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1 SUMMARY 

Increasingly, cyber-physical systems are expected to deliver acceptable and trusted behavior 

despite highly dynamic and uncertain operating conditions.  The X-PLORE project investigated 

the integration of evolutionary search algorithms with formal analysis methods in order to enhance 

system robustness and resiliency, while identifying corner cases that might lead to system failure 

under certain conditions.  Evolutionary search algorithms operate in an open-ended manner, 

unconstrained by human bias and preconceptions.  Combining this capability with formal analysis 

enables discovery of unintuitive solutions to design problems as well as situations that might cause 

the system to behave in an unintended manner after deployment.  This report describes the main 

capabilities developed in the project along with the results of studies in applying those methods to 

autonomous vehicles of different scales.  A list of publications and presentations resulting from 

this research is also provided. 

2 INTRODUCTION 

A major problem facing software intensive systems is that current software engineering tools do 

not adequately support the discovery of “unlikely-but-possible” situations that might produce 

unexpected behavior in the deployed system. To address these needs, it is necessary to leverage 

automated search technology to enable the software developer to foresee potential problems and 

enhance system requirements accordingly.  The X-PLORE project investigated and developed 

approaches to manage uncertainty in order to enhance software assurance. In order to maximize 

assurance impact, while reducing development and maintenance costs, the project focused on 

requirements analysis throughout the development process. These methods enable the developer 

to detect, identify, and mitigate situations (arising from unanticipated environmental conditions, 

unwanted feature interactions, and combinations thereof) that would otherwise lead to system 

malfunction and possible failure.  

3 METHODS, ASSUMPTIONS, AND PROCEDURES 

A robust computing-based system must be able to monitor its environment, adapt to changing 

conditions, withstand component failures and attacks, and continuously deliver acceptable and 

trusted behavior. However, the designer of such a system is faced with a challenging set of tasks: 

anticipating and characterizing conditions in which the system will operate; enabling the system 

to accommodate changing requirements, both functional and non-functional; and ensuring that 

existing and newly added functionality (possibly from third-party providers) will produce expected 

overall system behavior. These tasks are particularly difficult for systems that must operate safely 

and securely in the face of uncertainty.  

The primary objective of the X-PLORE project has been to harness the power of evolutionary 

computing (EC) and symbolic analysis (SA) in software engineering in order to advance the field 

to be able to support the modeling, analysis, and mitigation of two broad categories of uncertainty 

in software systems. External uncertainty includes aspects of the operating environment (including 

adverse conditions in the physical environment and unexpected human interaction) that can lead 

to suboptimal, and possibly catastrophic, results as the system tries to adapt to mischaracterized 

conditions. Internal uncertainty includes (unwanted) feature interaction among system 

components as well as unexpected component behavior due to software updates and 

reconfiguration. 
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Increasingly, software systems operate in highly dynamic and unpredictable environments. This 

situation is self-evident with the proliferation of cyber-physical systems, which combine 

computing technology with sensors and actuators that interact with the physical world. However, 

even systems that operate entirely within cyberspace need to account for changing network and 

load conditions, component failures, and exposure to a wide variety of cyberattacks. Moreover, 

the complexity of software in terms of features and their interactions is ever growing. The 

challenge of guaranteeing the integrity of the system is exacerbated by the fluid nature of software, 

where functionality may necessarily need to change in response to new requirements, patches, and 

other updates. Uncertainty has been defined as the difference between information that exists in 

an executing system and the information that is both measurable and available to the system at a 

given point in time. The challenge for the software developer is to (1) foresee situations in which 

the system will execute and (2) design the system to operate as intended despite internal 

uncertainty (including unwanted feature interactions) and external uncertainty (including unlikely-

but-possible environmental conditions).  

The hallmark of the X-PLORE project is to introduce a fundamental biological principle, 

evolution, into the development process for cyber-physical systems that explicitly addresses 

different types and levels of uncertainty. Evolutionary search algorithms operate in an open-ended 

manner, unconstrained by human bias and preconceptions.  As a result, such algorithms are able 

to discover unintuitive solutions to engineering problems, as well as reveal potential problems the 

developer might not have considered. This is a paradigm shift from the traditional approach to 

design, which is limited to a developer’s prior knowledge and experience, in order to enhance the 

robustness and resilience of the target cyber-physical systems. The basic idea is to combine 

evolutionary search with formal analysis to discover, at development time, situations that might 

cause the system to behave in an unintended manner after deployment, as well as ways to mitigate 

those situations. In order to maximize the benefits of this approach and manage the complexity of 

the software artifacts under analysis, we focus on the requirements stage of model-driven 

engineering, thereby ensuring traceability of system behavior to design decisions and functional 

objectives. When an unwanted behavior is revealed, the requirements engineer can address the 

problem by amending the goals and/or requirements of the system, including identifying and 

characterizing conditions that will trigger software adaptation during execution. For high-

assurance systems that require certification, adaptation comes in the form of mode changes, where 

each mode handles different environmental and operating conditions. 

4 RESULTS AND DISCUSSION 

This section describes the key capabilities that we developed for the X-PLORE project to address 

internal and external uncertainty for trusted and resilient systems. We describe the specific 

techniques that we developed to address internal uncertainty and external uncertainty, respectively. 

We conclude the section with descriptions of the evolutionary-based simulation environment and 

the physical demonstration platforms that we used to validate our techniques.  

Approved for Public Release; Distribution Unlimited. 
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4.1 Internal Uncertainty 

 

This section describes several activities that focused on addressing internal sources of uncertainty: 

incomplete requirements and unwanted feature interactions. In most cases, we started with a formal 

analysis approach of goal-based model representations of requirements specifications, proceeding 

to the use of evolutionary-based techniques to identify multiple counterexamples, and finally 

progressing to the use of utility function-based monitoring for run-time detection and analysis of 

self-adaptive systems.  In all cases, we leveraged our collaborations with the automotive industry 

to obtain real-world, industrial-strength specifications of applications to illustrate and validate our 

techniques.  

 

4.1.1. Automated Detection of Incomplete Requirements. We developed a technique, Ares-

EC that makes use of evolutionary computation and symbolic analysis to automatically assess 

requirements completeness. Ares-EC leverages the previously developed Ares technique that uses 

symbolic analysis to detect the existence of incomplete requirements decomposition, where Ares 

returned a single counterexample if a given requirement had been incompletely decomposed. With 

Ares-EC, we empirically explored how search-based techniques can provide a suite of 

counterexamples to account for different environmental conditions that help to uncover 

requirements gaps. We explored multiple treatments for comparison in order to address the “needle 

in the haystack problem” and “multiple optima” in the solution space. The treatments included 

symbolic analysis (SA) that would return a single counterexample if an incompleteness exists; 

using EC alone (EC) that returned no counterexamples in the time allotted due to the “needle in 

the haystack” problem; symbolic analysis and then EC (SAEC) to look for multiple 

counterexamples close to the counterexample found by SA; and then EC with periodic introduction 

of SA-identified counterexamples (PSAEC) to address the situation where multiple optima may 

be possible in the solution space. Our conclusion from this study is that PSAEC is the best approach 

to identifying a suite of counterexamples for incomplete requirements.  The suite of 

counterexamples provides much more information to the developer in how to revise the 

requirements and environmental assumptions to improve overall system resilience and 

trustworthiness.   

 

This work was published and presented at the 9th International Symposium on Search-based 

Software Engineering (SSBSE), held at Paderborn, Germany, co-located with the Foundations 

of Software Engineering/European Software Engineering Conference (FSE/ESEC), September 

2017, pp. 49-64.  

 

 

We then extended our work with automatic detection of incomplete requirements (i.e., Ares and 

Ares-EC) to perform the analysis at run time.  The validity of run-time monitoring of system goals 

and requirements depends on both the completeness of the requirements, as well as the correctness 

of the environmental assumptions. Often specifications are built with an idealized view of the 

environment that leads to incomplete and inconsistent requirements related to non-idealized 

behavior. Worse yet, requirements may be measured as satisfied at run time despite an incomplete 

or inconsistent decomposition of requirements due to violated environmental assumptions. While 

methods exist to detect incomplete requirements at design time, environmental assumptions may 

be invalidated in unexpected run-time environments causing undetected incomplete 
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decompositions. We developed Lykus, an approach for using models at run time to detect 

incomplete and inconsistent requirements decompositions at run time. We demonstrated this 

approach by applying Lykus to a requirements model of an adaptive cruise control system from 

one of our industrial collaborators. Lykus was able to automatically detect instances of incomplete 

and inconsistent requirements decompositions at run time.   

This work was described in a paper published and presented at the 12th International 

Workshop on Models at Run Time (M@RT), as part of the International MODELS (Model 

Driven Engineering Languages and Systems) Conference, held in Austin, Texas, 

September 2017, pp. 201-209.  

4.1.2. Detecting n-way unwanted feature interactions. We have developed Phorcys, an 

approach to use symbolic analysis to detect n-way feature interactions (FIs) at the requirements 

level. This capability is increasingly important with autonomous systems, where increasing 

numbers of onboard features are being added to provide a broad spectrum of capabilities. When 

individually tested and analyzed, a given feature may provide the appropriate behavior. But as the 

feature is deployed “in the wild,” unexpected and/or adverse environmental conditions may behave 

unexpectedly. This problem is exacerbated and compounded when considering multiple features 

operating collectively in potentially unknown conditions. Phorcys tackles this problem from a 

design-time point of view by applying symbolic analysis to feature requirements based on expected 

environmental conditions. Here, we are exploring how the composition of features may reveal 

unknown and unwanted n-way FIs.  Phorcys differs from other FI techniques in that it detects a 

possible FI as well as the cause of the FI. In addition, due to the computational complexity typically 

associated with the analysis, most FI detection techniques focus on pairwise FI. However, studies 

have shown that in complex systems, many FIs only manifest in three or more features. Therefore, 

Phorcys supports the detection of n-way FI. We applied Phorcys to a composite braking subsystem 

that illustrates problems similar to those that caused the unintended acceleration associated with 

the Toyota Prius and other Toyota models.  

This work was published and presented as: Byron DeVries, Betty H. C. Cheng: 

“Automatic Detection of Feature Interactions Using Symbolic Analysis and Evolutionary 

Computation” at Proceedings of  the 18th IEEE International Conference on Software 

Quality, Reliability, and Security (QRS), July 2018, Lisbon, Portugal, pp. 257-268. 

Next, we studied how evolutionary computation (EC) could be used to enhance the FI detection 

technique to better capture the impact of uncertainty on cyber-physical and autonomous systems. 

Specifically, Phorcys-EC leverages our experience with using EC to detect requirements 

incompleteness, where we explored how EC could be used to identify multiple FI counterexamples 

that better identify the range of environmental conditions that cause an unwanted n-way FI. As 

before, we conducted numerous empirical studies to explore how enhancing our symbolic analysis-

based approach for detecting FI can be enhanced by use of EC techniques. Specifically, we 

compared the following techniques: using symbolic analysis only (SA), using EC only (EC), and 

 Lykus is the mortal son of Ares, who sacrificed strangers to his father. 
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using a combination of SA and EC (SA+EC).  When using EC-based techniques, common 

challenges to overcome include: avoiding the ‘needle in a haystack problem’ (looking for one 

solution within a large solution space); lack of a gradient between optimal and non-optimal results, 

thus providing no basis for improvement during evolution and degrading to random search; and 

dependencies between variables may necessitate changes with additional variables to maintain 

optimality. In order to overcome these challenges, we combined SA and EC. Specifically, we 

initially use SA to seed the evolutionary process and then periodically inject SA-detected FIs to 

the evolutionary process, with a particular focus on diversity of the FI results. Using this approach, 

we were able to obtain diversity along two dimensions and identify FIs amongst the most diverse 

collection of features and environmental conditions.   

 

4.1.3. Run-time Monitoring and Detection of Feature Interactions. The validity of systems at 

run time depends on the features included in those systems operating as specified. However, when 

feature interactions occur, the specifications no longer reflect the state of the run-time system due 

to the conflict. While methods exist to detect feature interactions at design time, conflicts that 

cause features to fail may still arise when new detected feature interactions are considered 

unreachable, new features are added, or an exhaustive design-time detection approach is 

impractical due to computational costs. We have developed Thoosa,1 an approach for using models 

at run time to detect features that can fail due to n-way feature interactions at run time and thereby 

trigger mitigating adaptations and/or updates to the requirements. We demonstrated this approach 

by applying Thoosa to an industry-based automotive braking system comprising multiple 

subsystems.  

 

Thoosa analyzes features represented in goal models that hierarchically decompose a high-level 

goal down to individual requirements. Thoosa executes generated logic, in the form of C++ code 

that analyzes each feature with respect to the current feature combinations of the goal model and 

identifies if the analyzed feature can fail due to a conflict in one or more requirements to be 

satisfied at run time. Each feature is analyzed for failure due to a feature interaction. Where 

previous run-time feature interaction detection techniques indicate that a feature interaction exists, 

Thoosa identifies which features fail due to the feature interaction.  

This work was published and presented as: Byron DeVries, Betty H. C. Cheng: ``Run-time 

monitoring of self-adaptive systems to detect N-way feature interactions and their causes’’ in  the 

Proc. 13th IEEE International Symposium on Software Engineering and Self-Managing 

Systems (SEAMS), May 2018, Gothenburg, Sweden, pp. 94-100. 

 

1Thoosa is a Greek sea nymph associated with swiftness and the daughter of Phorcys.  
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4.1.4. Detecting Unwanted Interactions between Non-functional and Functional Properties. 

Non-functional requirements are intended to ensure the non-functional properties of the system 

under development. However, non-functional properties of the system often crosscut functional 

and non-functional requirements. These cross-cutting concerns are dispersed throughout the 

requirements. This dispersion renders manual insertion of the non-functional concerns difficult 

and error prone. We have developed Soter2, a method for aspect-oriented modeling of non-

functional requirements and properties, which applies a symbolic analysis-based approach to 

detect unwanted interactions between non-functional properties and/or functional requirements. 

We demonstrated this approach by applying Soter to detect unwanted interactions among aspect-

oriented safety and performance models and the requirements of an industry-based automotive 

braking system. 

Soter leverages the similarity between aspect and feature interactions by translating the aspect-

oriented safety requirements into features representing the safety requirements. These additional 

safety features are woven into the existing GORE (goal-oriented requirements engineering) model. 

Feature interaction detection analysis is applied to each of the functional features and safety 

features to determine if they cause an interaction or safety violation. The counterexamples for each 

detected interaction amongst the safety features are classified according to the safety model 

properties and provided to the system designer to guide the revision of the functional and safety 

requirements. For example, an Adaptive Cruise Control (ACC) may have a safety requirement to 

avoid collisions with other cars depending on a specific proximity, while the requirements model 

for the ACC also has requirements to maintain the driver’s desired speed. The safety requirement 

to avoid a collision can be violated when the driver’s desired speed is maintained and therefore an 

interaction exists between the requirements to avoid collision and maintain the driver’s desired 

speed. Soter provides a method for modeling aspect-oriented safety goals that includes goal 

decomposition strategies that provide functional mitigations. Soter recombines the safety property 

and an optional mitigation decomposition to create safety features that represent one of the 

following cases:  

 Safety Properties: safety invariants of the system with no mitigation,

 Weak Mitigations: mitigations that are applied when safety properties are violated, and

 Strong Mitigations: mitigations that are applied to ensure safety properties are never violated.

These safety features are defined separately (i.e., as aspect models) from the traditional 

requirements decomposition hierarchy and are subsequently woven into the relevant portions of 

the requirements model automatically. Counterexamples representing interactions between 

functional and non-functional features are generated by a feature interaction detection tool, 

Phorcys, and categorized by Soter as to whether the safety properties, the mitigation objectives, 

or both were violated. 

2 Soter: Greek god for safety, deliverance from harm. 
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This work was published and presented as: Byron DeVries and Betty H.C. Cheng, “Goal-Based 

Modeling and Analysis of Non-Functional Requirements” in the Proc. of IEEE/ACM 

International Conference (Model Driven Engineering Languages and Systems (MODELS), 

held in Munich, Germany, September 2019.  

 

 

4.2 External Uncertainty 

 

In order to investigate the impact of uncertainty on adaptive systems, we explored the use of 

evolutionary techniques to generate a broad range of environmental conditions, with an emphasis 

on discovering a diverse range of system behavior. The behavior discovered ranged from “perfect” 

(expected behavior) to unacceptable, failing behavior, including behavior in the “grey” area that 

requires additional analysis to determine whether the behavior is acceptable or needs to be 

mitigated. We looked at how natural environmental conditions impact both functional and non-

functional requirements.  And we initiated preliminary investigations into security vulnerabilities 

on adaptive systems, as part of the TRSYS Phase 3, integration projects with Gamble from Tulsa.  

 

4.2.1. Enki3: a configurable platform for exploring behavioral uncertainty due to 

environment and system conditions. Our approach to identifying unlikely-but-possible 

conditions that can lead to system failure is based on novelty search. Unlike evolutionary 

algorithms that evaluate individuals based on fitness with regard to one or more tasks, novelty 

search proportionately rewards individuals whose phenotypes (e.g., behavior in the case of cyber-

physical systems) are most different from those previously discovered. An archive is maintained 

to record such individuals from each generation, ultimately producing a set of solutions with 

widely diverse phenotypes. We previously developed a novelty search tool called LOKI and used 

it to generate operating contexts for industry-provided automotive software.  In the X-PLORE 

project, we developed a more general tool called Enki. Whereas LOKI is tightly integrated into the 

target system, Enki is completely standalone and applicable to any target system. Not only can 

Enki discover dangerous combinations of conditions, unwanted feature interactions, and new 

attack vectors, but it can improve machine learning performance by generating training data that 

reflects conditions not well represented in the original training data. Enki is a configurable and 

parameterized framework that enables users to specify sources of uncertainty (and range of 

values), define a plant models (e.g., a simulation frameworks), and parameterize their diversity 

needs (e.g., for both environmental conditions and system behavior).  We have validated the 

framework with in-house projects, some of which previously studied using LOKI, whose 

uncertainty exploration capabilities were woven into the application under study.  

 

One of our original project objectives was to use LOKI-like search to assist in the discovery of 

mode boundaries and modes of autonomous vehicles. Enki development was motivated by 

discussion at an early TRSYS PI meeting on ways to make the capability applicable to many types 

of cyber-physical systems. The nuances in the environmental conditions (i.e., external uncertainty) 

and onboard features behind the rover and quad copter that prompted us to make transform LOKI 

into a more generalized framework. Enki development focused on extracting the LOKI 

functionality out of the application, developing well-defined interfaces for using LOKI 

3 Sumerian god for mischief.  
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capabilities, such as sources of uncertainty, execution environment for application, and 

configuration of the evolutionary search process for identify diverse combinations of 

environmental and onboard conditions.  Enki is designed to apply novelty search within a 

blackbox automation tool to help assess and improve an SUT (system under test) in the 

presence of environmental uncertainty. Enki requires a simulation executable to evaluate 

the SUT and a specification of the simulation’s input and output parameters.  

Enki is designed to be a general technique to be used with any type of system. In one of 

our first studies, we applied Enki to generate novel training data for machine learning (ML) 

algorithms used to classify images for autonomous vehicles. Indeed, one of the biggest challenges 

facing the autonomous vehicles area is the resiliency of the classification algorithms in the face of 

(environmental) uncertainty,that is by definition limited by the scope and coverage of training data. 

We used Enki to explore two important research questions: 1) Can Enki generate useful test data 

that detects weaknesses in existing ML for handling uncertainty conditions; 2) Can Enki generate 

synthetic training data that can be used to train existing MLs to improve their behavior and improve 

their overall resilience to uncertainty in the environment. The current target for the ML is deep 

neural networks (DNNs) given their common use for classification problems, such as what is 

needed for obstacle avoidance and other onboard camera-based functions for autonomous vehicles.    

We started by using Enki to support the generation of synthetic testing data to assess the utility of 

machine learning algorithms (currently focusing on image classification techniques, similar to 

those used for autonomous vehicles) in the face of uncertain environmental conditions. Applying 

novelty search synthetically generate testing data enables exploration of the broadest diversity in 

the behavior of the ML algorithms. This diversity assists in uncovering weaknesses and gaps in 

the ML behavior that have not been uncovered by the existing training data.  Results indicate that 

Enki can generate a broad range of test data that detrimentally decreases the accuracy of the ML 

algorithm when applied to the CIFAR-10 benchmark data set. Even when compared to randomly 

generated test data, Enki is still better able to increase the accuracy of the ML algorithms. Our 

results show that by using Enki, we can generate environmental conditions such as decreased 

lighting, haze, and the presence of rain to construct a set of conditions that negatively impact the 

performance of a CIFAR-10 DNN. Specifically, we showed that a DNN that demonstrates a 91% 

accuracy on the default benchmark test data can be shown to only have a 10% accuracy when 

exposed to environmental effects introduced by Enki. This result indicates that Enki can be 

effective in identifying weaknesses in existing ML algorithms when applied to uncertainty 

conditions. This capability comes from the novelty-based technique used to generate test data that 

are not covered by the existing test data used to validate ML techniques.  

We next explored whether Enki could be leveraged to improve the performance of existing ML 

techniques to make them more resilient to uncertainty. Towards this end, we used Enki to generate 

novel training data that focused on diverse behavior in the ML. Again, through empirical analysis, 

we found that the ML that was trained against Enki-generated data and the existing training data 

performed much better than the MLs that were only trained with the original training data or those 

that were only trained against random training data. Specifically, the synthetic training data 

generated by Enki was able to improve the accuracy of the DNN up to 76% in the presence of 

comparable adverse environmental effects. From a regression point of view, the Enki-trained ML 

also performed comparably to the original ML when applied to the original testing data and to the 
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random test data. As such, the Enki-trained ML performed better for the original test data, random 

test data, and the Enki test data, thus making the overall autonomous system more robust and 

resilient to environmental uncertainty. 

 

The results describing the Enki work were published and presented as: M. Langford, B. H. 

C. Cheng: “Enhancing Learning-“Enabled Software Systems to Address Environmental 

Uncertainty”,   at the IEEE International Conference on Autonomic  Computing 

(ICAC2019), in Umea, Sweden, June 2019, pp. 115-124 

 

4.2.2. Run-Time Adaptation. We also explored an evolutionary-based approach to support 

run-time adaptation when making tradeoffs with non-functional properties (e.g., performance, 

cost, and reliability) in response to environmental uncertainty. This work, performed in 

conjunction with collaborators at Oakland University, developed an automated technique to use 

search-based techniques to identify reconfiguration options when analyzing goal-based models 

that explicitly represent the contribution of functional requirements to the satisficement of non-

functional properties. This type of modeling enabled us to make tradeoffs between different 

adaptation configurations that are functionally comparable in satisfying system requirements, but 

differ in their non-functional impact. This work can be leveraged when defining modes of 

behavior and associating their corresponding impact on non-functional properties. 

 

The results of this work were published and presented as:  Kate M. Bowers, Erik M. 

Fredericks, Betty H. C. Cheng: “Automated Optimization of Weighted Non-functional Objectives 

in Self-adaptive Systems,” Proceedings of 10th International Symposium on Search-Based 

Software Engineering, (SSBSE 2018), pp. 182-197.  
 

 

4.2.3. MAPE-SAC Framework: As part of the Phase 3 and a TRSYS Program Integration 

effort, in collaboration with researchers at the University of Tulsa, we initiated work into 

developing an adaptive framework to manage security assurance cases – termed MAPE-SAC. 

The work is leveraging the adaptive framework developed by Kephart and Chess on managing 

adaptive systems termed MAPE-K loop (to capture the monitoring, analysis, planning, and 

execution process used to dynamically adapt a self-adaptive system. The key insight with this 

project is to develop a synergistic relationship between managing assurance cases for the 

functional aspects (MAPE-K) and the security aspects (MAPE-SAC) of a trusted and resilient 

system. This early work illustrated how to manage the adaptations of security assurance cases 

(SACs) that are based on NIST communication protocols for secure communication, such as that 

used for autonomous systems.  

 

 

 

The preliminary results were published and presented as: Sharmin Jahan, Matthew 

Pasco, Rose F. Gamble, Philip K. McKinley, Betty H. C. Cheng: “MAPE-SAC: A 

Framework to Dynamically Manage Security Assurance Cases.” Proc. IEEE 4th 

International Workshops on Foundations and Applications of Self* Systems 

FAS*W@SASO/ICAC 2019: 146-151. 
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Extended version of the work has been submitted: Sharmin Jahan, Ian Riley, Charles 

Walter, Rose F. Gamble, Matthew Pasco, Betty H.C. Cheng, and Philip K. McKinley, 

“MAPE-K/MAPE-SAC:Interaction Framework for Adaptive Security Assurance Cases,”,  

submitted to special issue Special Issue on Self- Protecting Systems in Journal of Future 

Generation Computer Systems. July 31, 2019  

4.3 Demonstration/Validation 

Many of our investigations in the X-PLORE project fall within the field of evolutionary robotics 

(ER), which harnesses the open-ended search capabilities of evolutionary algorithms to optimize 

(or, in the case of Enki, detect problems in) robot design and operation.  In ER, an artificial genome 

specifies the robot’s control system and possibly aspects of its morphology. Individuals in a 

population are evaluated with respect to one or more tasks, with the best performing individuals 

selected to pass their genes to the next generation. Simulation is typically used to evaluate 

individuals, greatly reducing the time to evolve solutions while avoiding possible damage to 

physical robots. Over the past two decades, evolutionary approaches have yielded effective 

controllers and physical structures for a variety of crawling, swimming, and flying robots.  Despite 

these advances, ER has had little effect on mainstream robotics, in part due to the complexity of 

the evolutionary algorithms and the corresponding use of simple models of robots and their 

environments. 

A goal of the X-PLORE project was to ensure that the techniques developed can be applied to 

state-of-the-art cyber-physical systems.  The broader robotics community is developing 

autonomous systems that integrate advanced computing technology, machine learning algorithms, 

and multimodal sensing (e.g., radar, lidar, GPS) to interpret and help navigate complex real-world 

environments.  Such systems are typically controlled by complex software infrastructures, such as 

the Robot Operating System (ROS).  ROS is often coupled with the Gazebo physics- based 

simulator, which provides tested models of many commercially available hardware components. 

An advantage of ROS is that code from a simulated robot can be inserted directly into the 

corresponding physical robot.  Ensuring the applicability of X-PLORE technologies to such 

complex systems required development of physical vehicles as well as an  evolutionary robotics 

framework to enable exploration of the design space for both hardware and software configuration. 
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4.3.1. Physical Vehicles. In the X-PLORE project we developed two physical vehicles.  The 

first is a 1:16-scale autonomous rover based on a design from a group at BBN. The rover is 

modeled after the Erle-Rover, a commercially available 1:16-scale car-like robot controlled by 

ROS, with a maximum speed of approximately 25 mph. The rover was assembled in-house and 

comprises a commercial chassis augmented with a custom mounting board to hold sensors, 

instruments, and battery packs. To protect the on-board electronics from impact, a roll cage has 

also been installed. The 4-wheel drive rover is governed by a Pixhawk Mini autopilot unit (with 

32-bit ARM processor, 2MB flash memory, GPS unit, dual IMUs) and includes a 2040 brushless 

Inrunner motor, high-torque steering servo, and Maxbotix sonar sensors. This platform enables 

the investigation of several questions related to resilient sensing, navigation and locomotion.  

The second platform is the MSU version of AutoRally, which was constructed in-house over 

several months.  MSU AutoRally is based on a design provided by researchers at Georgia Tech. 

The completed platform weighs 46 lbs and has a top speed of 60 mph. Default sensors include a 

high-precision IMU, GPS, Hall-effect rotation sensor on each wheel, and two front-facing machine 

vision cameras. The computing resources are housed in a custom compute box and include an Intel 

Skylake Quad-core i7, 32GB DDR4 RAM, 2TB SSD storage, an Nvidia GTX 1050 Ti GPU for 

real-time image processing, and WiFi and XBee network interfaces. In the future, we plan to add 

at least one lidar unit to the vehicle. The MSU version of AutoRally is fully compatible with the 

ROS navigation stack, which takes in sensor and odometry data and outputs throttle and steering 

commands to produce navigation from the platform’s current location to a goal pose (consisting 

of location and heading). The ROS navigation stack maintains both a global and local cost map of 

the environment, updating the presence of obstacles in real-time, allowing it to plan paths to goal 

locations while avoiding both stationary and moving obstacles. This vehicle and the simulation of 

it in Evo-ROS enables studies of navigation, obstacle avoidance, operation under adverse 

conditions, and mitigation of internal and external uncertainty. 

4.3.2. Evo-ROS Evolutionary Robotics Platform. To apply evolution to these platforms, we 

needed simulated versions, which we developed by extending Gazebo simulations of the Erle-

rover and the Georgia Tech AutoRally vehicle.  To enable evolution for ROS-based robots, we 

developed Evo-ROS, which is intended as a bridge between evolutionary robotics and the 

broader robotics community. Specifically, Evo-ROS (1) provides researchers in evolutionary 

robotics with access to the extensive support for real-world systems and components available 

with ROS, and (2) enables ROS developers, and more broadly robotics researchers, to take 

advantage of evolutionary search during design and testing. To address the execution time 

needed for multiple high-fidelity simulations, Evo-ROS provides an interface to parallelize 

evolutionary runs across multiple physical and virtual machines. Evo-ROS runs are executed on 

448-core compute cluster.  The fitness of individual configurations is based on the time and 

space efficiency, while avoiding obstacles, in following waypoints in multiple environments. 

Our initial work on Evo-ROS (version 1.0) combined the Ardupilot control software along with 

the MAVLink protocol for communication with ground control, ROS, and Gazebo.  Our initial 

experiments focused on the GRover platform described above. (We also extended Evo-ROS to 

support the ErleCopter aerial platform.) Specifically, we conducted a study with the rover that 

applies evolutionary search to determine the optimal number, placement and configuration of sonar 

sensors, given the possibility that one or more of the sensors might fail during operation.  The 
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primary purpose of that study was to demonstrate the operation of Evo-ROS, but the experiments 

also revealed interesting characteristics in how evolution realized sensor redundancy in the 

presence of failures. 

A full paper on the Evo-ROS platform and our experiments with sensor failures and placement 

was published and presented as follows: Evo-ROS: Integrating Evolution and the Robot Operating 

System, Glen A. Simon, Anthony J. Clark, Jared M. Moore, and Philip K. McKinley, in 

Proceedings of the Genetic and Evolutionary Computation Conference Companion (Workshop on 

Evolutionary Computation Software Systems), Kyoto, Japan, pages 1386-1393, July 2018.  

In the second year of the project, we conducted a major refactoring of Evo-ROS. A primary 

difference in the newer version, Evo-ROS 2.0, is to remove the dependence on Ardupilot in the 

simulation software stack.  While Ardupilot is needed for simulating certain platforms, such as the 

Erle-Rover, it also limits the number of platforms to which Evo-ROS can be applied.  In addition, 

Ardupilot adds an unnecessary level of complexity to the software and contains hard-coded control 

loops that prevent faster-than-real-time simulation.  Finally, Ardupilot introduces significant 

overhead in the time required to prepare a simulation instance.  In contrast, Evo-ROS 2.0 focuses 

on serving purely ROS-based systems, with the inclusion of Ardupilot as an option.  This design 

allows the software management code of Evo-ROS 2.0 to be more efficient and user-friendly.  In 

addition, the reduction in complexity of the simulation software stack and the removal of the hard-

coded control loops has produced close to an order of magnitude performance improvement in 

evaluation time of intermediate solutions. Lastly, Evo-ROS 2.0 provides a cleaner interface for the 

front-end evolution algorithm (EA), enabling users to easily configure Evo-ROS with different 

EA front-ends. 

4.3.3. Integration between Enki and Evo-ROS. This last feature listed above enables us to 

use Evo-ROS with either a traditional evolutionary algorithm or with a novelty search algorithm 

to enhance system robustness and resiliency, while identifying corner cases. Specifically, 

alternating between these two search types provides a means to discover a solution that performs 

well and is hardened against uncertainty. For example, if the front-end is a traditional genetic 

algorithm and individuals in the population represent the target platform or one of its 

subsystems, then Evo-ROS will optimize the target according to a fitness function, such as 

performance on a task or set of tasks. On the other hand, if the front-end is a novelty search 

algorithm such as Enki and individuals represent combinations of environmental conditions and 

internal states, then Evo-ROS will generate a set of scenarios that produce diverse, and possibly 

erroneous, behaviors in the target system. These two Evo-ROS configurations operate 

synergistically: Enki challenges the system by finding “difficult” scenarios, while the GA works 

to optimize the performance of the target system against those scenarios.  

We implemented and applied this approach to improve the tracking ability of the throttle controller 

for MSU AutoRally. First, we demonstrated that Evo-ROS is able to evolve PID controller settings 

that yield a better performing controller than the default PID settings. Then we used Enki to 

generate environmental conditions that reveal the most diverse controller behavior, ranging from 

near failure to unexpected behavior. Based on this information, we were able to use the Enki-
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discovered environmental conditions to evolve better overall resilient behavior. Specifically, 

results demonstrated that the re-evolved controller outperformed the original PID controller in 

terms of tracking a reference signal for desired speed of the vehicle.  

This work was published and presented as: “Applying evolution and novelty search to enhance the 

resilience of autonomous systems,” Michael Austin Langford, Glen A. Simon, Philip K. 

McKinley, Betty H. C. Cheng, Proceedings of the 11th International Symposium on software 

Engineering for Adaptive and Self-managing Systems (SEAMS), pp. 63-69, 2019. 

4.3.4. Evolving for Robust Localization. Modern localization techniques allow ground vehicle 

robots to determine their position with centimeter-level uncertainty under nominal conditions. 

This capability enables the robots to utilize fixed maps to navigate their environments, reducing 

overall system and software complexity. However, these techniques typically rely on 

measurements such as those from Global Navigation Satellite System (GNSS) that may be 

unavailable under certain conditions. While research and development on localization estimation 

seeks to reduce the severity of these outages, the question of what actions a robot should take 

under high localization uncertainty is still unresolved.  

In this work we explored the possible role of evolutionary search to identify potential actuation 

adaptations when a robot detects its localization uncertainty is too high. We modeled the 

uncertainty as a Gaussian covariance matrix that correlates the robot’s measured Cartesian position 

and Euler angle rotation, and model potential adaptation as weighted factors related to individual 

components of and/or norms of this covariance matrix. We then applied Evo-ROS to search for 

combinations of these weights that allow the vehicle to follow a path defined in the global reference 

frame while reducing the cross-track error. We applied these methods to the simulated MSU 

AutoRally. In simulation we mimicked both time-transient and location-transient localization, 

providing the evolution framework an environment by which to modify the weights and find 

potential adaptation factors. Evolutionary search produced a two-fold increase in fitness compared 

to a baseline path following framework without adaptation, with results validated on the physical 

robot platform.  

A paper on this work is currently under review for publication: “Evolving Localization 

Uncertainty Adaptation for Globally Defined Path Following in Ground Vehicle Robots,” 

(Daniel Kent, Philip K. McKinley, and Hayder Radha, submitted for publication, 2019. 

5 References 

The results of this work have been published and presented at a number of venues over the course 

of the project. In addition, due to the timely nature of the research and its relevance to a number 

of critical challenges faced by the computing and cyber-physical systems community, the PIs were 

invited to give a number of invited presentations and international conference keynotes relating to 

this work. In addition to disseminating results and providing visibility to the TRSYS program, the 

project team benefited from the feedback from academia and industry regarding this work.  
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5.1. Peer-reviewed Publications. This section contains a chronologically ordered list of

peer-reviewed papers that describe the project results.  

 Anthony J. Clark, Byron DeVries, Jared M. Moore, Betty H.C. Cheng, and Philip K.

McKinley, “An Evolutionary Approach to Discovering Execution Mode Boundaries

for Adaptive Controllers,”, in Proceedings of the IEEE Symposium Series on

Computational Intelligence (SSCI), Athens, Greece, pages 1-8, December 2016.

 B. DeVries and B.H.C. Cheng: Using Models at Run Time to Detect Incomplete and

Inconsistent Requirements (full paper and presentation),  Proc. of The 12th

International Workshop on Models@run.time, September 2017, Austin, Texas.

 J. M. Moore, A. J. Clark, G. A. Simon and P. K. McKinley, Evo-ROS: Integrating

Evolutionary Robotic and ROS (poster summary), Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems, Vancouver, BC, Canada,

September 2017.

 J. M. Moore, A. J. Clark and P. K. McKinley, Effect of Animat Complexity on the

Evolution of Hierarchical Control, Proceedings of the 2017 Genetic and Evolutionary

Computation Conference (GECCO), Berlin, Germany, July 2017.

 B. DeVries and B.H.C. Cheng, "Automatic Detection of Incomplete Requirements

using Symbolic Analysis and Evolutionary Computation (full paper and presentation),"

Proceedings of International Research Symposium on Search-based Software

Engineering (SSBSE’17), Paderborn, Germany, September 2017, pp. 49-64.

 Chung-Ling Len, Wuwei Shen, Steven Drager, and Betty H. C. Cheng, ``Measure

Confidence of Assurance Cases in Safety-Critical Domains,’’ Proceedings at IEEE

International Conference on Software Engineering (ICSE): in New Ideas and

Emerging Results (NIER) Track, May 2018, Gothenburg, Sweden.

 Byron DeVries, Betty H. C. Cheng: ``Run-time monitoring of self-adaptive systems to detect

N-way feature interactions and their causes’’ in the Proc. 13th IEEE International

Symposium on Software Engineering and Self-Managing Systems (SEAMS), May 2018,

Gothenburg, Sweden, pp. 94-100.

 Glen A. Simon, Anthony J. Clark, Jared M. Moore, and Philip K. McKinley, “Evo-

ROS: Integrating Evolution and the Robot Operating System,”, in Proceedings of the

Genetic and Evolutionary Computation Conference Companion (Workshop on

Evolutionary Computation Software Systems), Kyoto, Japan, pages 1386--1393, July

2018.

 Byron DeVries, Betty H. C. Cheng: “Automatic Detection of Feature Interactions

Using Symbolic Analysis and Evolutionary Computation” at Proceedings of  the 18th

IEEE International Conference on Software Quality, Reliability, and Security (QRS),

July 2018, Lisbon, Portugal, pp. 257-268.
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 Kate M. Bowers, Erik M. Fredericks, Betty H. C. Cheng: “Automated Optimization of

Weighted Non-functional Objectives in Self-adaptive Systems.” – Proceedings of 10th

International Symposium on Search-Based Software Engineering, (SSBSE 2018),

pp. 182-197.

 Byron DeVries, Betty H. C. Cheng: “Towards the detection of partial feature

interactions.” Proc. 14th IEEE International Symposium on Software Engineering and

Self-Managing Systems SEAMS@ICSE 2019: 146-152

 Michael Austin Langford, Glen A. Simon, Philip K. McKinley, Betty H. C. Cheng:

Applying evolution and novelty search to enhance the resilience of autonomous

systems. Proc. 13th IEEE International Symposium on Software Engineering and Self-

Managing Systems, SEAMS@ICSE 2019: 63-69

 Sharmin Jahan, Matthew Pasco, Rose F. Gamble, Philip K. McKinley, Betty H. C.

Cheng: “MAPE-SAC: A Framework to Dynamically Manage Security Assurance

Cases.” Proc. IEEE 4th International Workshops on Foundations and Applications of

Self* Systems FAS*W@SASO/ICAC 2019: 146-151.

 Michael Austin Langford, Betty H. C. Cheng: “Enhancing Learning-“Enabled

Software Systems to Address Environmental Uncertainty.”,   at the IEEE International

Conference on Autonomic  Computing (ICAC2019), in Umea, Sweden, June 2019, pp.

115-124

 Byron DeVries and Betty H.C. Cheng, “Goal-Based Modeling and Analysis of Non-

Functional Requirements” in  the Proc. of IEEE/ACM International Conference Model

Driven Engineering Languages and Systems (MODELS), held in Munich, Germany,

September 2019, .

 Daniel Kent, Philip K. McKinley and Hayder Radha, “Evo-LUCK: Evolutionary-

algorithm based Localization UnCertainty Kernel for Ground Vehicle Robots”,

submitted for publication, 2019.

5.2. Invited Keynotes and Presentations (not including conference presentations). This 

section provides a list of invited presentations given by the PIs describing various aspects of the 

project to a broad range of audiences from academia and industry.  

 B. H.C. Cheng, “Addressing Assurance for Self-Adaptive Systems in the Context of

Uncertainty,” Computer Science and Engineering Seminar, Oakland University, March

24, 2017.

 P. McKinley and Glen Simon, Evo-ROS: Combining Evolutionary Robotics and the

Robot Operating System presented at the BEACON Congress, East Lansing, MI,

August 2017.
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 B. H.C. Cheng, “Requirements Engineering for High Assurance Autonomous Systems

in the Face of Uncertainty: A Multidisciplinary Perspective,” Opening Keynote

Speech for IEEE 25th International Requirements Engineering Conference (RE), held

in Lisbon, Portugal, September 2017.

 B. H.C. Cheng, “Goal-Driven Approach to MDE-Based Research: Sharing some

highlights and lessons,” Keynote for Doctoral Symposium at IEEE Int. Model-Driven

Engineering Languages and Systems (MODELS) Conference, held in Austin, TX,

October 2017.

 B. H.C. Cheng, “MSU helping to create safer self-driving cars,” Betty H.C. Cheng,

Interview with Jorma Duran, WLNS, November 3, 2017, (URL:

http://wlns.com/2017/11/03/msu-helping-to-create- safer-self-driving-cars/).

 B. H.C. Cheng, “Dealing with Uncertainty for High-Assurance Self-Adaptive

Systems” Colloquium as part of ”Feed your Brain Seminar Series”, Medtronic, March

2018.

 B. H.C. Cheng, “Dealing with Uncertainty for High-Assurance Self-Adaptive

Systems” Interdisciplinary Centre for Security, Reliability and Trust, Universit du

Luxembourg, August 2018.

 B. H.C. Cheng, “Addressing Uncertainty for High-Assurance Self-Adaptive Systems,”

University of Toronto, Department of Computer Science Research Seminar, November

2018.

 B. H.C. Cheng, “A Multidisciplinary Approach to Requirements-based Adaptive

Testing of Autonomous Systems” Invited Keynote for 6th International Workshop on

Requirements Engineering and Testing, co-located with 41st IEEE International

Conference on Software Engineering (ICSE), May 25 - 31, 2019. Montreal, QC,

Canada.

 B. H.C. Cheng, “A Multidisciplinary Approach to Developing Community-Based

Research Infrastructure” Invited Keynote for Second International Workshop on

Establishing a Community-Wide Infrastructure for Architecture-Based Software

Engineering (ECASE’19), co-located with The 41st IEEE International Conference on

Software Engineering, May 25 - 31, 2019. Montreal, QC, Canada.

 B. H.C. Cheng, “Goal-Driven Approach to High-Assurance Systems Research: Sharing

some highlights and lessons,” Faculty Research Seminar for MSU Summer Research

Opportunities Program (SROP), June 2019.

 B. H.C. Cheng, “A Requirements-Driven and Context-Aware Approach to Assurance

of Autonomous Systems” Invited Keynote for Joint workshops for IEEE International

Conference on Autonomic Computing (ICAC) and Self Adaptive Self-Organizing, Self-

protecting Systems (SPS), 1st Workshop on Evaluations and Measurements in Self-

Approved for Public Release; Distribution Unlimited. 
16



Aware Computing Systems (EMSAC?19), 3rd Workshop on Self-Aware Computing 

(SeAC 2019), June 2019, Umea, Sweden. 

 B. H.C. Cheng, “A Multi-Disciplinary Approach to Addressing Uncertainty for High-

Assurance Self-Adaptive Systems,” Invited presentation for Assurance of Autonomy

for Robotic Space Missions workshop at 7th International Conference on Space

Missions Challenges for Information Technology (SMC-IT), Pasadena, California, July

2019.

6 CONCLUSIONS 

The X-PLORE project has developed a set of enabling technologies that can be applied during 

software development (specifically requirements engineering) to support the run-time adaptation 

of cyber-physical systems that are trusted and resilient to uncertainty. Different sources of 

uncertainty and their corresponding impact have been identified and used to enhance requirements 

in terms of system execution modes. In order to manage the complexity of these systems, a model-

based approach has been used throughout, where automated formal (e.g., symbolic analysis) and 

lightweight (e.g., utility functions) techniques were used to capture and reason about the discrete 

and continuous data of cyber-physical systems. The scale and increasing complexity of CPSs make 

it necessary to go beyond the boundaries of traditional software engineering techniques in order to 

deal effectively with the numerous sources of uncertainty. Given the versatility and robustness of 

biological organisms to handle uncertainty, this project has demonstrated how evolutionary search 

can be harnessed and integrated with traditional software development techniques to support the 

proposed project objectives. The open-ended nature of evolutionary algorithms enables detection 

of unlikely-but-possible scenarios, unconstrained by human preconception. The proposed project 

will be guided and validated by two complementary CPSs: in-house autonomous robots (enabling 

analysis of both simulated and physical systems) and onboard software for intelligent vehicle 

systems, obtained from industrial collaborators in the automotive domain. 
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7   List of Acronyms

ACC Adaptive Cruise Control 

Ares-EC Evolutionary Computation and Symbolic Analysis to Assess Requirements 

Completeness tool 

CIFAR-10 Machine Learning Deep Neural Network Training Set Data 

CPS Cyber-Physical System 

DNN Deep Neural Network 

EA Evolutionary Algorithm 

EC Evolutionary Computation 

Enki Configurable Platform for Exploring Behavioral Uncertainty due to Environment 

and System Conditions tool 

ER Evolutionary Robotics 

Evo-ROS Evolutionary Search Framework for the Robot Operating System 

FI Feature Interactions 

GA Genetic Algorithms 

GNSS Global Navigation Satellite System 

GORE Goal-Oriented Requirements Engineering 

GPS Global Positioning System 

IMU Inertial Measurement Unit 

Lidar Light Detection And Ranging 

LOKI General Behavior Uncertainty Search tool 

Lykus Models at Run Time to Detect Requirements Incompleteness tool 

MAPE Monitor – Analyze – Plan – Execute Feedback Loop 

MAPE-K Monitor – Analyze – Plan – Execute Feedback Loop Plus Knowledge 

MAPE-

SAC 

Monitor – Analyze – Plan – Execute Feedback Loop for Security Assurance Cases 

ML Machine Learning 

NIST National Institute of Standards and Technology 

Phorcys Symbolic Analysis to Detect n-way Feature Interactions tool 

Phorcys-

EC 

Symbolic Analysis to Detect n-way Feature Interactions with Evolutionary 

Computation tool 

PID Proportional-Integrative-Derivative 

PSAEC Periodic Symbolic Analysis with Evolutionary Computing to find requirements 

completeness counterexamples tool 

ROS Robot Operating System 

SA Symbolic Analysis 

SA+EC Symbolic Analysis and Evolutionary Computation combined 

SAC Security Assurance Case 

SAEC Symbolic Analysis and Evolutionary Computing to find requirements completeness 

counterexamples tool 

Soter Aspect-oriented modeling of non-functional requirements and properties tool 

Thoosa Run-time detection of n-way feature interactions tool 

TRSYS AFRL Trusted and Resilient Systems Program 

WiFi Wireless Network 
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