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1 Executive summary

In this proposal, we address a very important research area in computational mathematics, namely the de-
sign and synthesis of optimal control strategies for high-dimensional stochastic dynamical systems. Such
systems may be classical nonlinear systems evolving from random initial states, or systems driven by ran-
dom parameters or processes. The first objective is to provide a validated new computational capability for
optimal control of stochastic systems which will be achieved at orders of magnitude more efficiently than
current methods based on spectral collocation or random sampling. To accomplish this goal, we will de-
velop a new data-driven optimal control framework based on probability density function (PDF) equations
(see Figure 1). The new framework is built upon high-order numerical tensor methods, with no specific
requirements on the structure of the continuous dynamics, cost function, or the type of uncertainties. The
18 months research plan is multidisciplinary and it involves multiple fields such as optimal control, large-
scale optimization, and uncertainty quantification. It consists of theoretical and numerical developments,
as well as a general software framework that will implement the proposed algorithms. The main research
tasks are summarized in Figure 2. The proposed research work will have a significant and broad impact in a
wide range of engineering applications such as autonomous systems, environmental defense, and control of

random networks.
Candidate |¢
Control |<' ————————————————————— |

A 4

Nonlinear
Dynamics

! by

Reduced-Order
PDF Equations

p(F,t)

A\ 4

Cost Evaluation

I(u)) = [ p(F.ty)FaF

Data
(Sample Trajectories)

1
I X (t; ), u)
1

\A4

Liouville

Equation

Cost Evaluation

M
J([u]) = ZF(X(tf;méw))wi

Cost Evaluation

J([u]) = / F(x)p(x,ty)dx

Figure 1: Proposed data-driven optimal control architecture, emphasizing the role of probability density

vy

Optimization

(Sequential Quadratic Programming

or Interior Point Methods)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1 p(z,t) I
I
I
I
I
I
I
I
I
I
I
I
I
I

| SO—

)

function equations instead of nonlinear dynamics in the control loop.
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2 Project scope

( )
Task I Develop scalable software and fast algorithms to compute the numerical solution to high-

dimensional PDF equations.

e Parallel C++ class to perform operations between hierarchical tensor formats.

e Parallel sampling strategies and numerical tensor methods to approximate the flow map generated
by high-dimensional dynamical systems.

Task IT Develop stable algorithms to compute the numerical solution of data-driven PDF equations.

e B

Task III Integrate the numerical algorithms developed in Task I and II into the computational optimal
control framework.

. J

~

g
Task IV Demonstrate the effectiveness of the proposed data-driven control strategies in applications

to disease propagation models in random newtworks of interacting individuals, and swarms of attack-
ing/defending/searching agents.

|

Figure 2: Summary of the research tasks.

2.1 Task I(a): Parallel C++ class to compute hierarchical tensor formats

In Q1 we initiated the development of a parallel C++ class to compute hierarchical Tucker tensor formats. As
of today we have available a working serial version of the C++ code, which we tested against the htucker
Matlab softare developed at Ecole Polytechnique Fédérale de Lausanne (EPFL - Switzerland), and available
online at https://anchp.epfl.ch/htucker. The numerical results of such tests are summerized
in Section 2.1.5).

2.1.1 Brief overview of hierarchical tensor methods

Hierarchical tensor methods were originally introduced in [27] to mitigate the dimensionality problem and
memory requirements in the numerical representation of high-dimensional functions. A key idea is to per-
form a sequence of Schmidt decompositions [64] (multivariate SVDs [23]) until the approximation problem
is reduced to a product of one-dimensional functions/vectors. To illustrate the method in a simple way, con-

sider a five-dimensional function f(x1,...,x5). In a hierarchical Tucker tensor representation f is written
as
T
flxi,...,25) = Z Cliv, ... is]fL (@) f2 (22) £ (x3) £ (2a) 2 (25). (D
i1, is=1
where the 5-dimensional core tensor C|[iy, . .., i5] can be factored as a product of at most three-dimensional

tensors. This is true in an arbitrary number of dimensions. The tensor components fi"; () and the factors of
the core tensor can be computed by employing hierarchical SVDs [23, 44, 46] of suitable tensor matriciza-
tions, which we will describe in detail in Section 2.1.3. Hierarchical tensor expansions can be conveniently
visualized by graphs (see Figure 3). This is done by adopting the following standard rules: i) a node in a

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.
2



o<
o’
1

A[?'.l, 19,13, 14, 15| —

o<
&)
@
;

Level: 0 3

Figure 3: Graph representation of the hierarchical Tucker decomposition of a five-dimensional tensor.

graph represents a tensor in as many variables as the number of the edges connected to it, ii) connecting
two tensors by an edge represents a tensor contraction over a certain index. The 5-dimensional function (1)
may be evaluated at grid points, e.g., defined within the 5-dimensional standardized hyper-cube [0, 1]°. This
basically converts f(x1,...,zs5) into a 5-dimensional array (tensor), which we formally write as

Aliy, ... is) = f(alt, ... 28), (2. 28) e[0,1]° Vij. 2)

The basic problem we aim at overcoming with hierarchical tensor methods is the storage requirements of full
tensor representations such as (2). To understand how serious such problem is, consider that in dimension
5 if we use 1000 evaluation nodes in each dimension then we need to store 1000° = 10'® floating point
numbers (in double precision), which requires approximately 8000 terabytes of memory space. From an
algorithmic viewpoint, hierarchical tensor methods can be seen as linear algebra techniques (multivariate
SVD) to “compress” multivariate arrays of arbitrary dimension into arrays of manageable size. Due to the
great practical potential of being able to compress (big) data, we find it a high priority to develop a high
performance C++ code to implement such algorithms.

2.1.2 The C++ class

In Q1 we studied how the algebraic theory of tensors [27] can be effectively implemented in a C++ class.
There are multiple perspectives with which one may view a tensor. A particularly effective one is to view
tensors as multi-linear maps from sets of integers into the reals, i.e.,

A[il,ig,...,id]ER, ikEIk ijEL...,d. (3)

Here, Ali1,...,1q] may correspond to the discretization of a multivariate function on a grid (see, e.g.,
equation (2)). The sets Z;, are called index sets. For finite-cardinality index sets, we let each i € 7
range from 0 to #(Z;) — 1 (where # denotes the cardinality) to match C++ indexing conventions. A
multidimensional array may be stored in C++ in different ways. A conventional approach is to allocate arrays
of memory addresses (called “pointer pointers”). Instead, we match the convention given by LAPACK: we
allocate a single array of floating point numbers and then manage indexing through the use of “column
major form” index weights. This allows lower level control of the memory and makes for more time spent
computing and less time spent allocating and de-allocating memory.

Remark 2.1 A multi-index set Z; x Zs x ...Z; is also an index set. The elements of this set are tuples
of integers. Since indexed sets of real numbers form a vector space, the notion of tensor described above
satisfies the vector space axioms. i.e., tensors are vectors. Basic vector arithmetic operations one might do
in Matlab or Numpy are now implemented in the tensor class.
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Remark 2.2 (Matlab-like C++ environment) We used the memory management written for the tensor
class to implement a column major form matrix class. Moreover, since the data is stored column major,
we can now use LAPACK to add in common Matlab-like commands. Some of those included are QR
factorization, singular value decomposition (SVD), and matrix multiplication. Combined with operator
overloading, this implementation of a C++ matrix object allows for programming in a Matlab-like way,
since memory management is taken care of entirely within constructors and destructors. Additional useful
routines added in are the Kronecker and Hadamard products, which are not available in LAPACK as of the
writing of this report.

2.1.3 Matricizations

Matricization is the process of taking a tensor, and generating a matrix with the same entries. To illustrate
this, consider the following steps:

1. Start with a full tensor with an entry like so
Alir, i, ..., 04] 4)

2. Group the indexes by permuting them around so that

i1, d2,. .., ia] — [[T17T27---7Tm]7[cl,CQa”-vcd—m]:| )

Now we let assign each [r1, 79, . . ., 7y, | @ natural number, say r € N. Do the same for [c1, ca, . . ., C4—m],
getting the index c € N.

What we have done is giving each element of the multi-index an order pair of integers. Pairs of integers
indexing a set of real numbers is called a matrix. Let’s call that matrix B. We have described a map from a
tensor to a matrix:

A[il,ig,...,id]HB[T‘,C]. (6)

The choice of permutation gives us the type of matricization we have done. For example, suppose we have
a full tensor with entries A[i1,i2,13,44]. If we want to matricize on indexes 1 and 3, then we permute
Aliy,ig,i3,14] — B[[il, i3], [i2, i4]], then we count all of the indexes one at a time, in the first two indexes
and second two indexes independently. This gives us the matrix B|[r, c]. Matricization is denoted by the
subset of row index labels in a superscript. So in this case, we discussed the A(!3) matricization. This is
also called the (1, 3)-mode matricization.

Remark 2.3 Matricization requires addressing every element of a tensor and allocating multiple arrays
to define indexing, floating point storage, and the maximal bounds of an index. Doing this many times
can get computationally very expensive. Matlab/Octave get around this by using the built in command
reshape (). From the Octave documentation on this command, this calls the built in Fortran command
RESHAPE (), which is a very low level implementation of array memory shape manipulation. In order to
beat scaling performance of Matlab and Octave on a desktop computer, it is required to implement a highly
efficient array reshaping function for row column form multi-dimensional arrays. An alternative may be to
implement a Fortran call into C++, like LAPACK.
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2.1.4 Brief description of the HT algorithm

Our goal is to take a full tensor, say A[i1,...,iq], and then generate a tree at each node containing smaller
tensors which can be used to compute individual entries of A. The tree has one leaf for each of the 1,2,...,d
indexes of A (see Figure 3). Each leaf contains a set of basis vectors corresponding to the 1,2, ...,5 mode
matricizations. The internal (non-root and non-leaf) nodes contain a 3-tensor with projection information
for generating a basis corresponding to that node’s matricization. So if node has children 1 and 2, then the
3-tensor contains coordinates for generating a basis corresponding to the (1,2) mode matricization. The
exact formula is given in [23] and it is hereafter summarized. Let B; denote the 3-tensor at node ¢ and
Us1, Usa be the matrices containing the basis vectors of the children of node . Then the 7 column of the
basis Uy is given by:

Uil i) = X0 Bilin 4, 1] - (U [+, /1 @ Usa[ :,10) (7
il

where the operator : has the Matlab/Octave meaning of “all entries in this index” and & is the Kronecker

matrix product. Then (see [23]),

Bli.j. K] = <Ut[:,i],(vsl[:7j]®U52[: ,ZJ)>. ®)

All bases are generated by taking the singular value decomposition of a matricization of the full tensor A
along the indexes which correspond to a particular node. The orthogonality of the bases from a SVD is what
allows us to use relatively simple projections to generate all reduced-order tensors on the tree. To adjust the
multi-linear rank of a HT tensor, we simply take fewer left singular vectors to generate the matrices U; at
the leaves of the tree. Lastly, we discuss the root node (white node in Figure 3). This node is similar to the
internal nodes, but instead it is only a matrix (2-Tensor), rather than a 3-Tensor. This is because there is no
parent node of the root. The projection for the B, array at the root is the same as the one given above, but
the ¢ index has a maximum index of 0, making the expression B[0, j, k]. In addition, U, is a single column
vector listing every entry of the full tensor A.

Remark 2.4 Described here is the “root-to-leaves” method for computing a HT decomposition. There is a
much faster “leaves-to-root” approach which does successive products onto a “core tensor”. It has the same
error bounds (see Theorem 2.1) as the approach we just discussed. In particular, the following theorem holds
for both HT tensor approximation algorithms.

Theorem 2.1 (HT approximation error [23]). Let A be a real valued tensor of dimension d. Let k be
the max prescribed rank on each node of the tree and € > 0. If there exists a tensor Ap.s; of the same rank
and ||A — Apest|| < &, then the singular values of A® denoted by o; for each node ¢ can be estimated by

Z aiz < e ©)

On the other hand, if the singular values fulfill the theoretical bound Z 0? < £2/(2d—3), then the truncation
1>k

yields a HT tensor Ay such that ||A — Ay|| < e. Thus, the overall accuracy depends on how many

singular values we keep in the matrix representation at the leaves. If we drop none, then we obtain an exact

representation of the full tensor in the HT form.
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Figure 4: Sine function of equation (10) in (a) 2D, and (b) 3D with level sets (iso-surfaces) corresponding
to g = 0 (green), g = 0.2 (magenta), g = 0.4 (blue), g = 0.6 (purple) and g = 0.8 (light green).

2.1.5 Numerical results: serial C++ code

As a first test for the C++ code we developed, we generated a tensor which has entries given by sampling
the following scalar function on a uniform grid in the unit hyper-cube [0, 1]%.

d
g(z1, 22, ..., 2q) = sin (Z g;) . (10)
=1

It was shown in [48] that g(x1, z2, . .., 4) can be written as
d d .
) sin(z; + Xi — Xj)
g(z1,...,xq) = ) sin(x;) - ; (11)
g =0
i#]
for any d-tuple of distinct numbers {x1, ..., xq}. Therefore, in principle, g(x1, zo, ..., 2z4) can be written

as a fully diagonal HT decomposition with separation rank equal to » = d. In Figure 4 we plot the function
(10) in two and three dimensions (iso-surfaces).

Next, we perform an analysis of the performance of the HT leaves-to-root decomposition algorithm. In
particular, we consider d-dimensional functions of the form (10) and compute the HT decomposition by
using both the ht ucker Matlab software available online at https://anchp.epfl.ch/htucker)
and our newly developed C++ code. Our results are summarized in Figure 5. It is seen that the two imple-
mentations yield nearly identical error plots, differing only on the order of machine accuracy. This suggests
that our C++ code is mathematically correct, and relatively efficient. In fact, as easily seen from the plots
of Figure 5, our code outperforms the Matlab code by 10 times in speed for small dimensions. However,
as d increases and we need to perfom more costly matricizations, the built-in Matlab reshape () func-
tion outperforms our current implentation of the C++ matricization. We are currently investigating possible
approaches to overcome this difficulty as discussed above in Remark 2.3.

2.1.6 Parallelization of the HTucker C++ class
To parallelize the algebraic routines of tensor arithmetic we used both OpenMP and MPI communication

protocols. This allowed us to store each node of the HT tree sketched in Figure 3 in its own compute
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Figure 5: Comparison of Hierarchical HT decomposition of the sine function of equation (10) utilizing
existing software tools (b) and the serial algorithm developed in this effort (a) (see section 2.1.4).

node as in Figure 6. OpenMP is used so that whatever cores are active on each compute node can perform
parallelized linear algebra operations through the use of LAPACK and ScalLAPACK.

2.1.7 Distributed memory implementation

It is natural to attempt to place one tensor or matrix in each compute node of a parallel computer (see Figure
6). This is the approach discussed in the recent paper [24]. In this Section we will explicitly state how such a
distributed memory implementation can be done using MPI. By distributed memory computer, here we mean
a computer which has multiple instances of the same program running. Each instance has an ID number and
can send or receive data from any other instance. We will be using these IDs to define what each node does
in computing an HTucker decomposition, and how nodes communicate when performing computations on
an HTucker tensor. A standard tree data structure consists of nodes containing some data and which point
to 2 children nodes, or NULL if no children. In the context of a distributed memory machine, we replace
the concept of “pointing to do different memory locations” with storing a set of integers indicating which
compute nodes refer to the left child, right child and parent. To illustrate the concept, consider the simple
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Figure 6: Parallel implementation of the HTucker C++ class for a dimension tree corresponding to a 4-tensor.

example shown in Figure 6 of a tree corresponding to a 4-tensor. Iterating from left to right in each layer, we
correspond an index to each tree node. Each node contains a data structure with 3 integers and the relevant
tensor objects for HTucker decomposition. For example, node 1 contains a parent ID of 0, a left child ID
of 3, and a right child ID of 4. For the root, the parent ID is set to O, which is the same as its own ID.
For the leaves, the children ID numbers are set to -1. An algorithm for assigning unique ID numbers for
all nodes for arbitrary dimension trees using the scheme outlined here is implemented as a dependency for
the HTuckerMPI C++ object. The algorithm for computing the HTucker decomposition on a distributed
tree is largely the same as the method we described in Q1. The difference lies in how the data is stored
and transferred in the computer. Any time where a matrix, tensor, or some related data (e.g. number of
components in an array) is required from a parent/child node, an MPI message is passed. Using this, we can
initialize a tensor on node 0, and then send data to the rest of the tree. To this effect, we compute all the
required matricizations simultaneously. Then SVDs are all done simultaneously and the left singular vectors
are sent to the respective parent nodes. As for how this is accomplished in C++, we store an HTuckerMPI
object on each compute node. Each object contains either the root matrix, a transfer tensor, or the leaf
basis matrices. Each node using this object as an interface to communicate with all other nodes on the
tree. Addition is accomplished by concatenating tensors as is described by the Matlab HTucker manual.
The only operations required at the time taken to copy two summands into a new HTuckerMPI object.
Truncation of an HTucker tensor to another HTucker tensor is similar to going from full tensor to HTucker
(see [44]). First, we generate a set of matrices called Gramians for each node which are roughly equivalent
to the matricizations. Then we use these matrices to generate new matrices containing left singular vectors.
Finally we only the child frames in similar manner as stated in (2.1.3). As mentioned above, OpenMP is also
used in the parallelization process. Each compute node is also given the capability to compute with shared
memory in parallel. This is to say that we can take advantage of the parallelizations used in LAPACK for
computing, e.g., the SVD and the QR factorization. On the workstation used in the tests below, we have a
Intel 19-7980XE with 18 CPU cores with Hyper-Threading of 2 processes per core. So our Linux operating
system registers a total of 36 “’logical cores.” If we are to use the 4 dimensional tensor example above, then
we need to used 7 MPI compute nodes (one for each tree node). This number tells us how many cores we
can allocate to parallelizing with OpenMP. The allocation is simple, diving 36 by 7 we have maximally 5
OpenMP processes per MPI node and then one left over.
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Figure 7: Performance of the HTucker C++ class with “root-to-leaves” [44] truncation in computing the
tensor decomposition of the function in equation (12) utilizing 7 MPI nodes with up to 5 OpenMP threads
in each node.

2.1.8 Numerical results: parallel C++ code

We consider the following non-separable function to study parallel versus serial performance of the C++
code we developed

sin(bx1x2) COS(5$3)] (12)

g(w1, 2,73, 74) = €xp [ 1 + cos(10xq24)?

We sample g on a 60 x 60 x 60 x 60 grid in [0, 1]4. This yields a 4D numerical tensor with 12.96 million
entries, which requires 103.68 Mb of storage if we use double precision floating point numbers. We tested
accuracy and computational time for several different separation ranks. We start at rank 1 and then increase
the rank by 10 every iteration, until 101. Our results are summarized in Figure 7. In particular, Figure
7(a) shows that the maximum pointwise error decays more or less exponentially fast with the separation
rank . Such error decay, is not obviously affected by the number or OpenMP threads within each compute
node. In Figure 7(b) it is seen that the parallel HTucker code indeed outperforms the serial version by a
significant margin. Specifically, we can see a reduction by 1/2 in execution time. This is not the full 1/7 one
would expect since a large overhead is introduced by telling different processing nodes to send data back
and forth. We are currently working on optimizing (minimize) communication between the compute nodes.
Even so, with this overhead we make significant gains in speed. Also, the parallel code is more suited to
larger and larger problems. If the code spends more time computing on independent cores than passing data
between cores, then we see better performance. For this particular tensor, the two implementations scale
constant with rank. This is because the last step, which actually depends on rank, is the series of projections
explained in Section 2.1.3 . However, this step takes far less time than computing all of the matricizations
and singular value decompositions, which are not currently programmed to scale with rank. Observing the
performance of the parallel code, we also see that adding more cores per compute node has a significant
impact on compute time, going down from around 60 seconds to 50 seconds.
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2.1.9 Application to a 4D Liouville equation

Consider the following four-dimensional initial/boundary value problem for the Liouville equation on the
periodic cube D = [—1,1]*

op(t
p(a£w> +G-Vp(t,xe)=0 >0, zeD,
(13)
1 x} + 23 + 2} + 23
_ _ _ = 2.
p(o, {IZ) po(a:) (47[_20_4) exp |: 20_2 ) g

By using the method of characteristics, it is straightforward to obtain the following exact solution (with
constant G)
p(t, ®) = po(x — Gt). (14)

Taking partial derivatives of p(t, ) in a discrete form is done through the use of a “x-mode” product o,,,
which is performed by taking the p-mode matricization, applying the differentiation matrix to the resulting
operator. For example, the partial derivative in z is:

&
&xl

~ (D oy P(1))[i, g, k, w], (15)

(t.[e} @5,25,1])

where we denoted by D the one-dimensional pseudospectral (Fourier) differentiation matrix, and with P ()
the full tensor (with all indexes) at time ¢. The semi-discrete form of the initial/boundary value problem 13
can be compactly written in an HTucker form as

dP(t) <
= —;ka op P(t). (16)

To integrate the ODE system (16) in time, we use the the second-order explicit Adams-Bashforth scheme

At &
P(tni1) = P(ty) — = Y. GrD og (3P(ty) — P(tn-1)). (17)

2 k=1

By the properties of pseudo-spectral methods, we expect that accuracy depends on differentiability in space.
In particular, since the initial condition is infinitely differentiable and numerically zero on the boundary for
sufficiently small o, we expect exponential convergence in space. As for using HTucker to solve this prob-
lem, it can be shown that multiplying a matrix into the y leaf in the HTucker decomposition is equivalent
to taking the p-mode product with the full tensor; summing is simply concatenation; and scalar multiplica-
tion can be accomplished by scaling the root node’s matrix by a real number. Since the data stored at each
step grows with concatenation if we do not truncate, we truncate to a given max rank at the end of every
iteration. In Figure 8 we plot a few Sections of the solution to (13) in the z;z2-plane at different times.

The rank of the HTucker decomposition is chosen to be 1, 2, and 3. Note that since a the Gaussian initial
condition is fully separable, it can be represented exactly with a rank 1 tensor format. Thus, raising rank
does not improve accuracy, but increases computation time since more data copying for each addition and
also more vectors operations. We see all this in Figure 9, where we plot the execution time needed to advect
the solution for 10° time steps (one cycle) This number was chosen because after this many iterations the
maximum pointwise error is of order O(10~%), small enough to be a fair estimate of the solution. Next, we
study scaling with with the number of grid points, to see how the different algorithms handle growing prob-
lem size. In Figure 9 we see the execution time of the serial C++ algorithms grows roughly with power 1/2.
On the other hand, the execution time of HTucker grows much slower. This is because essentially we don’t
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Figure 8: x;x2-plane solutions of the initial/boundary value problem in equation (13) with z3 and x4 both
set to 2¢, at times (a) t = 0.0, (b)t = 0.3, (c)t = 0.5, (d) t = 1.0.

need to compute any of the additions, and the modal products need only to be applied to the leaves. We see
that the computing time levels off entirely for a rank 1 representation. For more complicated problems, the
optimal rank in general depends on time, suggesting that the solution may increase or reduce its separability
as time integration proceeds. In this case, we can adaptively compute such optimal rank on-the-fly based on
fast error estimators.

2.1.10 Parallel linear solvers for high-dimensional systems in the HT format

In the previous Section we studied solutions to high dimensional PDEs through the use of explicit multi-step
schemes of the form

P’n+1 :R(Pna"'apnfm)a (18)

where R is linear in each argument, and P, = P(t,) However, schemes of this form are not in general
stable for all contractive R. Moreover, they have increasingly restrictive time step limitations for situations
in which the iterative schemes are stable. Thus, for increased numerical stability it is often necessary to use
implicit time stepping schemes, i.e. schemes which implicitly represent the next iterate as the solution to a
linear system of equations

E(Pn+1) :R(Pn7---7pn—m); (19)

where the (big) matrix £ is assumed to be invertible. In the context of hierarchical Tucker tensor formats,
solving such an equation for the next iterate with a restricted set of ranks — i.e., on a manifold of tensors
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Figure 9: Computational time required to advect the solution back to initial position (¢ = 1) for the number
of collocation points in each variable, x;, utilizing 10° time steps from ¢ = O to ¢ = 1.

with constant rank — is computationally difficult, as it requires Riemannian optimization." Perhaps, the

simplest prototype problem one can think of is an equation of the form (19), where £ = ®g:1 Ag is a
tensor (Kronecker) product of invertible matrices. For this case there is an analytic solution of the form
L1 = ®Z:1 A, An example of a more difficult non-separable case is the elliptic problem

Vi¢(x) = f(x) @eR, (20)

where the Laplace operator in d dimensions is defined as

d
VP=>YNh® ®L 1®Di®@Ln® QI 1)
k=1

Here D? denotes the second-order derivative operator on a variable . Written in this form we can see that
attempting to directly invert this operator is not a simple task, though such inversions do exist (see, e.g.,
[26]). A possible approach to solve high-dimensional linear systems of the form (19) by using HTucker
tensor formats is to reformulate the problem as an optimization problem. With this in mind, we aim at
computing the solution to (19) by solving the following problem

Po1 — argmin [[L(P) = R(®n, .., Bnm) I (22)
subject to: P is a HT tensor with constant rank

It was shown in [16] that the problem above can be expressed as an optimization on a Riemannian manifold
defined by the constrained ranks of P. Roughly speaking, a Riemannian manifold is a topological space
which is locally flat and has an inner product which smoothly varies from one point to another. We can
find a local minimum to the optimization problem above by using the Riemannian line search algorithm
described in [16], which is locally convergent [2, 30]. The algorithm involves a retraction step which can
be accomplished via high-order singular value decomposition [30].

!'Solving the linear system (19) on a tensor manifold with constant rank allows us to avoid the computationally intensive “rank
reduction” step, which cannot be avoided if explicit schemes are used to solve high-dimensional Liouville equations.
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Table 1: Preliminary results of the Poisson boundary value problem, equation (20) using the HTucker lin-
ear solver outlined in Section 2.1.10, with Riemann line search algorithm, 4th-order finite differences and
Dirichlet boundary conditions.

Numerical solution of V?¢ = f with HT-tensors and Riemannian optimization
Dimension (d) | Iterate Riemannian gradient Residual Max rank
2 320 3.16413e-1 4.84126e-05 4
3 124 2.61959¢-2 1.51751e-05 5
4 32 4.41596e-3 5.14874e-05 3

2.1.10.1 Preliminary numerical results: To test the performance of the parallel linear solver we devel-
oped based on Riemannian line search, we have implemented a discrete form of Poisson’s equation (20)
with Dirichlet boundary conditions on the hyper-cube [0, 1]%. To construct a benchmark solution to such
problem, we take the function

d
H sin(mxy)
k=1

d
2 + sin <S7T H xk)>

k=1

o) = (23)

and compute its Laplacian V2¢. This gives us the forcing f, which we approximate with 4th-order finite
differences. The Riemanian optimization problem to compute the solution to the Poisson equation (20) can
be formulated as follows

argmin |[LP — f]3 subject to: P is a HT tensor with constant rank. (24)
P

Here L is the discrete form of the Laplace operator (21), while f is an HT tensor representing the right hand

side of (20).

In Table 1 we summarize the preliminary numerical results we obtained for d = 2, 3, 4. The frequency
parameter s in (23) was chosen to be 1, specifically with the idea that a smoother unknown function will
yield smaller hierarchical ranks. The number of collocation points along each axis of the box [0, 1]¢ is set to
31. The stopping condition used is to halt the iterations when there did not exist a step size small enough (but
nonzero within floating point definition) to impact the value of the cost function within machine accuracy.
The ranks were chosen based on several numerical tests, with the results yielding lowest found residuals
given in Table 1. Based on numerical findings of these preliminary tests, it would appear that it is easier to
find a decrease step size in low dimensions. This can be seen by the fact that larger dimensions failed to
find a next viable iterate sooner, when [2] showed that such an iterate should always exist. With problems
stated, it should be emphasized that the residual was brought down to near 10~°. We are currently working
on implementing a more advanced optimization framework — such as the Gauss-Newton method derived in
[16] — to compute the solution to (22).

2.2 Task I(b): Data-driven methods to compute PDFs and flow maps

Consider the n-dimensional system of autonomous first-order ordinary differential equations,

z = G(x(t)), x(0) = xo ~ po(x), (25)
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where po(x) is a given probability density function (PDF). For any fixed initial condition, the solution is
determined by the flow map
x = ®(x0,1), (26)

which is a function of both the initial condition ¢ and time ¢. It can be shown [9] that the forward flow map
satisfies the flow map equation

0P (xp,t

(6t0> —(G(x) - V) ®(x0,t) =0 ®(x0,0) = xo. 27)
Similarly, the inverse flow map satisfies the initial value problem

0P t

Oa(f’) + (G(x) - V)®y(x,t) =0, ®y(x,0) = x. (28)

When considering uncertainty, the PDF of the state vector x at time ¢ can be found by solving the Liouville
equation
op(z, t)
ot
The analytical solution to (29) can be expressed with the method of characteristics as

+ V- [p(x,t)G(x)] = 0. (29)

p(x,t) = po(Po(x,t)) exp [— Lt V- G(<I>(:l:0,7'))d7'] ) (30)

where ®((x, t) is the inverse flow map [19] satisfying (28). From (30), we see that if the system is volume-
preserving, i.e., if V - G = 0 then we have

p(x,t) = po(Po(x,1)). (31)

This means, in particular, that the level sets of pg are preserved throughout the dynamics. This allows us to
track the support of the joint PDF p(x, t) by propagating forward in time the almost-zero level set.

Remark 2.5 For a large class of control systems, e.g., control affine systems, it is possible to design state
feedback control to make the system (25) divergence-free. Such property can be explored to design optimal
closed-loop controls that leverage divergence-free dynamics.

2.2.1 Data-driven approximation of probability density functions using deep neural nets

Machine learning offers an efficient way to compute data-driven solutions of partial differential equations
[57]. In Q1 we implemented several algorithms that leverage deep neural networks (designed in TensorFlow
[1]) to approximate the PDF of prototype low-dimensional dynamical systems. The algorithms are built
upon two different types of neural nets

e Data-driven neural nets;
e Physics-informed data-driven neural nets (PINN).

In the first case, the PDF of the system is estimated by training the neural net sketched in Figure 10 entirely
with sample paths? of (25). In practice, we minimize a cost function of the form

MSFEgaa(01, ..., 00, t) = ]\1[d % [log (p(:c(k),t)> — log (ﬁ(m(k),t)>]2, (32)
k=1

’Training the neural net as shown in Figure 10 can be done at a specific time , e.g., at final time or at an entire sequence of time
instants between two prescribed times. In the latter case we aim at learning and the entire dynamics of the joint PDF p(x, t), i.e.,
fromt =0tot = ty.
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Figure 10: Architecture of a feed-forward neural net for approximating p(«,¢) by a composition of func-
tions: p(x,t) = gy o gpr—1 © - - - g1(x, t).

where p(x(*), ) is obtained by solving (29) with the method of characteristics, (¥, t) is the neural net
representation
p(x,t) =gmogu-10...91(z,1) (33)

evaluated at ¢ = (®), N is the number of sample paths, and 0; = {W;,b;} are the free parameters in the
j-th activation function. For example, g2 o g1(x,t) = tanh[W5 - g1(x,t) + be] = tanh[W5 - tanh(W7 -
[x,t] + b1) + bs]. The parameters are optimized during model training so that the output p (), t®) is as
close as possible, in some norm, to the training data p (zc(i), t(i)). In (32), z¥) = @(xék), t) denotes the the
position of the particle a:ék) at time ¢, which can be easily determined by integrating system (25) from the
initial condition zr:ék).

In the second case, i.e., in the physics-informed data-driven neural net (PINN) setting, we augment the
cost function with a penalty term that represents the magnitude of the residual we obtain when we substitute
the neural net representation (33) into the Liouville equation (29), i.e.,

op(x,t R

Rt = P20 4 g (G@)pten). 34

In this case, the cost functional we consider is
MSEPINN(Ob e HM, t) = MSEdata(Hl, e OM, t) + [LMSEE(Hl, e OM, t), (35)

where (4 is penalty parameter and
1 e 2
MSE(01, e, Oa1,) = ~— 3 [R(m(k),t)] (36)
Ne k=1

is the mean square error associated with the residual of the Liouville equation. As before, (¥) = @ (m(()k) , 1)

(® is the flow map generated by (25)). The residual (34) can be easily evaluated by using automatic differ-
entiation techniques applied to (33).

2.2.1.1 Prototype dynamical system In the following Sections we study the effectiveness of PINN and
other methods to predict the PDF and the flow map of the two-dimensional divergence-free nonlinear dy-

namical system
T =2zy—1
(37

g=—2 =y’ +pu
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The phase portraits of the system (37) are plotted in Figure 11 for different values of the parameter p. We
observe that the system undergoes two saddle node bifurcations at y = 1.

o
\\\‘:‘ \\\

—_ NN

Figure 11: Phase portraits of the system (37) for different values of p.

2.2.2 Brief description of the machine learning algorithms we implemented
In this Section, we outline our first implementation of the data-driven machine learning algorithms to esti-

mate the joint PDF of the solution to the dynamical system (25).

Data-driven machine learning This algorithm is purely based on data, i.e., sample trajectories of (25),
without the PDE constraint represented by the Liouville equation. Specifically, we use the bare-bones feed-
forward neural net sketched in Figure 10 with the cost function defined in (32).

Physics-informed data-driven machine learning This algorithm operates as follows:

1. Set up two deep neural nets using, e.g., TensorFlow [1].

e The first net learns an approximation of PDF, p(x, t) ~ p(x,t). To this end, we generate a train-

ing data set { (2, ), p (2 ,#®))},i = 1,..., Ny, by forward and/or backward integration
of (25) from many different spatio-temporal points (w(i) , t(i)) and evaluation of p (a:(i), t(i)) by
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Figure 12: Training physics-informed neural nets (PINN).
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Figure 13: Predicting with trained physics-informed neural nets (PINN).

(30). This is a supervised learning scenario with inputs { (z(, )} and outputs {p (z(*),#®)}
(see Figure 10).
e The second net is constructed using TensorFlow’s built-in automatic differentiation to estimate

the partial derivatives of p. It has the same parameters as the first net, and penalizes approxima-
tions p, which in general does not satisfy the Liouville equation (29).

2. The two nets are trained simultaneously with the cost function (35) (see Figure 12).

3. Once training is complete, we can use the first net to obtain fast approximations to the probability
density function at any point (see Figure 13).

2.2.3 Generating training data

Generating training data for neural nets is not exactly a straightforward process. Backward integration from
points (¥ may yield initial points with rather arbitrary positions. In this case, numerical integration will
take a very long time and may eventually fail. Forward integration from a set of points $(()Z) ~ po(x) will
always yield well-defined data with non-zero probability, so long as the dynamical system (25) meets some

basic conditions. However, this data may not be well-structured for the purpose of representing p(x, t). For
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divergence-free systems, feed-forward sampling can provide a reasonable approximation of the support of
p(a, t). Hence we can construct a convex hull around the points ) = & (mél), t) to estimate this support.

We can then “fill in” the rest of the convex hull by backward integration. We need to find other methods
for systems with divergence, since for these it is harder to estimate the support of p(x,t) directly from

L3 (m(()i) t).
2.2.4 Numerical results

In this Section we present the numerical results we obtained by training the feed-forward and PINN neural
nets with sample trajectories of (37) for the purpose of predicting the joint PDF of the state vector. In
particular, we tested the following different scenarios:

e Prediction of the joint PDF at final time with feed-forward neural nets;
e Prediction of the full dynamics of the joint PDF with feed-forward neural nets;
e Prediction of the full dynamics of the joint PDF with physics-informed neural nets (PINN).

Hereafter, we analyze each case in detail, and discuss our numerical findings.

2.2.4.1 Prediction of the joint PDF at final time with feed-forward neural nets By using the method
of characteristics, we randomly generated PDF data points at time ¢ = t; (t; variable) for the two-
dimensional divergence-free test system (37) with u = 5. We chose the initial PDF py(z,y) to be the
product of two independent Gaussians with means p,, = p,, = 0.75 and variances o2 = 03 = 0.25. We
learned the final time PDF using standard TensorFlow [1] without any secondary physics-informed neural
net [57]. We used an L-BFGS [10] optimizer and a tanh() activation function for the neural net, and var-
ied the configurations of the hidden layers to increase performance. In addition, before feeding data to the
neural net, we mapped spatial data (z,y) to [—1, 1], where tanh() is steepest, and took the logarithm of the
probability data. Learning the log probability ensured that the model would preserve positivity of the PDF.
Where the probability was too small, we set it to a minimum threshold e~ '® ~ 3.06 x 1077, so that there
wouldn’t be any numerical problems when we took the logarithm.

Data generation We generated initial conditions (:céz), y(()l)) ~ po(z,y),i = 1,..., N,, and numer-
ically integrated to t = ¢ to obtain (z(9,y®). The probability data p (z(¥,y(,t =t;) was obtained
using the solution to the Liouville equation (30). We then enclosed these points in a rectangle and built an
N, X N, uniform grid of points (x(i),y(i)), i =1,...,N2, from which we propagated backwards and
used the Liouville equation to get probability data. This provides a total of Ny = N, + N2 training data.
For model validation, we checked the neural net predictions on a uniform grid over the same area as the
training data.

Model training In Figure 14, we visualize the training data and neural net reconstruction of the initial
PDF po(x,y) and the final time PDF p(x,y,t = ty) for t; = 0.5 and t; = 1.0. We observe that the
dynamics (37) rapidly advect the smooth Gaussian into a thin curve. In Table 2 and 3 we present speed and
accuracy results for estimating p(z,y,t = 1.0) depending on the architecture of the neural net. For Table
4 and 5 we fixed the architecture and varied the amount of training data fed to the net. This let us test the
sensitivity of the net to data availability and determine good ratios of forward propagated data to backward
propagated data.
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Figure 14: Training data (top, 100, 200, and 2000 points, left to right) and 1000 x 1000 reconstructions
(bottom) of initial PDF pg(x,y), p(x,y,t = 0.5), and p(z,y,t = 1.0), left to right, using 8 hidden layers
with 20 neurons each.

Discussion We immediately observe that the initial Gaussian is very easy to reconstruct. It can be
learned to O(10™4) accuracy in seconds with only a hundred or so training data points. At ¢ r = 0.5, we
can still reliably reconstruct the PDF using only 200 points. As we advance time, however, the regression
problem becomes more difficult as the approximate support of p(x, y, t) advects into a thin curve with steep
slopes. Thus we require more training data, and deeper neural nets are more reliable for learning the PDF.
Table 2 shows that deeper neural nets tended to be more accurate; in particular we should use at least 6
hidden layers for this problem. Meanwhile, there appears to be little benefit to increasing the number of
neurons per layer, except for several models which achieved O(10~*) RMSE on fortunate training sessions.
Table 3 reveals that we can make nets deeper with minimal increase in training time, whereas increasing the
width of nets is costly. At the same time, all the trained nets can produce one million outputs for plotting
in a fraction of a second. Meanwhile, generating only N, = 2500 validation data points by numerical
integration took around 8 seconds on average. Thus, as we expect, neural nets are slow to train but incredibly
fast once they are trained. In Table 2 we observe that, apart from a few outliers, increasing the number of
data points generally improved accuracy. However, the kinds of training points used was also relevant. As
discussed previously, using more forward propagation points provides more resolution of the PDF within
the approximate support, while using more meshgrid points yields better boundaries for this region. There
appeared to be a limit to the usefulness of increasing the fineness of the meshgrid, however. Perhaps using
too many grid points gave the net too much weight on putting zeros outside of the approximate support, and
not enough weight to learning the shape of the PDF within the approximate support. Increasing the amount
of data points had some relation to increased training time, but not as much as one might expect.

2.2.4.2 Prediction of the full dynamics of the joint PDF with feed-forward neural nets Here we
employed feed-forward deep neural nets to learn the whole temporal evolution of the joint PDF p(z,y,t),
within the time interval ¢ € [0, 1].
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Table 2: Validation RMSE results for estimating the final time PDF p(z,y,t = 1.0) for training data, Ny,
fixed at 2000, Ny = 1100 points for forward propagation, IV, x Ny, = 30 x 30 uniform grid for backward
propagation, measured for N,, = 2500 points on a 50 x 50 uniform grid.

Neurons per layer
10 20 30 40
s, | 2 1327e02 129e02 1.68e-02 6.66e-03
§ 4 1 158e02 1.10e-03 1.21e-03 2.03e-03
‘—: 6 | 1.42e-03 8.18e-04 7.50e-04 4.75e-03
S| 8 | 1.54e03 401e-04 191e-03 524e-03
E 10 | 1.08e-03 2.33e-03 544e-03 221e-03
12 | 270e-03 531e-03 242e-03 7.97e-03

Table 3: Training time for estimating the final time PDF p(x, y,t = 1.0) for training data (Vg = 2000) and
validation data (N, = 2500) using TensorFlow 1.8 [1] on a 2012 MacBook Pro with 2.5 GHz Intel Core 15
processor and 4 GB RAM.

Neurons per layer
10 20 30 40
s | 2 122s 69s 88s 97s
S| 4 |35s 60s 78s 90s
L: 6 | 35s 44s 108s 104s
2| 8 |22s 82s 99s 1725
E 10 | 50s 60s 120s 160s
12 | 46s 76s 158s 1955

Data generation We used another heuristic data generation algorithm based off the one we used for
the final time PDF. This process is summarized in four steps below.

1. First we discretized the time interval ¢ € [to,t¢] into N; number of distinct snapshots. About one
third of the snapshots ¢ were from a uniform discretization of the interval, including the endpoints.
The remaining two thirds were randomly sampled from a half-normal distribution and mapped to the
interval so that they would cluster closer to ¢;. That is, we constructed a time discretization which
was coarser near tg and finer near ¢y. Having higher-resolution data near ¢y was helpful for our test
system (37), as the dynamics advected the initially smooth Gaussian into a thin curve, and moreover,
the speed of the advection increased with time. For other systems, the distribution of time snapshots
may need to be adjusted to improve performance.

2. As before, we randomly sampled a set of Ny initial conditions (xéz), y(()z)> ~ po(x,y), and prop-
agated those forward to obtain data points at teach time step, (x(i7k),y(i’k),tk), 1 = 1,...,Ng,
k = 0,..., Ny — 1. Since the system was divergence free, it was trivial to assign probability data

plk) = po :c(()i), y(()i) to each point, but even with divergence, fitting the solution to the Liouville
equation (30) in here would not be difficult.

3. Next we used two rounds of backward integration from each time snapshot ¢;. In the first round, we
built an V,,, x Ny, uniform grid over the forward samples at each individual time snapshot. Backward
numerical integration and the solution to the Liouville equation again supplied probability values.
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Table 4: Validation RMSE measures for N,, = 2500 data points on a 50 x 50 uniform grid for estimating
the PDF p(x,y,t = 1.0) using 8 hidden layers and 20 neurons per-layer.

Forward propagation points
800 900 1000 1100 1200 1300 1400
400 | 6.49e-04 3.17e-03 4.40e-03 1.11e-02 1.31e02 9.52e-03 3.11e-04
625 | 1.85e-02 1.16e-03 4.45e-02 128e-03 6.66e-04 6.69e03 1.37e-02
900 | 6.18e-03 5.89e-03 4.51e-04 4.01e-04 695e-04 8.65e-04 5.84e-04
1225 | 1.03e-02 9.38e-04 9.73e-03 7.15e-03 7.43e-03 1.86e-03 3.79e-03
1600 | 2.54e-02 1.22e-03 238e03 1.74e-03 7.12e-03 1.24e-03 2.56e-03

Grid points

Table 5: Training time of a neural net with 8 layers and 20 neurons per layer, for estimating the PDF
p(x,y,t = 1.0).

Forward propagation points
800 900 1000 1100 1200 1300 1400
400 | 58s 67s 67s 50s 52s 94s Tls
625 | 37s 63s 85s 79s 7T0s 45s 104s
900 | 140s 62s 83s 82s 75s 75s 719s
1225 | 62s 86s 60s 67s 88s 82s 69s
1600 | 69s 76s 66s 87s 116s 86s 77s

Grid points

This first grid encouraged the net to learn the boundaries of approximate support of the PDF at each
time step.

4. Inthe second round, for each time snapshot we constructed an additional IV,,, x [N, grid over the whole
spatial domain visited by the forward samples over all time t € [to, ], and integrated backward from
there. This second grid supplied data further outside the approximate support at each time, which
allowed for better interpolation in between time steps as the net saw the whole spatial domain over
the whole time interval. This process yields Ny = V¢ (N s+ 2N72n) total training data. For a visual
example, see Figure 15.

We did not, however, track the flows backward in time and save them at each timestep. The reason we
avoided this extension is because backwards integration faces some numerical issues making these data un-
reliable. Some unlucky data points would be flung far away from the region of interest, and training on
these outliers could cause problems. Validation data was taken from a uniform sampling on the space and
time domains trained on by the model. This appeared to give a good indication of how well the model per-
formed, as indicated by visually inspecting the plots of p(z,y,t) at various times ¢. Unfortunately, all these
decisions are decidedly heuristic and based on the problem at hand (37). Data generation is undoubtedly the
main component of this method that can be improved in future work.

Model training In Figure 16, we visualize the neural net reconstruction of training data of the PDF
p(z,y,t) at time snapshots t;, = 0.0, 0.5, and 1.0. This time, instead of requiring three separate training
sessions, the neural net is trained once for the whole time interval ¢ € [0.0, 1.0], and we plot data only from
these points. Tables 6 and 7 include results on the training speed and accuracy of the neural net depending
on the net architecture. Tables 8 and 9 include results on the training speed and accuracy of the neural net
depending on the availability of training data.
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Figure 15: Forward/backward sample strategy for generating PDF data at ¢ = 0.5 with N, = 100 forward
samples, and two N,,, x N,,, = 10 x 10 grids of backward samples shown in (a) and (b).

Discussion Tables 6 and 8 show typical O(10~3) accuracy over time and space for the time dependent
model trained without a PINN. This is not as good as the O(10~*) accuracy of the final time model. Even
so, the time dependent error takes into account all time instances in the interval [0.0, 1.0], thus the net is
able to accurately estimate the PDF at times not represented in the training data. Moreover, we observe that
the time dependent model is able to more reliably reconstruct the PDF at later times (i.e. ¢ — 1.0). That
is, often the final time PDF model would have to be re-trained once or twice to get O(10~2) RMSE, while
we typically obtained this kind of accuracy on the first try with the time dependent model. We suspect that
having time as an additional input gave the net additional structure to learn from. The results in Table 6
indicate that accuracy is improved both by increasing the depth and width of the net. Of course, this came at
the cost of increased training time, as seen in Table 7. Finally, Table 8 shows that the net can learn the time
dependent PDF accurately with as few as around 3000 training data, which is not significantly more than
was needed for the learning p(x,y,t = 1.0). Increasing both the number of time snapshots and the data
points per snapshot improved accuracy somewhat, up to O(10~3). Increasing the number of time snapshots
appeared to be more helpful than increasing the number of points in each snapshot.

2.2.4.3 Prediction of the full dynamics of the joint PDF with physics-informed neural nets (PINN)
Using the same training data generation algorithm as for the time-dependent model learned from data only,
we implemented a physics-informed neural net [57] to approximate p(x,y,t) as described previously. To
this end, we leveraged TensorFlow’s [1] automatic differentiation capabilities to compute the partial deriva-
tives dp/ot, 0p/dx, and 0p/dy and added an MSE penalty to neural net (see equation (35)). This additional
penalty was enforced on both the training data points and a set of collocation points randomly generated
by Latin hypercube sampling from the spatial domain and time interval trained. In Table 10 we summarize
accuracy results for the PINN depending on the net architecture. With the PINN, we can now reliably obtain
O(10~*) validation error with only half the number of training data we used before. These nets benefit from
having at least 20 or 30 neurons per layer, and the performance tends to improve if we make the net deeper.
Unfortunately, these nets also take around twice as long to train as the standard neural net (compare Table
11 with Table 7). With enough collocation points, we can also compensate for having only a few training
data points, as seen in Table 12. These collocation points can be generated in a small fraction of a second,
but adding more collocation points does increase the training time significantly (see Table 13), so overall
there are no time savings with this method. The improved accuracy gained by using a PINN may be worth

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.
22



PDF data (t =0.0) PDF data (t = 0.5) PDF data (t = 1.0)

PDF estimation (t = 0.0) PDF estimation (t = 0.5) PDF e