
1
A Discipline for Software Engineering: Quality by Design
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Lessons Learned from Causal Analysis
from Army Project Data

2
A Discipline for Software Engineering: Quality by Design
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Document Markings

Copyright 2020 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-
15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed
as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY
KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic
form without requesting formal permission. Permission is required for any other use. Requests for permission should
be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM20-0059

3
A Discipline for Software Engineering: Quality by Design
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Why Model Causal Structure

Depending on causal structure, factor loadings may or may not be identifiable by

conventional adjustments

Bias can be introduced by

• Failure to adjust for Common Causes (Confounders)

• Adjusting on a Common Outcome (Colliders)

• Common sources of measurement error

• Treatment confounder feedback

Therefore, causal structural assumptions are necessary to

• Correct (adjustment) for bias

• Interpreting covariate loadings in regression models (anova and ancova)

• Identify appropriate analysis methods (e.g. stratification, g-methods, and so forth)

4
A Discipline for Software Engineering: Quality by Design
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Super Domain is Highly Connected Causal Node

Efficiency Throughput

Super Domain may influence a number of factors, having both direct and indirect effects

on the outcome.

5
A Discipline for Software Engineering: Quality by Design
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

AIS, Eng, and RT Causal Discovery by SuperDomain

AIS RT

ENG

6
A Discipline for Software Engineering: Quality by Design
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Section (optional)
Picture

(optional)How do the project goals affect the causal structure ?
Differences between “Efficiency” and “Throughput”

Month/hr (inverse staffing) effect requires multiple adjustments

7
A Discipline for Software Engineering: Quality by Design
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Section (optional)
Picture

(optional)“Throughput” structure differs with measure (SC vs NM)

8
A Discipline for Software Engineering: Quality by Design
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Section (optional)
Picture

(optional)Measurement Risks - 1

Systematic Bias associated with choices of measurement?

• Projects using Software Changes have a very different distribution of Relative Cyber

work than those using New and Modified LOC.

Differing Measurement scales

y = -7.9385x + 13.658
R² = 0.0013

0

100

200

300

400

500

600

700

0 0.2 0.4 0.6 0.8 1 1.2

SC
_M

o
n

th

Rel_Cyber

SC_Month

y = 131053x + 4825.2
R² = 0.1064

0

50000

100000

150000

200000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

N
ew

_M
o

d
_M

o
n

th

Rel_Cyber

New_Mod_Month

Same Project

Somewhat flat distribution Highest value is 0.3

9
A Discipline for Software Engineering: Quality by Design
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Section (optional)
Picture

(optional)Measurement Risks - 2

Misrepresenting independence

y = 131053x + 4825.2
R² = 0.1064

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

N
ew

_M
o

d
_M

o
n

th

Rel_Cyber

New_Mod_Month

Same Project different

times

10
A Discipline for Software Engineering: Quality by Design
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Section (optional)
Picture

(optional)Measurement Risks -2

Differing Measurement scales between

• different meaning of “Software Change”

• Differing measurement of “New and Changed LOC”

Unmeasured confounders

• LOC based on different Programming Languages , or

• Technology stacks

• Part time vs full time staffing

• Accounting controls (EVM)

11
A Discipline for Software Engineering: Quality by Design
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Section (optional)
Picture

(optional)Does ACAT level introduce a confounder bias?

ACAT is caused by historic cost

ACAT causes EVM management

Options,

Stratify the data by ACAT

Decompose ACAT into additional elements

Historic costs,

• Total effect -“no adjustments”

• Direct effect, adjust for Superdomain (or

equivalent block)

12
A Discipline for Software Engineering: Quality by Design
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Section (optional)
Picture

(optional)Hypothetical Effect of Decomposing ACAT

What if SD and Phase cause historic cost

If Historic cost causes baseline size?

Historic costs,

• Total effect –adjust for Phase and SD

• Direct effect- adjust for

• sApprCnt, Phase, SW_Bae, Staffing

13
A Discipline for Software Engineering: Quality by Design
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Future work, Treatment Confounder Feedback

If a series of treatment levels depends upon outcomes from prior treatments, the

confounding renders conventional adjustment methods ineffective.

K, K+1 :times

A_K: treatment at time K

L_K+1 : an outcome from treatment A_K

