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1 Introduction

Random fluctuations in the air density distort electromagnetic waves propagating through the atmosphere.
The effect is more severe at higher frequencies or shorter wavelengths (millimeter, infrared, optical, and
shorter wavelengths), but microwave signals propagating through the atmosphere can also be distorted un-
der strong turbulent conditions. The twinkling of stars, a phenomenon familiar to any casual observer of
the night sky, is caused by this effect. Another familiar phenomenon caused by turbulence is the dancing
of mirages observed above hot road surfaces. These phenomena are collectively referred to as “atmospheric
seeing.” This monograph covers the basic physics describing the propagation effects caused by such phe-
nomena.

Propagation effects caused by atmospheric turbulence include, among others, the broadening of beams,
the random wandering of observed images, and the random fluctuation of signal intensities (referred to
as “scintillation”). Smooth plane wavefronts—for example, those received from stars—are “corrugated”
due to phase delays caused by air density fluctuations as they propagate through the atmosphere. The
random phase delays, in turn, result in a complex diffraction pattern observed at a receiving station due to
random constructive and destructive interference. Atmospheric seeing is a nuisance in many applications
involving the propagation of high-frequency electromagnetic waves (e.g., in infrared or optical astronomy,
laser communications, infrared or optical tacking of space objects, etc.), and its effects must be mitigated.

Adaptive optics (AO), a technique for mitigating or nearly eliminating atmospheric propagation effects,
is playing an increasingly prominent role in astronomy and other application areas (see Figure 1). AO
systems rely on a flexible secondary mirror—made from a flexible surface (or an array of smooth surfaces)
supported by actuators—that can be deformed to compensate for the atmospheric distortion of the received
wavefronts before they reach the primary mirror of an infrared or optical telescope. AO systems also rely
on a “guide star,” either real or virtual, near the line of sight of the object of interest to serve as a point of
reference. In the absence of a real guide star, a laser beam is used to generate an artificial light source, or
a virtual “star,” by exciting the sodium atoms in the upper layers of the atmosphere (in the range of 80 km
to 105 km altitude) and hence causing them to glow and appear as a star. The design and development
of AO systems rely on a solid understanding of the physics of electromagnetic wave propagation through
turbulent media. High-level design analyses require a knowledge of how the parameters characterizing the
statistical behavior of propagation effects vary as functions of system parameters such as frequency, distance,
and channel parameters. Detailed design decisions also often rely on high-fidelity simulation results, the



Figure 1: The adaptive optics system at the Paranal Observatory in Chile operated by the European Southern
Observatory. Left: laser beam creating a virtual guide star near the desired line of sight. Right: secondary
mirror smoothing the distorted wavefronts received from the desired source. Source: European Southern
Observatory website (https://www.eso.org/public/images). The photographs are licensed un-
der the Creative Commons Attribution 4.0 International License.

implementation of which, in turn, rely on a thorough understanding of the propagation equations—and their
limitations.

The subject begins in Section 2 with a discussion of the power spectral density of the fluctuations in
the air’s index of refraction. The index of refraction is the fundamental physical parameter that couples the
propagation of electromagnetic waves with the random behavior of the turbulent medium. In Section 3, the
parabolic wave equation—a stochastic partial differential equation governing the propagation of waves in
turbulent media—is derived from the Maxwell equations. In Section 4, two formal solutions of the parabolic
wave equation corresponding to two limiting scenarios are derived: one corresponding to the case when the
turbulent medium is concentrated in a thin layer or screen perpendicular to the direction of propagation, and
one corresponding to the case when the turbulent medium is extended all the way to the observation plane.
In Sections 5 and 6, expressions are derived for the second and fourth statistical moments of the scattered
wave field, respectively, for the case when the turbulent medium is concentrated in a thin screen. System
parameters characterizing the statistical properties of the scattered wave field obtained from the second
and fourth statistical moments are discussed in Section 7. The numerical simulation of electromagnetic
waves propagating through turbulent media is covered in Section 8. A summary of the topics covered
in this monograph is provided in Section 9. The derivations covered in much of the discussion below
rely on Fourier transform techniques. Important Fourier transform pairs relevant to these derivations are
summarized in Appendix A.

Although the discussion in this monograph is limited to electromagnetic waves propagating through the
turbulent atmosphere, the derived propagation equations apply equally well to problems involving lower-
frequency radio waves propagating through the turbulent plasmas of the Earth’s ionosphere, or acoustic
waves propagating through turbulent oceans. Furthermore, while the topics discussed in this monograph are
motivated mainly by practical engineering applications, such as improving the reliability of laser communi-
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cations or improving the accuracy of tracking and imaging of space objects with infrared or optical sensors,
the propagation equations derived here can also be used to solve the inverse problem of inferring the char-
acteristics of the turbulent medium from the observed distortion of electromagnetic waves. For example, in
the case of the interstellar medium, the observed distortions of radio waves emitted by pulsars provide clues
to the galactic electron density variations. In other words, while one scientist might regard the propagation
effects caused by turbulence as a source of noise, another might view them as the signal.

2 The Turbulent Atmosphere

The index of refraction, n, of the air is the fundamental physical parameter affecting the propagation of
electromagnetic waves through the Earth’s atmosphere. The index of refraction is a function of air pressure,
p; temperature, T ; and humidity, e. Its dependence on these variables is often expressed as

n(r, t) = 1 +
77.6

T (r, t)

[
p(r, t) +

4810 e(r, t)
T (r, t)

]
× 10−6, (1)

where p is in millibars; T is in Kelvins; and e, expressed as the water vapor partial pressure, is also in
millibars. Since p, T , and e vary with position, r, and time, t, the index of refraction, n, also varies with
r and t. Due to the factor of 10−6 in the second term on the right-hand side of Equation (1), the index of
refraction of the Earth’s atmosphere is clearly very nearly equal to one. For example, at standard temperature
and pressure (defined at a temperature of 273.15 K and an absolute pressure of 105 Pa), the air’s index of
refraction is specified to be 1.00029, a value commonly used in many basic calculations.

The spatial and temporal variations of air pressure, temperature, and humidity are prescribed by the
atmospheric air flow, quantified by the velocity field, v(r, t). Hence, the spatial and temporal variations of
the air’s index of refraction are also prescribed by the air velocity field, v(r, t). The dynamic behavior of
air flow, in turn, is described by the equations of hydrodynamics, which consist of the Navier–Stokes and
continuity equations. The Reynolds number is a dimensionless parameter that is used to determine whether
air flow is laminar (i.e., smooth) or turbulent (i.e., random). It is defined as

Re =
v`

ν
, (2)

where v denotes the characteristic or typical speed of the air; ` is the typical length scale associated with
the air flow; and ν here denotes the kinematic viscosity of the air1. Laminar flow is characterized by
small Reynolds numbers (Re < 2300), while turbulent flow is characterized by large Reynolds numbers
(Re > 4000). Reynolds numbers in the range 2300 < Re < 4000, in turn, characterize air flows that
are transitioning from laminar to turbulent flow. The velocity field is a deterministic function of position
and time when flow is laminar. It becomes a random function of position and time when flow is turbulent.
The atmospheric turbulence conditions relevant to the subject of this monograph correspond to very large
Reynolds numbers, lying in the range of 106 to 107.

At the onset of turbulence, as air velocity increases (due to, say, increasing temperature gradients), large
eddies are formed. The large eddies, in turn, break into smaller eddies, giving rise to a turbulent flow
pattern. An example of such a flow pattern is shown in Figure 2, which illustrates how the air transitions
from laminar to turbulent flow above a burning candle. As the eddies break into smaller pieces, kinetic

1The symbol ν is used in Section 3 to denote the frequency of a propagating electromagnetic wave.
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energy is transferred from larger eddies to the smaller eddies without any loss. In 1941, using dimensional
analysis arguments, the Russian mathematician, Andrey Nikolaevich Kolmogorov, showed that the three-
dimensional spatial power spectral density, PKE, of the kinetic energy transfer has a power law form (see for
example [1]):

PKE(q) ∝ q−11/3, (3)

where q = ‖q‖ =
√
q2
x + q2

y + q2
z denotes the magnitude of the three-dimensional wave number (spatial

frequency).

Figure 2: Transition from laminar to turbulent flow above a burning candle. Source: Wikipedia. The
Schlieren photograph, created by Dr. Gary Settles of Floviz, Inc. (http://www.flovizinc.com), is
licensed under the Creative Attribution-ShareAlike 3.0 Unported License.

Since the spatial variations in the air’s index of refraction are prescribed by the random behavior of the
velocity field, v(r, t), the power spectral density of the random fluctuations in the index of refraction also
have a power law form. Writing the index of refraction as the sum of an average term, 〈n〉, and a fluctuating
term, δn,

n(r, t) = 〈n〉+ δn(r, t) = 〈n〉 [1 + n1(r, t)] , (4)

where

n1(r, t) =
δn(r, t)
〈n〉 (5)

denotes the relative (to the mean) fluctuations of the index of refraction, the three-dimensional spatial power
spectral density of n1 is given by [2]

Pn(q) = 0.033C2
nq
−11/3. (6)
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Here, C2
n is referred to as the turbulence structure constant and determines the strength of turbulence. Since

Pn has dimension one divided by wavenumber (or length), C2
n has dimension length−2/3. Typical values of

C2
n are in the range of 10−18 m−2/3 to 10−16 m−2/3 (see for example [3]).

Equations (3) and (6) are valid over a very wide range of wavenumbers (or spatial scales), a range
referred to as the energy or dynamic range of turbulence. However, the transfer of kinetic energy from large-
scale eddies to small-scale eddies eventually leads to energy dissipation. The Reynolds number determines
at what scale energy dissipation occurs. Larger Reynolds numbers lead to wider dynamic ranges, and hence
to energy dissipation occurring at smaller spatial scales. To include the effect of energy dissipation, the
power spectral density of the index of refraction fluctuations can be written as [2]

Pn(q) = 0.033C2
nq
−11/3 exp

(
− q

2

κ2
i

)
, (7)

where
κi =

2π

`i
, (8)

and `i is referred to as the inner scale of turbulence. The exponential term in Equation (7) halts the eddy
fragmentation process and the lossless transfer of kinetic energy from larger to smaller eddies. Energy
dissipation occurs at the inner scale, `i. Typical values of the inner scale range from a few millimeters to
tens of centimeters (see for example [4]).

Similarly, the lowest possible wavenumber (largest spatial scale) in the dynamic range of turbulence is
determined by the size of the largest turbulent eddy. At low wavenumbers, the power spectral density of the
index of refraction fluctuations can, in turn, be written as [2]

Pn(q) =
0.033C2

n

(q2 + κ2
o)

11/6
, (9)

where
κo =

2π

`o
, (10)

and `o is referred to as the outer scale of turbulence. The outer scale corresponds to the typical size of the
largest eddy. Typical values of the outer scale are on the order of hundreds of meters (see for example [4]).

Equations (6), (7), and (9) can be combined and generalized into a single equation:

Pn(q) =
f(β)C2

n

(q2 + κ2
o)
β/2

exp

(
− q

2

κ2
i

)
, 2 < β < 4 (11)

where

f(β) =
Γ(β − 1)

4π2
sin
(π

2
(β − 3)

)
. (12)

Here, β (lying in the range 2 < β < 4) is referred to as the spectral index. For the Kolmogorov power
spectral density, β = 11/3. It follows that

f(11/3) = 0.033. (13)

The value of the power spectral density at q = 0,

Pn(0) = f(β)C2
nκ
−β
o , (14)
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can be regarded as characterizing the level of turbulence. Plots of the index of refraction power spectral
density for the general and the asymptotic simple power law cases, equations (11) and (6), respectively, with
β = 11/3 (Kolmogorov spectral index) are shown in Figure 3. The power spectral density of the air’s index
of refraction fluctuations plays a central role in quantifying propagation effects induced by the turbulent
atmosphere.

Figure 3: Normalized power spectral densities, Pn(q)/Pn(0), of the fluctuations in the air’s index of re-
fraction. The black line corresponds to the general model (11) in text, while the red line corresponds to the
asymptotic power law model (6) in text. The spectral index, β, is 11/3, corresponding to the Kolmogorov
power spectral density. The outer scale (corresponding to the left vertical dashed line) is 300 m, while the
inner scale (corresponding to the right vertical dashed line) is 3 mm.

3 The Parabolic Wave Equation

The propagation of electromagnetic waves through a turbulent medium (such as the Earth’s atmosphere)
is governed by a parabolic wave equation. The parabolic wave equation is a stochastic partial differential
equation that provides the spatial distribution of a scalar wave field scattered by the turbulent medium.
The scalar wave field can represent any component of an electromagnetic wave. Since the parabolic wave
equation is a scalar equation, it can also be applied to problems involving propagation of acoustic waves
through the turbulent ocean. There are other natural phenomena that can be described by parabolic wave
equations. For example, the time-dependent Schrödinger equation is also a parabolic wave equation.

In this section, the parabolic wave equation is derived from the Maxwell equations. The derivation
is based on dimensional analysis arguments that rely on a number of assumptions concerning the relative
scaling of parameters describing the average temporal and spatial characteristics of the propagating elec-
tromagnetic wave and the random medium. The assumptions are introduced when they are needed while

6



marching through the steps of the derivation. They are then listed at the end of the section for future refer-
ence. All assumptions have been verified by measurements and can be applied reliably. At a high level, the
interaction of the components of the propagating electromagnetic wave and the turbulent medium is such
that the wave components are scattered mainly in the forward direction at small angles; that is, there is es-
sentially no backscattering or reflection of the waves. This fact results in the reduction of the second partial
derivative with respect to the coordinate in the direction of propagation that appears in the more general
forms of the wave equation to a first partial derivative.

The derivation begins by assuming that only those regions of space that are far away from any sources of
radiation are of interest. In other words, the source-free form of the Maxwell equations with charge density
and current density set equal to zero will be the point of departure for deriving the parabolic wave equation:

∇× E(r, t) = − ∂

∂t
B(r, t), (15)

∇×H(r, t) =
∂

∂t
D(r, t), (16)

∇ · D(r, t) = 0, (17)

∇ · B(r, t) = 0. (18)

For the problem of electromagnetic waves propagating through the turbulent atmosphere, the D and B fields
are related to the E and H fields via the following constitutive relations:

D(r, t) = ε(r, t)E(r, t), (19)

B(r, t) = µ0H(r, t). (20)

The magnetic permeability of the atmosphere, µ, is simply equal to the free-space magnetic permeability,
µ0, since the atmosphere is not magnetized. The electric permittivity, ε, of the atmosphere, however, is in
general inhomogeneous (i.e., a function of position, r) and nonstationary (i.e., a function of time, t). In fact,
ε is a stochastic function of position and time, and through the above constitutive relations and the Maxwell
equations, it causes the electric and magnetic fields to become stochastic functions of position and time as
well. One must therefore resort to statistical techniques to understand the behavior of electromagnetic waves
propagating through a turbulent medium. In the following discussion, it will be more convenient to factor
out the free-space electric permittivity, ε0, and express the electric permittivity in terms of a relative electric
permittivity, εr:

ε(r, t) = ε0εr(r, t). (21)

Expressing the D and B fields in terms of the E and H fields, respectively, using the above constitutive
relations, the source-free Maxwell equations then become

∇× E(r, t) = −µ0
∂

∂t
H(r, t), (22)

∇×H(r, t) = ε0
∂

∂t
[εr(r, t)E(r, t)] , (23)

∇ · [εr(r, t)E(r, t)] = 0, (24)

∇ ·H(r, t) = 0. (25)

The next steps involves a technique that is used for deriving the classical wave equation for electromag-
netic waves propagating through a homogeneous and stationary medium. Taking the curl of both sides of
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Equation (22), Faraday’s law becomes

∇×∇× E(r, t) = −µ0
∂

∂t
[∇×H(r, t)] . (26)

Using Equation (23) to substitute for∇×H on the right-hand side, Equation (26) can be expressed in terms
of E(r, t) only:

∇×∇× E(r, t) = −µ0ε0
∂2

∂t2
[εr(r, t)E(r, t)] . (27)

Using the vector identity,
∇×∇× E = ∇(∇ · E)−∇2E, (28)

Equation (27) can then be written as

∇2E(r, t)−∇ [∇ · E(r, t)] = µ0ε0
∂2

∂t2
[εr(r, t)E(r, t)] . (29)

Equation (24) can, in turn, be used to derive an expression for ∇ · E(r, t). Using the product rule of
differentiation, Gauss’s law for the case of an inhomogeneous medium can be written as

∇ · [εr(r, t)E(r, t)] = εr(r, t)∇ · E(r, t) + E(r, t) · ∇εr(r, t) = 0, (30)

which can be used to obtain the following relation for∇ · E(r, t):

∇ · E(r, t) = −E(r, t) · ∇εr(r, t)
εr(r, t)

= −E(r, t) · ∇ ln εr(r, t). (31)

Using this expression for ∇ · E(r, t), Equation (29) becomes

∇2E(r, t) +∇ [E(r, t) · ∇ ln εr(r, t)] = µ0ε0
∂2

∂t2
[εr(r, t)E(r, t)] . (32)

To compute∇ ln εr(r, t) in Equation (32), εr(r, t) can be written as

εr(r, t) = 〈εr〉+ δεr(r, t) = 〈εr〉 [1 + ε1(r, t)] , (33)

where 〈·〉 denotes an ensemble average, and

ε1(r, t) =
δεr(r, t)
〈εr〉

. (34)

ε1 is a stochastic function of position and time and is described by a probability density function. Clearly,
〈ε1(r, t)〉 = 0. The first assumption in deriving the parabolic wave equation is that ε1 has a Gaussian proba-

bility distribution. The second assumption is that
√〈
|ε1(r, t)|2

〉
� 1; in other words,

√〈
|δεr(r, t)|2

〉
�

〈εr〉. Based on the second assumption, ln εr can be written as

ln εr = ln 〈εr〉+ ln (1 + ε1) ' ln 〈εr〉+ ε1. (35)

It follows that
∇ ln εr(r, t) ' ∇ε1(r, t). (36)
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Using this expression for ∇ ln εr(r, t), Equation (32) becomes

∇2E(r, t) +∇ [E(r, t) · ∇ε1(r, t)] = µ0ε0 〈εr〉
∂2

∂t2
[1 + ε1(r, t)] E(r, t). (37)

Next dimensional analysis is employed to to simplify Equation (37). In particular, the terms involving
both E and ε1 need to be simplified. The term on the right-hand side of Equation (37) is examined first.
Using the product rule of differentiation, the second partial derivative of the cross term on the right-hand
side with respect to time expands to

∂2

∂t2
[ε1(r, t)E(r, t)] = ε1

∂2E
∂t2

+ 2
∂ε1

∂t

∂E
∂t

+ E
∂2ε1

∂t2
. (38)

The derivatives in this expression can be approximated using dimensional analysis arguments. The magni-
tudes of the first and second time derivatives of E, can be approximated as∣∣∣∣∂E

∂t

∣∣∣∣ ∼ σEν and
∣∣∣∣∂2E
∂t2

∣∣∣∣ ∼ σEν2, (39)

respectively, where

σE =

√〈
‖E(r, t)‖2

〉
(40)

denotes the root-mean-square of the variations in the electric field, E(r, t), and ν is the dominant frequency
of the propagating electromagnetic field. The magnitudes of the first and second time derivatives of ε1 can,
in turn, be approximated as ∣∣∣∣∂ε1

∂t

∣∣∣∣ ∼ σε
τε

and
∣∣∣∣∂2ε1

∂t2

∣∣∣∣ ∼ σε
τ2
ε

, (41)

respectively, where

σε =

√〈
‖ε1(r, t)‖2

〉
(42)

denotes the root-mean-square variations in the relative electric permittivity, ε1(r, t), and τε denotes the
typical time scale associated with the temporal variations in ε1(r, t). Using these approximations, the mag-
nitudes of the three terms on the right-hand side of Equation (38) can be approximated as follows:∣∣∣∣ε1

∂2E
∂t2

∣∣∣∣ ∼ σεσEν2, (43)∣∣∣∣2∂ε1

∂t

∂E
∂t

∣∣∣∣ ∼ σεσEν

τε
, (44)∣∣∣∣E∂2ε1

∂t2

∣∣∣∣ ∼ σEσε
τ2
ε

. (45)

Combining the three terms gives∣∣∣∣ ∂2

∂t2
[ε1(r, t)E(r, t)]

∣∣∣∣ ∼ σεσEν2

(
1 +

1

τεν
+

1

τεν2

)
. (46)

Now if τεν � 1 (third assumption), then the last two terms in the parentheses on the right-hand side can be
ignored, and the second partial time derivative (38) can be approximated as:

∂2

∂t2
[ε1(r, t)E(r, t)] ' ε1(r, t)

∂2

∂t2
E(r, t). (47)
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In other words, if the temporal variations in ε1(r, t), characterized by the time scale τε, are significantly
slower than the temporal variations in the electric field E(r, t), characterized by the time scale ν−1, then
ε1(r, t) can be treated as a constant as far as the second partial time derivative is concerned. Using this
approximation, Equation (37) becomes

∇2E(r, t) +∇ [E(r, t) · ∇ε1(r, t)] = µ0ε0 〈εr〉 [1 + ε1(r, t)]
∂2

∂t2
E(r, t). (48)

When dealing with time-harmonic electromagnetic fields, the temporal behavior of the fields can often
be eliminated from the dynamic equations by resorting to phasor notation. For a monochromatic electric
field characterized by a single angular frequency ω (ω = 2πν), the electric field can be written as

E(r, t) = Re
{

E(r)ejωt
}
, (49)

where E(r), referred to as a phasor, is a complex vector field. For more complicated temporal variations,
contributions from a range of angular frequencies must be included. For the general case, the temporal
Fourier transform E(r, ω) of the electric field must therefore be considered:

E(r, ω) =
1

2π

∫ ∞
−∞

E(r, t)e−jωt dt. (50)

The next step toward deriving the parabolic wave equation is to take the temporal Fourier transform of
Equation (48). The temporal Fourier transform of the cross term on the right-hand side of Equation (48) is
examined first. Applying integration by parts twice, the Fourier transform of the cross term becomes∫ ∞

−∞
ε1(r, t)

∂2

∂t2
E(r, t)e−jωt dt = ε1

∂E
∂t
e−jωt

∣∣∣∣∞
−∞

+

(
∂ε1

∂t
− jωε

)
Ee−jωt

∣∣∣∣∞
−∞

+

∫ ∞
−∞

(
∂2ε1

∂t2
− 2jω

∂ε1

∂t
− ω2ε1

)
Ee−jωt dt. (51)

The first two terms on the right-side can be set equal to zero since the electric field does not exist (i.e., is
equal to zero) at t = ±∞. Next, applying the approximations for the first and second time derivatives of
ε1 discussed above, the magnitude of the expression in parentheses in the integrand of the integral on the
right-hand side can be approximated as∣∣∣∣∂2ε1

∂t2
− 2jω

∂ε1

∂t
− ω2ε1

∣∣∣∣ ∼ σε
τ2
ε

+
νσε
τε

+ ν2σε =

(
1

τ2
ε ν

2
+

1

τεν
+ 1

)
ν2σε. (52)

Since τεν � 1 (third assumption), the first two terms in parentheses on the right-hand side can be safely
ignored, and the temporal Fourier transform of the cross term on the right-hand side of Equation (48) can be
approximated as ∫ ∞

−∞
ε1(r, t)

∂2

∂t2
E(r, t)e−jωt dt ' −ω2

∫ ∞
−∞

ε1(r, t)E(r, t)e−jωt dt. (53)

Since the temporal variations in ε1(r, t) are much slower than the temporal variations in the electric field
E(r, t) based on the third assumption (τεν � 1), ε1(r, t) can be safely moved outside of the integral:∫ ∞

−∞
ε1(r, t)E(r, t)e−jωt dt ' ε1(r, t)

∫ ∞
−∞

E(r, t)e−jωt dt = ε1(r, t)E(r, ω). (54)
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Similarly, when computing the temporal Fourier transform of the second term involving ∇ε1(r, t) on the
left-hand side of Equation (48),∇ε1(r, t) can be safely moved outside of the integral:∫ ∞

−∞
E(r, t) · ∇ε1(r, t)e−jωt dt '

[∫ ∞
−∞

E(r, t)e−jωt dt
]
· ∇ε1(r, t) = E(r, ω) · ∇ε1(r, t). (55)

At this point, the explicit time dependence in ε1 and ∇ε1 can be dropped. In other words, the medium can
be safely assumed to be frozen in time for the time scales of interest. Equipped with these approximations,
the temporal Fourier transform of Equation (48) reduces to

∇2E(r, ω) + k2 [1 + ε1(r)] E(r, ω) = −∇ [E(r, ω) · ∇ε1(r)] , (56)

where
k = ω

√
µ0ε0 〈εr〉. (57)

Equation (57) is the dispersion relation. The average speed of light in the turbulent medium is

c =
1√

µ0ε0 〈εr〉
. (58)

The next step involves the examination of the gradient term on the right-hand side of Equation (56).
Bringing all terms involving ε1(r) to the right-hand side, Equation (56) can be written as

∇2E(r, ω) + k2E(r, ω) = −k2ε1(r)E(r, ω)−∇ [E(r, ω) · ∇ε1(r)] . (59)

Using dimensional arguments, the magnitudes of the gradients of E(r, ω) and ε1(r) can be approximated as

|∇E(r, ω)| ∼ σE
λ

and |∇ε1(r)| ∼ σε
`ε
, (60)

where σE and σε are defined as before; λ is the wavelength of the propagating electromagnetic wave; and `ε
denotes the typical length scale associated with the spatial variations in ε1(r). Using these approximations,
the magnitudes of the first and second terms on the right-hand side of Equation (59) can be approximated as∣∣−k2ε1(r)E(r, ω)

∣∣ ∼ σεσE
λ2

(61)

and
|−∇ [E(r) · ∇ε1(r)]| ∼ σEσε

λ`ε
, (62)

respectively. The ratio of the magnitude of the second term divided by the magnitude of the first term is then
given by ∣∣∣∣∇ [E(r) · ∇ε1(r)]

k2ε1(r)E(r, ω)

∣∣∣∣ ∼ λ

`ε
. (63)

Now, if λ� `ε (fourth assumption), then the magnitude of the second term with the respect to the first term
is very small and the second term on the right-hand side of Equation (59) can therefore be safely ignored.
Bringing the remaining term on the right-hand side to the left-hand side, Equation (59) then reduces to the
classic wave equation:

∇2E(r, ω) + k2 [1 + ε1(r)] E(r, ω) = 0. (64)

Since Equation (64) now represents three uncoupled partial differential equations, one for each component
of the electric field, E(r, ω), any arbitrary component of the electric field, denoted by U(r, ω), can be
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considered for further analysis without loss of generality. In other words, it will be sufficient to consider the
following equation in place of Equation (64):

∇2U(r, ω) + k2 [1 + ε1(r)]U(r, ω) = 0. (65)

Equation (65) is the classic Helmholtz equation. For notational convenience, the explicit dependence on the
angular frequency, ω, can be dropped, and U(r, ω) can be written simply as U(r) in the following.

As alluded to in the beginning of this section, the scattering of electromagnetic waves propagation
through a turbulent medium is primarily in the forward direction, with little to no backscattering or reflection.
The parabolic wave equation describes how waves are scattered in such a manner. In anticipation of this
result, U(r) can be written as

U(r) = ψ(s, z)e−jkz, (66)

where the position vector, r, has been decomposed into a transverse component, s, and a longitudinal compo-
nent, z; that is, r = (s, z). Here, the scalar wave field, U(r), has been decomposed into a randomly scattered
component, ψ(r, z), and a plane wave propagating in the positive z direction. The next step involves substi-
tuting Equation (66) for U(r) in the Helmholtz wave Equation (65) to derive a partial differential equation
for the scattered wave field, ψ(s, z). To that end, the Laplacian operator in Equation (65) is first decomposed
into transverse and longitudinal components:

∇2U(r) = ∇2
⊥U(r) +

∂2U(r)

∂z2
, (67)

where

∇2
⊥ =

∂2

∂x2
+

∂2

∂y2
(68)

denotes the transverse Laplacian operator. The transverse Laplacian of U(r) then becomes

∇2
⊥U(r) =

[
∇2
⊥ψ(s, z)

]
e−jkz, (69)

while the longitudinal Laplacian can be written as

∂2U(r)

∂z2
=

∂2

∂z2

[
ψ(s, z)e−jkz

]
=

[
∂2ψ(s, z)
∂z2

− 2jk
∂ψ(s, z)
∂z

− k2ψ(s, z)
]
e−jkz. (70)

Using Equation (66), the second term in Equation (65) becomes

k2 [1 + ε1(r)]U(r) =
[
k2ψ(s, z) + k2ε1(s, z)ψ(s, z)

]
e−jkz. (71)

Gathering terms and dropping the common e−jkz term, the following partial differential equation is obtained
for the scattered wave field, ψ(r, z):

∇2
⊥ψ(s, z) +

∂2ψ(s, z)
∂z2

− 2jk
∂ψ(s, z)
∂z

+ k2ε1(s, z)ψ(s, z) = 0. (72)

At this point, the only term standing in the way of arriving at the parabolic wave equation is the second
partial derivative of the scattered wave field, ψ(s, z), with respect to z in Equation (72). As before, dimen-
sional analysis is employed to examine the relative contribution of this term to the final result compared
to the term involving the first partial derivative of the scattered wave field with respect to z. To that end,

12



approximations are needed for the magnitudes of terms involving partial derivatives of the scattered wave
field with respect to z. However, here, ∂/∂z can no longer be simply replaced with 1/λ as was done when
deriving the Helmholtz Equation (65). This is because the characteristic length scale of the scattered wave
field in the propagation direction, z, is influenced by the turbulent medium. In other words, the desired
characteristic length scale that is needed to approximate the partial derivative of the scattered wave field,
ψ(s, z), with respect to z must capture the degree to which the field interacts with the medium. What is
needed is a correlation length for the scattered wave field along the z direction, which can be obtained by
considering a preliminary solution of Equation (72). Such a preliminary solution is derived next. Ignoring
the Laplacian terms, Equation (72) reduces to

−2jk
∂ψ(s, z)
∂z

+ k2ε1(s, z)ψ(s, z) = 0. (73)

Ignoring the Laplacian terms in Equation (72) is equivalent to ignoring the effects of diffraction. The goal
is merely to derive a typical length scale characterizing the spatial variations of the scattered wave field,
ψ(s, z), in the z direction. This length scale is prescribed by the so-called optical path length, influenced
mainly by refractive effects in the direction of propagation. Equation (73) therefore meets the need for
providing a preliminary solution from which a correlation length for ψ(s, z) can be derived. Its solution is

ψ(s, z) = ψ(s, 0) exp

(
−j k

2

∫ z

0
ε1(s, ζ) dζ

)
. (74)

Assuming plane waves, ψ(s, 0) = 1. To derive a correlation length, the correlation function of the scattered
wave field, ψ(s, z), along the z direction needs to be computed first. The correlation function of the scattered
wave field is given by

〈ψ(s, z1)ψ∗(s, z2)〉 =

〈
exp

(
−j k

2

[∫ z1

0
ε1(s, ζ1) dζ1 −

∫ z2

0
ε1(s, ζ1) dζ2

])〉
. (75)

Since ε1 is a zero-mean Gaussian random variable (first assumption), the following identity can be used to
compute the above ensemble average (denoted by angular brackets):〈

ejθ
〉

= e−
1
2〈θ2〉. (76)

where θ is a zero-mean Gaussian random variable. Applying this identity, the correlation function for the
scattered wave field becomes

〈ψ(s, z1)ψ∗(s, z2)〉 = exp

(
−k

2

8

〈[∫ z1

0
ε1(s, ζ) dζ −

∫ z2

0
ε1(s, ζ) dζ

]2
〉)

. (77)

The ensemble average in the exponential can be written as〈[∫ z1

0
ε1(s, ζ) dζ −

∫ z2

0
ε1(s, ζ) dζ

]2
〉

=

∫ z1

0

∫ z1

0
〈ε1(s, ζ1)ε1(s, ζ2)〉 dζ1dζ2

− 2

∫ z1

0

∫ z2

0
〈ε1(s, ζ1)ε1(s, ζ2)〉 dζ1dζ2 +

∫ z2

0

∫ z2

0
〈ε1(s, ζ1)ε1(s, ζ2)〉 dζ1dζ2. (78)

Letting z1 = z and z2 = z + `ψ, the correlation length, `ψ, can be defined as the point where

〈ψ(s, z)ψ∗(s, z + `ψ)〉 =
1

2
. (79)
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Letting z1 = and z2 = z + `ψ in Equation (78), the second double integral on the right-hand side of
Equation (78) can be decomposed into two double integrals:∫ z1

0

∫ z2

0
=

∫ z

0

∫ z+`ψ

0
=

∫ z

0

∫ z

0
+

∫ z

0

∫ z+`ψ

z
. (80)

Similarly, the second double integral on the right-hand side of Equation (78) can be expanded to∫ z2

0

∫ z2

0
=

∫ z+`ψ

0

∫ z+`ψ

0
=

∫ z

0

∫ z

0
+

∫ z

0

∫ z+`ψ

z
+

∫ z+`ψ

z

∫ z

0
+

∫ z+`ψ

z

∫ z+`ψ

z
. (81)

Due to the symmetry of the correlation function, the middle two double integrals on the right-hand side can
be combined: ∫ z

0

∫ z+`ψ

z
+

∫ z+`ψ

z

∫ z

0
= 2

∫ z

0

∫ z+`ψ

z
. (82)

Using this result, Equation (78) becomes〈[∫ z

0
ε1(s, ζ) dζ −

∫ z+`ψ

0
ε1(s, ζ) dζ

]2
〉

=

∫ z+`ψ

z

∫ z+`ψ

z
〈ε1(s, ζ1)ε1(s, ζ2)〉 dζ1dζ2. (83)

Hence, the correlation length, `ψ, of the scattered wave field in the z direction can be obtained by solving

〈ψ(s, z)ψ∗(s, z + `ψ)〉 = exp

(
−k

2

8

∫ z+`ψ

z

∫ z+`ψ

z
〈ε1(s, ζ1)ε1(s, ζ2)〉 dζ1dζ2

)
=

1

2
. (84)

Taking the natural logarithm of both sides of this equation and letting z = 0 without loss of generality gives

k2

∫ `ψ

0

∫ `ψ

0
〈ε1(s, ζ1)ε1(s, ζ2)〉 dζ1dζ2 = 8 ln 2. (85)

The correlation function of the variations in ε1 along the z direction can be denoted with

Rε(s, ζ1, ζ2) = 〈ε1(s, ζ1)ε1(s, ζ2)〉 . (86)

Since ε1 is a stationary random field, the correlation function is only a function of the difference between
the two points ζ1 and ζ2 along the propagation direction; that is,

Rε(s, ζ1, ζ2) = Rε(s, ζ1 − ζ2). (87)

Letting ζ = ζ1 − ζ2 and integrating Equation (85) over ζ2 gives

k2`ψ

∫ `ψ

−`ψ

(
1− |ζ|

`ψ

)
Rε(s, ζ) dζ = 8 ln 2. (88)

Now, if `ε � `ψ (fifth assumption), then∫ `ψ

−`ψ

(
1− |ζ|

`ψ

)
Rε(s, ζ) dζ '

∫ ∞
−∞

Rε(s, ζ) dζ ∼ σ2
ε`ε. (89)

Ignoring the numerical factors 8 ln 2 and 4π2, the correlation length is then given by

`ψ ∼
λ2

σ2
ε`ε

. (90)
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Equipped with a proper length scale characterizing the variations in the scattered wave field, ψ(s, z), it
is now possible to write approximations for the magnitudes of the partial derivatives of the scattered wave
field with respect to z in Equation (72). The first and second partial derivatives can be approximated as∣∣∣∣∂ψ(s, z)

∂z

∣∣∣∣ ∼ σψ
`ψ

and
∣∣∣∣∂2ψ(s, z)

∂z2

∣∣∣∣ ∼ σψ
`2ψ
, (91)

where

σψ =

√〈
|ψ(s, z)|2

〉
(92)

denotes the root-mean-square variations in the scattered wave field, ψ(s, z). The magnitudes of the second
and third terms in Equation (72) can, in turn, be approximated as∣∣∣∣∂2ψ(s, z)

∂z2

∣∣∣∣ ∼ σψ
`2ψ
∼ σψσ

4
ε`

2
ε

λ4
(93)

and ∣∣∣∣−2jk
∂ψ(s, z)
∂z

∣∣∣∣ ∼ σψ
λ`ψ
∼ σψσ

2
ε`ε

λ3
, (94)

respectively. The ratio of the magnitudes of the second and third terms in Equation (72) then can be approx-
imated as ∣∣∣∣ ∂2ψ(s, z)/∂z2

−2jk [∂ψ(s, z)/∂z]

∣∣∣∣ ∼ σ2
ε`ε
λ

. (95)

It follows that if σ2
ε � λ/`ε (sixth assumption), then Equation (72) becomes

−2jk
∂ψ(s, z)
∂z

+∇2
⊥ψ(s, z) + k2ε1(s, z)ψ(s, z) = 0. (96)

Equation (96) is the parabolic wave equation governing the propagation of waves in turbulent media.

The parabolic wave Equation (96) is expressed in terms of the normalized fluctuations, ε1(s, z), of the
relative electric permittivity. To tie it back to the results derived in Section 2, it must be expressed in terms
of the index of refraction. The relation between the index of refraction and the relative electric permittivity
is given by

n(s, z) =
√
εr(s, z) =

√
〈εr〉 [1 + ε1(s, z)]. (97)

Since
√〈
|ε1(s, z)|2

〉
� 1 (second assumption), a first-order Taylor approximation can be applied to obtain

n(s, z) '
√
〈εr〉

[
1 +

ε1(s, z)
2

]
. (98)

It follows that
〈n〉 =

√
〈εr〉 (99)

and
ε1(s, z) = 2n1(s, z). (100)

Substituting this expression for ε1(s, z) into Equation (96), the parabolic wave equation can then be written
in terms of the index of refraction:

−2jk
∂ψ(s, z)
∂z

+∇2
⊥ψ(s, z) + 2k2n1(s, z)ψ(s, z) = 0. (101)
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The parabolic wave Equation (101) is the fundamental equation describing the propagation of waves
through turbulent media and will be the point of departure in the following discussion2. A number as-
sumptions were made to arrive at Equation (101) from the Maxwell equations. All assumptions have been
verified by measurements. Before leaving this section, here is a summary of the assumptions that were made
to derive the parabolic wave equation:

1. The random fluctuations in the normalized relative permittivity, ε1(r, t), are described by a zero-mean
Gaussian probability density function. Since ε1(r, t) = 2n1(r, t), the fluctuations in the normalized
relative index of refraction, n1(s, z), are also described by a zero-mean Gaussian probability density
function.

2. The root-mean-square variations in ε1(r, t), and hence the root-mean-square variations in n1(r, t), are

significantly smaller than unity; that is, σε =

√〈
|ε1(r, t)|2

〉
� 1 and σn =

√〈
|n1(r, t)|2

〉
� 1.

3. The typical time scale of the variations in ε1(r, t), and hence the typical time scale of the variations in
n1(r, t), is significantly greater that the inverse of the frequency of the propagating electromagnetic
wave; that is, τεν � 1 and τnν � 1. This assumption allows ε1 and n1 to be treated as frozen
in time for propagation problems involving time scales that are much smaller than the time scales
characterizing the random variations of the turbulent medium. In other words, we can let ε1(r, t) →
ε1(r) and n1(r, t)→ n1(r) in propagation equations.

4. The typical length scale of the variations in ε1(r), and hence the typical length scale of the variations
in n1(r), is significantly greater than the wavelength of the propagating electromagnetic wave; that is,
`ε � λ and `n � λ.

5. The correlation length of the variations in the scattered wave field, ψ(s, z), where r = (s, z), is
significantly greater that the typical length scale of the variations in ε1(s, z), and hence significantly
greater the typical length scale of the variations in n1(s, z); that is, `ψ � `ε and `ψ � `ε.

2Interestingly, letting z → t, s → r, k → ~−1, ∇⊥ → ∇, and n1(s, z) → −V (r, t), Equation (101) takes the same form as
the time-dependent Schrödinger equation describing the motion of a particle of unit mass (m = 1) in three-dimensional space:

−j~∂ψ(r, t)
∂t

+
~2

2
∇2ψ(r, t)− V (r, t)ψ(r, t) = 0.

Using operator notation, the time-dependent Schrödinger can be written as

−j~∂ |ψ〉
∂t

= H |ψ〉 ,

where

H = −~2

2
∇2 + V (r, t)

is the system’s Hamiltonian, representing the particle’s total energy (kinetic energy plus potential energy). The first term is the
particle’s kinetic energy, while V (r, t) is the particle’s time-dependent potential energy. The momentum operator, p̂ is, in turn,
given by

p̂ = j~∇.
Hence, the particle’s kinetic energy is given by

‖p̂‖2

2
= −~2

2
∇2.

It follows that in an analogy with quantum mechanics,∇2
⊥/(2k

2)+n1(s, z) in Equation (101) can be interpreted as a Hamiltonian;
j∇⊥/k can be interpreted as a momentum operator; and n(s, z) can be interpreted as the negative of a potential energy.
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6. The mean-square variations in ε1(s, z) is significantly smaller than the ratio of the wavelength of the
propagating electromagnetic wave divided by the typical length scale of the variations in ε1(s, z); that
is, σ2

ε � λ/`ε. Similarly, the mean-square variations in n1(s, z) is significantly smaller than the ratio
of the wavelength of the propagating electromagnetic wave divided by the typical length scale of the
variations in n1(s, z); that is, σ2

n � λ/`n. These are stronger conditions compared to the conditions
σε � 1 and σn � 1 (third assumption).

A major consequence of the fifth assumption (`ψ � `ε or `ψ � `n) is that the turbulent medium can
be assumed to be uncorrelated along the direction of propagation (z direction in our notation). This is the
Markov approximation. The Markov approximation implies that the scattering caused by a thin layer of the
random medium along the propagation direction is independent of the scattering caused by the layers of the
random medium behind this layer. This result is consistent with the small-angle forward scattering of waves
governed by the parabolic wave equation. The Markov approximation simplifies the derivation of formal
solutions of parabolic wave equation, which is the subject of the next section.

4 Formal Solutions

In this section, two formal solutions of the parabolic wave Equation (101) are derived for two limiting
scenarios. Section 4.1 addresses the case where the turbulent medium is concentrated in a thin layer per-
pendicular to the direction of propagation. Many propagation effects be can be explained with a fairly high
degree of accuracy using such a “thin screen” model of the medium, such as scenarios involving electro-
magnetic waves propagating through “clumps” of turbulent regions in the atmosphere. The thin medium
layer acts effectively as a phase screen that corrugates the wavefronts of the propagating electromagnetic
waves. The statistical properties of such a phase screen are discussed in Section 4.2. The solution to the thin
screen problem also provides a convenient basis for deriving the formal solution for the case of an extended
medium—the second limiting scenario—that can be regarded as a superposition of many thin screens. The
formal solution for the case of wave propagation through extended media is derived in Section 4.3.

4.1 The Thin Screen Problem

In this section, a formal solution of the parabolic wave Equation (101) is derived for the limiting case of the
turbulent medium being concentrated in a thin screen of thickness δz located at z = 0. The geometry of this
propagation scenario is illustrated in Figure 4.

Although thin, the screen’s thickness is assumed to be still significantly greater than the typical length
scale of the normalized relative index of refraction fluctuations of the medium, n1(s, z); that is, δz � `n.
Yet, the screen is assumed to be thin enough to allow for solving the parabolic wave Equation (101) in two
more simplified steps. In the first step, the diffractive effects modeled by the transverse Laplacian, ∇2

⊥, in
the parabolic wave Equation (101) are ignored. This results in the so-called geometric optics solution that
captures the effect the turbulent medium will have in modifying the phase of waves propagating through the
thin screen. In the second step, the parabolic wave equation is solved by ignoring the third term involving
the index of refraction, n1(s, z), in Equation (101). In other words, the second step compensates for the
diffractive effects that were ignored in the first step. In the second step, the geometrical optics solution
from the first step becomes the initial condition for solving the free-space version (n1 = 0) of the parabolic
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Figure 4: Geometry of the thin screen propagation problem. The radiation source is assumed to lie very far
away from the observer. The turbulent medium is assumed to be concentrated into a thin layer at z = 0.

wave equation. This technique for solving the parabolic wave equation is often referred to as the split-step
algorithm. The split-step technique can be applied only if the medium layer is sufficiently thin.

In the first step of the split-step algorithm, the geometric optics solution associated with the scattered
wave field immediately exiting the screen of thickness δz located at z = 0 (see Figure 4) is desired; that is,
the aim is to obtain ψ(s, δz). Within the screen (0 ≤ z < δz), ignoring the Laplacian term, ∇2

⊥ψ(s, z), in
Equation (101), the parabolic wave equation becomes

−2jk
∂ψ(s, z)
∂z

+ 2k2n1(s, z)ψ(s, z) = 0. (102)

This is a trivial differential equation that can be easily solved to give

ψ(s, δz) = ψ(s, 0) exp

(
−jk

∫ δz

0
n1(s, ζ) dζ

)
, (103)

where ψ(s, 0) is the wave field immediately prior to entering the thin screen. For a point source at a distance
very far away from the observer, the wave impinging on the thin screen is effectively a plane wave; that is,
ψ(s, 0) = 1 (see Figure 4). Letting

ϕ(s) = k

∫ δz

0
n1(s, ζ) dζ, (104)
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the solution can be written as
ψ(s, δz) = ψ(s, 0)e−jϕ(s). (105)

Here, ϕ(s) denotes the random phase variations induced by the medium as the wave propagates through it.

In the second step of the split-step algorithm, the diffractive effects captured by the Laplacian term,
∇2
⊥ψ(s, z), in the parabolic wave Equation (101) that were ignored in deriving the geometric optics solu-

tion (105) are included. Letting n1(s, z) = 0 in Equation (101), the parabolic wave equation becomes

−2jk
∂ψ(s, z)
∂z

+∇2
⊥ψ(s, z) = 0. (106)

The geometric optics solution (105) serves as the initial condition for solving this partial differential equa-
tion. Since after exiting the thin screen, the wave propagates through free space until it reaches the ob-
servation plane (see Figure 4), the solution to the free-space parabolic wave Equation (106) with initial
condition (105) can be applied to any z > 0 and is therefore not limited to only within the thin screen (i.e.,
0 < z < δz). Fourier analysis can be used to solve Equation (106). The following Fourier relations are
assumed (see also Appendix A)3:

ψ(s, z) =

∫
R2

Ψ(κ, z)e−jκ·s d2κ, (107)

Ψ(κ, z) =
1

(2π)2

∫
R2

ψ(s, z)ejκ·s d2s. (108)

Taking the two-dimensional Fourier transform of Equation (106) and noting that

∇2
⊥ψ(s, z) =

∫
R2

[
−‖κ‖2 Ψ(κ, z)

]
e−jκ·s d2κ, (109)

the parabolic wave equation becomes

−2jk
∂Ψ(κ, z)

∂z
− ‖κ‖2 Ψ(κ, z) = 0. (110)

This again is a trivial differential equation that can be easily solved to give

Ψ(κ, z) = Ψ(κ, δz) exp

(
j ‖κ‖2

2k

∫ z

0
dζ

)
, (111)

where Ψ(κ, δz) is the two-dimensional Fourier transform of the geometrical optics solution, ψ(s, δz), which
serves as the initial condition for the free-space parabolic wave Equation (106). The exponential term in
Equation (111) is a Gaussian function. Its inverse Fourier transform is therefore also a Gaussian function:∫

R2

exp

(
jz

2k
‖κ‖2

)
e−jκ·s d2κ =

jk

2πz
exp

(
−jk

2z
‖s‖2

)
. (112)

The inverse Fourier transform of Equation (111) is therefore the convolution of this Gaussian function and
the initial condition ψ(s, δz):

ψ(s, z) = ψ(s, δz) ∗ jk

2πz
exp

(
−jk

2z
‖s‖2

)
. (113)

3Since the function ψ(s, z) is stochastic, the Fourier integral is not guaranteed to be absolutely integrable. Any discontinuities
of ψ(s, z) are also not guaranteed to be finite. More formally, the stochastic Fourier–Stieltjes integral must be used instead of the
conventional Fourier integral. However, the same result as derived in this section is obtained when applying the Fourier–Stieltjes
integral. As a result, this subtlety is often ignored in the literate. For more information on Fourier–Stieltjes integral see [1].
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Expanding the convolution integral, ψ(s, z) can be written as

ψ(s, z) =
jk

2πz

∫
R2

ψ
(
s′, 0

)
e−jϕ(s′) exp

(
−jk

2z

∥∥s′ − s
∥∥2
)
d2s′. (114)

This is the formal solution for the scattered wave field, ψ(s, z), propagating through a thin screen. Equa-
tion (114) can also be written as

ψ(s, z) =

∫
R2

ψ
(
s′, 0

)
G
(
s, s′, z

)
d2s′, (115)

where
G(s, s′, z) = e−jϕ(s′)Gf (s, s′, z) (116)

is the Green function for the wave propagation problem through the turbulent thin screen. The second factor
on the right-hand side is, in turn, the free-space Green function:

Gf
(
s, s′, z

)
=

jk

2πz
exp

(
−jk

2z

∥∥s′ − s
∥∥2
)
. (117)

4.2 Phase Statistics

The statistical properties of the phase fluctuations induced by the thin layer of random medium of thickness
δz (see Figure 4),

ϕ(s) = k

∫ δz

0
n1(s, ζ) dζ, (118)

play a direct role in characterizing the average behavior of the scattered wave field, ψ(s, z), in the observa-
tion plane. In this section, the key statistical parameters characterizing the random behavior of these phase
fluctuations are derived and expressed in terms of the corresponding statistical parameters associated with
the fluctuations of the normalized relative index of fraction of the turbulent medium. Specifically, expres-
sions are derived for characterizing the second-order statistical behavior of the phase function specified in
Equation (118), corresponding to the correlation function of ϕ(s), or, equivalently, its power spectral density.

The two-point correlation function of the random phase fluctuation, ϕ(s), is defined by

Rϕ(s1, s2) = 〈[ϕ(s1)− 〈ϕ(s1)〉] [ϕ(s2)− 〈ϕ(s2)〉]〉 , (119)

where the angular brackets, 〈·〉, denote the ensemble average. The ensemble average of ϕ(s) can be easily
computed from Equation (118) to obtain

〈ϕ(s)〉 = k

∫ δz

0
〈n1(s, ζ)〉 dζ = 0. (120)

It follows that the correlation function, Rϕ(s1, s2), can be expressed as

Rϕ(s1, s2) = 〈ϕ(s1)ϕ(s2)〉 = k2

∫ δz

0

∫ δz

0
〈n1(s1, ζ1)n1(s2, ζ2)〉 dζ1dζ2. (121)

Now, since n1(s, z) is a homogeneous scalar random field, its two-point correlation function is only a func-
tion of the difference between the two points; that is,

〈n1(s1, z1)n1(s2, z2)〉 = Rn(s1 − s2, z1 − z2). (122)
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Using this expression, the expression for Rϕ(s1, s2) becomes

Rϕ(s1, s2) = k2

∫ δz

0

∫ δz

0
Rn(s1 − s2, ζ1 − ζ2) dζ1dζ2. (123)

It follows that
Rϕ(s1, s2) = Rϕ(s1 − s2) = Rϕ(s), (124)

is also a function of the difference vector, s = s1 − s2. Letting ζ = ζ1 − ζ2 and integrating over ζ2, Rϕ(s)
becomes

Rϕ(s) = k2δz

∫ δz

−δz

(
1− |ζ|

δz

)
Rn(s, ζ) dζ. (125)

Since the screen thickness, δz, is assumed to be significantly greater than the typical length, `n, of the
variations in n1(s, z), Rϕ(s) can be written as

Rϕ(s) ' k2δz

∫ ∞
−∞

Rn(s, ζ) dζ. (126)

Taking the two-dimensional Fourier transform (with respect to s) of Rn(s, ζ), Rn(s, ζ) can be written in
terms of the power spectral density of the normalized index of refraction fluctuations:

Rn(s, z) =

∫ ∞
−∞

∫
R2

Pn(κ, qz)e
−jκ·se−jqzz d2κ dqz. (127)

Rϕ(s) can therefore be written as

Rϕ(s) = k2δz

∫ ∞
−∞

[∫ ∞
−∞

∫
R2

Pn(κ, qz)e
−jκ·se−jqzζ d2κ dqz

]
dζ. (128)

Since ∫ ∞
−∞

e−jqzζ dζ = 2πδ(qz), (129)

where δ(·) is the Dirac delta function, it follows that

Rϕ(s) = 2πk2δz

∫
R2

Pn(κ, 0)e−jκ·s d2κ. (130)

Since the correlation function, Rφ(s), can also be expressed as the two-dimensional Fourier transform of the
power spectral density, Pϕ(κ), of the phase fluctuations induced by the thin screen,

Rϕ(s) =

∫
R2

Pϕ(κ)e−jκ·s d2κ, (131)

it follows that
Pϕ(κ) = 2πk2δzPn(κ, 0). (132)

Equation (132) provides a direct relation between the power spectral density of the phase fluctuations in-
duced by the thin screen and the power spectral density of the fluctuations in the index of refraction of the
turbulent medium. Substituting the general expression for the power spectral density of the index of refrac-
tion fluctuations discussed in Section 2 into Equation (132), the following expression is obtained for the
power spectral density of the phase fluctuations induced by the thin screen:

Pϕ(κ) =
C2
ϕ

(κ2 + κ2
o)
β/2

exp

(
−κ

2

κ2
i

)
, (133)
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where κ = ‖κ‖ =
√
q2
x + q2

y denotes the magnitude of the two-dimensional wavenumber, κ, and

C2
ϕ = 2πk2f(β)C2

nδz (134)

is hereafter referred to as the phase structure constant.

Beside the power spectral density, another important function characterizing the second-order statisti-
cal behavior of a random field is the structure function. The general definition of the structure function
(expressed here for the random phase fluctuations, ϕ(s)) is given by

Dϕ(s1, s2) =
〈
{[ϕ(s1)− 〈ϕ(s1)〉]− [ϕ(s2)− 〈ϕ(s2)〉]}2

〉
=
〈

[ϕ(s1)− ϕ(s2)]2
〉
. (135)

Structure functions are useful for describing the statistical properties of random fields that are only locally
homogeneous (see [1] for a more detailed discussion on structure functions and inhomogeneous random
fields). For stationary random fields, expanding the right-hand side of Equation (135), the structure function
can be directly related to the correlation function:

Dϕ(s) = 2 [Rϕ(0)−Rϕ(s)] , (136)

where s = s1 − s2. Clearly, Dϕ(0) = 0. Using this relationship, the structure function of the phase
fluctuations can also be expressed in terms of their power spectral density:

Dϕ(s) = 2

∫
R2

Pϕ(κ)
[
1− e−jκ·s

]
d2κ. (137)

4.3 Extended Media

The thin screen solution derived in Section 4.1 forms the basis for deriving a formal solution for the extended
medium scenario. The extended medium can be modeled as a superposition of a large number of thin phase
screens stacked on top of each other. Due to the Markov approximation discussed at the end of Section 3, the
propagation problem through each phase screen can be treated independently. The wave exiting one phase
screen becomes the input to the next phase screen along the propagation direction. The formal solution
for the extended medium scenario is obtained by dividing the extended medium into ever larger number of
phase screens.

The geometry relevant to the discussion in this section is shown in Figure 5. Specifically, the extended
medium is divided into N phase screens, each of thickness δz, along the z-axis (direction of propagation),
such that

zk+1 = zk + δz, (138)

where k = 0, 1, 2, . . . , N − 1, with z0 = 0 and zN = Nδz = z (the observation plane). The initial aim will
be to derive the formal solution associated with the kth screen using the same split-step technique employed
in Section 4.1. Subsequently, the results will be combined using recursion to obtain the formal solution for
N screens.

The random phase variations induced by the kth screen are given by

ϕk(sk) = k

∫ zk+1

zk

n1(sk, ζ) dζ. (139)
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Figure 5: Extended medium propagation geometry. The radiation source is assumed to lie very far away
from the observer. The turbulent medium is divided into N thin screens along the direction of propagation.

Here, sk = (xk, yk) denotes the coordinates of the plane perpendicular to the direction of propagating at
z = zk. The kth phase screen corrugates the wavefront of the scattered wave field exiting the screen:

ψ−k (sk, zk+1) = ψ+
k (sk, zk) e−jϕk(sk), (140)

where ψ+
k (sk, zk) denotes the wave field entering the screen at z = zk, and ψ−k (sk, zk+1) denotes the

wave field exiting the phase screen prior to taking the diffractive effect of the free-space Green function into
account. This is the first step of the split-step solution. Next, to include the effect of diffraction, ψ−k (sk, zk+1)

is multiplied by the free-space Green function,

Gf (sk, sk+1, δz) =
jk

2πδz
exp

(
− jk

2δz
‖sk+1 − sk‖2

)
, (141)

and integrated over sk. The scattered wave field at z = zk+1 with the diffractive effect included is then given
by

ψ+
k+1(sk+1, zk+1) =

jk

2πδz

∫
R2

ψ−k (sk, zk+1) exp

(
−j k ‖sk+1 − sk‖2

2δz

)
d2sk. (142)

This is the second step of the split-step algorithm. Combining the two steps and dropping the now redundant
“+” and “−” superscripts, the following recursion relation expressing the scattered wave field at z = zk+1
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in terms of the scattered wave field at z = zk is obtained:

ψk+1(sk+1, zk+1) =
jk

2πδz

∫
R2

ψk(sk, zk) e−jϕk(sk) exp

(
−j k ‖sk+1 − sk‖2

2δz

)
d2sk. (143)

Applying Equation (142) recursively, the expression for the scattered wave field at z = zN = Nδz is then
given by

ψ(sN , zN ) =

(
jk

2πδz

)N−1 ∫
R2

· · ·
∫
R2

ψ(s1, z1) exp

(
−j

N−1∑
k=1

[
ϕ(sk) +

k ‖sk+1 − sk‖2
2δz

])
d2sN−1 · · · d2s1. (144)

This is the formal solution for the wave field propagating through N phase screens.

Letting
k ‖sk+1 − sk‖2

2δz
=
k

2

∥∥∥∥sk+1 − sk
δz

∥∥∥∥2

δz, (145)

and noting that δz is very small, ϕ(s) can be approximated as

ϕ(sk) ' kn1(sk, zk)δz. (146)

Subsequently, the argument of the exponential in Equation (144) can be written as

−j
N−1∑
k=1

[
ϕ(sk) +

k ‖sk+1 − sk‖2
2δz

]
= −jk

N−1∑
k=1

[
n1(sk, zk) +

1

2

∥∥∥∥sk+1 − sk
δz

∥∥∥∥2
]
δz. (147)

As N →∞ (and therefore as δz → 0), the summation is replaced with an integral:

lim
N→∞

N−1∑
k=1

[
n1(sk, zk) +

1

2

∥∥∥∥sk+1 − sk
δzk

∥∥∥∥2
]
δzk =

∫ z

0

[
n1 (s(ζ), ζ) +

1

2

∥∥∥∥ds(ζ)

dζ

∥∥∥∥2
]
dζ, (148)

where z = zN (observer location). The scattered wave field is, in turn, given by

ψ(s, z) = lim
N→∞

ψ(sN , zN ) =

∫
ψ(s(0), 0) exp

(
−jk

∫ z

0
L(s(ζ), ζ) dζ

)
Ds(z), (149)

where

L(s(ζ), ζ) =
1

2

∥∥∥∥ds(ζ)

dζ

∥∥∥∥2

+ n1(s(ζ), ζ), (150)

and Ds(z) denotes a “functional differential” that is defined such that∫
Ds(z) = lim

N→∞

[(
jk

2πδz

)N−1 ∫
R2

· · ·
∫
R2

d2sN−1 · · · d2s1

]
. (151)

Equation (149) is recognized as the Feynman path integral (see [5]). It is the formal solution of the parabolic
wave Equation (101) for an extended medium4.

4Following the footnote discussion in Section 3, letting s(ζ) → r, ζ → t, and interpreting n1(s(ζ), ζ) → −V (r, t) as a
potential energy in analogy with quantum mechanics, the expression in the square brackets in the integral in Equation (149) can be
interpreted as a Lagrangian (kinetic energy minus potential energy):

L(s(ζ), ζ) = 1

2

∥∥∥∥ds(ζ)
dζ

∥∥∥∥+ n1(s(ζ), ζ) → L(r, t) = 1

2
‖ṙ‖2 − V (r, t).
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5 Second-Order Statistics

The formal solutions derived in Section 4 represent the random realizations of the scattered wave field. One
must resort to statistical analyses in order to gain a better understanding of the propagation problem at hand.
Statistical moments describe key average properties associated with the observed scattered wave fields.
In this section and the next, following the formulation of [6], expressions are derived for the second and
fourth statistical moments of the scattered wave field, respectively, that are of particular importance. These
expressions are used in Section 7 to derive few useful parameters characterizing the statistical behavior of
the observed scattered wave fields. The turbulent medium is assumed to be concentrated in a thin layer
located at a distance z from the observation plane. The solution of the parabolic wave equation given by
Equation (114) is used to derive the expressions for the second and fourth statistical moments for the thin
screen problem. Although not discussed, the Feynman path integral (149) can be used in a similar manner
to derive expressions for the second and fourth statistical moments for waves propagating through extended
media (see [6] for further detail).

5.1 Second Moment

The second statistical moment of the scattered wave field is defined as

Γ2(s1, s2, z) = 〈ψ(s1, z)ψ
∗(s2, z)〉 . (152)

The second moment represents the mutual coherence function of the scattered wave field. Its Fourier trans-
form, in turn, represents the brightness distribution function of the scattered wave field. The brightness
distribution is used to characterize the degree of angular scattering experienced by the wave propagating
through the turbulent medium.

Substituting Equation (114)—or, equivalently, Equation (115)—for the scattered wave field into Equa-
tion (152), the second statistical moment for a wave propagating through a thin turbulent medium layer
located at a distance z from the observation plane can be written as

Γ2(s1, s2, z) =

∫
R2

∫
R2

Γ2

(
s′1, s

′
2, 0
)
G2

(
s1, s2, s′1, s

′
2, z
)
d2s′1d

2s′2, (153)

where
G2

(
s1, s2, s′1, s

′
2, z
)

=
〈
G
(
s1, s′1, z

)
G∗
(
s2, s′2, z

)〉
. (154)

Substituting Equation (116) for the Green function, G, associated with the scattered wave field, the Green
function, G2, for the second moment can be written as

G2

(
s1, s2, s′1, s

′
2, z
)

=
〈
e−j[ϕ(s′1)−ϕ(s′2)]

〉
Gf2
(
s1, s2, s′1, s

′
2, z
)
, (155)

where
Gf2
(
s1, s2, s′1, s

′
2, z
)

= Gf
(
s1, s′1, z

)
Gf
∗ (s2, s′2, z

)
. (156)

Substituting Equation (117) for the free space Green function, Gf , associated with the scattered wave field
into Equation (156), the free space Green function, Gf2 , for the second moment becomes

Gf2
(
s1, s2, s′1, s

′
2, z
)

=

(
k

2πz

)2

exp

(
−jk

2z

(∥∥s′1 − s1

∥∥2 −
∥∥s′2 − s2

∥∥2
))

(157)

25



If θ is a zero-mean Gaussian random variable, then〈
ejθ
〉

= e−
1
2〈θ2〉. (158)

Using this identity, the term in angular brackets in Equation (155) can be expressed as〈
e−j[ϕ(s′1)−ϕ(s′2)]

〉
= e
− 1

2

〈
[ϕ(s′1)−ϕ(s′2)]

2
〉

= exp

(
−1

2
Dϕ

(
s′1 − s′2

))
. (159)

It follows from equations (157) and (159) that

Γ2(s1, s2, z) =

(
k

2πz

)2 ∫
R2

∫
R2

Γ2

(
s′1, s

′
2, 0
)

exp

(
−1

2
Dϕ

(
s′1 − s′2

))
× exp

(
−jk

2z

(∥∥s′1 − s1

∥∥2 −
∥∥s′2 − s2

∥∥2
))

d2s′1d
2s′2. (160)

To simplify Equation (160), the following change of variables is introduced:

σ′ = s′1 − s′1,

ρ′ =
s′1 + s′2

2
.

(161)

Equivalently, s′1 and s′2 can be expressed in terms of σ′ and ρ′:

s′1 = ρ′ +
σ′

2
,

s′2 = ρ′ − σ′

2
.

(162)

Similar relationships hold between (σ,ρ) and (s1, s2). Using the algebraic identity a2−b2 = (a+b)(a−b),
it follows that ∥∥s1 − s′1

∥∥2 −
∥∥s2 − s′2

∥∥2
=
(
s1 − s′1 + s2 − s′2

)
·
(
s1 − s′1 − s2 + s′2

)
=
[
(s1 + s2)−

(
s′1 + s′2

)]
·
[
(s1 − s2)−

(
s′1 − s′2

)]
= 2

(
ρ− ρ′

)
·
(
σ − σ′

)
.

(163)

The free space Green function for the second moment can then be expressed in terms of the new variables:

Gf2(σ,ρ,σ′,ρ′, z) =

(
k

2πz

)2

exp

(
−jk
z

(
ρ′ − ρ

)
·
(
σ′ − σ

))
. (164)

The relationship between the differential elements is given by

d2s′1d
2s′2 =

∣∣∣∣ ∂ (s′1, s′2)

∂ (σ′,ρ′)

∣∣∣∣ d2σ′d2ρ′. (165)

The Jacobian is, in turn, given by ∣∣∣∣ ∂ (s′1, s′2)

∂ (σ′,ρ′)

∣∣∣∣ =

∣∣∣∣∣
1
2 1

−1
2 1

∣∣∣∣∣ = 1. (166)

It follows that the second moment (160) can be written as

Γ2(σ,ρ, z) =

(
k

2πz

)2 ∫
R2

∫
R2

Γ2(σ′,ρ′, 0) exp

(
−1

2
Dϕ(σ′)

)
× exp

(
−jk
z

(
ρ′ − ρ

)
·
(
σ′ − σ

))
d2σ′d2ρ′. (167)
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5.2 Plane Waves

For plane waves,
ψ
(
s′, 0

)
= 1. (168)

It follows that
Γ2

(
s′1, s

′
2, 0
)

=
〈
ψ
(
s′1, 0

)
ψ∗
(
s′2, 0

)〉
= 1. (169)

Therefore, Equation (167) for the second moment becomes

Γ2(σ,ρ, z) =

(
k

2πz

)2 ∫
R2

∫
R2

exp

(
−1

2
Dϕ(σ′)

)
exp

(
−jk
z

(
ρ′ − ρ

)
·
(
σ′ − σ

))
d2σ′d2ρ′. (170)

Integration with respect to ρ′ gives(
k

2πz

)2 ∫
R2

exp

(
−jk
z

(
ρ′ − ρ

)
·
(
σ′ − σ

))
d2ρ′ = δ

(
σ′ − σ

)
. (171)

Substituting this results into Equation (170), the second moment reduces to

Γ2(σ,ρ, z) =

∫
R2

exp

(
−1

2
Dϕ(σ′)

)
δ
(
σ′ − σ

)
d2σ′ = exp

(
−1

2
Dϕ(σ)

)
. (172)

Since the second moment does not explicitly depend on ρ or z, it can be written as

Γ2(s) = exp

(
−1

2
Dϕ(s)

)
. (173)

6 Fourth-Order Statistics

In this section, expressions for the fourth moment and the associated intensity correlation function (or,
equivalently, the intensity spectrum) are derived for the thin screen problem; that is, the case when the
turbulent medium is modeled as a thin phase screen located at a distance z from the observation plane.
As in the case of the second moment, the Feynman path integral can be used to derive the corresponding
expressions for the case of waves propagating through an extended turbulent medium (see [6] for further
detail).

6.1 Fourth Moment

The fourth statistical moment of the scattered wave field is defined as

Γ4(s1, s2, s3, s4, z) = 〈ψ(s1, z)ψ
∗(s2, z)ψ(s3, z)ψ

∗(s4, z)〉 . (174)

The intensity correlation function (or, equivalently, the intensity spectrum) is related to the fourth moment.
The intensity of the scattered wave field is given by

S(s, z) = ψ(s, z)ψ∗(s, z). (175)

The intensity correlation function is then related to the fourth moment via the relation:

RS(s1, s2, z) = 〈S(s1, z)S(s2, z)〉 = Γ4(s1, s1, s2, s2, z). (176)
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Substituting Equation (114)—or, equivalently, Equation (115)—for the scattered wave field into Equa-
tion (174), the fourth statistical moment for a wave propagating through a thin turbulent medium layer
located at a distance z from the observation plane can be written as

Γ4(s1, s2, s3, s4, z) =

∫
R2

∫
R2

∫
R2

∫
R2

Γ4

(
s′1, s

′
2, s
′
3, s
′
4, 0
)
G4

(
s1, s2, s3, s4, s′1, s

′
2, s
′
3, s
′
4, z
)

d2s′1d
2s′2d

2s′3d
2s′4, (177)

where

G4

(
s1, s2, s3, s4, s′1, s

′
2, s
′
3, s
′
4, z
)

=
〈
G
(
s1, s′1, z

)
G∗
(
s2, s′2, z

)
G
(
s3, s′3, z

)
G∗
(
s4, s′4, z

)〉
. (178)

Substituting Equation (116) for the Green function, G, associated with the scattered wave field and letting(
si, s′i, z

)
=
(
s1, s2, s3, s4, s′1, s

′
2, s
′
3, s
′
4, z
)

(179)

for notational convenience, the Green function, G4, for the fourth moment can be written as

G4

(
si, s′i, z

)
=
〈
e−j[ϕ(s′1)−ϕ(s′2)+ϕ(s′3)−ϕ(s′4)]

〉
Gf4
(
si, s′i, z

)
, (180)

where
Gf4
(
si, s′i, z

)
= Gf

(
s1, s′1, z

)
Gf
∗ (s2, s′2, z

)
Gf
(
s3, s′3, z

)
Gf
∗ (s4, s′4, z

)
. (181)

Substituting Equation (117) for the free Green function, Gf , associated with the scattered wave field into
Equation (181), the free space Green function, Gf4 , for the fourth moment becomes

Gf4(si, s′i, z) =

(
k

2πz

)4

exp

(
−jk

2z

(∥∥s1 − s′1
∥∥2 −

∥∥s2 − s′2
∥∥2

+
∥∥s3 − s′3

∥∥2 −
∥∥s4 − s′4

∥∥2
))

. (182)

Using the identity given in Equation (158), the term in angular brackets in Equation (180) can be expressed
as 〈

e−j[ϕ(s′1)−ϕ(s′2)+ϕ(s′3)−ϕ(s′4)]
〉

= e
− 1

2

〈
[ϕ(s′1)−ϕ(s′2)+ϕ(s′3)−ϕ(s′4)]

2
〉
. (183)

The ensemble average in the exponent on the right-hand side of Equation (183) can be expanded to give〈[
ϕ
(
s′1
)
− ϕ

(
s′2
)

+ ϕ
(
s′3
)
− ϕ

(
s′4
)]2〉

=〈[
ϕ
(
s′1
)
− ϕ

(
s′2
)]2〉

+ 2
〈[
ϕ
(
s′1
)
− ϕ

(
s′2
)] [

ϕ
(
s′3
)
− ϕ

(
s′4
)]〉

+
〈[
ϕ
(
s′3
)
− ϕ

(
s′4
)]2〉

=

Dϕ

(
s′1 − s′2

)
+ 2

〈[
ϕ
(
s′1
)
− ϕ

(
s′2
)] [

ϕ
(
s′3
)
− ϕ

(
s′4
)]〉

+Dϕ

(
s′3 − s′4

)
. (184)

The cross term can be expanded to give

2
〈[
ϕ
(
s′1
)
− ϕ

(
s′2
)] [

ϕ
(
s′3
)
− ϕ

(
s′4
)]〉

=

2
〈
ϕ
(
s′1
)
ϕ
(
s′3
)〉
− 2

〈
ϕ
(
s′1
)
ϕ
(
s′4
)〉
− 2

〈
ϕ
(
s′2
)
ϕ
(
s′3
)〉

+ 2
〈
ϕ
(
s′2
)
ϕ
(
s′4
)〉

=

2Rϕ
(
s′1 − s′3

)
− 2Rϕ

(
s′1 − s′4

)
− 2Rϕ

(
s′2 − s′3

)
+ 2Rϕ

(
s′2 − s′4

)
. (185)

Since
Dϕ

(
s′m − s′n

)
= 2

[
Rϕ(0)−Rϕ

(
s′m − s′n

)]
, (186)
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with m = 1, 2 and n = 3, 4, the cross term can be written as

2
〈[
ϕ
(
s′1
)
− ϕ

(
s′2
)] [

ϕ
(
s′3
)
− ϕ

(
s′4
)]〉

=

Dϕ

(
s′1 − s′4

)
+Dϕ

(
s′2 − s′3

)
−Dϕ

(
s′1 − s′3

)
−Dϕ

(
s′2 − s′4

)
. (187)

It follows that Equation (183) can be written as〈
e−j[ϕ(s′1)−ϕ(s′2)+ϕ(s′3)−ϕ(s′4)]

〉
= exp

(
−1

2
Vϕ
(
s′1, s

′
2, s
′
3, s
′
4

))
, (188)

where

Vϕ
(
s′1, s

′
2, s
′
3, s
′
4

)
= Dϕ

(
s′1 − s′2

)
+Dϕ

(
s′3 − s′4

)
+Dϕ

(
s′1 − s′4

)
+Dϕ

(
s′2 − s′3

)
−Dϕ

(
s′1 − s′3

)
−Dϕ

(
s′2 − s′4

)
. (189)

Substituting equations (182) and (188) into Equation (177), the fourth moment can then be written as

Γ4(s1, s2, s3, s4, z) =

(
k

2πz

)4 ∫
R2

∫
R2

∫
R2

∫
R2

Γ4

(
s′1, s

′
2, s
′
3, s
′
4, 0
)

exp

(
−1

2
Vϕ
(
s′1, s

′
2, s
′
3, s
′
4

))
× exp

(
−jk

2z

(∥∥s1 − s′1
∥∥2 −

∥∥s2 − s′2
∥∥2

+
∥∥s3 − s′3

∥∥2 −
∥∥s4 − s′4

∥∥2
))

d2s′1d
2s′2d

2s′3d
2s′4. (190)

To simplify Equation (190), the following change of variables is introduced: Change of variables:

α′ =
s′1 + s′2

2
+

s′3 + s′4
2

,

β′ =
s′1 + s′2

2
− s′3 + s′4

2
,

γ ′ =
s′1 − s′2

2
− s′3 − s′4

2
,

δ′ =
s′1 − s′2

2
+

s′3 − s′4
2

.

(191)

Equivalently, s′1, s′2, s′3, and s′4 can be expressed in terms of α′, β′, γ ′, and δ′:

s′1 =
α′ + β′

2
+

γ ′ + δ′

2
,

s′2 =
α′ + β′

2
− γ ′ + δ′

2
,

s′3 =
α′ − β′

2
− γ ′ − δ′

2
,

s′4 =
α′ − β′

2
+

γ ′ − δ′

2
.

(192)

Similar relationships hold between (α,β,γ, δ) and (s1, s2, s3, s4). Using the algebraic identity a2 − b2 =

(a+ b) (a− b), it follows that∥∥s1 − s′1
∥∥2 −

∥∥s2 − s′2
∥∥2

+
∥∥s3 − s′3

∥∥2 −
∥∥s4 − s′4

∥∥2
=

2
(
α−α′

)
·
(
δ − δ′

)
+ 2

(
β − β′

)
·
(
γ − γ ′

)
. (193)
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The free space Green function for the fourth moment can then be expressed in terms of the new variables:

Gf4(α,β,γ, δ,α′,β′,γ ′, δ′, z) = exp

(
−jk
z

[(
α−α′

)
·
(
δ − δ′

)
+
(
β − β′

)
·
(
γ − γ ′

)])
. (194)

The relationship between the differential elements is given by

d2s′1d
2s′2d

2s′3d
2s′4 =

∣∣∣∣∣ ∂ (s′1, s′2, s′3, s′4)

∂
(
α′,β′,γ ′, δ′

)∣∣∣∣∣ d2α′d2β′d2γ ′d2δ′. (195)

The Jacobian is, in turn, given by

∣∣∣∣∣ ∂ (s′1, s′2, s′3, s′4)

∂
(
α′,β′,γ ′, δ′

)∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1

2


1 1 1 1

1 1 −1 −1

1 −1 −1 1

1 −1 1 −1


∣∣∣∣∣∣∣∣ = 1. (196)

Expressing Vϕ (s′1, s′2, s′3, s′4) in terms of α′, β′, γ ′, and δ′,

Vϕ
(
β′,γ ′, δ′

)
= Dϕ

(
γ ′ + δ′

)
+Dϕ

(
γ ′ − δ′

)
+Dϕ

(
β′ + δ′

)
+Dϕ

(
β′ − δ′

)
−Dϕ

(
β′ + γ ′

)
−Dϕ

(
β′ − γ ′

)
, (197)

it follows that Vϕ does not depend on α′. In terms of the new variables, the fourth moment can then be
written as

Γ4(α,β,γ, δ, z) =

(
k

2πz

)4 ∫
R2

∫
R2

∫
R2

∫
R2

Γ4

(
α′,β′,γ ′, δ′, 0

)
exp

(
−1

2
Vϕ
(
β′,γ ′, δ′

))
× exp

(
−jk
z

[(
α−α′

)
·
(
δ − δ′

)
+
(
β − β′

)
·
(
γ − γ ′

)])
d2α′d2β′d2γ ′d2δ′. (198)

6.2 Series Representation

The expression for the fourth moment given by Equation (198) is very complicated and cannot be computed
analytically. In this section, a series representation is derived for the fourth moment that allows inference
of asymptotic solutions for the intensity correlation function (or, equivalently, the intensity spectrum). It
follows directly from the definition (174) that the fourth moment has the following symmetry property:

Γ4(s1, s2, s3, s4, z) = Γ4(s1, s4, s3, s2, z). (199)

From the relationship between the intensity correlation function and the fourth moment, namely,

RS(s1, s2, z) = 〈S(s1, z)S(s2, z)〉 = Γ4(s1, s1, s2, s2, z), (200)

and the symmetry property (199), it follows that the intensity correlation function can also be obtained from

RS(s1, s2, z) = Γ4(s1, s2, s2, s1, z). (201)

In other words, there are two ways to arriving at the intensity correlation function from the fourth moment:
either via s2 → s1 and s4 → s3 (and then setting s3 equal to s2 without loss of generality), or via s4 → s1
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ϕ
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′ 1
−
s
′ 2
)

Dϕ(s
′
1
− s′4)

Dϕ(s
′
2
− s′3)

D
ϕ
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ϕ (s ′
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ϕ
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′
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′
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)
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ϕ
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(γ
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Figure 6: The phase structure functions appearing in Equation (189) (left) and in Equation (197) (right).

and s3 → s2. This symmetry property can be exploited to obtain alternative series representations for the
fourth moment.

The exponential term involving Vϕ in Equation (198) is particularly cumbersome. The six structure
functions in Equation (189) that combine to give Vϕ are shown in Figure 6. The diagram on the left expresses
the structure functions in terms of the original variables, (s′1, s′2, s′3, s′4), while the diagram on the right
expresses the structure functions in terms of the new variables (β′,γ ′, δ′), where there is no dependence
on α′. In the first case of arriving at the intensity correlation function (i.e., via s′2 → s′1 and s′4 → s′3), the
combination

Dϕ

(
β′ + δ′

)
+Dϕ

(
β′ − δ′

)
−Dϕ

(
β′ + γ ′

)
−Dϕ

(
β′ − γ ′

)
(202)

becomes small since as s′2 → s′1 and s′4 → s′3, these four structure functions, as illustrated by the middle
diagram in Figure 7, become nearly equal to one another and nearly cancel out. It is therefore convenient to
write Vϕ as

Vϕ
(
β′,γ ′, δ′

)
= Dϕ

(
γ ′ + δ′

)
+Dϕ(γ ′ − δ′) +Q

(
β′,γ ′, δ′

)
, (203)

where
Q
(
β′,γ ′, δ′

)
= Dϕ

(
β′ + δ′

)
+Dϕ

(
β′ − δ′

)
−Dϕ

(
β′ + γ ′

)
−Dϕ

(
β′ − γ ′

)
(204)

becomes vanishingly small as s′2 → s′1 and s′4 → s′3. In the second way of arriving at the intensity correlation
function (i.e., via s′4 → s′1 and s′3 → s′2), the combination

Dϕ

(
γ ′ + δ′

)
+Dϕ

(
γ ′ − δ′

)
−Dϕ

(
γ ′ + β′

)
−Dϕ

(
β′ − γ ′

)
, (205)

becomes, in turn, small, as illustrated by the diagram on the right in Figure 7. In this case, it is therefore
convenient to write Vϕ as

Vϕ
(
β′,γ ′, δ′

)
= Dϕ

(
β′ + δ′

)
+Dϕ

(
β′ − δ′

)
+Q′

(
β′,γ ′, δ′

)
, (206)

where
Q′
(
β′,γ ′, δ′

)
= Dϕ

(
γ ′ + δ′

)
+Dϕ

(
γ ′ − δ′

)
−Dϕ

(
γ ′ + β′

)
−Dϕ

(
γ ′ − β′

)
(207)

is now vanishingly small as s′4 → s′1 and s′3 → s′2. Comparing Equation (207) with Equation (204) reveals
that Q′ can be obtained from Q by simply exchanging β′ and γ ′. From the relation,

Dϕ(s) = 2

∫
R2

Pϕ(κ)
(
1− e−jκ·s

)
d2κ, (208)
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Figure 7: Two ways of arriving at the intensity correlation function: via s′2 → s′1 and s′4 → s′3 (middle); or
via s′4 → s′1 and s′3 → s′2 (right).

Q can be expressed in terms of Pϕ:

Q
(
β′,γ ′, δ′

)
= 4

∫
R2

Pϕ(κ)
[
cos
(
κ · γ ′

)
− cos

(
κ · δ′

)]
e−jκ·β

′
d2κ. (209)

Similarly,

Q′
(
β′,γ ′, δ′

)
= 4

∫
R2

Pϕ(κ)
[
cos
(
κ · β′

)
− cos

(
κ · δ′

)]
e−jκ·γ

′
d2κ. (210)

Taking the route s′2 → s′1 and s′4 → s′3 to arrive at the intensity correlation function from the general
expression for the fourth moment, the Green function for the fourth moment can be expressed as

G4

(
si, s′i, z

)
= Gf4

(
si, s′i, z

)
exp

(
−1

2

[
Dϕ

(
γ ′ + δ′

)
+Dϕ

(
γ ′ − δ′

)
+Q

(
β′,γ ′, δ′

)])
, (211)

where the free space Green function for the fourth moment is given by

Gf4
(
si, s′i, z

)
=

(
k

2πz

)4

exp

(
−jk
z

[(
α−α′

)
·
(
δ − δ′

)
+
(
β − β′

)
·
(
γ − γ ′

)])
. (212)

Since Q is small, it makes sense to consider the following Taylor series expansion:

exp

(
−Q

(
β′,γ ′, δ′

)
2

)
=

∞∑
n=0

1

n!

[
−Q

(
β′,γ ′, δ′

)
2

]n
=

∞∑
n=0

1

n!

(
2

∫
R2

Pϕ
(
κ′
) [

cos
(
κ′ · δ′

)
− cos

(
κ′ · γ ′

)]
e−jκ

′·β′ d2κ′
)n

=

1 +

∞∑
n=1

2n

n!

∫
R2

· · ·
∫
R2

{
n∏

m=1

Pϕ
(
κ′m
) [

cos
(
κ′m · δ′

)
− cos

(
κ′m · γ ′

)]}

× exp

(
−j

n∑
m=1

κ′m · β′
)
d2κ′1 · · · d2κ′n. (213)
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Equipped with this expression, the Green function for the fourth moment can then be represented as a series:

G4

(
si, s′i, z

)
=

∞∑
n=0

G
(n)
4

(
si, s′i, z

)
. (214)

The zeroth-order term (n = 0) is given by

G
(0)
4

(
si, s′i, z

)
= Gf4

(
si, s′i, z

)
exp

(
−1

2

[
Dϕ(γ ′ + δ′) +Dϕ(γ ′ − δ′)

])
. (215)

The first-order term (n = 1) is given by

G
(1)
4

(
si, s′i, z

)
= 2Gf4

(
si, s′i, z

)
exp

(
−1

2

[
Dϕ

(
γ ′ + δ′

)
+Dϕ

(
γ ′ − δ′

)])
×
∫
R2

Pϕ
(
κ′
) [

cos
(
κ′ · δ′

)
− cos

(
κ′ · γ ′

)]
e−jκ

′·β′ d2κ′. (216)

6.3 Intensity Spectra

The series representation of the Green function for the fourth moment derived in Section 6.1 can, in turn, be
used to derive two series expansions for the intensity correlation function,RS , one valid at low wavenumbers
(or low spatial frequencies), RLF

S , and one valid at high wavenumbers (or high spatial frequencies), RHF
S . The

total correlation function is then obtained from

RS =

∞∑
n=0

RLF
S

(n) +

∞∑
n=0

RHF
S

(n). (217)

6.3.1 Low-Wavenumber Approximation

The series expansion (213) can be truncated for small values of n if Q(β′,γ ′, δ′) is small. The middle
diagram in Figure 7 illustrates the case when Q(β′,γ ′, δ′) is small, corresponding to the case where the
structure functions associated with the two baselines represented by the diagonal lines connecting the four
corners of the quadrangles shown in Figure 6 nearly cancel the structure functions associated with the base-
lines represented by the top and bottom edges of the quadrangles. From this starting point (the middle
diagram in Figure 7), letting s2 = s1 and s4 = s3, the baseline ‖s1 − s3‖ will be relatively large, corre-
sponding to a relatively low wavenumber (or low spatial frequency). Furthermore, it follows from (191) that
γ = δ = 0. The intensity correlation function is then given by

RLF
S (s1, s3, z) = Γ4(s1, s1, s3, s3, z), (218)

or equivalently,
RLF
S (α,β, z) = Γ4(α,β, 0, 0, z). (219)

The free space Green’s function, in turn, becomes

Gf4
LF (

α,α′,β,β′,γ ′, δ′, z
)

=

(
k

2πz

)4

exp

(
−jk
z

[(
α′ −α

)
· δ′ +

(
β′ − β

)
· γ ′
])

. (220)
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The intensity correlation function is then given by

RLF
S (α,β, z) =

(
k

2πz

)4 ∫
R2

∫
R2

∫
R2

∫
R2

Γ4

(
α′,β′,γ ′, δ′, 0

)
× exp

(
−jk
z

[(
α′ −α

)
· δ′ +

(
β′ − β

)
· γ ′
])

exp

(
−1

2

[
Dϕ

(
γ ′ + δ′

)
+Dϕ

(
γ ′ − δ′

)])
× exp

(
−1

2
Q
(
β′,γ ′, δ′

))
d2α′d2β′d2γ ′d2δ′. (221)

It is often more convenient to consider the intensity spectrum instead of the intensity correlation function.
The intensity spectrum, which is the Fourier transform of the intensity correlation function, is given by

P LF
S (α,κ, z) =

1

(2π)2

∫
R2

RLF
S (α,β, z) ejκ·β d2β. (222)

Based on the Taylor expansion (213), the intensity correlation function at low wavenumbers can be repre-
sented as a series:

RLF
S (α,β, z) =

∞∑
n=0

RLF
S

(n)(α,β, z). (223)

The zeroth-order term (n = 0) is given by

RLF
S

(0)(α,β, z) =

(
k

2πz

)4 ∫
R2

∫
R2

∫
R2

∫
R2

Γ4

(
α′,β′,γ ′, δ′, 0

)
× exp

(
−jk
z

[(
α′ −α

)
· δ′ +

(
β′ − β

)
· γ ′
])

exp

(
−1

2

[
Dϕ

(
γ ′ + δ′

)
+Dϕ

(
γ ′ − δ′

)])
d2α′d2β′d2γ ′d2δ′. (224)

The first-order term (n = 1) is given by

RLF
S

(1)(α,β, z) = 2

(
k

2πz

)4 ∫
R2

∫
R2

∫
R2

∫
R2

∫
R2

Γ4

(
α′,β′,γ ′, δ′, 0

)
× exp

(
−jk
z

[(
α′ −α

)
· δ′ +

(
β′ − β

)
· γ ′
])

exp

(
−1

2

[
Dϕ

(
γ ′ + δ′

)
+Dϕ

(
γ ′ − δ′

)])
Pϕ
(
κ′
) [

cos
(
κ′ · δ′

)
− cos

(
κ′ · γ ′

)]
e−jκ

′·β′ d2α′d2β′d2γ ′d2δ′d2κ′. (225)

Higher order terms need to be considered as the baseline ‖s1 − s3‖ becomes small.

6.3.2 High-Wavenumber Approximation

Returning to the middle diagram of Figure 7, now letting s4 = s1 and s3 = s2, the baseline ‖s1 − s2‖ will be
relatively small, corresponding to a relatively high wavenumber (or high spatial frequency). Furthermore, it
follows from (191) that β = δ = 0. The intensity correlation function is then given by

RHF
S (s1, s2, z) = Γ4(s1, s2, s2, s1, z), (226)

or equivalently,
RHF
S (α,γ, z) = Γ4(α, 0,γ, 0, z). (227)
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The free space Green’s function, in turn, becomes

Gf4
HF (

α,α′,β′,γ,γ ′, δ′, z
)

=

(
k

2πz

)4

exp

(
−jk
z

[(
α′ −α

)
· δ′ + β′ ·

(
γ ′ − γ

)])
. (228)

The intensity correlation function is then given by

RHF
S (α,γ, z) =

(
k

2πz

)4 ∫
R2

∫
R2

∫
R2

∫
R2

Γ4

(
α′,β′,γ ′, δ′, 0

)
× exp

(
−jk
z

[(
α′ −α

)
· δ′ + β′ ·

(
γ ′ − γ

)])
exp

(
−1

2

[
Dϕ

(
γ ′ + δ′

)
+Dϕ

(
γ ′ − δ′

)])
× exp

(
−1

2
Q
(
β′,γ ′, δ′

))
d2α′d2β′d2γ ′d2δ′. (229)

The intensity spectrum is, in turn, given by

P HF
S (α,κ, z) =

1

(2π)2

∫
R2

RHF
S (α,γ, z) ejκ·γ d2γ. (230)

As in the low wavenumber scenario, the Taylor expansion (213) can be used to represent the intensity
correlation function at high wavenumbers as a series:

RHF
S (α,γ, z) =

∞∑
n=0

RHF
S

(n)(α,γ, z). (231)

The zeroth-order term (n = 0) is given by

RHF
S

(0)(α,γ, z) =

(
k

2πz

)4 ∫
R2

∫
R2

∫
R2

∫
R2

Γ4

(
α′,β′,γ ′, δ′, 0

)
× exp

(
−jk
z

[(
α′ −α

)
· δ′ + β′ ·

(
γ ′ − γ

)])
exp

(
−1

2

[
Dϕ

(
γ ′ + δ′

)
+Dϕ

(
γ ′ − δ′

)])
d2α′d2β′d2γ ′d2δ′. (232)

The first-order term (n = 1) is given by

RHF
S

(1)(α,γ, z) = 2

(
k

2πz

)4 ∫
R2

∫
R2

∫
R2

∫
R2

∫
R2

Γ4

(
α′,β′,γ ′, δ′, 0

)
× exp

(
−jk
z

[(
α′ −α

)
· δ′ + β′ ·

(
γ ′ − γ

)])
exp

(
−1

2

[
Dϕ

(
γ ′ + δ′

)
+Dϕ

(
γ ′ − δ′

)])
Pϕ
(
κ′
) [

cos
(
κ′ · δ′

)
− cos

(
κ′ · γ ′

)]
e−jκ

′·β′ d2α′d2β′d2γ ′d2δ′d2κ′. (233)

Higher-order terms need to be considered as the baseline ‖s1 − s2‖ becomes large.

6.4 Plane Waves

For plane waves, Γ4(s1, s2, s3, s4, 0) = 1, and the first few terms of the low- and high-wavenumber series
expansions for the intensity correlation function (or, equivalently, the intensity spectrum) simplify signifi-
cantly. The first two terms associated with the low- and high-wavenumber series are derived in the following
sections.
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6.4.1 Low-Wavenumber Approximation

For plane waves, the zeroth-order term (n = 0) of the low-wavenumber series expansion of the intensity
correlation function becomes

RLF
S

(0)(α,β, z) =

(
k

2πz

)4 ∫
R2

∫
R2

∫
R2

∫
R2

× exp

(
−jk
z

[(
α′ −α

)
· δ′ +

(
β′ − β

)
· γ ′
])

exp

(
−1

2

[
Dϕ

(
γ ′ + δ′

)
+Dϕ

(
γ ′ − δ′

)])
d2α′d2β′d2γ ′d2δ′. (234)

The integration with respect to α′ gives(
k

2πz

)2 ∫
R2

exp

(
−jk
z

(
α′ −α

)
· δ′
)
d2α′ = δ

(
δ′
)
. (235)

Similarly, the integration with respect to β′ gives(
k

2πz

)2 ∫
R2

exp

(
−jk
z

(
β′ − β

)
· γ ′
)
d2β′ = δ

(
γ ′
)
. (236)

Substituting these results into Equation (234), the zeroth-order term reduces to

RLF
S

(0) = e−Dϕ(0) = 1. (237)

The intensity spectrum associated with the zeroth-order term is, in turn, given by

P LF
S

(0)(κ) = δ(κ). (238)

For plane waves, the first-order term (n = 1) of the low-wavenumber series expansion of the intensity
correlation function becomes

RLF
S

(1)(α,β, z) = 2

(
k

2πz

)4 ∫
R2

∫
R2

∫
R2

∫
R2

∫
R2

× exp

(
−jk
z

[(
α′ −α

)
· δ′ +

(
β′ − β

)
· γ ′
])

exp

(
−1

2

[
Dϕ

(
γ ′ + δ′

)
+Dϕ

(
γ ′ − δ′

)])
Pϕ
(
κ′
) [

cos
(
κ′ · δ′

)
− cos

(
κ′ · γ ′

)]
e−jκ

′·β′ d2α′d2β′d2γ ′d2δ′d2κ′. (239)

The integration with respect to α′ is as before. The integration with respect to β′, however, now gives(
k

2πz

)2 ∫
R2

exp

(
−jk
z
β′ ·

(
γ ′ +

z

k
κ′
))

d2β′ = δ
(
γ ′ +

z

k
κ′
)
. (240)

Substituting these results into Equation (239), the first-order term then reduces to

RLF
S

(1)(β, z) = 2

∫
R2

Pϕ
(
κ′
)

exp
(
−Dϕ

(z
k
κ′
)) [

1− cos
(z
k

∥∥κ′∥∥2
)]
e−jκ

′·β d2κ′. (241)
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Using the trigonometric identity,

cos(x) = cos2
(x

2

)
− sin2

(x
2

)
, (242)

the 1− cos(·) term in Equation (241) can be written as

1− cos
(z
k

∥∥κ′∥∥2
)

= 2 sin2
( z

2k

∥∥κ′∥∥2
)
. (243)

It follows that

RLF
S

(1)(β, z) = 4

∫
R2

Pϕ
(
κ′
)

exp
(
−Dϕ

(z
k
κ′
))

sin2
( z

2k

∥∥κ′∥∥2
)
e−jκ

′·β d2κ′. (244)

The intensity spectrum associated with the first-order term is then given by

P LF
S

(1)(κ, z) = 4Pϕ (κ) exp
(
−Dϕ

(z
k
κ
))

sin2
( z

2k
‖κ‖2

)
. (245)

6.4.2 High-Wavenumber Approximation

For plane waves, the zeroth-order term (n = 0) of the high-wavenumber series expansion of the intensity
correlation becomes

RHF
S

(0)(α,γ, z) =

(
k

2πz

)4 ∫
R2

∫
R2

∫
R2

∫
R2

× exp

(
−jk
z

[(
α′ −α

)
· δ′ + β′ ·

(
γ ′ − γ

)])
exp

(
−1

2

[
Dϕ

(
γ ′ + δ′

)
+Dϕ

(
γ ′ − δ′

)])
d2α′d2β′d2γ ′d2δ′. (246)

The integration with respect to α′ gives the same result as in the case of low-wavenumber approximation:(
k

2πz

)2 ∫
R2

exp

(
−jk
z

(
α′ −α

)
· δ′
)
d2α′ = δ

(
δ′
)
. (247)

The integration with respect to β′ gives(
k

2πz

)2 ∫
R2

exp

(
−jk
z
β′ ·

(
γ ′ − γ

))
d2β′ = δ

(
γ ′ − γ

)
. (248)

Substituting these results into Equation (246), the zeroth-order term reduces to

RHF
S

(0)(γ) = e−Dϕ(γ) = Γ2
2(γ). (249)

In other words, the zeroth-order term of the low-wavenumber series expansion of the intensity correlation
function is simply the square of the second statistical moment of the scattered wave field. The intensity
spectrum associated with the zeroth-order term is, in turn, obtained from

P HF
S

(0)(κ) =
1

(2π)2

∫
R2

e−Dϕ(γ)ejκ·γ d2γ. (250)
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For plane waves, the first-order term (n = 1) of the high-wavenumber series expansion of the intensity
correlation function becomes

RHF
S

(1)(α,γ, z) = 2

(
k

2πz

)4 ∫
R2

∫
R2

∫
R2

∫
R2

× exp

(
−jk
z

[(
α′ −α

)
· δ′ + β′ ·

(
γ ′ − γ

)])
exp

(
−1

2

[
Dϕ

(
γ ′ + δ′

)
+Dϕ

(
γ ′ − δ′

)])
Pϕ
(
κ′
) [

cos
(
κ′ · δ′

)
− cos

(
κ′ · γ ′

)]
e−jκ

′·β′ d2α′d2β′d2γ ′d2δ′d2κ′. (251)

The integration with respect to α′ is as before. The integration with respect to β′, however, now gives(
k

2πz

)2 ∫
R2

exp

(
−jk
z

(
γ ′ − γ +

z

k
κ′
)
· β′
)
d2β′ = δ

(
γ ′ − γ +

z

k
κ
)
. (252)

Substituting these results into Equation (251), the first-order term then reduces to

RHF
S

(1)(γ, z) = 4

∫
R2

Pϕ
(
κ′
)

exp
(
−Dϕ

(
γ − z

k
κ′
))

sin2

(
κ′

2
·
(
γ − z

k
κ′
))

d2κ′. (253)

The trigonometric identity (242) was used to arrive at the sin2(·) term in Equation (253). The intensity
spectrum associated with the first-order term is, in turn, obtained from

P HF
S

(1)(κ, z) =
1

(2π)2

∫
R2

RHF
S

(1)(γ, z)ejκ·γ d2γ. (254)

Substituting Equation (253) for RHF
S

(1)(γ, z) in Equation (254) and letting

µ = γ − z

k
κ′, (255)

the intensity spectrum associated with the first-order term then becomes

P HF
S

(1)(κ, z) = 4

∫
R2

Pϕ
(
κ′
)

Φ
(
κ,κ′

)
exp

(
jz

k
κ · κ′

)
d2κ′, (256)

where

Φ
(
κ,κ′

)
=

1

(2π)2

∫
R2

e−Dϕ(µ) sin2

(
κ′ · µ

2

)
ejκ·µ d2µ. (257)

7 Characteristic Scales

The expressions for the second and fourth statistical moments of the scattered wave field that were derived
in Sections 5 and 6 allow, in turn, derivations of useful parameters for characterizing the statistical behavior
of the scattered wave field. In Section 5, it was shown that the second moment—or the mutual coherence
function—of the scattered wave field for the case of a plane wave propagating through a thin phase screen
is given by

Γ2(s) = exp

(
−1

2
Dϕ(s)

)
. (258)

The field coherence length, s0, is defined as the point where

Dϕ(s0) = 1. (259)
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In other words, the field coherence length is the point where the mutual field coherence function has the
value 1/

√
e. The phase structure function can be obtained from the power spectral density of the phase

fluctuations induced by the thin screen:

Dϕ(s) = 2

∫
R2

Pϕ(κ)
[
1− e−jκ·s

]
d2κ. (260)

For isotropic media, this relationship becomes

Dϕ(s) = 4π

∫ ∞
0

Pϕ(κ) [1− J0(κs)]κ dκ. (261)

In Section 4.2 it was shown that the power spectral density of the phase fluctuations induced by the thin
screen are related to the power spectral density of the index of refraction fluctuations via the relation:

Pϕ(κ) = 2πk2δzPn(κ, 0). (262)

For the simple power law model (6), the power spectral density of the phase fluctuations is given by

Pϕ(κ) = C2
ϕκ
−β, (263)

where
C2
ϕ = 2πk2f(β)C2

nδz. (264)

Substituting Equation (263) into Equation (261), the phase structure function can be written as

Dϕ(s) = 4πC2
ϕ

∫ ∞
0

κ−α−1 [1− J0(κs)] dκ, (265)

where α = β−2. The integral on the right-hand side of the above equation can be looked up in the standard
table of integrals (e.g., Equation 11.4.18 of [7]):∫ ∞

0
κ−α−1 [1− J0(κs)] dκ =

sα

α2α
Γ (1− α/2)

Γ (1 + α/2)
. (266)

It follows that for the simple power law model (263), the phase structure function is simply

Dϕ(s) = 4πg(α)C2
ϕs

α, (267)

where

g(α) =
1

α2α
Γ (1− α/2)

Γ (1 + α/2)
. (268)

Since Dϕ(s0) = 1, it follows that for the simple power model (263),

s0 =
[
4πg(α)C2

ϕ

]− 1
α , (269)

or, equivalently,

s0 =
[
8π2k2h(α)C2

nδz
]− 1

α , (270)

where
h(α) = f(α+ 2)g(α). (271)
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It follows that for the simple power model (263), the phase structure function can also be written as

Dϕ(s) =

(
s

s0

)α
. (272)

The angular scattering caused by the turbulent medium is characterized by the brightness distribution
function, B(θ), which is related to the mutual coherence function via the Fourier relation:

B(θ) =
1

(2π)2

∫
R2

Γ2(s)ejkθ·s d2s =
1

(2π)2

∫
R2

exp

(
−Dϕ(s)

2

)
ejkθ·s d2s, (273)

where θ = (θx, θy) denotes the two-dimensional angular vector. For a plane wave propagating through
a thin phase screen characterized by a simple power law power spectral density, with the phase structure
function (272), characterized by s0, the Fourier relation between the mutual coherence function and the
brightness distribution implies that the characteristic scattering angle, θs, can be defined as

θs =
1

ks0
. (274)

The characteristic length scales associated with the observed intensity fluctuations can, in turn, be ob-
tained from the expressions for the intensity spectrum that were derived in Section 6. In Section 6, it was
shown that the first two terms of the low-wavenumber series expansion of the intensity spectrum for a plane
wave propagating through a thin phase screen are given by

P LF
S

(0)(κ) = δ(κ) (275)

and

P LF
S

(1)(κ, z) = 4Pϕ(κ) exp
(
−Dϕ

(
r2
Fκ
′)) sin2

(
r2
F ‖κ‖2

2

)
, (276)

where

rF =

√
z

k
(277)

is the Fresnel scale associated with the phase screen located at a distance z from the observation plane. For
the purpose of obtaining the characteristic length scales for the observed intensity fluctuations, the zeroth-
order term, P LF

S
(0)(κ) = δ(κ) can be ignored since it corresponds to a constant correlation function. The

first-order term, P LF
S

(1), however, is very useful. Close inspection of Equation (276) reveals that the first-
order term—assuming a very large outer scale and a very small inner scale of turbulence—is characterized
by two scales. Clearly, the sin2 term in Equation (276) is dominated by the Fresnel scale, rF . The charac-
teristic scale of the exponential term can, in turn, be defined as the point, κr, where Dϕ

(
r2
Fκr

)
= 1. Since

Dϕ(s0) = 1, it follows that r2
Fκr = s0. Hence, the two scales characterizing the correlation function of

the intensity fluctuations at low wavenumbers (or large spatial scales), which is the Fourier transform of the
first-order low-wavenumber approximation (276), are the Fresnel scale, rF , and

sR = κ−1
r =

r2
F

s0
. (278)

Comparing equations (274) and (278), sR can be written as

sR = zθs. (279)
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Hence, sR can be regarded as the size of the scattering disk associated with the scattering angle, θs, observed
at a distance z from the phase screen.

If rF � sR, then the sin2 term is the dominant term in Equation (276), whereas if rF � sR, then the
exponential term is the dominant term in Equation (276). If the Fresnel scale, rF , is significantly greater than
the scattering disk size, sR, then the intensity fluctuations are small, and Equation (276) can be approximated
with

PBS (κ, z) = 4Pϕ(κ) sin2

(
r2
F ‖κ‖2

2

)
. (280)

Equation (280) is referred to as the Born or Rytov approximation. The Born approximation is valid in the
weak scintillation regime (small intensity fluctuations) when rF � sR. From Equation (278), rF � sR is
equivalent to rF � s0. The condition rF � s0 therefore defines the weak scintillation regime. By contrast,
the condition rF � s0 defines the strong scintillation regime. It is convenient to introduce a strength of
scintillation parameter, u, defined as

u =
rF
s0
, (281)

with u � 1 corresponding to the weak scintillation condition and u � 1 corresponding to the strong scin-
tillation condition. Plots of the intensity spectra given by equations (276) and (280) versus the normalized
wavenumber (wavenumber times the Fresnel scale) for a range of strength of scintillation parameters, u, are
shown in Figure 8. The simple power model (263) with β = 11/3 (Kolmogorov spectral index) is assumed
for the power spectral density of the phase fluctuations induced by the thin phase screen. The y-axis in
Figure 8 is multiplied by the wavenumber, κ, to amplify the peaks near the Fresnel scale (equal to 1 on the
normalized x-axis). As u becomes significantly smaller than 1, the low-wavenumber approximation (276)
approaches the Born approximation (280).

It is evident from Equation (280) that in weak scintillation, the characteristic length scale associated
with the observed intensity fluctuations is the Fresnel scale, rF . In strong scintillation, the situation is more
complicated. The scattering disk size, sR, clearly plays a role. In strong scintillation, we must also take
into account the effect of intensity fluctuations at high wavenumbers (small spatial scales). In Section 6, we
showed that the first term of the high-wavenumber series expansion of the intensity correlation function for
a plane wave propagating through a thin phase screen is given by

RHF
S

(0)(s) = e−Dϕ(s). (282)

The associated intensity spectrum, in turn, is given by the Fourier relation:

P HF
S

(0)(κ) =
1

(2π)2

∫
R2

e−Dϕ(s)ejκ·s d2s. (283)

For an isotropic medium,

P HF
S

(0)(κ) =
1

2π

∫ ∞
0

e−Dϕ(s)J0(κs)s ds. (284)

Clearly, the dominant spatial scale in high-wavenumber intensity fluctuations is the field coherence length
s0. It follows that in strong scintillation, intensity fluctuations are dominated by two scales: sR at low
wavenumbers (large spatial scales) and s0 at high wavenumbers (small spatial scales). The low-wavenumber
fluctuations with characteristic length scale sR are referred to as refractive scintillation, whereas the high-
wavenumber fluctuations with characteristic length scale s0 are referred to as diffractive scintillation. In
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Figure 8: Intensity spectra versus the normalized wavenumber, rFκ, for waves propagating through a thin
phase screen. The simple power model (263) with β = 11/3 (Kolmogorov spectral index) is assumed for
the power spectral density of the phase fluctuations induced by the thin screen. The y-axis is multiplied
by the wavenumber, κ, to amplify the peaks near the Fresnel scale. The red lines correspond to the first-
order term of the low-wavenumber approximation (276) of the intensity spectrum, while the black lines
correspond to the Born approximation (280). The six lines, from the thinnest to the thickest, correspond to
six values of the strength of scintillation parameter, u: 0.001, 0.01, 0.1, 1, 10, and 100. In weak scintillation
(u� 1), intensity fluctuations are dominated by spatial scales on the order of the Fresnel scale, rF , and the
low-wavenumber approximation (276) approaches the Born approximation (280). The ringing observed in
the middle of the plots are due to the sin2 terms in equations (276) and (280).

other words, the high-wavenumber “diffractive” fluctuations with relatively small characteristic length scale
s0 can be regarded as being modulated by the low-wavenumber “refractive” fluctuations with relatively large
characteristic length scale sR.

The intensity spectrum can be expressed as the sum of the low-wavenumber and high-wavenumber series
expansions derived in Section 6:

PS(κ, z) =
∞∑
n=0

P LF
S

(n)(κ, z) +
∞∑
n=0

P HF
S

(n)(κ, z). (285)

In strong scintillation (when u� 1 or rF � s0),

PS(κ, z) ' P LF
S

(0)(κ) + P LF
S

(1)(κ, z) + P HF
S

(0)(κ). (286)

Again, for the purpose of examining the characteristic length scales of the observed intensity variations, the
zeroth-order term, P LF

S
(0)(κ) = δ(κ), can be ignored since it corresponds to a constant correlation function.
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To that end, it is sufficient to consider the “relative” intensity spectrum:

PδS(κ, z) = P LF
S

(1)(κ, z) + P HF
S

(0)(κ). (287)

Plots of the relative intensity spectrum (287) versus the normalized wavenumber (wavenumber times the
Fresnel scale) for a range of strength of scintillation parameters, u, are shown in Figure 9. The simple power
law model (263) with β = 11/3 (Kolmogorov spectral index) is assumed for the power spectral density
of the phase fluctuations induced by the thin screen. The y-axis in Figure 9 is again multiplied by the
wavenumber, κ, to amplify the peaks near the refractive (left peak) and diffractive (right peak) scintillation
length scales. As u becomes large, the separation between the refractive and diffractive scintillation length
scales increases.

Figure 9: Intensity spectra versus the normalized wavenumber, rFκ, in strong scintillation for waves propa-
gating through a thin phase screen. The simple power law model (263) with β = 11/3 (Kolmogorov spectral
index) is assumed for the power spectral density of the phase fluctuations induced by the thin screen. The
y-axis is multiplied by the wavenumber, κ, to amplify the peaks near the refractive (left peak) and diffractive
(right peak) scintillation length scales. The fifteen lines, from the thinnest to the thickest, correspond to fif-
teen values of the strength of scintillation parameter, u, ranging from 3 to 100, spaced evenly in logarithmic
space.

In summary, in weak scintillation, the characteristic length scale, `S , for intensity fluctuations is the
Fresnel scale:

`S = rF . (288)

In strong scintillation, intensity fluctuations are characterized by two distinct length scales, the low-wavenumber,
refractive scale given by the scattering disk size:

`S = sR = zθs =
r2
F

s0
= rFu, (289)
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and the high-wavenumber, diffractive scale given by the field coherence length:

`S = s0 =
rF
u
. (290)

A plot of the normalized characteristic length scale of the intensity fluctuations, `S/rF , versus the strength
of scintillation parameter, u, is shown in Figure 10. As u increases, the separation between the refractive
and diffractive scintillation length scales increases. At some point, the separation becomes so large that
the large-scale variations of refractive scintillation are no longer perceptible. At this point, the intensity
spectrum is dominated by the zeroth-order term (284) of the high-wavenumber series expansion of the
intensity spectrum. Higher-order terms in the series expansions in Equation (285) must be included to
compute `S in the transition region from weak to strong scintillation.

Figure 10: Normalized characteristic length scale of intensity fluctuations, `S/rF , versus the strength of
scintillation parameter, u. The black line corresponds to the weak scintillation length scale, rF ; the red line
corresponds to the refractive scintillation length scale, sr = r2

F /s0 = rFu; and the blue line corresponds
to the diffractive scintillation length scale, s0 = rF /u. The space in between the lines corresponds to the
transition region from weak to strong scintillation.

Another important parameter characterizing the statistical behavior of the intensity fluctuations is the
modulation or scintillation index, which is defined as

m2 =

〈
S2
〉
− 〈S〉2

〈S〉2
=

〈
S2
〉

〈S〉2
− 1 =

RS(0, z)
〈S〉2

− 1. (291)

For plane waves, with 〈S〉 = 1,
m2 = RS(0, z)− 1. (292)
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Equivalently,

m2 =

∫
R2

PS(κ) d2κ− 1. (293)

In weak scintillation (when u � 1 or rF � s0), the weak scintillation index or the Born variance is then
given by

m2
B = 4

∫
R2

Pϕ(κ) sin2

(
r2
F ‖κ‖2

2

)
d2κ. (294)

For the simple power law model (263),

m2
B = 8πC2

ϕ

∫ ∞
0

κ−α−1 sin2

(
r2
Fκ

2

2

)
dκ, (295)

where α = β − 2. The integral can be looked up in the standard table of integrals (e.g., Equation 3.761-9 of
[8]), giving

m2
B =

4πC2
ϕ

α
Γ
(

1− α

2

)
cos
(απ

4

)
rαF , (296)

which can be rewritten as
m2
B = K(α)Dϕ(rF ), (297)

where
K(α) = 2αΓ

(
1 +

α

2

)
cos
(απ

4

)
, (298)

and Dϕ in Equation (297) is the phase structure function associated with the simple power law model (263);
that is, Dϕ(rF ) = (rF /s0)α. In other words,

m2
B = K(α)

(
rF
s0

)α
= K(α)uα. (299)

Hence, the Born variance, m2
B , can also be used as a convenient parameter to specify the strength of scintil-

lation, with m2
B � 1 (corresponding to u � 1) signifying weak scintillation and m2

B � 1 (corresponding
to u� 1) signifying strong scintillation.

In strong scintillation (when u� 1 or rF � s0), the scintillation index can be obtained from

m2 ' m2
R +m2

D, (300)

where the refractive scintillation index is given by

m2
R =

∫
R2

P LF
S

(1)(κ, z) d2κ = RLF
S

(1)(0, z), (301)

and the diffractive scintillation index is given by

m2
D =

∫
R2

P HF
S

(0)(κ) d2κ = RHF
S

(0)(0). (302)

Clearly,

m2
D =

e−Dϕ(0)

2
=

1

2
. (303)
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For the simple power model (263), the refractive scintillation index is given by

m2
R = 4πC2

ϕ

∫ ∞
0

κ−α−1e−(sRκ)α sin2

(
r2
Fκ

2

2

)
dκ, (304)

which can be computed numerically5. Plots of the scintillation index, m2, versus the Born variance, m2
B ,

in weak and strong scintillation regimes for plane waves propagating through a thin screen are shown in
Figure 11. The simple power law model with β = 11/3 (Kolmogorov spectral index) is assumed for the
power spectral density of the random phase fluctuations induced by the thin screen. In weak scintillation,
m2 is computed from Equation (297), whereas in strong scintillation, m2 is computed from Equation (300).
Higher-order terms in the series expansions in Equation (285) must be included in order to obtain values of
m2 in the transition region from weak to strong scintillation.

Figure 11: Plots of the scintillation index, m2, versus the Born variance, m2
B , characterizing the strength of

scintillation for a plane wave propagating through a thin phase screen. The simple power law model with
β = 11/3 (Kolmogorov spectral index) is assumed for the power spectral density of the phase fluctuations
introduced by the thin screen. The red line corresponds to the weak scintillation index (297), whereas the
black line corresponds to the strong scintillation index (300). The space in between the red and black lines
corresponds to the transition region from weak to strong scintillation.

5Since the sin2 term in the integrand of Equation (304) oscillates ever more rapidly as κ increases due to the κ2 dependence, it
can be modified in the following manner to ensure a more stable numerical integration:

sin2

(
r2Fκ

2

2

)
→
[
sin2

(
r2Fκ

2

2

)
− 1

2

]
exp

(
−r

4
Fκ

4

4a2

)
+

1

2
, (305)

with a relatively large, say, a = 10. Here, as κ becomes large, the sin2 term gracefully approaches its mean value of 1/2 without
changing the numerical integration result.
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8 Numerical Simulation

The analytical expressions derived in Sections 5, 6, and 7, although useful, do not provide a complete picture
of the physics underlying the propagation of waves in turbulent media. For example, the expressions derived
in Section 7 for the characteristic length scales of the observed intensity fluctuations do not address the tran-
sition region from weak to strong scintillation. Also, the characteristic scales derived in Section 7 focused
on plane waves propagating through a thin phase screen. Furthermore, the simple power law model (263)
was assumed for the power spectral density of the phase fluctuations induced by the thin screen. For more
general scenarios, one must resort to numerical simulations of waves propagating through turbulent media
to fully appreciate the observed behavior of waves. In this section, a split-step technique—similar to the
technique applied in Section 4.3 to derive the Feynman path integral solution of the parabolic wave equation
for extended media—using the fast Fourier transform (FFT) algorithm is applied to simulate the propagation
of waves in turbulent media.

The recursion relation (143) derived in Section 4.3 expressing the scattered wave field existing the phase
screen at z = zk+1 in terms of the scattered wave field exiting the phase screen at z = zk serves as a starting
point, which is repeated here for convenience:

ψk+1(sk+1, zk+1) =
jk

2πδz

∫
R2

ψk(sk, zk) e−jϕk(sk) exp

(
−j k ‖sk+1 − sk‖2

2δz

)
d2sk. (306)

Expression (306) is a convolution integral that can be rewritten as

ψ(sk+1, zk+1) = F−1
2

{
F2

{
ψ(sk, zk) e−jϕk(sk)

}
exp

(
j
δz ‖κ‖2

2k

)}
, (307)

where F2 {·} denotes the two-dimensional Fourier transform. With the extended medium of thickness z
divided evenly into Nz phase screens, the thickness of each phase screen is given by

δz =
z

Nz
. (308)

Equation (307) represents the numerical approximation of the Feynman path integral (149) discussed in
Section 4.3 and can be computed iteratively to propagate a wave through an extended turbulent medium.

The two-dimensional Fourier transform of the function, f(s), given by

F (κ) =
1

(2π)2

∫
R2

f(s)ejκ·s d2κ, (309)

can be approximated with the two-dimensional discrete Fourier transform (DFT):

Fpq '
1

(2π)2

Nx−1∑
m=0

Ny−1∑
n=0

fmnW
mp
x Wnq

y ∆κx∆κy, (310)

where
Fpq = F (p∆κx, q∆κy), (311)

with p = 0, . . . , Nx − 1 and q = 0, . . . , Ny − 1; and

fmn = f(m∆x, n∆y), (312)
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with m = 0, . . . , Nx− 1 and n = 0, . . . , Ny − 1. Here, ∆κx and ∆κy are evenly spaced sampling intervals
along the κx-axis and κy-axis, respectively. Similarly, ∆x and ∆y are evenly spaced sampling intervals
along the x-axis and y-axis, respectively. The so-called twiddle factors are given by

Wx = ej∆x∆κx and Wy = ej∆y∆κy . (313)

Since ∆κx = 2π/(Nx∆x) and ∆κy = 2π/(Ny∆y), it follows that

Wx = ej
2π
Nx and Wy = e

j 2π
Ny . (314)

The inverse Fourier transform, given by

f(s) =

∫
R2

F (κ)e−jκ·s ds, (315)

can, in turn, be approximated with the inverse DFT:

fmn '
Nx−1∑
p=0

Ny−1∑
q=0

FpqW
−mp
x W−nqy ∆x∆y. (316)

The efficient FFT algorithm can be used to compute the DFTs in equations (310) and (316).

Equation (307) requires realizations of phase screens with phase fluctuation ϕ(s). The Wiener–Khinchin
theorem can be used to relate the power spectral density of the phase fluctuations induced by a phase screen
to the Fourier transform of the phase fluctuations:

Pϕ(κx, κy) = lim
Lx→∞
Ly→∞

4π2

LxLy
ELx,Ly

{
|Φ(κx, κy)|2

}
, (317)

where ELx,Ly {·} denotes the expectation operation computed over a rectangular region of size Lx-by-Ly.
The two-dimensional Fourier transform of ϕ(s) can, in turn, be realized from

Φpq = σpqrpq, (318)

where

σpq =

√
LxLy
4π2

Pϕ(p∆κx, q∆κy), (319)

and
rpq =

1√
2

(gpq + jhpq) , (320)

where gpq and hpq are Gaussian random numbers obtained from a pseudo random number generator. The
phase fluctuations are then obtained from the inverse DFT:

ϕmn =
∞∑
m=0

∞∑
n=0

ΦpqW
−mp
x W−nqy ∆x∆y, (321)

where m = 0, . . . , Nx − 1 and n = 0, . . . , Ny − 1. Nx and Ny are chosen to be powers of 2 in order to use
the FFT algorithm to compute Equation (321).
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The power spectral density of the phase fluctuations induced by a single phase screen corresponding
to the general power spectral density of the index of refraction fluctuations (11) with inner and out scales
presented in Section 2 is given by

Pϕ(κ) =
C2
ϕ

(κ2 + κ2
o)
β/2

exp

(
−κ

2

κ2
i

)
, (322)

where
C2
ϕ = 2πk2f(β)C2

nδz. (323)

The spectral index, β, the inner scale, `i = 2π/κi, and the outer scale, `o = 2π/κo, can be easily specified as
simulation parameters. However, because of its awkward dimension (length−2/3 in case of the Kolmogorov
power spectral density with β = 11/3) and its awkward numerical values (in the range of 10−18 m−2/3

to 10−16 m−2/3), it is more convenient to specify the turbulence structure constant, C2
n, determining the

strength of turbulence, in terms of the Born variance, m2
B , which is often used to characterize the strength of

intensity fluctuations. As discussed in Section 7, in weak scintillation,m2
B � 1, while in strong scintillation,

m2
B � 1.

The general expression for the Born variance associated with a phase screen of thickness δz located at z
can be written as

δm2
B = m2

B(z)δz = 4

∫
R2

Pϕ(κ) sin2

(
z ‖κ‖2

2k

)
d2κ, (324)

where Pϕ(κ) depends implicitly on the screen thickness, δz. For the general isotropic expression (322) for
the power spectral density, the Born variance becomes

δm2
B = m2

B(z)δz = 16π2k2f(β)C2
nδz

∫ ∞
0

1

(κ2 + κ2
o)
β/2

exp

(
−κ

2

κ2
i

)
sin2

(
zκ2

2k

)
κ dκ. (325)

For an extended medium composed of a continuum of phase screens stacked on top of each other, the total
Born variance can be obtained by simply integrating Equation (324) along z:

m2
B =

∫ z

0
m2
B(ζ) dζ, (326)

where now z represents the thickness of the extended medium. Integrating Equation (325) for the Born
variance along z gives6

m2
B = 8π2k2f(β)C2

nz

∫ ∞
0

1

(κ2 + κ2
o)
β/2

exp

(
−κ

2

κ2
i

)[
1− sin

(
r2
Fκ

2
)

r2
Fκ

2

]
dκ, (327)

where

rF =

√
z

k
. (328)

6Only the sin2 term in Equation (297) is dependent on z. Computing the integral of this term with respect to z gives∫ z

0

sin2

(
ζκ2

2k

)
dz =

z

2

[
1−

sin
(
r2Fκ

2
)

r2Fκ
2

]
,

where rF =
√
z/k.
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The integral

M(rF , β, κi, κo) =

∫ ∞
0

1

(κ2 + κ2
o)
β/2

exp

(
−κ

2

κ2
i

)[
1− sin

(
r2
Fκ

2
)

r2
Fκ

2

]
dκ, (329)

which is dependent on rF , β, κi, and κo, can be computed numerically. Subsequently, C2
n can be expressed

as

C2
n =

m2
B

8π2k2f(β)zM(rF , β, κi, κo)
. (330)

Once C2
n has been computed, the phase structure constant, C2

ϕ, for a single phase screen of thickness δz can
be obtained from Equation (323).

The realizations of two phase screens with m2
B = 0.1 are shown in Figure 12. The phase screen shown

on the left corresponds to a medium characterized by the simple power law model (6), with β = 11/3

(Kolmogorov spectral index), `i = 0, and `o = ∞. The phase screen shown on the right corresponds to
a medium characterized by the general power spectral density model (11), with β = 11/3, `i = 70 cm,
and `o = 300 m. The wavelength is chosen to be 650 nm and the screen thickness is chosen to be 500 m.
Due to the DFT being used to approximate the Fourier transform, the phase screen realizations are periodic.
Therefore, analysis relying on simulation results obtained using the technique described in this section
should be restricted to the middle portions of the realizations—for example, the central rectangular regions,
one quarter of the spatial extent of the grid from the four edges of the realizations—to minimize the impact
of the periodicity inherent in the realizations.

When simulating waves propagating through turbulent media using the recursion relation (307), the
two-dimensional grid representing the plane perpendicular to the direction of propagation must be chosen
with care. In particular, the spatial extent of the grid must be large enough and, at the same time, the
spacing between the grid points must be small enough to capture all relevant length scales characterizing
the propagation problem at hand. The length scales include the scattering disk size, sR = zθs; the Fresnel
scale, rF ; and the field coherence length, s0. The dependence on the inner and outer scales of turbulence is
implicit in sR and s0 since sR and s0 are dependent on the inner and outer scales. The impact of the choice
of the grid on simulation results is explored in more detail in [9]. A good choice for the spacing between the
grid points in x and y directions is

∆x =
rF√
Nx

and ∆y =
rF√
Ny

, (331)

and a good choice for the spatial size of the two-dimensional grid is

Lx = rF
√
Nx and Ly = rF

√
Ny. (332)

It follows that
Lx
∆x

= Nx and
Ly
∆y

= Ny. (333)

The input parameters for the numerical simulation are listed in Table 1.

The observed intensity fluctuations (diffraction patterns) for a plane wave propagating through an ex-
tended medium modeled with 20 phase screens for m2

B = 0.1, 0.7, 3, and 10 are shown in Figure 13. The
simple power model (6) with β = 11/3 (Kolmogorov spectral index) is assumed for the turbulent medium.
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Figure 12: Phase screen realizations with m2
B = 0.1. The phase screen shown on the left corresponds to

a medium characterized by the simple power law model (6), with β = 11/3 (Kolmogorov spectral index),
`i = 0, and `o = ∞. The phase screen shown on the right corresponds to a medium characterized by the
general power spectral model (11), with β = 11/3, `i = 70 cm, and `o = 300 m. The wavelength is chosen
to be 650 nm and the screen thickness is chosen to be 500 m.

Table 1: SIMULATION PARAMETERS

PARAMETER DESCRIPTION

Nx Number of data points along the x-axis
Ny Number of data points along the y-axis
Nz Number of phase screens along the z-axis
z Thickness of the extended medium
λ Wavelength of the electromagnetic wave
m2
B Born variance (proportional to C2

n)
β Spectral index of turbulence
`i Inner scale of turbulence
`o Outer scale of turbulence

The wavelength is chosen to be 650 nm, and the extended medium is chosen to be 10 km thick, with the
thickness of each phase screen being 500 m. Similar plots for the case of the extended medium modeled
with the general power spectral density (11) with `i = 70 cm and `0 = 300 m are shown in Figure 14.
The diffraction patterns (intensity fluctuations) associated with the plane wave existing each of the 20 phase
screens for the general power model (11) with m2

B = 0.8 is shown in Figure 15. As in Figures 13 and 14,
the wavelength is 650 nm, and the extended medium is 10 km thick, with the thickness of each phase screen
being 500 m.
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Figure 13: Observed diffraction patterns (intensity fluctuations) of the scattered waved field for (a) m2
B =

0.1, (b) m2
B = 0.7, (c) m2

B = 3, and (d) m2
B = 10. The simulation parameters are Nx = 1024, Ny = 1024,

Nz = 20, z = 10 km, λ = 650 nm, β = 11/3 (Kolmogorov spectral index), `i = 0, and `o =∞.
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Figure 14: Observed diffraction patterns (intensity fluctuations) of the scattered wave field for (a) m2
B =

0.1, (b) m2
B = 0.7, (c) m2

B = 3, and (d) m2
B = 10. The simulation parameters are Nx = 1024, Ny = 1024,

Nz = 20, z = 10 km, λ = 650 nm, β = 11/3 (Kolmogorov spectral index), `i = 70 cm, and `o = 300 m.
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Figure 15: Diffraction patterns for a plane wave propagating through 20 phase screens, each with a thickness
of 500 m. The simulation parameters are Nx = 1024, Ny = 1024, Nz = 20, z = 10 km, λ = 650 nm,
m2
B = 0.8, β = 11/3 (Kolmogorov spectral index), `i = 70 cm, and `o = 300 m.
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9 Summary

The index of refraction of the turbulent medium is the fundamental parameter affecting the propagation of
electromagnetic waves. The general expression typically used for the power spectral density of the random
fluctuations in the index of refraction of the air in the atmosphere is given by

Pn(q) =
f(β)C2

n

(q2 + κ2
o)
β

exp

(
− q

2

κ2
i

)
, (334)

where q = ‖q‖ =
√
q2
x + q2

y + q2
z is the magnitude of the three-dimensional wavenumber; C2

n is the turbu-

lence structure constant; β is the spectral index; `i = 2π/κi is the inner scale of turbulence; and `o = 2π/κo
is the outer scale of turbulence.

Wave propagation in random media was shown to be governed by the parabolic wave equation:

−2jk
∂ψ(s, z)
∂z

+∇2
⊥ψ(s, z) + 2k2n1(s, z)ψ(s, z) = 0, (335)

where ψ(s, z) is the scattered wave field; s = (x, y) is the component of the position vector perpendic-
ular to the direction of propagation; z is the component of the position vector parallel to the direction of
propagation; ∇2

⊥ is the Laplacian operator with respect to the transverse coordinates x and y; n1(s, z) is
the fluctuating component of the index of refraction; and k = 2π/λ is the magnitude of the wave vector.
The parabolic wave equation is valid when the fluctuations in the index of refraction are very small; the
characteristic length scale of the index of refraction fluctuations is significantly greater than the wavelength
of the wave; and the characteristic time scale of the index of refraction fluctuations is significantly greater
than the inverse of the frequency of the wave. Under these assumptions, the scattering of waves is mainly
in the forward direction and occurs at small angles. This fact is reflected through the presence of only the
first partial derivative with respect to the component of the position vector in the propagation direction (z
above) in the parabolic wave equation. A more detailed listing of assumptions used to derive the parabolic
wave equation from the Maxwell equations is provided at the end of Section 3. An important consequence
of these assumptions is that the Markov approximation can be applied, whereby the turbulent medium can
be assumed to be uncorrelated along the direction of propagation.

The solution of the parabolic wave equation for the case of a wave propagating through a thin phase
screen located at a distance z from the observer was shown to be given by

ψ(s, z) =
jk

2πz

∫
R2

ψ
(
s′, z

)
e−jϕ(s′) exp

(
−jk

2z

∥∥s′ − s2
∥∥) d2s, (336)

where the random phase fluctuations induced by the thin screen of thickness δz are given by

ϕ(s) = k

∫ δz

0
n1(s, ζ) dζ. (337)

The power spectral density of the random phase fluctuations is related to the power spectral density of the
random index of refraction fluctuations via the relation:

Pϕ(κ) = 2πk2δzPn(κ, 0). (338)
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The solution of the parabolic wave equation for the case of a wave propagating through an extended medium
of thickness z was, in turn, shown to be given by the Feynman path integral:

ψ(s, z) =

∫
ψ(s(0), 0) exp

(
−jk

∫ z

0
L(s(ζ), ζ) dζ

)
Ds(z), (339)

where

L(s(ζ), ζ) =
1

2

∥∥∥∥ds(ζ)

dζ

∥∥∥∥2

+ n1(s(ζ), ζ), (340)

and Ds(z) denotes a “functional differential” defined through∫
Ds(z) = lim

N→∞

[(
jk

2πδz

)N−1 ∫
R2

· · ·
∫
R2

d2sN−1 · · · d2s1

]
. (341)

The statistical moments of the scattered wave field can be obtained directly from the above solutions of
the parabolic wave equation. The second and fourth statistical moments are particularly useful. The second
moment is defined as

Γ2(s1, s2, z) = 〈ψ(s1, z)ψ
∗(s2, z)〉 , (342)

and the fourth statistical moment is defined as

Γ4(s1, s2, s3, s4, z) = 〈ψ(s1, z)ψ
∗(s2, z)ψ(s3, z)ψ

∗(s4, z)〉 . (343)

The second moment characterizes the mutual coherence function of the scattered wave field. Its Fourier
transform corresponds to the brightness distribution function that determines the degree of angular scatter-
ing caused by the turbulent medium. The expression for the second statistical moment of a plane wave
propagating through a thin phase screen was shown to be given by

Γ2(s) = exp

(
−1

2
Dϕ(s)

)
, (344)

where Dϕ(s) is the phase structure function associated with the random phase fluctuations induced by the
thin screen. The phase structure function was shown to be related to the power spectral density, Pϕ(κ), via
the relation:

Dϕ(s) = 2

∫
R2

Pϕ(κ)
[
1− e−jκ·s

]
d2κ. (345)

The field coherence length, s0, is defined as the point whereDϕ(s0) = 1. The characteristic scattering angle
is, in turn, defined as θs = 1/(ks0).

The fourth statistical moment can be used to obtain the correlation function of the observed inten-
sity fluctuations. Two series expansions were derived to represent the intensity spectrum at low and high
wavenumbers (or spatial frequencies). The intensity spectrum can be written as the sum of the two series
expansions:

PS(κ, z) =
∞∑
n=0

P LF
S

(n)(κ, z) +
∞∑
n=0

P HF
S

(n)(κ, z). (346)

In weak scintillation, when intensity fluctuations are small, it was shown that the intensity spectrum is given
by the Born or Rytov approximation:

PBS (κ, z) = 4Pϕ(κ) sin2

(
r2
F ‖κ‖2

2

)
, (347)
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where rF =
√
z/k is the Fresnel scale associated with the phase screen located at a distance z from the

observation plane. In strong scintillation, it was shown that the intensity spectrum can be approximated with

PS(κ, z) ' P LF
S

(0)(κ) + P LF
S

(1)(κ, z) + P HF
S

(0)(κ). (348)

The first two terms of the low-wavenumber series expansion are given by

P LF
S

(0)(κ) = δ(κ) (349)

and

P LF
S

(1)(κ, z) = 4Pϕ(κ) exp
(
−Dϕ

(
r2
Fκ
′)) sin2

(
r2
F ‖κ‖2

2

)
. (350)

The first term of the high-wavenumber series expansion is, in turn, given by

P HF
S

(0)(κ) =
1

(2π)2

∫
R2

e−Dϕ(s)ejκ·s d2κ. (351)

It was shown that in weak scintillation, the characteristic length scale of the intensity fluctuations is given
by the Fresnel scale, rF . In strong scintillation, it was shown that the intensity fluctuations are dominated
by two distinct characteristic length scales. It was shown in Section 7 that in strong scintillation, rapid
“diffractive” intensity variations are modulated by slow “refractive” intensity variations. The characteristic
length scale of the diffractive variations is given by the field coherence length, s0. The characteristic length
scale of the refractive variations is, in turn, given by the scattering disk size, sr = zθs. The parameter
u = rF /s0 was found to be useful for specifying the strength of scintillation. It was shown in Section 7 that
in weak scintillation, u � 1, and in strong scintillation, u � 1. Furthermore, the scintillation index, m2,
characterizing the degree of intensity fluctuations was shown to increase with the strength of scintillation
parameter u in weak scintillation and then saturate and approach unity in strong scintillation.

The discussion in Sections 5, 6, and 7 focused on asymptotic solutions for plane waves propagating
through a thin phase screen with the power spectral density of the random phase fluctuations modeled as
a simple power law. More general problems require resorting to numerical simulations. The recursive
FFT split-step algorithm for propagating a wave through an extended turbulent medium characterized by
an arbitrary power spectral density was presented in Section 8. Monte Carlo analyses based on numerical
realizations of the scattered wave field yield insight into problems that are not analytically tractable, such as
propagation problems that occur in the transition region from weak to strong scintillation.

A Fourier Transform Pairs

• n-dimensional spatial Fourier transform pair:

f(r) =

∫
Rn
F (q) e−jq·r dnq, (352)

F (q) =
1

(2π)n

∫
Rn
f(r) ejq·r dnr, (353)

where r ∈ Rn and q ∈ Rn.
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• Three-dimensional spatial isotropic Fourier transform pair:

f(r) =
4π

r

∫ ∞
0

F (q) sin (qr) q dq, (354)

F (q) =
1

(2π)3

4π

q

∫ ∞
0

f(r) sin (qr) r dr, (355)

where r = ‖r‖ =
√
x2 + y2 + z2 and q = ‖q‖ =

√
q2
x + q2

y + q2
z .

• If r = rTAr and q = qTA−1q, where r ∈ R3, q ∈ R3, and A is a 3-by-3 positive definite matrix, then

f(r) =
4π

r

√
det(A)

∫ ∞
0

F (q) sin(qr)q dq, (356)

F (q) =
1

(2π)3

4π

q
√

det(A)

∫ ∞
0

f(r) sin (qr) r dr. (357)

• Two-dimensional spatial isotropic Fourier transform pair (Hankel transform pair):

f(s) = 2π

∫ ∞
0

F (κ)J0 (κs)κ dκ, (358)

F (κ) =
1

(2π)2
2π

∫ ∞
0

f(s)J0 (κs) s ds, (359)

where s = ‖s‖ =
√
x2 + y2 and κ = ‖κ‖ =

√
κ2
x + κ2

y.

• If κ = κTB−1κ and s = sTBs, where s ∈ R2, κ ∈ R2, and B is a 2-by-2 positive definite matrix,
then

f(s) = 2π
√

det(B)

∫ ∞
0

F (κ)J0(κs)κ dκ, (360)

F (κ) =
1

(2π)2

2π√
det(B)

∫ ∞
0

f(s)J0 (κs) s ds. (361)

• Temporal Fourier transform pair:

f(t) =

∫ ∞
−∞

F (ω)ejωt dω, (362)

F (ω) =
1

2π

∫ ∞
−∞

f(t)e−jωt dt. (363)

• n-dimensional Fourier transform of a constant:

1

(2π)n

∫
Rn
e±j(q′−q)·(r′−r)dnr′ = δ(q′ − q). (364)

• Fourier transform of a one-dimensional Gaussian function:∫ ∞
−∞

e−ax
2
e±jκxx dx =

√
π

a
exp

(
−κ

2
x

4a

)
. (365)
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