
1
Security Annex Update
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Security Annex Update
January 28, 2020

Dave Gluch

2
Security Annex Update
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Document Markings

Copyright 2020 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under
Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should
not be construed as an official Government position, policy, or decision, unless designated by other
documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS
TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF
THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any
other use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

DM20-0057

3
Security Annex Update
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Noteworthy Changes from Previous Version

Focused the content of standard to custom property sets and

packages.

Restructured the Security Classification Properties as record types

and eliminated inheritance.

Revised naming and structure of Security Enforcement Properties

(e.g. Data_Security as a record type)

4
Security Annex Update
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Overview

Security Annex Standard

• security properties for classification and enforcement

- basic classification, encryption, authentication specifications

- custom security components (e.g. keys, certificates)

• security specification examples

• a basic explanation of the analyses that are possible with the

security properties (possibly examples??)

Technical Report or White Paper

• example using OSATE/ALISA and the security annex

• example security architecture models and analyses

5
Security Annex Update
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Security Property Sets and Custom
Packages

Property Sets

• Security_Classification_Properties

- Classification_Specifications (set of constants)

• Security_Enforcement_Properties

- Encryption_Specifications (set of constants)

- Authentication_Specifications (set of constants)

Custom Packages

• Keys (key classifiers)

• Certificates (certificate classifiers)

6
Security Annex Update
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Security Annex Properties

Enumerations in property sets can be edited by a user

• Security Classification Property Set

- Restructured Formatting

- Security Clearances (subjects)

- Information Security Levels (objects)

- Security Levels (subjects and objects)

- Trusted Classification

• Security Enforcement Property Set

- Restructured Naming and Formatting

- Data Security

- Data Security Specification

- Subject Authentication

- Secure Flows

7
Security Annex Update
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Security Clearances Changes

Principal Security Clearance

Security_Clearance: Security_Classification_Properties::level_type

applies to (system, device, processor, virtual processor, thread, thread group,

subprogram, subprogram group, process, abstract)

Secondary_Security_Clearance:Security_Classification_Properties::level_type
applies to (system, device, processor, virtual processor, thread, thread group,

subprogram, subprogram group, process, abstract);

Security Clearance Type Declaration (enumerations modifiable by users)

level_type : type record
(

description: aadlstring;
level: enumeration (TopSecret, Secret, Confidential, Unclassified) ;

) ;

Supplemental Security Clearances

Security_Clearance_Supplement: aadlstring
applies to (system, device, processor, virtual processor, thread, thread group,
subprogram, subprogram group, process, abstract);

8
Security Annex Update
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Classification Specifications

Excerpt from the property set of classification specifications, which

are declared as constants of level_type

property set Classification_Specifications is
with Security_ Classification_Properties;

TopSecret: constant Security_Classification_Properties::level_type =>
[

level=> TopSecret;
description => “The highest level of security clearance that provides

access to Top Secret, Secret, and Confidential Information.";
];

Secret: constant Security_Classification_Properties::level_type =>
[

level=>Secret;
description => "This level of security classification provides access

to Secret Information and, as needed, to Confidential Information."
];

9
Security Annex Update
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Same level_type as
Security Clearance

Information Security Levels

Information_Security_Level: Security_Enforcement_Properties::level_type
applies to (data, port, system, process, device, abstract);

Information_Security_Caveats: list of
Security_Properties_Revised::caveat_type

applies to (data, port, system, process, device, abstract);

Type declarations for level and caveat

level_type: type record
(

description: aadlstring;
level: enumeration (TopSecret, Secret, Confidential, Unclassified);

);
caveat_type: type record
(

description: aadlstring;
caveat: enumeration (FOUO, NOFORN, NOCONTRACTOR, PROPIN, IMCON, ORCON,

NORELEASE, RELIDO, REL_TO_PUBLIC, REL_TO_CONTRACTOR);
) ;

Enumerations modifiable by users. Levels run left to right: highest to lowest.

10
Security Annex Update
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Security Classification Specifications

Excerpt from the property set of classification specifications, which

are declared as constants of level_type

property set Classification_Specifications is
with Security_ Classification_Properties;

TopSecretInformation: constant Security_Classification_Properties::level_type =>
[

level=> TopSecret;
description => "This is the is the highest level of classified

information where such material would cause exceptionally grave damage to national
security if made publicly available.";

];

SecretInformation: constant Security_Classification_Properties::level_type =>
[

level=>Secret;
description => "Would cause serious damage to national security if it

were publicly available.";
];

11
Security Annex Update
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Generalized Security Levels and Trusted
Components

When no differentiation between subject and object is needed.

Security_Level: Security_Classification_Properties::level_type
applies to (system, processor, virtual processor, thread, thread group,
subprogram, subprogram group, data, port, process, device, abstract);
--
Security_Level_Caveats:list of

Security_Classification_Properties::caveat_type
applies to (system, processor, virtual processor, thread, thread group,
subprogram, subprogram group, data, port, process, device, abstract);

Trusted Component

Trusted : aadlboolean applies to (system, process, thread, thread group,
subprogram, subprogram group, processor, virtual processor, bus, virtual
bus, abstract);

12
Security Annex Update
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Security Annex Properties

Enumerations in property sets can be edited by a user

• Security Classification Property Set

- Restructured Formatting

- Security Clearances (subjects)

- Information Security Levels (objects)

- Security Levels (subjects and objects)

- Trusted Classification

• Security Enforcement Property Set

- Restructured Naming and Formatting

- Data Security

- Data Security Specification

- Subject Authentication

- Secure Flows

13
Security Annex Update
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Data Security Properties

-- The Data Security property specifies the basic type of data protection.
Data_Security: record
(
description: aadlstring;
data_security_type: enumeration (no_protection, encryption, authentication,
authenticated_encryption, TLS);
) applies to (data, port, abstract, system, bus, memory, device, processor, virtual
processor, virtual bus, connection, process, thread, flow);

-- The Data_Security_Specification property specifies the details.

Data_Security_Specification: list of
Security_Enforcement_Properties::Security_Specification_Type
applies to (data, port, abstract, system, bus, memory, device, processor,
virtual processor, virtual bus, connection, process, thread, flow);
--
Security_Specification_Type: type record (

description: aadlstring;
encryption: Security_Enforcement_Properties::Encryption_Specification_Type;
authentication: Security_Enforcement_Properties::Data_Authentication_Type;
authenticated_encryption_type: enumeration (GCM, CBC_MAC, encrypt_then_MAC,
MAC_then_encrypt, encrypt_and_MAC, AEAD, signcryption);
);

14
Security Annex Update
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Security Specification Type Declaration

Security_Specification_Type: type record (
description: aadlstring;
encryption: Security_Enforcement_Properties::Encryption_Specification_Type;
authentication: Security_Enforcement_Properties::Data_Authentication_Type;
authenticated_encryption_form: enumeration (GCM, CBC_MAC, encrypt_then_MAC,

MAC_then_encrypt, encrypt_and_MAC, AEAD, signcryption););

Encryption_Specification_Type: type record (
description: aadlstring;
algorithm_name: enumeration (OTP, DES, TripleDES, AES, RSA, ECC);
encryption_mode: enumeration (ECB, CBC, CFB, CTR, GCM, Blowfish, TwoFish);
padding: enumeration (no_padding, block_cipher, OAEP);
key_classifier: Security_Enforcement_Properties::Key_Classifier;);

Data_Authentication_Type: type record (
description: aadlstring;
authentication_algorithm: enumeration (RSA, ElGamal, DSA, ECC, ECDSA, CBC_MAC, GCM,
HMAC, CMAC, OMAC, UMAC, Poly1305_AES);
authentication_key_type: list of Security_Enforcement_Properties::Key_Classifier;
hash_algorithm: enumeration (MD5, SHA1, SHA2, SHA3, RIPEMD, Whirlpool, ChaCha20,
BLAKE);
hash_length: Size;
);

15
Security Annex Update
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Encryption and Authentication Specifications
- excerpts
property set Encryption_Specifications is
with Security_Enforcement_Properties;
with Keys;

AES256CBC: constant Security_Enforcement_Properties::Encryption_Specification_Type
=> [
algorithm_name => AES;
encryption_mode => CBC;
key_classifier => classifier (Keys::Key256);
];

RSA2048: constant Security_Enforcement_Properties::Encryption_Specification_Type =>[
algorithm_name => RSA;
key_classifier => classifier (Keys::Key2048);
];

property set Authentication_Specifications is
with Security_Enforcement_Properties;

HMAC512: constant Security_Enforcement_Properties::Data_Authentication_Type =>[
description =>" Defines a message authentication code (MAC) using a cryptographic
hash function and a secret cryptographic key.";

authentication_algorithm => HMAC;
hash_algorithm => SHA3;
hash_length => 512 bits;

];

16
Security Annex Update
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Encryption Keys Package and Properties
package Keys
public
with Security_Enforcement_Properties;
data Key128
properties
Security_Enforcement_Properties::Key_Length => 128 bits;
end Key128;
data Key256
properties
Security_Enforcement_Properties::Key_Length => 256 bits;
end Key256;
data Key1024
properties
Security_Enforcement_Properties::Key_Length => 1024 bits;
end Key1024;
data Key2048
properties
Security_Enforcement_Properties::Key_Length => 2048 bits;
end Key2048;
end Keys;

Key Related Properties

Key_Classifier: type classifier (data);
Key_Instance: type reference (data);
Key_Length: Size applies to (data);
Crypto_Period: Time applies to (data);
Text_Type: enumeration (plainText, cipherText) applies to (data);
Key_Distribition_Method: enumeration (public_broadcast_channel,
public_one_to_one_channel, encrypted_channel, QKD, direct_physical_exchange, courier) applies to (all);

17
Security Annex Update
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Subject Authentication Property

Subject_Authentication: record (
description: aadlstring;
authentication_access_type: enumeration (no_authentication, single_password,

smart_card, ip_addr, two_factor, multi_layered, bio_metric);
two_and_multi_layered_factors: list of enumeration (no_multifactor, smart_card,

token, PIV, OTP, biometric, multi_layered);
-- the listing is such that the initial factor required for authentication is listed
first, the second factor is listed second, etc.

authentication_protocol: enumeration (no_authentication, cert_services, EAP, PAP,
SPAP, CHAP, MS_CHAP, Radius, IAS, Kerberos, SSL, TLS, NTLM);

authentication_role: enumeration (no_authentication, authenticator, accessor,
provider, requirer, mutual);

) applies to (abstract, system, process, thread, device, processor, virtual
processor, connection, bus, virtual bus,flow);

Declares that a subject (component instance) can participate or participates in

authentication as specified, including authentication negotiations employing the

specified authentication protocol, or that the component (e.g. a bus or virtual bus)

supports the authentication specified.

18
Security Annex Update
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Secure Flows

The Secure_Flow property specifies that the data in an end-

to-end flow is not altered by any element along the flow.

Secure_Flow: aadlboolean applies to (flow);

system implementation complete.basic
subcomponents
A: system A;
B: system B;
C: system C; -- a pass through of data
connections
conn1: port A.outp1 <-> C.inp1;
conn2: port C.outp1 <-> B.inp1;
--
flows
secure_path: end to end flow A.secure_sourceA -> conn1 -> C.secure_pathC ->
conn2 -> B.secure_sinkB;

properties
-- declare secure flow from A to B
Security_Enforcement_Properties::Secure_Flow => true applies to secure_path;

19
Security Annex Update
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Cross Domain Solution Example

Cross Domain Solution

• three primary data stores (top secret, secret, and unclassified)

• two data stores for data that can be released (secret releasable and

unclassified for public release).

• downgrading filters that downgrade top secret to secret, secret to

unclassified, top secret to secret releasable, secret to secret

releasable, and unclassified to unclassified public release.

• a super controller (subject) who can access and modify all three data

stores

20
Security Annex Update
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Cross Domain AADL Model

21
Security Annex Update
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

Resolute Claims and Results

-- security level checks

prove all_subcomponents_have_security_level(this.TopSecretDataStore) -- should be true

prove all_subcomponents_have_security_level(this.SecretDataStore) -- should be true

prove all_subcomponents_have_security_level (this) -- not true because some are trusted

prove all_subcomponents_have_security_level_or_are_trusted (this) -- should be true

prove all_contained_data_have_top_secret_security_level(this.TopSecretDataStore) -- should

be true

prove all_contained_data_have_secret_security_level(this.SecretDataStore) -- should be true

-- security connection checks

prove connected_components_have_same_security_level (this) -- should be false (some trusted)

prove connected_systems_have_same_security_levels_or_are_connected_to_trusted(this) --

should be true

22
Security Annex Update
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

MILS Architecture of the TSAccessUnit

23
Security Annex Update
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution.

MILS Three Domain Implementation

system implementation MILS.ThreeDomains

subcomponents

appMiddleSW: system appMiddleSW.MILS;

MILSLayer: system MILSLayer.MILS;

MILSKernel: virtual processor MILSKernel;

MILSProcessor: processor MILSProcessor.basic;

properties --

-- Schedule the partitions on a fixed timeline

Scheduling_Protocol => (FixedTimeline) applies to MILSKernel;

-- Bind the applications to the virtual processors

Actual_Processor_Binding => (reference (MILSLayer.tsMILS)) applies to appMiddleSW.topsecretLevel;

Actual_Processor_Binding => (reference (MILSLayer.sMILS)) applies to appMiddleSW.secretLevel;

Actual_Processor_Binding => (reference (MILSLayer.uncMILS)) applies to

appMiddleSW.unclassifiedLevel;

-- Bind the virtual processors to the separation kernel

Actual_Processor_Binding => (reference (MILSKernel)) applies to MILSLayer.tsMILS;

Actual_Processor_Binding => (reference (MILSKernel)) applies to MILSLayer.sMILS;

Actual_Processor_Binding => (reference (MILSKernel)) applies to MILSLayer.uncMILS;

-- Bind MILS separation kernel to the hardware processor

Actual_Processor_Binding => (reference (MILSProcessor)) applies to MILSKernel;

end MILS.ThreeDomains;

