
UNCLASSIFIED

UNCLASSIFIED

 AD-E404 176

Technical Report ARWSE-TR-15041

TACTICAL APPLICATIONS JAVASCRIPT DEVELOPMENT TOOLS
RECOMMENDATIONS

Craig Klementowski
Tiffany Reid
Ross Arnold

January 2020

Approved for public release; distribution is unlimited.

AD

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT
COMMAND ARMAMENTS CENTER

Weapons & Software Engineering Center

Picatinny Arsenal, New Jersey

UNCLASSIFIED

UNCLASSIFIED

The views, opinions, and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

The citation in this report of the names of commercial firms or commercially
available products or services does not constitute official endorsement by or
approval of the U.S. Government.

Destroy by any means possible to prevent disclosure of contents or
reconstruction of the document. Do not return to the originator.

UNCLASSIFIED

UNCLASSIFIED

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-01-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing the burden to Department of Defense, Washington Headquarters Services Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

January 2020
2. REPORT TYPE

Final Report
3. DATES COVERED (From – To)

4. TITLE AND SUBTITLE

Tactical Applications JavaScript Development Tools
Recommendations

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHORS

Craig Klementowski, Tiffany Reid, and Ross Arnold

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army CCDC AC, WSEC
Fire Control Systems and Technology Directorate
(FCDD-ACW-FM)
Picatinny Arsenal, NJ 07806-5000

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S.Army CCDC AC
Knowledge & Process Management Office (FCDD-ACE-K)
Picatinny Arsenal, NJ 07806-5000

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

Technical Report ARWSE-TR-15041
12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release, distribution is unlimited.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

 The current design of Tactical Applications lends itself to a hybrid web application architecture. In such an
architecture, the client and server may be hosted on two completely different systems or the client may play
host to server components to support disconnected operations. Recent front-end development of hybrid web
applications mainly involve a combination of HTML5, CSS3, and JavaScript. The commercial and open source
software product landscape that aids in development of front-end web applications is quite vast. The TacApps
development team needs and requires software development products that have a proven track record,
Integrated Development Environment integration friendly, ease of use, and cost effective. The TacApps
development team reviewed web development products that covered the following areas: static code analysis,
code style enforcement, unit testing and continuous integration (CI) as it pertains to our environment for
TacApps. Recommendations as a result of those reviews have been made in all four categories as follows:
JSHint – static code analysis, JSCS (Java Script Code Style) – code style enforcement, pairing of Karma &
Jasmine – unit testing, and Jenkins – CI. The containing document highlights all products reviewed and brings
forth product recommendation with rationale.

15. SUBJECT TERMS

Tactical Applications Software development Software tools JavaScript Static code analysis
Unit testing Coding style

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

ABSTRACT

SAR

18. NUMBER
 OF
 PAGES

19

19a. NAME OF RESPONSIBLE PERSON

Ross D. Arnold
a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area

code) (973) 724-8618

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

UNCLASSIFIED

Approved for public release; distribution is unlimited.

UNCLASSIFIED
i

CONTENTS
Page

Introduction 1

Static Code Analysis 1

JSLint 1
Google Closure Compiler 1
JSHint 2
ESLint 2
JSXHint 2
Cascading Style Sheets (CSS) Lint 2

JavaScript Code Style Checker 2

JavaScript Code Styler (JSCS) 2
JS Beautifier 3

Unit Testing 3

Karma 3
Chutzpah 3
Jasmine 3
Mocha 3
QUnit 4

Continuous Integration Servers 4

Jenkins 4
Travis 4
Bamboo 4

Conclusions 4

Continuous Integration Recommendation 5
Unit Testing Recommendation 5
JavaScript Code Styler Checker Recommendation 5
Static Code Analysis Recommendation 5

Appendix – Backup Data 7

Bibliography 11

Distribution List 13

UNCLASSIFIED

Approved for public release; distribution is unlimited.

UNCLASSIFIED
iii

ACKNOWLEDGMENTS

The authors would like to thank Timothy Rybarski and Gregory Roehrich for their sponsorship
as well as the Tactical Mission Command Product Management Office for funding the Weapons and
Software Engineering Center to undertake this effort.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

UNCLASSIFIED
1

INTRODUCTION

At the time of the writing of this document, the Tactical Applications program has gone
through critical design review. The TacApps development team faces time critical decisions
regarding development and/or environment tools. The TacApps development team has had the
opportunity to explore many useful software development tools as part of the design and technology
investigations. Development toolsets encompassing unit testing, code analysis, code style
enforcement, and continuous integration (CI) must be selected so that the development team
involved in front-end development is working from the same product set to drive development
synergy. This document will examine leading development tools that could be used for TacApps
front-end development and processes surrounding such development. In order to easily collaborate
with various stakeholders at disparate locations, the Defense Intelligence Information Enterprise
(DI2E) platform is being used. The DI2E provides JIRA software, Confluence, Jenkins, Nexus,
Fortify, Stash, Subversion, FishEye, and Storefront web applications to provide a central software
development stack that can be used by multiple collaborating teams. The TacApps program is
initially planning on using Stash, JIRA, FishEye and Jenkins tools. Therefore, other tools specifically
for the use of source control management, issue management, and code review will not be
evaluated.

STATIC CODE ANALYSIS

Static program analysis is the analysis of computer software that is performed without
actually executing the program. In most cases, the analysis is performed on some version of the
source code; in other cases, the analysis is performed on some form of the object code. The term
static program analysis usually refers to the analysis performed by an automated tool whereas
analysis performed by humans is referred to as program understanding, program comprehension, or
perhaps code review. The word or term “lint” is often synonymous with static analysis by many as
Lint was an actual early tool used for static analysis of programs written in the C language.

Static code analysis is a useful process for finding programming errors that may not be
evident on the surface. Performing static code analysis helps to enforce coding conventions that are
used in the development process. Execution of static analysis tools should be integrated as part of a
normal build process.

JSLint

The JSLint was one of the first JavaScript code analysis tools made available. It was created
by Douglas Crockford, a major JavaScript contributor best known for creating JavaScript Object
Notation format. It is not configurable, customizable, or extensible. JSLint is not under active
development and is infrequently updated by single contributor. A common criticism of JSLint is that
it has strong opinions about certain coding standards that may create excess warnings.

Google Closure Compiler

Google Closure Compiler is a tool that simply makes JavaScript download and run faster by
compiling JavaScript to efficient JavaScript performing the following activities in that compilation
process: eliminating dead code, rewriting, and minimizing the remaining code. During this process,
warnings and errors against the code are produced. Google Closer Compiler is updated frequently
with a handful of major contributors. Google Closer Compiler is implemented in Java and is
distributed as a single jar.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

UNCLASSIFIED
2

JSHint

The JSHint is a fork of JSLint allowing for customization options, which according to many
developers was of extreme importance due to JSLint limitations. The JSHint appears to be the most
popular static code analysis tool for JavaScript at this time. The JSHint is updated frequently with a
handful of major contributors.

ESLint

The ESLint is quite similar to JSHint. One of its most valued features is that it allows for the
addition of new rules at runtime with the ability to toggle those rules for execution. The main author
admits that it runs two to three times slower than JSHint.

JSXHint

The JSX is an Extensible Markup Language (XML) like syntax extension to ECMAScript. It is
used by preprocessors to transform this syntax into ECMAScript. TacApps CDR Demonstration
used React, a JavaScript library for user interfaces and React JSX, which is a transpiler that
transforms JSX into React JavaScript elements. The JSXHint was also used as part of
demonstration development process. JSXHint is a wrapper for JSHint to allow “linting” of files that
contain JSX.

Cascading Style Sheets (CSS) Lint

The CSS Lint offers “linting” for Cascading Style Sheets (CSS). CSS Lint is stable and is not
under active development, but occasional changes have been made. There have been well-versed
CSS developers that view some CSS Lint rules as “objectionable” but for our current TacApps team,
there is high value in using this tool.

JAVASCRIPT CODE STYLE CHECKER

Enforcing a formalized coding style helps to maintain a consistent look and feel of the code.
New developers or seasoned developers will be able to be productive on various pieces of code that
were perhaps initially developed by someone else and will not be distracted by personalized code
stylings. Some static code analysis tools offer limited code style checking but are far from complete.
However, there are a few tools that can help maintain code common look and feel. The tools
explored were JavaScript Code Style checker (JSCS) and JS Beautifier.

JavaScript Code Styler (JSCS)

The JSCS is clearly the leader in this area. JSCS programmatically enforces style guides
(auto-formatting). It is configurable with over 90 validation rules which include presets from popular
style guides, for example, jQuery, Google and Node. Integrated development environment (IDE)
and other tooling support is constantly growing, which makes the integration of JSCS in most
development environments seamless. Some major users of JSCS include: Adobe, Bootstrap,
AngularJS, Ember.js, Grunt, and jQuery.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

UNCLASSIFIED
3

JS Beautifier

JS Beautifier cleans up “messy,” “minified,” and “obfuscated” JavaScript code. In addition,
the tool can clean up CSS and Hypertext Markup Language (HTML) code. This could be used to
address new code as you develop or as a precursor to JSCS. It is configurable by passing
command line arguments for newline preservation, indentation size, indentation character, padding,
and many more.

UNIT TESTING

Unit testing is a software testing method by which individual units of source code, sets of one
or more computer program modules together with associated control data, usage procedures, and
operating procedures are tested to determine whether they are fit for external use (outside of said
unit).

Unit tests for JavaScript are executed by a test runner. A test runner will execute tests coded
in one of the various testing frameworks. Karma and Chutzpah are examples of test runners while
Jasmine, Mocha, and QUnit are examples of unit testing frameworks.

Karma

Karma is the preeminent JavaScript test runner. Karma is a simple tool that allows for the
execution of JavaScript code in multiple real browsers and real devices (phones and tablets). Karma
easily integrates with common IDEs (i.e. WebStorm) as well as CI environments such as Jenkins,
Travis, and Semaphore. It is a testing framework agnostic with built-in workflow control that
integrates into an IDE.

Chutzpah

Chutzpah is a .Net-based command line test runner that can also be easily integrated into
Visual Studio. It uses PhantomJS, which is a headless browser to execute tests. Not only is it a test
runner, but it also reports on code coverage after tests have been executed.

Jasmine

Jasmine is a Behavior Driven Development testing framework for JavaScript. It does not rely
on browsers, Document Object Model, or any JavaScript framework. It is suited for websites,
Node.js projects, or anywhere that JavaScript can run. The syntax is extremely clean so that tests
can easily be written.

Mocha

Mocha is a feature-rich JavaScript test framework running on Node.js and the browser, which
facilitates the ease of asynchronous testing. Mocha provides test coverage reporting, file watcher
support, highlights slow tests, test specific timeouts, and reports test durations to name a few
features. Tests can be ran serially while mapping uncaught exceptions to correct test cases.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

UNCLASSIFIED
4

QUnit

QUnit is a powerful, easy-to-use JavaScript unit testing framework. It is used by the jQuery
project to test its code and plugins but is capable of testing any generic JavaScript code as well as
testing JavaScript code on the server-side. The assertion methods of QUnit actually follow the
CommonJS unit testing specification, which was originally influenced by Q-Unit.

CONTINUOUS INTEGRATION SERVERS

The CI describes a set of software engineering practices that speed up the delivery of
software by decreasing integration times. Software that facilitates this practice is called CI software.
The top open source leaders in this space are Jenkins and Travis. Many GitHub-hosted products use
Travis since the online-hosted service is free for open source projects. Jenkins appears to be the
most widely used CI server and is easily hosted locally to satisfy enterprise solutions. There are also
numerous commercial solutions that were not part of this evaluation.

Jenkins

Jenkins CI is the leading open source CI server. Built with Java, it provides over 1,000
plugins to support building and testing virtually any project. DI2E is using Jenkins as its CI server.
Jenkins, previously known as Hudson, was forked and renamed after the Oracle acquisition.
Jenkins provides the following tool integration with additional tools not listed: Eclipse, NetBeans,
IntelliJ, Google Chrome, Firefox, Bash, and Ant.

Travis

Travis CI is hosted online by a company based in Germany. A free downloadable package
for local hosting of Travis is not offered. Travis offers commercial installation for a fee.
Theoretically, one could download code from GitHub and build the Travis CI server: however, that
would be a significant undertaking and may not be worth it when Jenkins is a clear and viable
solution.

Bamboo

Bamboo is a commercial solution from Atlasian, the provider of many DI2E solutions.
Bamboo purported benefits include “best” JIRA integration and deployment support. IDE support in
WebStorm is provided by IntelliJ Connector plugin. Perhaps DI2E may include Bamboo at a later
date.

CONCLUSIONS

There are many mature tools available to aid in the development of TacApps. This document

offered a brief glimpse into some tools that were used or investigated during the pre and post-CDR
explorations. The tool recommendations largely follow current industry standards and best
practices. Many tools can become interchangeable as the TacApps development team’s needs
evolve while nuances of each tool are discovered.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

UNCLASSIFIED
5

Continuous Integration Recommendation

Jenkins

 Using Travis would not seem to be a good fit for a couple of different reasons.
TacApps is not an open source project. Hosting Travis locally or online would add additional costs
to the TacApps project budget. Jenkins appears to be the best choice given that TacApps already
uses Defense Intelligence Information Enterprise (DI2E) and the hosted version of Jenkins is readily
available on DI2E. If decided upon, Jenkins could also be set up locally.

Unit Testing Recommendation

Karma and Jasmine

The pairing of Karma and Jasmine is the defacto standard for JavaScript unit testing;
it is the recommendation that the TacApps team use Karma and Jasmine for its collective JavaScript
unit testing.

JavaScript Code Styler Checker Recommendation

JavaScript Code Style

The JSCS appears to be the obvious choice for usage of code style enforcement by
TacApps developers. Next logical step would be for the TacApps team to collectively decide on an
agreeable preset as a starting point.

Static Code Analysis Recommendation

JSHint

Most of the tools have plugins for the major build platforms such as: Grunt, Gulp,
Gradle, Ant, and Maven. Given the apparent ubiquity of JSHint, it is recommended to start there for
JavaScript static code analysis. There is very little cost in adding some of the previously mentioned
tools to the build. A further exploration of integration of the static analysis tools to the build process
might be made to further extend our knowledge.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

UNCLASSIFIED
7

APPENDIX
BACKUP DATA

UNCLASSIFIED

Approved for public release; distribution is unlimited.

UNCLASSIFIED
9

Node.js

Node.js emerged as an enabling technology that has been utilized by web developers as a
base tool for web site development. Node.js is an event driven, non-blocking I/O model that is built
on top of Chrome’s JavaScript runtime. It is able to serve up web contents easily on demand and
provides a platform for JavaScript based tools to run within. Many open source projects utilize
Node.js packaged with the following tools: JavaScript task runners such as Grunt or Gulp, Node
Package Manager (NPM, Node.js library management system) and Bower (another library
management system) to quickly assemble disparate assets together to build their web applications.
Most of the tools analysed in this document were utilized via Node.js along with Grunt task runner. It
should be noted that many of the tools discussed can also be exercised in the Integrated
Development Environment (IDE), WebStorm which happens to be the TacApps team IDE of choice.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

UNCLASSIFIED
11

BIBLIOGRAPHY

1. “douglascrockford / JSLint,” The JavaScript Code Quality Tool, GitHub, Web,

<https://github.com/douglascrockford/JSLint>, 01 May 2015.

2. “google / closure-compiler,” A JavaScript checker and optimizer, GitHub, Web,
<https://github.com/google/closure-compiler>.

3. “jshint / jshint,” JSHint is a tool that helps to detect errors and potential problems in your
JavaScript code, GitHub, Web, <https://github.com/jshint/jshint>.

4. “eslint / eslint,” A fully pluggable tool for identifying and reporting on patterns in JavaScript,
GitHub, Web, <https://github.com/eslint/eslint>.

5. “STRML / JSXHint,” Wrapper around JSHint for linting JSX files, 100% compatible with existing
tools using JSHint, GitHub, Web, <https://github.com/STRML/JSXHint>.

6. Hartikainen, J. A Comparison of JavaScript LintingTools, SitePoint, Web,
<http://www.sitepoint.com/comparison-javascript-linting-tools> 05 March 2015.

7. “CSSLint / csslint,” Automated linting of Cascading Stylesheets, GitHub, Web,
<https://github.com/CSSLint/csslint>.

8. Codacy Blog, Review of CSS LintingTools, Codacy Blog, Web,
<http://blog.codacy.com/2014/06/25/review-of-css-linting-tools>, 25 June 2014.

9. Tutorial and Overview. JavaScript Code Style. JSCS. Web. 2015.
<http://jscs.info/overview.html>.

10. “jscs-dev / node-jscs,” JavaScript Code Style checker, GitHub, Web, <https://github.com/jscs-
dev/node-jscs>.

11. “beautify-web / js-beautify,” Beautifier for javascript, GitHub, Web. <https://github.com/beautify-
web/js-beautify>.

12. “karma-runner / karma,” Spectacular Test Runner for JavaScript, GitHub, Web,

<https://github.com/karma-runner/karma>.

13. “mmanela / chutzpah,” Chutzpah is an open source JavaScript test runner which enables you to
run unit tests using QUnit, Jasmine, Mocha, CoffeeScript and TypeScript. GitHub, Web,
<https://github.com/mmanela/chutzpah>.

14. Groat, K., “Which JavaScript Test Library Should You Use?” QUnit vs Jasmine vs Mocha, Tech
Talk DC., Web, <http://www.techtalkdc.com/which-javascript-test-library-should-you-use-qunit-
vs-jasmine-vs-mocha>,04 May 2014.

15. Kobletz, A., Shelajev, O., and White, O. “DevProd Report Revisited,” Continuous Integration
Servers in 2013, Rebellabs, Web, <http://zeroturnaround.com/rebellabs/devprod-report-revisited-
continuous-integration-servers-in-2013>,12 February 2013.

16. Docs. Hudson Extensible continuous integration server. Web. <http://hudson-ci.org>, 2015.

https://github.com/douglascrockford/JSLint
https://github.com/google/closure-compiler
https://github.com/jshint/jshint
https://github.com/eslint/eslint
https://github.com/STRML/JSXHint
https://github.com/CSSLint/csslint
https://github.com/jscs-dev/node-jscs
https://github.com/jscs-dev/node-jscs
https://github.com/beautify-web/js-beautify
https://github.com/beautify-web/js-beautify
https://github.com/karma-runner/karma
https://github.com/mmanela/chutzpah
http://www.techtalkdc.com/which-javascript-test-library-should-you-use-qunit-vs-jasmine-vs-mocha
http://www.techtalkdc.com/which-javascript-test-library-should-you-use-qunit-vs-jasmine-vs-mocha
http://zeroturnaround.com/rebellabs/devprod-report-revisited-continuous-integration-servers-in-2013
http://zeroturnaround.com/rebellabs/devprod-report-revisited-continuous-integration-servers-in-2013
http://hudson-ci.org/

UNCLASSIFIED

Approved for public release; distribution is unlimited.

UNCLASSIFIED
12

BIBLIOGRAPHY
(continued)

17. Use Jenkins. Jenkins, An extensible open source continuous integration server. Web,

<http://jenkins-ci.org>, 2015.

18. Documentation, Test and Deploy with Confidence, Web, <https://travis-ci.org>, 2015.

19. 10 Reasons You’ll Love Bamboo. Bamboo. Atlassian,
Web<https://www.atlassian.com/software/bamboo/got-jenkins>, 2015.

20. http://en.wikipedia.org/wiki/List_of_unit_testing_frameworks#JavaScript

21. http://en.wikipedia.org/wiki/Comparison_of_continuous_integration_software

22. http://stackoverflow.com/questions/24391462/what-are-the-differences-between-mocha-chai-
karma-jasmine-should-js-etc-te

http://jenkins-ci.org/
https://travis-ci.org/
https://www.atlassian.com/software/bamboo/got-jenkins
http://en.wikipedia.org/wiki/List_of_unit_testing_frameworks#JavaScript
http://en.wikipedia.org/wiki/Comparison_of_continuous_integration_software
http://stackoverflow.com/questions/24391462/what-are-the-differences-between-mocha-chai-karma-jasmine-should-js-etc-te
http://stackoverflow.com/questions/24391462/what-are-the-differences-between-mocha-chai-karma-jasmine-should-js-etc-te

UNCLASSIFIED

Approved for public release; distribution is unlimited.

UNCLASSIFIED
13

DISTRIBUTION LIST

U.S. Army CCDC AC
ATTN: FCDD-ACE-K
 FCDD-ACW-HH, C. Klementowski
 T. Reid
 FCDD-ACW-FM, R. Arnold
Picatinny Arsenal, NJ 07806-5000

Defense Technical Information Center (DTIC)
ATTN: Accessions Division
8725 John J. Kingman Road, Ste 0944
Fort Belvoir, VA 22060-6218

GIDEP Operations Center
P.O. Box 8000
Corona, CA 91718-8000
gidep@gidep.org

UNCLASSIFIED

Approved for public release; distribution is unlimited.

UNCLASSIFIED
14

Tri Lu

Tri Lu

