AFRL-RQ-WP-TR-2019-0197

DATA-DRIVEN COMPUTATIONAL OPTIMAL CONTROL
FOR UNCERTAIN NONLINEAR SYSTEMS

Daniele Venturi and Qi Gong

University of California Santa Cruz

OCTOBER 2019
Final Report

DISTRIBUTION STATEMENT A. Approved for public release.
Distribution is unlimited.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
AEROSPACE SYSTEMS DIRECTORATE
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542
AIR FORCE MATERIEL COMMAND
UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or
permission to manufacture, use, or sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs
security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09. This report is available to the
general public, including foreign nationals.

Copies may be obtained from the Defense Technical Information Center (DTIC)
(https://discover.dtic.mil/).

AFRL-RQ-WP-TR-2019-0197 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

*//Signature on File// //Signature on File//

EDWIN E. FORSTER CHARLES TYLER

Work Unit Manager Chief, Design and Analysis Branch
Design and Analysis Branch Aerospace Vehicles Division

//Signature on File//

PHILIP S. BERAN, PhD
Technical Advisor, Design and Analysis Branch
Aerospace Vehicles Division

This report is published in the interest of scientific and technical information exchange and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

*Disseminated copies will show ““//Signature//” stamped or typed above the signature blocks.

REPORT DOCUMENTATION PAGE o Aroved e

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)
October 2019 Final 9 April 2018 — 9 October 2019
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
DATA-DRIVEN COMPUTATIONAL OPTIMIZAL CONTROL FOR UNCERTAIN FA8650-18-1-7842
NON-LINEAR SYSTEMS 5b. GRANT NUMBER
5c. PROGRAM ELEMENT NUMBER
61101E
6. AUTHOR(S) 5d. PROJECT NUMBER
Daniele Venturi and Qi Gong 1000 (DARPA)

5e. TASK NUMBER

5f. WORK UNIT NUMBER

Q1YU
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
. . . . REPORT NUMBER
University of California Santa Cruz
1156 High St.
Santa Cruz, CA 95064-1077
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Air Force Research Laboratory DARPA/DSO AGENCY ACRONYM(S)
Aerospace Systems Directorate 675 North Randolph Street AFRL/RQVC
Wright-Patterson Air Force Base, OH 45433-7542 Arlington, VA 22203-2114 11. SPONSORING/MONITORING
Air Force Materiel Command AGENCY REPORT NUMBER(S)
United States Air Force AFRL-RQ-WP-TR-2019-0197

12. DISTRIBUTION/AVAILABILITY STATEMENT
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

13. SUPPLEMENTARY NOTES
This report is the result of contracted fundamental research, which is deemed exempt from Public Affairs Office security
and policy review in accordance with Deputy Assistant Secretary of the Air Force (Science, Technology, Engineering)
(SAF/AQR) memorandum dated 10 Dec 08 and Air Force Research Laboratory Executive Director (AFRL/CA) policy
clarification memorandum dated 16 Jan 09.

14. ABSTRACT
This report describes the development of the foundations of new computational algorithms for optimal control of high-
dimensional stochastic dynamical systems. The proposed optimal control architecture emphasizes the role of data-driven
probability density function (PDF) equations instead of nonlinear dynamics in the control loop. This paradigm shift
opens the possibility to integrate advanced numerical methods for high-dimensional PDF equations with optimization
algorithms to mitigate the effects of uncertainty in high-dimensional nonlinear control systems. This effort developed
scalable software and fast algorithms to compute the numerical solution to of high-dimensional PDF equations;
developed a systematic methodology to compute the numerical solution to data-driven PDF equations; integrated the
numerical algorithms to solve high-dimensional PDF equations into the proposed data-driven computational optimal
control framework; and demonstrated the effectiveness of the proposed data-driven control strategies in several
applications.

15. SUBJECT TERMS
data-driven, optimal control, high-dimensional stochastic, dynamical systems

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER OF 19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT b. ABSTRACT | c. THIS PAGE OF ABSTRACT: PAGES Edwin E. Forster
Unclassified | Unclassified | Unclassified SAR 135

19b. TELEPHONE NUMBER (Include Area Code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

1 Executive summary

2 Project scope
Task I(a): Parallel C++ class to compute hierarchical tensor formats

2.1

22

2.1.1
2.1.2
2.13
2.14
2.1.5
2.1.6
2.1.7
2.1.8
2.1.9
2.1.10

Brief overview of hierarchical tensor methods
The CH++class o . o e
MatricizationS e e e e e
Brief description of the HT algorithm
Numerical results: serial C++code
Parallelization of the HTucker C++class
Distributed memory implementation L
Numerical results: parallel C++code
Application to a 4D Liouville equation
Parallel linear solvers for high-dimensional systems in the HT format

Task I(b): Data-driven methods to compute PDFs and flowmaps

221

222
223
224

225

2.2.6

227

Data-driven approximation of probability density functions using deep neural nets
2.2.1.1 Prototype dynamical system
Brief description of the machine learning algorithms we implemented
Generating training data L. oL
Numerical results
2.2.4.1 Prediction of the joint PDF at final time with feed-forward neural nets
2.2.4.2 Prediction of the full dynamics of the joint PDF with feed-forward neural

2.2.4.3 Prediction of the full dynamics of the joint PDF with physics-informed
neuralnets (PINN)o
Refining physics-informed deep neural networks
2.2.5.1 Increasing the penalty weight,
2.2.5.2 Randomizing collocation points
2.2.5.3 Combining randomized collocation points with evolving penalty weights .
2.2.5.4 Training physics-informed neural nets with log probability data and dif-
ferent cost functions Lo
Application to the Van der Pol oscillator
2.2.6.1 Datagenerationttt e e e
2.2.6.2 Normalized validationerror
22,63 Numericalresults
2.2.6.4 Initial PDF centered at the origin,
2.2.6.5 Initial PDF centered inside the limit cycle (not at the origin)
2.2.6.6 Initial PDF centered outside the limitcycle
Improved data generation with convex hull approximation and PDF support tracking
2.2.7.1 Convex hull stratification algorithm

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.

i

iv

ix

19

22
24
25
26
28

28
31
32
32
32
33
33
34
34

23

24

2.5

2.6

2.7
2.8

2.2.77.2 Reducing the computational cost of numerical integration by tracking the

PDFsupport e 36
2.2.8 Application to high-dimensional problems, 37
2.2.8.1 Forced duffingoscillator L oL 37
2.2.8.2 Fixed-wing unmanned aerial vehicle (UAV) model 39
2.2.9 Flow map prediction with deep neural networks 42
2.29.1 Neural net architecture Lo 42
2.2.9.2 Forward and inverse flow map approximation using independent neural nets 42

2.2.9.3 Bi-directional autoencoders to learn simultaneously the forward and in-
verse flowmaps L 43
2.2.9.4 Data generation for the “Jump” flow map estimator 44
2.2.9.5 Data generation for the “Step” flow map estimator 45
2.2.9.6 Forward “jump” flow map estimatorresults 46
2.2.9.7 Inverse “jump” flow map estimatorresults L. L. 46
2.2.9.8 “Jump” flow map estimator with bidirectional autoencoder results 47
2.2.9.9 Forward “step” flow map estimatorresults 48
2.2.10 “Jump” flow map estimator for high-dimensional problems 49
2.2.10.1 Numerical results: estimation of the fixed-wing UAV flow map 50
Task II: Numerical methods to solve data-driven PDF equations 51
2.3.1 Estimating conditional expectations from data: splines and moving averages 56
2.3.2 Neural network estimation of conditional expectations 57
2.3.2.1 Trainingtheneuralnet. 59
2.3.3 Numericalresults 60
2.33.1 Lorenz-96system 60
2.3.3.2 Divergence-free system (75)o oo 60
2.3.4 Data-driven PDF equations as optimization constraints 60
2.34.1 Discretizationo e e e 61
2342 CostFunctional 62
2343 Initialization 65
2.3.44 Numericalresults L 65
Task III-I'V: Optimal control under uncertainty for high dimensional nonlinear systems . . . 66
2.4.1 Multi-shooting for optimal control problems under uncertainty 67
2.4.2 Efficient gradient computation for constrained optimization 69
2.4.2.1 Dataflow graphs and gradient evaluation 70

2.4.2.2 Integration of efficient gradient computation with constrained optimiza-
tionsolvers 71
2.4.3 Application to a UGV stochastic path planning problem 73
2.4.4 Common Subexpression Elimination (CSE) 75
2.4.5 Application to a stochastic path planning problem involving a fixed-wing UAV . . . 76
High-dimensional optimal control under uncertainty with state-space constraints 80

2.5.1 Common sub-expression elimination (CSE) for optimal control with path

CONSHIAINES v v vttt et e e e e e e 82
Semi-stochastic optimization applied to open-loop control 83
2.6.1 Development of convergence test and sample size selection scheme 84
2.6.2 Numericalresults L 86
Verification and Validation based on the extended Pontryagin’s minimum principle 88
Task IV: Applications of data-driven optimal control strategies 89
2.8.1 Swarm of attacking/defending agents L. 90

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.

ii

2.8.1.1 Attacker and defender dynamicso 91

2.8.1.2 Systemattrition e 91

2.8.1.3 HVU attack/interception problem 92

2.8.2 Disease propagation on random networks oL oL 93

2.9 Solution of Hamilton-Jacobi-Bellman equations with physics-informed neural networks . . . 95
29.1 Acausality-freemethodfor HIB 96

2.9.2 Dynamic programming and two-point boundary value problems for feedback control 97

2.9.3 Neural network (NN) approximation of the value function 99
2.9.3.1 Physics-informed learning of the value function 99

29.3.2 Closed-loopsystem 100

2.9.4 Adaptive sampling and fast solution of the two-point BVP 101
29.4.1 Correction to derivation of convergence conditions 102

2.9.5 Application to rigid body satellite rotation 104
29.5.1 Learning the value function 105

29.5.2 Adaptive samplingresultso 106

2.9.5.3 Closed-loop feedback control performance 107

2.9.6 Learning time-dependent value functions 109
2.9.6.1 Time-dependentresults 110

2.9.7 Robust control of a nonlinear advection-reaction-diffusion PDE 111

298 Closedloopcontrol 113
29.8.1 Learning high dimensional value functions 113

2.9.8.2 Adaptive sampling and fast BVP solutions 114

29.8.3 Closed-loop performance 115

29.84 Discussion e 116

3 Research products 117
3.1 Preprints and technical reports 117
3.2 Presentations at conferences, workshops and universities 117

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.

iii

Figure 1

Figure 2
Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10
Figure 11
Figure 12

Figure 13
Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

LIST OF FIGURES

Proposed data-driven optimal control architecture, emphasizing the role of probabil-
ity density function equations instead of nonlinear dynamics in the control loop.
Summary of the research tasks. L Lo
Graph representation of the hierarchical Tucker decomposition of a five-dimensional
1752111
Sine function of equation (10) in (a) 2D, and (b) 3D with level sets (iso-surfaces)
corresponding to g = 0 (green), g = 0.2 (magenta), g = 0.4 (blue), g = 0.6 (purple)
and g = 0.8 (light green).
Comparison of Hierarchical HT decomposition of the sine function of equation (10)
utilizing existing software tools (b) and the serial algorithm developed in this effort
(@) (seesection 2.1.4). L e e
Parallel implementation of the HTucker C++ class for a dimension tree corresponding
0A4-TENSOL. . .« v v vt e e e e e e e e e e e e e
Performance of the HTucker C++ class with “root-to-leaves” [44] truncation in com-
puting the tensor decomposition of the function in equation (12) utilizing 7 MPI nodes
with up to 5 OpenMP threads ineachnode.
x129-plane solutions of the initial/boundary value problem in equation (13) with x3
and 4 both set to 2¢, at times (a) t = 0.0, (b)t =0.3,(c)t =0.5,(d)t =1.0.
Computational time required to advect the solution back to initial position (¢ = 1) for
the number of collocation points in each variable, ;, utilizing 10° time steps from
t=0t0t=1.
Architecture of a feed-forward neural net for approximating p(z, t) by a composition
of functions: p(x,t) = gy ogp—10...g1(x,t). .. . Lo
Phase portraits of the system (37) for different valuesof p.
Training physics-informed neural nets (PINN).
Predicting with trained physics-informed neural nets (PINN).
Training data (top, 100, 200, and 2000 points, left to right) and 1000 x 1000 recon-
structions (bottom) of initial PDF po(z, y), p(x,y,t = 0.5), and p(x, y,t = 1.0), left
to right, using 8 hidden layers with 20 neuronseach.
Forward/backward sample strategy for generating PDF data at ¢ = 0.5 with N, = 100
forward samples, and two Ny, x Ny, = 10 x 10 grids of backward samples shown in
@and (b). e e
Training data (top) and PDF reconstruction (bottom) using 8 hidden layers and 20
neurons per layer, at times ¢ = 0.0,0.5,and 1.0.
Prediction of p(x,y,t) for the system (37) using a physics-informed neural net with
8 hidden layers, each with 20 neurons, trained on Ng = 2000 data points and N, =
8000 total collocation points.
Performance of physics-informed neural nets(8 hidden layers with 20 neurons each)
with cost function (35) and fixed u = 1 (unrefined PINN) versus neural nets where
we increase the penalty parameter {ur} (E = 1,...,10) on-the-fly as optimization
proceeds. L e e e e e e
Performance of physics-informed neural nets with cost function (35) and fixed p = 1
(unrefined PINN) versus neural nets where we randomly select collocation points
{Nc,E} according to the sequences in (39)-(40). Here we use Ny = 2500 training
data, N, = 10000 total collocation points, Fn.x = 10 epochs, and 8 hidden layers
with20neuronseach.

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.

v

11

Figure 20

Figure 21

Figure 22
Figure 23

Figure 24

Figure 25

Figure 26

Figure 27

Figure 28

Figure 29

Figure 30

Figure 31

Figure 32

Figure 33

Figure 34

Figure 35

Figure 36

Performance of physics-informed neural nets (8 hidden layers with 20 neurons each)
with cost function (35) and fixed 4 = 1 (unrefined PINN) versus neural nets where
we randomly select collocation points {N, g} in each iteration/epoch, along with
increasing scalar penalty weights {up} = {\/ig—1 + E}. 30
Performance of physics-informed neural nets (8 hidden layers with 20 neurons each)
with cost function (35), fixed p = 1, Ny = 2500 training data, and N. = 10000
collocation points. e e e e e 31
Phase portrait of the Van der Pol oscillator (45) forp=1. 32
Time evolution of p(x,y,t) for the Van der Pol oscillator, equation (45), where the
initial PDF is the product of two indepent Gaussians with means y, = p, = 0 and
variances 02 = 05 = 0.25. Here the net is trained with data in the interval {5 = 0.0
to ty = 3.0, so the final two frames are extrapolated. 34
Time evolution of p(x, y, t) for the Van der Pol oscillator (45) where the initial PDF
is the product of two indepent Gaussians with means y, = p, = 0 and variances
02 = 05 = (0.25. Here the net is trained with data in the interval) = 0.0 to £y = 4.0. 35
Time evolution of p(x,y, t) for the Van der Pol oscillator (45) where the initial PDF
is the product of two independent Gaussians with means p, = 0.5, p, = 0 and
variances o = o = 0.25. Here the net was trained with data in the interval ¢y = 0.0
tot f= 3.0, . e e 36
Time evolution of p(x, y, t) for the Van der Pol oscillator (45) where the initial PDF
is the product of two independent Gaussians with means p, = 0.5, u, = 0 and
variances 02 = 05 = 0.25. Here the net was trained with data in the interval g = 0.0
oty =3.0.. 37
Time evolution of p(x, y, t) for the Van der Pol oscillator (45) where the initial PDF is
the product of two independent Gaussians with means p,, = 0, p, = 3 and variances
02 = 05 = (0.25. Here the net was trained with data in the interval o = 0.0 to ¢y = 1.0. 38
Convex hull stratification algorithm performed on N; = 50 forward samples of the

Van der Pol oscillator with ¢ty = 4: (a) forward samples with vertices picked out,

color coded by Lo weight norms; (b) as left, with additional backward samples. . . . 38
Error and training time for differentdatasets. 39
Neural network approximation of the conditional PDF p(z, y, t|6 = 0.5, = —1,5 =
1,w = 1,7 = 0.5) based on samples of the stochastic Duffing equation (47). 40
Model of an Unmanned Aerial Vehicle (UAV). 41
Architecture of the PINN for training the neural net N N, using a set of supplemen-
tary neural nets NN, ;, ¢« = 1,...,n (n is the dimension of the system) to penalize
predictions &(t) which deviate from the flow map equations (27). 43
Diagrams representing the inverse (eq. (60)) and forward (eq. (61)) autoencoders for
flow map approxXimation. e e e e 44

Validation data and corresponding neural net reconstructions by a PINN which ap-
proximates the forward “jump” flow map of the Van der Pol oscillator (45): (a)
xo,Yo € [—2,2] x [—2,2] from the model trained in trial 1 of Table 16; (b) g, yo €
[—1,3] x [—2,2] from the model trained in trial 1 of Table 18. 49
Validation data and corresponding neural net reconstructions by a plain neural net
which approximates the forward “step” flow map of the Van der Pol oscillator (45):
(@) (zo,y0) € [—2,2] x [—2,2] from the model trained in trial 1 of Table 27; (b)

(zo,y0) € [-1,3] x [—2,2] from the model trained in trial 1 of Table 28. 54
Reconstruction of 100 sample trajectories of the 13-dimensional fixed-wing UAV
model (48) with initial condition and parameter uncertainty specified in (53). 55

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.

v

Figure 37

Figure 38

Figure 39

Figure 40

Figure 41

Figure 42

Figure 43

Figure 44

Figure 45

Figure 46

Figure 47
Figure 48
Figure 49
Figure 50
Figure 51

Figure 52
Figure 53

Figure 54
Figure 55

Figure 56

Numerical estimation of the conditional expectation (84) for different number of sam-
ples of (82). Shown are results obtained with moving averages and cubic smoothing

SPHNES. e e e e e 56
Architecture of a radial basis neural network that receives two inputs (i.e., x and t)
and returns one output y(z, t), i.e., the conditional expectation E[z(¢)|y(t)]. 58

Approximate E{y(t)|z(t)} of dynamical system, equation (75), (a) using methods
from 2.3.1 with 5000 trajectories, and (b) using a radial basis network with 25 neurons

in the hidden layer and 500 training samples. 59
Data-driven smoothing spline estimation of the conditional expectations arising in the
study of the Lorenz-96 dynamical system (69). 60

Estimate of the Lorenz-96 dynamical system using: (a) accurate kernel density es-
timate of p5(x5,t) based on 2500 sample trajectories; and (b) numerical solution of
(71) obtained by estimating E [(z3(t) — z6(t))z4(t)|25(t)] with 5000 sample trajec-
TOTIES. .« o v o e e e e e e e e e e 61
(a) Accurate kernel density estimate of p(x,t) in equation (75), and (b) numerical
solution of (79) where E{y(t)|z(t)} is estimated using the moving average regression
method, as outlined in Section 2.3.1. 62
(a) Accurate kernel density estimate of p(z,t) in equation (75), and (b) numerical
solution of (79) where E{y(¢)|x(¢)} is estimated using the using a radial basis neural

NEtWOTK. e e e e 63
(a) Samples of (37) plotted at ¢ = 0.3; (b) A histogram generated from the data on
the left; (c) The function py () that will be used in the cost functional J. 64

(a) Analytical conditional expectation, (84), plotted alongside samples associated
with the exponential probability transformation; (b) Analytical conditional expecta-
tion plotted alongside samples associated with the Lorentzian probability tranformation. 65
Kolmogorov-Smirnov Hybrid Cost Optimization Results: (a) Benchmark estimate
of p(z,t) generated using a traditional kernel density estimator and 5000 samples
at each time step; (b) Equation-driven PDF estimate obtained by solving (98) with

M =50samples. e e e 66
(a) Cost functional J versus time for M = 50, M = 500, and M = 1000 samples,
and (b) control signal generated from (98) using 50 samples from (37). 66
Sketch of the multi-shooting setting for the optimal control of one-dimensional de-
terministic problem. L. L 68
Model of an Unmanned Ground Vehicle (UGV). 70

Portion of the data graph for the UGV model discretized with Euler forward time
integration and graph the compute the kth component of the gradient of the cost

functional.o 71
UML (Unified Modeling Language) diagram for the integration of IPOPT with Ten-
sorFlow illustrating the major interface points. 72
Optimal controls for the UGV stochastic path planning problem. 74
Trajectories and endpoints with optimal control for UGV example over 1000 ran-
domly selected samples. 74
Stochastic dynamics of the UGV under nominal controls. 74
Probability that the UGV is found at a distance » > d: optimal control (orange)
versus nominal control (blue). 75

Memory storage requirement for the stochastic UGV path planning problem as a
function of the final time ¢y and number of samples. These graphs are obtained on a
Xeon v2 processor 2.3GHz with 10cores., 75

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.

vi

Figure 57

Figure 58

Figure 59

Figure 60
Figure 61

Figure 62

Figure 63

Figure 64

Figure 65
Figure 66
Figure 67

Figure 68
Figure 69

Figure 70

Figure 71
Figure 72
Figure 73

Figure 74

Figure 75

Figure 76

Figure 77

Memory savings obtained by using the Common Subexpression Elimination (CSE)
technique in the nominal case of a thirteen-dimensional UAV example. The memory
usage remains independent of the final transfer time ¢ ;. Control results are identical
withor without CSE. 76
Stochastic path planning problem for a fixed-wing UAV with constant thrust. Shown
are the optimal controls we obtain to steer the UAV from an uncertain initial position
(2(0),y(0), 2(0), to a deterministic final position (x(t¢),y(ts), z(tf)) = (1000, 1000, 600)

(ty = 60) under uncertain dynamics modeled by 8 random variables. 78
Verification of the optimal controls for the stochastic path-planning problem (UAV
with constant thrust). 78
Stochastic dynamics of the UAV under nominal controls. 79
Probability of the UAV being located at a distance > 7 from the target location based
on 10000 Monte Carlosamples. 79

Effects of uncertainty in the initial conditions on the nominal control and the mit-
igating effect of the application of an uncertainty optimal control under ensemble
State-space CONSIFAINES. v v v v v e e e e i e e e e e e 81
Optimal controls we obtain to steer the UAV from an uncertain initial state to the
target (x(ty),y(ty), z(tr)) = (500, 500,500) (t; = 50), by minimizing the objective
function (133) under ensemble path constraints (132) and control constraints (129). . 82
Verification of the optimal controls for the UAV stochastic path-planning problem un-
der ensemble path constraints (132), and control constraints (129): nominal endpoints
are in red, optimal endpoints areinblue. L. 83
Dynamics of the scaled low-thrust satellite (146), from [62]. 86
Optimal controls and states for the satellite problem under initial condition uncertainty. 87
Schematic of the forward-backward integration process for validation and verification

of optimality of computed controls. oL, 89
Dynamics of the two-wheeled UGV model (154). 89
Evaluation of the compute control %(t) by comparison to w*(¢) from (153) using 107

SAMPIES. e e e e e 90

Interception of HVU-focused attack. di’ (a4 (t),y;(t)) is the damage rate of the k-
th defender against the I-th attacker; dé’o(yl(t), xo(t)) is the damage rate of the [-th

attacker againstthe HVU. o 90
Averaged herding heading example for one attacker and two defenders 92
Sample configurations of a Poisson random graph (a), a Watts-Strogatz random graph
(b), and an exponential random graph (c) with N = 25 vertices. 94
Accuracy measured as relative mean absolute error (RMAE) and computation time,
depending on data set size and for a range of weights 106

Progress of adaptive sampling and model refinement for training a NN to model the
HIJB value function, compared to training on a fixed data set D and the sparse grid
characteristicsmethod. L L 107
Typical closed-loop trajectory of the fully-actuated rigid body satellite system, con-
trolled with model predictive feedback control generated by a neural network. Solid

blue: ¢, wy, and u;. Dashed orange: 6, wo, and ug. Dotted yellow: ¢, ws, and us. . . 108
Validation accuracy and training time of NNs for modeling initial time value function
V(0,v,w) of the rigid body optimal attitude control problem (229). 109
Validation accuracy and training time of NNs for modeling the time-dependent value
function V(t,v,w) of (229). 110

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.

vii

Figure 78

Figure 79

Figure 80

Figure 81

Solution samples of the initial-boundary value problem (235) corresponding to dif-
ferent initial conditions, with control «(¢) = 0 (uncontrolled dynamics).
Open loop control of the nonlinear PDE (235). Shown is the nominal control min-
imizing (236) for the deterministic initial condition ¢y = 2sin(7wz) and the corre-
sponding solution dynamics. It is seen that the control u(t) sends (¢,) to zero after
asmall transient. L e
Comparison between the mean and the standard deviation of the stochastic solution
to the PDE (235) under (a) nominal control and (b) optimal control.
Comparison of true optimal control (open-loop BVP solution) and NN control pro-
files for two different initial conditions: ¢ (0,z) = 2sin(7&) (left) and ¢(0,z) =
—2sin(w€) (right).

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.

viii

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Table 9

Table 10

Table 11

Table 12

Table 13

Table 14

Table 15

Table 16

Table 17

Table 18

LIST OF TABLES

Preliminary results of the Poisson boundary value problem, equation (20) using the
HTucker linear solver outlined in Section 2.1.10, with Riemann line search algorithm,
4th-order finite differences and Dirichlet boundary conditions.
Validation RMSE results for estimating the final time PDF p(z,y,t = 1.0) for training
data, Vg, fixed at 2000, N; = 1100 points for forward propagation, N, x N, =
30 x 30 uniform grid for backward propagation, measured for NV, = 2500 points on a
50 x 50uniform grid. oL
Training time for estimating the final time PDF p(z, y, t = 1.0) for training data (Ng =
2000) and validation data (N, = 2500) using TensorFlow 1.8 [1] on a 2012 MacBook
Pro with 2.5 GHz Intel Core i5 processorand4 GBRAM.
Validation RMSE measures for N, = 2500 data points on a 50 x 50 uniform grid for
estimating the PDF p(x, y,t = 1.0) using 8 hidden layers and 20 neurons per-layer. . .
Training time of a neural net with 8§ layers and 20 neurons per layer, for estimating the
PDE p(z,y,t =1.0).
Validation RMSE results measures over N,, = 2500 data points for estimating the time
dependent PDF p(x, y, t) over the interval ¢ € [0.0, 1.0] using N4 = 5000 training data
distributed in 10 snapshots.
Neural net training time for estimating the time dependent PDF p(x, y, t) described in
Table 6.
Validation RMSE results for estimating the time dependent PDF p(x,y,t) over the
interval ¢ € [0.0, 1.0] using a neural net with 8 hidden layers and 20 neurons per layer. .
Training time of a neural net with 8 hidden layers, 20 neurons per layer, for estimating
the time dependent PDF p(z,y, t) over the interval ¢ € [0.0,1.0].
Validation RMSE results for estimating the time dependent PDF p(x,y,t) over the
interval ¢ € [0.0, 1.0] with a physics-informed neural net trained on N; = 2000 data
points and N, = 8000 total collocation points.
Training time of a physics-informed neural net for estimating the time dependent PDF
p(z,y,t) over the interval ¢ € [0.0, 1.0] with a physics-informed neural net trained on
Ng = 2000 data points and N, = 8000 total collocation points.
Validation RMSE (V,, = 2500) results for estimating the time dependent PDF p(x, y, t)
over the interval ¢ € [0.0, 1.0] with a physics-informed neural net with 8 hidden layers
and 20 neurons perlayer. L.
Training time of a neural net for estimating the time dependent PDF p(x, y, t) over the
interval ¢ € [0.0, 1.0] using a physics-informed neural net with 8 hidden layers and 20
neurons perlayer. e e e e
Training time, RMSE, and NRMSE of Van der Pol oscillator, equation (45), with initial
PDF centered at origin, utilizing randomized samples and increasing penalty weights. .
Accuracy and training time (single CPU implementation using TensorFlow 1.8 [1]) of
a plain neural net for approximating the forward “jump” flow map of the Van der Pol
oscillator (45) with zg,y0 € [—2,2] X [—2,2].
Accuracy and training time of a PINN for approximating the forward “jump” flow map
of the Van der Pol oscillator (45) with zg,yp € [-2,2] x [-2,2].
Accuracy and training time of a plain neural net for approximating the forward “jump”
flow map of the Van der Pol oscillator (45) with =g, yp € [—1,3] x [-2,2].
Accuracy and training time of a PINN for approximating the forward “jump” flow map
of the Van der Pol oscillator (45) with 29, yp € [—1,3] x [-2,2].

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.

iX

21

21

24

28

28

33

Table 19

Table 20

Table 21

Table 22

Table 23

Table 24

Table 25

Table 26

Table 27

Table 28

Table 29

Table 30

Table 31

Table 32

Table 33

Table 34
Table 35

Table 36

Table 37

Table 38

Table 39

Accuracy and training speed of a plain neural net for approximating the inverse “jump”

flow map of the Van der Pol oscillator (45) with (zo,yo) € [—2,2] x [-2,2]. 49
Accuracy and training speed of a PINN for approximating the inverse ‘“‘jump” flow
map of the Van der Pol oscillator (45) with (o, y0) € [-2,2] x [-2,2]. 50
Accuracy and training speed of a plain neural net for approximating the inverse “jump”’
flow map of the Van der Pol oscillator (45) with (zo,yo) € [—1,3] x [-2,2]. 50
Accuracy and training speed of a PINN for approximating the inverse “jump” flow
map of the Van der Pol oscillator (45) with (o, y0) € [—1,3] x [—-2,2]. 51

Accuracy and training speed of a pair of plain feed-forward neural nets for approxi-
mating the forward and inverse “jump” flow maps of the Van der Pol oscillator (45)
with (zo,yo) € [—2, 2] x [—2, 2], trained as a bidirectional autoencoder. 51
Accuracy and training speed of a pair of neural nets for approximating the simultane-
ously forward and inverse “jump” flow maps of the Van der Pol oscillator (45) with
(xo,Y0) € [—2,2] x [—2,2], trained as a bidirectional autoencoder. 52
Accuracy and training speed of a pair of plain neural nets for approximating the for-
ward and inverse “jump” flow maps of the Van der Pol oscillator (45) with (z, yo) €
[—1,3] x [—2, 2], trained as a bidirectional autoencoder. 52
Accuracy and training speed of a pair of neural nets for approximating the forward and
inverse “jump” flow maps of the Van der Pol oscillator (45) with (xo,y0) € [—1, 3] x
[—2, 2], trained as a bidirectional autoencoder. 53
Accuracy and training time of a plain feed-forward neural net for approximating the
forward “step” flow map of the Van der Pol oscillator (45) with (zg,y0) € [—2,2] x
[—2,2]. 53
Accuracy and training time of a plain feed-forward neural net for approximating the
forward “step” flow map of the Van der Pol oscillator (45) with (zg,y0) € [—1,3] x

[—2,2]. . 54
Training time of a neural net for approximating the unclosed term in (77), depending
on the availabilityof data. o 59

L? errors between the benchmark reduced-order PDF p(x,t) at ¢ = 0.5 in the system
(75), and the one obtained from the reduced order equation (79), with E{y(t)|x(¢)}

estimated using a radial basis neural network. L. 61
Change of variables ensuring that the E[y|z] is periodic. 65
CSE-Ilalgorithm e 83
Comparison of optimizer configurations for minimizing (148) subject to the dynamics

(146) and initial condition uncertainty (147). 87

Definition of all phase variables and parameters appearing in the nonlinear system (173). 93
Convergence of the BVP solution when using the time-marching trick, depending on
the number of time Steps. e 108
Convergence of the BVP solution when using an initial guess generated by NNs. 108
Validation accuracy of NNs trained to approximate solutions to the HIB equation as-
sociated with the collocated Burgers’-type optimal control problem (237)-(239), de-

pending on the state dimension n. L. 114
Convergence of BVP solutions for (237)-(239) when using the time-marching trick,
depending on the problem dimension, n, and the number of time steps k. 114

Convergence of BVP solutions for (237)-(239) when using initial guesses generated
by NNs with varying costate prediction accuracy (measured as mean relative L? error
onvalidation data). e e e 115

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.

X

1 Executive summary

In this proposal, we address a very important research area in computational mathematics, namely the de-
sign and synthesis of optimal control strategies for high-dimensional stochastic dynamical systems. Such
systems may be classical nonlinear systems evolving from random initial states, or systems driven by ran-
dom parameters or processes. The first objective is to provide a validated new computational capability for
optimal control of stochastic systems which will be achieved at orders of magnitude more efficiently than
current methods based on spectral collocation or random sampling. To accomplish this goal, we will de-
velop a new data-driven optimal control framework based on probability density function (PDF) equations
(see Figure 1). The new framework is built upon high-order numerical tensor methods, with no specific
requirements on the structure of the continuous dynamics, cost function, or the type of uncertainties. The
18 months research plan is multidisciplinary and it involves multiple fields such as optimal control, large-
scale optimization, and uncertainty quantification. It consists of theoretical and numerical developments,
as well as a general software framework that will implement the proposed algorithms. The main research
tasks are summarized in Figure 2. The proposed research work will have a significant and broad impact in a
wide range of engineering applications such as autonomous systems, environmental defense, and control of

random networks.
Candidate |¢
Control |<' ————————————————————— |

A 4

Nonlinear
Dynamics

! by

Reduced-Order
PDF Equations

p(F,t)

A\ 4

Cost Evaluation

I(u)) = [p(F.ty)FaF

Data
(Sample Trajectories)

1
I X (t;), u)
1

\A4

Liouville

Equation

Cost Evaluation

M
J([u]) = ZF(X(tf;méw))wi

Cost Evaluation

J([u]) = / F(x)p(x,ty)dx

Figure 1: Proposed data-driven optimal control architecture, emphasizing the role of probability density

vy

Optimization

(Sequential Quadratic Programming

or Interior Point Methods)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1 p(z,t) I
I
I
I
I
I
I
I
I
I
I
I
I
I

| SO—

)

function equations instead of nonlinear dynamics in the control loop.

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.

1

2 Project scope

()
Task I Develop scalable software and fast algorithms to compute the numerical solution to high-

dimensional PDF equations.

e Parallel C++ class to perform operations between hierarchical tensor formats.

e Parallel sampling strategies and numerical tensor methods to approximate the flow map generated
by high-dimensional dynamical systems.

Task IT Develop stable algorithms to compute the numerical solution of data-driven PDF equations.

e B

Task III Integrate the numerical algorithms developed in Task I and II into the computational optimal
control framework.

. J

~

g
Task IV Demonstrate the effectiveness of the proposed data-driven control strategies in applications

to disease propagation models in random newtworks of interacting individuals, and swarms of attack-
ing/defending/searching agents.

|

Figure 2: Summary of the research tasks.

2.1 Task I(a): Parallel C++ class to compute hierarchical tensor formats

In Q1 we initiated the development of a parallel C++ class to compute hierarchical Tucker tensor formats. As
of today we have available a working serial version of the C++ code, which we tested against the htucker
Matlab softare developed at Ecole Polytechnique Fédérale de Lausanne (EPFL - Switzerland), and available
online at https://anchp.epfl.ch/htucker. The numerical results of such tests are summerized
in Section 2.1.5).

2.1.1 Brief overview of hierarchical tensor methods

Hierarchical tensor methods were originally introduced in [27] to mitigate the dimensionality problem and
memory requirements in the numerical representation of high-dimensional functions. A key idea is to per-
form a sequence of Schmidt decompositions [64] (multivariate SVDs [23]) until the approximation problem
is reduced to a product of one-dimensional functions/vectors. To illustrate the method in a simple way, con-

sider a five-dimensional function f(x1,...,x5). In a hierarchical Tucker tensor representation f is written
as
T
flxi,...,25) = Z Cliv, ... is]fL (@) f2 (22) £ (x3) £ (2a) 2 (25). (D
i1, is=1
where the 5-dimensional core tensor C|[iy, . .., i5] can be factored as a product of at most three-dimensional

tensors. This is true in an arbitrary number of dimensions. The tensor components fi"; () and the factors of
the core tensor can be computed by employing hierarchical SVDs [23, 44, 46] of suitable tensor matriciza-
tions, which we will describe in detail in Section 2.1.3. Hierarchical tensor expansions can be conveniently
visualized by graphs (see Figure 3). This is done by adopting the following standard rules: i) a node in a

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.
2

o<
o’
1

A[?'.l, 19,13, 14, 15| —

o<
&)
@
;

Level: 0 3

Figure 3: Graph representation of the hierarchical Tucker decomposition of a five-dimensional tensor.

graph represents a tensor in as many variables as the number of the edges connected to it, ii) connecting
two tensors by an edge represents a tensor contraction over a certain index. The 5-dimensional function (1)
may be evaluated at grid points, e.g., defined within the 5-dimensional standardized hyper-cube [0, 1]°. This
basically converts f(x1,...,zs5) into a 5-dimensional array (tensor), which we formally write as

Aliy, ... is) = f(alt, ... 28), (2. 28) e[0,1]° Vij. 2)

The basic problem we aim at overcoming with hierarchical tensor methods is the storage requirements of full
tensor representations such as (2). To understand how serious such problem is, consider that in dimension
5 if we use 1000 evaluation nodes in each dimension then we need to store 1000° = 10'® floating point
numbers (in double precision), which requires approximately 8000 terabytes of memory space. From an
algorithmic viewpoint, hierarchical tensor methods can be seen as linear algebra techniques (multivariate
SVD) to “compress” multivariate arrays of arbitrary dimension into arrays of manageable size. Due to the
great practical potential of being able to compress (big) data, we find it a high priority to develop a high
performance C++ code to implement such algorithms.

2.1.2 The C++ class

In Q1 we studied how the algebraic theory of tensors [27] can be effectively implemented in a C++ class.
There are multiple perspectives with which one may view a tensor. A particularly effective one is to view
tensors as multi-linear maps from sets of integers into the reals, i.e.,

A[il,ig,...,id]ER, ikEIk ijEL...,d. (3)

Here, Ali1,...,1q] may correspond to the discretization of a multivariate function on a grid (see, e.g.,
equation (2)). The sets Z;, are called index sets. For finite-cardinality index sets, we let each i € 7
range from 0 to #(Z;) — 1 (where # denotes the cardinality) to match C++ indexing conventions. A
multidimensional array may be stored in C++ in different ways. A conventional approach is to allocate arrays
of memory addresses (called “pointer pointers”). Instead, we match the convention given by LAPACK: we
allocate a single array of floating point numbers and then manage indexing through the use of “column
major form” index weights. This allows lower level control of the memory and makes for more time spent
computing and less time spent allocating and de-allocating memory.

Remark 2.1 A multi-index set Z; x Zs x ...Z; is also an index set. The elements of this set are tuples
of integers. Since indexed sets of real numbers form a vector space, the notion of tensor described above
satisfies the vector space axioms. i.e., tensors are vectors. Basic vector arithmetic operations one might do
in Matlab or Numpy are now implemented in the tensor class.

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.
3

Remark 2.2 (Matlab-like C++ environment) We used the memory management written for the tensor
class to implement a column major form matrix class. Moreover, since the data is stored column major,
we can now use LAPACK to add in common Matlab-like commands. Some of those included are QR
factorization, singular value decomposition (SVD), and matrix multiplication. Combined with operator
overloading, this implementation of a C++ matrix object allows for programming in a Matlab-like way,
since memory management is taken care of entirely within constructors and destructors. Additional useful
routines added in are the Kronecker and Hadamard products, which are not available in LAPACK as of the
writing of this report.

2.1.3 Matricizations

Matricization is the process of taking a tensor, and generating a matrix with the same entries. To illustrate
this, consider the following steps:

1. Start with a full tensor with an entry like so
Alir, i, ..., 04] 4)

2. Group the indexes by permuting them around so that

i1, d2,. .., ia] — [[T17T27---7Tm]7[cl,CQa”-vcd—m]:|)

Now we let assign each [r1, 79, . . ., 7y, | @ natural number, say r € N. Do the same for [c1, ca, . . ., C4—m],
getting the index c € N.

What we have done is giving each element of the multi-index an order pair of integers. Pairs of integers
indexing a set of real numbers is called a matrix. Let’s call that matrix B. We have described a map from a
tensor to a matrix:

A[il,ig,...,id]HB[T‘,C]. (6)

The choice of permutation gives us the type of matricization we have done. For example, suppose we have
a full tensor with entries A[i1,i2,13,44]. If we want to matricize on indexes 1 and 3, then we permute
Aliy,ig,i3,14] — B[[il, i3], [i2, i4]], then we count all of the indexes one at a time, in the first two indexes
and second two indexes independently. This gives us the matrix B|[r, c]. Matricization is denoted by the
subset of row index labels in a superscript. So in this case, we discussed the A(!3) matricization. This is
also called the (1, 3)-mode matricization.

Remark 2.3 Matricization requires addressing every element of a tensor and allocating multiple arrays
to define indexing, floating point storage, and the maximal bounds of an index. Doing this many times
can get computationally very expensive. Matlab/Octave get around this by using the built in command
reshape (). From the Octave documentation on this command, this calls the built in Fortran command
RESHAPE (), which is a very low level implementation of array memory shape manipulation. In order to
beat scaling performance of Matlab and Octave on a desktop computer, it is required to implement a highly
efficient array reshaping function for row column form multi-dimensional arrays. An alternative may be to
implement a Fortran call into C++, like LAPACK.

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.
4

2.1.4 Brief description of the HT algorithm

Our goal is to take a full tensor, say A[i1,...,iq], and then generate a tree at each node containing smaller
tensors which can be used to compute individual entries of A. The tree has one leaf for each of the 1,2,...,d
indexes of A (see Figure 3). Each leaf contains a set of basis vectors corresponding to the 1,2, ...,5 mode
matricizations. The internal (non-root and non-leaf) nodes contain a 3-tensor with projection information
for generating a basis corresponding to that node’s matricization. So if node has children 1 and 2, then the
3-tensor contains coordinates for generating a basis corresponding to the (1,2) mode matricization. The
exact formula is given in [23] and it is hereafter summarized. Let B; denote the 3-tensor at node ¢ and
Us1, Usa be the matrices containing the basis vectors of the children of node . Then the 7 column of the
basis Uy is given by:

Uil i) = X0 Bilin 4, 1] - (U [+, /1 @ Usa[:,10) (7
il

where the operator : has the Matlab/Octave meaning of “all entries in this index” and & is the Kronecker

matrix product. Then (see [23]),

Bli.j. K] = <Ut[:,i],(vsl[:7j]®U52[: ,ZJ)>. ®)

All bases are generated by taking the singular value decomposition of a matricization of the full tensor A
along the indexes which correspond to a particular node. The orthogonality of the bases from a SVD is what
allows us to use relatively simple projections to generate all reduced-order tensors on the tree. To adjust the
multi-linear rank of a HT tensor, we simply take fewer left singular vectors to generate the matrices U; at
the leaves of the tree. Lastly, we discuss the root node (white node in Figure 3). This node is similar to the
internal nodes, but instead it is only a matrix (2-Tensor), rather than a 3-Tensor. This is because there is no
parent node of the root. The projection for the B, array at the root is the same as the one given above, but
the ¢ index has a maximum index of 0, making the expression B[0, j, k]. In addition, U, is a single column
vector listing every entry of the full tensor A.

Remark 2.4 Described here is the “root-to-leaves” method for computing a HT decomposition. There is a
much faster “leaves-to-root” approach which does successive products onto a “core tensor”. It has the same
error bounds (see Theorem 2.1) as the approach we just discussed. In particular, the following theorem holds
for both HT tensor approximation algorithms.

Theorem 2.1 (HT approximation error [23]). Let A be a real valued tensor of dimension d. Let k be
the max prescribed rank on each node of the tree and € > 0. If there exists a tensor Ap.s; of the same rank
and ||A — Apest|| < &, then the singular values of A® denoted by o; for each node ¢ can be estimated by

Z aiz < e ©)

On the other hand, if the singular values fulfill the theoretical bound Z 0? < £2/(2d—3), then the truncation
1>k

yields a HT tensor Ay such that ||A — Ay|| < e. Thus, the overall accuracy depends on how many

singular values we keep in the matrix representation at the leaves. If we drop none, then we obtain an exact

representation of the full tensor in the HT form.

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.
5

(a) (b)

3
T 05
2
=
w0
0.
b

0.5

0.5
i) 0 0 T 0 0

0.5
Ty Z1

Figure 4: Sine function of equation (10) in (a) 2D, and (b) 3D with level sets (iso-surfaces) corresponding
to g = 0 (green), g = 0.2 (magenta), g = 0.4 (blue), g = 0.6 (purple) and g = 0.8 (light green).

2.1.5 Numerical results: serial C++ code

As a first test for the C++ code we developed, we generated a tensor which has entries given by sampling
the following scalar function on a uniform grid in the unit hyper-cube [0, 1]%.

d
g(z1, 22, ..., 2q) = sin (Z g;) . (10)
=1

It was shown in [48] that g(x1, z2, . .., 4) can be written as
d d .
) sin(z; + Xi — Xj)
g(z1,...,xq) =) sin(x;) - ; (11)
g =0
i#]
for any d-tuple of distinct numbers {x1, ..., xq}. Therefore, in principle, g(x1, zo, ..., 2z4) can be written

as a fully diagonal HT decomposition with separation rank equal to » = d. In Figure 4 we plot the function
(10) in two and three dimensions (iso-surfaces).

Next, we perform an analysis of the performance of the HT leaves-to-root decomposition algorithm. In
particular, we consider d-dimensional functions of the form (10) and compute the HT decomposition by
using both the ht ucker Matlab software available online at https://anchp.epfl.ch/htucker)
and our newly developed C++ code. Our results are summarized in Figure 5. It is seen that the two imple-
mentations yield nearly identical error plots, differing only on the order of machine accuracy. This suggests
that our C++ code is mathematically correct, and relatively efficient. In fact, as easily seen from the plots
of Figure 5, our code outperforms the Matlab code by 10 times in speed for small dimensions. However,
as d increases and we need to perfom more costly matricizations, the built-in Matlab reshape () func-
tion outperforms our current implentation of the C++ matricization. We are currently investigating possible
approaches to overcome this difficulty as discussed above in Remark 2.3.

2.1.6 Parallelization of the HTucker C++ class
To parallelize the algebraic routines of tensor arithmetic we used both OpenMP and MPI communication

protocols. This allowed us to store each node of the HT tree sketched in Figure 3 in its own compute

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.
6

(a) (b)

HTucker C++ Error HTucker Matlab Error

00 T T T T 1o d2
10_01 ->-d=3
T 1002 1j7<d=4
03¢ J[-d=5
‘» -04f J|~d=6
o ,~05F 1l-d=7
o 10_06
210 F jod=8

1 2 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10
Rank of HTucker Matricizations Rank of HTucker Matricizations

HTucker C++ Performance HTucker Matlab Performance
10 N) B T T e
->-d=3 ->-d=3

4 W > d=4 - d=4
10 |

-+d=5 i|-d=5

) s B -+ d=6
5 _ZM ~d7| & a7
Q107 3-d-8] ® —d-8
[0} (0]
g 3 W E
=10 [=
S 5
o 4 EZ;"“"”*“ S R e Bo-n - pe-- - > o 4

10 107F E

-5 \ . L L L . . L 5 L i) \ A L L ,
WYy "2 3 4 5 6 7 8 9 10 0y % 3 4 5 & 7 8 9 10
Rank of HTucker Matricizations Rank of HTucker Matricizations

Figure 5: Comparison of Hierarchical HT decomposition of the sine function of equation (10) utilizing
existing software tools (b) and the serial algorithm developed in this effort (a) (see section 2.1.4).

node as in Figure 6. OpenMP is used so that whatever cores are active on each compute node can perform
parallelized linear algebra operations through the use of LAPACK and ScalLAPACK.

2.1.7 Distributed memory implementation

It is natural to attempt to place one tensor or matrix in each compute node of a parallel computer (see Figure
6). This is the approach discussed in the recent paper [24]. In this Section we will explicitly state how such a
distributed memory implementation can be done using MPI. By distributed memory computer, here we mean
a computer which has multiple instances of the same program running. Each instance has an ID number and
can send or receive data from any other instance. We will be using these IDs to define what each node does
in computing an HTucker decomposition, and how nodes communicate when performing computations on
an HTucker tensor. A standard tree data structure consists of nodes containing some data and which point
to 2 children nodes, or NULL if no children. In the context of a distributed memory machine, we replace
the concept of “pointing to do different memory locations” with storing a set of integers indicating which
compute nodes refer to the left child, right child and parent. To illustrate the concept, consider the simple

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.
7

f(x1, w2, @3, 24) = Z Al o1(21, 22)Um (23, 24)

I,m=1

= Z At Biij Crnpg T (1) T3 (22) T8 (23) T (4)

l,m,i,5,p,q

HT decomposition of a 4D tensor A, B, C, and {Ty,...,T,}, are computed by hierarchical SVD
(in each compute node we store the
corresponding matrix/tensor)

\

Figure 6: Parallel implementation of the HTucker C++ class for a dimension tree corresponding to a 4-tensor.

example shown in Figure 6 of a tree corresponding to a 4-tensor. Iterating from left to right in each layer, we
correspond an index to each tree node. Each node contains a data structure with 3 integers and the relevant
tensor objects for HTucker decomposition. For example, node 1 contains a parent ID of 0, a left child ID
of 3, and a right child ID of 4. For the root, the parent ID is set to O, which is the same as its own ID.
For the leaves, the children ID numbers are set to -1. An algorithm for assigning unique ID numbers for
all nodes for arbitrary dimension trees using the scheme outlined here is implemented as a dependency for
the HTuckerMPI C++ object. The algorithm for computing the HTucker decomposition on a distributed
tree is largely the same as the method we described in Q1. The difference lies in how the data is stored
and transferred in the computer. Any time where a matrix, tensor, or some related data (e.g. number of
components in an array) is required from a parent/child node, an MPI message is passed. Using this, we can
initialize a tensor on node 0, and then send data to the rest of the tree. To this effect, we compute all the
required matricizations simultaneously. Then SVDs are all done simultaneously and the left singular vectors
are sent to the respective parent nodes. As for how this is accomplished in C++, we store an HTuckerMPI
object on each compute node. Each object contains either the root matrix, a transfer tensor, or the leaf
basis matrices. Each node using this object as an interface to communicate with all other nodes on the
tree. Addition is accomplished by concatenating tensors as is described by the Matlab HTucker manual.
The only operations required at the time taken to copy two summands into a new HTuckerMPI object.
Truncation of an HTucker tensor to another HTucker tensor is similar to going from full tensor to HTucker
(see [44]). First, we generate a set of matrices called Gramians for each node which are roughly equivalent
to the matricizations. Then we use these matrices to generate new matrices containing left singular vectors.
Finally we only the child frames in similar manner as stated in (2.1.3). As mentioned above, OpenMP is also
used in the parallelization process. Each compute node is also given the capability to compute with shared
memory in parallel. This is to say that we can take advantage of the parallelizations used in LAPACK for
computing, e.g., the SVD and the QR factorization. On the workstation used in the tests below, we have a
Intel 19-7980XE with 18 CPU cores with Hyper-Threading of 2 processes per core. So our Linux operating
system registers a total of 36 “’logical cores.” If we are to use the 4 dimensional tensor example above, then
we need to used 7 MPI compute nodes (one for each tree node). This number tells us how many cores we
can allocate to parallelizing with OpenMP. The allocation is simple, diving 36 by 7 we have maximally 5
OpenMP processes per MPI node and then one left over.

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.
8

(a) (b)

10— 250
Py . i Serial code
gq / 7 200 - =+ - MPI + 1 OMP Thread
= 100% 2 -—~»-—-MPI + 3 OMP Threads
8 o 150 t —+—MPI + 5 OMP Threads
5 D e e T o
5 . o2| g O
& = 100}
= g
3 e
S0t 2
< o G S U S SS LS
g)
108 50 ettt
17 11 21 31 41 51 61 71 81 91 101 17 11 21 31 41 51 61 71 81 91 101
rank (r) rank (r)

Figure 7: Performance of the HTucker C++ class with “root-to-leaves” [44] truncation in computing the
tensor decomposition of the function in equation (12) utilizing 7 MPI nodes with up to 5 OpenMP threads
in each node.

2.1.8 Numerical results: parallel C++ code

We consider the following non-separable function to study parallel versus serial performance of the C++
code we developed

sin(bx1x2) COS(5$3)] (12)

g(w1, 2,73, 74) = €xp [1 + cos(10xq24)?

We sample g on a 60 x 60 x 60 x 60 grid in [0, 1]4. This yields a 4D numerical tensor with 12.96 million
entries, which requires 103.68 Mb of storage if we use double precision floating point numbers. We tested
accuracy and computational time for several different separation ranks. We start at rank 1 and then increase
the rank by 10 every iteration, until 101. Our results are summarized in Figure 7. In particular, Figure
7(a) shows that the maximum pointwise error decays more or less exponentially fast with the separation
rank . Such error decay, is not obviously affected by the number or OpenMP threads within each compute
node. In Figure 7(b) it is seen that the parallel HTucker code indeed outperforms the serial version by a
significant margin. Specifically, we can see a reduction by 1/2 in execution time. This is not the full 1/7 one
would expect since a large overhead is introduced by telling different processing nodes to send data back
and forth. We are currently working on optimizing (minimize) communication between the compute nodes.
Even so, with this overhead we make significant gains in speed. Also, the parallel code is more suited to
larger and larger problems. If the code spends more time computing on independent cores than passing data
between cores, then we see better performance. For this particular tensor, the two implementations scale
constant with rank. This is because the last step, which actually depends on rank, is the series of projections
explained in Section 2.1.3 . However, this step takes far less time than computing all of the matricizations
and singular value decompositions, which are not currently programmed to scale with rank. Observing the
performance of the parallel code, we also see that adding more cores per compute node has a significant
impact on compute time, going down from around 60 seconds to 50 seconds.

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.
9

2.1.9 Application to a 4D Liouville equation

Consider the following four-dimensional initial/boundary value problem for the Liouville equation on the
periodic cube D = [—1,1]*

op(t
p(a£w> +G-Vp(t,xe)=0 >0, zeD,
(13)
1 x} + 23 + 2} + 23
_ _ _ = 2.
p(o, {IZ) po(a:) (47[_20_4) exp |: 20_2) g

By using the method of characteristics, it is straightforward to obtain the following exact solution (with
constant G)
p(t, ®) = po(x — Gt). (14)

Taking partial derivatives of p(t,) in a discrete form is done through the use of a “x-mode” product o,,,
which is performed by taking the p-mode matricization, applying the differentiation matrix to the resulting
operator. For example, the partial derivative in z is:

&
&xl

~ (D oy P(1))[i, g, k, w], (15)

(t.[e} @5,25,1])

where we denoted by D the one-dimensional pseudospectral (Fourier) differentiation matrix, and with P ()
the full tensor (with all indexes) at time ¢. The semi-discrete form of the initial/boundary value problem 13
can be compactly written in an HTucker form as

dP(t) <
= —;ka op P(t). (16)

To integrate the ODE system (16) in time, we use the the second-order explicit Adams-Bashforth scheme

At &
P(tni1) = P(ty) — = Y. GrD og (3P(ty) — P(tn-1)). (17)

2 k=1

By the properties of pseudo-spectral methods, we expect that accuracy depends on differentiability in space.
In particular, since the initial condition is infinitely differentiable and numerically zero on the boundary for
sufficiently small o, we expect exponential convergence in space. As for using HTucker to solve this prob-
lem, it can be shown that multiplying a matrix into the y leaf in the HTucker decomposition is equivalent
to taking the p-mode product with the full tensor; summing is simply concatenation; and scalar multiplica-
tion can be accomplished by scaling the root node’s matrix by a real number. Since the data stored at each
step grows with concatenation if we do not truncate, we truncate to a given max rank at the end of every
iteration. In Figure 8 we plot a few Sections of the solution to (13) in the z;z2-plane at different times.

The rank of the HTucker decomposition is chosen to be 1, 2, and 3. Note that since a the Gaussian initial
condition is fully separable, it can be represented exactly with a rank 1 tensor format. Thus, raising rank
does not improve accuracy, but increases computation time since more data copying for each addition and
also more vectors operations. We see all this in Figure 9, where we plot the execution time needed to advect
the solution for 10° time steps (one cycle) This number was chosen because after this many iterations the
maximum pointwise error is of order O(10~%), small enough to be a fair estimate of the solution. Next, we
study scaling with with the number of grid points, to see how the different algorithms handle growing prob-
lem size. In Figure 9 we see the execution time of the serial C++ algorithms grows roughly with power 1/2.
On the other hand, the execution time of HTucker grows much slower. This is because essentially we don’t

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.
10

(b)
t=03

|

1

(d
t

1 -0.5 0
x1

)

1
14
12
10
8
6
4
2
0

0.5 1

1
0.5

g 0
-0.5
_1-

Figure 8: x;x2-plane solutions of the initial/boundary value problem in equation (13) with z3 and x4 both
set to 2¢, at times (a) t = 0.0, (b)t = 0.3, (c)t = 0.5, (d) t = 1.0.

need to compute any of the additions, and the modal products need only to be applied to the leaves. We see
that the computing time levels off entirely for a rank 1 representation. For more complicated problems, the
optimal rank in general depends on time, suggesting that the solution may increase or reduce its separability
as time integration proceeds. In this case, we can adaptively compute such optimal rank on-the-fly based on
fast error estimators.

2.1.10 Parallel linear solvers for high-dimensional systems in the HT format

In the previous Section we studied solutions to high dimensional PDEs through the use of explicit multi-step
schemes of the form

P’n+1 :R(Pna"'apnfm)a (18)

where R is linear in each argument, and P, = P(t,) However, schemes of this form are not in general
stable for all contractive R. Moreover, they have increasingly restrictive time step limitations for situations
in which the iterative schemes are stable. Thus, for increased numerical stability it is often necessary to use
implicit time stepping schemes, i.e. schemes which implicitly represent the next iterate as the solution to a
linear system of equations

E(Pn+1) :R(Pn7---7pn—m); (19)

where the (big) matrix £ is assumed to be invertible. In the context of hierarchical Tucker tensor formats,
solving such an equation for the next iterate with a restricted set of ranks — i.e., on a manifold of tensors

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.
11

N
o
[N

w

E o, e
S 107 e "' ------------------- /
Q f e A e

R

o

2 10T

b F A e

o ‘ <

=] . .

= o ——o— Serial

2 10'2 ---s«---Parallel HTucker, r =1

= - Parallel HTucker, r = 2

® - -Parallel HTucker, r = 3

—_
S
w

10 20 30 40 50 60
gridsize in each variable

Figure 9: Computational time required to advect the solution back to initial position (¢ = 1) for the number
of collocation points in each variable, x;, utilizing 10° time steps from ¢ = O to ¢ = 1.

with constant rank — is computationally difficult, as it requires Riemannian optimization." Perhaps, the

simplest prototype problem one can think of is an equation of the form (19), where £ = ®g:1 Ag is a
tensor (Kronecker) product of invertible matrices. For this case there is an analytic solution of the form
L1 = ®Z:1 A, An example of a more difficult non-separable case is the elliptic problem

Vi¢(x) = f(x) @eR, (20)

where the Laplace operator in d dimensions is defined as

d
VP=>YNh® ®L 1®Di®@Ln® QI 1)
k=1

Here D? denotes the second-order derivative operator on a variable . Written in this form we can see that
attempting to directly invert this operator is not a simple task, though such inversions do exist (see, e.g.,
[26]). A possible approach to solve high-dimensional linear systems of the form (19) by using HTucker
tensor formats is to reformulate the problem as an optimization problem. With this in mind, we aim at
computing the solution to (19) by solving the following problem

Po1 — argmin [[L(P) = R(®n, .., Bnm) I (22)
subject to: P is a HT tensor with constant rank

It was shown in [16] that the problem above can be expressed as an optimization on a Riemannian manifold
defined by the constrained ranks of P. Roughly speaking, a Riemannian manifold is a topological space
which is locally flat and has an inner product which smoothly varies from one point to another. We can
find a local minimum to the optimization problem above by using the Riemannian line search algorithm
described in [16], which is locally convergent [2, 30]. The algorithm involves a retraction step which can
be accomplished via high-order singular value decomposition [30].

!'Solving the linear system (19) on a tensor manifold with constant rank allows us to avoid the computationally intensive “rank
reduction” step, which cannot be avoided if explicit schemes are used to solve high-dimensional Liouville equations.

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.
12

Table 1: Preliminary results of the Poisson boundary value problem, equation (20) using the HTucker lin-
ear solver outlined in Section 2.1.10, with Riemann line search algorithm, 4th-order finite differences and
Dirichlet boundary conditions.

Numerical solution of V?¢ = f with HT-tensors and Riemannian optimization
Dimension (d) | Iterate Riemannian gradient Residual Max rank
2 320 3.16413e-1 4.84126e-05 4
3 124 2.61959¢-2 1.51751e-05 5
4 32 4.41596e-3 5.14874e-05 3

2.1.10.1 Preliminary numerical results: To test the performance of the parallel linear solver we devel-
oped based on Riemannian line search, we have implemented a discrete form of Poisson’s equation (20)
with Dirichlet boundary conditions on the hyper-cube [0, 1]%. To construct a benchmark solution to such
problem, we take the function

d
H sin(mxy)
k=1

d
2 + sin <S7T H xk)>

k=1

o) = (23)

and compute its Laplacian V2¢. This gives us the forcing f, which we approximate with 4th-order finite
differences. The Riemanian optimization problem to compute the solution to the Poisson equation (20) can
be formulated as follows

argmin |[LP — f]3 subject to: P is a HT tensor with constant rank. (24)
P

Here L is the discrete form of the Laplace operator (21), while f is an HT tensor representing the right hand

side of (20).

In Table 1 we summarize the preliminary numerical results we obtained for d = 2, 3, 4. The frequency
parameter s in (23) was chosen to be 1, specifically with the idea that a smoother unknown function will
yield smaller hierarchical ranks. The number of collocation points along each axis of the box [0, 1]¢ is set to
31. The stopping condition used is to halt the iterations when there did not exist a step size small enough (but
nonzero within floating point definition) to impact the value of the cost function within machine accuracy.
The ranks were chosen based on several numerical tests, with the results yielding lowest found residuals
given in Table 1. Based on numerical findings of these preliminary tests, it would appear that it is easier to
find a decrease step size in low dimensions. This can be seen by the fact that larger dimensions failed to
find a next viable iterate sooner, when [2] showed that such an iterate should always exist. With problems
stated, it should be emphasized that the residual was brought down to near 10~°. We are currently working
on implementing a more advanced optimization framework — such as the Gauss-Newton method derived in
[16] — to compute the solution to (22).

2.2 Task I(b): Data-driven methods to compute PDFs and flow maps

Consider the n-dimensional system of autonomous first-order ordinary differential equations,

z = G(x(t)), x(0) = xo ~ po(x), (25)

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.
13

where po(x) is a given probability density function (PDF). For any fixed initial condition, the solution is
determined by the flow map
x = ®(x0,1), (26)

which is a function of both the initial condition ¢ and time ¢. It can be shown [9] that the forward flow map
satisfies the flow map equation

0P (xp,t

(6t0> —(G(x) - V) ®(x0,t) =0 ®(x0,0) = xo. 27)
Similarly, the inverse flow map satisfies the initial value problem

0P t

Oa(f’) + (G(x) - V)®y(x,t) =0, ®y(x,0) = x. (28)

When considering uncertainty, the PDF of the state vector x at time ¢ can be found by solving the Liouville
equation
op(z, t)
ot
The analytical solution to (29) can be expressed with the method of characteristics as

+ V- [p(x,t)G(x)] = 0. (29)

p(x,t) = po(Po(x,t)) exp [— Lt V- G(<I>(:l:0,7'))d7']) (30)

where ®((x, t) is the inverse flow map [19] satisfying (28). From (30), we see that if the system is volume-
preserving, i.e., if V - G = 0 then we have

p(x,t) = po(Po(x,1)). (31)

This means, in particular, that the level sets of pg are preserved throughout the dynamics. This allows us to
track the support of the joint PDF p(x, t) by propagating forward in time the almost-zero level set.

Remark 2.5 For a large class of control systems, e.g., control affine systems, it is possible to design state
feedback control to make the system (25) divergence-free. Such property can be explored to design optimal
closed-loop controls that leverage divergence-free dynamics.

2.2.1 Data-driven approximation of probability density functions using deep neural nets

Machine learning offers an efficient way to compute data-driven solutions of partial differential equations
[57]. In Q1 we implemented several algorithms that leverage deep neural networks (designed in TensorFlow
[1]) to approximate the PDF of prototype low-dimensional dynamical systems. The algorithms are built
upon two different types of neural nets

e Data-driven neural nets;
e Physics-informed data-driven neural nets (PINN).

In the first case, the PDF of the system is estimated by training the neural net sketched in Figure 10 entirely
with sample paths? of (25). In practice, we minimize a cost function of the form

MSFEgaa(01, ..., 00, t) =]\1[d % [log (p(:c(k),t)> — log (ﬁ(m(k),t)>]2, (32)
k=1

’Training the neural net as shown in Figure 10 can be done at a specific time , e.g., at final time or at an entire sequence of time
instants between two prescribed times. In the latter case we aim at learning and the entire dynamics of the joint PDF p(x, t), i.e.,
fromt =0tot = ty.

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.
14

Hidden layers

gu()

Qutputs

,__'fﬁ(x, t):_';

A
//

.
v
I

Figure 10: Architecture of a feed-forward neural net for approximating p(«,¢) by a composition of func-
tions: p(x,t) = gy o gpr—1 © - - - g1(x, t).

where p(x(*),) is obtained by solving (29) with the method of characteristics, (¥, t) is the neural net
representation
p(x,t) =gmogu-10...91(z,1) (33)

evaluated at ¢ = (®), N is the number of sample paths, and 0; = {W;,b;} are the free parameters in the
j-th activation function. For example, g2 o g1(x,t) = tanh[W5 - g1(x,t) + be] = tanh[W5 - tanh(W7 -
[x,t] + b1) + bs]. The parameters are optimized during model training so that the output p (), t®) is as
close as possible, in some norm, to the training data p (zc(i), t(i)). In (32), z¥) = @(xék), t) denotes the the
position of the particle a:ék) at time ¢, which can be easily determined by integrating system (25) from the
initial condition zr:ék).

In the second case, i.e., in the physics-informed data-driven neural net (PINN) setting, we augment the
cost function with a penalty term that represents the magnitude of the residual we obtain when we substitute
the neural net representation (33) into the Liouville equation (29), i.e.,

op(x,t R

Rt = P20 4 g (G@)pten). 34

In this case, the cost functional we consider is
MSEPINN(Ob e HM, t) = MSEdata(Hl, e OM, t) + [LMSEE(Hl, e OM, t), (35)

where (4 is penalty parameter and
1 e 2
MSE(01, e, Oa1,) = ~— 3 [R(m(k),t)] (36)
Ne k=1

is the mean square error associated with the residual of the Liouville equation. As before, (¥) = @ (m(()k) , 1)

(® is the flow map generated by (25)). The residual (34) can be easily evaluated by using automatic differ-
entiation techniques applied to (33).

2.2.1.1 Prototype dynamical system In the following Sections we study the effectiveness of PINN and
other methods to predict the PDF and the flow map of the two-dimensional divergence-free nonlinear dy-

namical system
T =2zy—1
(37

g=—2 =y’ +pu

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.
15

The phase portraits of the system (37) are plotted in Figure 11 for different values of the parameter p. We
observe that the system undergoes two saddle node bifurcations at y = 1.

o
\\\‘:‘ \\\

—_ NN

Figure 11: Phase portraits of the system (37) for different values of p.

2.2.2 Brief description of the machine learning algorithms we implemented
In this Section, we outline our first implementation of the data-driven machine learning algorithms to esti-

mate the joint PDF of the solution to the dynamical system (25).

Data-driven machine learning This algorithm is purely based on data, i.e., sample trajectories of (25),
without the PDE constraint represented by the Liouville equation. Specifically, we use the bare-bones feed-
forward neural net sketched in Figure 10 with the cost function defined in (32).

Physics-informed data-driven machine learning This algorithm operates as follows:

1. Set up two deep neural nets using, e.g., TensorFlow [1].

e The first net learns an approximation of PDF, p(x, t) ~ p(x,t). To this end, we generate a train-

ing data set { (2,), p (2 ,#®))},i = 1,..., Ny, by forward and/or backward integration
of (25) from many different spatio-temporal points (w(i) , t(i)) and evaluation of p (a:(i), t(i)) by

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.
16

update NN parameters

x,)—> NN, —p(x,t)—> MSE,

= == === -
-—

oplot, Vgp MSEpnN

|

NN, — R(p(x,t))— MSE,

vy

Figure 12: Training physics-informed neural nets (PINN).

prediction with trained NN

(X’ t) —> NNP — ﬁ(xs t)

Figure 13: Predicting with trained physics-informed neural nets (PINN).

(30). This is a supervised learning scenario with inputs { (z(,)} and outputs {p (z(*),#®)}
(see Figure 10).
e The second net is constructed using TensorFlow’s built-in automatic differentiation to estimate

the partial derivatives of p. It has the same parameters as the first net, and penalizes approxima-
tions p, which in general does not satisfy the Liouville equation (29).

2. The two nets are trained simultaneously with the cost function (35) (see Figure 12).

3. Once training is complete, we can use the first net to obtain fast approximations to the probability
density function at any point (see Figure 13).

2.2.3 Generating training data

Generating training data for neural nets is not exactly a straightforward process. Backward integration from
points (¥ may yield initial points with rather arbitrary positions. In this case, numerical integration will
take a very long time and may eventually fail. Forward integration from a set of points $(()Z) ~ po(x) will
always yield well-defined data with non-zero probability, so long as the dynamical system (25) meets some

basic conditions. However, this data may not be well-structured for the purpose of representing p(x, t). For

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.
17

divergence-free systems, feed-forward sampling can provide a reasonable approximation of the support of
p(a, t). Hence we can construct a convex hull around the points) = & (mél), t) to estimate this support.

We can then “fill in” the rest of the convex hull by backward integration. We need to find other methods
for systems with divergence, since for these it is harder to estimate the support of p(x,t) directly from

L3 (m(()i) t).
2.2.4 Numerical results

In this Section we present the numerical results we obtained by training the feed-forward and PINN neural
nets with sample trajectories of (37) for the purpose of predicting the joint PDF of the state vector. In
particular, we tested the following different scenarios:

e Prediction of the joint PDF at final time with feed-forward neural nets;
e Prediction of the full dynamics of the joint PDF with feed-forward neural nets;
e Prediction of the full dynamics of the joint PDF with physics-informed neural nets (PINN).

Hereafter, we analyze each case in detail, and discuss our numerical findings.

2.2.4.1 Prediction of the joint PDF at final time with feed-forward neural nets By using the method
of characteristics, we randomly generated PDF data points at time ¢ = t; (t; variable) for the two-
dimensional divergence-free test system (37) with u = 5. We chose the initial PDF py(z,y) to be the
product of two independent Gaussians with means p,, = p,, = 0.75 and variances o2 = 03 = 0.25. We
learned the final time PDF using standard TensorFlow [1] without any secondary physics-informed neural
net [57]. We used an L-BFGS [10] optimizer and a tanh() activation function for the neural net, and var-
ied the configurations of the hidden layers to increase performance. In addition, before feeding data to the
neural net, we mapped spatial data (z,y) to [—1, 1], where tanh() is steepest, and took the logarithm of the
probability data. Learning the log probability ensured that the model would preserve positivity of the PDF.
Where the probability was too small, we set it to a minimum threshold e~ '® ~ 3.06 x 1077, so that there
wouldn’t be any numerical problems when we took the logarithm.

Data generation We generated initial conditions (:céz), y(()l)) ~ po(z,y),i = 1,..., N,, and numer-
ically integrated to t = ¢ to obtain (z(9,y®). The probability data p (z(¥,y(,t =t;) was obtained
using the solution to the Liouville equation (30). We then enclosed these points in a rectangle and built an
N, X N, uniform grid of points (x(i),y(i)), i =1,...,N2, from which we propagated backwards and
used the Liouville equation to get probability data. This provides a total of Ny = N, + N2 training data.
For model validation, we checked the neural net predictions on a uniform grid over the same area as the
training data.

Model training In Figure 14, we visualize the training data and neural net reconstruction of the initial
PDF po(x,y) and the final time PDF p(x,y,t = ty) for t; = 0.5 and t; = 1.0. We observe that the
dynamics (37) rapidly advect the smooth Gaussian into a thin curve. In Table 2 and 3 we present speed and
accuracy results for estimating p(z,y,t = 1.0) depending on the architecture of the neural net. For Table
4 and 5 we fixed the architecture and varied the amount of training data fed to the net. This let us test the
sensitivity of the net to data availability and determine good ratios of forward propagated data to backward
propagated data.

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.
18

PDF data (t = 0.0) PDF data (t = 0.5) PDF data (t = 1.0)

X

PDF estimation (t = 0.0) PDF estimation (t = 0.5) PDF estimation (t = 1.0)

06
05
' 0.4
. 03
. 2 02
1 0.1

-0.5 0 05 ; 0 .

156 Yy
X

Figure 14: Training data (top, 100, 200, and 2000 points, left to right) and 1000 x 1000 reconstructions
(bottom) of initial PDF pg(x,y), p(x,y,t = 0.5), and p(z,y,t = 1.0), left to right, using 8 hidden layers
with 20 neurons each.

Discussion We immediately observe that the initial Gaussian is very easy to reconstruct. It can be
learned to O(10™4) accuracy in seconds with only a hundred or so training data points. At ¢ r = 0.5, we
can still reliably reconstruct the PDF using only 200 points. As we advance time, however, the regression
problem becomes more difficult as the approximate support of p(x, y, t) advects into a thin curve with steep
slopes. Thus we require more training data, and deeper neural nets are more reliable for learning the PDF.
Table 2 shows that deeper neural nets tended to be more accurate; in particular we should use at least 6
hidden layers for this problem. Meanwhile, there appears to be little benefit to increasing the number of
neurons per layer, except for several models which achieved O(10~*) RMSE on fortunate training sessions.
Table 3 reveals that we can make nets deeper with minimal increase in training time, whereas increasing the
width of nets is costly. At the same time, all the trained nets can produce one million outputs for plotting
in a fraction of a second. Meanwhile, generating only N, = 2500 validation data points by numerical
integration took around 8 seconds on average. Thus, as we expect, neural nets are slow to train but incredibly
fast once they are trained. In Table 2 we observe that, apart from a few outliers, increasing the number of
data points generally improved accuracy. However, the kinds of training points used was also relevant. As
discussed previously, using more forward propagation points provides more resolution of the PDF within
the approximate support, while using more meshgrid points yields better boundaries for this region. There
appeared to be a limit to the usefulness of increasing the fineness of the meshgrid, however. Perhaps using
too many grid points gave the net too much weight on putting zeros outside of the approximate support, and
not enough weight to learning the shape of the PDF within the approximate support. Increasing the amount
of data points had some relation to increased training time, but not as much as one might expect.

2.2.4.2 Prediction of the full dynamics of the joint PDF with feed-forward neural nets Here we
employed feed-forward deep neural nets to learn the whole temporal evolution of the joint PDF p(z,y,t),
within the time interval ¢ € [0, 1].

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.
19

Table 2: Validation RMSE results for estimating the final time PDF p(z,y,t = 1.0) for training data, Ny,
fixed at 2000, Ny = 1100 points for forward propagation, IV, x Ny, = 30 x 30 uniform grid for backward
propagation, measured for N,, = 2500 points on a 50 x 50 uniform grid.

Neurons per layer
10 20 30 40
s, | 2 1327e02 129e02 1.68e-02 6.66e-03
§ 4 1 158e02 1.10e-03 1.21e-03 2.03e-03
‘—: 6 | 1.42e-03 8.18e-04 7.50e-04 4.75e-03
S| 8 | 1.54e03 401e-04 191e-03 524e-03
E 10 | 1.08e-03 2.33e-03 544e-03 221e-03
12 | 270e-03 531e-03 242e-03 7.97e-03

Table 3: Training time for estimating the final time PDF p(x, y,t = 1.0) for training data (Vg = 2000) and
validation data (N, = 2500) using TensorFlow 1.8 [1] on a 2012 MacBook Pro with 2.5 GHz Intel Core 15
processor and 4 GB RAM.

Neurons per layer
10 20 30 40
s | 2 122s 69s 88s 97s
S| 4 |35s 60s 78s 90s
L: 6 | 35s 44s 108s 104s
2| 8 |22s 82s 99s 1725
E 10 | 50s 60s 120s 160s
12 | 46s 76s 158s 1955

Data generation We used another heuristic data generation algorithm based off the one we used for
the final time PDF. This process is summarized in four steps below.

1. First we discretized the time interval ¢ € [to,t¢] into N; number of distinct snapshots. About one
third of the snapshots ¢ were from a uniform discretization of the interval, including the endpoints.
The remaining two thirds were randomly sampled from a half-normal distribution and mapped to the
interval so that they would cluster closer to ¢;. That is, we constructed a time discretization which
was coarser near tg and finer near ¢y. Having higher-resolution data near ¢y was helpful for our test
system (37), as the dynamics advected the initially smooth Gaussian into a thin curve, and moreover,
the speed of the advection increased with time. For other systems, the distribution of time snapshots
may need to be adjusted to improve performance.

2. As before, we randomly sampled a set of Ny initial conditions (xéz), y(()z)> ~ po(x,y), and prop-
agated those forward to obtain data points at teach time step, (x(i7k),y(i’k),tk), 1 = 1,...,Ng,
k = 0,..., Ny — 1. Since the system was divergence free, it was trivial to assign probability data

plk) = po :c(()i), y(()i) to each point, but even with divergence, fitting the solution to the Liouville
equation (30) in here would not be difficult.

3. Next we used two rounds of backward integration from each time snapshot ¢;. In the first round, we
built an V,,, x Ny, uniform grid over the forward samples at each individual time snapshot. Backward
numerical integration and the solution to the Liouville equation again supplied probability values.

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.
20

Table 4: Validation RMSE measures for N,, = 2500 data points on a 50 x 50 uniform grid for estimating
the PDF p(x,y,t = 1.0) using 8 hidden layers and 20 neurons per-layer.

Forward propagation points
800 900 1000 1100 1200 1300 1400
400 | 6.49e-04 3.17e-03 4.40e-03 1.11e-02 1.31e02 9.52e-03 3.11e-04
625 | 1.85e-02 1.16e-03 4.45e-02 128e-03 6.66e-04 6.69e03 1.37e-02
900 | 6.18e-03 5.89e-03 4.51e-04 4.01e-04 695e-04 8.65e-04 5.84e-04
1225 | 1.03e-02 9.38e-04 9.73e-03 7.15e-03 7.43e-03 1.86e-03 3.79e-03
1600 | 2.54e-02 1.22e-03 238e03 1.74e-03 7.12e-03 1.24e-03 2.56e-03

Grid points

Table 5: Training time of a neural net with 8 layers and 20 neurons per layer, for estimating the PDF
p(x,y,t = 1.0).

Forward propagation points
800 900 1000 1100 1200 1300 1400
400 | 58s 67s 67s 50s 52s 94s Tls
625 | 37s 63s 85s 79s 7T0s 45s 104s
900 | 140s 62s 83s 82s 75s 75s 719s
1225 | 62s 86s 60s 67s 88s 82s 69s
1600 | 69s 76s 66s 87s 116s 86s 77s

Grid points

This first grid encouraged the net to learn the boundaries of approximate support of the PDF at each
time step.

4. Inthe second round, for each time snapshot we constructed an additional IV,,, x [N, grid over the whole
spatial domain visited by the forward samples over all time t € [to,], and integrated backward from
there. This second grid supplied data further outside the approximate support at each time, which
allowed for better interpolation in between time steps as the net saw the whole spatial domain over
the whole time interval. This process yields Ny = V¢ (N s+ 2N72n) total training data. For a visual
example, see Figure 15.

We did not, however, track the flows backward in time and save them at each timestep. The reason we
avoided this extension is because backwards integration faces some numerical issues making these data un-
reliable. Some unlucky data points would be flung far away from the region of interest, and training on
these outliers could cause problems. Validation data was taken from a uniform sampling on the space and
time domains trained on by the model. This appeared to give a good indication of how well the model per-
formed, as indicated by visually inspecting the plots of p(z,y,t) at various times ¢. Unfortunately, all these
decisions are decidedly heuristic and based on the problem at hand (37). Data generation is undoubtedly the
main component of this method that can be improved in future work.

Model training In Figure 16, we visualize the neural net reconstruction of training data of the PDF
p(z,y,t) at time snapshots t;, = 0.0, 0.5, and 1.0. This time, instead of requiring three separate training
sessions, the neural net is trained once for the whole time interval ¢ € [0.0, 1.0], and we plot data only from
these points. Tables 6 and 7 include results on the training speed and accuracy of the neural net depending
on the net architecture. Tables 8 and 9 include results on the training speed and accuracy of the neural net
depending on the availability of training data.

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.
21

(a) (b)

PDF data (t = 0.5) PDF data (t = 0.5)
A i e

+ forward sample data + forward sample data
—= backward grid data —= backward grid data

0.6
0.4

02

Figure 15: Forward/backward sample strategy for generating PDF data at ¢ = 0.5 with N, = 100 forward
samples, and two N,,, x N,,, = 10 x 10 grids of backward samples shown in (a) and (b).

Discussion Tables 6 and 8 show typical O(10~3) accuracy over time and space for the time dependent
model trained without a PINN. This is not as good as the O(10~*) accuracy of the final time model. Even
so, the time dependent error takes into account all time instances in the interval [0.0, 1.0], thus the net is
able to accurately estimate the PDF at times not represented in the training data. Moreover, we observe that
the time dependent model is able to more reliably reconstruct the PDF at later times (i.e. ¢ — 1.0). That
is, often the final time PDF model would have to be re-trained once or twice to get O(10~2) RMSE, while
we typically obtained this kind of accuracy on the first try with the time dependent model. We suspect that
having time as an additional input gave the net additional structure to learn from. The results in Table 6
indicate that accuracy is improved both by increasing the depth and width of the net. Of course, this came at
the cost of increased training time, as seen in Table 7. Finally, Table 8 shows that the net can learn the time
dependent PDF accurately with as few as around 3000 training data, which is not significantly more than
was needed for the learning p(x,y,t = 1.0). Increasing both the number of time snapshots and the data
points per snapshot improved accuracy somewhat, up to O(10~3). Increasing the number of time snapshots
appeared to be more helpful than increasing the number of points in each snapshot.

2.2.4.3 Prediction of the full dynamics of the joint PDF with physics-informed neural nets (PINN)
Using the same training data generation algorithm as for the time-dependent model learned from data only,
we implemented a physics-informed neural net [57] to approximate p(x,y,t) as described previously. To
this end, we leveraged TensorFlow’s [1] automatic differentiation capabilities to compute the partial deriva-
tives dp/ot, 0p/dx, and 0p/dy and added an MSE penalty to neural net (see equation (35)). This additional
penalty was enforced on both the training data points and a set of collocation points randomly generated
by Latin hypercube sampling from the spatial domain and time interval trained. In Table 10 we summarize
accuracy results for the PINN depending on the net architecture. With the PINN, we can now reliably obtain
O(10~*) validation error with only half the number of training data we used before. These nets benefit from
having at least 20 or 30 neurons per layer, and the performance tends to improve if we make the net deeper.
Unfortunately, these nets also take around twice as long to train as the standard neural net (compare Table
11 with Table 7). With enough collocation points, we can also compensate for having only a few training
data points, as seen in Table 12. These collocation points can be generated in a small fraction of a second,
but adding more collocation points does increase the training time significantly (see Table 13), so overall
there are no time savings with this method. The improved accuracy gained by using a PINN may be worth

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.
22

PDF data (t =0.0) PDF data (t = 0.5) PDF data (t = 1.0)

PDF estimation (t = 0.0) PDF estimation (t = 0.5) PDF e