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Why Model Causal Structure

Depending on causal structure, factor loadings may or may not be identifiable by 

conventional adjustments

Bias can be introduced by

• Failure to adjust for Common Causes (Confounders)

• Adjusting on a Common Outcome (Colliders)

• Common sources of measurement error

• Treatment confounder feedback 

Therefore, causal structural assumptions are necessary to

• Correct (adjustment) for bias

• Interpreting covariate loadings in regression models (anova and ancova)

• Identify appropriate analysis methods (e.g. stratification, g-methods, and so forth)
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Super Domain is Highly Connected Causal Node

Efficiency Throughput

Super Domain may influence a number of factors,  having both direct and indirect effects 

on the outcome. 
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AIS, Eng, and RT Causal Discovery by SuperDomain

AIS RT

ENG
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Section (optional)
Picture

(optional)How do the project goals affect the causal structure ?
Differences between “Efficiency” and “Throughput”

Month/hr (inverse staffing)  effect requires multiple adjustments 
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Section (optional)
Picture

(optional)“Throughput” structure differs with measure (SC vs NM)
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Section (optional)
Picture

(optional)Measurement Risks - 1

Systematic Bias associated with  choices of measurement?

• Projects using Software Changes have a very different distribution of Relative Cyber 

work than those using New and Modified LOC. 

Differing Measurement scales

y = -7.9385x + 13.658
R² = 0.0013
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Section (optional)
Picture

(optional)Measurement Risks - 2

Misrepresenting independence

y = 131053x + 4825.2
R² = 0.1064
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Section (optional)
Picture

(optional)Measurement Risks -2

Differing Measurement scales between

• different meaning of “Software Change”

• Differing measurement of “New and Changed LOC”

Unmeasured confounders

• LOC based on different Programming Languages , or

• Technology stacks

• Part time vs full time staffing

• Accounting controls (EVM)
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Section (optional)
Picture

(optional)Does ACAT level introduce a confounder bias?

ACAT is caused by historic cost

ACAT causes EVM management

Options,

Stratify the data by ACAT

Decompose ACAT into additional elements

Historic costs, 

• Total effect -“no adjustments”

• Direct effect, adjust for Superdomain (or 

equivalent block)
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Section (optional)
Picture

(optional)Hypothetical Effect of Decomposing ACAT

What if SD and Phase cause historic cost

If Historic cost causes baseline size?

Historic costs, 

• Total effect –adjust for Phase and SD

• Direct effect- adjust for 

• sApprCnt, Phase, SW_Bae, Staffing
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Future work, Treatment Confounder Feedback

If  a series of treatment levels  depends upon outcomes from prior treatments, the 

confounding renders conventional adjustment methods ineffective. 

K, K+1 :times

A_K: treatment at time K

L_K+1 : an outcome from treatment A_K 


