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1.  EXECUTIVE SUMMARY 
 
This project was one of several fundamental efforts funded by the DARPA Defense Sciences 
Office through the Lagrange program.  The Lagrange program sought to develop new 
mathematical approaches to optimization problems in uncertain, dynamic, multiscale, and high-
dimensional systems.  Lagrange aimed to enable solutions for complex, realistic problems 
involving dynamic environments, rapidly changing requirements, and increasing or decreasing 
amounts of information. 
 
The primary technical goal of this project towards the broader Lagrange objectives was to 
explore the use of reparameterization to re-cast non-convex problems in larger parameter spaces 
in a manner improving problem convexity.  The understanding gained through this exploration 
was applied to topics in machine learning and optimal control.   
 
This report overviews the work accomplished in the project and provides citation to the many 
publications authored by the combined team at the University of California, Berkeley, and the 
Massachusetts Institute of Technology.  These publications are the comprehensive archive of 
research documentation and provide details of method development, theoretical findings 
including mathematical proofs, and numerical results of benchmark cases.  One journal article 
was published over this 18-month project.  The remaining publications are available on arXiv; 
some of these articles are in peer review.  
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2.  INTRODUCTION 
 
Convex optimization, the mathematical process of optimizing convex functions over convex sets,  
has become an extremely reliable and practical technology marked by efficient, polynomial-time 
algorithms.  However, algorithms that are generally reliable and efficient for non-convex 
optimization do not exist.  This gap in capability is important: non-convex optimization is 
beginning to enable powerful industrial applications in machine learning, operations, planning, 
and controls.  The goal of this fundamental research was to increase the reliability and efficiency 
of non-convex optimization for large-scale problems representative of challenging environments, 
and to explore the controlled conditions under which this improvement could be achieved. 
 
The observation that inspired this work was that non-convex problems had been successfully 
optimized in the past in certain settings were there was significant flexibility in how the problem 
was formulated.  In this project, reparameterization was formally introduced as an expression of 
this desired flexibility, and was used to develop novel understandings of large-scale, non-convex 
problems and to establish robust notions of how the choice of parameterization affects the 
geometric and computational properties of these problems.  
 
The project achieved success in three main areas, described in Sections 3-5.  Section 3 describes 
new insights gained into the application of machine learning to optimal control of uncertain and 
complex systems, as enabled by what is herein referred to as reparameterization.  Section 4 
describes new insights into recurrent neural networks and how reparameterization improves 
optimization under certain conditions in these models.  In Section 5, the use of 
reparameterization to simplify the analysis and deployment of large-scale nonconvex 
optimization solvers is discussed. 
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3.  MANAGING UNCERTAINTY AND COMPLEXITY BY MERGING 
MACHINE LEARNING AND OPTIMAL CONTROL 

 
The first thrust of this investigation was the examination of how enlarging parameterization, 
referred to here as “reparameterization” or “lifting”, simplifies non-convex optimization in 
machine learning and control.  Of particular interest were efficient reparametrizations/liftings.  
One attractive method was the System Level Synthesis (SLS) parameterization [12], which 
models dynamical systems by their mapping from disturbance to state, rather than as a standard 
dynamical system.  In this project, SLS was applied to controls; the resulting theoretical 
framework ultimately provided the first end-to-end bounds on the performance of a linear 
quadratic regulator when the dynamics are learned coarsely (i.e., the model is estimated from a 
few experimental trials) [3].  The key lesson was that all of this learning can be done with 
convex optimization by lifting the initial non-convex problem into a higher dimensional convex 
parameter space. 
 
The research team also studied how to use stable models and concepts from the modern theory of 
robust control to enhance the stability of existing adaptive control algorithms for the control of 
autonomous vehicles (as described below, a car was algorithmically taught to drive a track 
autonomously).  In adaptive control, an autonomous system begins operation while 
simultaneously learning about its dynamics and environment. The problem of adaptively 
controlling an unknown dynamical system has a rich history; classic asymptotic results of 
convergence and stability for adaptive control theory were already well established in the 1970s. 
Since this time, there have been several works that analyze, by various adaptive algorithms, the 
deviations in performance from optimality over time. All prior methods suffer from one or 
several of the following limitations: restrictive and unverifiable assumptions (e.g., regarding the 
uncertainties in vehicle dynamics see [4]), limited applicability, and computationally intractable 
subroutines. In this project, the first polynomial-time algorithm was developed for the adaptive 
Linear Quadratic Regulator (LQR) problem that provides high probability guarantees on 
deviations from optimality (the so-called sublinear regret) and that does not require unverifiable 
or unrealistic assumptions [4].  This robust adaptive control algorithm was found to:  

1. guarantee stability and near-optimal performance at all times;  
2. achieve high quality, and  
3. produce finite-dimensional, semi-definite programs of size logarithmic in the time 

horizon (the so-called time horizon from LQR theory is the period of time over which 
vehicle dynamics are defined). 

These properties were demonstrated for a Laplacian system with marginally unstable linear 
dynamics that has been previously studied in the literature.  Uncertainty in the operational 
environment was introduced using a stable transition matrix; see [4].   
 
Moving from adaptive control to safe execution, the research team studied how to guarantee safe 
learning in control systems. Data-driven design has considerable potential in contemporary 
control systems in which precise modeling of the dynamics is intractable, whether due to 
complex large-scale interactions or nonlinearities resulting from contact forces. However, a large 
hurdle in the way of practical deployment is the question of maintaining safe operating 
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conditions during the learning process, and guaranteeing safe execution using learned 
components.  Motivated by this issue, the data-driven design of a controller for constrained 
optimal control was studied [5]. The team designed a controller for a potentially unknown linear 
dynamical system that minimizes a given cost, subject to the additional requirement that both the 
state and input stay within a specified safe region. 
 
The team directly addressed the tension between exploration for learning and safety, which are 
fundamentally at odds, by synthesizing a controller that simultaneously excites and regulates the 
system.  System learning was achieved by additively injecting bounded noise to the control 
inputs computed by a safe controller. By leveraging the recently developed SLS framework for 
control design, a computationally tractable algorithm was derived [5] that returns a controller, 
which: 

1. guarantees the closed loop system remains within the specified constraint set and  
2. ensures that enough noise can be injected into the system to obtain a statistical guarantee 

on learning.  
To the best of our knowledge, our algorithm is the first to simultaneously achieve both objectives 
[5].  This was demonstrated on a small, double integrator example; see [5]. 
 
As with all other parts of this project, the controller synthesis was achieved by solving a convex 
optimization problem, whose solution guarantees the satisfaction of the specified safety 
constraints on system states and control inputs.  The optimization problem was created by lifting 
the initially non-convex problem into a new parameter representation using SLS, which was 
convex and tractable to solve while of a high-dimensional character.  Also, the 
reparameterization had the attractive side effect of allowing the performance degradation 
incurred by meeting the state and input constraints to be understood.  This in turn yielded the 
first end-to-end sample complexity guarantee for the control of constrained systems [5]. 
 
Finally, the team examined how to use our robust learning framework to incorporate complex, 
data-driven perception in agile feedback loops.  Motivated by vision-based control of 
autonomous vehicles, the team specifically considered the problem of controlling a known linear 
dynamical system for which partial state information (e.g., vehicle position) can only be 
extracted from high-dimensional data (e.g., an image).  The approach taken was to learn a 
perception map from high-dimensional data to partial-state observation and its corresponding 
error profile, and then to use the perception map in the design of a robust controller.  Under 
suitable smoothness assumptions on the perception map and generative model relating state to 
high-dimensional data, it was shown [6] an affine error model is sufficiently rich to capture all 
possible error profiles and can further be learned via a robust regression problem.  It was then 
demonstrated how to integrate the learned perception map and error model into a novel robust 
control synthesis procedure, and it was further proven that the resulting perception and control 
loop had favorable generalization properties [6].  
 
The usefulness of the overparameterized approach developed in this project was illustrated in 
both simulation and a physical deployment.  In the synthetic example, we showed how SLS-
based control could improve the performance of self-driving in the simulation platform CARLA 
[6].  This validation step was made before proceeding to physical testing.  Figure 1 (left) shows 
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an image generated by CARLA from the virtual perspective of a simulated car.  This two-
dimensional synthetic data is characteristic of a slice of streaming video data collected by 
autonomous cars.  Figure 1 (right) depicts image analysis of the CARLA image slice that picks 
out key image features (green boxes) and uses those features for estimating vehicle position 
(partial state information) using ORB-SLAM2.  Simulated use of SLS-based control eliminated 
vehicle-building contact and met safety (bounds on states) constraints.   
 

       
 

Figure 1. Sample CARLA image (left); features extracted from image data (right). 
 
On a real 1/10th scale car, the SLS framework was implemented to teach a car to drive around an 
unspecified track from a single lap demonstration performed by a remote driver.  See Figure 2.  
The goal of the trial was for the car to drive as fast as possible around the track specified by the 
initial lap demonstration, while adapting the control strategy and avoid collision with objects in 
the environment.  As in the CARLA simulation, the challenges were the absence of depth 
information and the relative nature of estimated position.  The car improved its performance over 
a series of autonomously driven laps while guaranteeing safety (collision avoidance), ending up 
with faster laps than performed by human trainers. 
 

          
 

Figure 2. 1/10th scale car with single camera used to collect images real time (left); sample image 
showing laboratory and rope marking perimeter of track (right). 
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4. UNDERSTANDING PARAMETERIZATION TRADEOFFS IN 
RECURRENT NEURAL NETWORKS 

 
The over-arching goal of this research thrust was to reparameterize neural networks to simplify 
learning. A long-term priority of this research team has been to determine when the output of 
optimization problems can be well-approximated by recurrent and residual network structures 
deployed in the practice of neural networks.  Here, the question of whether simpler structures 
may be appropriate to model these maps was investigated, with a focus on understanding 
parameterization as a resource for problems involving time-series data. In particular, the team 
developed understanding of how stability could be used as a resource to enable optimization 
problems that are simple to solve, but powerful enough to be used on state-of-the-art machine 
learning tasks. 
 
Stability, though a fundamental property of dynamical systems, had, to this date, little bearing on 
the practice of recurrent neural networks.  In work performed in this project, a thorough 
investigation of stable recurrent models in machine learning was conducted.  Recurrent models 
use feedback to propagate information over time, which allows compact modeling of long-range 
dependencies in tasks concerning time series and text.  However, recurrent models are difficult to 
train and often exhibit unpredictable behavior.  The team investigated whether these recurrent 
models could be replaced by dynamically stable variants that are easier to train and have more 
reliable and repeatable behavior at inference time. 
 
Stable recurrent models were studied on a variety established learning benchmarks [9]: language 
modeling for predicting the next character or word in a sequence (Penn Treebank and Wikitext-2 
benchmark datasets); polyphonic music modeling for predicting the next fragment of music in a 
sequence (JSB Chorales polyphonic benchmark dataset), and slot-filling for interpreting 
command inputs from word sequences (Airling Travel Information Systems benchmark dataset). 
Theoretically, it was proved that stable recurrent neural networks are well approximated by feed-
forward networks for the purpose of both inference and training by gradient descent [9]. 
Empirically, it was shown that stable recurrent models often perform as well as their unstable 
counterparts on benchmark sequence tasks [9]. Taken together, these findings shed light on the 
effective power of recurrent networks and suggest much of sequence learning happens, or can be 
made to happen, in the stable regime. Moreover, our results help to explain why in many cases 
practitioners succeed in replacing recurrent models by feed-forward models. 
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5.  GUARANTEED FAST EXECUTION OF FAST NONCONVEX 
OPTIMIZATION SOLVERS VIA REPARAMETERIZATION 

 
Semi-definite programming (SDP) with equality constraints arise in many optimization and 
machine learning problems, such as Max-Cut, community detection, and robust PCA. In all of 
these cases, the SDP formulations are a high dimensional parameterization of a lower 
dimensional, non-convex problem. 
 
Although SDPs can be solved to arbitrary precision in polynomial time, generic convex solvers 
do not scale well with the dimension of the problem. In order to address this issue, Burer and 
Monteiro [2] proposed to reduce the dimension of the problem by appealing to a low-rank 
factorization, and solve the subsequent non-convex problem instead. It is well-understood that 
the resulting non-convex problem acts as a reliable surrogate to the original SDP, and can be 
efficiently solved using the block-coordinate maximization method. Despite its simplicity, 
remarkable success, and wide use in practice, the theoretical understanding of the convergence of 
this method is limited.  
 
It was proved in this project [7] that the block-coordinate maximization algorithm applied to the 
non-convex Burer-Monteiro formulation approach has a global sublinear rate without any 
assumptions on the problem.  It was also proved [7] that this algorithm converges linearly 
around a local maximum provided that the objective function exhibits quadratic decay.  This 
condition generically holds when the rank of the factorization is sufficiently large.  Numerical 
results back up these theoretical findings. 
 
In this project, progress was also made on developing general purpose methods to avoid 
stationary points in non-convex optimization. Stationary points are neither local minima nor 
global minima: they are simply places where optimization methods “get stuck” because they 
cannot find configurations that improve their current optimization cost. We established that first-
order methods (i.e., methods that only use gradient information) avoid saddle points for almost 
all initializations. Our results apply to a wide variety of first-order methods, including gradient 
descent, block coordinate descent, mirror descent and variants thereof.  The connecting thread is 
that such algorithms can be studied from a dynamical systems perspective in which appropriate 
instantiations of the Stable Manifold Theorem allow for a global stability analysis. Thus, neither 
access to second-order derivative information nor randomness beyond initialization is necessary 
to provably avoid saddle points.  
 
Even though these methods provably avoid saddle points under random initialization, saddle 
points can still in practice slow down optimization methods. To fix this problem, a generic 
framework was developed that generates a sequence of iterates converging to an approximate 
local minimizer for constrained non-convex problems [10].  The proposed framework consists of 
two main stages: in the first stage, first-order information is used to reach a first-order stationary 
point, and in the second stage, second-order information is incorporated to escape from a 
stationary point if it is a local maximizer or a strict saddle point.  These escape directions are 
efficiently found using sampling tools from machine learning. 
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Additional research was carried out to solve a class of constrained non-convex, non-concave 
saddle point problems in a decentralized manner by a group of nodes in a network [8].  With 
regards to attaining the first-order solution, the algorithm resulting from this research obtained an 
asymptotic convergence rate proportional to the inverse-square root of N, where N is the number 
of iterates [8].  This is the first known convergence guarantee for decentralized solution of the 
saddle point problem and was verified numerically on a general adversarial network. 
 
Additionally, new insights into understanding acceleration of optimization when there are 
adversarial disturbances were gained in this project [1].  In a meta-turn, control theory was used 
to gain an improved understanding of optimization.  Specifically, the trade-offs between 
convergence rate and robustness to gradient errors in designing a first-order algorithm were 
studied.  Focus was given to gradient descent and accelerated gradient (AG) methods for 
minimizing strongly convex functions when the gradient has random errors in the form of 
additive white noise. With gradient errors, the function values of the iterates need not converge 
to the optimal value; hence, the robustness of an algorithm to noise was defined as the expected 
suboptimality due to the input noise. For this robustness measure, exact expressions for the 
quadratic case were derived using tools from robust control theory and tight upper bounds for the 
smooth strongly convex case using Lyapunov functions certified through matrix inequalities [1]. 
These characterizations were used within an optimization problem that selects parameters of 
Multistage Accelerated Stochastic Gradient (M-ASG) algorithms to achieve a particular trade-off 
between rate and robustness.  
 
Computed results show that M-ASG methods can achieve acceleration while being more robust 
to random gradient errors; behavior of these practical methods is markedly superior to standard 
gradient descent and accelerated gradient methods [1]. This was demonstrated for two sets of 
numerical experiments: the first involving a strongly convex quadratic function with gaussian 
noise on the function gradients, and the second involving a logistic regression problem of digit 
image classification with training noise.  Some theoretical connections were also established 
between the robustness of an algorithm and how quickly it can converge back to the optimal 
solution if it is perturbed from the optimal point with deterministic noise. 
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6.  CONCLUSIONS AND RECOMMENDATIONS 
 
The goal of this fundamental research was to increase the reliability and efficiency of non-
convex optimization for large-scale problems representative of challenging environments and 
uncertain models, and to define the controlled conditions under which this improvement could be 
achieved.  The application targeted by this team was the control of autonomous systems as 
enabled by machine learning.  The intersection of control theory and machine learning has 
become key to the development of future autonomous systems, as environments, models, and 
sensing datasets have all increased in complexity beyond the bounds of applicability of existing 
control methods. 
 
Reparameterization was the primary tool used towards meeting the project goal; this approach 
yielded faster and quantifiably reliable solution algorithms, with the tradeoff of solving problems 
in higher dimensional spaces.  A framework based on this approach was developed and 
successfully tested for machine learning of a control system for an autonomous car, which 
learned how to navigate a track using a single human-operated training lap and partial state, two 
autonomously operated slow laps to map out safe states, and positional data inferred from an on-
board camera.  Real-time learning during subsequent laps using the adaptive control framework 
ultimately yielded much faster laps than performed by human trainers. 
 
Theoretical results were established and the scope of the research broadened beyond vehicle 
control, as documented in over ten scholarly papers cited in this report.  Guarantees were 
established for the SLS parameterization framework meeting safety constraints on states and 
inputs subject to environmental uncertainties and computational tractability.  The first 
polynomial-time algorithm of practical utility was developed for the adaptive LQR problem, as 
well as the first end-to-end sample complexity guarantee for the control of constrained systems.  
The team also investigated whether recurrent models for tasks concerning time series and 
streaming text could be replaced by dynamically stable variants that are easier to train and have 
more reliable and repeatable behavior at inference time.  Finally, a variety of fast algorithms 
were developed for solving non-convex and saddle point problems using reparameterization. 
 
Future work should target the adaptive control of nonlinear, time-varying systems.  The models 
considered herein were assumed linear, a good assumption for many systems.  However, for 
some systems, certain important dynamics may be fundamentally nonlinear and require new 
control strategies.  Research in the community regarding the extension to nonlinear models is 
ongoing, but has not simultaneously addressed the satisfaction of safety constraints and the 
efficient use of data samples required for the learning process.   
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