNIST
digits pair [i,j]

[2,5]
[2,9]
[3,6]
[3,8]
[4,7]

0 20 40 60 80 100
index

10 1

100

101

lo
g(

ei
ge

nv
al

ue
)

Spectral Decay of Cov on MNIST
digits pair [i,j]

[2,5]
[2,9]
[3,6]
[3,8]
[4,7]

Figure 5: Spectral decay. The y-axis is on the log scale.

To conclude this experiment, we plot the eigenvalue decay of the empirical kernel matrix and the
sample covariance matrix for the 5 experiments shown in the introduction. The two plots are shown
in Figure 5. Both plots exhibit a fast decay of eigenvalues, supporting the theoretical finding that
interpolation performs well on a test set in such situations.
On the other hand, it is easy to construct examples where the eigenvalues do not decay and
interpolation performs poorly. This is the case, for instance, if Xi are i.i.d. from spherical Gaussian.
One can show that in the high-dimensional regime, the variance term itself (and not just the upper
bound on it) is large. Since the bias-variance decomposition is an equality, it is not possible to
establish good L2

µ convergence.

6.2 A Synthetic Example

In this section we provide the details of the synthetic experiments mentioned in Section 4 for
Tables 1-2 and Figures 2-3. We choose the RBF kernel as the non-linearity with h(t) = exp(−t).
Again, we consider a family of eigenvalue decays for the covariance matrix parametrized by κ, with

17

the small κ describing fast spectral decay

λj(Σd,κ) =
(
1− ((j − 1)/d)κ

)1/κ
, 1 ≤ j ≤ d.

We set a target non-linear function f∗ in the RKHS with kernel K(x, x′) = h
(
‖x− x′‖2/d

)
as

f∗(x) =
100∑
l=1

K(x, θl), θl
i.i.d.∼ N(0, Id).

For each parameter triplet (n, d, κ), we generate data in the following way

xi ∼ N(0,Σd,κ), yi = f∗(xi) + εi

for 1 ≤ i ≤ n where εi ∼ N(0, σ2) is independent noise, with σ = 0.1 (Figures 2-3) and σ = 0.5
(Figures 8). Figures 6-7 contrasts the difference between the population and empirical eigenvalues
for various parameter triplets (n, d, κ).
We now explain Figures 2-3, which illustrate the true generalization error in this synthetic example,
by varying the spectral decay κ, for a particular case of high dimensionality ratio d/n. Here we plot
the out-of-sample test error for the interpolated min-norm estimator f̂ on fresh new test data (xt, yt)
from the same data generating process, with the error metric

error =

∑
t(f̂(xt)− f∗(xt))∑

t(yt − ȳ)2
.

The error plots are shown in Figure 2 (for n > d) and 3 (for d > n), and Figure 8 for the high noise
case. On the x-axis, we plot the log(κ), and on the y-axis the log(error). Each curve corresponds to
the generalization error behavior (and the bias and variance trade-off) as we vary spectral decay
from fast to slow (as κ increases) for a particular choice of d/n or n/d ratio. Clearly, for a general
pair of high dimensionality ratio d/n, there is a “sweet spot” of κ (favorable geometric structure)
such that the trade-off is optimized.

Figure 8: Varying spectral decay: generalization error for high noise case. Left: d = 200, n =
4000, 2000, 1000, 240. Right: n = 200, d = 4000, 2000, 1000, 240.

18

Figure 6: Varying spectral decay: case n > d. Columns from left to right: κ = e−1, e0, e1. Rows
from top to bottom: ordered eigenvalues, and the histogram of eigenvalues. Here we plot the
population eigenvalues for Σd, and the empirical eigenvalues for X∗X/n. In this simulation, d = 100,
n = 500, 2000.

7 Further Discussion

This paper is motivated by the work of Belkin et al. (2018b) and Zhang et al. (2016), who, among
others, observed the good out-of-sample performance of interpolating rules. This paper continues
the line of work in (Belkin et al., 2018a,c; Belkin, 2018) on understanding theoretical mechanisms
for the good out-of-sample performance of interpolation. We leave further investigations on the
connection between kernel ridgeless regression and two-layer neural networks as a future work (Dou
and Liang, 2019).
From an algorithmic point of view, the minimum-norm interpolating solution can be found either by
inverting the kernel matrix, or by performing gradient descent on the least-squares objective (starting
from 0). Our analysis can then be viewed in the light of recent work on implicit regularization of
optimization procedures (Yao et al., 2007; Neyshabur et al., 2014; Gunasekar et al., 2017; Li et al.,
2017).
The paper also highlights a novel type of implicit regularization. In addition, we discover that once
we parametrize the geometric properties — the spectral decay — we discover the familiar picture of
the bias-variance trade-off, controlled by the implicit regularization that adapts to the favorable
geometric property of the data. Moreover, if one explicitly parametrizes the choice of the kernel by,
say, the bandwidth, we are likely to see the familiar picture of the bias-variance trade-off, despite the
fact that the estimator is always interpolating. Whether one can achieve optimal rates of estimation
(under appropriate assumptions) for the right choice of the bandwidth appears to be an interesting
and difficult statistical question. Another open question is whether one can characterize situations
when the interpolating minimum-norm solution is dominating the regularized solution in terms of

19

Figure 7: Varying spectral decay: case d > n. Columns from left to right: κ = e−1, e0, e1.
Rows from top to bottom: ordered eigenvalues, and the histogram of eigenvalues. Here we plot
the population eigenvalues for Σd, and the empirical eigenvalues for XX∗/d. In this simulation,
d = 2000, n = 400, 100.

expected performance.

References

Mauricio A Alvarez, Lorenzo Rosasco, and Neil D Lawrence. Kernels for vector-valued functions: A
review. Foundations and Trends R© in Machine Learning, 4(3):195–266, 2012.

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

Mikhail Belkin. Approximation beats concentration? an approximation view on inference with
smooth radial kernels. arXiv preprint arXiv:1801.03437, 2018.

Mikhail Belkin, Daniel Hsu, and Partha Mitra. Overfitting or perfect fitting? risk bounds for
classification and regression rules that interpolate. arXiv preprint arXiv:1806.05161, 2018a.

Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need to understand
kernel learning. arXiv preprint arXiv:1802.01396, 2018b.

Mikhail Belkin, Alexander Rakhlin, and Alexandre B Tsybakov. Does data interpolation contradict
statistical optimality? arXiv preprint arXiv:1806.09471, 2018c.

Arup Bose, Sourav Chatterjee, and Sreela Gangopadhyay. Limiting spectral distribution of large
dimensional random matrices. 2003.

20

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A nonasymptotic
theory of independence. Oxford university press, 2013.

Andrea Caponnetto and Ernesto De Vito. Optimal rates for the regularized least-squares algorithm.
Foundations of Computational Mathematics, 7(3):331–368, 2007.

Noel Cressie. The origins of kriging. Mathematical geology, 22(3):239–252, 1990.

Felipe Cucker and Steve Smale. Best choices for regularization parameters in learning theory: on
the bias-variance problem. Foundations of computational Mathematics, 2(4):413–428, 2002.

Ernesto De Vito, Andrea Caponnetto, and Lorenzo Rosasco. Model selection for regularized least-
squares algorithm in learning theory. Foundations of Computational Mathematics, 5(1):59–85,
2005.

Xialiang Dou and Tengyuan Liang. Training neural networks as learning data-adaptive kernels:
Provable representation and approximation benefits. arXiv preprint arXiv:1901.07114, 2019.

Noureddine El Karoui. The spectrum of kernel random matrices. The Annals of Statistics, 38(1):
1–50, 2010.

Theodoros Evgeniou, Massimiliano Pontil, and Tomaso Poggio. Regularization networks and support
vector machines. Advances in computational mathematics, 13(1):1, 2000.

Gene H. Golub, Michael Heath, and Grace Wahba. Generalized cross-validation as a method for
choosing a good ridge parameter. Technometrics, 21(2):215–223, May 1979. ISSN 1537-2723. doi:
10.1080/00401706.1979.10489751. URL http://dx.doi.org/10.1080/00401706.1979.10489751.

Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro.
Implicit regularization in matrix factorization. In Advances in Neural Information Processing
Systems, pages 6151–6159, 2017.

László Györfi, Michael Kohler, Adam Krzyzak, and Harro Walk. A distribution-free theory of
nonparametric regression. Springer Science & Business Media, 2006.

Vladimir Koltchinskii and Olexandra Beznosova. Exponential convergence rates in classification. In
International Conference on Computational Learning Theory, pages 295–307. Springer, 2005.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. AT&T Labs
[Online]. Available: http://yann. lecun. com/exdb/mnist, 2, 2010.

Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized
matrix recovery. arXiv preprint arXiv:1712.09203, 2017.

Shahar Mendelson. A few notes on statistical learning theory. In Advanced lectures on machine
learning, pages 1–40. Springer, 2003.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On
the role of implicit regularization in deep learning. arXiv preprint arXiv:1412.6614, 2014.

21

http://dx.doi.org/10.1080/00401706.1979.10489751

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

John Shawe-Taylor and Nello Cristianini. Kernel methods for pattern analysis. Cambridge university
press, 2004.

Alex J Smola and Bernhard Schölkopf. Learning with kernels, volume 4. Citeseer, 1998.

Vladimir Vapnik. Statistical learning theory. 1998, volume 3. Wiley, New York, 1998.

Vladimir Vovk. Kernel ridge regression. In Empirical inference, pages 105–116. Springer, 2013.

Grace Wahba. Spline models for observational data, volume 59. Siam, 1990.

Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On early stopping in gradient descent learning.
Constructive Approximation, 26(2):289–315, 2007.

Yong-Quan Yin, Zhi-Dong Bai, and Pathak R Krishnaiah. On the limit of the largest eigenvalue
of the large dimensional sample covariance matrix. Probability theory and related fields, 78(4):
509–521, 1988.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

22

A Propositions

We first borrow a technical result for concentration of quadratic forms under a mild moment condition.

Proposition A.1 (Adapted from Lemma A.3 in (El Karoui, 2010)). Let {Zi}ni=1 be i.i.d. random
vectors in Rd, whose entries are i.i.d., mean 0, variance 1 and |Zi(k)| ≤ C · d

2
8+m . For any Σ under

the assumption (A.1), with θ = 1
2 −

2
8+m , we have with probability at least 1− d−2,

max
i,j

∣∣∣∣Z∗i ΣZj
d

− δij
Tr(Σ)

d

∣∣∣∣ ≤ d−θ log0.51 d, (A.1)

for d large enough.

Proof. The proof follows almost exactly as in Lemma A.3 (El Karoui, 2010). The only point of
clarification is that one can assert

P

(
max
i,j

∣∣∣∣Z∗i ΣZj
d

− δij
Tr(Σ)

d

∣∣∣∣ > 3d−θ(log d)0.51

)
≤ 2n2 exp(−c(log d)1.02), (A.2)

and thus for d large enough, say c(log d)1.02 ≥ 4 log d+log 2/c2, we have that 2n2 exp(−c(log d)1.02) ≤
d−2.

The following proposition is a non-asymptotic adaptation of Theorem 2.1 in (El Karoui, 2010). Our
contribution here is only to carefully spell out the terms and emphasize that the error rate can be
very slow (this is why (El Karoui, 2010) only provides a convergence in probability result).

Proposition A.2. Under the assumptions (A.1), (A.2), and (A.4), for θ = 1
2−

2
8+m , with probability

at least 1− δ − d−2, ∥∥∥K(X,X)−K lin(X,X)
∥∥∥ ≤ d−θ(δ−1/2 + log0.51 d), (A.3)

for d large enough and δ small enough.

Proof. In (El Karoui, 2010), the approximation error can be decomposed into first-order term E1 (di-
agonal approximation), second-order off-diagonal term E2, and third-order off-diagonal approximation
E3,

K(X,X)−K lin(X,X) := E1 + E2 + E3 (A.4)

where ‖E1‖ ≤ 1
2d
−θ log0.51 d, ‖E3‖ ≤ 1

2d
−θ log0.51 d with probability at least 1− d−2. However, for

E2 only convergence in probability is obtained. On Page 19 in (El Karoui, 2010), the last line reads

ETr(E4
2) ≤ Cd−4θ, (A.5)

therefore by Chebyshev bound, we have

P
(
‖E2‖ ≥ d−θδ−1/2

)
≤ P (Tr(E4

2) ≥ d−4θδ−2) ≤ ETr(E4
2)

d−4θδ−2
≤ Cδ2 ≤ δ. (A.6)

23

B Lemmas and Corollaries

Lemma B.1 (Gaussian case). Under the assumptions (A.1), (A.4), and that xi ∼ N (0,Σd) i.i.d.
Then with probability at least 1− d−2 with respect to a draw of X,

Eµ‖K(x, X)−K lin(x, X)‖2 ≤ d−1 log4.1 d, (B.1)

with d large enough.

Proof. Start with entry-wise Taylor expansion for the smooth kernel,

K(x, xj)−K lin(x, xj) =
h′′(ξj)

2

(
x∗xj
d

)2

≤ M

2

(
x∗xj
d

)2

.

Conditionally on xj , 1 ≤ j ≤ n, with probability at least 1− 2 exp(−t2/2) on x drawn from N (0,Σ),∣∣∣∣x∗xjd
∣∣∣∣ =

∣∣∣∣∣〈Σ1/2xj ,Σ
−1/2x〉

d

∣∣∣∣∣ ≤ ‖Σ‖‖Σ−1/2xj‖√
d

t+ log0.51 d√
d

, ∀j.

Using standard χ2 concentration bound, we know that with probability at least 1− d−2 on X

max
j

‖Σ−1/2xj‖2

d
≤ 1 +

log0.51 d√
d

. (B.2)

Therefore with probability at least 1− 2 exp(−t2/2) on x ∼ µ, conditionally on xj , 1 ≤ j ≤ n, we
have

‖K(x, X)−K lin(x, X)‖ ≤ C1

√
dmax

j

(
x∗xj
d

)2

≤ C2

√
d ·max

j

‖Σ−1/2xj‖2

d
· d−1(t2 + log1.02 d)

≤ C3 max
j

‖Σ−1/2xj‖2

d
· d−1/2(t2 + log1.02 d)

≤ C4 · d−1/2(t2 + log1.02 d).

Define Z = ‖K(x, X)−K lin(x, X)‖. The above says that, conditioned onX, P
(
Z ≥ C · d−1/2(s+ log1.02 d)

)
≤

2 exp(−s/2) for all s > 0. Therefore, by defining change of variables z = C · d−1/2(s+ log1.02 d),

Ex∼µ‖K(x, X)−K lin(x, X)‖2 = Ex∼µ[Z2] =

∫
R+

2z · P (Z ≥ z)dz

≤ C
∫
R+

d−1(s+ log1.02 d) · exp(−s/2)ds

≤ d−1 log4.1 d

with probability at least 1− d−2 on X, for d large enough.

24

Lemma B.2 (Weak moment case). Under the assumptions (A.1), (A.2), and (A.4), for θ = 1
2−

2
8+m ,

we have with probability at least 1− d−2 with respect to the draw of X, for d large enough,

Eµ‖K(x, X)−K lin(x, X)‖2 ≤ d−(4θ−1) log4.1 d. (B.3)

Proof. We start with entry-wise Taylor expansion for the smooth kernel,

K(x, xj)−K lin(x, xj) =
h′′(ξj)

2

(
x∗xj
d

)2

≤ M

2

(
x∗xj
d

)2

.

Conditionally on Xj , 1 ≤ j ≤ n, by Bernstein’s inequality (Boucheron et al., 2013, p. 38), with
probability at least 1− exp(−t) on x, for all j ∈ [n]∣∣∣∣x∗xjd

∣∣∣∣ =

∣∣∣∣∣〈Σ1/2xj ,Σ
−1/2x〉

d

∣∣∣∣∣
≤
√

2‖Σ1/2xj‖2
d

√
t+ log0.51 d√

d
+

1

3

‖Σ1/2xj‖∞d
2

8+m (t+ log1.02 d)

d
,

≤
√

2‖Σ1/2xj‖2
d

√
t+ log0.51 d√

d
+

1

3

‖Σ1/2xj‖d
2

8+m (t+ log1.02 d)

d

=

√
2‖Σ1/2xj‖√

d

√
t+ log0.51 d√

d
+

1

3

‖Σ1/2xj‖√
d

d
2

8+m
− 1

2 (t+ log1.02 d)

=
‖Σ1/2xj‖√

d

(√
2d−1/2(

√
t+ log0.51 d) +

1

3
d−θ(t+ log1.02 d)

)
.

Here the second line uses the fact that maxk

∣∣∣[Σ1/2xj](k) · [Σ−1/2x](k)
∣∣∣ ≤ ‖Σ1/2xj‖∞d

2
8+m due to

the assumption (A.2) for each entry [Σ−1/2x](k) ≤ Cd
2

8+m . Applying Proposition A.1 with the
matrix taken to be identity, for all j, with probability at least 1− d−2 on X

max
j

‖Σ1/2xj‖2

d
≤ ‖Σ‖max

j

‖Σ−1/2xj‖2

d
≤ C(1 + d−θ log0.51 d).

Therefore with probability at least 1− exp(−t) with respect to x ∼ µ, conditionally on xj , 1 ≤ j ≤ n

‖K(x, X)−K lin(x, X)‖ ≤ C1

√
dmax

j

(
x∗xj
d

)2

≤ C2

√
dmax

j

‖Σ1/2xj‖2

d

(
d−1(t+ log1.02 d) + d−2θ(t+ log1.02 d)2

)
(recall θ ≤ 1/2) ≤ C3

√
dmax

j

‖Σ1/2xj‖2

d

(
d−2θ(t2 + log2.04 d)

)
≤ C4 · d−2θ+1/2(t2 + log2.04 d).

Define Z = ‖K(x, X)−K lin(x, X)‖. The above says that, conditioned onX, P
(
Z ≥ C · d−2θ+1/2(s2 + log2.04 d)

)
≤

2 exp(−s) for all s > 0. Therefore, by change of variables z = C · d−2θ+1/2(s2 + log2.04 d), the expec-

25

tation satisfies

Ex∼µ‖K(x, X)−K lin(x, X)‖2 = Ex∼µ[Z2] =

∫
R+

2z · P (Z ≥ z)dz

≤ C
∫
R+

d−4θ+1(s2 + log2.04 d) · exp(−s)2sds

≤ C
∫
R+

d−4θ+1s3 log2.04 d · exp(−s)ds

≤ d−4θ+1 log4.1 d

with probability at least 1− d−2 on X, for d large enough.

Lemma B.3. For ‖Σ‖op ≤ 1, we have∥∥∥∥[drΣ−1 + Z∗Z
]−1

Z∗Z
[
drΣ−1 + Z∗Z

]−1
∥∥∥∥

op

(B.4)

≤
∥∥∥[drI + Z∗Z

]−1
Z∗Z

[
drI + Z∗Z

]−1
∥∥∥

op
.

Proof. If A � B, then ‖A−1C‖op ≤ ‖B−1C‖op. Since Σ−1 � I, it holds that∥∥∥∥[drΣ−1 + Z∗Z
]−1 [

Z∗Z
]1/2∥∥∥∥

op

≤
∥∥∥[drI + Z∗Z

]−1 [
Z∗Z

]1/2∥∥∥
op
.

Proof of Corollary 4.1. For the variance part, with Z = XΣ
−1/2
d , we have

V -
∑
j

λj (X∗X)[
dr + λj (X∗X)

]2
= Tr

(
Σ−1
d

[
drΣ−1

d + Z∗Z
]−1

Z∗Z
[
drΣ−1

d + Z∗Z
]−1
)

≤ Tr(Σ−1
d)

∥∥∥∥[drΣ−1
d + Z∗Z

]−1
Z∗Z

[
drΣ−1

d + Z∗Z
]−1
∥∥∥∥

op

≤ Tr(Σ−1
d)

∥∥∥[drI + Z∗Z
]−1

Z∗Z
[
drI + Z∗Z

]−1
∥∥∥

op
,

where the last step uses (B.4). Therefore, using standard random matrix theory, one can further
upper bound the above equation by∥∥∥[drI + Z∗Z

]−1
Z∗Z

[
drI + Z∗Z

]−1
∥∥∥

op
(B.5)

= max
j

λj (Z∗Z)(
dr + λj (Z∗Z)

)2 ≤ 1

n

(1−
√
d/n)2(

d
nr + (1−

√
d/n)2

)2 ≤
2

n
(B.6)

26

for n� d. For the bias part,

B - r +
1

n

d∑
j=1

λj

(
X∗X

d

)
= r +

1

d

1

n
Tr(X∗X)

= r +
1

d

1

n

n∑
j=1

‖Σ1/2zj‖2 - r +
1

d

(
Tr(Σ) +

√
Tr(Σ2)

n

)

where the last line uses the fact

Ez‖Σ1/2z‖2 = Tr(Σ)

and standard χ2 concentration.

Proof of Corollary 4.2. For the variance bound, we have

V ≤ n

d

1

4r
, as

t

(r + t)2
≤ 1

4r
for all t.

For the bias bound, we have

B - r +
1

n

n∑
j=1

λj

(
XX∗

d

)
= r +

1

d

1

n

n∑
j=1

‖Σ1/2zj‖2

- r +
1

d

(
Tr(Σ) +

√
Tr(Σ2)

n

)

by the same argument as in the proof of Corollary 4.1.

Lemma B.4. Let g(x) ∈ R that satisfies ∀g ∈ G, |g(x)| ≤ M for all x. Then with probability at
least 1− 2δ, we have for i.i.d. xi ∼ µ

sup
g∈G

∣∣∣Eg(x)− Êng(x)
∣∣∣ ≤ E sup

g∈G

∣∣∣Eg(x)− Êng(x)
∣∣∣+M

√
log 1/δ

2n
(B.7)

≤ 2E sup
g∈G

1

n

∑
i

εig(xi) +M

√
log 1/δ

2n
(B.8)

≤ 2Eε sup
g∈G

1

n

∑
i

εig(xi) + 3M

√
log 1/δ

2n
(B.9)

where Eε denotes the conditional expectation with respect to i.i.d. Rademacher random variables
ε1, . . . , εn.

Proof. The proof is a standard exercise using McDiarmid’s inequality and symmetrization. We
include here for completeness. See (Mendelson, 2003, Theorem 2.21, 2.23 and their corollaries).

27

C MNIST Result

Here the error is in percentage, so 2.921 corresponds to an error 2.921%.

Digits pair: [i, j] Error: [Lambda=0 Lambda=0.1 Lambda=1]
digits pair: [0, 1] error: [0.541 1.006 1.710]
digits pair: [0, 2] error: [2.921 4.689 7.584]
digits pair: [0, 3] error: [1.601 3.386 5.841]
digits pair: [0, 4] error: [1.285 2.610 4.019]
digits pair: [0, 5] error: [2.567 4.957 8.226]
digits pair: [0, 6] error: [2.969 5.239 8.359]
digits pair: [0, 7] error: [1.218 2.808 4.810]
digits pair: [0, 8] error: [2.541 3.725 5.526]
digits pair: [0, 9] error: [2.031 3.726 5.482]
digits pair: [1, 2] error: [2.487 3.699 7.220]
digits pair: [1, 3] error: [1.644 2.688 4.913]
digits pair: [1, 4] error: [1.221 2.089 3.552]
digits pair: [1, 5] error: [1.455 2.860 4.904]
digits pair: [1, 6] error: [1.615 2.438 3.913]
digits pair: [1, 7] error: [2.157 3.693 5.689]
digits pair: [1, 8] error: [2.468 3.571 7.486]
digits pair: [1, 9] error: [1.441 2.513 3.941]
digits pair: [2, 3] error: [4.713 7.853 13.253]
digits pair: [2, 4] error: [2.998 5.602 9.525]
digits pair: [2, 5] error: [2.711 5.471 10.491]
digits pair: [2, 6] error: [3.287 5.917 10.519]
digits pair: [2, 7] error: [4.836 6.930 10.530]
digits pair: [2, 8] error: [5.080 8.460 13.531]
digits pair: [2, 9] error: [2.958 5.335 8.763]
digits pair: [3, 4] error: [1.783 3.847 6.880]
digits pair: [3, 5] error: [6.822 10.129 17.565]
digits pair: [3, 6] error: [2.017 3.887 7.088]
digits pair: [3, 7] error: [3.184 5.486 8.963]
digits pair: [3, 8] error: [5.345 9.766 16.442]
digits pair: [3, 9] error: [3.909 6.494 10.330]
digits pair: [4, 5] error: [2.254 4.871 8.757]
digits pair: [4, 6] error: [2.878 4.793 7.396]
digits pair: [4, 7] error: [3.711 7.036 11.015]
digits pair: [4, 8] error: [3.488 5.615 8.888]
digits pair: [4, 9] error: [10.199 11.587 18.058]
digits pair: [5, 6] error: [5.014 7.716 12.682]
digits pair: [5, 7] error: [2.537 4.683 8.268]
digits pair: [5, 8] error: [5.868 9.587 16.261]
digits pair: [5, 9] error: [4.562 6.578 10.935]
digits pair: [6, 7] error: [1.114 2.864 4.894]
digits pair: [6, 8] error: [4.102 5.954 9.265]
digits pair: [6, 9] error: [1.267 2.944 4.935]
digits pair: [7, 8] error: [3.197 5.623 9.093]
digits pair: [7, 9] error: [6.598 10.841 17.252]
digits pair: [8, 9] error: [4.640 7.673 12.070]

28

Does data interpolation contradict statistical optimality?

Mikhail Belkin Alexander Rakhlin Alexandre B. Tsybakov
The Ohio State University MIT CREST, ENSAE

Abstract

We show that classical learning methods in-
terpolating the training data can achieve op-
timal rates for the problems of nonparametric
regression and prediction with square loss.

1 Introduction

In this paper, we exhibit estimators that interpolate
the data, yet achieve optimal rates of convergence for
the problems of nonparametric regression and predic-
tion with square loss. This curious observation goes
against the usual (or, folklore?) intuition that a good
statistical procedure should forego the exact fit to data
in favor of a more smooth representation. The family
of estimators we consider do exhibit a bias-variance
trade-off with a tuning parameter, yet this “regular-
ization” co-exists in harmony with data interpolation.

Motivation for this work is the recent focus within the
machine learning community on the out-of-sample per-
formance of neural networks. These flexible models
are typically trained to fit the data exactly (either in
their sign or in the actual value), yet they predict well
on unseen data. The conundrum has served both as a
source of excitement about the “magical” properties of
neural networks, as well as a call for the development
of novel statistical techniques to resolve it.

So, should we be surprised to find a procedure that fits
any amount of data yet generalizes well? An answer
is immediate: No. We can take any procedure with
good out-of-sample performance and modify it on the
training points to fit the outcome variable. Such a
modification on a zero-measure set (under appropri-
ate assumptions) has no effect on the out-of-sample
performance. One can argue, however, that this con-
struction is not “natural.” The aim of this paper is to

Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

show that a classical local estimation procedure sat-
isfies the desiderata: for an appropriate choice of a
kernel, the method interpolates the data, yet achieves
optimal rates of convergence in the minimax sense.
What is surprising, the optimal rate is achieved point-
wise. Through this pedagogical example we emphasize
that the degree to which a procedure fits the data can
be completely decopled from the notion of overfitting.

Perhaps, some of the misconceptions regarding the
generalization ability of learning methods that fit
training data too well can be attributed to an (incor-
rect) interpretation of the familiar bias-variance car-
toon we find in textbooks (see e.g. [6]):

Model Complexity HighLow

Training
Error

Test Error

Underfitting Overfitting

In fact, low training error does not necessarily imply
that the model is too complex and we are in the over-
fitting regime.

Let (X,Y) be a random pair on Rd × R with distri-
bution PXY , and let f(x) = E[Y |X = x] be the re-
gression function. A goal of nonparametric estima-
tion is to construct an estimate fn of f , given a sam-
ple (X1, Y1), . . . , (Xn, Yn) drawn independently from
PXY . A classical approach to this problem is kernel
smoothing. In particular, the Nadaraya-Watson esti-
mator [9, 13] is defined as

fn(x) =

∑n
i=1 YiK

(
x−Xi
h

)∑n
i=1K

(
x−Xi
h

) , (1)

where K : Rd → R is a kernel function and h > 0 is a
bandwidth and we assume that the denominator does
not vanish. Appropriate choices of K and h lead to op-
timal rates of estimation, under various assumptions,
and we refer the reader to [12] and references therein.

Does data interpolation contradict statistical optimality?

We consider singular kernels that approach infinity
when their argument tends to zero. It has been ob-
served, at least since [11], that the resulting function
in (1) interpolates the data. We will focus on the par-
ticular kernel

K (u) , ‖u‖−a I{‖u‖ ≤ 1}, (2)

for some a > 0. Here, ‖·‖ denotes the Euclidean norm.
Our results can be extended to other related singular
kernels, for example, to

K (u) , ‖u‖−a [1− ‖u‖]2+ (3)

where [c]+ = max{c, 0}, and

K (u) , ‖u‖−a cos2(π ‖u‖ /2)I{‖u‖ ≤ 1}, (4)

considered in [8, 7]. Also, ‖·‖ can be any norm on Rd,
not necessarily the Euclidean norm.

Our main result, stated precisely in the next section
and proved in Section 3, establishes that

E ‖fn − f‖2L2(PX) , E(fn(X)− f(X))2 ≤ Cn−
2β

2β+d

whenever the regression function f belongs to a Hölder
class with parameter β ∈ (0, 1], and under additional
assumptions stated below. Here C is a constant that
does not depend on n and PX is the marginal distri-

bution of X. The rate n−
2β

2β+d is the classical minimax
optimal rate for Hölder classes [12].

Our result also yields a curious conclusion for the
problem of prediction with square loss. Observe that
excess loss—an object studied in Statistical Learning
Theory—with respect to a Hölder class Σ(β, L), for-
mally defined below, can be written as

E(fn(X)− Y)2 − inf
g∈Σ(β,L)

E(g(X)− Y)2

= E(fn(X)− f(X))2 − inf
g∈Σ(β,L)

E(g(X)− f(X))2

= E(fn(X)− f(X))2

under the assumption that the model is well-specified
(that is, the regression function is in the class). We
remark that the estimator fn is improper, in the sense
that it does not itself belong to the Hölder class (its
smoothness depends on h and, hence, on n). In conclu-
sion, despite the fact that fn is improper and fits the
data exactly, it attains optimal rates for excess loss.
We refer the reader to [10] for further discussion of op-
timal rates in nonparametric estimation and statistical
learning.

Prior work Within the context of pattern classifica-
tion, the 1-Nearest-Neighbor classifier is an example of
an interpolating rule. It is shown in [3] that the limit

(as n tends to infinity) of the classification risk is no
more than twice the Bayes risk. To make k-Nearest-
Neighbor rules consistent, one is required to increase
k with n [4, 2], in which case the rule is no longer
interpolating.

The idea of interpolating the data using singular ker-
nels appears already in [11] and was further developed
in [8, 7], among others. These works were focusing
on deterministic properties of the interpolants and no
statistical guarantees have been established until [5]
have shown consistency of the estimator (1) for the

singular kernel K (u) = ‖u‖−d, however, without fi-
nite sample guarantees. The recent work of [1] proves
the first (to the best of our knowledge) non-asymptotic
rates for interpolating procedures, yet the guarantees
are suboptimal. The present paper shows that statis-
tical optimality of interpolating rules can indeed be
achieved and it holds under rather standard nonpara-
metric assumptions on the regression function.

2 Main Results

We start with a definition.

Definition 1. For L > 0 and β ∈ (0, 2], the (β, L)-
Hölder class, denoted by Σ(β, L), is defined as follows:

• If β ∈ (0, 1], the class Σ(β, L) consists of functions
f : Rd → R satisfying

∀x, y ∈ Rd, |f(x)− f(y)| ≤ L ‖x− y‖β . (5)

• If β ∈ (1, 2], the class Σ(β, L) consists of continu-
ously differentiable functions f : Rd → R satisfy-
ing for all x, y ∈ Rd

|f(x)− f(y)− 〈∇f(y), x− y〉 | ≤ L ‖x− y‖β
(6)

where 〈·, ·〉 denotes the inner product.

We assume the following.

(A1) For any x ∈ Rd, the expectation E[Y |X = x] =
f(x) exists and E[ξ2|X = x] ≤ σ2

ξ < ∞, where
ξ = Y − E[Y |X] = Y − f(X).

(A2) The marginal density p(·) of X exists and satisfies
0 < pmin ≤ p(x) ≤ pmax for all x on its support.

The Nadaraya-Watson estimator for a singular kernel
K is defined as

fn(x) =

Yi if x = Xi for some i ∈ [n]

0 if
∑n
i=1K

(
x−Xi
h

)
= 0,∑n

i=1 YiK(x−Xih)∑n
i=1K(x−Xih)

otherwise.

(7)

Mikhail Belkin, Alexander Rakhlin, Alexandre B. Tsybakov

Note that setting here fn(Xi) = Yi is not an artificial
perturbation. Indeed, for kernel (2) or other kernel
with singularity at 0, it is just a proper way of com-
pleting the definition of fn(·) by continuity.

The two main results for this estimator are now stated.

Theorem 1. Assume that f ∈ Σ(β, Lf) for β ∈ (0, 1],
Lf > 0. Let Assumptions (A1) and (A2) be satisfied,
and 0 < a < d/2. Then for any fixed x0 ∈ Rd in
the support of p the estimator (7) with kernel (2) and

bandwidth h = n−
1

2β+d satisfies

E[(fn(x0)− f(x0))2] ≤ Cn−
2β

2β+d

where C > 0 is a constant that does not depend on n.

Theorem 2. Assume that f ∈ Σ(β, Lf) for β ∈ (1, 2],
Lf > 0. Let Assumptions (A1) and (A2) be satis-
fied, and 0 < a < d/2. Assume in addition that, for
all x, y in the support of p, we have |p(x) − p(y)| ≤
Lp ‖x− y‖β−1

, Lp > 0. Then for any fixed x0 ∈ Rd
such that the Euclidean ball of radius h centered at x0

is contained in the support of p, the estimator (7) with

kernel (2) and bandwidth h = n−
1

2β+d satisfies

E[(fn(x0)− f(x0))2] ≤ Cn−
2β

2β+d

where C > 0 is a constant that does not depend on n.

In particular, the pointwise mean squared error (MSE)
bound of Theorem 1 immediately implies that the inte-
grated MSE with respect to the marginal distribution
of X satisfies

E
∫
Rd

(fn(x)− f(x))2p(x)dx ≤ Cn−
2β

2β+d ,

assuming that f is bounded on the support of the
marginal density p.

3 Proofs

Without loss of generality, consider the problem of es-
timating f(x0) at x0 = 0, assuming it is in the support
of p and |f(x0)| <∞.

Consider the event

E =

{
n∑
i=1

Kh(Xi) 6= 0

}
= {∃i = 1, . . . , n : ‖Xi‖ ≤ h}

and observe that

P
(
Ē
)
≤
(
1− Cpminh

d
)n ≤ exp

{
−Cpminnh

d
}

for a constant C > 0 that does not depend on
n. On the event Ē , we have fn(0) = 0 and thus
the contribution to expected risk is at most ME =

f(0)2 exp
{
−Cpminnh

d
}
, a lower-order term compared

to the remaining calculations.

On the event E , the estimator fn(0) is equal to

f̄n(0) =

∑n
i=1 YiKh(Xi)∑n
i=1Kh(Xi)

(modulo an event of zero probability with respect to
the joint distribution of X1, . . . , Xn), where

Kh(x) , K(x/h).

Set ξi = Yi − f(Xi). Let EY denote the expectation
with respect to Y1, . . . , Yn, conditional on X1, . . . , Xn.
We have the following “bias-variance” decomposition

E[(fn(0)− f(0))2]

≤ E[(f̄n(0)− EY f̄n(0) + EY f̄n(0)− f(0))2I{E}] +ME

= E[(f̄n(0)− EY f̄n(0))2I{E}]
+ E[(EY f̄n(0)− f(0))2I{E}] +ME .

It holds that, on the event E ,

EY f̄n(0) =

∑n
i=1 f(Xi)Kh(Xi)∑n

i=1Kh(Xi)

and, hence, the variance term is

σ2(0) , E[(f̄n(0)− EY f̄n(0))2I{E}] (8)

= E

[(∑n
i=1 ξiKh(Xi)∑n
i=1Kh(Xi)

)2

I{E}

]
≤ σ2

ξσ
2
X ,

where

σ2
X , nE

[
K2
h(X1)

(
∑n
i=1Kh(Xi))

2 I{E}

]
.

On the other hand, the bias1 is

b2(0) , E[(EY f̄n(0)− f(0))2I{E}] (9)

= E

[(∑n
i=1(f(Xi)− f(0))Kh(Xi)∑n

i=1Kh(Xi)

)2

I{E}

]
.

The following lemmas control each of the above expres-
sions under various assumptions on f and the marginal
density p. We will denote by C positive constants that
can vary from line to line.

3.1 Bounding the Variance

Lemma 1. Let Assumptions (A1) and (A2) hold.
Then,

σ2(0) ≤
Cσ2

ξ

nhd
. (10)

1To be precise, this term includes variance due to ran-
dom X, as will be clear from Lemma 3.

Does data interpolation contradict statistical optimality?

Proof. Introduce the random variables

ηi = I{‖Xi‖ ≤ h}.

They are i.i.d. and follow the Bernoulli distribution
with parameter

p̄ , P (‖X1‖ ≤ h) ≥ c0pminh
d

where c0 > 0 depends only on d. Then

σ2
X ≤ nE

[
K2
h(X1)

(
∑n
i=1Kh(Xi))

2 I

{
n∑
i=1

ηi ≤
np̄

2

}
I{E}

]

+ nE
[

4

(np̄)2
K2
h(X1)

]
(11)

where we have used the fact that

Kh(Xi) ≥ ηi, i = 1, . . . , n.

Change of variables yields

nE[K2
h(X1)] ≤ nhdpmax

∫
Rd
K2(u)du. (12)

Since the kernel K is radially symmetric and sup-
ported on the unit Euclidean ball, the last expression
is bounded from above by

Cnhdpmax

∫ 1

0

r−2ard−1dr ≤ C2nh
d

whenever d−2a−1 > −1 (equivalently, a < d/2). Here
C,C2 are positive constants depending only on d. It
follows that

nE
[

4

(np̄)2
K2
h(X1)

]
≤ 4

(c0pminnhd)2
C2nh

d ≤ C

nhd
.

To conclude the proof, we analyze the first term in
(11):

nE

[
K2
h(X1)

(
∑n
i=1Kh(Xi))

2 I

{
n∑
i=1

ηi ≤
np̄

2

}
I{E}

]

≤ nP

(
n∑
i=1

ηi ≤
np̄

2

)

= nP

(
n∑
i=1

ηi − np̄ ≤
np̄

2

)
.

By Bernstein’s inequality, the last expression is at most

n exp

{
− (np̄/2)2

2(np̄(1− p̄) + np̄/3)

}
≤ n exp

{
−3np̄

32

}
≤ n exp

{
−Cnhd

}
.

3.2 Bounding the Bias

Lemma 2. Let β ∈ (0, 1], Lf > 0, and assume that
f ∈ Σ(β, Lf). Then

b2(0) ≤ L2
fh

2β .

Proof. Since f ∈ Σ(β, Lf) we have, on the event E ,∣∣∣∣∑n
i=1(f(Xi)− f(0))Kh(Xi)∑n

i=1Kh(Xi)

∣∣∣∣
≤

∣∣∣∣∣
∑n
i=1 Lf ‖Xi‖βKh(Xi)∑n

i=1Kh(Xi)

∣∣∣∣∣
≤ Lfhβ .

The last step holds because the kernel Kh is zero out-
side of the Euclidean ball of radius h.

Lemma 2 can be extended to smoothness β ∈ (1, 2]
under an additional assumption on the marginal den-
sity.

Lemma 3. Let β ∈ (1, 2], Lf > 0, and f ∈ Σ(β, Lf).
Assume that the density p of the marginal distribution
of X satisfies p ∈ Σ(β − 1, Lp), and p(x) ≥ pmin > 0
for all x in the support of p. Then

b2(0) ≤ (Lf + ‖∇f(0)‖Lpp−1
min)h2β + σ2

X .

Proof. We write (9) as b2(0) = E
[∑n

i,j=1GiGj I{E}
]

where

Gi =
(f(Xi)− f(0))Kh(Xi)∑n

i=1Kh(Xi)
.

For i 6= j we can write

E[GiGj I{E}]
= E [(f(Xi)− f(0))(f(Xj)− f(0))A(Xi, Xj)]

where

A(Xi, Xj) =
Kh(Xi)Kh(Xj)

(
∑n
i=1Kh(Xi))

2 I{E} ≥ 0.

We omit for brevity the dependence of A(Xi, Xj) on
(Xk, k 6= i, k 6= j). Thus,

E′[GiGj I{E}]

=

∫
Rd

∫
Rd

(f(xi)− f(0))(f(xj)− f(0))

×A(xi, xj)p(xi)p(xj)dxidxj

where E′ denotes the conditional expectation over
(Xi, Xj) for fixed (Xk, k 6= i, k 6= j). Let us define

R(xi) = f(xi)− f(0)− 〈∇f(0), xi〉

Mikhail Belkin, Alexander Rakhlin, Alexandre B. Tsybakov

and R(xj) = f(xj)− f(0)− 〈∇f(0), xj〉 .
Then

E′[GiGj I{E}]

=

∫
Rd

∫
Rd
〈∇f(0), xi〉 〈∇f(0), xj〉

×A(xi, xj)p(xi)p(xj)dxidxj

+ 2

∫
Rd

∫
Rd
〈∇f(0), xi〉R(xj)

×A(xi, xj)p(xi)p(xj)dxidxj

+

∫
Rd

∫
Rd
R(xi)R(xj)A(xi, xj)p(xi)p(xj)dxidxj

where the factor 2 arises from symmetry considera-
tions. Now observe that∫

Rd
〈∇f(0), xi〉A(xi, xj)p(0)dxi = 0

for any xj since the function under the integral is odd
for any fixed (Xk, k 6= i, k 6= j). Applying this ob-
servation for both xi and xj in the first term of the
above decomposition, as well as for the second term,
we obtain

E′[GiGj I{E}]

=

∫
Rd

∫
Rd
〈∇f(0), xi〉 〈∇f(0), xj〉

×A(xi, xj)(p(xi)− p(0))(p(xj)− p(0))dxidxj

+ 2

∫
Rd

∫
Rd
〈∇f(0), xi〉R(xj)

×A(xi, xj)(p(xi)− p(0))p(xj)dxidxj

+

∫
Rd

∫
Rd
R(xi)R(xj)A(xi, xj)p(xi)p(xj)dxidxj .

Condition (6) implies that |R(xi)| ≤ Lf ‖xi‖β . Next,
recall that A is zero whenever either ‖xi‖ > h or
‖xj‖ > h. Using Cauchy-Schwarz inequality for the
inner products and the Hölder assumption on p, we
conclude that

E′[GiGj I{E}]

≤ B2L2
ph

2β

∫
Rd

∫
Rd
A(xi, xj)dxidxj

+ 2BLfLph
2β

∫
Rd

∫
Rd
A(xi, xj)p(xj)dxidxj

+ L2
fh

2β

∫
Rd

∫
Rd
A(xi, xj)p(xi)p(xj)dxidxj

where B = ‖∇f(0)‖2. Using the lower bound pmin

on the density, completing the square and taking the
expectation with respect to (Xk, k 6= i, k 6= j), we
establish that E[GiGj I{E}] is bounded above by

h2β(BLpp
−1
min + Lf)2E

[
Kh(Xi)Kh(Xj)

(
∑n
i=1Kh(Xi))

2 I{E}

]
.

On the other hand, the sum of diagonal elements is

n∑
i=1

E[G2
i I{E}] = nE

[
K2(X1)

(
∑n
i=1Kh(Xi))

2 I{E}

]
,

which is precisely the variance term σ2
X . Finally,∑

i6=j

E[GiGj I{E}]

= h2β(BLpp
−1
min + Lf)2E

[∑
i6=j Kh(Xi)Kh(Xj)

(
∑n
i=1Kh(Xi))

2 I{E}

]

≤ h2β(BLpp
−1
min + Lf)2E

[∑n
i,j=1Kh(Xi)Kh(Xj)

(
∑n
i=1Kh(Xi))

2 I{E}

]
≤ h2β(BLpp

−1
min + Lf)2.

3.3 Proofs of Theorem 1 and 2

The two theorems follow immediately from Lemmas 1,
2, and 3 by balancing n exp

{
−Cnhd

}
+ C

nhd
+ Ch2β

with h = n−
1

2β+d .

4 Discussion

We presented a proof of concept: an interpolating rule
can achieve optimal rates for the problems of nonpara-
metric estimation and prediction with square loss. Our
proof technique extends to other kernels where the in-
dicator over the unit Euclidean ball in (2) is replaced
with a function that dominates an appropriately scaled
indicator. The analysis also works for non-singular
kernels under the assumption of square integrability
(required only in Eq. (12)).

We observe that by thresholding the singular kernel at
a value κ, one can control the degree of fitting the data
in a manner that is decoupled from the bias-variance
trade-off achieved through h.

We also remark that local polymnomial estimators [12]
with an interpolating kernel as in (2) can be shown to
achieve optimal rate n−2β/(2β+1) for all β > 0 and
d = 1. The proof will be included in a full version of
this paper.

While each pair (Xi, Yi) is fit exactly by the proposed
estimator, the influence of the datapoint is local. In
aggregate, however, the function fn is being “pulled”
towards the true regression function f . Whether a sim-
ilar phenomenon occurs in other interpolating rules—
such as overparametrized neural networks—requires
further investigation.

Does data interpolation contradict statistical optimality?

5 Visualization

The figures below show interpolations with kernels (2) and (3). While both achieve optimal rates of convergence
in this simple one-dimensional problem, the latter kernel appears to be less irregular. Indeed, unlike (2), kernels
(3) and (4) produce continuous functions.

Figure 1: Interpolation with K (u) = ‖u‖−a I{‖u‖ ≤ 1}, a = 0.49, and various values of h.

Figure 2: Interpolation with K (u) = ‖u‖−a [1− ‖u‖]2+, a = 0.49, and various values of h.

Mikhail Belkin, Alexander Rakhlin, Alexandre B. Tsybakov

We now compare Figures 1 and 2 to those with a non-singular kernel. We remark that choices of bandwidth h
differ depending on the kernel, and direct comparisons for the same value across kernels might not be meaningful.

Figure 3: Comparison: non-singular Epanechnikov kernel K (u) = (3/4)(1− ‖u‖2)I{‖u‖ ≤ 1}.

Figure 4: Comparison: non-singular Gaussian kernel K (u) = (1/
√

2π) exp
{
−‖u‖2

}
. Note the altered choices

of h.

Figure 5 below shows a comparison between the interpolating kernel 3 and the Gaussian kernel for binary-valued
data. We observe the more global effect that each point has on the behavior of the solution with the Gaussian
kernel, in comparison to the singular kernel. Understanding properties of the plug-in classifier sign(fn) under
various margin conditions appears to be an interesting direction of further research.

Does data interpolation contradict statistical optimality?

Figure 5: Interpolation with K (u) = ‖u‖−a [1− ‖u‖]2+, a = 0.49, for binary-valued Y .

Figure 6: Comparison: non-singular Gaussian kernel K (u) = (1/
√

2π) exp
{
−‖u‖2

}
for binary-valued Y . Note

the altered choices of h.

Mikhail Belkin, Alexander Rakhlin, Alexandre B. Tsybakov

References

[1] Mikhail Belkin, Daniel Hsu, and Partha Mitra.
Overfitting or perfect fitting? risk bounds for
classification and regression rules that interpolate.
arXiv preprint arXiv:1806.05161, 2018. 2

[2] Kamalika Chaudhuri and Sanjoy Dasgupta. Rates
of convergence for nearest neighbor classification.
In Advances in Neural Information Processing
Systems, pages 3437–3445, 2014. 2

[3] Thomas Cover and Peter Hart. Nearest neigh-
bor pattern classification. IEEE transactions on
information theory, 13(1):21–27, 1967. 2

[4] Luc Devroye, László Györfi, and Gábor Lu-
gosi. A probabilistic theory of pattern recognition.
Springer, 1996. 2

[5] Luc Devroye, Laszlo Györfi, and Adam Krzyżak.
The Hilbert kernel regression estimate. Journal
of Multivariate Analysis, 65(2):209–227, 1998. 2

[6] T. Hastie, R. Tibshirani, and J. Friedman. The
elements of statistical learning. Springer, 2016. 1

[7] V Katkovnik. Nonparametric identification and
smoothing of data (Local approximation methods).
Nauka, Moscow, 1985. 2

[8] Peter Lancaster and Kes Salkauskas. Surfaces
generated by moving least squares methods.
Mathematics of computation, 37(155):141–158,
1981. 2

[9] Elizbar A Nadaraya. On estimating regression.
Theory of Probability & Its Applications, 9(1):
141–142, 1964. 1

[10] Alexander Rakhlin, Karthik Sridharan, and
Alexandre B Tsybakov. Empirical entropy, min-
imax regret and minimax risk. Bernoulli, 23(2):
789–824, 2017. 2

[11] Donald Shepard. A two-dimensional interpolation
function for irregularly-spaced data. In Proceed-
ings of the 1968 23rd ACM national conference,
pages 517–524. ACM, 1968. 2

[12] Alexandre B Tsybakov. Introduction to nonpara-
metric estimation. Springer Series in Statistics.
Springer, New York, 2009. 1, 2, 5

[13] Geoffrey S Watson. Smooth regression analysis.
Sankhyā: The Indian Journal of Statistics, Series
A, pages 359–372, 1964. 1

ar
X

iv
:1

81
0.

07
77

0v
3

 [
cs

.L
G

]
 2

9
O

ct
 2

01
9

Small ReLU networks are powerful memorizers:

a tight analysis of memorization capacity

Chulhee Yun
MIT

Cambridge, MA 02139
chulheey@mit.edu

Suvrit Sra
MIT

Cambridge, MA 02139
suvrit@mit.edu

Ali Jadbabaie
MIT

Cambridge, MA 02139
jadbabai@mit.edu

Abstract

We study finite sample expressivity, i.e., memorization power of ReLU networks.
Recent results require N hidden nodes to memorize/interpolate arbitrary N data
points. In contrast, by exploiting depth, we show that 3-layer ReLU networks with

Ω(
√
N) hidden nodes can perfectly memorize most datasets with N points. We

also prove that width Θ(
√
N) is necessary and sufficient for memorizing N data

points, proving tight bounds on memorization capacity. The sufficiency result can
be extended to deeper networks; we show that an L-layer network with W param-
eters in the hidden layers can memorize N data points if W = Ω(N). Combined
with a recent upper bound O(WL logW) on VC dimension, our construction is
nearly tight for any fixed L. Subsequently, we analyze memorization capacity of
residual networks under a general position assumption; we prove results that sub-
stantially reduce the known requirement of N hidden nodes. Finally, we study the
dynamics of stochastic gradient descent (SGD), and show that when initialized
near a memorizing global minimum of the empirical risk, SGD quickly finds a
nearby point with much smaller empirical risk.

1 Introduction

Recent results in deep learning indicate that over-parameterized neural networks can memorize arbi-
trary datasets [2, 53]. This phenomenon is closely related to the expressive power of neural networks,
which have been long studied as universal approximators [12, 18, 21]. These results suggest that suf-
ficiently large neural networks are expressive enough to fit any dataset perfectly.

With the widespread use of deep networks, recent works have focused on better understanding the
power of depth [13, 17, 30, 33, 37, 38, 44, 45, 49, 50]. However, most existing results consider
expressing functions (i.e., infinitely many points) rather than finite number of observations; thus,
they do not provide a precise understanding the memorization ability of finitely large networks.

When studying finite sample memorization, several questions arise: Is a neural network capable of
memorizing arbitrary datasets of a given size? How large must a neural network be to possess such
capacity? These questions are the focus of this paper, and we answer them by studying universal
finite sample expressivity and memorization capacity; these concepts are formally defined below.

Definition 1.1. We define (universal) finite sample expressivity of a neural network fθ(·)
(parametrized by θ) as the network’s ability to satisfy the following condition:

For all inputs {xi}Ni=1 ∈ R
dx×N and for all {yi}Ni=1 ∈ [−1,+1]dy×N , there

exists a parameter θ such that fθ(xi) = yi for 1 ≤ i ≤ N .

We define memorization capacity of a network to be the maximum value of N for which the
network has finite sample expressivity when dy = 1.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

http://arxiv.org/abs/1810.07770v3

Memorization capacity is related to, but is different from VC dimension of neural networks [3, 4].
Recall the definition of VC dimension of a neural network fθ(·):

The maximum value N such that there exists a dataset {xi}Ni=1 ∈ R
dx×N such

that for all {yi}Ni=1 ∈ {±1}N there exists θ such that fθ(xi) = yi for 1 ≤ i ≤ N .

Notice that the key difference between memorization capacity and VC dimension is in the quantifiers
in front of the xi’s. Memorization capacity is always less than or equal to VC dimension, which
means that an upper bound on VC dimension is also an upper bound on memorization capacity.

The study of finite sample expressivity and memorization capacity of neural networks has a long
history, dating back to the days of perceptrons [6, 11, 22–24, 26, 36, 42, 48]; however, the older
studies focus on shallow networks with traditional activations such as sigmoids, delivering limited
insights for deep ReLU networks. Since the advent of deep learning, some recent results on mod-
ern architectures appeared, e.g., fully-connected neural networks (FNNs) [53], residual networks
(ResNets) [20], and convolutional neural networks (CNNs) [35]. However, they impose assump-
tions on architectures that are neither practical nor realistic. For example, they require a hidden
layer as wide as the number of data points N [35, 53], or as many hidden nodes as N [20], causing
their theoretical results to be applicable only to very large neural networks; this can be unrealistic
especially when N is large.

1.1 Summary of our contributions

Before stating our contributions, a brief comment on “network size” is in order. The size of a neural
network can be somewhat vague; it could mean width/depth, the number of edges, or the number of
hidden nodes. We use “size” to refer to the number of hidden nodes in a network. This also applies
to notions related to size; e.g., by a “small network” we mean a network with a small number of
hidden nodes. For other measures of size such as width, we will use the words explicitly.

1. Finite sample expressivity of neural networks. Our first set of results is on the finite sample
expressivity of FNNs (Section 3), under the assumption of distinct data point xi’s. For simplicity,
we only summarize our results for ReLU networks, but they include hard-tanh networks as well.

• Theorem 3.1 shows that any 3-layer (i.e., 2-hidden-layer) ReLU FNN with hidden layer widths
d1 and d2 can fit any arbitrary dataset if d1d2 ≥ 4Ndy , where N is the number of data points

and dy is the output dimension. For scalar outputs, this means d1 = d2 = 2
√
N suffices to fit

arbitrary data. This width requirement is significantly smaller than existing results on ReLU.

• The improvement is more dramatic for classification. If we have dy classes, Proposition 3.2
shows that a 4-layer ReLU FNN with hidden layer widths d1, d2, and d3 can fit any dataset if
d1d2 ≥ 4N and d3 ≥ 4dy. This means that 106 data points in 103 classes (e.g., ImageNet) can
be memorized by a 4-layer FNN with hidden layer widths 2k-2k-4k.

• For dy = 1, note that Theorem 3.1 shows a lower bound of Ω(d1d2) on memorization capacity.
We prove a matching upper bound in Theorem 3.3: we show that for shallow neural networks
(2 or 3 layers), lower bounds on memorization capacity are tight.

• Proposition 3.4 extends Theorem 3.1 to deeper and/or narrower networks, and shows that if
the sum of the number of edges between pairs of adjacent layers satisfies dl1dl1+1 + · · · +
dlmdlm+1 = Ω(Ndy), then universal finite sample expressivity holds. This gives a lower bound
Ω(W) on memorization capacity, where W is the number of edges in the network. Due to an
upper bound O(WL logW) (L is depth) on VC dimension [4], our lower bound is almost tight
for fixed L.

Next, in Section 4, we focus on classification using ResNets; here dx denotes the input dimension
and dy the number of classes. We assume here that data lies in general position.

• Theorem 4.1 proves that deep ResNets with 4N
dx

+ 6dy ReLU hidden nodes can memorize

arbitrary datasets. Using the same proof technique, we also show in Corollary 4.2 that a 2-layer
ReLU FNN can memorize arbitrary classification datasets if d1 ≥ 4N

dx
+ 4dy . With the general

position assumption, we can reduce the existing requirements of N to a more realistic number.

2. Trajectory of SGD near memorizing global minima. Finally, in Section 5 we study the
behavior of stochastic gradient descent (SGD) on the empirical risk of universally expressive FNNs.

2

• Theorem 5.1 shows that for any differentiable global minimum that memorizes, SGD initial-
ized close enough (say ǫ away) to the minimum, quickly finds a point that has empirical risk
O(ǫ4) and is at most 2ǫ far from the minimum. We emphasize that this theorem holds not
only for memorizers explicitly constructed in Sections 3 and 4, but for all global minima that
memorize. We note that we analyze without replacement SGD that is closer to practice than the
simpler with-replacement version [19, 40]; thus, our analysis may be of independent interest in
optimization.

1.2 Related work

Universal finite sample expressivity of neural networks. Literature on finite sample expressivity
and memorization capacity of neural networks dates back to the 1960s. Earlier results [6, 11, 26, 36,
42] study memorization capacity of linear threshold networks.

Later, results on 2-layer FNNs with sigmoids [24] and other bounded activations [23] show that N
hidden nodes are sufficient to memorize N data points. It was later shown that the requirement of
N hidden nodes can be improved by exploiting depth [22, 48]. Since these two works are highly
relevant to our own results, we defer a detailed discussion/comparison until we present the precise
theorems (see Sections 3.2 and 3.3).

With the advent of deep learning, there have been new results on modern activation functions and
architectures. Zhang et al. [53] prove that one-hidden-layer ReLU FNNs with N hidden nodes can
memorizeN real-valued data points. Hardt and Ma [20] show that deep ResNets with N+dy hidden
nodes can memorize arbitrary dy-class classification datasets. Nguyen and Hein [35] show that deep
CNNs with one of the hidden layers as wide as N can memorize N real-valued data points.

Soudry and Carmon [43] show that under a dropout noise setting, the training error is zero at every
differentiable local minimum, for almost every dataset and dropout-like noise realization. However,
this result is not comparable to ours because they assume that there is a multiplicative “dropout
noise” at each hidden node and each data point. At i-th node of l-th layer, the slope of the activation

function for the j-th data point is either ǫ
(j)
i,l · 1 (if input is positive) or ǫ

(j)
i,l · s (if input is negative,

s 6= 0), where ǫ
(j)
i,l is the multiplicative random (e.g., Gaussian) dropout noise. Their theorem

statements hold for all realizations of these dropout noise factors except a set of measure zero. In
contrast, our setting is free of these noise terms, and hence corresponds to a specific realization of

such ǫ
(n)
i,l ’s.

Convergence to global minima. There exist numerous papers that study convergence of gradient
descent or SGD to global optima of neural networks. Many previous results [9, 14, 29, 41, 46, 54, 55]
study settings where data points are sampled from a distribution (e.g., Gaussian), and labels are
generated from a “teacher network” that has the same architecture as the one being trained (i.e.,
realizability). Here, the goal of training is to recover the unknown (but fixed) true parameters. In
comparison, we consider arbitrary datasets and networks, under a mild assumption (especially for
overparametrized networks) that the network can memorize the data; the results are not directly
comparable. Others [10, 47] study SGD on hinge loss under a bit strong assumption that the data is
linearly separable.

Other recent results [1, 15, 16, 28, 58] focus on over-parameterized neural networks. In these papers,
the widths of hidden layers are assumed to be huge, of polynomial order in N , such as Ω(N4),
Ω(N6) or even greater. Although these works provide insights on how GD/SGD finds global minima
easily, their width requirement is still far from being realistic.

A recent work [57] provides a mixture of observation and theory about convergence to global min-
ima. The authors assume that networks can memorize the data, and that SGD follows a star-convex
path to global minima, which they validate through experiments. Under these assumptions, they
prove convergence of SGD to global minimizers. We believe our result is complementary: we
provide sufficient conditions for networks to memorize the data, and our result does not assume
anything about SGD’s path but proves that SGD can find a point close to the global minimum.

Remarks on generalization. The ability of neural networks to memorize and generalize at the
same time has been one of the biggest mysteries of deep learning [53]. Recent results on interpola-
tion and “double descent” phenomenon indicate that memorization may not necessarily mean lack
of generalization [5, 7, 8, 31, 32, 34]. We note that our paper focuses mainly on the ability of neural

3

networks to memorize the training dataset, and that our results are separate from the discussion of
generalization.

2 Problem setting and notation

In this section, we introduce the notation used throughout the paper. For integers a and b, a < b, we
denote [a] := {1, . . . , a} and [a : b] := {a, a+1, . . . , b}. We denote {(xi, yi)}Ni=1 the set of training
data points, and our goal is to choose the network parameters θ so that the network output fθ(xi) is
equal to yi, for all i ∈ [n]. Let dx and dy denote input and output dimensions, respectively. Given

input x ∈ R
dx , an L-layer fully-connected neural network computes output fθ(x) as follows:

a0(x) = x,

zl(x) = W lal−1(x) + bl, al(x) = σ(zl(x)), for l ∈ [L− 1],

fθ(x) = WLaL−1(x) + bL.

Let dl (for l ∈ [L − 1]) denote the width of l-th hidden layer. For convenience, we write d0 := dx
and dL := dy . Here, zl ∈ R

dl and al ∈ R
dl denote the input and output (a for activation) of the l-th

hidden layer, respectively. The output of a hidden layer is the entry-wise map of the input by the

activation function σ. The bold-cased symbols denote parameters: W l ∈ R
dl×dl−1 is the weight

matrix, and bl ∈ R
dl is the bias vector. We define θ := (W l, bl)Ll=1 to be the collection of all

parameters. We write the network output as fθ(·) to emphasize that it depends on parameters θ.

Our results in this paper consider piecewise linear activation functions. Among them, Sections 3
and 4 consider ReLU-like (σR) and hard-tanh (σH) activations, defined as follows:

σR(t) :=

{
s+t t ≥ 0,

s−t t < 0,
σH(t) :=

−1 t ≤ −1,
t t ∈ (−1, 1],
1 t > 1,

=
σR(t+ 1)− σR(t− 1)− s+ − s−

s+ − s−
,

where s+ > s− ≥ 0. Note that σR includes ReLU and Leaky ReLU. Hard-tanh activation (σH) is
a piecewise linear approximation of tanh. Since σH can be represented with two σR, any results on
hard-tanh networks can be extended to ReLU-like networks with twice the width.

3 Finite sample expressivity of FNNs

In this section, we study universal finite sample expressivity of FNNs. For the training dataset, we
make the following mild assumption that ensures consistent labels:

Assumption 3.1. In the dataset {(xi, yi)}Ni=1 assume that all xi’s are distinct and all yi ∈ [−1, 1]dy .

3.1 Main results

We first state the main theorems on shallow FNNs showing tight lower and upper bounds on memo-
rization capacity. Detailed discussion will follow in the next subsection.

Theorem 3.1. Consider any dataset {(xi, yi)}Ni=1 that satisfies Assumption 3.1. If

• a 3-layer hard-tanh FNN fθ satisfies 4⌊d1/2⌋⌊d2/(2dy)⌋ ≥ N ; or

• a 3-layer ReLU-like FNN fθ satisfies 4⌊d1/4⌋⌊d2/(4dy)⌋ ≥ N ,

then there exists a parameter θ such that yi = fθ(xi) for all i ∈ [N].

Theorem 3.1 shows that if d1d2 = Ω(Ndy) then we can memorize arbitrary datasets; this means

that Ω(
√
Ndy) hidden nodes are sufficient for memorization, in contrary to Ω(Ndy) requirements

of recent results. By adding one more hidden layer, the next theorem shows that we can perfectly

memorize any classification dataset using Ω(
√
N + dy) hidden nodes.

Proposition 3.2. Consider any dataset {(xi, yi)}Ni=1 that satisfies Assumption 3.1. Assume that

yi ∈ {0, 1}dy is the one-hot encoding of dy classes. Suppose one of the following holds:

• a 4-layer hard-tanh FNN fθ satisfies 4⌊d1/2⌋⌊d2/2⌋ ≥ N , and d3 ≥ 2dy; or

• a 4-layer ReLU-like FNN fθ satisfies 4⌊d1/4⌋⌊d2/4⌋ ≥ N , and d3 ≥ 4dy .

Then, there exists a parameter θ such that yi = fθ(xi) for all i ∈ [N].

4

Notice that for scalar regression (dy = 1), Theorem 3.1 proves a lower bound on memorization
capacity of 3-layer neural networks: Ω(d1d2). The next theorem shows that this bound is in fact
tight.

Theorem 3.3. Consider FNNs with dy = 1 and piecewise linear activation σ with p pieces. If

• a 2-layer FNN fθ satisfies (p− 1)d1 + 2 < N ; or

• a 3-layer FNN fθ satisfies p(p− 1)d1d2 + (p− 1)d2 + 2 < N ,

then there exists a dataset {(xi, yi)}Ni=1 satisfying Assumption 3.1 such that for all θ, there exists
i ∈ [N] such that yi 6= fθ(xi).

Theorems 3.1 and 3.3 together show tight lower and upper bounds Θ(d1d2) on memorization capac-
ity of 3-layer FNNs, which differ only in constant factors. Theorem 3.3 and the existing result on
2-layer FNNs [53, Theorem 1] also show that the memorization capacity of 2-layer FNNs is Θ(d1).

Proof ideas. The proof of Theorem 3.1 is based on an intricate construction of parameters.
Roughly speaking, we construct parameters that make each data point have its unique activation
pattern in the hidden layers; more details are in Appendix B. The proof of Proposition 3.2 is largely
based on Theorem 3.1. By assigning each class j a unique real number ρj (which is similar to
the trick in Hardt and Ma [20]), we modify the dataset into a 1-D regression dataset; we then fit
this dataset using the techniques in Theorem 3.1, and use the extra layer to recover the one-hot rep-
resentation of the original yi. Please see Appendix C for the full proof. The main proof idea of
Theorem 3.3 is based on counting the number of “pieces” in the network output fθ(x) (as a function
of x), inspired by Telgarsky [44]. For the proof, please see Appendix D.

3.2 Discussion

Depth-width tradeoffs for finite samples. Theorem 3.1 shows that if the two ReLU hidden layers

satisfy d1 = d2 = 2
√
Ndy , then the network can fit a given dataset perfectly. Proposition 3.2 is an

improvement for classification, which shows that a 4-layer ReLU FNN can memorize any dy-class

classification data if d1 = d2 = 2
√
N and d3 = 4dy .

As in other expressivity results, our results show that there are depth-width tradeoffs in the finite
sample setting. For ReLU FNNs it is known that one hidden layer with N nodes can memorize
any scalar regression (dy = 1) dataset with N points [53]. By adding a hidden layer, the hidden

node requirement is reduced to 4
√
N , and Theorem 3.3 also shows that Θ(

√
N) hidden nodes are

necessary and sufficient. Ability to memorize N data points with N nodes is perhaps not surprising,
because weights of each hidden node can be tuned to memorize a single data point. In contrast, the

fact that width-2
√
N networks can memorize is far from obvious; each hidden node must handle√

N/2 data points on average, thus a more elaborate construction is required.

For dy-class classification, by adding one more hidden layer, the requirement is improved from

4
√
Ndy to 4

√
N +4dy nodes. This again highlights the power of depth in expressive power. Propo-

sition 3.2 tells us that we can fit ImageNet1 (N ≈ 106, dy = 103) with three ReLU hidden layers,
using only 2k-2k-4k nodes. This “sufficient” size for memorization is surprisingly smaller (disre-
garding optimization aspects) than practical networks.

Implications for ERM. It is widely observed in experiments that deep neural networks can
achieve zero empirical risk, but a concrete understanding of this phenomenon is still elusive.
It is known that all local minima are global minima for empirical risk of linear neural net-
works [25, 27, 51, 52, 56], but this property fails to extend to nonlinear neural networks [39, 52].
This suggests that studying the gap between local minima and global minima could provide expla-
nations for the success of deep neural networks. In order to study the gap, however, we have to
know the risk value attained by global minima, which is already non-trivial even for shallow neural
networks. In this regard, our theorems provide theoretical guarantees that even a shallow and narrow
network can have zero empirical risk at global minima, regardless of data and loss functions—e.g.,

in a regression setting, for a 3-layer ReLU FNN with d1 = d2 = 2
√
Ndy there exists a global

minimum that has zero empirical risk.

1after omitting the inconsistently labeled items

5

The number of edges. We note that our results do not contradict the common “insight” that at
least N edges are required to memorize N data points. Our “small” network means a small number
of hidden nodes, and it still has more than N edges. The existing result [53] requires (dx + 2)N

edges, while our construction for ReLU requires 4N + (2dx + 6)
√
N + 1 edges, which is much

fewer.

Relevant work on sigmoid. Huang [22] proves that a 2-hidden-layer sigmoid FNNs with d1 =
N/K + 2K and d2 = K , where K is a positive integer, can approximate N arbitrary distinct data
points. The author first partitionsN data points intoK groups of size N/K each. Then, from the fact
that the sigmoid function is strictly increasing and non-polynomial, it is shown that if the weights
between input and first hidden layer is sampled randomly, then the output matrix of first hidden layer
for each group is full rank with probability one. This is not the case for ReLU or hard-tanh, because
they have “flat” regions in which rank could be lost. In addition, Huang [22] requires extra 2K
hidden nodes in d1 that serve as “filters” which let only certain groups of data points pass through.
Our construction is not an extension of this result because we take a different strategy (Appendix B);
we carefully choose parameters (instead of sampling) that achieve memorization with d1 = N/K
and d2 = K (in hard-tanh case) without the need of extra 2K nodes, which enjoys a smaller width
requirement and allows for more flexibility in the architecture. Moreover, we provide a converse
result (Theorem 3.3) showing that our construction is rate-optimal in the number of hidden nodes.

3.3 Extension to deeper and/or narrower networks

What if the network is deeper than three layers and/or narrower than
√
N? Our next theorem shows

that universal finite sample expressivity is not limited to 3-layer neural networks, and still achievable
by exploiting depth even for narrower networks.

Proposition 3.4. Consider any dataset {(xi, yi)}Ni=1 that satisfies Assumption 3.1. For an L-layer
FNN with hard-tanh activation (σH), assume that there exist indices l1, . . . , lm ∈ [L− 2] that satisfy

• lj + 1 < lj+1 for j ∈ [m− 1],

• 4
∑m

j=1

⌊
dlj

−rj

2

⌋ ⌊
dlj+1−rj

2dy

⌋

≥ N , where rj = dy1 {j > 1}+ 1 {j < m}, for j ∈ [m],

• dk ≥ dy + 1 for all k ∈ ⋃j∈[m−1][lj + 2 : lj+1 − 1].

• dk ≥ dy for all k ∈ [lm + 2 : L− 1],

where 1 {·} is 0-1 indicator function. Then, there exists θ such that yi = fθ(xi) for all i ∈ [N].

As a special case, note that for L = 3 (hence m = 1), the conditions boil down to that of Theo-
rem 3.1. An immediate corollary of this fact is that the same result holds for ReLU(-like) networks
with twice the width. Moreover, using the same proof technique as Proposition 3.2, this theorem
can also be improved for classification datasets, by inserting one additional hidden layer between
layer lm + 1 and the output layer. Due to space limits, we defer the statement of these corollaries to
Appendix A.

The proof of Proposition 3.4 is in Appendix E. We use Theorem 3.1 as a building block and construct
a network (see Figure 2 in appendix) that fits a subset of dataset at each pair of hidden layers lj–
(lj + 1).

If any two adjacent hidden layers satisfy dldl+1 = Ω(Ndy), this network can fit N data points
(m = 1), even when all the other hidden layers have only one hidden node. Even with networks

narrower than
√
Ndy (thus m > 1), we can still achieve universal finite sample expressivity as

long as there are Ω(Ndy) edges between disjoint pairs of adjacent layers. However, we have the
“cost” rj in the width of hidden layers; this is because we fit subsets of the dataset using multiple
pairs of layers. To do this, we need rj extra nodes to propagate input and output information to the
subsequent layers. For more details, please refer to the proof.

Proposition 3.4 gives a lower bound Ω(
∑L−2

l=1 dldl+1) on memorization capacity for L-layer net-
works. For fixed input/output dimensions, this is indeed Ω(W), where W is the number of edges
in the network. On the other hand, Bartlett et al. [4] showed an upper bound O(WL logW) on
VC dimension, which is also an upper bound on memorization capacity. Thus, for any fixed L, our
lower bound is nearly tight. We conjecture that, as we have proved in 2- and 3-layer cases, the
memorization capacity is Θ(W), independent of L; we leave closing this gap for future work.

6

For sigmoid FNNs, Yamasaki [48] claimed that a scalar regression dataset can be memorized if

dx⌈d1

2 ⌉+ ⌊d1

2 ⌋⌈d2

2 − 1⌉+ · · ·+ ⌊dL−2

2 ⌋⌈
dL−1

2 − 1⌉ ≥ N . However, this claim was made under the
stronger assumption of data lying in general position (see Assumption 4.1). Unfortunately, Yamasaki
[48] does not provide a full proof of their claim, making it impossible to validate veracity of their
construction (and we could not find their extended manuscript elsewhere).

4 Classification under the general position assumption

This section presents some results specialized in multi-class classification task under a slightly
stronger assumption, namely the general position assumption. Since we are only considering classi-
fication in this section, we also assume that yi ∈ {0, 1}dy is the one-hot encoding of dy classes.

Assumption 4.1. For a finite dataset {(xi, yi)}Ni=1, assume that no dx + 1 data points lie on the
same affine hyperplane. In other words, the data point xi’s are in general position.

We consider residual networks (ResNets), defined by the following architecture:

h0(x) = x,

hl(x) = hl−1(x) + V lσ(U lhl−1(x) + bl) + cl, l ∈ [L− 1],

gθ(x) = V Lσ(ULhL−1(x) + bL) + cL,

which is similar to the previous work by Hardt and Ma [20], except for extra bias parameters cl. In

this model, we denote the number hidden nodes in the l-th residual layer as dl; e.g., U l ∈ R
dl×dx .

We now present a theorem showing that any dataset can be memorized with small ResNets.

Theorem 4.1. Consider any dataset {(xi, yi)}Ni=1 that satisfies Assumption 4.1. Assume also that
dx ≥ dy . Suppose one of the following holds:

• a hard-tanh ResNet gθ satisfies
∑L−1

l=1 dl ≥ 2N
dx

+ 2dy and dL ≥ dy; or

• a ReLU-like ResNet gθ satisfies
∑L−1

l=1 dl ≥ 4N
dx

+ 4dy and dL ≥ 2dy .

Then, there exists θ such that yi = gθ(xi) for all i ∈ [N].

The previous work by Hardt and Ma [20] proves universal finite sample expressivity using N + dy
hidden nodes (i.e.,

∑L−1
l=1 dl ≥ N and dL ≥ dy) for ReLU activation, under the assumption that

xi’s are distinct unit vectors. Note that neither this assumption nor Assumption 4.1 implies the other;
however, our assumption is quite mild in the sense that for any given dataset, adding small random
Gaussian noise to xi’s makes the dataset satisfy the assumption, with probability 1.

The main idea for the proof is that under the general position assumption, for any choice of dx points
there exists an affine hyperplane that contains only these dx points. Each hidden node can choose dx
data points and “push” them to the right direction, making perfect classification possible. We defer
the details to Appendix F.1. Using the same technique, we can also prove an improved result for
2-layer (1-hidden-layer) FNNs. The proof of the following corollary can be found in Appendix F.2.

Corollary 4.2. Consider any dataset {(xi, yi)}Ni=1 that satisfies Assumption 4.1. Suppose one of
the following holds:

• a 2-layer hard-tanh FNN fθ satisfies d1 ≥ 2N
dx

+ 2dy; or

• a 2-layer ReLU-like FNN fθ satisfies d1 ≥ 4N
dx

+ 4dy .

Then, there exists θ such that yi = fθ(xi) for all i ∈ [N].

Our results show that under the general position assumption, perfect memorization is possible with
onlyΩ(N/dx+dy) hidden nodes rather than N , in both ResNets and 2-layer FNNs. Considering that
dx is typically in the order of hundreds or thousands, our results reduce the hidden node requirements
down to more realistic network sizes. For example, consider CIFAR-10 dataset: N = 50, 000,
dx = 3, 072, and dy = 10. Previous results require at least 50k ReLUs to memorize this dataset,
while our results require 126 ReLUs for ResNets and 106 ReLUs for 2-layer FNNs.

7

5 Trajectory of SGD near memorizing global minima

In this section, we study the behavior of without-replacement SGD near memorizing global minima.

We restrict dy = 1 for simplicity. We use the same notation as defined in Section 2, and introduce
here some additional definitions. We assume that each activation function σ is piecewise linear with
at least two pieces (e.g., ReLU or hard-tanh). Throughout this section, we slightly abuse the notation

θ to denote the concatenation of vectorizations of all the parameters (W l, bl)Ll=1.

We are interested in minimizing the empirical risk R(θ), defined as the following:

R(θ) := 1
N

∑N

i=1
ℓ(fθ(xi); yi),

where ℓ(z; y) : R 7→ R is the loss function parametrized by y. We assume the following:

Assumption 5.1. The loss function ℓ(z; y) is a strictly convex and three times differentiable function
of z. Also, for any y, there exists z ∈ R such that z is a global minimum of ℓ(z; y).

Assumption 5.1 on ℓ is satisfied by standard losses such as squared error loss. Note that logistic loss
does not satisfy Assumption 5.1 because the global minimum is not attained by any finite z.

Given the assumption on ℓ, we now formally define the memorizing global minimum.

Definition 5.1. A point θ∗ is a memorizing global minimum of R(·) if ℓ′(fθ∗(xi); yi) = 0, ∀i ∈
[N].

By convexity, ℓ′(fθ∗(xi); yi) = 0 for all i implies that R(θ) is (globally) minimized at θ∗. Also,
existence of a memorizing global minimum of R implies that all global minima are memorizing.

Although ℓ is a differentiable function of z, the empirical risk R(θ) is not necessarily differentiable
in θ because we are using piecewise linear activations. In this paper, we only consider differentiable
points of R(·); since nondifferentiable points lie in a set of measure zero and SGD never reaches
such points in reality, this is a reasonable assumption.

We consider minimizing the empirical risk R(θ) using without-replacement mini-batch SGD. We
use B as mini-batch size, so it takes E := N/B steps to go over N data points in the dataset.
For simplicity we assume that N is a multiple of B. At iteration t = kE, it partitions the dataset

at random, into E sets of cardinality B: B(kE), B(kE+1), . . . , B(kE+E−1), and uses these sets to
estimate gradients. After each epoch (one pass through the dataset), the data is “reshuffled” and
a new partition is used. Without-replacement SGD is known to be more difficult to analyze than
with-replacement SGD (see [19, 40] and references therein), although more widely used in practice.

More concretely, our SGD algorithm uses the update rule θ(t+1) ← θ(t) − ηg(t), where we fix the

step size η to be a constant throughout the entire run and g(t) is the gradient estimate

g(t) = 1
B

∑

i∈B(t)
ℓ′(fθ(t)(xi); yi)∇θfθ(t)(xi).

For each k,
⋃kE+E−1

t=kE B(t) = [N]. Note also that if B = N , we recover vanilla gradient descent.

Now consider a memorizing global minimum θ∗. We define vectors νi := ∇θfθ∗(xi) for all i ∈ [N].

We can then express any iterate θ(t) of SGD as θ(t) = θ∗+ξ(t), and then further decompose the “per-

turbation” ξ(t) as the sum of two orthogonal components ξ
(t)
‖ and ξ

(t)
⊥ , where ξ

(t)
‖ ∈ span({νi}Ni=1)

and ξ
(t)
⊥ ∈ span({νi}Ni=1)

⊥. Also, for a vector v, let ‖v‖ denote its ℓ2 norm.

5.1 Main results and discussion

We now state the main theorem of the section. For the proof, please refer to Appendix G.

Theorem 5.1. Suppose a memorizing global minimum θ∗ of R(θ) is given, and that R(·) is dif-
ferentiable at θ∗. Then, there exist positive constants ρ, γ, λ, and τ satisfying the following: if

initialization θ(0) satisfies ‖ξ(0)‖ ≤ ρ, then

R(θ(0))−R(θ∗) = O(‖ξ(0)‖2),
and SGD with step size η < γ satisfies

‖ξ(kE+E)
‖ ‖ ≤ (1 − ηλ)‖ξ(kE)

‖ ‖, and ‖ξ(kE+E)‖ ≤ ‖ξ(kE)‖+ ηλ‖ξ(kE)
‖ ‖,

8

as long as ‖ξ(t)‖ ‖ ≥ τ‖ξ(t)‖2 holds for all t ∈ [kE, kE + E − 1]. As a consequence, at the first

iterate t∗ ≥ 0 where the condition ‖ξ(t)‖ ‖ ≥ τ‖ξ(t)‖2 is violated, we have

‖ξ(t
∗)‖ ≤ 2‖ξ(0)‖, and R(θ(t∗))−R(θ∗) ≤ C‖ξ(0)‖4,

for some positive constant C.

The full description of constants ρ, γ, λ, τ , and C can be found in Appendix G. They are dependent
on a number of terms, such as N , B, the Taylor expansions of loss ℓ(fθ∗(xi); yi) and network out-
put fθ∗(xi) around the memorizing global minimum θ∗, maximum and minimum strictly positive

eigenvalues of H =
∑N

i=1 ℓ
′′(fθ∗(xi); yi)νiν

T
i . The constant ρ must be small enough so that as

long as ‖ξ‖ ≤ ρ, the slopes of piecewise linear activation functions evaluated for data points xi do
not change from θ∗ to θ∗ + ξ.

Notice that for small perturbation ξ, the Taylor expansion of network output fθ∗(xi) is written as
fθ∗+ξ(xi) = fθ∗(xi) + νTi ξ‖ + O(‖ξ‖2), because νi ⊥ ξ⊥ by definition. From this perspective,

Theorem 5.1 shows that if initialized near global minima, the component in the perturbation ξ that
induces first-order perturbation of fθ∗(xi), namely ξ‖, decays exponentially fast until SGD finds

a nearby point that has much smaller risk (O(‖ξ(0)‖4)) than the initialization (O(‖ξ(0)‖2)). Note
also that our result is completely deterministic, and independent of the partitions of the dataset taken
by the algorithm; the theorem holds true even if the algorithm is not “stochastic” and just cycles
through the dataset in a fixed order without reshuffling.

We would like to emphasize that Theorem 5.1 holds for any memorizing global minima of FNNs,
not only for the ones explicitly constructed in Sections 3 and 4. Moreover, the result is not depen-
dent on the network size or data distribution. As long as the global minimum memorizes the data,
our theorem holds without any depth/width requirements or distributional assumptions, which is a
noteworthy difference that makes our result hold in more realistic settings than existing ones.

The remaining question is: what happens after t∗? Unfortunately, if ‖ξ(t)‖ ‖ ≤ τ‖ξ(t)‖2, we cannot

ensure exponential decay of ‖ξ(t)‖ ‖, especially if it is small. Without exponential decay, one cannot

show an upper bound on ‖ξ(t)‖ either. This means that after t∗, SGD may even diverge or oscillate
near global minimum. Fully understanding the behavior of SGD after t∗ seems to be a more difficult
problem, which we leave for future work.

6 Conclusion and future work

In this paper, we show that fully-connected neural networks (FNNs) with Ω(
√
N) nodes are expres-

sive enough to perfectly memorize N arbitrary data points, which is a significant improvement over

the recent results in the literature. We also prove the converse stating that at least Θ(
√
N) nodes

are necessary; these two results together provide tight bounds on memorization capacity of neural
networks. We further extend our expressivity results to deeper and/or narrower networks, providing
a nearly tight bound on memorization capacity for these networks as well. Under an assumption
that data points are in general position, we prove that classification datasets can be memorized with
Ω(N/dx + dy) hidden nodes in deep residual networks and one-hidden-layer FNNs, reducing the
existing requirement of Ω(N). Finally, we study the dynamics of stochastic gradient descent (SGD)
on empirical risk, and showed that if SGD is initialized near a global minimum that perfectly mem-
orizes the data, it quickly finds a nearby point with small empirical risk. Several future topics are
open; e.g., 1) tight bounds on memorization capacity for deep FNNs and other architectures, 2)
deeper understanding of SGD dynamics in the presence of memorizing global minima.

Acknowledgments

We thank Alexander Rakhlin for helpful discussion. All the authors acknowledge support from
DARPA Lagrange. Chulhee Yun also thanks Korea Foundation for Advanced Studies for their sup-
port. Suvrit Sra also acknowledges support from an NSF-CAREER grant and an Amazon Research
Award.

9

References

[1] Z. Allen-Zhu, Y. Li, and Z. Song. A convergence theory for deep learning via over-
parameterization. arXiv preprint arXiv:1811.03962, 2018.

[2] D. Arpit, S. Jastrzębski, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal, T. Maharaj, A. Fis-
cher, A. Courville, Y. Bengio, et al. A closer look at memorization in deep networks. In
International Conference on Machine Learning, pages 233–242, 2017.

[3] P. L. Bartlett, V. Maiorov, and R. Meir. Almost linear VC dimension bounds for piecewise
polynomial networks. In Advances in Neural Information Processing Systems, pages 190–196,
1999.

[4] P. L. Bartlett, N. Harvey, C. Liaw, and A. Mehrabian. Nearly-tight VC-dimension and pseudodi-
mension bounds for piecewise linear neural networks. Journal of Machine Learning Research,
20(63):1–17, 2019. URL http://jmlr.org/papers/v20/17-612.html.

[5] P. L. Bartlett, P. M. Long, G. Lugosi, and A. Tsigler. Benign overfitting in linear regression.
arXiv preprint arXiv:1906.11300, 2019.

[6] E. B. Baum. On the capabilities of multilayer perceptrons. Journal of complexity, 4(3):193–
215, 1988.

[7] M. Belkin, D. Hsu, S. Ma, and S. Mandal. Reconciling modern machine learning and the
bias-variance trade-off. arXiv preprint arXiv:1812.11118, 2018.

[8] M. Belkin, A. Rakhlin, and A. B. Tsybakov. Does data interpolation contradict statistical
optimality? arXiv preprint arXiv:1806.09471, 2018.

[9] A. Brutzkus and A. Globerson. Globally optimal gradient descent for a ConvNet with Gaussian
inputs. In International Conference on Machine Learning, pages 605–614, 2017.

[10] A. Brutzkus, A. Globerson, E. Malach, and S. Shalev-Shwartz. SGD learns over-parameterized
networks that provably generalize on linearly separable data. In International Conference on
Learning Representations, 2018.

[11] T. M. Cover. Geometrical and statistical properties of systems of linear inequalities with appli-
cations in pattern recognition. IEEE transactions on electronic computers, (3):326–334, 1965.

[12] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

[13] O. Delalleau and Y. Bengio. Shallow vs. deep sum-product networks. In Advances in Neural
Information Processing Systems, pages 666–674, 2011.

[14] S. S. Du, J. D. Lee, Y. Tian, B. Poczos, and A. Singh. Gradient descent learns one-hidden-layer
CNN: Don’t be afraid of spurious local minima. arXiv preprint arXiv:1712.00779, 2017.

[15] S. S. Du, J. D. Lee, H. Li, L. Wang, and X. Zhai. Gradient descent finds global minima of deep
neural networks. arXiv preprint arXiv:1811.03804, 2018.

[16] S. S. Du, X. Zhai, B. Poczos, and A. Singh. Gradient descent provably optimizes over-
parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

[17] R. Eldan and O. Shamir. The power of depth for feedforward neural networks. In Conference
on Learning Theory, pages 907–940, 2016.

[18] K.-I. Funahashi. On the approximate realization of continuous mappings by neural networks.
Neural networks, 2(3):183–192, 1989.

[19] J. Z. HaoChen and S. Sra. Random shuffling beats SGD after finite epochs. arXiv preprint
arXiv:1806.10077, 2018.

[20] M. Hardt and T. Ma. Identity matters in deep learning. In International Conference on Learning
Representations, 2017.

10

http://jmlr.org/papers/v20/17-612.html

[21] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal
approximators. Neural networks, 2(5):359–366, 1989.

[22] G.-B. Huang. Learning capability and storage capacity of two-hidden-layer feedforward net-
works. IEEE Transactions on Neural Networks, 14(2):274–281, 2003.

[23] G.-B. Huang and H. A. Babri. Upper bounds on the number of hidden neurons in feedforward
networks with arbitrary bounded nonlinear activation functions. IEEE Transactions on Neural
Networks, 9(1):224–229, 1998.

[24] S.-C. Huang and Y.-F. Huang. Bounds on the number of hidden neurons in multilayer percep-
trons. IEEE transactions on neural networks, 2(1):47–55, 1991.

[25] K. Kawaguchi. Deep learning without poor local minima. In Advances in Neural Information
Processing Systems, pages 586–594, 2016.

[26] A. Kowalczyk. Estimates of storage capacity of multilayer perceptron with threshold logic
hidden units. Neural networks, 10(8):1417–1433, 1997.

[27] T. Laurent and J. Brecht. Deep linear networks with arbitrary loss: All local minima are global.
In International Conference on Machine Learning, pages 2908–2913, 2018.

[28] Y. Li and Y. Liang. Learning overparameterized neural networks via stochastic gradient descent
on structured data. In Advances in Neural Information Processing Systems, pages 8168–8177,
2018.

[29] Y. Li and Y. Yuan. Convergence analysis of two-layer neural networks with ReLU activation.
In Advances in Neural Information Processing Systems, pages 597–607, 2017.

[30] S. Liang and R. Srikant. Why deep neural networks for function approximation? In Interna-
tional Conference on Learning Representations, 2017.

[31] T. Liang and A. Rakhlin. Just Interpolate: Kernel “Ridgeless” Regression Can Generalize.
arXiv preprint arXiv:1808.00387, 2018.

[32] T. Liang, A. Rakhlin, and X. Zhai. On the risk of minimum-norm interpolants and restricted
lower isometry of kernels. arXiv preprint arXiv:1908.10292, 2019.

[33] Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang. The expressive power of neural networks: A view
from the width. In Advances in Neural Information Processing Systems, pages 6231–6239,
2017.

[34] S. Mei and A. Montanari. The generalization error of random features regression: Precise
asymptotics and double descent curve. arXiv preprint arXiv:1908.05355, 2019.

[35] Q. Nguyen and M. Hein. Optimization landscape and expressivity of deep CNNs. arXiv
preprint arXiv:1710.10928, 2017.

[36] N. J. Nilsson. Learning machines. 1965.

[37] D. Rolnick and M. Tegmark. The power of deeper networks for expressing natural functions.
In International Conference on Learning Representations, 2018.

[38] I. Safran and O. Shamir. Depth-width tradeoffs in approximating natural functions with neural
networks. In International Conference on Machine Learning, pages 2979–2987, 2017.

[39] I. Safran and O. Shamir. Spurious local minima are common in two-layer ReLU neural net-
works. arXiv preprint arXiv:1712.08968, 2017.

[40] O. Shamir. Without-replacement sampling for stochastic gradient methods. In Advances in
neural information processing systems, pages 46–54, 2016.

[41] M. Soltanolkotabi. Learning ReLUs via gradient descent. In Advances in Neural Information
Processing Systems, pages 2007–2017, 2017.

11

[42] E. D. Sontag. Shattering all sets of ‘k’ points in “general position” requires (k—1)/2 parameters.
Neural Computation, 9(2):337–348, 1997.

[43] D. Soudry and Y. Carmon. No bad local minima: Data independent training error guarantees
for multilayer neural networks. arXiv preprint arXiv:1605.08361, 2016.

[44] M. Telgarsky. Representation benefits of deep feedforward networks. arXiv preprint
arXiv:1509.08101, 2015.

[45] M. Telgarsky. Benefits of depth in neural networks. In Conference on Learning Theory, pages
1517–1539, 2016.

[46] Y. Tian. An analytical formula of population gradient for two-layered ReLU network and
its applications in convergence and critical point analysis. In International Conference on
Machine Learning, pages 3404–3413, 2017.

[47] G. Wang, G. B. Giannakis, and J. Chen. Learning ReLU networks on linearly separable data:
Algorithm, optimality, and generalization. arXiv preprint arXiv:1808.04685, 2018.

[48] M. Yamasaki. The lower bound of the capacity for a neural network with multiple hidden
layers. In ICANN’93, pages 546–549. Springer, 1993.

[49] D. Yarotsky. Error bounds for approximations with deep ReLU networks. Neural Networks,
94:103–114, 2017.

[50] D. Yarotsky. Optimal approximation of continuous functions by very deep ReLU networks.
arXiv preprint arXiv:1802.03620, 2018.

[51] C. Yun, S. Sra, and A. Jadbabaie. Global optimality conditions for deep neural networks. In
International Conference on Learning Representations, 2018.

[52] C. Yun, S. Sra, and A. Jadbabaie. Small nonlinearities in activation functions create bad local
minima in neural networks. In International Conference on Learning Representations, 2019.

[53] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning requires
rethinking generalization. In International Conference on Learning Representations (ICLR),
2017.

[54] X. Zhang, Y. Yu, L. Wang, and Q. Gu. Learning one-hidden-layer ReLU networks via gradient
descent. arXiv preprint arXiv:1806.07808, 2018.

[55] K. Zhong, Z. Song, P. Jain, P. L. Bartlett, and I. S. Dhillon. Recovery guarantees for one-hidden-
layer neural networks. In International Conference on Machine Learning, pages 4140–4149,
2017.

[56] Y. Zhou and Y. Liang. Critical points of neural networks: Analytical forms and landscape
properties. In International Conference on Learning Representations, 2018.

[57] Y. Zhou, J. Yang, H. Zhang, Y. Liang, and V. Tarokh. SGD converges to global minimum in
deep learning via star-convex path. In International Conference on Learning Representations,
2019.

[58] D. Zou, Y. Cao, D. Zhou, and Q. Gu. Stochastic gradient descent optimizes over-parameterized
deep ReLU networks. arXiv preprint arXiv:1811.08888, 2018.

12

A Deferred theorem statements

In this section, we state the theorems that were omitted in Section 3.3 due to lack of space. First, we
start by stating the ReLU-like version of Theorem 3.4:

Corollary A.1. Consider any dataset {(xi, yi)}Ni=1 that satisfies Assumption 3.1. For an L-layer
FNN with ReLU(-like) activation (σR), assume that there exist indices l1, . . . , lm ∈ [L − 2] that
satisfies

• lj + 1 < lj+1 for j ∈ [m− 1],

• 4
∑m

j=1

⌊
dlj

−rj

4

⌋ ⌊
dlj+1−rj

4dy

⌋

≥ N , where rj = dy1 {j > 1}+ 1 {j < m}, for j ∈ [m],

• dk ≥ dy + 1 for all k ∈ ⋃j∈[m−1][lj + 2 : lj+1 − 1].

• dk ≥ dy for all k ∈ [lm + 2 : L− 1],

where 1 {·} is 0-1 indicator function. Then, there exists θ such that yi = fθ(xi) for all i ∈ [N].

The idea is that anything that holds for hard-tanh activation holds for ReLU networks that has double
the width. One difference to note is that the number of nodes needed for “propagating” input and
output information (the circle and diamond nodes in Figure 2) has not doubled. This is because
merely propagating the information without nonlinear distortion can be done with a single ReLU-
like activation.

The next corollaries are special cases for classification. One can check that with L = 4 and m = 2
(hence l1 = 1 and l2 = 3), these boil down to Proposition 3.2.

Corollary A.2. Consider any dataset {(xi, yi)}Ni=1 that satisfies Assumption 3.1. Assume that yi ∈
{0, 1}dy is the one-hot encoding of dy classes. For an L-layer FNN with hard-tanh activation (σH),
assume that there exist indices l1, . . . , lm ∈ [L− 1] (m ≥ 2) that satisfies

• lj + 1 < lj+1 for j ∈ [m− 1],

• 4
m−1∑

j=1

⌊
dlj

−rj

2

⌋ ⌊
dlj+1−rj

2

⌋

≥ N , where rj = 1 {j > 1}+1 {j < m− 1}, for j ∈ [m−1],

• dlm ≥ 2dy ,

• dk ≥ 2 for all k ∈
⋃

j∈[m−2][lj + 2 : lj+1 − 1].

• dk ≥ dy for all k ∈ [lm + 1 : L− 1].

Then, there exists θ such that yi = fθ(xi) for all i ∈ [N].

Corollary A.3. Consider any dataset {(xi, yi)}Ni=1 that satisfies Assumption 3.1. Assume that yi ∈
{0, 1}dy is the one-hot encoding of dy classes. For an L-layer FNN with ReLU(-like) activation
(σR), assume that there exist indices l1, . . . , lm ∈ [L− 1] (m ≥ 2) that satisfies

• lj + 1 < lj+1 for j ∈ [m− 1],

• 4
m−1∑

j=1

⌊
dlj

−rj

4

⌋ ⌊
dlj+1−rj

4

⌋

≥ N , where rj = 1 {j > 1}+1 {j < m− 1}, for j ∈ [m−1],

• dlm ≥ 4dy ,

• dk ≥ 2 for all k ∈
⋃

j∈[m−2][lj + 2 : lj+1 − 1].

• dk ≥ dy for all k ∈ [lm + 1 : L− 1].

Then, there exists θ such that yi = fθ(xi) for all i ∈ [N].

The proof of Corollaries A.2 and A.3 can be done by easily combining the ideas in proofs of Propo-
sition 3.2 and Proposition 3.4, hence omitted.

B Proof of Theorem 3.1

We prove the theorem by constructing a parameter θ that perfectly fits the dataset. We will prove
the theorem for hard-tanh (σH) only, because extension to ReLU-like (σR) is straightforward from

13

5{16

1
2

4
3

1{4

8
7

5
6

9{16

13{16

9
10

12
11

1{8

1{12

16
15

13
14

2{7

y1

y8

y16
y9

1

y2

y7

y15
y10

11{14

4{5

y3

y6

y14
y11

15{16

1{3

y4

y5

y13
y12

10{15

8{9

16
3{6

7{10

1{2
12{13

6{11

14{16

Input Layer 2

Sum:

yi + 1

Layer 1

1 1

Figure 1. Illustration of the construction for d1 = d2 = 4. Each box corresponds to a hidden node
with hard-tanh activation. In each hidden node, the numbers written in the three parts are indices of
data points that are clipped to −1 at output (left), those clipped to +1 (right), and those unchanged
(center). One can check for all indices that outputs of layer 2 sum to yi + 1.

its definition. To convey the main idea more clearly, we first prove the theorem for dy = 1, and later
discuss how to extend to dy > 1.

For a data point xi, the corresponding input and output of the l-th hidden layer is written as zl(xi)
and al(xi), respectively. Moreover, zlj(xi) and alj(xi) denote the input and output of the j-th node

of the l-th hidden layer. For weight matrices W l, we will denote its (j, k)-th entry as W l
j,k, its j-th

row as W l
j,:, and its j-th column as W l

:,j . Similarly, blj denote the j-th component of the bias vector

bl. To simplify notation, we will denote p := d1 and q := d2, for the rest of the proof. Assume for
simplicity that p is a multiple of 2, q is a multiple of 2, and pq = N .

B.1 Proof sketch

The proof consists of three steps, one for each layer. In this subsection, we will describe each step
in the following three paragraphs. Then, the next three subsections will provide the full details of
each step.

In the first step, we down-project all input data points to a line, using a random vector u ∈ R
dx .

Different xi’s are mapped to different uTxi’s, so we have N distinct uTxi’s on the line. Now re-
index the data points in increasing order of uTxi, and divide total N data points into p groups with

q points each. To do this, each row W 1
j,: of W 1 is chosen as uT multiplied by a scalar. We choose

the appropriate scalar for W 1
j,: and bias b1j , so that the input to the j-th hidden node in layer 1,

z1j (·), satisfies the following: (1) z1j (xi) ∈ (−1, 1) for indices i ∈ [jq − q + 1 : jq], and (2)

z1j (xi) ∈ (−1, 1)c for all other indices so that they are “clipped” by σH.

In the second step, for each hidden node in layer 2, we pick one point each from these p groups and
map their values to desired yi. More specifically, for k-th node in layer 2, we define an index set Ik

14

(with cardinality p) that contains exactly one element from each [jq − q+ 1 : jq], and choose W 2
k,:

and b2k such that z2k(xi) = yi for i ∈ Ik and z2k(xi) ∈ [−1, 1]c for i /∈ Ik. This is possible because
for each k, we are solving p linear equations with p+ 1 variables.

As we will see in the details, the first and second steps involve alternating signs and a carefully
designed choice of index sets Ik so that sum of output a2k(·) of each node in layer 2 becomes yi +1.
Figure 1 shows a simple illustration for p = q = 4. With this choice, we can make the output fθ(xi)
become simply yi for all i ∈ [N], thereby perfectly memorizing the dataset.

B.2 Input to layer 1: down-project and divide

First, recall from Assumption 3.1 that all xi’s are distinct. This means that for any pair of data
points xi and xi′ , the set of vectors u ∈ R

dx satisfying uTxi = uTxi′ has measure zero. Thus, if we
sample any u from some distribution (e.g., Gaussian), u satisfies uTxi 6= uTxi′ for all i 6= i′ with
probability 1. This is a standard proof technique also used in other papers; please see e.g., Huang
[22, Lemma 2.1].

We choose any such u, and without loss of generality, re-index the data points in increasing order
of uTxi: u

Tx1 < uTx2 < · · · < uTxN . Now define ci := uTxi for all i ∈ [N], and additionally,
c0 = c1 − δ and cN+1 = cN + δ, for any δ > 0.

Now, we are going to define W 1 and b1 such that the input to the j-th (j ∈ [p]) hidden node in
layer 1 has z1j (xi) ∈ (−1, 1) for indices i ∈ [jq − q + 1 : jq], and z1j (xi) ∈ (−1, 1)c for any
other points. We also alternate the order of data points, which will prove useful in later steps. More

concretely, we define the j-th row of W 1 and j-th component of b1 to be

W 1
j,: = (−1)j−1 4

cjq + cjq+1 − cjq−q − cjq−q+1
uT ,

b1j = (−1)j cjq + cjq+1 + cjq−q + cjq−q+1

cjq + cjq+1 − cjq−q − cjq−q+1
.

When j is odd, it is easy to check that z1j (·) satisfies

− 1 < z1j (xjq−q+1) < · · · < z1j (xjq) < +1,

z1j (xi) < −1 for i ≤ jq − q,

z1j (xi) > +1 for i > jq,

so that the output a1j(·) satisfies

− 1 < a1j(xjq−q+1) < · · · < a1j(xjq) < +1, (1)

a1j(xi) = −1 for i ≤ jq − q, (2)

a1j(xi) = +1 for i > jq. (3)

When j is even, by a similar argument:

+ 1 > a1j(xjq−q+1) > · · · > a1j(xjq) > −1, (4)

a1j(xi) = +1 for i ≤ jq − q, (5)

a1j(xi) = −1 for i > jq. (6)

B.3 Layer 1 to 2: place at desired positions

At each node of layer 2, we will show how to place p points at the right position, and the rest of
points in the clipping region. After that, we will see that adding up all node outputs of layer 2 gives
yi + 1 for all i.

For k-th hidden node in layer 2 (k ∈ [q]), define a set

Ik := {k, 2q + 1− k, 2q + k, 4q + 1− k, . . . , pq + 1− k}.
Note that |Ik| = p. Also, let us denote the elements of Ik as ik,1, . . . , ik,p in increasing order. For
example, ik,1 = k, ik,2 = 2q + 1− k, and so on. We can see that ik,j ∈ [jq − q + 1 : jq].

For each k, our goal is to construct W 2
k,: and b2k so that the input to the k-th node of layer 2 places

data points indexed with i ∈ Ik to the desired position yi ∈ [−1, 1], and the rest of data points
i /∈ Ik outside [−1, 1].

15

Case 1: odd k. We first describe how to construct W 2
k,: and b2k for odd k’s. First of all, consider

data points xik,j
’s in Ik. We want to choose parameters so that the input to the k-th node is equal to

yik,j
’s:

z2k(xik,j
) =

∑p

l=1
W 2

k,la
1
l (xik,j

) + b2k = yik,j
,

for all j ∈ [p]. This is a system of p linear equations with p+ 1 variables, which can be represented
in a matrix-vector product form:

Mk

[
(W 2

k,:)
T

b2k

]

=

yik,1

...
yik,p

 , (7)

where the (j, l)-th entry of matrix Mk ∈ R
p×(p+1) is defined by a1l (xik,j

) for j ∈ [p] and l ∈ [p],
and (j, p+ 1)-th entries are all equal to 1.

With the matrix Mk defined from the above equation, we state the lemma whose simple proof is
deferred to Appendix H for better readability:

Lemma B.1. For any k ∈ [q], the matrix Mk ∈ R
p×(p+1) satisfies the following properties:

1. Mk has full column rank.

2. There exists a vector ν ∈ null(Mk) such that the first p components of ν are all strictly
positive.

Lemma B.1 implies that for any yik,1
, . . . , yik,p

, there exist infinitely many solutions (W 2
k,:, b

2
k) for

(7) of the form µ+ αν, where µ is any particular solution satisfying the linear system and α is any

scalar. This means that by scaling α, and we can make W 2
k,: as large as we want, without hurting

z2k(xi) = yi for i ∈ Ik.

It is now left to make sure that any other data points i /∈ Ik have z2k(xi) ∈ [−1, 1]c. As we will
show, this can be done by making α > 0 sufficiently large.

Now fix any odd j ∈ [p], and consider ik,j ∈ Ik, and recall ik,j ∈ [jq − q + 1 : jq]. Fix any other
i ∈ [jq − q + 1 : ik,j − 1]. By Eqs (2), (3), (5) and (6), the output of l-th node in layer 1 (l 6= j) is

the same for i and ik,j : a1l (xi) = a1l (xik,j
).

In contrast, for a1j(·), we have a1j(xi) < a1j(xik,j
) (1). Since z2k(xik,j

) =
∑

l W
2
k,la

1
l (xik,j

)+ b2k =

yik,j
, large enough W 2

k,j > 0 will make z2k(xi) < −1, resulting in a2k(xi) = −1; the output for

xi is clipped. A similar argument can be repeated for i ∈ [ik,j + 1 : jq], so that for large enough

W 2
k,j > 0,

a2k(xi) = −1, ∀i ∈ [jq − q + 1 : ik,j − 1]

a2k(xi) = +1, ∀i ∈ [ik,j + 1 : jq].

Similarly, for even j ∈ [p], large W 2
k,j > 0 will make

a2k(xi) = +1, ∀i ∈ [jq − q + 1 : ik,j − 1]

a2k(xi) = −1, ∀i ∈ [ik,j + 1 : jq].

Summarizing, for large enough W 2
k,: > 0 (achieved by making α > 0 large), the output of the k-th

node of layer 2 satisfies a2k(xi) = yi, ∀i ∈ Ik, and

a2k(xi) = −1, ∀i ∈
⋃

j∈[0:p]
j even

[ik,j + 1 : ik,j+1 − 1], (8)

a2k(xi) = +1, ∀i ∈
⋃

j∈[p]
j odd

[ik,j + 1 : ik,j+1 − 1], (9)

where ik,0 := 0 and ik,p+1 := N + 1 for all k ∈ [q].

16

Case 2: even k. For even k’s, we can repeat the same process, except that we push α < 0 to

large negative number, so that W 2
k,: < 0 is sufficiently large negative. By following a very similar

argument, we can make the output of the k-th node of layer 2 satisfy a2k(xi) = yi, ∀i ∈ Ik, and

a2k(xi) = +1, ∀i ∈
⋃

j∈[0:p]
j even

[ik,j + 1: ik,j+1 − 1], (10)

a2k(xi) = −1, ∀i ∈
⋃

j∈[p]
j odd

[ik,j + 1 : ik,j+1 − 1]. (11)

B.4 Layer 2 to output: add them all

Quite surprisingly, adding up a2k(xi) for all k ∈ [q] gives yi + 1 for all i ∈ [N]. To prove this, first

observe that the index sets I1, I2, . . . , Iq form a partition of [N]. So, proving
∑q

l=1 a
2
l (xik,j

) =
yik,j

+ 1 for all j ∈ [p] and k ∈ [q] suffices.

By the definition of ik,1 = k, ik,2 = 2q + 1 − k, ik,3 = 2q + k, . . . , ik,p−1 = (p− 2)q + k, ik,p =
pq + 1− k, we can see the following chains of inequalities:

jq − q + 1 = i1,j < i2,j < · · · < iq,j = jq for j odd,

jq − q + 1 = iq,j < · · · < i2,j < i1,j = jq for j even.

Fix any k ∈ [q], and any odd j ∈ [p]. From the above chains of inequalities, we can observe that

ik,j ∈ [il,j + 1 : il,j+1 − 1] if l < k,

ik,j ∈ [il,j−1 + 1 : il,j − 1] if l > k.

Now, for xik,j
, we will sum up a2l (xik,j

) for l ∈ [q]. First, for 1 ≤ l < k, we have ik,j ∈ [il,j + 1 :
il,j+1 − 1]. Since j is odd, from Eqs (9) and (11),

a2l (xik,j
) =

{
+1 for odd l < k,

−1 for even l < k.

Similarly, for k < l ≤ w, we have ik,j ∈ [il,j−1 + 1 : il,j − 1]. Since j is odd, from Eqs (8) and
(10),

a2l (xik,j
) =

{
−1 for odd l > k,

+1 for even l > k.

Then, the sum over l 6= k always results in +1, so

∑q

l=1
a2l (xik,j

) = yik,j
+
∑

l6=k
a2l (xik,j

) = yik,j
+ 1.

For any fixed even j ∈ [p], we can similarly prove the same thing. We have

ik,j ∈ [il,j−1 + 1 : il,j − 1] if l < k,

ik,j ∈ [il,j + 1 : il,j+1 − 1] if l > k,

for even j. From this point, the remaining steps are exactly identical to the odd case.

Now that we know
∑q

l=1 a
2
l (xi) = yi + 1, we can choose W 3 = 1

T
q and b3 = −1 so that

fθ(xi) = yi. This finishes the proof of Theorem 3.1 for dy = 1.

B.5 Proof for dy > 1

The proof for dy > 1 is almost the same. Assume that p := d1 is a multiple of 2, q := d2 is a
multiple of 2dy, and pq = Ndy . Now partition the nodes in the 2nd layer into dy groups of size
q/dy . For each of the dy groups, we can do the exact same construction as done in dy = 1 case, to

fit each coordinate of yi perfectly. This is possible because we can share a1(xi) for fitting different
components of yi.

17

C Proof of Proposition 3.2

For the proof, we will abuse the notation slightly and let yi ∈ [dy] denote the class that xi belongs to.
The idea is simple: assign distinct real numbers ρ1, . . . , ρdy

to each of the dy classes, define a new 1-

dimensional regression dataset {(xi, ρyi
)}Ni=1, and do the construction in Theorem 3.1 up to layer 2

for the new dataset. Then, we have
∑d2

l=1 a
2
l (xi) = ρyi

+ 1, as seen in the proof of Theorem 3.1.

Now, at layer 3, consider the following “gate” activation function σG, which allows values in
(−1,+1) to “pass,” while blocking others. This can be implemented with two σH’s or four σR’s:

σG(t) :=

t+ 1 −1 ≤ t ≤ 0,

−t+ 1 0 ≤ t ≤ 1,

0 otherwise.

= 1
2 (σH(2t+ 1) + σH(−2t+ 1)).

For each class j ∈ [dy], we can choose appropriate parameters to implement a gate that allows ρj to
“pass” the gate, while blocking any other ρj′ , j

′ 6= j. The output of the gate is then connected to the
j-th output node of the network. This way, we can perfectly recover the one-hot representation for
each data point.

D Proof of Theorem 3.3

Our proof is based on the idea of counting the number of pieces of piecewise linear functions by
Telgarsky [44]. Consider any vector u ∈ R

dx , and define the following dataset: xi = iu, yi =
(−1)i, for all i ∈ [N].

With piecewise linear activation functions, the network output fθ(x) is also a piecewise affine func-
tion of x. If we define f̄θ(t) := fθ(tu), f̄θ(t) must have at least N − 1 linear pieces to be able to
fit the given dataset {(xi, yi)}Ni=1. We will prove the theorem by counting the maximum number of
linear pieces in f̄θ(t).

We will use the following lemma, which is a slightly improved version of Telgarsky [44,
Lemma 2.3]:

Lemma D.1. If g : R 7→ R and h : R 7→ R are piecewise linear with k and l linear pieces,
respectively, then g + h is piecewise linear with at most k + l − 1 pieces, and g ◦ h is piecewise
linear with at most kl pieces.

For proof of the lemma, please refer to Telgarsky [44].

Consider the output of layer 1 ā1(t) := a1(tu), restricted for x = tu. For each j ∈ [d1], ā
1
j(·)

has at most p pieces. The input to layer 2 is a weighted sum of ā1j(·)’s, so each z̄2k(t) := z2k(tu)

has (p− 1)d1 + 1 pieces, resulting in maximum p(p− 1)d1 + p pieces in the corresponding output
ā2k(t). Again, the weighted sum of d2 such ā2k(·)’s have at most (p(p − 1)d1 + p − 1)d2 + 1 =
p(p− 1)d1d2 + (p− 1)d2 + 1 pieces.

From this calculation, we can see that the output of a 2-layer network has at most (p − 1)d1 + 1
pieces, and a 3-layer network has p(p−1)d1d2+(p−1)d2+1. If these number of pieces are strictly
smaller than N − 1, the network can never perfectly fit the given dataset.

E Proof of Proposition 3.4

For Proposition 3.4, we will use the network from Theorem 3.1 as a building block to construct
the desired parameters. The parameters we construct will result in a network illustrated in Figure 2.
Please note that the arrows are drawn for nonzero parameters only, and all the missing arrows just
mean that the parameters are zero. We are not using a special architecture; we are still in the full
connected network regime.

In the proof of Theorem 3.1, we down-projected xi’s to uTxi =: ci, and fitted c1, . . . , cN to corre-
sponding y1, . . . , yN . Then, what happens outside the range of the dataset? Recall from Section B.2

that we defined c0 := c1 − δ and cN+1 := cN + δ for δ > 0 and constructed W 1 and b1 using
them. If we go back to the proof of Theorem 3.1, we can check that if uTx ≤ c0 or uTx ≥ cN+1,
a2k(x) = −1 for odd k’s and +1 for even k’s, resulting in

∑q

k=1 a
2
k(x) = 0 for all such x’s. For a

quick check, consider imaginary indices 0 and 17 in Figure 1 and see which sides (left or right) of
the 2nd-layer hidden nodes they will be written.

18

Input

Fit

N1

points

l1 l1+1

Fit

N2

points

l2 l2+1

Fit

N3

points

l3 l3+1 Output

dx

dy

Figure 2. Illustration of network parameter construction in Proposition 3.4. The circle/diamond nodes
represent those carrying input/output information, respectively. The rectangular blocks are groups of
nodes across two layers whose parameters are constructed from Theorem 3.1 to fit data points.

Now consider partitioningN data points into m subsets of cardinalitiesN1, . . . , Nm in the following
way. We first down-project the data to get uTxi’s, and re-index data points in increasing order of
uTxi’s. The first N1 points go into the first subset, the next N2 to the second, and so on. Then,
consider constructingm separate networks (by Theorem 3.1) such that each network fits each subset,

except that we let b3 = 0. As seen above, the sum of the outputs of all these m networks will be
yi + 1, for all i ∈ [N]. Thus, by fitting subsets of dataset separately and summing together, we can
still memorize N data points.

The rest of the proof can be explained using Figure 2. For simplicity, we assume that

• For all j ∈ [m], dlj − rj is a multiple of 2, and dlj+1 − rj is a multiple of 2dy,

• ∑m

j=1(dlj − rj)(dlj+1 − rj) = Ndy ,

• dk = 1 for all k ∈ [l1 − 1],

• dk = dy + 1 for all k ∈ ⋃j∈[m−1][lj + 2 : lj+1 − 1],

• dk = dy for all k ∈ [lm + 2 : L− 1].
Also, let Nj := (dlj − rj)(dlj+1 − rj)/dy for j ∈ [m].

From the input layer to layer 1, we down-project xi’s using a random vector u, and scale W 1 := uT

and choose b1 appropriately so that W 1xi + b1 ∈ (−1,+1) for all i ∈ [N]. As seen in the circle
nodes in Figure 2, this “input information” will be propagated up to layer lm − 1 to provide input
data needed for fitting.

At layer lj − 1, the weights and bias into the rectangular block across layers lj–(lj + 1) is selected
in the same way as Section B.2. Inside each block, the subset of Nj data points are fitted using the

construction of Theorem 3.1, but this time we fit to yi−1

2 instead of yi, in order to make sure that
output information is not clipped by hard-tanh. The output of (lj + 1)-th layer nodes in the block
are added up and connected to diamond nodes in layer lj + 2. For the Nj data points in the subset,

the input to the diamond nodes will be yi+1

2 (instead of yi + 1), and 0 for any other data points. As
seen in Figure 2, this output information is propagated up to the output layer.

After fitting all m subsets, the output value of diamond nodes at layer L − 1 is yi+1

2 , for all i. We
can scale and shift this value at the output layer and get yi = fθ(xi).

F Proofs of Theorem 4.1 and Corollary 4.2

F.1 Proof of Theorem 4.1

The key observation used in the proof is that due to the general position assumption, if we pick any
dx data points in the same class, then there always exists an affine hyperplane that contains exactly

19

these dx points. This way, we can pick dx data points per hidden node and “push” them far enough
to specific directions (depending on the classes), so that the last hidden layer can distinguish the
classes based on the location of data points.

We use Nk to denote the number of data points in class k ∈ [dy]. Also, for k ∈ [dy], let xmax
(k) be the

maximum value of the k-th component of xi over all i ∈ [N]. Also, let ek be the k-th standard unit

vector in R
dx .

Now, consider the gate activation function σG, which was also used in the proof of Proposition 3.2
(Appendix C). This activation allows values in (−1,+1) to “pass,” while blocking others. This can
be implemented with two hard-tanh (σH) functions or four ReLU-like (σR) functions:

σG(t) :=

t+ 1 −1 ≤ t ≤ 0,

−t+ 1 0 ≤ t ≤ 1,

0 otherwise.

= 1
2 (σH(2t+ 1) + σH(−2t+ 1)).

Up to layer L − 1, for now we will assume that the activation at the hidden nodes is σG. We will
later count the actual number of hard-tanh or ReLU-like nodes required.

For class k ∈ [dy], we use ⌈Nk

dx
⌉ gate hidden nodes for class k. Each hidden node picks and pushes

dx data points in class k far enough to the direction of ek. Each data point is chosen only once.
Suppose that the hidden node is the j-th hidden node in l-th layer (l ∈ [L − 1], j ∈ [dl]). Pick dx
data points in class k that are not yet “chosen,” then there is an affine hyperplane uTx+ c = 0 that
contains only these points.

Using the activation σG, we can make the hidden node have output 1 for the chosen dx data points
and 0 for all remaining data points. This can be done by setting the incoming parameters

U l
j,: = αuT , blj = αc,

whereα > 0 is a big enough positive constant so that |α(uTxi+c)| > 1 and thus σG(α(u
Txi+c)) =

0 for all unpicked data points xi. Then, choose the outgoing parameters

V l
:,j = βek, cl = 0

where β > 0 will be specified shortly. Notice that since each data point is chosen only once, the dx
data points were never chosen previously. Therefore, for these dx data points, we have

hj(xi) = xi, for j ∈ [l − 1], and

hj(xi) = xi + βek, for j ∈ [l : L− 1],

because they will never be chosen again by other hidden nodes. We choose big enough β to make
sure that the k-th component of hl(xi) (i.e., hl

k(xi)) is bigger than xmax
(k) + 1. We also determine β

carefully so that adding βek does not break the general position assumption. The values of β that
breaks the general position lie in a set of measure zero, so we can sample β from some suitable
continuous random distribution to avoid this.

After doing this to all data points, hL−1(xi) satisfies the following property: For xi’s that are in

class k, hL−1
k (xi) ≥ xmax

(k) + 1, and for xi’s that are not in class k, hL−1
k (xi) ≤ xmax

(k) .

At layer L, by assumption we have dL ≥ dy in case of hard-tanh ResNet. We assume dL = dy for
simplicity, and choose

UL =
[
2 · Idy×dy

0dy×(dx−dy)

]
, bL =

−2xmax
(1) − 1

−2xmax
(2) − 1

...
−2xmax

(dy)
− 1

,

then by clipping of hard-tanh, for xi in class k, the k-th component of σ(ULhL−1(xi) + bL) is +1
and all the other components are −1. Now, by choosing

V L =
1

2
· Idy×dy

, cL =
1

2
1dy

,

20

we can recover the one-hot representation: gθ(xi) = yi, for all i ∈ [N]. For ReLU-like ResNets, we
can do the same job by using dL = 2dy .

Finally, let us count the number of hidden nodes used, for layers up to L − 1. Recall that we

use ⌈Nk

dx
⌉ gate activation nodes for class k. Note that the total number of gate activations used is

bounded above by
dy∑

k=1

⌈
Nk

dx

⌉

≤
dy∑

k=1

(
Nk

dx
+ 1

)

=
N

dx
+ dy,

and each gate activation can be constructed with two hard-tanh nodes or four ReLU-like nodes.

Therefore,
∑L−1

l=1 dl ≥ 2N
dx

+ 2dy and dL ≥ dy is the sufficient condition for a hard-tanh ResNet to

realize the above construction, and ReLU-like ResNets require twice as many hidden nodes.

F.2 Proof of Corollary 4.2

The main idea of the proof is exactly the same. We use ⌈Nk

dx
⌉ gate activation nodes for class k, and

choose dx data points in the same class per each hidden node. When the hidden node is the j-th
node in the hidden layer and the chosen points are from class k, we choose

W 2
:,j = ek, b

2 = 0.

This way, one can easily recover the one-hot representation and achieve fθ(xi) = yi.

G Proof of Theorem 5.1

The outline of the proof is as follows. Recall that we write θ(t) as θ∗ + ξ(t). By the chain rule, we
have

∇θR(θ∗ + ξ(t)) =
1

N

N∑

i=1

ℓ′(fθ∗+ξ(t)(xi); yi)∇θfθ∗+ξ(t)(xi).

If ξ(t) is small enough, the terms ℓ′(fθ∗+ξ(t)(xi); yi) and∇θfθ∗+ξ(t)(xi) can be expressed in terms

of perturbation on ℓ′(fθ∗(xi); yi) and ∇θfθ∗(xi), respectively (Lemma G.1). We then use the
lemma and prove each statement of the theorem.

We first begin by introducing more definitions and symbols required for the proof. As mentioned
in the main text, we’ll abuse the notation θ to mean the concatenation of vectorizations of all the
parameters (W l, bl)Ll=1. To simplify the notation, we define ℓi(θ) := ℓ(fθ(xi); yi). Same thing
applies for derivatives of ℓ: ℓ′i(θ) := ℓ′(fθ(xi); yi), and so on.

Now, for each data point i ∈ [N] and each layer l ∈ [L− 1], define the following diagonal matrix:

J l
θ(xi) := diag(

[
σ′(zl1(xi)) · · · σ′(zldl

(xi))
]
) ∈ R

dl×dl ,

where σ′ is the derivative of the activation function σ, wherever it exists.

Now consider a memorizing global minimum θ∗. As done in the main text, we will express any
other point θ as θ = θ∗+ξ, where ξ is the vectorized version of perturbations. By assumption, R(·)
is differentiable at θ∗; this means that J l

θ∗(xi) are well-defined at θ∗ for all data points and layers
l ∈ [L − 1]. Moreover, since σ is piecewise linear, there exists a small enough positive constant
ρc such that for any ξ satisfying ‖ξ‖ ≤ ρc, the slopes of activation functions stay constant, i.e.,

J l
θ∗+ξ(xi) = J l

θ∗(xi) for all i ∈ [N] and l ∈ [L− 1].

Now, as in the main text, define vectors νi := ∇θfθ∗(xi) for all i ∈ [N]. We can then express
ξ as the sum of two orthogonal components ξ‖ and ξ⊥, where ξ‖ ∈ span({νi}Ni=1) and ξ⊥ ∈
span({νi}Ni=1)

⊥. We also define Pν to be the projection matrix onto span({νi}Ni=1); note that
ξ‖ = Pνξ.

Using the fact that perturbations are small, we can calculate the deviation of network output
fθ∗+ξ(xi) from fθ∗(xi), and use Taylor expansion of ℓ and ℓ′ to show the following lemma, whose
proof is deferred to Appendix I.

21

Lemma G.1. For any given memorizing global minimum θ∗ of R(·), there exist positive constants
ρs (≤ ρc), C1, C2, C3, C4, and C5 such that, if ‖ξ‖ ≤ ρs, the following holds for all i ∈ [N]:

ℓi(θ
∗ + ξ)− ℓi(θ

∗) ≤ C1(C2‖ξ‖‖+ C3‖ξ‖2)2,
ℓ′i(θ

∗ + ξ) = ℓ′′i (θ
∗)νTi ξ‖ +Ri(ξ),

∇θfθ∗+ξ(xi) = νi + µi(ξ),

where the remainder/perturbation terms satisfy

|Ri(ξ)| ≤ C4‖ξ‖2, and ‖µi(ξ)‖ ≤ C5‖ξ‖.

Besides the constants defined in Lemma G.1, define

C6 := max
i∈[N]

ℓ′′i (θ
∗)‖νi‖.

Also, it will be shown in the proof of Lemma G.1 that C2 := maxi∈[N] ‖νi‖. Given Lemma G.1, we
are now ready to prove Theorem 5.1.

Let us first consider the case where all νi’s are zero vectors, so span({νi}Ni=1) = {0}. For such a

pathological case, ξ
(0)
‖ = 0, so the condition ‖ξ(t)‖ ‖ ≥ τ‖ξ(t)‖2 is violated at t∗ = 0 for any positive

τ . By Lemma G.1,

ℓi(θ
∗ + ξ(0))− ℓi(θ

∗) ≤ C1C
2
3‖ξ(0)‖4,

as desired; for this case, Theorem 5.1 is proved with ρ := ρs, C := C1C
2
3 .

For the remaining case where span({νi}Ni=1) 6= {0}, let H :=
∑N

i=1 ℓ
′′
i (θ

∗)νiν
T
i , and define λmin

and λmax to be the smallest and largest strictly positive eigenvalues of H , respectively. We will
show that Theorem 5.1 holds with the following constant values:

τ :=
16C2C4N

λmin
,

ρ :=
1

2
min

{

ρs,
λminC2

16C2C5C6N + λminC5

}

.

γ := min

{
8B log 2

λmin
,

λminB

2λ2
maxE

2

}

,

λ :=
λmin

4B
,

C := 16C1(C2τ + C3)
2.

Firstly, as we saw in the previous case, if ‖ξ(t)‖ ‖ ≥ τ‖ξ(t)‖2 is violated at t∗ = 0, we immediately

have
ℓi(θ

∗ + ξ(0))− ℓi(θ
∗) ≤ C1(C2τ + C3)

2‖ξ(0)‖4 ≤ C‖ξ(0)‖4.

Now suppose ‖ξ(t)‖ ‖ ≥ τ‖ξ‖2 is satisfied up to some iterations, so t∗ > 0. We will first prove that

as long as (k + 1)E ≤ t∗, we have

‖ξ(kE+E)
‖ ‖ ≤ (1− ηλ)‖ξ(kE)

‖ ‖.
To simplify the notation, we will prove this for k = 0; as long as (k + 1)E ≤ t∗, the proof extends
to other values of k.

Using Lemma G.1, we can write the gradient estimate g(t) at θ(t) = θ∗ + ξ(t) as:

g(t) =
1

B

∑

i∈B(t)

ℓ′i(θ
∗ + ξ(t))∇θfθ∗+ξ(t)(xi)

=
1

B

∑

i∈B(t)

(

ℓ′′i (θ
∗)νTi ξ

(t)
‖ +Ri(ξ

(t))
)(

νi + µi(ξ
(t))
)

=

(

1

B

∑

i∈B(t)

ℓ′′i (θ
∗)νiν

T
i

)

ξ
(t)
‖ +

1

B

∑

i∈B(t)

(

ℓ′′i (θ
∗)νTi ξ

(t)
‖ µi(ξ

(t)) +Ri(ξ
(t))(νi + µi(ξ

(t)))
)

︸ ︷︷ ︸

=:ζ(t)

.

22

After the SGD update θ(t+1) ← θ(t) − ηg(t),

θ∗ + ξ
(t+1)
‖ + ξ

(t+1)
⊥ = θ∗ + ξ

(t)
‖ + ξ

(t)
⊥ − ηg(t)

= θ∗ +

(

I − η

B

∑

i∈B(t)

ℓ′′i (θ
∗)νiν

T
i

)

ξ
(t)
‖ + ξ

(t)
⊥ − ηζ(t).

Since η < γ ≤ B
λmax

, I − η
B

∑

i∈B(t) ℓ′′i (θ
∗)νiν

T
i is a positive semi-definite matrix with spectral

norm at most 1. Using the projection matrix Pν , we can write

ξ
(t+1)
‖ =

(

I − η

B

∑

i∈B(t)

ℓ′′i (θ
∗)νiν

T
i

)

ξ
(t)
‖ − ηPνζ

(t), (12)

ξ
(t+1)
⊥ = ξ

(t)
⊥ − η(I − Pν)ζ

(t). (13)

Now, by Lemma G.1,

‖ζ(t)‖ ≤ 1

B

∑

i∈B(t)

(

‖ℓ′′i (θ∗)νTi ξ
(t)
‖ µi(ξ

(t))‖+ ‖Ri(ξ
(t))νi‖+ ‖Ri(ξ

(t))µi(ξ
(t))‖

)

≤C5C6‖ξ(t)‖‖ξ(t)‖ ‖+ C2C4‖ξ(t)‖2 + C4C5‖ξ(t)‖3.

Under the condition that ‖ξ(t)‖ ‖ ≥ τ‖ξ(t)‖2, where τ := 16C2C4N
λmin

, and also that ‖ξ(t)‖ ≤ ρ ≤
λminC2

16C2C5C6N+λminC5
,

‖ζ(t)‖ ≤ C2C4

τ
‖ξ(t)‖ ‖+

(

C5C6 +
C4C5

τ

)

‖ξ(t)‖‖ξ(t)‖ ‖

≤
(
λmin

16N
+

(

C5C6 +
λminC5

16C2N

)

‖ξ(t)‖
)

‖ξ(t)‖ ‖ ≤
λmin

8N
‖ξ(t)‖ ‖.

From this, we can see that

‖ξ(t+1)
‖ ‖ ≤ ‖ξ(t)‖ ‖+ η‖ζ(t)‖ ≤

(

1 +
ηλmin

8N

)

‖ξ(t)‖ ‖.

Noting that η < γ ≤ 8B log 2
λmin

,

(

1 +
ηλmin

8N

)E

≤
(

1 +
log 2

E

)E

≤ 2,

so for 1 ≤ t ≤ E,

‖ζ(t)‖ ≤ λmin

8N
‖ξ(t)‖ ‖ ≤

λmin

8N

(

1 +
log 2

E

)t

‖ξ(0)‖ ‖ ≤
λmin

4N
‖ξ(0)‖ ‖.

Now, repeating the update rule (12) from t = 0 to E − 1, we get

ξ
(E)
‖ =

0∏

k=E−1

(

I − η

B
Hk

)

ξ
(0)
‖ − η

E−1∑

t=0

t+1∏

k=E−1

(

I − η

B
Hk

)

Pνζ
(t), (14)

where Hk :=
∑

i∈B(k) ℓ′′i (θ
∗)νiν

T
i . We are going to bound the norm of each term. For the second

term, we have
∥
∥
∥
∥
∥

E−1∑

t=0

t+1∏

k=E−1

(

I − η

B
Hk

)

Pνζ
(t)

∥
∥
∥
∥
∥
≤

E−1∑

t=0

‖ζ(t)‖ ≤ λminE

4N
‖ξ(0)‖ ‖ =

λmin

4B
‖ξ(0)‖ ‖. (15)

The first term is a bit tricker. Note first that

0∏

k=E−1

(

I − η

B
Hk

)

= I − η

B

E−1∑

k=0

Hk +
η2

B2

∑

j,k∈[0,E−1]
j<k

HkHj −
η3

B3

∑

i,j,k∈[0,E−1]
i<j<k

HkHjHi + · · · .

23

Recall the definition H =
∑N

i=1 ℓ
′′
i (θ

∗)νiν
T
i =

∑E−1
k=0 Hk, and that λmin and λmax are the mini-

mum and maximum eigenvalues of H . Since Hk’s are positive semi-definite and H is the sum of
Hk’s, the maximum eigenvalue of Hk is at most λmax. Using this,

∥
∥
∥
∥
∥

0∏

k=E−1

(

I − η

B
Hk

)

ξ
(0)
‖

∥
∥
∥
∥
∥
≤
(

1− ηλmin

B
+

E∑

k=2

(
E

k

)(ηλmax

B

)k
)

‖ξ(0)‖ ‖.

First note that for k ∈ [2, E − 1],
(

E
k+1

)
2
E
≤
(
E
k

)
, because

2

E
≤ k + 1

E − k
=

(k + 1)!(E − k − 1)!

k!(E − k)!
=

(
E
k

)

(
E

k+1

) .

Since η < γ ≤ λminB
2λ2

maxE
2 ≤ B

λmaxE
, for k ∈ [2, E − 1] we have

(
E

k + 1

)(ηλmax

B

)k+1

≤
(

E

k + 1

)
1

E

(ηλmax

B

)k

≤ 1

2

(
E

k

)(ηλmax

B

)k

,

which implies that

E∑

k=2

(
E

k

)(ηλmax

B

)k

≤ 2

(
E

2

)(ηλmax

B

)2

≤ η2E2λ2
max

B2
≤ ηλmin

2B
.

Therefore, we have
∥
∥
∥
∥
∥

0∏

k=E−1

(

I − η

B
Hk

)

ξ
(0)
‖

∥
∥
∥
∥
∥
≤
(

1− ηλmin

2B

)

‖ξ(0)‖ ‖.

Together with the bound on the second term (15), this shows that

‖ξ(E)
‖ ‖ ≤

(

1− ηλmin

4B

)

‖ξ(0)‖ ‖ = (1− ηλ) ‖ξ(0)‖ ‖,

which we wanted to prove.

We now have to prove that

‖ξ(E)‖ ≤ ‖ξ(0)‖+ ηλ‖ξ(0)‖ ‖.
Now, repeating the update rule (13) from t = 0 to E − 1, we get

ξ
(E)
⊥ = ξ

(0)
⊥ − η

E−1∑

t=0

(I − Pν)ζ
(t). (16)

Thus, by combining equations (14) and (16),

‖ξ(E)‖ = ‖ξ(E)
‖ + ξ

(E)
⊥ ‖

≤
∥
∥
∥
∥
∥

0∏

k=E−1

(

I − η

B
Hk

)

ξ
(0)
‖ + ξ

(0)
⊥

∥
∥
∥
∥
∥
+ η

E−1∑

t=0

∥
∥
∥
∥
∥

t+1∏

k=E−1

(

I − η

B
Hk

)

Pνζ
(t) + (I − Pν)ζ

(t)

∥
∥
∥
∥
∥

≤‖ξ(0)‖+ η
E−1∑

t=0

‖ζ(t)‖ ≤ ‖ξ(0)‖+ η
λmin

4B
‖ξ(0)‖ ‖ = ‖ξ

(0)‖+ ηλ‖ξ(0)‖ ‖.

It now remains to prove that ‖ξ(t∗)‖ ≤ 2‖ξ(0)‖ ≤ 2ρ at the first iteration t∗ that ‖ξ(t)‖ ‖ ≥ τ‖ξ(t)‖2
is violated. Let k∗ be the maximum k such that kE ≤ t∗.

From what we have shown so far,

‖ξ(k∗E)‖ ≤ ‖ξ(0)‖+ ηλ
k∗−1∑

k=0

‖ξ(kE)
‖ ‖.

24

Also, for t in k∗E ≤ t < t∗ the condition ‖ξ(t)‖ ‖ ≥ τ‖ξ(t)‖2 is satisfied, so by the same argument

we have ‖ζ(t)‖ ≤ λmin

4N ‖ξ
(k∗E)
‖ ‖ for t ∈ [k∗E, t∗ − 1]. Finally, by modifying equations (14) and

(16) a bit, we get

‖ξ(t∗)‖ = ‖ξ(t
∗)

‖ + ξ
(t∗)
⊥ ‖

≤
∥
∥
∥
∥
∥

k∗E∏

k=t∗−1

(

I − η

B
Hk

)

ξ
(k∗E)
‖ + ξ

(k∗E)
⊥

∥
∥
∥
∥
∥
+ η

t∗−1∑

t=k∗E

∥
∥
∥
∥
∥

t+1∏

k=t∗−1

(

I − η

B
Hk

)

Pνζ
(t) + (I − Pν)ζ

(t)

∥
∥
∥
∥
∥

≤‖ξ(k∗E)‖+ η

t∗−1∑

t=k∗E

‖ζ(t)‖ ≤ ‖ξ(k∗E)‖+ η
λmin

4B
‖ξ(k

∗E)
‖ ‖ ≤ ‖ξ(0)‖+ ηλ

k∗

∑

k=0

‖ξ(kE)
‖ ‖.

Finally, from ‖ξ(kE+E)
‖ ‖ ≤ (1− ηλ)‖ξ(kE)

‖ ‖,

‖ξ(t∗)‖ ≤ ‖ξ(0)‖+ ηλ

k∗

∑

k=0

(1− ηλ)k‖ξ(0)‖ ‖ ≤ ‖ξ
(0)‖+ ‖ξ(0)‖ ‖ ≤ 2‖ξ(0)‖.

H Proof of Lemma B.1

Recall that ik,j ∈ [jq − q + 1, jq]. Consider any l < j. Then, ik,j > lq, so by (3) and (6), we have

a1l (xik,j
) = (−1)l−1. Similarly, if we consider l > j, then ik,j ≤ lq − q, so it follows from (2) and

(5) that a1l (xik,j
) = (−1)l. This means that the entries (indexed by (j, l)) of Mk below the diagonal

are filled with (−1)l−1, and entries above the diagonal are filled with (−1)l. Thus, the matrix Mk

has the form

Mk =

a11(xik,1
) 1 −1 · · · −1 1 1

1 a12(xik,2
) −1 · · · −1 1 1

1 −1 a13(xik,3
) · · · −1 1 1

...
...

...
. . .

...
...

...

1 −1 1 · · · a1p−1(xik,p−1
) 1 1

1 −1 1 · · · 1 a1p(xik,p
) 1

.

To prove the first statement of Lemma B.1, consider adding the last column to every even l-th column
and subtracting it from every odd l-th column. Then, this results in a matrix

a11(xik,1
)− 1 2 −2 · · · −2 2 1

0 a12(xik,2
) + 1 −2 · · · −2 2 1

0 0 a13(xik,3
)− 1 · · · −2 2 1

...
...

...
. . .

...
...

...

0 0 0 · · · a1p−1(xik,p−1
)− 1 2 1

0 0 0 · · · 0 a1p(xik,p
) + 1 1

,

whose columns space is the same as Mk. It follows from a1j(xik,j
) ∈ (−1,+1) that Mk has full

column rank. This also implies that dim(null(Mk)) = 1.

For the second statement, consider subtracting (j + 1)-th row from j-th row, for j ∈ [p − 1]. This
results in

M̃k :=

a11(xik,1
)− 1 1− a12(xik,2

) 0 · · · 0 0 0
0 a12(xik,2

) + 1 −a13(xik,3
)− 1 · · · 0 0 0

0 0 a13(xik,3
)− 1 · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 · · · a1p−1(xik,p−1
)− 1 1− a1p(xik,p

) 0
1 −1 1 · · · 1 a1p(xik,p

) 1

,

25

which has the same null space as Mk. Consider a nonzero vector ν ∈ null(M̃k), i.e., M̃kν = 0. Let
νl denote the l-th component of ν. One can see that ν1, . . . , νp are not all zero, because if νp+1 is

the only nonzero component, M̃kν = (0, 0, . . . , 0, νp+1)
T 6= 0.

Assume without loss of generality that ν1 is strictly positive. Note that a11(xik,1
)−1 and 1−a12(xik,2

)

are both nonzero and the signs of a11(xik,1
)− 1 and 1− a12(xik,2

) are opposite. Then if follows from

(a11(xik,1
) − 1)ν1 + (1 − a12(xik,2

))ν2 = 0 that ν2 is also strictly positive. Similarly, a12(xik,2
) + 1

and −a13(xik,3
)− 1 are both nonzero and have opposite signs, so ν3 > 0. Proceeding this way up to

νp, we can see that all νl, l ∈ [p], are strictly positive.

I Proof of Lemma G.1

We begin by introducing more definitions. For a matrix A ∈ R
m×n, let vec(A) ∈ R

mn be its
vectorization, i.e., columns of A concatenated as a long vector. Given matrices A and B, let A⊗B
denote their Kronecker product. Throughout the proof, we use θ and ξ to denote the concatenation

of vectorizations of all the parameters (W l, bl)Ll=1 and perturbations (∆l, δl)Ll=1:

θ :=

vec(WL)

bL

vec(WL−1)

bL−1

...

vec(W 1)
b1

, ξ :=

vec(∆L)

δL

vec(∆L−1)

δL−1

...

vec(∆1)
δ1

. (17)

In Section 2, we defined al(xi) to denote output of the l-th hidden layer when the network input is

xi. In order to make the dependence of parameters more explicit, we will instead write alθ(xi) in
this section. Also, for l ∈ [L− 1], define

Dl
θ(xi) := WLJL−1

θ (xi)W
L−1 · · ·W l+1J l

θ(xi) ∈ R
1×dl , (18)

and for convenience in notation, let DL
θ (xi) := 1. It can be seen from standard matrix calculus that

[∇W lfθ(xi) ∇blfθ(xi)] = Dl
θ(xi)

T
[

al−1
θ (xi)

T 1
]
, (19)

for all l ∈ [L]. Vectorizing and concatenating these partial derivatives results in

∇θfθ(xi) =

aL−1
θ (xi)

1
[

aL−2
θ (xi)

1

]

⊗DL−1
θ (xi)

T

...
[
xi

1

]

⊗D1
θ(xi)

T

. (20)

In order to prove the lemma, we first have to quantify how perturbations on the global minimum

affect outputs of the hidden layers and the network. Let θ∗ := (W l
∗, b

l
∗)

L
l=1 be the memorizing

global minimum, and let (∆l, δl)Ll=1 be perturbations on parameters, whose vectorization ξ satisfies

‖ξ‖ ≤ ρc. Then, for all l ∈ [L− 1], define ãlθ∗+ξ(·) to denote the amount of perturbation in the l-th
hidden layer output:

ãlθ∗+ξ(xi) := alθ∗+ξ(xi)− alθ∗(xi).

It is easy to check that

ã1θ∗+ξ(xi) = J1
θ∗(xi)(∆

1xi + δ1),

ãlθ∗+ξ(xi) = J l
θ∗(xi)

(

∆
lal−1

θ∗ (xi) + δl + (W l
∗ +∆

l)ãl−1
θ∗+ξ(xi)

)

.

26

Similarly, let f̃θ∗+ξ(·) denote the amount of perturbation in the network output. It can be checked
that

f̃θ∗+ξ(xi) := fθ∗+ξ(xi)− fθ∗(xi) = ∆
LaL−1

θ∗ (xi) + δL + (W L
∗ +∆

L)ãL−1
θ∗+ξ(xi).

One can see that ã1θ∗+ξ(xi) only contains perturbation terms that are first-order in ξ: J1
θ∗(xi)(∆

1xi+

δ1). However, the order of perturbation accumulates over layers. For example,

ã2θ∗+ξ(xi) = J2
θ∗(xi)

(
∆

2a1θ∗(xi) + δ2 + (W 2
∗ +∆

2)J1
θ∗(xi)(∆

1xi + δ1)
)

= J2
θ∗(xi)

(
∆

2a1θ∗(xi) + δ2 +W 2
∗J

1
θ∗(xi)(∆

1xi + δ1)
)

︸ ︷︷ ︸

first-order perturbation

+ J2
θ∗(xi)∆

2J1
θ∗(xi)(∆

1xi + δ1)
︸ ︷︷ ︸

second-order perturbation

,

so ã2θ∗+ξ(xi) contains 1st–2nd order perturbations. Similarly, ãlθ∗+ξ(xi) has terms that are 1st–l-th

order in ξ, and f̃θ∗+ξ(·) perturbation terms from 1st order to L-th order.

Using the definition of Dl
θ(xi) from Eq (18), the collection of first order perturbation terms in

f̃θ∗+ξ(·) can be written as

f̃ 1
θ∗+ξ(xi) := ∆

LaL−1
θ∗ (xi) + δL +WL

∗ J
L−1
θ∗ (xi)(∆

L−1aL−2
θ∗ (xi) + δL−1) + · · ·

=
L∑

l=1

Dl
θ∗(xi)(∆

lal−1
θ∗ + δl)

(a)
= ∇θfθ∗(xi)

T ξ
(b)
= νTi ξ‖

where (a) is an application of Taylor expansion of fθ(xi) at θ∗, which can also be directly checked
from explicit forms of ξ (17) and∇θfθ∗(xi) (20). Equality (b) comes from the definition of ξ⊥ that
ξ⊥ ⊥ νi. We also define the collection of higher order perturbation terms:

f̃ 2+
θ∗+ξ(xi) := f̃θ∗+ξ(xi)− f̃ 1

θ∗+ξ(xi).

Now, from the definition of memorizing global minima, ℓ′i(θ
∗) = 0 for all i ∈ [N]. Since ℓi is three

times differentiable, Taylor expansion of ℓi(·) at θ∗
gives

ℓi(θ
∗ + ξ)− ℓi(θ

∗) =
1

2
ℓ′′i (θ

∗)(f̃θ∗+ξ(xi))
2 +

1

6
αi(f̃θ∗+ξ(xi))

3,

where αi = ℓ′′′(fθ∗(xi)+ βif̃θ∗+ξ(xi); yi) for some βi ∈ [0, 1]. For small enough ρs, f̃θ∗+ξ(xi) is
small enough and bounded, so there exists a constant C1 such that

ℓi(θ
∗ + ξ)− ℓi(θ

∗) ≤ C1(f̃θ∗+ξ(xi))
2

for all i ∈ [N]. There also are constants C2 := maxi∈[N] ‖νi‖ and C3 such that

|f̃ 1
θ∗+ξ(xi)| ≤ C2‖ξ‖‖, and |f̃ 2+

θ∗+ξ(xi)| ≤ C3‖ξ‖2

for all i ∈ [N], therefore

ℓ(fθ∗+ξ(xi); yi)− ℓ(fθ∗(xi); yi) ≤ C1(C2‖ξ‖‖+ C3‖ξ‖2)2

holds for all i ∈ [N], as desired.

Now, consider the Taylor expansion of ℓ′i at fθ∗(xi). Because ℓ′i is twice differentiable and ℓ′i(θ
∗) =

0,

ℓ′i(θ
∗ + ξ) =ℓ′′(θ∗)f̃θ∗+ξ(xi) +

1

2
α̂i(f̃θ∗+ξ(xi))

2

=ℓ′′(fθ∗(xi); yi)f̃
1
θ∗+ξ(xi) + ℓ′′(fθ∗(xi); yi)f̃

2+
θ∗+ξ(xi) +

1

2
α̂i(f̃θ∗+ξ(xi))

2

︸ ︷︷ ︸

=:Ri(ξ)

=ℓ′′(fθ∗(xi); yi)ν
T
i ξ‖ +Ri(ξ), (21)

where α̂i = 1
2ℓ

′′′(fθ∗(xi) + β̂if̃θ∗+ξ(xi); yi) for some β̂i ∈ [0, 1]. The remainder term Ri(ξ)
contains all the perturbation terms that are 2nd-order or higher, so there is a constant C4 such that

|Ri(ξ)| ≤ C4‖ξ‖2

27

holds for all i ∈ [N].

In a similar way, we can see from Eq (20) that we can express ∇θfθ∗+ξ(xi) as the sum of νi :=
∇θfθ∗(xi) plus the perturbation µi(ξ):

∇θfθ∗+ξ(xi) = νi + µi(ξ),

where µi(ξ) contains all the perturbation terms that are 1st-order or higher. So, there exists a constant
C5 such that

‖µi(ξ)‖ ≤ C5‖ξ‖
holds for all i ∈ [N].

28

Efficient Nonconvex Empirical Risk Minimization

via Adaptive Sample Size Methods

Aryan Mokhtari Asuman Ozdaglar Ali Jadbabaie
MIT MIT MIT

Abstract

In this paper, we are interested in finding a
local minimizer of an empirical risk minimiza-
tion (ERM) problem where the loss associ-
ated with each sample is possibly a nonconvex
function. Unlike traditional deterministic and
stochastic algorithms that attempt to solve
the ERM problem for the full training set,
we propose an adaptive sample size scheme
to reduce the overall computational complex-
ity of finding a local minimum. To be more
precise, we first find an approximate local
minimum of the ERM problem corresponding
to a small number of samples and use the
uniform convergence theory to show that if
the population risk is a Morse function, by
properly increasing the size of training set
the iterates generated by the proposed pro-
cedure always stay close to a local minimum
of the corresponding ERM problem. There-
fore, eventually the proposed procedure finds
a local minimum of the ERM corresponding
to the full training set which happens to also
be close to a local minimum of the expected
risk minimization problem with high proba-
bility. We formally state the conditions on
the size of the initial sample set and charac-
terize the required accuracy for obtaining an
approximate local minimum to ensure that
the iterates always stay in a neighborhood of
a local minimum and do not get attracted to
saddle points.

1 Introduction

A crucial problem in learning is the gap between the op-
timal solution of Statistical Risk Minimization (SRM),

Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

which is the problem that we aim to solve, and Empir-
ical Risk Minimization (ERM), which is the problem
that we can solve in practice. The goal of SRM is
to come up with a classifier or learner by solving a
stochastic program with respect to the distribution
of the data. As data generating distribution is often
unknown, one has to settle for N independent samples
from the distribution to create a dataset – also called
training set – and find a classifier or learner that per-
forms well on the data. Indeed, the gap between these
two solutions is a decreasing function of the number of
acquired samples for the ERM problem.

Depending on whether the risk function used for evalu-
ating the performance of a learner (classifier) is convex
or not, the ERM problem boils down to a convex or non-
covex finite sum minimization problem. For the convex
case, there exist various deterministic methods such
as gradient methods, quasi-Newton algorithms, and
Newton’s method that can be used to solve the prob-
lem [Bertsekas, 1999, Boyd and Vandenberghe, 2004,
Nesterov, 2013, Wright and Nocedal, 1999]. However,
each iteration of these methods requires a pass over the
training set which is computationally prohibitive when
N is large. Stochastic and incremental first-order and
second-order methods have been deeply studied for the
ERM problem when the risk is convex [Defazio et al.,
2014a,b, Gürbüzbalaban et al., 2015, 2017, Le Roux
et al., 2012, Mairal, 2015, Mokhtari et al., 2018b, Vanli
et al., 2018].

For nonconvex risk functions, deterministic [Agarwal
et al., 2017, Carmon et al., 2017a,b,c, 2018, Nesterov,
2013] and stochastic [Allen Zhu and Hazan, 2016, Lei
et al., 2017, Reddi et al., 2016a,b] methods can be used
to reach a first-order stationary point (a critical point)
of the ERM problem. Since a critical point could be
a saddle point, a better convergence criteria would
be to ensure convergence to a second-order stationary
point of ERM. This goal can be achieved by escaping
from saddle points via injecting a properly chosen noise
[Daneshmand et al., 2018, Ge et al., 2015, Jin et al.,
2017a,b], or using the eigenvector corresponding to
the smallest eigenvalue of the Hessian to obtain an

Efficient Nonconvex Empirical Risk Minimization via Adaptive Sample Size Methods

escape direction [Agarwal et al., 2017, Allen-Zhu, 2017,
Carmon et al., 2018, Paternain et al., 2017, Reddi
et al., 2018, Royer and Wright, 2018, Xu and Yang,
2017]. Most of the methods that converge to a second-
order stationary point are able to converge to a local
minimum of the objective function when the saddle
points are non-degenerate as they can escape from
strict saddles.

However, most of the existing algorithms for solving
the ERM problem, both in convex and nonconvex set-
tings, do not exploit the connection between statistical
and empirical risk minimization and are designed for a
general finite sum minimization problem. While this is
not necessarily a drawback, but it is nonetheless true
that not exploiting the connection between SRM and
ERM may leave some performance gains on the tab.
A new line of research which is based on solving a se-
quence of ERM problems with geometrically increasing
samples attempted to collect these gains exhaustively
[Daneshmand et al., 2016, Eisen et al., 2018, Jahani
et al., 2018, Mokhtari and Ribeiro, 2017, Mokhtari
et al., 2016]. The main idea of adaptive sample size
methods is to first obtain a good solution for an ERM
problem corresponding to a small subset of the training
set, which is computationally cheaper to solve. This is
followed by increasing the size of the working samples
set by adding new samples to the current set and using
the most recent solution as a warm start for the new
ERM problem. The key idea is that since the samples
are drawn from the same distribution the solution for a
smaller set should be a good approximate for the solu-
tion of the enlarged set (containing the smaller set). In
the convex setting, the sequence of ERM problems are
convex and one can solve them arbitrary close to their
global minimum. In fact, recent works showed that
for the convex case, if we use first-order [Mokhtari and
Ribeiro, 2017] or second-order [Mokhtari et al., 2016]
methods to solve the subproblem, the overall complex-
ity significantly reduces compared to solving the ERM
problem for the full training set using deterministic or
stochastic methods.

For the nonconvex case, it is typically hard to reach a
global minimizer and a reasonable objective that can
be achieved in the case that stationary points are non-
degenerate is finding a local minimum. In this paper,
our goal is to exploit the connection between ERM
and SRM via adaptive sample size schemes to improve
the overall computational complexity for reaching an
approximate local minimum of ERM and consequently
SRM. In our proposed approach, we first find an ap-
proximate local minimum of the ERM problem corre-
sponding to a small number of samples. Then, based
on the uniform convergence theory, we show that if the
population risk is a Morse function, i.e., its saddles are

non-degenerate, by properly increasing the size of train-
ing set the approximate local minimum for the smaller
problem is within a neighborhood of the local minimum
of the ERM problem corresponding to the enlarged set.
We further show that by following simple gradient or
Newton steps the sequence of iterates approaches a lo-
cal minimum of the new ERM problem without getting
attracted to any saddle points or local maxima. We
formally characterize how accurate the subproblems
should be solved to ensure that the iterates always stay
in a local neighborhood of a local minimum and do
not get attracted to saddle points. By following this
scheme and doubling the size of the training set at the
end of each stage we finally reach a local minimum of
the ERM problem for the full training set, which is an
approximate local minimum of the SRM problem with
high probability.

To better highlight the advantage of the proposed adap-
tive sample size methods in the nonconvex setting, note
that the main challenge in converging to a second-order
stationary point or to a local minimum when saddles are
non-degenerate is escaping from saddle points. Most
algorithms developed for escaping from saddle points
require computation of the objective function gradient
and Hessian as well as a descent direction by finding the
eigenvector corresponding to the minimum eigenvalue
of the Hessian. This process can be computationally
expensive as the number of saddle points visited before
reaching to a neighborhood of a local minimum could
be very large. The adaptive sample size scheme allows
us to perform these costly operations only for the first
ERM problem which has a small number of samples,
and then stay within a neighborhood of a sequence of
local minima as we enlarge the size of the training set.
This procedure, indeed, leads to a significantly lower
complexity for reaching a local minimum of the ERM
problem, if the extra cost for staying close to local
minimum while we increase the size of the training
set is negligible. In particular, we show that, given
an approximate local minimum of the initial training
set, the proposed adaptive sample size approach with
an accelerated gradient descent update reaches a local
minimum of the full training set after at most O(N

p
)

gradient evaluations, where can be interpreted as
the condition number of the population risk at its crit-
ical points. Moreover, if we have access to second
order information, the proposed scheme obtains a local
minimum of the ERM problem after at most 2N gradi-
ent and Hessian evaluations and logN Hessian inverse
computations.

Outline. We start the paper by reviewing the problem
formulations for statistical risk minimization and em-
pirical risk minimization (ERM) as well as recapping
the uniform convergence results for non-convex loss

Aryan Mokhtari, Asuman Ozdaglar, Ali Jadbabaie

functions (Section 2). Then, we describe the details of
the proposed adaptive sample size scheme for obtaining
an approximate local minimum of the ERM problem
(Section 3). Theoretical convergence guarantees for our
proposed framework is then presented (Section 4). In
particular, we characterize the overall computation cost
of running the algorithm until reaching a local mini-
mum of the ERM problem when we update the iterates
according to gradient descent, Nesterov’s accelerated
gradient, or Newton’s method. We also compare the
theoretical convergence guarantees for our proposed
adaptive sample size scheme with state-of-the-art al-
gorithms (Section 5). We finally close the paper with
concluding remarks (Section 6).

Notation. Vectors are written as lowercase x 2 Rp

and matrices as uppercase A 2 Rp⇥p. We use kxk to
denote the l

2

norm of the vector x. Given a matrix A 2
Rp⇥p, we denote by �

i

(A) its i-th largest eigenvalue,
and by kAk

op

its operator norm which is defined as
kAk

op

:= max{�
1

(A),��
p

(A)} where �

1

and �

p

are
the largest and smallest eigenvalues of A, respectively.
The inner product of two vectors x,y 2 Rp is denoted
by hx,yi :=Pp

i=1

x

i

y

i

. Given a function f its gradient
and Hessian at point x are denoted as rf(x) and
r2

f(x), respectively. We use B

p

(r) = {x 2 Rp |
kxk

2

 r} to denote the Euclidean ball with radius r

in p dimensions.

2 Preliminaries

Consider a decision vector w 2 Rp, a random variable
Z with realizations z 2 Rd and a loss function ` :

Rp ⇥ Rd ! R. We aim to solve

min

w
R(w) = min

w
EZ[`(w,Z)] = min

w

Z

Z
`(w,Z)P (dz),

(1)

where R(w) := EZ[`(w,Z)] is defined as the statistical
risk, and P is the probability distribution of the random
variable Z. In the rest of the paper, we also refer to
R as the expected risk or the population risk. Note
that the loss function ` is not necessarily convex with
respect to w and could be nonconvex. Even under
the assumption that the loss function ` is convex, the
optimization problem in (1) cannot be solved accurately
since the distribution P is unknown. However, in most
learning problems we have access to a training set
T = {z

1

, . . . , z

N

} containing N independent samples
z

1

, . . . , z

N

drawn from P . Therefore, we attempt to
minimize the empirical risk associated with the training
set T = {z

1

, . . . , z

N

}, which is equivalent to solving
the following optimization program

min

w
R

n

(w) = min

w

1

n

n

X

i=1

`(w, z

i

), (2)

for n = N . Note that in (2) we defined R

n

(w) :=

(1/n)

P

n

i=1

`(w, z

i

) as the empirical risk corresponding
to the realizations {z

1

, . . . , z

n

}.
For the case that the loss function ` is convex, there is
a rich literature on bounds for the difference between
the expected risk R and the empirical risk R

n

which
is also referred to as estimation error [Bartlett et al.,
2006, Bottou, 2010, Bottou and Bousquet, 2007, Frostig
et al., 2015, Vapnik, 2013]. In particular, it has been
shown that if the population risk R is convex, then
with high probability for a sufficiently large number
of samples n the gap between the expected risk and
empirical risk is bounded by

sup

w2Rp
|R(w)�R

n

(w)| O �n�↵

�

, (3)

where ↵ can be a constant in the interval [0.5, 1] depend-
ing on the regularity conditions that the loss function
` satisfies [Bartlett et al., 2006, Vapnik, 2013].

In a recent paper, Mei et al. [2018] extended this result
to the nonconvex setting under the assumptions that
gradients and Hessians of the population risk R satisfy
some regularity conditions (we state them formally
below). To simplify the analysis, let us focus on the
problem in which the decision variable w belongs to a
bounded set and assume that the bounded set is large
enough to contain all the stationary points. To formally
state their result, we first present their assumptions.
Assumption 1. The loss function gradient r` is ⌧

2-
sub-Gaussian, i.e., for any y 2 Rp and w 2 B

p

(r)

E[exp
�hy,r`(w,Z)� E[r`(w,Z)]i�]exp

⌧

2kyk2
2

�

.

(4)
Assumption 2. The Hessian r2

` for the vectors in
the unit sphere is ⌧

2-sub-exponential, i.e., for any y 2
B

p

(1) and w 2 B

p

(r) we have

E

exp

1

⌧

2

�

�hy,r2

`(w,Z)yi�hy,E[r2

`(w,Z)]yi��
��

2.

(5)
Assumption 3. The gradients r` and Hessians r2

`

are Lipschitz continuous with constants M = ⌧

2

p

q, and
L = ⌧

3

p

q, respectively, for some constant q.

Note that the stochastic gradientr`(w,Z) and stochas-
tic Hessian r2

`(w,Z) are unbiased estimators of the
risk gradient E[r`(w,Z)] and Hessian E[r2

`(w,Z)],
and, therefore, conditions in Assumptions 1 and 2 can
be considered as bounds on the variations of these
estimators. Note that the constants for Lipschitz con-
tinuity of gradients and Hessians are defined properly
as a function of ⌧ and p in a way that r⌧ and q are
dimensionless [Mei et al., 2018].

Efficient Nonconvex Empirical Risk Minimization via Adaptive Sample Size Methods

The uniform convergence result for the nonconvex ERM
problem is stated in the following theorem.
Theorem 1 (Mei et al. [2018]). Under Assumptions 1-
3, there exists a universal constant C

0

, such that letting
C = C

0

(max{q, log(r⌧/�), 1}), for n � Cp log p with
probability at least 1� � the following inequalities hold:

sup

w2B

p
r

krR
n

(w)�rR(w)k
2

 ⌧

r

Cp log n

n

,

sup

w2B

p
r

�

�r2

R

n

(w)�r2

R(w)

�

�

op

 ⌧

2

r

Cp log n

n

. (6)

Theorem 1 shows that the difference between gradients
and Hessians of the population and empirical risks are
within O(

p

p log n/n) of each other with high proba-
bility. Hence, the landscape of stationary points for
the empirical risk rR

n

is similar to the one for the
expected risk rR(w) if the number of samples n is
sufficiently large. Moreover, it immediately follows
from this result that there is no gain in finding a local
minimum for the risk R

n

that has a gradient smaller
than O(

p

p log n/n). Additionally, to ensure that the
eigenvalues of the population risk Hessian r2

R(w

†
)

are strictly positive definite at a point w

†, we need
to ensure that all the eigenvalues of the empirical risk
Hessian r2

R

n

(w

†
) are larger than the statistical gap

O(

p

p log n/n). Based on these observations, given a
training set of size N , our goal is to find an approxi-
mate local minimum w

N

of the risk R

N

satisfying the
following conditions

krR
N

(w

N

)k ⇣

N

, r2

R

N

(w

N

) ⌫ �

N

I, (7)

where ⇣

N

= O(⌧

p

Cp logN/N) and �

N

=

O(⌧

2

p

Cp logN/N). Indeed, if we find a point w

N

satisfying the conditions in (7), based on the result in
Theorem 1, w

N

is an approximate local minimum of
the population risk R with high probability.

To derive our theoretical results, besides the conditions
in Assumptions 1-3, we need to assume that the popu-
lation risk R is strongly Morse as we formally define in
the following assumption.
Assumption 4. The population risk R is (↵,�)-
strongly Morse if for any point w† that satisfies the con-
dition krR(w

†
)k ↵, it holds that |�

i

(r2

R(w

†
))| � �

for all i 2 {1, . . . , p}.

The definition of (↵,�)-strongly Morse functions is
borrowed from [Mei et al., 2018]. Note that in this def-
inition ↵ and � are positive constants. This condition
ensures that all the critical points of the population risk
R are non-degenerate and in a neighborhood of each
of them the absolute value of the eigenvalues of the
Hessian r2

R are strictly larger than 0. Note that the

(↵,�)-strongly Morse condition can be relaxed to the
assumption that all the critical point are nondegenerate,
i.e., if w† is a critical point then |�

i

(r2

R(w

†
))| � �

0.
Indeed, this condition in conjunction with Lipschitz
continuity of gradients and Hessians implies that there
exist ↵ and � such that the condition in Assumption 4
holds.

3 An Adaptive Sample Size Scheme

for Nonconvex Problems

In this section, we aim to design an adaptive sample size
mechanism which builds on the uniform convergence
theory for ERM problems to find a local minimum of
the empirical risk R

N

upto its statistical accuracy faster
than traditional (stochastic and deterministic) meth-
ods. The main steps of the proposed scheme can be
explained as follows. We first find a local minimizer of
the ERM problem corresponding to m

0

samples which
is significantly smaller than N . Then, we increase the
size of the training set such that the current iterate,
which is an approximate local min for ERM with m

0

samples, stays in a neighborhood of a local minimum of
the ERM problem corresponding to the enlarged train-
ing set. Our theory suggests that by doubling the size
of training set this condition is satisfied. After adding
more samples to the active training set, we update
the iterate according to a first-order or second-order
method until the norm of gradient becomes sufficiently
small and the iterate becomes very close to a local min-
imum of the enlarged ERM problem. This procedure
continues until the training set becomes identical to
the full training set T which contains N samples. At
the end of procedure, the output is a point w

N

which
is close to a local minimum of R

N

.

To be more specific, consider the training set S
m

with m

samples as a subset of the full training set T , i.e., S
m

⇢
T . Assume that we found a point w

m

which is close
to one of the local minimizers of the risk R

m

, i.e., w
m

satisfies krR
m

(w

m

)k ✏

m

and r2

R

m

(w

m

) � 0 for
some positive constant ✏

m

. The fundamental question
at hand is under what conditions on ✏

m

and the initial
size of the training set m

0

we can ensure that the iterate
w

m

is within a neighborhood of a local minimum of the
ERM problem corresponding to a larger set S

n

which
has n = 2m samples and contains the previous set, i.e.,
S
m

⇢ S
n

⇢ T . We formally answer this question in the
following section. We further derive an upper bound
on the overall computational complexity for reaching a
local minimum of the ERM problem corresponding to
the full training set T for different choices of iterative
methods used to solve the subproblems.

The steps of the proposed adaptive sample size scheme
are summarized in Algorithm 1. We assume that for

Aryan Mokhtari, Asuman Ozdaglar, Ali Jadbabaie

Algorithm 1 Adaptive Sample Size Mechanism
1: Input: Initial sample size n = m

0

and argument
w

n

= w

m0

2: while n N do {main loop}
3: Set w

m

 w

n

and m n.
4: Increase sample size: n min{2m,N}.
5: Set the initial variable: ˜

w w

m

.
6: while krR

n

(

˜

w)k > ✏

n

do
7: ˜

w FO-update(˜w,rR
n

(

˜

w))
or ˜

w SO-update(˜w,rR
n

(

˜

w),r2

R

n

(

˜

w))
8: end while
9: Set w

n

 ˜

w.
10: end while

the initial training set with m

0

samples, we have access
to a point w

m0 which is close (we formalize the measure
of closeness later) to one of the local minima of the risk
R

m0 . Note that in steps 5-8 we use the iterate w

m

,
which is an approximate local minimum for R

m

, as the
initial point and update it by following a first-order
update (FO-update), e.g., gradient descent, or a second-
order update (SO-update), e.g., Newton’s method, until
we reach a point that satisfies the stop condition in
step 6. Then, the output w

n

is an approximate local
minimum for the ERM problem with n = 2m samples.
This process continuous until we reach the full training
set n = N . The parameter ✏

n

used in step 6 depends
on the choice of descent algorithm that we use for
updating the iterates in step 7. In the following section,
we formally state how ✏

n

should be chosen.

4 Main Result

In this section, we study the overall computational
complexity of the adaptive sample size scheme outlined
in Algorithm 1 to reach a local minimum of the ERM
problem in (2). We study different cases where we use
the gradient descent algorithm, accelerated gradient
descent method, or Newton’s method to solve the sub-
problems at each stage. Although in this section we
focus on the complexity analysis of these three methods
only, other deterministic algorithms, e.g., quasi-Newton
methods [Mokhtari et al., 2018a], and stochastic meth-
ods [Defazio et al., 2014a, Le Roux et al., 2012] can also
be used to update the iterates in Step 7 of Algorithm 1.

We first use the result of uniform convergence theorem
(Theorem 1) as well as a crucial property of the pro-
posed adaptive sample size scheme that the enlarged
training set S

n

at each stage is a superset of the previ-
ous set S

m

, i.e., S
n

� S
m

(n > m), to show that the
gap between gradients and Hessians of the risks R

m

and R

n

is proportional to n�m

n

.

Proposition 1. Consider the sets S
m

and S
n

as sub-
sets of the training set T such that S

m

⇢ S
n

⇢ T ,
where the number of samples in the sets S

m

and S
n

are m and n, respectively. Furthermore, recall the def-
inition of C in Theorem 1. If Assumptions 1-3 hold
and min{m,n �m} � Cp log p, then with probability
at least 1� 2� the gradient variation is bounded by

sup

w2B

p
r

krR
n

(w)�rR
m

(w)k
2

 n�m

n

⌧

p

Cp

r

log(n�m)

n�m

+

r

logm

m

!

, (8)

and the Hessian variation is bounded by

sup

w2B

p
r

�

�r2

R

n

(w)�r2

R

m

(w)

�

�

op

 n�m

n

⌧

2

p

Cp

r

log(n�m)

n�m

+

r

logm

m

!

. (9)

The result in Proposition 1 establishes an upper bound
on the difference between gradients and Hessians of the
risk functions R

m

and R

n

corresponding to the sample
sets S

m

and S
n

, respectively, when S
m

⇢ S
n

. As one
would expect, the gap is proportional to the difference
between the number of samples in the sample sets, i.e.,
n �m. We would like to highlight that these results
only hold if the larger set S

n

contains the smaller set
S
m

, and for general subsets of the full training set C
these results may not hold.

In the following proposition, we use the uniform con-
vergence theorem to show that, when the number of
samples n is sufficiently large, the corresponding em-
pirical risk R

n

is strongly Morse if the population risk
is strongly Morse.
Proposition 2. Suppose the conditions in Assump-
tions 1-3 are satisfied. Furthermore, recall the definition
of C in Theorem 1. If the number of samples n satisfies
the condition

n � log nmax

⇢

Cp⌧

2

↵

2

,

Cp⌧

4

�

2

�

, (10)

then the empirical risk R

n

corresponding to the set of
realizations S

n

is (↵

n

,�

n

)-strongly Morse with proba-
bility at least 1� �, where

↵

n

= ↵�⌧
r

Cp log n

n

, �

n

= ��⌧2
r

Cp log n

n

. (11)

The above result immediately follows from the uniform
convergence result in Theorem 1 and the assumption
that the population risk R is (↵,�)-strongly Morse.
Indeed, the result is meaningful when the constants ↵

n

and �

n

are strictly positive which requires the number
of samples n to be larger than the threshold stated in
Proposition 2. In the following subsections, we formally
state our theoretical results.

Efficient Nonconvex Empirical Risk Minimization via Adaptive Sample Size Methods

4.1 Gradient descent algorithm

We first state the result for the case that gradient de-
scent method is used in the proposed adaptive sample
size scheme. To be more precise, consider w

m

as an
approximate local minimum of R

m

. We focus on the
case that in step 7 of Algorithm 1, we update the iter-
ates using the gradient descent (GD) algorithm. If we
initialize the sequence ˜

w as ˜

w

0

= w

m

, the approximate
local minimum w

n

for the risk R

n

is the outcome of
the update

˜

w

k+1

=

˜

w

k � ⌘

n

rR
n

(

˜

w

k

) (12)

after s
n

iterations, i.e., w
n

=

˜

w

sn , where ⌘ is a properly
chosen stepsize. The parameter ⌘

n

is indexed by n since
it depends on the number of samples.

In the following theorem, we explicitly express the re-
quired condition on the accuracy ✏

n

at each stage and
characterize an upper bound on the number of gradient
iterations s

n

at each stage. Using these results we
derive an upper bound on the overall computational
complexity of the algorithm when the iterates are up-
dated by GD.

Theorem 2. Consider the adaptive sample size method
outlined in Algorithm 1. Suppose Assumptions 1-3 hold,
and recall the definition of C in Theorem 1. Let S

m0

be the initial set with m

0

samples such that

m

0

� Cp log p,

m

0

logm

0

� max

⇢

9Cp⌧

2

↵

2

,

4Cp⌧

4

�

2

�

.

(13)
Assume that we have access to an approximate lo-
cal minimum w

m0 of the initial ERM problem with
cost R

m0 satisfying the conditions krR
m0(wm0)k

✏

m0 and r2

R

m0(wm0) � 0, where ✏

n

for any pos-
itive integer n is defined as ✏

n

:= ⌧

q

Cp logn

n

. If
at each stage of the adaptive sample size scheme
we use the update of gradient descent with the step-
size ⌘

n

= min

n

�n

↵nL
,

2

�n+M

o

to reach a point satis-
fying krR

n

(w

n

)k ✏

n

, then with high probability
the total number of gradient evaluations to reach a
local minimum of the full training set T satisfying
krR

N

(w

N

)k ✏

N

and r2

R

N

(w

N

) � �

N

I is at most

2N log 4 max

⇢

8↵L

�

2

, 1 +

2M

�

�

. (14)

The result in Theorem 2 shows that after evaluating
O(N

M

�

+ N

↵L

�

2) gradients or equivalently after oper-
ating on O(N

M

�

+ N

↵L

�

2) sample points we reach a
local minimizer of the ERM corresponding to the full
training set if we start from a local minimizer of the
ERM associated with a small subset of data points.

Note that the condition on ✏

n

ensures that we solve
each subproblem up to its statistical accuracy.

The proof of Theorem 2 can be divided into three
main steps. First, we show that the variable w

m

is
within a local neighborhood of a local minimum of R

n

.
Second, we prove that if the iterate w

m

is in a local
neighborhood of a local minimum of R

n

by following
the gradient update the iterates always stay close to the
local minimum and do not get attracted to the saddle
points of R

n

. Third, we derive an upper bound on the
number of GD steps s

n

that should be run at each stage
which indeed depends on the required accuracy ✏

n

. By
combining these steps we can show that the output
of the algorithm is an approximate local minimum of
R

N

and the overall number of gradient evaluations or
processed samples is bounded above by the expression
in (14). These points are described in detail in the proof
of Theorem 2 which is available in the supplementary
material.

4.2 Accelerated gradient descent algorithm

In this section, we study the theoretical guarantees of
the proposed adaptive sample size mechanism when
the accelerated gradient descent (AGD) method is used
for updating the iterates. In particular, If we initialize
the sequences ˜

w as ˜

w

0

=

˜

y

0

= w

m

, where w

m

is an
approximate local minimizer of R

m

, the approximate
local minimum w

n

for the risk R

n

is the outcome of
the updates

˜

w

k+1

=

˜

y

k � ⌘

n

rR
n

(

˜

y

k

) (15)
˜

y

k+1

=

˜

w

k+1

+ ⇠

n

(

˜

w

k+1 � ˜

w

k

) (16)

after s

n

steps, i.e., w
n

=

˜

w

sn . The parameters ⌘

n

and
⇠

n

will be formally defined in the following theorem
where we state our results for the case that AGD is
used for updating the iterates.
Theorem 3. Consider the adaptive sample size method
outlined in Algorithm 1. Suppose Assumptions 1-3 hold,
and recall the definition of C in Theorem 1. Let S

m0

be the initial set with m

0

samples such that

m

0

�Cp log p,

m

0

logm

0

� max

⇢

⇢Cp⌧

2

↵

2

,

4Cp⌧

4

�

2

�

.

(17)
where ⇢ = (1+4

p

M/�)

2. Assume that we have access
to an approximate local minimum w

m0 of the initial
ERM problem with cost R

m0 satisfying the conditions
krR

m0(wm0)k ✏

m0 and r2

R

m0(wm0) � 0, where ✏
n

for any positive integer n is defined as ✏
n

:= ⌧

q

Cp logn

n

.
If at each stage of the adaptive sample size scheme we
use the update of accelerated gradient descent with the
parameters ⌘

n

= 1/M and ⇠

n

= (

p
M �p�

n

)/(

p
M +p

�

n

) to reach a point satisfying krR
n

(w

n

)k ✏

n

,

Aryan Mokhtari, Asuman Ozdaglar, Ali Jadbabaie

then with high probability the total number of gradient
evaluations to reach a local minimum of the full training
set T satisfying the conditions krR

N

(w

N

)k ✏

N

and
r2

R

N

(w

N

) � �

N

I is at most

2N

s

2M

�

log

✓

16M

�

◆

. (18)

The result in Theorem 3 shows that the total number of
gradient evaluations when we use AGD to update the
iterates is of O(N

p

M/�), which is better than the re-
sult for adaptive sample size GD in (14). Although the
overall computational complexity of adaptive sample
size AGD is lower than the one for GD, the condition
on the initial size of the training set m

0

for AGD is
stronger than that of GD. To be more precise, as the
ratio M/� is larger than 1, it can be verified that the
factor ⇢ in (17) is larger than 25, and, therefore, the
lower bound on the size of the initial training set in
(17) is larger the lower bound for GD in (13).

4.3 Newton’s method

We proceed by studying the case that Newton’s update
is used to solve each subproblem up to a point that
the norm of gradient is small enough and the Hessian
stays positive definite. In particular, we show that a
single iteration of Newton’s method with stepsize ⌘ = 1

is sufficient to move from w

m

to w

n

which are ap-
proximate local minimums of R

m

and R

n

, respectively.
In other words, given w

m

which is an approximate
local minimum of R

m

satisfying rR
m

(w

m

) ✏

m

and
r2

R

m

(w

m

) � 0, we obtain the next approximate local
minimum using the update

w

n

= w

m

�r2

R

n

(w

m

)

�1rR
n

(w

m

). (19)

Hence, for the case that we use Newton’s step the
number of intermediate iterations is only s

n

= 1 at each
stage. In the following theorem, we formally state the
conditions on m

0

and ✏

n

when Newton’s update used
in the adaptive sample size scheme and characterize
the overall number of gradient and Hessian evaluations
for obtaining an approximate local minimum of R

N

.
Theorem 4. Consider the adaptive sample size mech-
anism outlined in Algorithm 1. Suppose the conditions
in Assumptions 1-3 are satisfied. Further, recall the
definition of C in Theorem 1. Let S

m0 be the initial
set with m

0

samples such that m
0

� Cp log p and

m

0

logm

0

� max

⇢

9Cp⌧

2

↵

2

,

4Cp⌧

4

�

2

,

4Cp(⌧

2

+ 2L⌧)

2

�

4

�

.

(20)
Assume that we have access to a point w

m0 sat-
isfying the conditions krR

m0(wm0)k ✏

m0 and
r2

R

m0(wm0) � 0, where ✏

n

:= ⌧

q

Cp logn

n

. Then

by running a single iteration of Newton’s method with
stepsize 1 at each stage, we reach a local minimum of
the full training set T satisfying krR

N

(w

N

)k ✏

N

and r2

R

N

(w

N

) � �

N

I after computing at most 2N

gradients and Hessians and log

2

(

N

m0
) matrix inversions.

The result in Theorem 4 shows that the total number
of gradient and Hessian evaluations for the adaptive
sample size scheme with Newton’s method is at most
2N which is independent of the problem parameters
including gradients Lipschitz continuity parameter M

and the Morse condition parameters ↵ and �. However,
this come at the cost of evaluating log

2

(N/m

0

) matrix
inversions.
Remark 1. Note that the result at each stage holds
with probability 1� 2�. Since the number of times that
we double the size of training set is log(N/m

0

), the
final result holds with a high probability of at least (1�
2�)

log(N/m0). This observation implies that the results
in Theorems 2-4 hold with probability at least 1� �

0 if
we set C = C

0

(max{q, log(r⌧/(2�0 log(N/m

0

))), 1}).
Remark 2. One may have the concern that the im-
plementation of the proposed scheme requires access to
the constant C. However, we would like to highlight
that our theoretical results hold if the constant C used
for the choice of m

0

is larger than the one defined in
Theorem 1. Therefore, the implementation of the al-
gorithm only requires access to an upper bound on the
parameter C defined in Theorem 1.

The results in Theorems 2-4 guarantee that the output
of the adaptive sample size procedure w

N

is such that
the gradient corresponding to the risk of the full train-
ing set is small, i.e., krR

N

(w

N

)k ⌧

q

Cp logN

N

, and
the Hessian of the risk is strictly positive definite, i.e.,
r2

R

N

(w

N

) � �

N

I. By using the result in Theorem 1
it can be further shown that with high probability
the point w

N

is also close to a local minimum of the
expected risk R with high probability.

5 Complexity Comparison

In this section, our goal is to highlight the advantage of
our proposed adaptive sample size scheme over state-of-
the-art methods for obtaining a local minimum when
the objective function is Morse. In particular, we focus
on the Accelerated-Nonconvex-Method (ANM) pro-
posed in [Carmon et al., 2018] where the authors show
that if we assume saddle points of the empirical risk
R

N

are �-strict, then it is possible to find a point w sat-
isfying krR

N

(w)k O(1/

p
N) and r2

R

N

(w) ⌫ �I

after at most

O M

1/2

L

2

log(�

�2

)

�

7/2

+

M

1/2

�

1/2

log

p
N

�

!!

(21)

Efficient Nonconvex Empirical Risk Minimization via Adaptive Sample Size Methods

gradient evaluations or Hessian-vector product com-
putations. Note that strongly Morse functions are a
subclass of functions with strict saddles and therefore
their result also holds when the function R

N

is (�

2

,�)-
strongly Morse with � = min{p↵

N

,�

N

}. Since each
gradient or Hessian evaluation for R

N

requires access
to the full training set, the number of overall gradient
or Hessian evaluations for ANM is

O

NM

1/2

L

2

log(�

�2

)

�

7/2

+

NM

1/2

�

1/2

log

p
N

�

!!

.

(22)

On the other hand, our proposed adaptive sample
size scheme requires access to an approximate local
minimum of the initial risk function R

m0 which cor-
responds to a set with m

0

samples where possibly
m

0

<< N . Since the function R

m0 is (↵

m0 ,�m0)

strongly Morse, by defining �

0

:= min{p↵
m0 ,�m0},

it can be shown that using ANM one can find a point
w

m0 satisfying the conditions krR
m0(wm0)k ✏

m0

and r2

R

m0(wm0) ⌫ 0 after at most

O

m

0

M

1/2

L

2

log(�

�2

0

)

�

7/2

0

+

m

0

M

1/2

�

1/2

0

log

✓

1

�

0

✏

m0

◆

!

(23)

gradient and Hessian vector product evaluations. Note
that for the proposed adaptive sample size scheme
we have ✏

m0 = O(1/

p
m

0

). Further, based on the
conditions on m

0

it can be shown that ↵

m0 � 3

4

↵ and
�

m0 � 1

2

� (see (62)) and therefore �

0

� �/2. Hence,
if we use GD for our proposed adaptive sample size
scheme the overall number of gradient evaluations is

O m

0

M

1/2

L

2

log(�

�2

)

�

7/2

+

m

0

M

1/2

log

⇣p
m0

�

⌘

�

1/2

+N max

⇢

8↵L

�

2

, 1 +

2M

�

�

!

. (24)

If we use the accelerate gradient method then the over-
all number of gradient evaluations is

O m

0

M

1/2

L

2

log(�

�2

)

�

7/2

+

m

0

M

1/2

log

⇣p
m0

�

⌘

�

1/2

+N

s

2M

�

log

✓

2M

�

◆

!

. (25)

If we use a second-order based update for solving the
ERM subproblems, the overall number of gradient eval-
uations is

O
0

@

m

0

M

1/2

L

2

log(�

�2

)

�

7/2

+

m

0

M

1/2

log

⇣p
m0

�

⌘

�

1/2

+N

1

A

,

(26)

Complexity

ANM O(N�

�7/2

)

ANM + adaptive GD O(m

0

�

�7/2

+N�

�2

)

ANM + adaptive AGD O(m

0

�

�7/2

+N�

�1/2

)

ANM + adaptive Newton O(m

0

�

�7/2

+N)

Table 1: Overall number of processed samples for
achieving a local minimum of the ERM problem with
N samples is (�

2

,�)-strongly Morse. Here, m
0

is the
size of the initial training set for adaptive methods.

while the number of Hessian and Hessian inverse evalu-
ations are 2N and log(N), respectively.

Comparing the theoretical bound in (22) with the ones
in (24)-(26) demonstrates the advantage of our pro-
posed adaptive sample size scheme when N >> m

0

.
We state the simplified versions of the bounds, in Ta-
ble 1. Note that to simplify the bounds presented in
Table 1, we replace � by its lower bound �. The adap-
tive sample size framework reduces the overall number
of samples processed when the total number of sam-
ples N is significantly larger than the size of the initial
training set m

0

. This is indeed the case in many real
applications with N >> p as the lower bound on m

0

is
almost proportional to the dimension of the problem p.
In this section, we only studied the effect of applying
the adaptive sample size scheme on the ANM method,
but, indeed, similar conclusions will be achieved if it
is applied to other state-of-the-art methods for finding
second-order stationary points.

6 Conclusions

In this paper we proposed an adaptive sample size
scheme which exploits statistical properties of the em-
pirical risk minimization problem to obtain one of its
local minima efficiently, under the assumption that the
expected risk is strongly Morse. Our theoretical results
suggest that if the dimension of the problem p is sig-
nificantly smaller than the total number of samples N ,
the overall computational complexity of our proposed
scheme for finding an approximate local minimum of
the ERM problem is substantially lower than existing
fixed sample size methods.

Acknowledgment

This work was supported by DARPA Lagrange and
ONR BRC Program.

Aryan Mokhtari, Asuman Ozdaglar, Ali Jadbabaie

References

N. Agarwal, Z. Allen Zhu, B. Bullins, E. Hazan, and
T. Ma. Finding approximate local minima faster
than gradient descent. In STOC, pages 1195–1199,
2017.

Z. Allen-Zhu. Natasha 2: Faster non-convex optimiza-
tion than SGD. CoRR, abs/1708.08694, 2017.

Z. Allen Zhu and E. Hazan. Variance reduction for
faster non-convex optimization. In ICML, pages
699–707, 2016.

P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe. Con-
vexity, classification, and risk bounds. Journal of the
American Statistical Association, 101(473):138–156,
2006.

D. P. Bertsekas. Nonlinear programming. Athena
scientific Belmont, 1999.

L. Bottou. Large-scale machine learning with stochas-
tic gradient descent. In Proceedings of COMP-
STAT’2010, pages 177–186. Springer, 2010.

L. Bottou and O. Bousquet. The tradeoffs of large
scale learning. In Advances in Neural Information
Processing Systems 20, Vancouver, British Columbia,
Canada, December 3-6, 2007, pages 161–168, 2007.

S. Boyd and L. Vandenberghe. Convex optimization.
Cambridge university press, 2004.

Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford.
"convex until proven guilty": Dimension-free accel-
eration of gradient descent on non-convex functions.
In ICML, pages 654–663, 2017a.

Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford.
Lower bounds for finding stationary points i. arXiv
preprint arXiv:1710.11606, 2017b.

Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford.
Lower bounds for finding stationary points ii: First-
order methods. arXiv preprint arXiv:1711.00841,
2017c.

Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. Ac-
celerated methods for nonconvex optimization. SIAM
Journal on Optimization, 28(2):1751–1772, 2018.

H. Daneshmand, A. Lucchi, and T. Hofmann. Start-
ing small-learning with adaptive sample sizes. In
International conference on machine learning, pages
1463–1471, 2016.

H. Daneshmand, J. M. Kohler, A. Lucchi, and T. Hof-
mann. Escaping saddles with stochastic gradients. In
Proceedings of the 35th International Conference on
Machine Learning (ICML), pages 1163–1172, 2018.

A. Defazio, F. Bach, and S. Lacoste-Julien. Saga:
A fast incremental gradient method with support
for non-strongly convex composite objectives. In

Advances in neural information processing systems,
pages 1646–1654, 2014a.

A. Defazio, J. Domke, et al. Finito: A faster, per-
mutable incremental gradient method for big data
problems. In International Conference on Machine
Learning, pages 1125–1133, 2014b.

M. Eisen, A. Mokhtari, and A. Ribeiro. Large scale
empirical risk minimization via truncated adaptive
Newton method. In International Conference on
Artificial Intelligence and Statistics, pages 1447–1455,
2018.

R. Frostig, R. Ge, S. M. Kakade, and A. Sidford. Com-
peting with the empirical risk minimizer in a single
pass. In Proceedings of The 28th Conference on
Learning Theory, COLT 2015, Paris, France, July
3-6, 2015, pages 728–763, 2015. URL http://jmlr.

org/proceedings/papers/v40/Frostig15.html.

R. Ge, F. Huang, C. Jin, and Y. Yuan. Escaping from
saddle points - online stochastic gradient for tensor
decomposition. In COLT, pages 797–842, 2015.

M. Gürbüzbalaban, A. Ozdaglar, and P. Parrilo. A glob-
ally convergent incremental newton method. Mathe-
matical Programming, 151(1):283–313, 2015.

M. Gürbüzbalaban, A. Ozdaglar, and P. A. Parrilo.
On the convergence rate of incremental aggregated
gradient algorithms. SIAM Journal on Optimization,
27(2):1035–1048, 2017.

M. Jahani, X. He, C. Ma, A. Mokhtari, D. Mudigere,
A. Ribeiro, and M. Takáč. Efficient distributed hes-
sian free algorithm for large-scale empirical risk min-
imization via accumulating sample strategy. arXiv
preprint arXiv:1810.11507, 2018.

C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. I.
Jordan. How to escape saddle points efficiently. In
ICML, pages 1724–1732, 2017a.

C. Jin, P. Netrapalli, and M. I. Jordan. Accelerated
gradient descent escapes saddle points faster than
gradient descent. CoRR, abs/1711.10456, 2017b.

N. Le Roux, M. W. Schmidt, F. R. Bach, et al. A
stochastic gradient method with an exponential con-
vergence rate for finite training sets. In NIPS, pages
2672–2680, 2012.

L. Lei, C. Ju, J. Chen, and M. I. Jordan. Non-convex
finite-sum optimization via SCSG methods. In Ad-
vances in Neural Information Processing Systems 30,
pages 2345–2355, 2017.

J. Mairal. Incremental majorization-minimization op-
timization with application to large-scale machine
learning. SIAM Journal on Optimization, 25(2):829–
855, 2015.

Efficient Nonconvex Empirical Risk Minimization via Adaptive Sample Size Methods

S. Mei, Y. Bai, A. Montanari, et al. The landscape of
empirical risk for nonconvex losses. The Annals of
Statistics, 46(6A):2747–2774, 2018.

A. Mokhtari and A. Ribeiro. First-order adaptive sam-
ple size methods to reduce complexity of empirical
risk minimization. In Advances in Neural Informa-
tion Processing Systems, pages 2060–2068, 2017.

A. Mokhtari, H. Daneshmand, A. Lucchi, T. Hofmann,
and A. Ribeiro. Adaptive Newton method for em-
pirical risk minimization to statistical accuracy. In
Advances in Neural Information Processing Systems,
pages 4062–4070, 2016.

A. Mokhtari, M. Eisen, and A. Ribeiro. IQN: An incre-
mental quasi-Newton method with local superlinear
convergence rate. SIAM Journal on Optimization,
28(2):1670–1698, 2018a.

A. Mokhtari, M. Gürbüzbalaban, and A. Ribeiro. Sur-
passing gradient descent provably: A cyclic incre-
mental method with linear convergence rate. SIAM
Journal on Optimization, 28(2):1420–1447, 2018b.

Y. Nesterov. Introductory lectures on convex optimiza-
tion: A basic course, volume 87. Springer Science &
Business Media, 2013.

S. Paternain, A. Mokhtari, and A. Ribeiro. A second
order method for nonconvex optimization. arXiv
preprint arXiv:1707.08028, 2017.

S. J. Reddi, A. Hefny, S. Sra, B. Póczos, and A. J.
Smola. Stochastic variance reduction for nonconvex
optimization. In ICML, pages 314–323, 2016a.

S. J. Reddi, S. Sra, B. Póczos, and A. J. Smola. Fast
incremental method for smooth nonconvex optimiza-
tion. In IEEE Conference on Decision and Control,
CDC, pages 1971–1977, 2016b.

S. J. Reddi, M. Zaheer, S. Sra, B. Póczos, F. Bach,
R. Salakhutdinov, and A. J. Smola. A generic ap-
proach for escaping saddle points. In AISTATS,
pages 1233–1242, 2018.

C. W. Royer and S. J. Wright. Complexity analysis of
second-order line-search algorithms for smooth non-
convex optimization. SIAM Journal on Optimization,
28(2):1448–1477, 2018.

N. D. Vanli, M. Gürbüzbalaban, and A. Ozdaglar.
Global convergence rate of proximal incremental
aggregated gradient methods. SIAM Journal on
Optimization, 28(2):1282–1300, 2018.

V. Vapnik. The nature of statistical learning theory.
Springer Science & Business Media, 2013.

S. Wright and J. Nocedal. Numerical optimization.
Springer Science, 35(67-68):7, 1999.

Y. Xu and T. Yang. First-order stochastic algorithms
for escaping from saddle points in almost linear time.
arXiv preprint arXiv:1711.01944, 2017.

Achieving Acceleration in Distributed Optimization
via Direct Discretization of the Heavy-Ball ODE

Jingzhao Zhang, César A. Uribe, Aryan Mokhtari, and Ali Jadbabaie

Abstract— We develop a distributed algorithm for solving
problem of minimizing large but finite sum of convex functions
over networks. The proposed algorithm is derived from directly
discretizing the second-order heavy-ball differential equation
and achieves acceleration: a convergence rate faster than
distributed gradient descent-based methods for strongly convex
objectives that may not be smooth. Notably, we achieve accel-
eration without resorting to well-known Nesterov’s momentum
approach. We provide numerical experiments and contrast the
proposed method with recently proposed optimal distributed
optimization algorithms.

I. INTRODUCTION

Acceleration in first-order optimization algorithms has
recently become an intense focus of attention in machine
learning, optimization, and related fields. From its original
conception in the seminal works of Polyak [1], Nesterov [2],
and Nemirovskii [3], the phenomena of acceleration has
become central to the theory of convex optimization and its
algorithms. This is mainly due to the fact that accelerated
algorithms attain the theoretical oracle lower bounds for par-
ticular classes of convex problems [4]. Moreover, these lower
bounds have been extended to the problem of distributed
optimization over networks [5], [6], where large quantities
of data, as well as privacy constraints or limited access to
complete information, hinders the applicability of traditional
centralized approaches [7]. Nevertheless, the fundamental
understanding of acceleration remains a challenging problem.

Recently, there have been many attempts to understand
the acceleration phenomenon [8]–[10]. In particular, many
researchers have analyzed accelerated algorithms using a
continuous-time interpretation suggesting that accelerated
gradient method follows the trajectory of a second-order
ordinary differential equation (ODE) [11]–[14]. Authors in
[15] further showed that direct discretization of a second-
order ODE, which is also known as heavy ball ODE,
generates accelerated first-order methods. In this paper, we
aim to extend the discretization technique proposed in [15]
to the distributed setting. In particular, we design a novel
accelerated first-order algorithm for solving a distributed
optimization problem by direct discretization of the heavy-
ball ODE corresponding to the dual function of the problem.

Our main result states that the proposed algorithm achieves
a convergence rate that is provably-faster than the one for

The authors are with the Laboratory for Information
and Decision Systems (LIDS), and the Institute for Data,
Systems, and Society (IDSS), Massachusetts Institute of
Technology, 77 Massachusetts Ave, Cambridge, MA 02139
{jzhzhang,cauribe,aryanm,jadbabai}@mit.edu

*This research was supported in part by DARPA Lagrange and a Vannevar
Bush Fellowship.

gradient descent in terms of the number of communication
rounds. Particularly, we show that the distance to a con-
sensus solution among agents decreases at a sublinear rate
of O(N

−2s
s+1) where s is the order of the integrator used.

This shows that by increasing the order of integrator the
convergence rate of the proposed method approaches the
optimal rate of O(N−2) [16]. However, the experimental
results provided in this work show that s = 4 is sufficient
to achieve a performance comparable with the optimal Nes-
teorv’s accelerated gradient method. Moreover, the distance
to the primal optimal solution is shown to decrease at a rate
of O(N

−2s
s+1) and the primal objective function suboptimality

converges to zero at a rate of O(N
−s
s+1).

This paper is organized as follows. Section II recalls
the problem of distributed optimization over networks and
presents its formulation in terms of a set of equality con-
straints related to the Laplacian of the network as in [17].
Section III describes the dual formulation of the distributed
optimization problem and some basic properties of the dual
problem. Section IV introduces the proposed algorithm and
its derivation based on the discretization of the heavy-ball
ODE corresponding to the dual formulation of the distributed
optimization problem. Section V presents our main analysis
on the convergence properties of the proposed algorithm
strongly convex functions that may not be smooth. Sec-
tion VI shows numerical results of the proposed algorithm
for two distributed optimization problems and compares
the performance of our proposed method with its optimal
counterparts. Finally in Section VII, we summarize and
discuss potential future work.

Related work. Distributed consensus optimization has been
studied heavily over the last decade. In particular, there have
been several works which achieve a linear convergence rate
for the setting that the local functions are strongly convex
and smooth [18]–[23]. For the case of convex and smooth
functions, sublinear rates of O(N−1) have been proven using
gradient descent based methods [24], [25] as well as ADMM-
type algorithms [19], [26]. Perhaps the most related papers
to our work are [27] and [16] which study convex but non-
smooth functions. [27] approached the problem by regular-
izing the dual function and applying Nesterov’s accelerated
gradient method. [16] used a similar idea but attained better
dependency on the communication graph topology via a
change of variable. Our approach follows a different path
by discretizing the heavy-ball ODE defined by the dual ob-
jective. This approach does not require using regularization
or Nesterov’s accelerated gradient descent. Table I shows a

Centralized Decentralized
(Gradient Comp.) (Communication Rounds)

Approach [3] [27] [16] This work

‖Lx‖ - O(N−2) O(N−2) O(N−2 s
s+1)

‖xN − x∗‖2 - O(N−2)
† O(N−2)

† O(N−2 s
s+1)

f(xN)− f(x∗) O(N−1) O(N−2) O(N−2) O(N−
s

s+1)

† Computed by ‖xN − x∗‖2 ≤ (f(xN)− f(x∗))/µ

TABLE I: Iteration complexity bounds comparison of cen-
tralized and decentralized approaches for strongly convex
and non-smooth problems.

comparison between the communication cost of our proposed
method and the distributed approaches introduced in [27]
and [16]. It further provides available convergence rates for
centralized approaches in terms of gradient computations.
It is worth mentioning that convergence rates we refer in
Table I for the distributed approaches, e.g., [27] and [16],
are in terms of communication rounds and not gradient
computations. Particularly, the dual approach assumes the
availability of exact solutions to an auxiliary problem. Later
in the paper we will discuss explicit dependencies on the
function parameters and graph spectral properties for these
algorithms.

Notation. For a matrix A ∈ Rm×n, we denote ker(A) =
{x ∈ Rn|Ax = 0} and ker(A)⊥ = {x ∈ Rn|xT v =
0 for all v ∈ ker(A)}. For a symmetric matrix L, we let
λmax(L) be its largest eigenvalue and λ+min(L) be its smallest
positive eigenvalue. When L is positive semidefinite, we
further define

√
L to be the unique positive semidefinite

matrix such that
√
L
√
L = L. We use 1n ∈ Rn and

0n ∈ Rn to denote vectors with all entries equal to 1 and 0,
respectively. We will work in the standard Euclidean norm
and let 〈·, ·〉 denote its inner product.

II. PROBLEM FORMULATION

In this section, we formally define the distributed optimiza-
tion problem over networks. Consider a set of n nodes that
communicate over a static, connected and undirected graph
G = (V, E) where V = {1, · · · , n} and E ⊆ V×V denote the
set of nodes and edges, respectively. We assume each node i
has access to a local convex function fi : Rp → R, and nodes
in the network cooperate to minimize the global objective
function f : Rp → R taking values f(x) =

∑n
i=1 fi(x). In

other words, nodes aim to solve the optimization problem

minimize
x∈Rp

f(x) = minimize
x∈Rp

n∑
i=1

fi(x), (1)

while they are allowed to exchange information only with
their neighbors. Two nodes i and j are considered neighbors,
and therefore can communicate, if (j, i) ∈ E . In this work,
we assume that the local objective functions fi are strongly
convex and as a result the global cost f is also strongly con-
vex. Further, the local and global objective functions could
be nonsmooth. As the objective function of Problem (1) is
strongly convex, it has a unique solution denoted by x∗.

To solve Problem (1) in a decentralized fashion, the first
step is assigning a local decision variable xi to each node i.
Nodes aim to minimize the global objective function with
their local information, while they ensure that their local
decision variables are equal to their neighbors’. We use this
interpretation to solve the following optimization problem

minimize
x1,...,xn∈Rp

n∑
i=1

fi(xi) s.t. xi = xj , for all i, j ∈ V, (2)

which is equivalent to Problem (1), in the sense that the
elements of a solution set {x∗1, x∗2, . . . , x∗n} of Problem (2)
are equal to the optimal solution of Problem (1) which is
x∗, i.e., x∗1 = x∗2 = · · · = x∗n = x∗.

We can simplify the notation in Problem (2) by defining
x = [x1; . . . ;xn] ∈ Rnp as the concatenation of the local de-
cision variables xi. Further, define F : Rnp → R as the sum
of all local objective functions F (x) = F (x1; . . . ;xn) =∑n
i=1 fi(xi), and define matrix L ∈ Rn×n as the Laplacian

matrix of the graph G. It can be easily verified (see [17])
that the constraint x1 = · · · = xn is equivalent to Lx = 0
where L = L ⊗ Ip ∈ Rnp × Rnp is the Kronecker product
of the Laplacian matrix L and the identity matrix Ip. By
incorporating these definitions Problem (2) can be written as

min
x∈Rnp

F (x) subject to
√
Lx = 0. (3)

Note that for the constraint of (3) we can use
√
Lx = 0

instead of Lx = 0 as the matrix L is positive semidefinite
and the null space of L and

√
L are identical. Hence, we

can solve the matrix-form Problem (3) in lieu of (2) and the
original problem in (1). Throughout the rest of the paper,
we use the notation x∗ = [x∗; . . . ;x∗] ∈ Rnp to refer to the
optimal solution of Problem (3).

III. DUAL DOMAIN REPRESENTATION

As projection to the null space of the matrix
√
L in a

distributed fashion is not possible, to solve Problem (3) in the
primal domain one can minimize a penalized version of it;
however, this approach yields convergence to a neighborhood
of the optimal solution with a radius proportional to the
penalty parameter [28]. One approach to designing a method
with exact convergence is to solve Problem (3) in the dual
domain. In this work, we aim to solve the dual problem by
discretizing its corresponding second-order heavy-ball ODE
in a decentralized fashion.

We define the dual problem, which unlike the primal
problem is unconstrained, as

min
y∈Rnp

ϕ(y), (4)

where the dual function ϕ(y) is defined as

ϕ(y) = max
x∈Rnp

{
〈y,
√
Lx〉 − F (x)

}
. (5)

Note that the dual function is convex, and due to the strong
duality property the duality gap is zero. Further, the gradient
of the dual function is given by

∇ϕ(y) =
√
L x∗

(√
Ly
)
,

where x∗(z) := maxx {〈z,x〉 − F (x)}. This definition
implies that evaluating the dual function gradient ∇ϕ(y)
requires solving a convex program; however, in many cases
this sub-problem either has a closed-form solution or can be
solved efficiently. Functions for which one has immediate
access to an explicit (or efficiently computed) solution x∗(z)
are sometimes called admissible or dual-friendly [29].

In the rest of the section, we prove some properties of
the dual function ϕ. Before that, we first formally state the
required conditions in the following assumptions.

Assumption 1: The underlying communication graph G is
static, undirected and connected.

Assumption 2: The local objective functions fi are µ-
strongly convex, i.e., for any x, y ∈ Rp

fi(y) ≥ fi(x) + 〈∇fi(x), y − x〉+
µ

2
‖y − x‖2.

For the next two assumptions, we need the requirements
to be satisfied only over a compact set B ⊂ Rp. Later in
the paper (see (27)) we will properly define the set B which
is determined by x∗, λmax(L), λ+min(L), minLx=0 F (x) −
minx F (x) and µ.

Assumption 3: The local objective functions fi are M -
Lipschitz over the convex compact set B, i.e., for any points
x, y ∈ B

|fi(y)− fi(x)| ≤M‖y − x‖.

Assumption 4: F (x) is order s + 2 differentiable on the
compact set B.

The connectivity condition in Assumption 1 implies that
the Laplacian matrix L satisfies

L = LT , L1n = 0n, rank(L) = n− 1.

Further, it is easy to check that if the local functions fi
are µ-strongly convex and M -Lipschitz then the aggregated
objective function F is also µ-strongly convex and M -
Lipschitz. It is worth mentioning, if each function fi has
a specific strong convexity µi and Lipschitz continuity Mi

parameters, then the aggregated objective function F is
mini µi strongly convex and maxi Mi Lipschitz.

In the following lemma, we use differentiability and strong
convexity of the function F to show that the dual function
ϕ is differentiable.

Lemma 1: The dual function ϕ(y) is n-th order differ-
entiable at y if F (x) is µ−strongly convex and n-th order
differentiable at x∗(

√
Ly). Moreover, the dual function ϕ(y)

is (λmax(L)/µ)-smooth.

Proof: Recall that x∗(
√
Ly) is given by

x∗(
√
Ly) = argmin

x∈Rnp

{
〈
√
Ly,x〉 − F (x)

}
. (6)

By KKT conditions, we know that

∇ϕ(y) =
√
Lx∗(

√
Ly), ∇F (x∗(

√
Ly)) =

√
Ly. (7)

Moreover, we have

∇2ϕ(y) =
√
L∇yx

∗, ∇2F (x∗)∇yx
∗ =
√
L.

By strong convexity, Hessian is invertible everywhere and
[∇2F (x∗)]−1 � I/µ. Therefore, the dual function is second-
order differentiable and

∇2ϕ(y) =
√
L[∇2F (x∗)]−1

√
L. (8)

The desired result follows by recursively applying the fol-
lowing identity. Given a matrix valued function K(x),

∇(K(x))−1 = K(x)−1∇K(x)K(x)−1.

To show that the dual function ϕ is smooth, note that the
eigenvalues of the primal Hessian inverse [∇2F (x∗)]−1 are
uniformly bounded above by 1/µ due to strong convexity.
Further, the eigenvalues of the square root of the Laplacian√
L are also upper bounded by

√
λmax(L). Therefore, based

on the expression in (8), the eigenvalues of the dual function
Hessian ∇2ϕ(y) are bounded above by λmax(L)/µ, and,
hence, the dual function is (λmax(L)/µ)-smooth; see also
Proposition 12.60 in [30].

IV. ALGORITHM

In this section, we first review Runge-Kutta (RK) integra-
tors. Then, we state our dynamical system of interest and
introduce a distributed accelerated method by discretizing
the dynamical system using Runge-Kutta integrators.

A. Runge-Kutta integrators

Here, we briefly recap explicit Runge-Kutta (RK) inte-
grators used in our work. For a more in-depth discussion,
please see the textbook [31]. Consider a dynamical system
ζ̇ = G(ζ) and let the current point be ζ0 and the step size
be h. An explicit S stage Runge-Kutta method generates the
next step via the following update:

gi = ζ0 + h
∑i−1
j=1 aijG(gj),

Φh(ζ0) = ζ0 + h
∑S
i=1 biG(gi),

(9)

where aij and bi are suitable coefficients defined by the
integrator; Φh(ζ0) is the estimation of the state after time
step h, while gi (for i = 1, . . . , S) are a few neighboring
points where the gradient information G(gi) is evaluated.

By combining the gradients at several evaluation points,
the integrator can achieve higher precision by matching up
Taylor expansion coefficients. In the following definition we
formally define the order of an integrator.

Definition 1: Let Ψh(ζ0) be the true solution to the ODE
with initial condition ζ0 and Φh(ζ0) be the estimation of the
state after time step h; we say that an integrator Φh(ζ0) has
order s if its discretization error shrinks as

‖Φh(ζ0)−Ψh(ζ0)‖ = O(hs+1), as h→ 0.

In general, RK methods offer a powerful class of numer-
ical integrators, encompassing several basic schemes. The
explicit Euler’s method defined by Φh(ζ0) = ζ0 + hG(ζ0)
is an explicit RK method of order 1, while the midpoint
method Φh(ζ0) = ζ0 + hG(ζ0 + h

2G(ζ0)) is of order 2.
Depending on the order of the RK integrators the number
of required stages, i.e., the number of gradient evaluations,

varies. For instance, a Runge-Kutta integrator of degree s
where 1 ≤ s ≤ 4 requires S = s stages, while a Runge-
Kutta integrator of order s = 9 requires S = 16 stages , i.e.,
16 gradient evaluations per iteration.

B. Optimization methods as dynamical systems

We start with Nesterov’s accelerated gradient (NAG)
method [4] for convex smooth problems. To solve the dual
problem using NAG we need to follow the updates

yk = zk−1 − h∇ϕ(zk−1),

zk = yk + k−1
k+2 (yk − yk−1),

(10)

where z ∈ Rnp is an auxiliary variable, h is a positive
stepsize, and k is the iteration index. In [11], the authors
showed that the iteration in (10) in the limit when h→ 0 is
equivalent to the following second-order ODE

ÿ(t) + 3
t ẏ(t) +∇ϕ(y(t)) = 0, where ẏ = dy

dt . (11)

This ODE is also known as heavy-ball ODE which relates
to the heavy-ball method proposed by Polyak [1].

It can be shown that in the continuous domain the objective
function suboptimality gap ϕ(y(t)) − ϕ(y∗) decreases at
a rate of O(1/t2) along the trajectories of the ODE (see
[11], [12]). The work in [15], studied the reverse problem
of discretizing (11) to get stable optimization algorithms. In
particular, it proposed a variation of the second-order ODE in
(11) which can be written as the following dynamical system

ζ̇ = G(ζ) =

− 5
tv − 4∇ϕ(y)

v
1

 , ζ = [v;y; t], (12)

where the variable ζ ∈ R2np+1 is the concatenation of
the decision variable y, its time derivative v = dy

dt , and
time t. It has been shown that direct discretization of the
dynamical system in (12) with any explicit Runge-Kutta
integrator leads to a stable algorithm [15]. In particular,
if the function ϕ(y) is order s + 2 differentiable with
bounded high order derivatives (i.e., ∃L, s.t. for all p =
2, 3, ..., s + 2, ‖∇(p)ϕ(y)‖ ≤ L), discretizing the ODE with
an order-s Runge-Kutta integrator achieves a convergence
rate of O(N−2s/(s+1)), which is faster than the O(N−1)
convergence rate of gradient descent.

C. Distributed ODE discretization

In this section, we propose a novel algorithm that solves
Problem (3) in a decentralized fashion by following the
updates defined based on the direct discretization of the dy-
namical system in (12) using Runge-Kutta (RK) integrators.
The sequence of iterates generated by RK discretization of
the dynamical system (3) can be written as

ζk+1 = ζk + h
∑S
i=1 biG(gi), (13)

where gi = ζk + h
∑i−1
j=1 aijG(gj) and G is given by

G(ζ) =

− 5
tv − 4

√
Lx∗

(√
Ly
)

v
1

 . (14)

Algorithm 1 Distributed optimization Based on direct dis-
cretization
Input (f,M, µ, s, aij , bj) . s, aij , bj are defined by the
chosen Runge-Kutta integrator

1: For each agent i
2: Set the initial variable ζi = [0;0; 1]
3: Set step size h = h0/N

s
s+1 . h0 depends on µ,M, s

4: for k = 1, . . . , N do
5: for l = 1, . . . , S do
6: ĝil,k = ξik + h

∑l−1
j=1 aljG(ĝil,k)

7: Denote components of ĝil,k as [v̂il,k; ŷil,k; til,k]
8: x∗i,l(ŷ

i
l,k) = arg maxxi〈ŷil,k, xi〉 − fi(xi)

9: Broadcast x∗i,l(ŷ
i
l,k) to neighbors

10: G(ĝil,k) =

−
5
t̃il,k

v̂il,k − 4
∑m
j=1 Lijx

∗
i,l(ŷ

i
l,k)

v̂il,k
1

11: ξik+1 = ξik + h

∑S
j=1 bjG(ĝij,k)

Notice that the sparsity pattern of
√
L may be different from

L and hence the operation
√
Lx cannot be executed over a

network by exchanging information only with neighboring
nodes. Therefore, we apply a change of variable ξ :=
[v̂, ŷ, t] := [

√
Lv,
√
Ly, t]. Then the update step of Runge-

Kutta integrator defined in (13) becomes

gi,k = ξk + h
∑i−1
j=1 aijĜ(gj,k),

ξk+1 = ξk + h
∑S
i=1 biĜ(gi,k),

(15)

with the revised dynamical system Ĝ defined as

Ĝ(ξ) =

− 5
t v̂ − 4Lx∗ (ŷ)

v̂
1

 (16)

for ξ = [v̂, ŷ, t]. Recall that, as defined in (6), the variable
x∗(ŷ) is given by x∗(ŷ) = argminx∈Rnp {〈ŷ,x〉 − F (x)}.
The above dynamics can be evaluated in a distributed manner
by exchanging information only with neighboring nodes as
the graph Laplacian has the sparsity pattern of the graph
G. In particular, to perform the system of updates in (15)
node i can update its concatenated local decision variable
ξik = [v̂ik; ŷik; tik] ∈ R2p+1 at step k based on the update

ξik+1 = ξik + h
S∑
j=1

bjĜ
i(ĝij,k), (17)

where the vectors ĝil,k are defined as

ĝil,k = ξik + h
l−1∑
j=1

aljĜ
i(ĝil,k)

and the operator Ĝi is given by

Ĝi(ĝil,k) =

−
5
t̃il,k

v̂il,k − 4
∑m
j=1 Lijx

∗
i,l(ŷ

i
l,k)

v̂il,k
1

 .

The detailed steps of the proposed method are summarized
in Algorithm 1. Note that the initial variables yi0 are set to 0p
so that y0 = 0np. This condition is needed to ensure that the
sequence of variables yk are always orthogonal to the kernel
space of the Laplacian matrix L as we show in Lemma 3.

Remark 2: Each iteration of the proposed algorithm re-
quires S rounds of communications between neighboring
nodes per iteration, as at each iteration each node i has to
evaluate G(ĝil,k) for S different points.

V. CONVERGENCE ANALYSIS

In this section, we state the theoretical convergence guar-
antees for our proposed algorithm. We further compare them
against known optimal rates. To do this, we first prove the
following auxiliary lemma.

Lemma 3: If the initial dual variable is y0 = 0, then for
all k > 0, the dual variables yk are orthogonal to the kernel
space of the Laplacian matrix L, i.e., yk ∈ ker(L)⊥.

Proof: To prove that yk is within the span of the square
root of the Laplacian

√
L we first need to show that vk

satisfies this condition. According to the update of vk in (13)
and the dynamical system in (14), if we set the initial vector
v0 = 0, then vk is a linear combination of a set of vectors
that can be written as

√
L(x∗(

√
Ly)) which are in the span

of
√
L. Then, based on the initial condition y0 = 0 and the

update of yk which only depends on v, we obtain that yk
is in the span of

√
L. Therefore, yk ∈ {u|u ⊥ ker(L)}.

Lemma 3 shows that the dual iterates yk always stay in
the span of the Laplacian matrix L. In the following theorem,
We use this result to characterize the convergence guarantees
of our proposed algorithm.

Theorem 4: Consider the proposed method outlined in
Algorithm 1. Suppose that the conditions in Assumptions 1-
4 are satisfied. Further, let yN be the dual iterate generated
after running Algorithm 1 for N iterations using an order-s
Runge-Kutta integrator with S-stages. Then, the primal vari-
able xN = x∗(

√
LyN) corresponding to the iterate yN

satisfies the following inequalities:
(i) consensus distance

‖
√
LxN‖2 ≤ O

(
λmax(L)3

µ3 SN
−2s
s+1

)
, (18)

(ii) average distance to primal optimum

1

n
‖xN − x∗‖2 ≤ O

(
λmax(L)2

nµ3 SN
−2s
s+1

)
, (19)

(iii) average aggregated objective suboptimality

1

n
[F (xN)−F (x∗)] ≤ O

(√
Sλmax(L)3

n2µ3λ+
min(L)

MN
−s
s+1

)
. (20)

Proof: We prove the claims in four steps. In this proof,
to simplify the notation, we denote x∗(

√
Lyk) by xk.

Step 1: Show that {yk}k≥0 and {xk}k≥0 stay in bounded
sets. The boundedness of {xk}k≥0 show that it suffices for
Assumption 3 and 4 to hold on a bounded set, and The
boundedness of {yk}k≥0 is needed for using the results
in [15].

Note that the difference yk − y∗ can be written as
yk − y∗ = (yk − t

4vk − y∗) + (t4vk). Therefore, using
the inueqality ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2 we can write

‖yk − y∗‖2 ≤ 2‖yk −
t

4
vk − y∗‖2 +

t2

8
‖vk‖2, (21)

By Proposition 7 of [15], after applying discretization for k
iterations (k < N), we have

‖yk −
t

4
vk − y∗‖2 +

t2

16
‖vk‖2,

≤ exp(1)(‖y∗‖2 + ϕ(0)− ϕ(y∗)) + 1. (22)

By combining (21) and (22) we obtain that

‖yk − y∗‖2 ≤ 2 exp(1)(‖y∗‖2 + ϕ(0)− ϕ(y∗)) + 2. (23)

According to the KKT condition of Problem (3), we can
write ∇F (x∗) +

√
Ly∗ = 0. This implies ‖y∗‖2 ≤

‖∇F (x∗)‖2/λ+min(L). Using this inequality and the fact that
ϕ(0) = −minx F (x) and ϕ(y∗) = −minLx=0 F (x) as well
as the result in (23) we can derive the following bound

‖yk − y∗‖2 (24)

≤ 2 exp(1)

[
‖∇F (x∗)‖2

λ+min(L)
+ min
Lx=0

F (x)−min
x
F (x))

]
+ 2.

Hence, for all iterates k the distance ‖yk−y∗‖2 is bounded
by a constant and the iterates {yk}k≥0 lie in a compact
bounded set defined as {y ∈ Rnp|‖yk−y∗‖2 ≤ 2E}, where

E = exp(1)

[
‖∇F (x∗)‖2

λ+min(L)
+ min
Lx=0

F (x)−min
x
F (x)

]
+ 1.

(25)
Now, we proceed to show that the primal iterates stay

within a bounded set. Using the strong convexity of the
primal function F we can write

‖xk − x∗‖ ≤ ‖∇F (xk)−∇F (x∗)‖
µ

(26)

Now using the definition of the primal gradient in (7) we
can replace ∇F (xk)−∇F (x∗) by

√
Lyk−

√
Ly∗ to obtain

‖xk − x∗‖ ≤ ‖
√
Lyk −

√
Ly∗‖

µ
≤
√
λmax(L)

µ
‖yk − y∗‖,

where the last inequality follows by the bound on the
eigenvalues of the Laplacian. Therefore, based on the result
in (24), all primal vectors {x∗(

√
Lyk)}k≥0 = {xk}k≥0 stay

in a compact set B defined as

B :=

{
x

∣∣∣∣ ‖x− x∗‖ ≤
√

2Eλmax(L)

µ

}
, (27)

where E defined in (25) is a constant determined by λ+min(L),
minLx=0 F (x) − minx F (x)) and µ. Note that this result
shows that the iterates xk stay in a bounded set B and
therefore the conditions in Assumptions 3 and 4 should only
hold over the compact convex set B.

Step 2: Apply Theorem 1 in [15] to get nonasymptotic
rate for the dual function. By Lemma 1, we know that ϕ
is order s + 2 differentiable. By continuity, we know that

all its high order derivatives have bounded operator norm. In
addition, we know that the dual iterates yk stay in a bounded
set. Furthermore, we know ϕ(y) has λmax(L)

µ −Lipschitz
gradients. Hence, all the required conditions of Theorem 1
in [15] are satisfied and we obtain that

ϕ(yN)− ϕ(y∗) = O
(
λmax(L)2

µ2 SN
−2s
s+1

)
, (28)

where S is the number of stages in the RK integrator.
Step 3: Bound the distance to optimum of the primal

objective. Recall the definition of the dual function in (5).
As xN = x∗(

√
LyN) we know that

ϕ(yN) = 〈
√
LyN ,xN 〉 − F (xN) (29)

ϕ(y∗) = 〈
√
Ly∗,x∗〉 − F (x∗) = −F (x∗), (30)

where we used the fact that
√
Lx∗ = 0. Subtract the sides

of (30) from the ones in (29) to obtain

ϕ(yN)−ϕ(y∗) =〈
√
LyN ,xN 〉−F (xN) + F (x∗)

=〈
√
LyN ,xN−x∗〉−F (xN)+F (x∗),

(31)

where in the second equality we again use
√
Lx∗ = 0. Also,

using µ-strong convexity of the primal function F and the
expression in (7) we can write

‖xN−x∗‖2 ≤
2

µ
(〈∇F (xN),xN − x∗〉 − F (xN) + F (x∗))

=
2

µ
(〈
√
LyN ,xN−x∗〉−F (xN)+F (x∗)).

(32)

Combining the results in (31) and (32) leads to

‖xN − x∗‖2 ≤ 2

µ
(ϕ(yN)− ϕ(y∗)) , (33)

and hence by using the result in (28) we obtain that

‖xN − x∗‖2 ≤ O
(
λmax(L)2

µ3 SN
−2s
s+1

)
, (34)

and the claim in (19) follows.
Step 4: Bound the consensus distance and the sub-

optimality of the primal objective. By Lemma 1, ϕ(y) is
(λmax(L)/µ)-smooth. By smoothness property (see [4]),

‖∇ϕ(yN)‖2 ≤ λmax(L)

µ
(ϕ(yN)− ϕ(y∗)). (35)

By using the definition of the dual gradient in (7) we can
replace ‖∇ϕ(yN)‖2 in (35) by ‖

√
LxN‖2. Further, we can

substitute ϕ(yN)−ϕ(y∗) in (35) by its upper bound in (28)
to obtain

‖
√
LxN‖2 ≤ O

(
λmax(L)3

µ3 SN
−2s
s+1

)
, (36)

which yields the claim in (18).
We then decompose xN = x⊥N +x

‖
N , where x

‖
N ∈ ker(L)

and x⊥N ⊥ ker(L). Based on the result in (36) we can write

‖
√
Lx⊥N‖2 = ‖

√
LxN‖2 ≤ O

(
λmax(L)3

µ3 SN
−2s
s+1

)
. (37)

By the fact that x⊥N ⊥ ker(L), we have

‖x⊥N‖2 ≤ O
(
λmax(L)3

µ3λ+
min(L)

SN
−2s
s+1

)
. (38)

Further, using the expression in (6), we can write

〈
√
LyN ,xN 〉 − F (xN) ≥ 〈

√
LyN ,x

∗〉 − F (x∗) (39)

as xN is the maximizer of the problem for yN . Rearrange
the terms in (39) and use the fact that

√
Lx∗ = 0 to obtain

F (xN) ≤ F (x∗) + 〈
√
LyN ,xN 〉

≤ F (x∗) + |〈
√
LyN ,xN 〉|

= F (x∗) + |〈∇F (xN),x⊥N 〉|, (40)

where the last inequality follows from (7) and
√
Lx
‖
N = 0.

Using the Cauchy-Schwartz inequality and (40) we obtain

F (xN)− F (x∗) ≤ ‖∇F (xN)‖‖x⊥N‖, (41)

Assumption 3 implies that ∇‖F (x)‖ is bounded above by
M for any x in the set B. As we showed in step 1 of the
proof, the iterate xN is within the set B and hence

‖∇F (xN)‖ ≤M. (42)

Substituting the norms ‖x⊥N‖ and ‖∇F (xN)‖ in (41) their
upper bounds in (38) and (42) leads to

F (xN)− F (x∗) ≤ O
(√

S λmax(L)3

µ3λ+
min(L)

MN
−s
s+1

)
.

Hence, the claim in (20) follows.

Here we compare our result against known results. In
terms of the consensus distance ‖

√
Lx∗(yN)‖2 and the

distance to primal optimum ‖xN − x∗‖2, Our proposed
algorithm achieves the rate O(N−2s/(s+1)), which is faster
than O(N−1) when s ≥ 2, and approaches the optimal rate
O(N−2) as s → ∞. In our experiments presented in the
following section, we observe that the rate is matched when
s = 4 and we suspect that the analysis is conservative.

The suboptimality F (xN) − F (x∗) bound approaches
O(N−1) as s→∞. We would like to emphasize two points.
First, simply applying gradient descent on the dual function
followed by a similar analysis will give a sublinear rate of
O(N−1/2). Second, under additional assumptions such as
L(F (xN) − F (x∗)) ≥ ‖∇F (xN)‖2 (which is implied by
and more general than Lipschitz-gradient), (41) generates a
convergence rate of O(N−2s/(s+1)).

Note that the distance to consensus and the distance to
optimally, in terms of the optimization variable, tend to the
optimal lower bounds with increasing orders of the integrator.
However, explicit dependencies on the spectral properties
of the graph are suboptimal. As it was shown in [16], for
distributed problems the optimal rates have a dependency
of
√
λmax(L)/λ+min(L) in terms of the graph Laplacian L.

The dependency on the function parameters µ and L are
suboptimal as well. Achieving optimality in terms of the
function and graph parameters requires further investigation.
In general, one would expect that the only loss in optimality

CGD DAGM DGD Alg. 1

101 102 103 104
10−15

10−9

10−3

St
ar

G
ra

ph
| F (xk)− F ∗ |

101 102 103 104
10−8

10−4

100

‖Lxk‖2

101 102 103 104
10−15

10−9

10−3

C
yc

le
G

ra
ph

101 102 103 104
10−8

10−4

100

101 102 103 104
10−15

10−10

10−5

E
rd

ős
-R

én
yi

101 102 103 104
10−12

10−6

100

Fig. 1: Distance to optimality and consensus for Problem (44)
over various graphs with 100 agents and 100 data points for
each agent.

is with respect to S, i.e., the number of additional oracle
calls, which is a constant factor. More importantly, whether
the slow convergence of suboptimality is an artifact of the
proof method or the discretization approach used remains an
open question.

VI. NUMERICAL EXPERIMENTS

In this section, we present two numerical experiments to
validate our theoretical results. First, we study a distributed
linear regression problem, where a network of agents seeks
to solve the following optimization problem:

min
z∈Rn

1

2m
‖Hz − b‖22, (43)

where m is the total number of available data points, p is
the dimension of the data points, b ∈ Rm, and H ∈ Rm×p.

Following the reformulation of Problem (43) described in
Section II, we can state the problem in its distributed form

min
x∈Rnp

n∑
i=1

1

2

1

nl
‖bi −Hixi‖22 s.t.

√
Lx = 0. (44)

Here, n is the number of nodes, l is the number of data
points per node. bi ∈ Rl and Hi ∈ Rl×p for each i are the
subset of points available to agent i. The points are generated
randomly form uniform distribution.

Figure 1 shows simulation results for Problem (44) using
a star graph, a cycle graph, and a Erdős-Rényi random
graph. Each graph has 100 nodes and each node holds 100
data points. Moreover, we compare the performance of our
algorithm with a centralized method (CGD), the optimal

DAGM DGD Alg. 1

101 102 103 104
10−4

10−1

102

St
ar

G
ra

ph

| F (xk)− F ∗ |

101 102 103 104
10−7

10−3

101

‖Lxk‖2

101 102 103 104
10−7

10−3

101

C
yc

le
G

ra
ph

101 102 103 104
10−6

10−3

100

102 103 104
10−4

10−1

102

E
rd

ős
-R

én
yi

101 102 103 104

10−3

10−1

101

Fig. 2: Distance to optimality and consensus for Problem (45)
over various graphs with 100 agents with a distribution over
100 points for each agent.

distributed method (DAGM) [16], and distributed gradient
descent (DGD). For these simulations, we have chosen the
order of the integration to be s = 4. Results show that
even with a relatively small order of the integrator, the
performance of Algorithm 1 is comparable with the optimal
method proposed in [16], both in terms of the distance to
optimality and distance to consensus.

As a second example, we consider the Kullback-
Leibler (KL) barycenter computation problem [32]. This
problem is strongly convex and M -Lipschitz, which is de-
fined as

min
z∈Sp(1)

n∑
i=1

DKL(z‖qi) ,
n∑
i=1

p∑
j=1

zi log (zi/[qi]j) , (45)

where Sp(1) = {z ∈ Rp : zj ≥ 0; j = 1, . . . , n;
∑p
j=1 zj = 1}

is a unit simplex in Rp and qi ∈ Sp(1) for all i. Each
agent has a private probability distribution qi and seeks to
compute the a probability distribution that minimizes the
average KL distance to the distributions {qi}ni=1. Figure 2
shows the results for the KL barycenter problem for a cycle,
a star and an Erdős-Rényi random graph with n = 100, and
p = 100. We show the distance to optimality as well as the
distance to consensus.

In our first experiment, DAGM and DGD eventually
achieve a linear rate because the L2 norm is smooth and
strongly convex. Algorithm 1, however, achieves a polyno-
mial rate. In the second example, since the KL problem is
not smooth, all algorithms converge at polynomial rates. In

– s = 1
– s = 2
– s = 4

101 102 103 104
10−7

10−3

101

E
rd

ős
-R

én
yi

| F (xk)− F ∗ |

102 103 104
10−7

10−3

101

‖Lxk‖2

Fig. 3: The effect of increasing the order of the integrator.

this case, Algorithm 1 achieves the best relative performance.
Finally, Figure 3 shows how the order of the integrator

affects the convergence rate of Algorithm 1. We test s = 1,
s = 2, and s = 4, and as s increases we observe faster rates.

VII. CONCLUSIONS AND FUTURE WORK

We proposed a new distributed accelerated algorithm that
achieves a faster convergence rate than gradient descent. The
algorithm follows a simple intuition by directly discretizing
the heavy-ball ODE on the appropriately formulated dual
problem. This approach demonstrates that tools and results
from dynamical system theory can be applied to optimization
and provide insights into existing problems.

The proposed method requires an exact solution of the
inner maximization problem. One can study the effects
of having approximate solutions only, but this is left for
future work. Additionally, we point out that the convergence
rate estimates resulting from our analysis are strictly sub-
optimal. Analyze convergence under other weaker convexity
or smoothness assumptions also requires further study.

REFERENCES

[1] B. T. Polyak, “Some methods of speeding up the convergence of iter-
ation methods,” USSR Computational Mathematics and Mathematical
Physics, vol. 4, no. 5, pp. 1–17, 1964.

[2] Y. Nesterov, “A method of solving a convex programming problem
with convergence rate O(1/k2),” in Soviet Mathematics Doklady,
vol. 27, no. 2, 1983, pp. 372–376.

[3] A. Nemirovskii and Yudin, Problem Complexity and Method Efficiency
in Optimization. Wiley, 1983.

[4] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course. Springer Science & Business Media, 2013, vol. 87.

[5] K. Scaman, F. Bach, S. Bubeck, Y. T. Lee, and L. Massoulié, “Optimal
algorithms for smooth and strongly convex distributed optimization in
networks,” in ICML, 2017, pp. 3027–3036.

[6] ——, “Optimal algorithms for non-smooth distributed optimization in
networks,” arXiv preprint arXiv:1806.00291, 2018.

[7] A. Nedić, A. Olshevsky, and C. A. Uribe, “Fast convergence rates for
distributed non-Bayesian learning,” IEEE Transactions on Automatic
Control, vol. 62, no. 11, pp. 5538–5553, Nov 2017.

[8] Z. Allen Zhu and L. Orecchia, “Linear coupling: An ultimate unifica-
tion of gradient and mirror descent,” in ITCS, 2017, pp. 3:1–3:22.

[9] L. Lessard, B. Recht, and A. Packard, “Analysis and design of opti-
mization algorithms via integral quadratic constraints,” SIAM Journal
on Optimization, vol. 26, no. 1, pp. 57–95, 2016.

[10] M. Fazlyab, A. Ribeiro, M. Morari, and V. M. Preciado, “Analysis of
optimization algorithms via integral quadratic constraints: Nonstrongly
convex problems,” SIAM Journal on Optimization, vol. 28, no. 3, pp.
2654–2689, 2018.

[11] W. Su, S. Boyd, and E. Candes, “A differential equation for modeling
nesterov’s accelerated gradient method: Theory and insights,” in NIPS,
2014, pp. 2510–2518.

[12] A. Wibisono, A. C. Wilson, and M. I. Jordan, “A variational perspec-
tive on accelerated methods in optimization,” Proc. of the National
Academy of Sciences, vol. 113, no. 47, pp. E7351–E7358, 2016.

[13] J. Diakonikolas and L. Orecchia, “Accelerated extra-gradient de-
scent: A novel accelerated first-order method,” arXiv preprint
arXiv:1706.04680, 2017.

[14] W. Krichene, A. Bayen, and P. L. Bartlett, “Accelerated mirror descent
in continuous and discrete time,” in NIPS, 2015, pp. 2845–2853.

[15] J. Zhang, A. Mokhtari, S. Sra, and A. Jadbabaie, “Direct Runge-Kutta
discretization achieves acceleration,” arXiv preprint arXiv:1805.00521,
2018.

[16] C. A. Uribe, S. Lee, A. Gasnikov, and A. Nedić, “A dual approach for
optimal algorithms in distributed optimization over networks,” arXiv
preprint arXiv:1809.00710, 2018.

[17] R. Tutunov, H. B. Ammar, and A. Jadbabaie, “A distributed new-
ton method for large scale consensus optimization,” arXiv preprint
arXiv:1606.06593, 2016, to appear in IEEE Transactions on Automatic
Control.

[18] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear
convergence of the admm in decentralized consensus optimization.”
IEEE Trans. Signal Processing, vol. 62, no. 7, pp. 1750–1761, 2014.

[19] A. Makhdoumi and A. Ozdaglar, “Convergence rate of distributed
admm over networks,” IEEE Transactions on Automatic Control,
vol. 62, no. 10, pp. 5082–5095, 2017.

[20] W. Shi, Q. Ling, G. Wu, and W. Yin, “Extra: An exact first-order
algorithm for decentralized consensus optimization,” SIAM Journal
on Optimization, vol. 25, no. 2, pp. 944–966, 2015.

[21] A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “DQM: Decentralized
quadratically approximated alternating direction method of multipli-
ers,” IEEE Trans. on Signal Process., vol. 64, no. 19, pp. 5158–5173.

[22] G. Qu and N. Li, “Accelerated distributed nesterov gradient descent,”
arXiv preprint arXiv:1705.07176, 2017.

[23] A. Nedić, A. Olshevsky, W. Shi, and C. A. Uribe, “Geometrically
convergent distributed optimization with uncoordinated step-sizes,” in
American Control Conference (ACC), 2017. IEEE, 2017, pp. 3950–
3955.

[24] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, 2009.

[25] D. Jakovetić, J. Xavier, and J. M. Moura, “Fast distributed gradient
methods,” IEEE Transactions on Automatic Control, vol. 59, no. 5,
pp. 1131–1146, 2014.

[26] E. Wei and A. Ozdaglar, “On the o (1= k) convergence of asyn-
chronous distributed alternating direction method of multipliers,” in
GlobalSIP. IEEE, 2013, pp. 551–554.

[27] G. Lan, S. Lee, and Y. Zhou, “Communication-efficient algo-
rithms for decentralized and stochastic optimization,” arXiv preprint
arXiv:1701.03961, 2017.

[28] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized
gradient descent,” SIAM Journal on Optimization, vol. 26, no. 3, pp.
1835–1854, 2016.

[29] M. Raginsky and J. Bouvrie, “Continuous-time stochastic mirror
descent on a network: Variance reduction, consensus, convergence,”
in IEEE Conf. Decision and Control (CDC), 2012, pp. 6793–6800.

[30] R. Rockafellar and R. Wets, Variational analysis. Springer, 2011,
vol. 317.

[31] E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration:
structure-preserving algorithms for ordinary differential equations.
Springer Science & Business Media, 2006, vol. 31.

[32] C. A. Uribe, D. Dvinskikh, P. Dvurechensky, A. Gasnikov, and
A. Nedić, “Distributed computation of wasserstein barycenters over
networks.”

