
Paul Krystosek

Nancy Ott

Timothy Shimeall

CERT® Situational Awareness Group

Analysis with SiLK
Analyst’s Handbook for SiLK Version 3.12.0 and Later

AUGUST 2018

Network Traffic Analysis
with SiLK

ANALYSTS’ HANDBOOK
for SiLK Versions 3.12.0 and Later

Paul Krystosek
Nancy M. Ott

Geoffrey Sanders
Timothy Shimeall

August 2018

CERT® Situational Awareness Group

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

ii

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Homeland Security under Con-
tract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center sponsored by the United States Department
of Defense.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be
construed as an official Government position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manu-
facturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring
by Carnegie Mellon University or its Software Engineering Institute.

This report was prepared for the SEI Administrative Agent AFLCMC/AZS 5 Eglin Street Hanscom AFB,
MA 01731-2100

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING IN-
STITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MAT-
TER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MER-
CHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROMUSE OF THEMATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited dis-
tribution. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material
for internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed
in written or electronic form without requesting formal permission. Permission is required for any other
external and/or commercial use. Requests for permission should be directed to the Software Engineering
Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon®, CERT®, CERT Coordination Center® and FloCon® are registered in the U.S. Patent and
Trademark Office by Carnegie Mellon University.

DM18-0954

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

iii

Adobe is a registered trademark of Adobe Systems Incorporated in the United States and/or other countries.
Akamai is a registered trademark of Akamai Technologies, Inc.
Apple and OS X are trademarks of Apple Inc., registered in the U.S. and other countries.
Cisco Systems is a registered trademark of Cisco Systems, Inc. and/or its affiliates in the United States and
certain other countries.
DOCSIS is a registered trademark of CableLabs.
FreeBSD is a registered trademark of the FreeBSD Foundation.
IEEE is a registered trademark of The Institute of Electrical and Electronics Engineers, Inc.
JABBER is a registered trademark and its use is licensed through the XMPP Standards Foundation.
Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.
MaxMind, GeoIP, GeoLite, and related trademarks are the trademarks of MaxMind, Inc.
Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States and/or
other countries.
OpenVPN is a registered trademark of OpenVPN Technologies, Inc.
Perl is a registered trademark of The Perl Foundation.
Python is a registered trademark of the Python Software Foundation.
Snort is a registered trademark of Cisco and/or its affiliates.
Solaris is a registered trademark of Oracle and/or its affiliates in the United States and other countries.
UNIX is a registered trademark of The Open Group.
VPNz is a registered trademark of Advanced Network Solutions, Inc.
Wireshark is a registered trademark of the Wireshark Foundation.
All other trademarks are the property of their respective owners.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

iv

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

Contents

Contents v

List of Figures xi

List of Tables xiii

List of Examples xv

Acknowledgements xix

Handbook Goals xxi

1 Introduction to SiLK 1
1.1 What is SiLK? . 1
1.2 The SiLK Flow Repository . 2

1.2.1 What is Network Flow Data? . 2
1.2.2 Structure of a Flow Record . 3
1.2.3 Flow Generation and Collection . 3
1.2.4 Introduction to Flow Collection . 6
1.2.5 Where Network Flow Data Are Collected . 6
1.2.6 Types of Network Traffic . 7
1.2.7 The Collection System and Data Management . 7
1.2.8 How Network Flow Data Are Organized . 8

1.3 The SiLK Tool Suite . 8
1.4 How to Use SiLK for Analysis . 9

1.4.1 Single-path Analysis . 9
1.4.2 Multi-path Analysis . 9
1.4.3 Exploratory Analysis . 10

1.5 Workflow for SiLK Analysis . 10
1.5.1 Formulate . 10
1.5.2 Model . 11
1.5.3 Test . 12
1.5.4 Analyze . 12
1.5.5 Refine . 12

1.6 Applying the SiLK Workflow . 12
1.7 Dataset for Single-path, Multi-path, and Exploratory Analysis Examples 13

v [DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

vi CONTENTS

2 Basic Single-path Analysis with SiLK: Profiling and Reacting 15
2.1 Single-path Analysis: Concepts . 15

2.1.1 Scoping Queries of Network Flow Data . 16
2.1.2 Excluding Unwanted Network Traffic . 17
2.1.3 Example Single-Path Analysis . 17

2.2 Single-path Analysis: Analytics . 17
2.2.1 Get a List of Sensors With rwsiteinfo . 17
2.2.2 Choose Flow Records With rwfilter . 21
2.2.3 View Flow Records With rwcut . 24
2.2.4 Viewing File Information with rwfileinfo . 26
2.2.5 Profile Flows With rwuniq and rwstats . 28
2.2.6 Characterize Traffic by Time Period With rwcount . 32
2.2.7 Sort Flow Records With rwsort . 35
2.2.8 Use IPsets to Gather IP Addresses . 37
2.2.9 Resolve IP Addresses to Domain Names With rwresolve 40

3 Case Studies: Basic Single-path Analysis 43
3.1 Profile Traffic Around an Event . 43

3.1.1 Examining Shifts in Traffic . 44
3.1.2 How to Profile Traffic . 45

3.2 Generate Top N Lists . 46
3.2.1 Using rwstats to Create Top N Lists . 46
3.2.2 Interpreting the Top-N Lists . 49

4 Intermediate Multi-path Analysis with SiLK: Explaining and Investigating 51
4.1 Multi-path Analysis: Concepts . 51

4.1.1 What Is Multi-path Analysis? . 51
4.1.2 Example of a Multi-path Analysis: Examining Web Service Traffic 52
4.1.3 Exploring Relationships and Behaviors With Multi-path Analysis 53
4.1.4 Integrating and Interpreting the Results of Multi-path Analysis 55
4.1.5 “Gotchas” for Multi-path Analysis . 55

4.2 Multi-path Analysis: Analytics . 56
4.2.1 Complex Filtering With rwfilter . 56
4.2.2 Finding Low-Packet Flows with rwfilter . 61
4.2.3 Time Binning, Options, and Thresholds With rwstats, rwuniq and rwcount 63
4.2.4 Summarizing Network Traffic with Bags . 67
4.2.5 Working with Bags and IPsets . 74
4.2.6 Masking IP Addresses . 75
4.2.7 Working With IPsets . 76
4.2.8 Indicating Flow Relationships . 82
4.2.9 Managing IPset, Bag, and Prefix Map Files . 90

5 Case Studies: Intermediate Multi-path Analysis 93
5.1 Building Inventories of Network Flow Sensors With IPsets . 93

5.1.1 Path 1: Associate Addresses with a Single Sensor . 94
5.1.2 Path 2: Associate Addresses of Remaining Sensors . 95
5.1.3 Path 3: Associate Shared Addresses . 95
5.1.4 Merge Address Results . 96

5.2 Automating IPset Inventories of Network Flow Sensors . 96
5.2.1 Program Header . 96

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

CONTENTS vii

5.2.2 Program Loop . 97

6 Advanced Exploratory Analysis with SiLK: Exploring and Hunting 99
6.1 Exploratory Analysis: Concepts . 99

6.1.1 Exploring Network Behavior . 100
6.1.2 Starting Points for Exploratory Analysis . 101
6.1.3 Example Exploratory Analysis: Investigating Anomalous NTP Activity 101
6.1.4 Observations on Exploratory Analysis . 106

6.2 Exploratory Analysis: Analytics . 107
6.2.1 Using Tuple Files for Complex Filtering . 107
6.2.2 Manipulating Bags . 108
6.2.3 Sets Versus Bags: A Scanning Example . 112
6.2.4 Manipulating SiLK Files . 114
6.2.5 Dividing or Sampling Flow Record Files with rwsplit 116
6.2.6 Generate Flow Records From Text . 119
6.2.7 Labeling Data with Prefix Maps . 121
6.2.8 Translating IDS Signatures into rwfilter Calls . 130

7 Case Studies: Advanced Exploratory Analysis 131
7.1 Level 0: Which TCP Requests are Suspicious? . 133
7.2 Level 1: How Can We Identify and React to Illegitimate Requests? 135
7.3 Level 2: What are the Illegitimate Sources and Destinations Doing? 137

7.3.1 Level 2A: What are the Illegitimate Source IPs Doing? 137
7.3.2 Level 2B: What Behavior Changes do Destination IPs Show? 138

7.4 Level 3: What are the Commonalities Across The Cases? . 140

8 Extending the Reach of SiLK with PySiLK 141
8.1 Using PySiLK . 142

8.1.1 PySiLK Requirements . 142
8.1.2 PySiLK Scripts and Plug-ins . 142

8.2 Extending rwfilter with PySiLK . 143
8.2.1 Using PySiLK to Incorporate State from Previous Records: Eliminating Inconsistent

Sources . 143
8.2.2 Using PySiLK to Incorporate State from Previous Records: Detecting Port Knocking 145
8.2.3 Using PySiLK with rwfilter in a Distributed or Multiprocessing Environment 147
8.2.4 Simple PySiLK with rwfilter --python-expr . 147
8.2.5 PySiLK with Complex Combinations of Rules . 148
8.2.6 Use of Data Structures in Partitioning . 148

8.3 Extending SiLK with Fields Defined with PySiLK . 151
8.4 Extending rwcut and rwsort with PySiLK . 151

8.4.1 Computing Values from Multiple Records . 152
8.4.2 Computing a Value Based on Multiple Fields in a Record 152
8.4.3 Defining a Character String Field for rwcut . 154
8.4.4 Defining a Character String Field for Five SiLK Tools 154

8.5 Defining Key Fields and Summary Value Fields for rwuniq and rwstats 158

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

viii CONTENTS

A Networking Primer 161
A.1 Understanding TCP/IP Network Traffic . 161
A.2 TCP/IP Protocol Layers . 161
A.3 Structure of the IP Header . 163
A.4 IP Addressing and Routing . 164

A.4.1 Structure of an IP Address . 164
A.4.2 Reserved IP Addresses . 165

A.5 Major Protocols . 168
A.5.1 Protocol Layers and Encapsulation . 168
A.5.2 Transmission Control Protocol (TCP) . 168
A.5.3 UDP and ICMP . 171

B Using UNIX to Implement Network Traffic Analysis 173
B.1 Using the UNIX Command Line . 173
B.2 Standard In, Out, and Error . 176

B.2.1 Output Redirection . 176
B.2.2 Input Redirection . 176
B.2.3 Pipes . 177
B.2.4 Here-Documents . 177
B.2.5 Named Pipes . 178

B.3 Script Control Structures . 179

C SiLK Commands 181
C.1 Getting Help with SiLK Tools . 181
C.2 rwsiteinfo Command Summary . 182
C.3 rwfilter Command Summary . 183
C.4 rwstats Command Summary . 190
C.5 rwcount Command Summary . 191
C.6 rwcut Command Summary . 192
C.7 rwsort Command Summary . 194
C.8 rwuniq Command Summary . 195
C.9 rwnetmask Command Summary . 196
C.10 rwcat Command Summary . 197
C.11 rwappend Command Summary . 198
C.12 rwsplit Command Summary . 199
C.13 rwtuc Command Summary . 200
C.14 rwset Command Summary . 201
C.15 rwsetcat Command Summary . 202
C.16 rwsettool Command Summary . 203
C.17 rwsetbuild Command Summary . 204
C.18 rwbag Command Summary . 205
C.19 rwbagbuild Command Summary . 206
C.20 rwbagcat Command Summary . 208
C.21 rwbagtool Command Summary . 209
C.22 rwfileinfo Command Summary . 210
C.23 rwpmapbuild Command Summary . 211
C.24 rwpmaplookup Command Summary . 212
C.25 rwmatch Command Summary . 213
C.26 rwgroup Command Summary . 214
C.27 Features Common to Several Commands . 215

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

CONTENTS ix

C.27.1 Parameters Common to Several Commands . 215

D Additional Information on SiLK 219
D.1 SiLK Support and Documentation . 219
D.2 FloCon Conference and Social Media . 220
D.3 Email Addresses and Mailing Lists . 220

E Further Reading and Resources 223
E.1 Network Flow and Related Topics . 223

E.1.1 Technical Papers . 223
E.1.2 Books on Network Flow and Network Security . 224

E.2 Bash Scripting Resources . 224
E.2.1 Online Tutorial . 224
E.2.2 Books on Bash Scripting . 224

E.3 Visualization . 225
E.3.1 Rayon . 225
E.3.2 FloViz . 225
E.3.3 Graphviz - Graph Visualization Software . 225
E.3.4 The Spinning Cube of Potential Doom . 225

E.4 Networking Standards . 226

Index 227

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

x CONTENTS

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

List of Figures

1.1 From Packets to Flows . 5
1.2 Default Traffic Types for Sensors . 6
1.3 SiLK Analysis Workflow . 11

2.1 Single-Path Analysis . 16
2.2 rwfilter Parameter Relationships . 22
2.3 Displaying rwcount Output Using 10-Minute and 1-Minute Bins 34

4.1 Multi-Path Analysis . 52
4.2 Diagram of a Simple, Non-overlapping Manifold . 57
4.3 Diagram of a Complex, Overlapping Manifold . 57
4.4 Client and Server TCP flags . 59
4.5 Allocating Flows, Packets and Bytes via rwcount Load-Schemes 63

6.1 Exploratory Analysis . 100
6.2 Time Series Plot of NTP Traffic . 104

7.1 FCC Network Diagram . 132

A.1 TCP/IP Protocol Layers . 162
A.2 Structure of the IPv4 Header . 163
A.3 TCP Header . 168
A.4 TCP State Machine . 170
A.5 UDP and ICMP Headers . 171

C.1 rwfilter Partitioning Parameters . 184

xi [DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

xii LIST OF FIGURES

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

List of Tables

1.1 Fields in a SiLK Network Flow record . 4

A.1 IPv4 Reserved Addresses . 166
A.2 IPv6 Reserved Addresses . 167

B.1 Some Common UNIX Commands . 174

C.1 Parameters for rwsiteinfo --fields . 182
C.2 rwfilter Selection Parameters . 183
C.3 Single-Integer- or Range-Partitioning Parameters . 184
C.4 Multiple-Integer- or Range-Partitioning Parameters . 185
C.5 Address-Partitioning Parameters . 185
C.6 High/Mask Partitioning Parameters . 185
C.7 Time-Partitioning Parameters . 186
C.8 Prefix-Map-Partitioning Parameters . 186
C.9 Miscellaneous Partitioning Parameters . 186
C.10 rwfilter Output Parameters . 188
C.11 Miscellaneous rwfilter Parameters . 189
C.12 Time distribution options for rwcount --load-scheme . 191
C.13 Arguments for the --fields Parameter . 193
C.14 Output-Filtering Options for rwuniq . 195
C.15 Fixed-Value Parameters for rwtuc . 200
C.16 rwbagbuild Key or Value Options . 207
C.17 Common Parameters in Essential SiLK Tools . 216
C.18 Parameters Common to Several Commands . 217
C.19 --ip-format Values . 218
C.20 --timestamp-format format, modifier, and timezone Values . 218

xiii [DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

xiv LIST OF TABLES

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

List of Examples

2.1 Using rwsiteinfo to List Sensors, Display Traffic Types, and Show Repository Information . 19
2.2 Using rwfilter to Retrieve Network Flow Records From The SiLK Repository 23
2.3 rwcut for Displaying the Contents of Ten Flow Records . 25
2.4 rwcut --fields to Rearrange Output . 26
2.5 rwfileinfo Displays Flow Record File Characteristics . 27
2.6 Characterizing flow byte counts with rwuniq . 30
2.7 Finding the top protocols with rwstats . 31
2.8 Counting Bytes, Packets and Flows with Respect to Time . 33
2.9 Sorting by Destination IP Address, Protocol, and Byte Count 36
2.10 Using rwset to Gather IP Addresses . 37
2.11 Using rwsetbuild to Gather IP Addresses . 38
2.12 Using rwsetcat to Count Gathered IP Addresses . 39
2.13 Using rwsetcat to Print Networks and Host Counts . 39
2.14 Using rwsetcat to Print IP Address Statistical Summaries 40
3.1 Using rwfilter and rwuniq to Profile Traffic Around an Event 45
3.2 Collated Profile of Traffic Around an Event . 46
3.3 Removing Unneeded Flows for Top N . 48
4.1 Examining Flows for Web Service Ports . 54
4.2 Simple Manifold to Select Inbound Client and Server Flows 58
4.3 Complex Manifold to Select Inbound Client and Server Flows 60
4.4 Extracting Low-Packet Flow Records . 62
4.5 Constraining Counts to a Threshold by using rwuniq --flows 64
4.7 Constraining Flow and Packet Counts with rwuniq --flows and --packets 64
4.6 Setting Minimum Flow Thresholds with rwuniq --values . 65
4.8 Profiling IP addresses with rwuniq --fields . 66
4.9 Profiling IP addresses with rwstats --fields . 67
4.10 Isolating DNS and Non-DNS Behavior with rwuniq . 68
4.11 Generating Bags with rwbag . 68
4.12 Summarizing Network Traffic with rwuniq . 69
4.13 Summarizing Network Traffic with Bags . 69
4.14 Creating a Bag of Network Scanners with rwbagbuild and rwscan 71
4.15 Viewing the Contents of a Bag with rwbagcat . 71
4.16 Thresholding Results with rwbagcat --mincounter, --maxcounter, --minkey, and --maxkey 72
4.17 Displaying Unique IP Addresses per Value with rwbagcat --bin-ips 72
4.18 Displaying Decimal and Hexadecimal Output with rwbagcat --key-format 73
4.19 Creating an IP Set from a Bag with rwbagtool --coverset 74
4.20 Using rwbagtool --intersect to Extract a Subnet . 75
4.21 Abstracting Source IPv4 addresses with rwnetmask . 75

xv [DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

xvi LIST OF EXAMPLES

4.22 Generating a Monitored Address Space IPset with rwsetbuild 76
4.23 Generating a Broadcast Address Space IPset with rwsetbuild 76
4.24 Performing an IPset Union with rwsettool . 77
4.25 Displaying Repository Dates with rwsiteinfo . 77
4.26 Counting Outbound DNS Servers with rwset . 77
4.27 Finding IPset Differences with rwsettool . 78
4.28 Finding IPset Symmetric Difference with rwsettool . 78
4.29 Grouping Outbound DNS Servers by Sensor . 79
4.30 Identifying DNS Traffic Flow . 79
4.31 Identifying Shared DNS Monitoring . 80
4.32 Displaying the Contents of IP Sets with rwsetcat . 80
4.33 rwsetcat Options for Showing Structure . 81
4.34 Grouping Flows of a Long Session with rwgroup . 84
4.35 Dropping Trivial Groups with rwgroup --rec-threshold . 85
4.36 Summarizing Groups with rwgroup --summarize . 86
4.37 Using rwgroup to Identify Specific Sessions . 87
4.38 Using rwmatch with Incomplete Relate Values . 88
4.39 Using rwmatch with Full TCP Fields . 89
4.40 rwfileinfo for Sets, Bags, and Prefix Maps . 91
5.1 Building an IPset Inventory for Sensor S0 . 94
5.2 Automating IPset Inventories . 98
6.1 Using rwfilter to Profile NTP Activity . 102
6.2 Using rwuniq to examine NTP Activity . 103
6.3 Using rwcount to generate NTP Timelines . 103
6.4 Using rwuniq and Bags to Summarize Prior Traffic on NTP Clients 105
6.5 Using Multiple Data Pulls to Filter on Multiple Criteria . 107
6.6 Filtering on Multiple Criteria with a Tuple File . 109
6.7 Merging the Contents of Bags Using rwbagtool --add . 111
6.8 Using rwbagtool to Generate Percentages . 113
6.9 Using rwset to Filter for a Set of Scanners . 113
6.10 Using rwbagtool to Filter Out a Set of Scanners . 115
6.11 Combining Flow Record Files with rwcat to Count Overall Volumes 117
6.12 rwsplit for Coarse Parallel Execution . 118
6.13 rwsplit to Generate Statistics on Flow Record Files . 119
6.14 Simple File Anonymization with rwtuc . 120
6.15 Using rwpmapbuild to Create a FCC Pmap File . 123
6.16 Using Pmap Parameters with rwfilter . 126
6.17 Viewing Prefix Map Labels with rwcut . 127
6.18 Sorting by Prefix Map Labels . 127
6.19 Counting Records by Prefix Map Labels . 128
6.20 Query Addresses and Protocol/Ports with rwpmaplookup . 129
7.1 Looking for Service Ports with Higher Inbound than Outbound TCP Traffic 134
7.2 Identifying Abnormal TCP Flows and their Originating Hosts 136
7.3 Finding Activity of Illegitimate Destination IP Addresses . 138
7.4 Finding Changed Behavior in Destination IPs . 139
8.1 ThreeOrMore.py: Using PySiLK for Memory in rwfilter Partitioning 144
8.2 portknock.py: Using PySiLK to Retain State in rwfilter Partitioning 146
8.3 Calling ThreeOrMore.py . 147
8.4 Using --python-expr for Partitioning . 148

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

LIST OF EXAMPLES xvii

8.5 vpn.py: Using PySiLK with rwfilter for Partitioning Alternatives 148
8.6 matchblock.py: Using PySiLK with rwfilter for Structured Conditions 150
8.7 Calling matchblock.py . 151
8.8 delta.py . 152
8.9 Calling delta.py . 153
8.10 payload.py: Using PySiLK for Conditional Fields with rwsort and rwcut 154
8.11 Calling payload.py . 155
8.12 decode_duration.py: A Program to Create a String Field for rwcut 155
8.13 Calling decode_duration.py . 156
8.14 sitefield.py: A Program to Create a String Field for Five SiLK Tools 157
8.15 Calling sitefield.py . 158
8.16 bpp.py . 158
8.17 Calling bpp.py . 159
B.1 A UNIX Command Prompt . 173
B.2 Using Simple UNIX Commands . 175
B.3 Output Redirection . 176
B.4 Input Redirection . 177
B.5 Using a Pipe . 177
B.6 Using a Here-Document . 178
B.7 Using a Named Pipe . 179

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

xviii LIST OF EXAMPLES

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

Acknowledgements

The authors wish to acknowledge the valuable contributions of all members of the CERT® Situational
Awareness group and the CERT Engineering Group, past and present, to the concept and execution of the
SiLK tool suite and to this handbook. Many individuals served as contributors, reviewers, and evaluators of
the material in this handbook.

The authors also gratefully acknowledge the many SiLK users who have contributed immensely to the
evolution of the tool suite.

Lastly, the authors wish to acknowledge their ongoing debt to the memory of Suresh L. Konda, PhD, who
led the initial concept and development of the SiLK tool suite as a means of gaining network situational
awareness.

xix [DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

xx ACKNOWLEDGEMENTS

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

Handbook Goals

How to Use This Handbook
This handbook is an introduction to methods of analyzing network traffic, illustrated by commands from the
SiLK tool suite. The focus is on learning to identify traffic features important to the security of information
on the network. The handbook moves from a basic understanding of network flow and the SiLK tool suite
through a series of examples that illustrate how to use SiLK to analyze network behavior.

The examples in this handbook are mainly command sequences that illustrate specific analysis concepts.
Examples are commonly discussed on a line-by-line basis in the text and presented as command and output
listings. In general, examples are also associated with a specific task (or tasks), indicated in the section and
in the example caption. Case studies take a deeper dive into specific topics for analysis.

For readers already familiar with SiLK, the explanations of SiLK commands in the text of this handbook are
kept short enough not to be redundant. More complete discussion of the commands and their parameters
are provided in the appendices of this guide, the SiLK Reference Guide, and the man pages for the SiLK
commands. Readers who are interested in analyzing network flow records with other tools than SiLK are
encouraged to read the overall description of the analysis approaches, then use the description of commands
to find parallels using the tool suite of their choice.

How This Handbook Is Organized
This handbook contains the following chapters:

1. Introduction to SiLK provides a short overview of some of the background necessary to begin using
the SiLK tools for analysis. It includes a brief introduction to the SiLK suite and describes the basics of
network flow capture by sensors and storage in the SiLK flow repository. It also discusses the analysis
process used in this handbook.

2. Basic Single-path Analysis with SiLK: Profiling and Reacting describes the the most straight-
forward analysis approach and applies it to several example analyses. It introduces some of the core
SiLK commands and uses them to analyze network traffic.

3. Case Studies: Basic Single-path Analysis applies the single-path analysis approach to several
extended examples, focusing on how those examples were developed from an initial problem statement
through executable commands.

4. Intermediate Multi-path Analysis with SiLK: Explaining and Investigating explains a more
complex, intermediate form of analysis which applies basic, single-path analysis in a multi-pronged

xxi [DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

xxii HANDBOOK GOALS

structure. The chapter describes how multi-path analysis can be applied and includes a fuller explo-
ration of SiLK tools that may be useful for this type of analysis.

5. Case Studies: Intermediate Multi-path Analysis applies multi-path analysis to extended exam-
ples.

6. Advanced Exploratory Analysis with SiLK: Exploring and Hunting discusses the use of
SiLK to deal with open-ended, often iterative analyses that incorporate both single-path and multi-
path methods. It also describes more sophisticated uses of the SiLK tool suite that support complex
analyses of network behavior.

7. Case Studies: Advanced Exploratory Analysis applies exploratory analysis to an extended ex-
ample.

8. Extending the Reach of SiLK with PySiLK describes how to extend the functionality of the
SiLK tool suite by using the Python scripting language.

The appendices to this guide introduce fundamental networking concepts, describe useful Unix commands,
summarize the SiLK commands referenced in this guide, and list sources for additional information about
the SiLK tool suite and network analysis.

What This Handbook Doesn’t Cover
This handbook does not contain an exhaustive description of all the tools in the SiLK tool suite or of all the
options in the described commands. Rather, it offers concepts and examples to allow analysts to accomplish
needed work while continuing to build their skills and familiarity with SiLK.

• Every SiLK tool includes a --help option that briefly describes the command and lists its parameters.

• Every tool also has a manual page (also called a man page) that provides detailed information about
the use of the tool. These pages may be available on your system by typing man command; for example,
man rwfilter to see information about the rwfilter command.

• The SiLK Documentation page at https://tools.netsa.cert.org/silk/docs.html includes links to individ-
ual manual pages.

• The SiLK Reference Guide is a single document that bundles all of the SiLK manual pages. It is
available in HTML and PDF formats on the SiLK Documentation page (https://tools.netsa.cert.org/
silk/docs.html).

• Various analysis topics are explored via tooltips, available at https://tools.netsa.cert.org/tooltips.html.

This handbook deals solely with the analysis of network flow record data using an existing installation of the
SiLK tool suite. For information on installing and configuring a new SiLK tool setup and on the collection
of network flow records for use in these analyses, see the “Installation Information” section of the SiLK
Documentation page at https://tools.netsa.cert.org/silk/docs.html#installation.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

https://tools.netsa.cert.org/silk/docs.html
https://tools.netsa.cert.org/silk/docs.html
https://tools.netsa.cert.org/silk/docs.html
https://tools.netsa.cert.org/confluence/display/tt/Tooltips
https://tools.netsa.cert.org/silk/docs.html#installation

Chapter 1

Introduction to SiLK

Network analysts need to build an ongoing perspective on the traffic passing over their networks. This
perspective is often built on information about the traffic (such as volumes, timing, and communication
paths), rather than on the traffic itself. This chapter introduces the tools and techniques used to store such
information, particularly in the form known as network flow. It will help you to become familiar with the
structure of network flow data, how the SiLK collection system gathers those data from sensors, and how to
use those data.

Upon completion of this chapter you will be able to

• describe a network flow record and the conditions under which the collection of one begins and ends

• describe the types of SiLK flow records

• describe the structure of the SiLK flow repository

• understand the steps involved in analyzing network flow data

• describe the dataset for the examples in this guide

1.1 What is SiLK?

The System for internet-Level Knowledge1 (SiLK) tool suite is a highly scalable flow-data capture and anal-
ysis system developed by the CERT Situational Awareness group at Carnegie Mellon University’s Software
Engineering Institute (SEI). The SiLK tools provide network security analysts with the means to under-
stand, query, and summarize both recent and historical traffic data represented as network flow records (also
referred to as “network flow” or “network flow data” and occasionally just “flow”). These tools provide
network security analysts with a relatively complete high-level view of traffic across an enterprise network,
subject to placement of sensors.

Analyses using the SiLK tools provide insight into various aspects of network behavior. Some example
applications of this tool suite include:

1The suite name, and in particular the capitalization, were chosen in memory of Dr. Suresh L. Konda, who was the
inspirational leader for the creation of the initial suite prior to his sudden passing.

1 [DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

2 CHAPTER 1. INTRODUCTION TO SILK

• supporting network forensics: identifying artifacts of intrusions, vulnerability exploits, worm behavior,
etc.

• providing service inventories for large and dynamic networks (on the order of a /8 Classless Inter-
Domain Routing (CIDR) block)

• generating profiles of network usage (bandwidth consumption) based on protocols and common com-
munication patterns

• enabling non-signature-based scan detection and worm detection, for detection of limited-release ma-
licious software and for identification of precursors

These examples, and others, are explained further in this handbook. By providing a common basis for these
analyses, the SiLK tools provide a framework for developing network situational awareness.

Common questions addressed via flow analyses include (but aren’t limited to)

• What is on my network?

• What constitutes typical network behavior?

• What happened before, during, and after an event?

• Where are policy violations occurring?

• Which are the most popular web servers?

• How much volume would be reduced by applying a blacklist?

• Do my users browse to known infected web servers?

• Is a spammer on my network?

• When did my web server stop responding to queries?

• Is my organization routing undesired traffic?

• Who uses my public Domain Name System (DNS) server?

1.2 The SiLK Flow Repository

1.2.1 What is Network Flow Data?

NetFlow is a traffic-summarizing format that was first implemented by Cisco Systems® primarily for account-
ing purposes. Network flow data (or network flow) is a generalization of NetFlow. Network flow collection
differs from direct packet capture (such as with tcpdump) in that it builds a summary of communications
between sources and destinations on a network. For NetFlow, this summary covers all traffic matching seven
relevant keys: the source and destination IP addresses, the source and destination ports, the transport layer
protocol, the type of service, and the router interface.

SiLK uses five of these attributes to constitute the flow label:

1. source IP address

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

1.2. THE SILK FLOW REPOSITORY 3

2. destination IP address

3. source port

4. destination port

5. transport layer protocol

These attributes (also known as the five-tuple), together with the start time of each network flow, distinguish
network flows from each other. The SiLK repository stores the accumulated flows from a network.

1.2.2 Structure of a Flow Record

A network flow often covers multiple packets that all match the fields of their common labels. A flow record
thus provides the label and statistics on the packets covered by the network flow, including the number of
packets covered by the flow, the total number of bytes, and the duration and timing of those packets (among
other fields). A flow file is a series of flow records.

The fields in the flow record are listed in Table 1.1. Every field is identified by a name and number that can
be used interchangeably. For example, the source IP address field of a flow record can be identified by either
its field name (sIP) or its field number (1). Capitalization does not matter: sIP is equivalent to sip or SIP.

Because network flow is a summary of traffic, it does not contain packet payload data, which are expensive
to retain on a large, busy network. Each network flow record created by SiLK is very small: it can be as
little as 22 bytes (the exact size is determined by several configuration parameters). However, even at that
tiny size, a sensor may collect many gigabytes of flow records daily on a busy network.

Some of the fields are actually stored in the record, such as start time and duration. Some fields are
not actually stored; rather, they are derived either wholly from information in the stored fields or from a
combination of fields stored in the record and external data. For example, end time is derived by adding
the start time and the duration. Source country code is derived from the source IP address and a table that
maps IP addresses to country codes.

1.2.3 Flow Generation and Collection

To understand how to use SiLK for analysis, it helps to have some knowledge of how network flow data
are collected, stored, and managed. Understanding how the data are partitioned can produce faster queries
by reducing the amount of data searched. In addition, by understanding how the sensors complement each
other, it is possible to gather traffic data even when a specific sensor has failed.

Every day, SiLK may collect many gigabytes of network flow records from across the enterprise network.
This section reviews the collection process and shows how data are stored as network flow records.

A network flow record is generated by sensors throughout the enterprise network. Usually, the majority of
these sensors are routers. Specialized sensors such as yaf2 can be employed when a data feed from a router
is not available, such as on a home network or on an individual host. yaf can also be used to avoid artifacts
in a router’s implementation of network flow or to use non-device-specific network flow data formats such

2https://tools.netsa.cert.org/yaf/

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

https://tools.netsa.cert.org/yaf/

4 CHAPTER 1. INTRODUCTION TO SILK

Table 1.1: Fields in a SiLK Network Flow record

Field Field
Number Name Description

1 sIP Source IP address for flow
2 dIP Destination IP address for flow
3 sPort Source port for flow (or 0)
4 dPort Destination port for flow (or 0)
5 protocol Transport layer protocol number for flow
6 packets, pkts Number of packets in flow
7 bytes Number of bytes in flow (starting with IP header)
8 flags Cumulative TCP flag fields of flow (or blank)
9 sTime Start date and time of flow
10 duration Duration of flow
11 eTime End date and time of flow
12 sensor Sensor that collected the flow
13 in Ingress interface or VLAN on sensor (usually zero)
14 out Egress interface or VLAN on sensor (usually zero)
15 nhIP Next-hop IP address (usually zero)
16 sType Type of source IP address (pmap required)
17 dType Type of destination IP address (pmap required)
18 scc Source country code (pmap required)
19 dcc Destination country code (pmap required)
20 class Class of sensor that collected flow
21 type Type of flow for this sensor class
— iType ICMP type for ICMP and ICMPv6 flows (SiLK V3.8.1+)
— iCode ICMP code for ICMP and ICMPv6 flows (SiLK V3.8.1+)
25 icmpTypeCode Both ICMP type and code values (before SiLK V3.8.1)
26 initialFlags TCP flags in initial packet
27 sessionFlags TCP flags in remaining packets
28 attributes Termination conditions
29 application Standard port for application that produced the flow

as IPFIX3. It provides more control over network flow record generation and can convert packet data to
network flow records via a script that automates this process.

A sensor generates network flow records by grouping together packets that are closely related in time and
have a common flow label. “Closely related” is defined by the sensor and typically set to around 30 seconds.
Figure 1.1 shows the generation of flows from packets. Case 1 in that figure diagrams flow record generation
when all the packets for a flow are contiguous and uninterrupted. Case 2 diagrams flow record generation
when several flows are collected in parallel. Case 3 diagrams flow record generation when timeout occurs, as
discussed below.

Network flow is an approximation of traffic. Routers and other sensors make a guess when they decide which
packets belong to a flow. These guesses are not perfect; there are several well-known phenomena in which a

3See https://tools.ietf.org/html/rfc7011 for definitions of the IPFIX information elements; see the IPFIX protocol description
and https://www.iana.org/assignments/ipfix for their descriptions.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

https://tools.ietf.org/html/rfc7011
https://www.iana.org/assignments/ipfix

1.2. THE SILK FLOW REPOSITORY 5

Figure 1.1: From Packets to Flows

long-lived session will be split into multiple flow records:

1. Active timeout is the most common cause of a split network flow. Network flow records are purged
from the sensor’s memory and restarted after a configurable period of activity. As a result, all network
flow records have an upper limit on their duration that depends on the local configuration. A typical
value would be around 30 minutes.

2. Cache flush is a common cause of split network flows for router-collected network flow records. Network
flows take up memory resources in the router, and the router regularly purges this cache of network
flows for housekeeping purposes. The cache flush takes place approximately every 30 minutes as well.
A plot of network flows over a long period of time shows many network flows terminate at regular
30-minute intervals, which is a result of the cache flush.

3. Router exhaustion also causes split network flows for router-collected flows. A router has limited
processing and memory resources devoted to network flow. During periods of stress, the flow cache
will fill and empty more frequently due to the number of network flows collected by the router.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

6 CHAPTER 1. INTRODUCTION TO SILK

Use of specialized flow sensors can avoid or minimize cache-flush and router-exhaustion issues. All of these
cases involve network flows that are long enough to be split. As we show later, the majority of network flows
collected at the enterprise network border are small and short-lived.

1.2.4 Introduction to Flow Collection

An enterprise network comprises a variety of organizations and systems. The flow data to be handled by
SiLK are first processed by the collection system, which receives flow records from the sensors and organizes
them for later analysis. The collection system may collect data through a set of sensors that includes both
routers and specialized sensors that are positioned throughout the enterprise network. After records are
added to the flow repository by the collection system, analysis is performed using a custom set of software
called the SiLK analysis tool suite.

The SiLK project is active, meaning that the system is continually improved. These improvements include
new tools and revisions to existing collection and analysis software. See Appendix E for information on how
to obtain the most up-to-date version of SiLK.

1.2.5 Where Network Flow Data Are Collected

While complex networks may segregate flow records based on where the records were collected (e.g., the
network border, major points within the border, at other points), the generic implementation of the SiLK
collection system defaults to collection only at the network border, as shown in Figure 1.2. The default
implementation has only one class of sensors: all. Further segregation of the data is done by type of traffic.

Figure 1.2: Default Traffic Types for Sensors

The SiLK tool rwsiteinfo can produce a list of sensors in use for a specific installation, reflecting its
configuration. For more information on how to use this tool, see Section 2.2.1.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

1.2. THE SILK FLOW REPOSITORY 7

1.2.6 Types of Enterprise Network Traffic

In SiLK, the term type mostly refers to the direction of traffic, rather than a content-based characteristic.
In the generic implementation (as shown in Figure 1.2), there are six basic types and five additional types.
The basic types are

• in and inweb, which is traffic coming from the Internet service provider (ISP) to the enterprise network
through the border router. Web traffic is separated from other traffic due to its volume, making many
searches faster.

• out and outweb, which is traffic coming from the enterprise network to the ISP through the border
router.

• int2int, which is traffic going both from and to the enterprise network, but which passes by the sensor.

• ext2ext, which is traffic going both from and to the ISP, but which passes by the sensor. (The presence
of this type of traffic usually indicates a configuration problem either in the sensor or at the ISP.)

The additional SiLK types are

• inicmp and outicmp, which represent ICMP traffic entering or leaving the enterprise network. These
types are operational only if SiLK was compiled with the option to support them.

• innull and outnull, which only can be found when the sensor is a router and not a dedicated sensor.
They represent traffic from the upstream ISP or the enterprise network, respectively, that terminates
at the router’s IP address or is dropped by the router due to an access control list.

• other, which is assigned to traffic where one of the addresses (source or destination) is in neither the
internal nor the external networks.

• The constructed type all selects all types of flows associated with a class of sensors.

These types are configurable. Configurations vary as to which types are in actual use (see the discussion
below under Sensors: Class and Type).

1.2.7 The Collection System and Data Management

Data collection starts when a flow record is generated by one of the sensors: either a router or a dedicated
sensor. Flow records are generated when a packet relevant to the flow is seen, but a flow is not reported until
it is complete or flushed from the cache. Consequently, a flow can be seen some time after the start time of
the first packet in the flow, depending on timeout configuration and on sensor caching, among other factors.

Packed flows are stored into files indicated by class, type, sensor, and the hour in which the flow started. So
for traffic coming from the ISP through or past the sensor named SEN1 on March 1, 2018 for flows starting
between 3:00 and 3:59:59.999 p.m. Coordinated Universal Time (UTC), a sample path to the file could be
/data/SEN1/in/2018/03/01/in-SEN1_20180301.15.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

8 CHAPTER 1. INTRODUCTION TO SILK

1.2.8 How Network Flow Data Are Organized

The data repository is accessed via the SiLK tools, particularly the rwfilter command. An analyst uses
rwfilter to choose the type of data to be viewed by specifying a set of selection parameters. This handbook
discusses selection parameters in more detail in Section 2.2.2 and Appendix C.3; this section briefly outlines
how data are stored in the repository.

Dates

The SiLK repository stores data in hourly divisions, which are referred to in the form yyyy/mm/ddThh in UTC.
Thus, the hour beginning 11 a.m. on February 23, 2018 in Pittsburgh would be referred to as 2018/2/23T16
when compensating for the difference between UTC and Eastern Standard Time (EST)—five hours.

In general, data for a particular hour starts being recorded at that hour and will continue recording until
some time after the end of the hour. Under ideal conditions, the last long-lived flows will be written to the
file soon after they time out (e.g., if the active timeout period is 30 minutes, the last flows will be written out
30 minutes plus propagation time after the end of the hour). Under adverse network conditions, however,
flows could accumulate on the sensor until they can be delivered. Under normal conditions, the file for
2018/3/7 20:00 UTC would have data starting at 3 p.m. in Pittsburgh and finish being updated after 4:30
p.m. in Pittsburgh.

Sensors: Class and Type

Data are divided by time and sensor. The class of a sensor is often associated with the sensor’s role as a
router: access layer, distribution layer, core (backbone) layer, or border (edge) router. The classes of sensors
that are available are determined by the installation. By default, there is only one class—all—but based on
analytical interest, other classes may be configured as needed. As shown in Figure 1.2, each class of sensor
has several types of traffic associated with it: typically in, inweb, out, and outweb.

Data types are used for two reasons:

1. They group data together into common directions.

2. They split off major query classes.

As shown in Figure 1.2, most data types have a companion web type (i.e., in and inweb, out and outweb).
Web traffic generally constitutes about 50% of the flows in any direction; by splitting the web traffic into a
separate type, we reduce query time.

Most queries to repository data access one class of data at a time but access multiple types simultaneously.

1.3 The SiLK Tool Suite

The SiLK analysis suite consists of over 60 command-line UNIX tools (including flow collection tools) that
rapidly process flow records or manipulate ancillary data. The tools can communicate with each other and
with scripting tools via pipes (both unnamed and named) or via intermediate files; see Section B.2 for more
information.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

1.4. HOW TO USE SILK FOR ANALYSIS 9

Flow analysis is generally input/output bound—the amount of time required to perform an analysis is
proportional to the amount of data read from disk. A major goal of the SiLK tool suite is to minimize that
access time. Some SiLK tools perform functions analogous to common UNIX command-line tools and to
higher level scripting languages such as Perl®. However, the SiLK tools process this data in non-text (binary)
form and use data structures specifically optimized for analysis.

Consequently, most SiLK analysis consists of a sequence of operations using the SiLK tools. These operations
typically start with an initial rwfilter call to retrieve data of interest and culminate in a final call to a text
output tool like rwstats or rwuniq to summarize the data for presentation.

Keeping data in binary for as many steps as possible greatly improves efficiency of processing. This is because
the structured binary records created by the SiLK tools are readily decomposed without parsing, their fields
are compact, and the fields are already in a format that is ready for calculations, such as computing netmasks.

In some ways, it is appropriate to think of SiLK as an awareness toolkit. The flow-record repository provides
large volumes of data, and the tool suite provides the capabilities needed to process these data. However,
the actual insights come from analysts.

1.4 How to Use SiLK for Analysis

The SiLK tool suite provides a robust collection of tools to facilitate network traffic analysis tasks. It is
designed to be very flexible in its support of analysis methods. Over time, different analysts have used a
variety of approaches in their use of SiLK. This section discusses three approaches that have been useful in
analyzing network flow records.

The chapters following this one expand on these approaches in more detail, focusing on the support that
network flow analysis can provide to such analyses. Being aware of and practicing multiple approaches to
analysis enables an analyst to gain insight into a wide variety of network traffic behaviors.

1.4.1 Single-path Analysis

The single-path approach is the most basic and most commonly-used approach to analyzing network behavior.
It makes use of a single sequence of commands to produce the analytic results. In this approach, the analyst
formulates an initial hypothesis, constructs a query to retrieve traffic of interest, produces a table, summary,
or series to profile this traffic, and then interprets this profile either numerically or through a graph. Iteration
can be used if needed (e.g., to refine the initial query), but may not be necessary for many simpler, more
straightforward analyses.

This approach could be used for service identification, network device inventories, incident response, or usage
studies. Chapter 2 provides an overview of single-path analysis, including the SiLK commands that are most
commonly used with it. Chapter 3 describes example case studies of single-path analyses.

1.4.2 Multi-path Analysis

The multi-path approach uses a sequence of tools that frequently involve several alternatives, and often
includes iterating over some steps. Although a multi-path approach can be done manually, it more often
involves scripting to select alternatives based on categories of data and then iterate until the desired traffic is
isolated or the desired summaries are produced. The alternatives are used as required for processing groups
of records in differing ways to reach results that profile behavior of interest.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

10 CHAPTER 1. INTRODUCTION TO SILK

This approach could be used for examining traffic using several protocols, each following its own alternative
set of characteristics, to accomplish the same goal. For example, there are multiple ways that malware can
beacon to its command-and-control network. Each of those ways could be examined separately via a chain
of SiLK commands, generating sets of results that contribute to overall awareness of beaconing.

Chapter 4 provides an overview of multi-path analysis, including the SiLK commands that are most com-
monly used with it. Chapter 5 describes an example case study of multi-path analysis.

1.4.3 Exploratory Analysis

We do not always know ahead of time what the scope of our analysis will be—or even what questions we
should be asking! Exploratory analysis is an open-ended approach to formulating, scoping, and conducting a
network analysis. It uses single-path and multi-path analyses as building blocks for investigating anomalous
network traffic. These simpler types of analysis help us to formulate different scenarios, investigate alternative
hypotheses, and explore multiple aspects of the data. Exploratory analysis is initially manual in nature, but
can transition to scripted analysis for ease of repetition and for regularity of results.

This approach is used for complex or emerging phenomena, where multiple indicators need to be combined
to gain understanding. An example of this approach to analysis would be a study of data exfiltration, which
can be performed in a wide variety of ways. Each of those exfiltration methods could be profiled using a set
of indicators, and the results of all such analyses combined to produce a composite understanding of traffic
being passed to various groups of suspicious addresses.

Chapter 6 provides an overview of exploratory analysis, including advanced SiLK commands and concepts.
Chapter 7 describes an example case study of exploratory analysis.

1.5 Workflow for SiLK Analysis

SiLK analyses share a common workflow, shown in Figure 1.3. While single-path, multi-path, and exploratory
analysis may incorporate different steps in this workflow, all follow its general sequence.

1.5.1 Formulate

The Formulate step investigates the context of the event. Essentially, it involves collecting information to
identify the unique attributes of the network, its operation, and the event. How large is the network? How is
it structured? Where are network sensors located? When did the event occur? Is it associated with specific
sensors, IP addresses, hosts, network spaces, ports, protocols, and so forth? Do any earlier analyses of the
network offer insight? The information may be incomplete at this point, but it serves as a starting point for
launching the analysis and establishing its scope. We can use it to formulate a hypothesis for the network’s
behavior. This hypothesis serves as the basis of our analysis. In more sophisticated exploratory analyses,
we can formulate multiple scenarios and hypotheses for investigation and analysis.

Information gleaned from exploring the event’s context helps us to establish which network behaviors should
be included in (or excluded from) our analysis. We can use this information to construct a query to select
and partition network flow records from the SiLK repository or a stored file. Queries typically incorporate
information such as where the flow was collected, the date of data collection, and the flow direction. Within
the SiLK community, query selection is commonly called a data pull.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

1.5. WORKFLOW FOR SILK ANALYSIS 11

Figure 1.3: SiLK Analysis Workflow

Partitioning applies tests to selected flow records to separate (or partition) them into categories for further
inspection and investigation. A default set of tests is provided with SiLK. It includes IP addresses, ports,
protocols, time, and volumes. (If additional tests are needed for analyses, the SiLK tools can be extended
via plugins to provide them.)

The combination of selection and partitioning (commonly referred to as filtering) is performed with the
rwfilter command. Records that meet the filtering criteria are sent to pass destinations. Records that do
not are sent to fail destinations. Both can be combined into all destinations. This provides flexibile options
to either store query results in files or use pipes to send them to other commands for processing.

1.5.2 Model

The Model step summarizes data and investigates behaviors of interest. What is the network’s behavior
during normal operation? What happened during an event? What patterns and behaviors can we identify?
Are they similar to those observed during other events? By examining the information gathered during the
Formulate step, you can come up with a model of the event that perhaps explains what is going on.

SiLK provides a variety of tools for examining network flow data associated with an event. Each tool
offers different views into the data that can be considered independently or in combination for analysis.
For example, SiLK includes tools for generating time-series summaries of traffic (the rwcount command),
computing summary statistics (the rwstats command), and summing up the values of flow attributes for
user-defined time periods (the rwuniq command).

This step can be done manually. For analyses that are larger in scope, it can be automated by using shell
or Python scripts.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

12 CHAPTER 1. INTRODUCTION TO SILK

1.5.3 Test

The Test step runs the model that you created—either manually or by executing shell or Python scripts.
This gives you a chance to check the progress of the analysis.

SiLK includes commands for sorting flow records according to user-defined keys (the rwsort command),
creating sets of unique IP addresses from flow records (rwset and its related commands), and creating
groups of records by other criteria (rwbag and its related commands). These commands help you to organize
output from the various SiLK commands and save it for further use.

1.5.4 Analyze

The Analyze step reviews the results of the previous steps. What do these results tell us about the event?
What behaviors have been identified? What types of events are they associated with? What relationships
can we identify between flows? Do our initial hypotheses still hold up? Can we find and eliminate false
positives and false negatives?

This step involves examining and interpreting output from the analysis tools mentioned earlier. SiLK can also
translate binary flow records into text for analysis with graphics packages, spreadsheets, and mathematical
tools (the rwcut command).

1.5.5 Refine

The Refine step improves the analysis. Did we successfully explain the event? If not, what problems did we
encounter? Did we properly understand the event’s context? Did our query into the SiLK repository pull
too much data? Do we need to dig deeper into the data during the modeling and testing steps? Should we
take another look at the results to see if we missed or misinterpreted important patterns and behaviors?

The preceding steps in the workflow can be combined in an iterative pattern. For example, you may want to
isolate flow records of interest from unrelated network traffic by making additional queries with the rwfilter
command and repeating subsequent steps in the analysis. This narrows the data to focus on the time periods
and behaviors of interest and eliminate unneeded flow records.

The workflow described in this section gives us the flexiblity to begin our data exploration with a general
question, apply one or more analyses to the question, and complete the workflow with a repeatable analytic.
This flexiblity does come with trade-offs, however. Queries typically increase proportionally with the time
window and flow record attributes of an analysis. Therefore, a precise model of an analysis should be
produced to minimize the query results.

1.6 Applying the SiLK Workflow

The SiLK workflow can be applied in different ways to meet the requirements of analysis groups. Groups
that are primarily concerned with network operations will often focus on network monitoring or service and
device validation. Incident response groups commonly focus on changes in network behavior that may be
associated with an incident. Security improvement groups often focus on understanding problematic network
behavior and changes that identify the impact of improvements.

While the SiLK suite offers features that support all groups, the work required to use them will vary. Many
of these applications are addressed in the remaining chapters of this handbook.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

1.7. DATASET FOR SINGLE-PATH, MULTI-PATH, AND EXPLORATORY ANALYSIS EXAMPLES13

1.7 Dataset for Single-path, Multi-path, and Exploratory Analy-
sis Examples

The dataset used for the command examples and case studies of single-path, multi-path, and exploratory
analysis in this document is the FCCX-15 dataset4. It originates from a June, 2015 Cyber Exercise conducted
by the Software Engineering Institute at Carnegie Mellon University in a virtual environment.

The exercise network topology is documented in the data download and comprises a distributed enterprise
for the period from June 2-16, 2015. Internet and transport layer protocols such as IPv4, TCP, UDP, and
ICMP are well represented in the data. Link layer protocols such as IGMP and OSPF are also included;
however, they are not as prevalent as the Internet and transport layer protocols.

The analyses in this guide investigate events that occurred during this exercise.

4https://tools.netsa.cert.org/silk/referencedata.html

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

https://tools.netsa.cert.org/silk/referencedata.html

14 CHAPTER 1. INTRODUCTION TO SILK

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

Chapter 2

Basic Single-path Analysis with SiLK:
Profiling and Reacting

This chapter introduces basic single-path analysis through application of the analytic development process
with the SiLK tool suite. It discusses basic analysis of network flow data with SiLK, in addition to specific
tools and how they can be combined to form a workflow.

Upon completion of this chapter you will be able to

• describe basic single-path analysis and how it maps to the analytic development process

• understand SiLK tools commonly used with basic single-path analysis

• describe SiLK IPsets and their application

• describe the single-path analysis workflow using network flow data

2.1 Single-path Analysis: Concepts

Single-path analysis is the approach of combining data with methods that do not require conditional steps,
integration, or a great deal of refinement. In layman’s terms, single-path analysis can be described as the
’start-to-finish’ approach of combining one or more analytical steps to characterize network behavior. Its
output may contain multiple attributes and characteristics; however, it results in information that normally
does not need continued iteration. Figure 2.1 provides an overview of single-path analysis.

Single-path analysis typically incorporates the Formulate, Model, Test, and Analyze steps of the analysis
workflow described in Section 1.5. The Refine step can also be included—for instance, to change the scope
of a data pull from the SiLK repository—but is not always needed. It begins by identifying the context of an
analysis and formulating a hypothesis to explain the behavior under investigation. Event attributes such as
hosts, networks, and time periods are used to identify, retrieve, and partition data for analysis. Attributes
such as frequency, volume, and supporting network services provide additional behavioral context.

Single-path analysis then summarizes this data to produce sequences of event behavior. Data can be sepa-
rated into logical groups such as successful and unsuccessful contacts, scanning, and misconfiguration. This

15 [DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

16 CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

enables analysts to produce known and unknown activity, trends, and differences for comprehensive analysis
of a network’s behavior.

Analysts also use single-path analyses as building blocks for broader, more complex analyses. See Chapter
4 and Chapter 6 for descriptions of analysis workflows that include single-path analyses as building blocks
for more comprehensive investigations of network activity.

Figure 2.1: Single-Path Analysis

2.1.1 Scoping Queries of Network Flow Data

Be careful when defining the scope of an initial query into the SiLK repository or a file. The natural tendency
is to make the partitioning criteria very inclusive, which has two drawbacks. It pulls over-large amounts of
data, consuming storage and other computer resources. Overly-broad queries may match behaviors other
than those of interest, which will complicate later steps in the analysis.

The preferred method for scoping queries is the opposite:

1. Make the partitioning criteria initially narrow, specific to the desired behaviors.

2. Once the traffic related to the behavior is retrieved, broaden the initial criteria to identify related
network traffic.

Starting narrow and broadening the scope of the data query as the analysis proceeds will use computing
resources more efficiently and facilitate clearer analysis by minimizing unwanted data.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

2.2. SINGLE-PATH ANALYSIS: ANALYTICS 17

2.1.2 Excluding Unwanted Network Traffic

Despite narrowing the initial query, unrelated traffic is commonly included in the intially-retrieved records.
Analysis will often require isolating the desired activity from among the retrieved traffic. This may involve
studying the traffic to identify unrelated behaviors and constructing further criteria to exclude them. It may
also include eliminating traffic involving specific addresses (often by using the rwset tools to build IPsets),
traffic that does not occur in the proper timeframe (often by using a further rwfilter call), or traffic that
lacks specific protocol information associated with behavior of interest (again by using a further rwfilter
call).

2.1.3 Example Single-Path Analysis

This chapter documents an example single-path analysis using the SiLK tool suite. It serves as an indepen-
dent analysis, but could also depict the beginning of a multi-path (intermediate) or exploratory (advanced)
analysis workflow. The example begins with identifying the context of an event by using rwsiteinfo to
select relevant sensors and time periods for analysis. The time window is expanded beyond the event under
analysis to select data to compare against the event period. rwfilter is then used to retrieve network flow
records that apply to the defined sensor and period.

Traffic characteristics such as bytes, packets, and TCP flags options are then used with rwfilter on the
retrieved data to select sequences of behaviors such as successful and unsuccessful contacts, scanning, and
miconfigurations. The resulting network flow records are then displayed with tools such as rwcut, rwuniq,
rwcount, and rwstats. These tools summarize and display network flow records using specified bins in
order for analysts to verify and group data for traffic characterization and behavioral analysis. Top-N and
bottom-N statistics, time series, event sequence, and record-by-record displays are a few examples depicted
in this analysis.

Hosts that match specific characteristics or behaviors during an analysis are then saved to named SiLK IPsets.
IPsets are data structures that represent an arbitrary collection of individual addresses, and are commonly
named using a behavior, characteristic, or some other descriptive attribute. For example, webservers.set
could be a IPset file of the source IP addresses obtained from querying network flow data for flows where
the source IP address responded to a SYN scan on its port 80. These binary data structures enable analysts
to use the SiLK tool suite to describe network traffic and save, display, or query the hosts that match those
descriptions with tools such as rwset, rwsetbuild, rwsetcat, or rwfilter.

2.2 Single-path Analysis: Analytics

The commands, parameters, and examples described in this chapter serve as the building blocks for analyses
with the SiLK tool suite.

2.2.1 Get a List of Sensors With rwsiteinfo

The first step in a basic, single-path network analysis of the dataset described in Section 1.7 is to find out
which sensor recorded the data to be analyzed and narrow down the time period for our analysis. Since
routing is relatively static, data from a specific IP address generally enters or leaves through the same sensor.
You need to identify the sensor that covers the affected network and figure out when this sensor recorded
network flow data.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

18 CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

Use the rwsiteinfo command to view this information for the sensors on your network. rwsiteinfo prints
SiLK configuration file information for a site, its sensors, and the traffic they collect. The --fields parameter
is required and specifies what information is displayed. Run rwsiteinfo twice to do the following:

1. List the names and descriptions of all the sensors on the network. This helps to locate the sensor that
covers the affected network.

2. For the sensor of interest, list the types of SiLK traffic that it carries, the number of data files stored in
the SiLK repository for each type of traffic, and the start and end times for storing network flow data
in the repository. This identifies the direction and type of network traffic that the sensor recorded and
the time period when it was actively storing data.

Example 2.1 shows the two rwsiteinfo commands and their output. The results of these two calls to
rwsiteinfo will be used in Section 2.2.2 to build a query with the rwfilter command to select the network
flow records for our analysis.

Determine Which Sensor Covers the Affected IP Addresses

To start, run the rwsiteinfo command to find the names and locations of the sensors in the network.

rwsiteinfo --fields=sensor,describe-sensor

The --fields parameters requests the following information:

• sensor displays the name of each sensor in plain text.

• describe-sensor displays the description of each sensor from the site configuration file (normally
silk.conf in the root of the repository). A site’s owner can specify information about the sensor
configuration in this file. This gives you information (such as the sensor’s location) that can help you
to find which sensors recorded network traffic for the affected address block. (If the site’s owner did
not include this information in the site configuration file, nothing is displayed for this parameter.)

The output at the top of Example 2.1 lists the names and locations of the sensors. You need to find the
sensor that covers the affected network. We are interested in traffic through the subnetwork Div1Ext. The
sensor S1 is associated with this subnetwork, which we will examine more closely.

Find Traffic Types and Repository Storage Times

Once you have found the sensor of interest (S1), you can find out what kinds of traffic the sensor carries and
when it wrote data to the SiLK repository.

rwsiteinfo --sensor=S1 --fields=type,repo-file-count,repo-start-date,repo-end-date

• --sensor specifies which sensor to examine. In this example, it is the name of the sensor identified
via the first rwsiteinfo command (S1).

• --fields displays the following information in table format for sensor S1:

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

2.2. SINGLE-PATH ANALYSIS: ANALYTICS 19

Example 2.1: Using rwsiteinfo to List Sensors, Display Traffic Types, and Show Repository Information
<1>$ rwsiteinfo --fields =sensor ,describe - sensor
Sensor |Sensor - Description |

S0| Div0Ext |
S1| Div1Ext |
S2| Div0Int |
S3| Div1Int1 |
S4| Div1Int2 |
S5| Div1log1 |
S6| Div1log2 |
S7| Div1log3 |
S8| Div1log4 |
S9| Div1ops1 |

S10| Div1ops2 |
S11| Div1ops3 |
S12| Div1svc |
S13| Div1dhq |
S14| Div1dmz |
S15| Div1mar |
S16| Div1med |
S17| Div1nusr |
S18| Div1mgt |
S19| Div1intel1 |
S20| Div1intel2 |
S21| Div1intel3 |

<2>$ rwsiteinfo --sensor =S1 \
--fields =type ,repo -file -count ,repo -start -date ,repo -end -date
Type|File -Count| Start -Date| End -Date|

in| 441|2015/06/02 T13 :00:00|2015/06/18 T18 :00:00|
out| 512|2015/06/02 T13 :00:00|2015/06/18 T18 :00:00|

inweb| 328|2015/06/02 T13 :00:00|2015/06/18 T18 :00:00|
outweb | 446|2015/06/02 T13 :00:00|2015/06/18 T18 :00:00|
innull | 0| | |

outnull | 0| | |
int2int | 511|2015/06/02 T13 :00:00|2015/06/18 T18 :00:00|
ext2ext | 204|2015/06/02 T13 :00:00|2015/06/18 T18 :00:00|

inicmp | 0| | |
outicmp | 0| | |

other| 0| | |

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

20 CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

type – the types of enterprise network traffic that are associated with S1. This tells you the
direction and origin of the network traffic it carries. It is also useful for splitting off data of
interest (for instance, separating inbound Web traffic from other inbound traffic), which can
speed up SiLK queries. (To learn more about the basic SiLK network types, see Sections 1.2.6
and 1.2.8.)
repo-file-count – the number of files that S1 stored in the SiLK repository for each type of
network traffic. Each file represents one hour of recorded data.
repo-start-date – the time and date of the oldest file that S1 stored in the SiLK repository.
repo-end-date – the time and date of the most recent file that S1 stored in the SiLK repository.

The output at the bottom of Example 2.1 lists the different types of network traffic carried by S1. The bulk
of this traffic was recorded from 2015/06/02T13:00:00 through 2015/06/18T18:00:00. In the next step of
our analysis, we will therefore retrieve network flow records from S1 within this time period.

The output from Example 2.1 can also tell us whether S1 recorded enough data to support a meaningful
network analysis. The repository contains 441 files of inbound traffic from the ISP to the network (in),
representing 441 hours of recorded inbound traffic to the IP addresses covered by S1. Similarly, the repository
contains 512 hours of outbound traffic from these IP addresses to the ISP (out), 328 hours of inbound Web
traffic (inweb), and 446 hours of outbound web traffic (outweb). This is sufficient for our analysis.

Other Useful rwsiteinfo Options

Keep the following in mind when using this command:

• You must always specify parameters with rwsiteinfo; there is no default output.

• Enter rwsiteinfo --fields options in the order that you would like them to be displayed. For in-
stance, to view the sensor description before the sensor name, specify --fields=describe-sensor,sensor

• To find the classes and types supported by an installation, run rwsiteinfo --fields=class,type,mark-defaults.
This produces three columns labeled Class, Type, and Defaults. The Defaults column shows plus
signs (+) for all the types in the default class and asterisks (*) for the default types in each class.

• The rwsiteinfo command supports optional parameters to control the formatting of its output (disable
column spaces, change separation character, disable column headers, change field separators). It can
also limit output to specific network types of interest. For these and other commonly-used parameters,
see Appendix C.2. For a full list of rwsiteinfo options, type rwsiteinfo --help.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

2.2. SINGLE-PATH ANALYSIS: ANALYTICS 21

2.2.2 Choose Flow Records With rwfilter

A key step in performing a network analysis is to find and retrieve network flow records associated with the
event from the SiLK repository. Use the rwfilter command to pull network flow records that were recorded
by the sensor of interest (S1) during the time period of interest. These records will be used in subsequent
steps in our analysis.

During this step in the analysis, rwfilter will be used to save network flow records of interest to a file.
Later, we’ll use rwfilter in conjunction with other SiLK commands to partition and explore this data.

About the rwfilter command

rwfilter is the most commonly used SiLK command and serves as the cornerstone for building a network
analysis. It selects records from the SiLK repository, then directs the output to either files or other SiLK
commands. Alternatively, rwfilter can select records from a pipe or file in a working directory (for instance,
the output of a prior rwfilter command). It can optionally compute basic statistics about the flow records
it reads from the repository or a file. rwfilter can be used on its own or in conjunction with other SiLK
analysis tools, including additional invocations of rwfilter.

The following is a high-level view of the rwfilter command and its options:

rwfilter {selection | input} partition output

Specify input to rwfilter by using either selection or input parameters.

• Selection parameters read (or pull) network flow records of interest that were recorded by sensors
and stored in the SiLK flow repository. They specify the attributes of records to be read from the
repository, such as the sensor that recorded the data, the type of network data, the start and end dates
for retrieving data, and the location of the repository.

• Input parameters read network flow records from pipes and/or named files in working directories
containing records previously extracted from the repository or created by other means. They can be
filenames (e.g., infile.rw) or pipe names (e.g., stdin or /tmp/my.fifo) to specify locations from
which to read records. As many names as desired may be given, with both files and pipes used in the
same command.

In this step of our network analysis, we will use rwfilter’s selection parameters to retrieve records from the
SiLK repository. In future steps, we will use rwfilter’s input parameters to read flow records from a file or
pipe.

Partitioning parameters create the “filter” part of rwfilter. These parameters specify which records pass
the filter and which fail. This enables you to find and isolate network flow records that match the parti-
tioning criteria you specify. rwfilter offers a variety of filtering parameters for specifying the criteria for
pass/fail filtering, including time period, value ranges for packets and bytes, IP address, protocol, source
and destination ports, and more.

Hint: An analysis will involve at least one call to rwfilter unless you are looking at records
saved from a previous analysis. Each rwfilter call must include at least one partition-
ing parameter unless --all-destination is specified as an output parameter. Note
that the partitioning parameter does not have to filter anything; it just needs to be
present. The partitioning parameter --protocol=0 is often used in this situation since
it will not filter any records.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

22 CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

In this step of our network analysis, we will specify just one partitioning parameter: the IP address that
is associated with the event. In future steps, we will specify additional partitioning parameters to identify
records of interest and isolate them for further exploration with other SiLK commands.

Output parameters specify which group of records is returned from the call to rwfilter: those that “pass” the
filter, those that “fail” the filter, both, or neither. These records can be written to pipes and/or named files
in a working directory via the output parameters. (This also applies to statistics computed with rwfilter.)
Each call to rwfilter must have at least one output parameter.

In this step of our network analysis, we will use output parameters to specify the name of the file where
records are stored. In future steps, we will use pipes to direct rwfilter output to other SiLK commands
for further investigation and processing.

Figure 2.2 shows how the rwfilter parameters interact.

Figure 2.2: rwfilter Parameter Relationships

Retrieving network flow records and saving them to a file

Our sample single-path analysis pulls network flow records from the SiLK repository with rwfilter, saves
them to a binary file, then examines the data in the file. This is often much faster and more efficient than
pulling fresh data from the repository at every step in the analysis. rwfilter queries into large repositories
can take a long time to run—especially if you are investigating activity over an extended period of time. To
look at another group of records from the repository (for instance, from a different sensor or time period),
simply run rwfilter again to retrieve the desired records and create additional files for analysis.

Use the rwfilter command as follows to pull network flow records associated with the sensor, time period,
and IP address of interest to our analysis:

rwfilter --start=2015/06/17T14 --end=2015/06/17T14 --sensor=S1 --type=all
--any-address=192.168.70.10 --pass=flows.rw

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

2.2. SINGLE-PATH ANALYSIS: ANALYTICS 23

• --start and --end specify the time period for retrieving records from the SiLK repository (which
was found in Section 2.2.1). Times can be expressed in the form YYYY/MM/DDThh:mm:ss.mmm. This
example uses an abbreviated time form. Since the --start and --end parameters only specify time
down to the hour (e.g., 2015/06/17T14), rwfilter retrieves an entire hour’s worth of network flow
data. One hour of traffic is pulled from the repository, starting at UTC 14:00:00.000 and ending at
UTC 14:59:59.999 on June 17, 2015
Hint: The full parameter names are --start-date and --end-date. SiLK will recognize a

parameter as long as you specify enough of its name to uniquely identify it.

• --sensor specifies which sensor’s records to retrieve (sensor S1, which was also identified in Section
2.2.1).

• --type specifies the types of SiLK network traffic to retrieve. We will pull records for all network
traffic.

• --any-address sets up a simple pass/fail filter for partitioning the selected network flow records. We
are interested in traffic associated with the IP address 192.168.70.10. Records that match the specified
IP address pass the filter; records that do not, fail it.

• --pass specifies the destination of the selected records that pass the filter. In this case, they are stored
in the local disk file flows.rw.
Hint: Be aware that saving rwfilter output to a network disk file can slow down this com-

mand considerably. The speed at which records are written to the file is limited by the
speed of the network. Saving to a local file is faster.

The resulting binary file, flows.rw, contains network flow records from the time period, sensor, traffic types,
and IP address of interest. In other words, the records in this file are a snapshot of the event that we will
be investigating over the course of our network analysis.

Example 2.2: Using rwfilter to Retrieve Network Flow Records From The SiLK Repository
<1>$ rwfilter --start =2015/06/17 T14 --end =2015/06/17 T14 \

--sensor =S1 --type=all --any - address =192.168.70.10 \
--pass=flows.rw

<2>$ ls -l flows.rw
-rw -r--r--. 1 analyst analyst 365935 Nov 3 14:48 flows.rw

Other Useful rwfilter Options

Keep the following in mind when using rwfilter:

• Some selection parameters (such as --sensor and --type), can be used as partitioning parameters
when rwfilter is pulling network flow records from a file or pipe. See Table C.2 for a complete list of
parameters that can perform double duty for selecting and partitioning records.

• When specifying selection parameters, experienced analysts include a --start-date to avoid having
rwfilter implicitly pull all records from the current day, potentially leading to inconsistent results.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

24 CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

• rwfilter partitioning parameters give analysts great flexibility in describing which flow records pass
or fail the filter. Figuring out how to partition data to filter out unwanted records can be the most
difficult part of using this command. Many commonly-used parameters are listed in Appendix C.3; see
rwfilter --help for a full listing.

• Narrowing the selection of files from the repository always improves the performance of a query. On the
other hand, increasing the specificity of partitioning options could improve or diminish performance.
Increasing the number of partitioning parameters means more processing must be performed on each
flow record. Most partitioning options involve minimal processing, but some involve considerable
processing.

Generally, processing partitioning options is much less of a concern than the number of output oper-
ations, especially disk operations, and most especially network disk operations. Choosing to output
both the “pass” and “fail” sets of records will involve more output operations than choosing only one
set.

• The parameter --print-filenames lists, on the standard error file, the name of each file as rwfilter
opens it for reading. This provides assurance that the expected files were read and indicates the
command’s progress. (This is especially useful when many files are used as data sources and the
command will take a long time to complete.)

• rwfilter can take multiple files and pipes as input. If the number of files exceeds what is convenient
to put in the command line, use the --xargs parameter. It specifies the name of a file containing
filenames from which to read flow records. This parameter also is used when another UNIX process is
generating the list of input files, as in

find . -name '*.rw' | rwfilter --xargs=stdin . . .

2.2.3 View Flow Records With rwcut

Translating network flow records from binary format into human-readable text is a helpful part of a network
analysis. Use the rwcut command to translate the binary network flow records selected via the rwfilter
command as tables of ASCII text.

SiLK uses binary data to speed up queries, file manipulation, and other operations. However, these data
cannot be read using any of the standard text-processing UNIX tools. rwcut reads SiLK flow records and
translates this binary data into pipe-delimited (|) text output. You can then view the data directly in a
terminal window or read it into a text-processing, graphing, or mathematical analysis tool.

Hint: Keep data in binary format (i.e., *.rw files) for as long as possible while performing
an analysis. Binary SiLK network flow records are more compact and offer faster
performance than the ASCII representation of these records. Use rwcut to inspect
records or export data to other tools for further analysis.

rwcut can be invoked in two ways: by reading a file or by connecting it with another SiLK tool (often
rwfilter or rwsort) via a pipe. When reading a file, specify the file name in the command line. The
--fields parameter selects, reorders, and formats SiLK data fields as text and separates them in different
ways.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

2.2. SINGLE-PATH ANALYSIS: ANALYTICS 25

Displaying Flow Records

As part of the network analysis, we will use rwcut to take a closer look at a set of flow records from the file
flows.rw.

rwcut --fields=sip,dip,sport,dport,protocol,stime --num-recs=10 flows.rw

• The --fields parameter specifies which fields in a SiLK record are shown. Field names are case-
insensitive. This example displays the following fields:

sip – source IP address for the flow
dip – destination IP address for the flow
sport – source port for the flow
dport – destination port for the flow
protocol – transport-layer protocol for the flow
stime – start time of the flow, formatted as YYYY/MM/DDThh:mm:ss.mmm

• The --num-recs parameter determines how many records rwcut displays. In this example, up to ten
records are shown (regardless of how many records are actually in the file). If the file contains no
records, rwcut only displays the column heading for each field.

• flows.rw is the name of the file containing SiLK network flow records.

Example 2.3: rwcut for Displaying the Contents of Ten Flow Records
<1>$ rwcut --fields =sip ,dip ,sport ,dport ,protocol ,stime \

--num -recs =10 --ipv6 - policy = ignore flows.rw
sIP| dIP|sPort|dPort|pro| sTime|

10.0.40.83| 192.168.70.10|53981| 8082| 6|2015/06/17 T14 :00:02.631|
10.0.40.20| 192.168.70.10| 53|58887| 17|2015/06/17 T14 :00:04.619|
10.0.40.20| 192.168.70.10| 53|55004| 17|2015/06/17 T14 :00:04.621|
10.0.40.83| 192.168.70.10|53982| 8082| 6|2015/06/17 T14 :00:12.673|
10.0.40.20| 192.168.70.10| 53|64408| 17|2015/06/17 T14 :00:14.685|
10.0.40.20| 192.168.70.10| 53|57734| 17|2015/06/17 T14 :00:14.689|
10.0.40.83| 192.168.70.10|53983| 8082| 6|2015/06/17 T14 :00:22.709|
10.0.40.20| 192.168.70.10| 53|63770| 17|2015/06/17 T14 :00:24.753|
10.0.40.20| 192.168.70.10| 53|53374| 17|2015/06/17 T14 :00:24.755|
10.0.40.83| 192.168.70.10|53984| 8082| 6|2015/06/17 T14 :00:32.741|

The six fields specified with the rwcut command are displayed in the order in which they are listed. Each
field is in a separate column with its own header. The source IP addresses (sip) for each record vary; two
addresses are shown in this example. The destination IP address (dip) is the same for all of these records
since we only pulled records associated with that IP address.

Hint: Your output may contain additional spaces in the IP address field. The environment
variable SILK_IPV6_POLICY=ignore ignores any flow record marked as IPv6, regard-
less of the IP addresses it contains. Only records marked as IPv4 will be printed.
Setting this environment variable has the same effect as invoking rwcut with the
--ipv6-policy=ignore parameter.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

26 CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

Other Useful rwcut Options

Keep the following in mind while using the rwcut command:

• The --fields parameter selects which network flow record fields appear in rwcut output. Each field is
associated with a number as well as a name. Table 1.1 lists the field numbers and their corresponding
field names. Numbers can be specified individually or as ranges. Field names and numbers can be
combined and can be listed in arbitrary order. For instance, --fields=1-4,9,protocol produces the
same output as --fields=sip,dip,sport,dport,stime,protocol

• The --fields parameter also specifies the order in which fields are shown in output. Fields can be
displayed in any order. Example 2.4 displays the output fields in this order: source IP address, source
port, start time, destination IP address.

Example 2.4: rwcut --fields to Rearrange Output
<1>$ rwfilter flows.rw --protocol =6 --max -pass - records =4 \

--pass= stdout | rwcut --fields =1,3, sTime ,2
sIP|sPort| sTime| dIP|

10.0.40.83|53981|2015/06/17 T14 :00:02.631| 192.168.70.10|
10.0.40.83|53982|2015/06/17 T14 :00:12.673| 192.168.70.10|
10.0.40.83|53983|2015/06/17 T14 :00:22.709| 192.168.70.10|
10.0.40.83|53984|2015/06/17 T14 :00:32.741| 192.168.70.10|

• If --fields is not specified, rwcut prints the source and destination IP address, source and destination
port, protocol, packet count, byte count, TCP flags, start time, duration, end time, and the sensor
name.

• The --delimited=C parameter changes the separator from a pipe (|) to any other single character,
where C is the delimiting character. It also removes spacing between fields. This is particularly
useful with --delimited=',' which produces comma-separated-value (CSV) output for easy import
into spreadsheet programs and other tools that accept CSV files. --delimited is the equivalent of
specifying --no-columns --no-final-delimiter --column-sep=C .

• When output is sent to a terminal, rwcut (and other text-outputting tools) automatically invoke the
command listed in the user’s PAGER environment variable to paginate the output. The command given
in the SILK_PAGER environment variable will override the user’s PAGER environment. If SILK_PAGER
contains the empty string, no paging will be performed. The paging program can be specified for an
individual command invocation by using its --pager parameter.

• For a list of the most commonly-used rwcut parameters and options, see Appendix C.6. For a complete
list of all rwcut parameters, enter rwcut --help.

2.2.4 Viewing File Information with rwfileinfo

Analyses using the SiLK tool suite can become quite complex, with several intermediate files created while
isolating the behavior of interest. The rwfileinfo displays a variety of characteristics for each file format
produced by the SiLK tool suite, which helps you to manage these files. Use this command to find out

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

2.2. SINGLE-PATH ANALYSIS: ANALYTICS 27

more information about the file flows.rw, which contains the SiLK records associated with the IP address
of interest.

For most analysts, the three most important file characteristics are the number of records in the file, the
size of the file, and the SiLK commands that produced the file. Enter the following rwfileinfo command
to view this information for flows.rw:

rwfileinfo --fields=count-records,file-size,command-lines flows.rw

• --fields specifies which SiLK file characteristics are displayed.

count-records – the total number of network flow records in a flow record file.

file-size – the size of the file in bytes.

command-lines – the commands used to generate the file. This can be very helpful when per-
forming an analysis that involves many steps and repeated applications of commands such as
rwfilter.

• flows.rw is the name of the file containing SiLK network flow records.

Output is shown in Example 2.5. flows.rw contains 21,864 network flow records; its size is 365,935 bytes.
This gives us an idea of how much network traffic is stored there. The SiLK command that generated the
file is the rwfilter command described in Section 2.2.2.

Example 2.5: rwfileinfo Displays Flow Record File Characteristics
<1>$ rwfileinfo --fields =count -records ,file -size ,command -lines \

flows.rw
flows.rw:

count - records 21864
file -size 365935
command -lines

1 rwfilter --start =2015/06/17 T14 --end =2015/06/17 T14 \
--sensor =S1 --type=all --any - address =192.168.70.10 --pass=flows.rw

Other Useful rwfileinfo Options

Keep the following in mind while using the rwfileinfo command:

• While rwfileinfo is generally associated with flow record files, it can also show information on sets,
bags, and prefix maps (or pmaps). For more information, see Section 2.2.8, Section 4.2.4, and Sec-
tion 6.2.7, respectively.

• Be sure to use the the --fields parameter to choose which network flow record fields are displayed.
If no fields are specified, rwfileinfo defaults to displaying a dozen fields—many of which are of no
use to analysts.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

28 CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

• For flow record files, the record count is the number of flow records in the file. For files with variable-
length records (indicated by a record-length of one) the field does not reflect the number of records;
instead it is the uncompressed size (in bytes) of the data section. Notably, count-records does not
reflect the number of addresses in an IPset file.

• Appendix C.22 lists the most commonly-used options for the rwfileinfo command. For a complete
list of all parameters, enter rwfileinfo --help.

2.2.5 Profile Flows With rwuniq and rwstats

The next step in our network analysis is to investigate network flows to and from the IP address of interest.
We will determine the most common protocols associated with these flows and find flows with low, medium,
and high byte counts.

Two SiLK commands can perform these tasks.

• rwuniq is a general-purpose counting tool. It reads binary SiLK flow records from a file (or standard
input) and counts the records, bytes, and packets for any combination of fields. rwuniq also groups
(or bins) the records by a time interval specified by the analyst. In our example, this command is used
to identify the hour-long time bins containing flows with low, medium, and high byte counts.

• rwstats provides a collection of statistical summary and counting facilities that organize and rank
traffic according to various attributes. It reads binary SiLK flow records from a file (or standard input)
and groups them according to a key composed of user-specified flow attributes, such as bytes, records,
and packets. It then bins the records by a user-specified time interval, sums up the values of the key
attributes, and sorts the bins. rwstats can compute statistics for each SiLK data type or for the n
highest or n lowest bins. It also sums up the attribute values across all of the records it counts and
displays the count for each bin as a percentage of the total. In our example, the rwstats command is
used to identify the most commonly-used protocols associated with traffic to and from the IP address
of interest.

rwuniq and rwstats overlap in their functions. Both assign flows to time bins whose length is set by
the analyst. The bin size represents the length of time in seconds during which each group of records
was collected, not the number of records in each bin. For each value of a key (specified by the --fields
parameter), a bin contains counts of flows, packets, or bytes, or some other measure (specified with the
--values parameter). rwuniq displays one row of output for every bin that falls within a threshold specified
by the analyst. rwstats displays one row of output for each bin in the top N or bottom N of the total
count, and computes the percentages of each data types. For a more detailed discussion of when to use each
command, see Comparing rwstats to rwuniq (later in this section).

Finding Low, Medium, and High-Byte Flows with rwuniq

First, use the rwuniq command to profile flows by byte count. It can find out how many network flow
records within an hour-long period have a low byte count (between zero and 300 bytes), a medium byte
count (between 300 and 100,000 bytes), or a high byte count (more than 100,000 bytes). This gives you an
estimate of the volume of network activity associated with the IP address of interest.

To perform this analysis, use the rwuniq command in conjunction with the rwfilter command.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

2.2. SINGLE-PATH ANALYSIS: ANALYTICS 29

1. Run rwfilter on the flows.rw file. This file contains all traffic to and from the IP address of interest
during the time period of interest; it was extracted in Section 2.2.2. Running rwfilter on it a second
time pulls all of the records in the file with the specified byte ranges.

2. Use the Unix pipe (|) command to direct the resulting output to the rwuniq command. This command
counts the number of records with each range of bytes and directs the output to a file.

<1> $ rwfilter flows.rw --bytes=0-300 --pass=stdout \
| rwuniq --bin-time=3600 --fields=stime,type --values=records --sort-output \
> low-byte.txt
<2> $ rwfilter flows.rw --bytes=300-100000 --pass=stdout \
| rwuniq --bin-time=3600 --fields=stime,type --values=records --sort-output \
> medium-byte.txt
<3> $ rwfilter flows.rw --bytes=100000- --pass=stdout --values=records \
| rwuniq --bin-time=3600 --fields=stime,type --sort-output \
> high-byte.txt

Parameters for the rwfilter command include the following:

• flows.rw contains the network flow records of interest.

• --bytes specifies the range of byte counts for selecting records. Ranges are specified using a dash (e.g.,
0-300 selects all flows with byte counts between zero and 300). To specify an open-ended range, do
not include an upper bound on the range (e.g., 100000- selects all flows with byte counts greater than
100000).

• --pass=stdout sends all records that pass the filter to standard output.

Parameters for the rwuniq command include the following:

• flows.rw is the name of the file containing SiLK network flow records.

• --bin-time=3600 defines a time bin that is one hour (3600 seconds) long.

• --fields=stime,type specifies the fields to use as keys for counting network flows. This parameter
is required. We are looking at the values for stime (start time for the flow) and type (network flow
type).

• --values=records counts the number of records that passed the rwfilter command.

• --sort-output sorts the output of the rwuniq command in numerical order according to the value (or
values) of the key specified via the --fields parameter.

• The shell command > directs the output of rwuniq into the file low-byte.txt.

Hint: We could have saved the rwfilter output to a file and run rwuniq on that file instead of
using the UNIX pipe (|) command to send the output directly to the rwuniq command.
However, one problem with generating such temporary files is that they slow down the
analysis. The rwfilter command would have written all the data to disk, and then the
subsequent rwuniq command would have read the data back from disk. Using UNIX
pipes to pass records from one process to another skips the time-consuming steps of
writing and reading data, speeding this up considerably. The SiLK tools can operate
concurrently, using memory (when possible) to pass data between them. Setting up an
unnamed pipe between processes is described in Appendix B.2.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

30 CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

Example 2.6 shows the output from this series of SiLK commands.

Example 2.6: Characterizing flow byte counts with rwuniq
<1>$ rwfilter flows.rw --bytes =0 -300 --pass= stdout \
| rwuniq --bin -time =3600 --fields =stime ,type \

--values = records --sort - output >low -byte.txt
<2>$ cat low -byte.txt

sTime| type| Records |
2015/06/17 T14 :00:00| in| 1449|
2015/06/17 T14 :00:00| out| 1500|
2015/06/17 T14 :00:00| inweb| 12|
2015/06/17 T14 :00:00| outweb | 8339|
<3>$ rwfilter flows.rw --bytes =300 -100000 --pass= stdout \
| rwuniq --bin -time =3600 --fields =stime ,type \

--values = records --sort - output >medium -byte.txt
<4>$ cat medium -byte.txt

sTime| type| Records |
2015/06/17 T14 :00:00| in| 66|
2015/06/17 T14 :00:00| out| 96|
2015/06/17 T14 :00:00| inweb| 346|
2015/06/17 T14 :00:00| outweb | 10051|
<5>$ rwfilter flows.rw --bytes =100000 - --pass= stdout \
| rwuniq --bin -time =3600 --fields =stime ,type \

--values = records --sort - output >high -byte.txt
<6>$ cat high -byte.txt

sTime| type| Records |
2015/06/17 T14 :00:00| out| 3|
2015/06/17 T14 :00:00| outweb | 2|

Other useful rwuniq options

• The --value parameter specifies which flow attributes are counted for a time bin. In addition to
counting bytes, rwuniq can count records, packets, and source and destination IP addresses.

• Flow records need not be sorted before being passed to rwuniq. If the records are sorted in the same
order as indicated by the --fields parameter to rwuniq, using the --presorted-input parameter
may reduce memory requirements for rwuniq.

• For a list of the most commonly-used rwuniq parameters, see Appendix C.8. For a complete list of all
rwuniq parameters, enter rwuniq --help.

Finding the Most Commonly-Used Protocols With rwstats

Another way to characterize network flows is by protocol usage. By looking at the most commonly-used
protocols, we can get a sense of what types of traffic the network carries.

Use the rwstats command to identify the 10 most common protocols associated with traffic into and out
of the IP address of interest. rwstats groups records into time bins by field (or fields), similar to rwuniq.
However, rwstats can list the top N or bottom N bins and compute summary percentages for each item.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

2.2. SINGLE-PATH ANALYSIS: ANALYTICS 31

rwstats --fields=protocol --count=10 flows.rw

• --fields=protocol counts the records that carry traffic with each protocol.

• --count=10 computes statistics for the 10 bins with the most common protocols.

• flows.rw is the name of the file containing SiLK network flow records.

Example 2.7 shows the output from this command.

Example 2.7: Finding the top protocols with rwstats
<1>$ rwstats --fields = protocol --count =10 flows.rw
INPUT: 21864 Records for 3 Bins and 21864 Total Records
OUTPUT : Top 10 Bins by Records
pro| Records | % Records | cumul_ %|

6| 18854| 86.233077| 86.233077|
17| 2909| 13.304976| 99.538053|

1| 101| 0.461947|100.000000|

Notice that the output lists just three protocols, not ten. This is because only three protocols were used
during the time period of interest. rwstats also computes the number of records for each protocol and
summarizes the percentage of traffic for each protocol.

• Protocol 6 (Transmission Control Protocol, or TCP) makes up approximately 86% of the traffic; it
is used by popular applications such as the World Wide Web, email, remote administration, and file
transfer programs.

• Protocol 17 (User Datagram Protocol, or UDP) makes up approximately 13% of the traffic; it is used
by the Domain Name System (DNS), the Routing Information Protocol (RIP), the Simple Network
Management Protocol (SNMP), and the Dynamic Host Configuration Protocol (DHCP). Voice and
video is also transmitted using UDP.

• Protocol 1 (Internet Control Message Protocol, or ICMP) makes up less than 1% of the traffic; it is
used by network devices (such as routers) to transmit error messages and other information.

Other useful rwstats options

• Each call to rwstats must include exactly one of the following:

– a key containing one or more fields via the --fields parameter and an option to determine
the number of key values to show via --count (shown in Example 2.7), --percentage, or
--threshold

– one of the summary parameters (--overall-stats or --detail-proto-stats)

• For a list of the most commonly-used rwstats parameters, see Appendix C.4. For a complete list of
all rwstats parameters, enter rwstats --help.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

32 CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

Comparing rwstats to rwuniq

rwstats in top or bottom mode and rwuniq have much in common, especially since SiLK version 3.0.0. An
analyst can perform many tasks with either tool. Some guidelines follow for choosing the tool that best suits
a task. Generally speaking, rwstats is the workhorse data description tool, but rwuniq does have some
features that are absent from rwstats.

• Like rwcount, rwstats and rwuniq assign flows to bins. For each value of a key, specified by the
tool with the --fields parameter, a bin summarizes counts of flows, packets, or bytes, or some other
measure determined by the analyst with the --values parameter. rwuniq displays one row of output
for every bin except those not achieving optional thresholds specified by the analyst. rwstats displays
one row of output for each bin in the top N or bottom N , where N is determined directly by the
--count parameter or indirectly by the --threshold or --percentage parameters.

• If rwstats or rwuniq is initiated with multiple counts in the --values parameter, the first count is
the primary count. rwstats can apply a threshold only to the primary count, while rwuniq can apply
thresholds to any or several counts.

• For display of all bins, rwuniq is easiest to use. However, a similar result can be obtained with
rwstats --threshold=1. rwstats will run more slowly than rwuniq because it must sort the bins by
their summary values.

• rwstats always sorts bins by their primary count. rwuniq optionally sorts bins by their key.

• rwstats normally displays the percentage of all input traffic accounted for in a bin, as well as the cumu-
lative percentage for all the bins displayed so far. This output can be suppressed with --no-percents
to be more like rwuniq or when the primary count is not bytes, packets, or records.

• rwuniq has two counts that are not available with rwstats: sTime-Earliest and eTime-Latest.

• Network traffic frequently can be described as exponential, either increasing or decreasing. rwstats
is good for looking at the main part of the exponential curve, or the tail of the curve, depending on
which is more interesting. rwuniq provides more control of multi-dimensional data slicing, since its
thresholds can specify both a lower bound and an upper bound. rwuniq will be better at analyzing
multi-modal distributions that are commonly found when the x-axis represents time.

2.2.6 Characterize Traffic by Time Period With rwcount

A typical network analysis will examine network traffic by time period to see how it varies throughout the
event of interest. Unusual volumes of traffic, changes in byte and packet counts, and other deviations from
normal activity can help you to figure out what is causing the event to occur.

The rwcount command captures network activity that occurs during the time interval (or bin) that you
specify. It counts the number of records, bytes, and packets for flows occurring during a bin’s assigned time
period. You can then view these counts in a terminal window or graph them in a plotting package such as
gnuplot, a spreadsheet package such as Microsoft Excel, or another analysis tool.

Our analysis will examine network traffic to and from the target IP address during the time period of interest.
We will use rwcount to show this activity in ten-minute time bins.

rwcount --bin-size=600 flows.rw

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

2.2. SINGLE-PATH ANALYSIS: ANALYTICS 33

• --bin-size specifies the time bin in seconds. In this example, the time bin is 600 seconds or ten
minutes.

• flows.rw contains the network flow records of interest.

Example 2.8 shows the output from this command. It counts the flow volume information gleaned from the
flows.rw file by ten-minute bins.

Example 2.8: Counting Bytes, Packets and Flows with Respect to Time
<1>$ rwcount --bin -size =600 flows.rw

Date| Records | Bytes| Packets |
2015/06/17 T14 :00:00| 466.00| 798757.00| 3423.00|
2015/06/17 T14 :10:00| 394.00| 104668.00| 1622.00|
2015/06/17 T14 :20:00| 382.43| 104159.18| 1621.86|
2015/06/17 T14 :30:00| 393.57| 107100.82| 1670.14|
2015/06/17 T14 :40:00| 9335.01| 15559931.61| 191709.67|
2015/06/17 T14 :50:00| 10885.11| 16541697.17| 187619.55|
2015/06/17 T15 :00:00| 7.70| 75830.56| 897.45|
2015/06/17 T15 :10:00| 0.17| 21466.66| 383.33|

By default, rwcount produces the table format shown in Example 2.8.

• The first column is the timestamp for the earliest moment in the bin.

• The net three columns show the number of flow records, bytes, and packets counted in the bin.

Examining Bytes, Packets, and Flows

Counting by bytes, packets, and flows can reveal different traffic characteristics. As noted at the beginning
of this manual, the majority of traffic crossing wide area networks has very low packet counts. However, this
traffic, by virtue of being so small, does not make up a large volume of bytes crossing the enterprise network.
Certain activities, such as scanning and worm propagation, are more visible when considering packets, flows,
and various filtering criteria for flow records.

The traffic into and out of the IP address of interest (captured in the file flows.rw) jumps significantly
during the ten-minute time bins 2015/06/17T14:40:00 and 2015/06/17T14:50:00. Byte, packet, and
record counts all rise during this 20-minute time period.

Examining Traffic Over a Period of Time

rwcount is used frequently to provide graphs showing activity over long periods of time, giving a visual
representation of shifts in network traffic. Count data can be read by most plotting (graphing) applications.

The data from Example 2.8 is plotted using Microsoft Excel in Figure 2.3. The traffic spike that we saw in
the tabular data shows up clearly in the plots on the left-hand side of this figure.

For a more detailed look at network activity during this time period, we can change the --bin-size from
600 seconds (ten minutes) to 60 seconds (one minute).

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

34 CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

rwcount --bin-size=60 flows.rw

Plots of this data are shown on the right-hand side of Figure 2.3. Looking at the data on a minute-by-minute
basis shows the variation in data flows during this event.

Hint: Whether you use a larger bin size or smaller bin size depends on your data. Smaller
bin sizes provide more data points to capture subtleties in traffic. If the bin size is too
small, however, it becomes harder to spot trends in the data. Larger bin sizes make it
easier to spot regular traffic patterns. If the bin size is too large, however, there will
not be enough resolution in the data to see what is happening on your network at a
given point in time.

Figure 2.3: Displaying rwcount Output Using 10-Minute and 1-Minute Bins

Other Useful rwcount Information

Keep the following in mind when using rwcount.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

2.2. SINGLE-PATH ANALYSIS: ANALYTICS 35

• The default bin size is 30 seconds.

• Bin counts that have zero flows, packets, and bytes can be suppressed by the --skip-zeroes option
to reduce the length of the listing. However, do not skip rows with zero flows if the output is being
passed to a plotting program; if they are, those data points will not be plotted.

2.2.7 Sort Flow Records With rwsort

Sorting flow records can help you to organize them according to protocol, IP address, start time, and other
attributes. Use the rwsort command to sort binary flow records according to the value of the field(s) you
select.

rwsort is a high-speed sorting tool for SiLK flow records. It reads binary SiLK flow records from a file
(or standard input) and outputs the same records in a user-specified order. The output records are also
in binary (non-text) format and are not human-readable without interpretation by another SiLK tool such
as rwcut. rwsort is faster than the standard UNIX sort command, handles flow record fields directly
with understanding of the fields’ types, and is capable of handling very large numbers of SiLK flow records
provided sufficient memory and storage are available.

The following example sorts the network flow records in flows.rw by byte count, destination IP, and protocol
from the highest to the lowest value in each field, then displays the first ten records.

rwsort flows.rw --fields=dip,protocol,bytes --reverse
| rwcut --fields=dip,protocol,bytes,stime --num-recs=10

• --fields specifies the sort order. It identifies the fields that are used as sort keys and specifies their
precedence. In this example, rwsort first sorts the records by destination IP address (dip), then
protocol (protocol), then byte count (bytes).

• By default, rwsort sorts from the lowest to the highest values of each sort key. --reverse sorts the
records from the highest to the lowest values.

• The file flows.rw contains the SiLK record files to be sorted.

• The Unix pipe command (|) sends the output of the rwsort command to the rwcut command.

• The rwcut command and its parameters are described in Section 2.2.3.

Example 2.9 shows the results of this command. The records are first sorted from the highest destination
IP address to the lowest. They are then sorted according to their protocols, then their sizes in bytes. This
gives you an idea of the volume and types of traffic associated with the destination IPs.

Behavioral Analysis with rwsort, rwcut, and rwfilter

A behavioral analysis of protocol activity relies heavily on basic rwcut and rwfilter parameters. The
analysis requires the analyst to have a thorough understanding of how protocols are meant to function.
Some concept of baseline activity for a protocol on the network is needed for comparison.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

36 CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

Example 2.9: Sorting by Destination IP Address, Protocol, and Byte Count
<1>$ rwsort flows.rw --fields =dip ,protocol ,bytes --reverse \
| rwcut --fields =dip ,protocol ,bytes ,stime --num -recs =10

dIP|pro| bytes| sTime|
216.207.68.32| 6| 960|2015/06/17 T14 :53:15.707|
216.207.68.32| 6| 960|2015/06/17 T14 :54:30.604|
216.207.68.32| 6| 120|2015/06/17 T14 :54:14.405|
216.207.68.32| 6| 120|2015/06/17 T14 :55:29.333|
209.66.102.50| 6| 960|2015/06/17 T14 :55:26.586|
209.66.102.50| 6| 960|2015/06/17 T14 :56:42.465|
209.66.102.50| 6| 120|2015/06/17 T14 :57:41.186|
209.66.102.50| 6| 120|2015/06/17 T14 :56:25.264|
208.206.41.61| 6| 960|2015/06/17 T14 :58:20.666|
208.206.41.61| 6| 960|2015/06/17 T14 :46:17.427|

To monitor the behavior of protocols, first take a sample of a particular protocol. Use rwsort --fields=sTime,
and convert the results to ASCII text with rwcut. To produce byte and packet fields only, try rwcut with
--fields=bytes and --fields=packets. Then, perform the UNIX commands sort and uniq -c.

Cutting in this manner (sorting by field or displaying select fields) can answer a number of questions:

1. Is there a standard bytes-per-packet ratio?

2. Do any bytes-per-packet ratios fall outside the baseline?

3. Do any sessions’ byte counts, packet counts, or other fields fall outside the norm?

There are many such questions to ask, but keep the focus of exploration on the behavior being examined.
Chasing down weird cases is tempting but can add little to your understanding of general network behavior.

Other Useful rwsort Information

Keep the following in mind when using rwsort.

• Sort keys can be specified by field numbers as well as field names; see Table 1.1 for a complete list.

• Sort keys can be specified in any order. For example, --fields=1,3 results in flow records being sorted
by source IP address (1) and by source port (3) for each source IP address. --fields=3,1 results in
flow records being sorted by source port and by source IP address for each source port. (Since flow
records are not always entered into the repository in the order in which they were initiated, analyses
often involve sorting by start time at some point.)

• rwsort can also be used to sort multiple SiLK record files. If the flow records in the input files are al-
ready ordered in each file, using the --presorted-input parameter can improve efficiency significantly
by just merging the files.

• If rwsort is processing large input files, disk space in the default temporary system space may be
insufficient or not located on the fastest storage available. To use an alternate space, specify the
--temp-directory parameter with an argument specifying the alternate space. This may also improve
data privacy by specifying local, private storage instead of shared storage.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

2.2. SINGLE-PATH ANALYSIS: ANALYTICS 37

2.2.8 Use IPsets to Gather IP Addresses

Up to this point, our single-path analysis has focused on selecting, storing, and examining flow records.
However, another common goal of single-path analysis is to compile lists of IP addresses that exhibit criteria
of interest to the analyst. This section will continue our analysis by gathering and summarizing single-path
criteria using named sets of IP addresses, or IPsets.

Create IPsets With rwset and rwsetbuild

rwset and rwsetbuild are two SiLK tools for creating sets of IP addresses (IPsets). rwset creates sets from
flow records. rwsetbuild creates them from lists of IP addresses in text files. Expanding on the profiling in
Section 2.2.5, rwfilter can be used to profile network flows by bytes. When combined, rwset and rwfilter
summarize the IP addresses that exhibit byte-threshold profiles to files with descriptive names.

rwfilter flows.rw --bytes=0-300 --pass=stdout \
| rwset --any-file=low-byte.set

Parameters for the rwfilter command include the following:

• flows.rw contains the network flow records of interest.

• --bytes=0-300 specifies the range of byte counts for selecting records (0-300 for this example).

• --pass=stdout sends all records that pass the filter to standard output.

Parameters for the rwset command include the following:

• --any-file=low-bytes.set specifies source and destination IP addresses from flow records with a
range of 0-300 bytes to the IPset file low-bytes.set. Because --any-file was used above, the IPset
file will include the IP address itself as well as any IP addresses that communicated with it.

Example 2.10 shows the output from this series of rwfilter and rwset commands.

Example 2.10: Using rwset to Gather IP Addresses
<1>$ rwfilter flows.rw --bytes =0 -300 --pass= stdout \
| rwset --any -file=low -byte.set
<2>$ file low -byte.set
low -byte.set: SiLK , IPSET v2 , Little Endian , LZO compression

Analysis requiring defined IP addresses should use the rwsetbuild tool. rwsetbuild creates SiLK IPsets
from textual input, including canonical IP addresses, CIDR notation, and IP ranges. This approach is useful
for creating whitelists and blacklists of IP addresses that may reside in network flow records presently or in
the future.

rwsetbuild --ip-ranges servers.txt servers.set

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

38 CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

Parameters for the rwsetbuild command include the following:

• --ip-ranges specifies allowing the textual input file to contain IP ranges.

• servers.txt specifies the textual input file name.

• servers.set specifies the binary IPset output file name.

Example 2.11 shows the output from the rwsetbuild command.

Example 2.11: Using rwsetbuild to Gather IP Addresses
<1>$ cat servers .txt
Text file of servers
192.168.2.1 # Single
192.168.3.0/24 # CIDR
192.168.4.1 -192.168.4.128 # IP range
<2>$ rwsetbuild --ip - ranges servers .txt servers .set
<3>$ file servers .set
servers .set: SiLK , IPSET v2 , Little Endian , LZO compression

Other Useful rwset and rwsetbuild Options

Keep the following in mind while using the rwset command:

• rwset can assign IP addresses to IPsets by source, destination, and both source and destination
simultaneously.

• rwset and rwsetbuild can read input from files on disk or standard input (stdin).

• rwsetbuild supports SiLK IP address wildcard notation (10.x.1-2.4,5). This notation is not supported
when the --ip-ranges switch is specified.

• Appendix C.14 lists the most commonly-used options for the rwset command. For a complete list of
all parameters, enter rwset --help or rwsetbuild --help.

Display IP Addresses, Counts, and Network Information With rwsetcat

Single-path analysis often requires the IP addresses in an IPset to be counted and displayed. This gives you
an opportunity to inspect the IP addresses that met specified analytic criteria, such as behavior and network
topology. rwsetcat can display the IP addresses in an IPset, count the number of IP addresses, display
information about the network, and show minimum and maximum IP addresses as well as other summary
data for the IPset.

We will continue our analysis of the low byte IP addresses from Section 2.2.8 by counting, listing, and
computing summary statistics for the IP addresses in the low-bytes.set IPset file.

To count the number of IP addresses that exhibited 0-300 byte flow records with the IP address 192.168.70.10,
enter the following command:

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

2.2. SINGLE-PATH ANALYSIS: ANALYTICS 39

rwsetcat --count-ips low-byte.set

Parameters for the rwsetcat command include the following:

• --count-ips specifies counting the number of IP addresses.

• low-byte.set specifies the binary IPset file for counting (containing IP addresses that exhibited 0-300
byte flow records with 192.168.70.10.)

Example 2.12 shows the count of IP addresses contained in low-byte.set.

Example 2.12: Using rwsetcat to Count Gathered IP Addresses
<1>$ rwsetcat --count -ips low -byte.set
574

Although general counting is helpful, an analysis commonly requires additional context regarding the net-
works and hosts contained in the IPset. rwsetcat prints analyst-specified subnet ranges and the number of
hosts in each subnet.

To summarize the /24 networks contained in low-byte.set:

rwsetcat --network-structure=24 low-byte.set

Parameters for the rwsetcat command include the following:

• --network-structure groups IP addresses by specified structure and prints the number of hosts

• low-byte.set specifies the binary IPset file for counting (containing IP addresses that exhibited 0-300
byte flow records with 192.168.70.10.)

Example 2.13 shows the first four /24 networks contained in low-byte.set and their respective host counts.

Example 2.13: Using rwsetcat to Print Networks and Host Counts
<1>$ rwsetcat --network - structure =24 low -byte.set | head -n 4

4.2.0.0/24| 1
6.7.1.0/24| 1
8.1.7.0/24| 1

10.0.20.0/24| 1

Complete statistical summaries are also common during an analysis and can be printed with rwsetcat.
Our previous /24 summary only prints the specified CIDR range and would require iterative commands to
determine multiple CIDR network ranges that may be contained in an IPset. Therefore, rwsetcat provides
the --print-statistics switch for full statistical summaries of an IPset.

rwsetcat --print-statistics low-byte.set

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

40 CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

Parameters for the rwsetcat command include the following:

• --print-statistics specifies printing a statistical summary of IP addresses contained in an IPset.

• low-byte.set specifies the binary IPset file for counting (containing IP addresses that exhibited 0-300
byte flow records with 192.168.70.10.)

Example 2.14 shows the statistical summary of IP addresses in the low-byte.set file.

Example 2.14: Using rwsetcat to Print IP Address Statistical Summaries
<1>$ rwsetcat --print - statistics low -byte.set
Network Summary

minimumIP = 4.2.0.58
maximumIP = 216.207.68.32

574 hosts (/32s), 0.000013% of 2^32
87 occupied /8s, 33.984375% of 2^8

381 occupied /16s, 0.581360% of 2^16
521 occupied /24s, 0.003105% of 2^24
551 occupied /27s, 0.000411% of 2^27

Other Useful rwsetcat Options

Keep the following in mind while using the rwsetcat command:

• rwsetcat can print CIDR blocks without specifying a desired network mask. rwsetcat will group
sequential IPs into the largest possible CIDR block and prints individual IP addresses. This switch
cannot be combined with the --network-structure switch.

• The --network-structure switch supports multiple CIDR masks for a single command execution.

• Appendix C.15 lists the most commonly-used options for the rwsetcat command. For a complete list
of all parameters, enter rwsetcat --help.

2.2.9 Resolve IP Addresses to Domain Names With rwresolve

Use the rwresolve command to find the host names associated with the IP addresses of interest to our
network analysis. This command performs a reverse Domain Name Service (DNS) lookup on a list of IP
addresses to retrieve their host names. If the lookup is successful, it prints the name of the host; if not, it
prints the IP address. If an IP address resolves to multiple host names, it print the first one found. The
result is a human-readable list of host names that is useful for further investigation and analysis.

rwresolve takes delimited text as input, not binary flow records. It is designed for use with the rwcut
command, although it can be used with any SiLK tool that produces delimited text.

Hint: Since performing reverse DNS lookups is a time-consuming process, we strongly rec-
ommend that you use rwresolve only on small datasets.

rwcut --fields=1,1 flows.rw | rwresolve --ip-field=2

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

2.2. SINGLE-PATH ANALYSIS: ANALYTICS 41

This command first uses the rwcut command to generate a list of IP addresses (--fields=1,1). It redirects
the resulting output to the rwresolve command, which looks up the host names associated with the IP
addresses.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

42 CHAPTER 2. BASIC SINGLE-PATH ANALYSIS

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

Chapter 3

Case Studies: Basic Single-path
Analysis

The previous chapter introduced the process of single-path analysis and covered some of the commands
that are used in such analyses. This chapter walks through several detailed cases that serve as examples of
single-path analyses.

Upon completion of this chapter you will be able to

• describe a sequence of steps that analysts may use in approaching a task

• apply those steps to several tasks relevant to network traffic

• use SiLK tools to automate the analysis

The case studies in this chapter use the FCCX dataset described in Section 1.7.

3.1 Profile Traffic Around an Event

One view of a network security event is that some specific activity occurs on a particular host at an identified
time. In terms of the analysis in this handbook, a host is indicated by its IP address, and time is, at first
consideration, associated with a given hour. With this as a starting point, the analyst needs to develop a
high-level assessment of possible changes in behavior which then provides a guide to more detailed follow-on
assessments. The end goal is to answer some basic questions about the event:

• Did the event impact network performance or services?

• Was the impact sufficient to warrant dedicating resources to respond?

• Was the event malicious?

• Did it demonstrate weaknesses that could enable malicious activity?

• Which entities were involved (both internal and external)?

43 [DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

44 CHAPTER 3. BASIC CASE STUDY

Frequently, trying to answer such questions in detail involves too much effort. The alternative is to proceed
in a staged manner, and at each stage determine if analysis should proceed further. This section describes
an initial high-level analysis that can be done rapidly. It helps you to determine whether there could have
been some impact from the event, along with a rough feel as to the magnitude of that impact.

Working from the target IP address and the time frame as a start, there are several possible approaches to
gaining a high level indication of impact from the event:

• traffic—look at traffic on the targeted network and search for shifts in the size and frequency of
contacts involving the target, measuring before and after the event

• response time—look at the overall response time for service requests (the average interval between
request and response) into the network, then determine if it has increased during and following the
event

• contact rate—look at the relative rate of contact with services (indicated by port and protocol) on
the targeted network, searching for shifts in the contact rate and the size of traffic on those services

• hosts—look at the set of hosts in contact with the target, and determine if it has shifted unusually
during and after the event.

This section will explore the first of these alternatives: looking at traffic shifts. (The other alternatives may
be useful to analysts, but are not covered here.)

3.1.1 Examining Shifts in Traffic

We can apply the Formulate-Model-Analyze steps in the SiLK workflow to perform a single-path analysis
that looks at shifts in network traffic around the event. First, we will filter for network flow records associated
with the targeted host around the time of the event (the Formulate step from Section 1.5). This involves
pulling records from the appropriate parts of the repository and isolating those that involve the targeted
host. This set of records can then be divided into bins according to volumes, and then into counts for each
bin before, during, and after the event (the Model step). Finally, the counts can then be interpreted to assess
the potential impact of the event (the Analyze step).

Filter Traffic Around the Event

The filter portion of the analysis is structured as a query using the rwfilter tool. The appropriate parts of
the repository are determined by date-hour (using the parameters --start and --end) and type (using the
--type parameter). The association with the target host is indicated by the host’s IP address (using the
--any-address parameter). The filtered records are then stored in a file (using the --pass parameter) for
later parts of the analysis.

Summarize Records

Once the records are pulled via the query, they are summarized by using rwuniq. The goal is to filter out
the appropriate group of flows to summarize. We will create volume-based groups at low, medium, and high
values for both byte volume and flow duration.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

3.1. PROFILE TRAFFIC AROUND AN EVENT 45

For each group, the analysis uses another call to rwfilter to pull records from the file generated previously.
It extracts those with the volume measure for each group (using either --bytes or --duration). The output
goes to rwuniq to count the records. Separate counts are generated for each hour and type of flow record
(using --fields=stime,type and --bin-time=3600). The number of records in each group are counted
(using --values=records). This provides a high-level view of the variation in activity from an hour before
the event to an hour after it.

3.1.2 How to Profile Traffic

The resulting set of commands for this analysis are shown in Example 3.1. Command 1 is the initial query.
It filters records from the repository that are associated with a specific IP address and saves them to the
file traffic.rw in the local directory. Commands 2 through 7 are the processing steps to summarize each
group of records. They produce text files with hourly counts for each type in each group.

Example 3.1: Using rwfilter and rwuniq to Profile Traffic Around an Event
<1>$ rwfilter --start =2015/06/17 T13 --end =2015/06/17 T15 \

--sensor =S1 --type=in ,inweb ,out , outweb \
--any - address =192.168.70.10 --pass= traffic .rw

<2>$ rwfilter traffic .rw --bytes =0 -300 --pass= stdout \
| rwuniq --bin -time =3600 --fields =stime ,type \

--values = records --sort - output >low -byte.txt
<3>$ rwfilter traffic .rw --bytes =301 -100000 --pass= stdout \
| rwuniq --bin -time =3600 --fields =stime ,type \

--values = records --sort - output >med -byte.txt
<4>$ rwfilter traffic .rw --bytes =100001 - --pass= stdout \
| rwuniq --bin -time =3600 --fields =stime ,type \

--values = records --sort - output >high -byte.txt
<5>$ rwfilter traffic .rw --duration =0 -60 --pass= stdout \
| rwuniq --bin -time =3600 --fields =stime ,type \

--values = records --sort - output >short - duration .txt
<6>$ rwfilter traffic .rw --duration =61 -120 --pass= stdout \
| rwuniq --bin -time =3600 --fields =stime ,type \

--values = records --sort - output >med - duration .txt
<7>$ rwfilter traffic .rw --duration =121 - --pass= stdout \
| rwuniq --bin -time =3600 --fields =stime ,type \

--values = records --sort - output >long - duration .txt

The results of these commands are collated in Example 3.2. The counts show that there was a marked
increase in low-to-medium byte and short-to-medium duration web traffic during and after the event. There
was no corresponding increase in high byte or long duration traffic. Based on this, the analyst may start to
focus to look for what common factors exist in the increased traffic. The goal is to build awareness of the
impact of the event in a way that helps responders to deal with that impact.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

46 CHAPTER 3. BASIC CASE STUDY

Example 3.2: Collated Profile of Traffic Around an Event
stime| type| sbyte| mbyte| hbyte| sdur| mdur| ldur|

2015/06/17 T13 :00:00| in| 720| 160| | 880| | |
2015/06/17 T13 :00:00| inweb| 5| 352| | 357| | |
2015/06/17 T13 :00:00| out| 764| 192| 9| 960| 5| |
2015/06/17 T13 :00:00| outweb | 1| 400| | 401| | |
2015/06/17 T14 :00:00| in| 1449| 66| | 1515| | |
2015/06/17 T14 :00:00| inweb| 12| 346| | 358| | |
2015/06/17 T14 :00:00| out| 1500| 96| 3| 1595| 1| 1|
2015/06/17 T14 :00:00| outweb | 8339| 10051| 2| 18382| 9| 1|
2015/06/17 T15 :00:00| in| 2528| 550| | 3077| 1| |
2015/06/17 T15 :00:00| inweb| 14| 345| | 359| | |
2015/06/17 T15 :00:00| out| 2520| 558| 5| 3076| 3| 3|
2015/06/17 T15 :00:00| outweb | 10309| 11072| 7| 21366| 12| 9|

3.2 Generate Top N Lists

Filtering flow records by time, sensor, type, and volume characteristics often produces groups that contain
flow records of interest. However, these groups also contain extraneous flows that produce noise, which
makes it more difficult to spot patterns in the data.

One strategy for removing these extraneous flows is to identify the largest sub-groups, validate each sub-
group, and either set it aside or include it in the collection of flows of interest. The sub-groups are identified
by a combination of flow characteristics, such as the IP address of the source, the TCP flags present in the
flow, or the network service involved. The contribution of each sub-group is measured by the total bytes or
packets per sub-group, the number of records per sub-group, the number of distinct values present for some
field in the flow record, or another summary statistic.

The overall process of pulling a collection of flow records and then removing flows not related to the analysis
is sometimes referred to as top-down analysis. There is also a bottom-up analysis that involves starting with
a minimal set of records that are of interest, then basing further queries to isolate more records of interest
based on the field values in the minimal set.

3.2.1 Using rwstats to Create Top N Lists

To identify the identity and relative size of the sub-groups, use the rwstats command. It explicitly includes
parameters to limit output to the largest contributors and describes the contribution of those categories to
the overall flow collection5. Without rwstats, an analyst could load flow records into a spreadsheet, then
generate a pivot table to identify the most common characteristics. rwstats is much faster and easier to
use than a spreadsheet. It deals with high numbers of flow records very efficiently in terms of storage and
memory usage.

5rwstats has further functions that facilitate describing collections of flows statistically, which are described in Appendix C.4

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

3.2. GENERATE TOP N LISTS 47

Removing Unwanted Flows

In generating top-N lists, the Formulate stage involves eliminating flow records for network activity that
is not of interest. This activity, sometimes referred to as network chaff, may include connections with not
enough data exchanged to be significant, those involving services that are not important for an analysis,
or, in general, anything that could obfuscate the results by contaminating the flow records retrieved for the
event.

In Example 3.3, command 1 looks at the first few flows in the traffic.rw file generated in Example 3.1.
The sequence of flows shown are DNS queries. There is not enough information at the flow level to indicate
whether they are relevant to the event that occurred.

Command 2 in the example uses a new call to rwfilter to exclude the unneeded flows, both saving a copy
to a new flow file and sending it to rwcut for further examination. The examination shows that the host at
192.168.70.10 is doing a lot of communication on TCP port 8082, associated with a file management utility
known as Utilistore, and the larger-volume flows appear to be associated with the host at 10.0.40.83.

Command 3 queries the flow repository to look for flows showing communication on this port with at least
150 average bytes per packet across the full data set. The results of this query are then passed to rwuniq to
profile all of the locations to which data has been sent. The results of this profile show three hosts receiving
this traffic, including both 192.168.70.10 and another host at 192.168.200.10.

Command 4 uses a further call to rwfilter to pull all the traffic associated with the newly located addresses
10.0.40.83 and 192.168.70.10. The addresses appear twice in the rwfilter call in order to specify that
both the source and destination are constrained to these addresses. The results are then stored in the file
traffic2.rw to be examined further.

Note that the addresses are specified with --scidr (Source CIDR block) and --dcidr (Destination CIDR
block) instead of --saddress (source address), --daddress (destination address), or --any-address (both
source and destination addresses). The --scidr and --dcidr parameters accept comma-separated lists of
addresses in CIDR notation, whereas the other parameters accept only a single address. The /32 CIDR
notation specifies a single address and thus permits us to use a list of addresses.

Summarizing Destination Port Usage By Records and Bytes

After we query and filter the flow records to isolate those of interest, we can calculate values to clarify
our understanding of these data (the Model step). We could use either rwuniq or rwstats to understand
the contributors to these data, which fed into the filtering process. rwstats allows for more explicit limits
on the number of bins that are displayed. In contrast, rwuniq shows all of the bins for the input dataset.
rwstats also shows the percentage contribution to the overall input of each bin and cumulatively across bins.
These limits are often expressed as a count of bins, but they can also be expressed in terms of percentage
contribution or a threshold on the count. The percentages are calculated based only on the first value
specified for the bin. This allows rwstats to be used flexibly to profile the contributors to the data.

In Example 3.3, command 5 uses rwstats to profile the records in traffic2.rw, looking at the destination
port utilization in these data by the flow count (as a rough measure for how often communication takes
place), with bytes also calculated as a supplementary value.

In the results, the largest contributor accounts for very close to half of the data. This is not surprising since
the analyst used this port to identify these hosts as being of interest during the filtering process. Three
of the other ports shown are ephemeral ports (officially, ports numbering 49,152 or more, although some
Linux versions use 32,768 to 61,000, and some Windows versions use 1,025-5,000). This use indicates that

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

48 CHAPTER 3. BASIC CASE STUDY

Example 3.3: Removing Unneeded Flows for Top N

<1>$ rwcut --fields =1-3, protocol ,bytes --num -recs =5 traffic .rw
sIP| dIP|sPort|pro| bytes|

10.0.40.20| 192.168.70.10| 53| 17| 242|
10.0.40.20| 192.168.70.10| 53| 17| 242|
10.0.40.20| 192.168.70.10| 53| 17| 242|
10.0.40.20| 192.168.70.10| 53| 17| 242|
10.0.40.20| 192.168.70.10| 53| 17| 242|

<2>$ rwfilter traffic .rw --aport =0 ,53 --fail= stdout \
| rwcut --fields =1-5, bytes --num -rec =5

sIP| dIP|sPort|dPort|pro| bytes|
10.0.40.27| 192.168.70.10|44358| 8082| 6| 332|
10.0.40.27| 192.168.70.10|44383| 8082| 6| 332|
10.0.40.83| 192.168.70.10|53596| 8082| 6| 838|
10.0.40.83| 192.168.70.10|53597| 8082| 6| 551|
10.0.40.83| 192.168.70.10|53598| 8082| 6| 1080|

<3>$ rwfilter --start =2015/06/13 --end =2015/06/18 --type=all \
--proto =6 --dport =8082 --bytes -per =150 - --pass= stdout \

| rwuniq --fields =dip --values =flows , distinct :bytes
dIP| Records |bytes -Dist|

155.6.3.1| 1| 1|
192.168.200.10| 804| 32|

192.168.70.10| 1132| 37|
<4>$ rwfilter --start =2015/06/13 --end =2015/06/18 \

--type=all --scidr =10.0.40.83/32 ,192.168.200.10/32 \
--dcidr =10.0.40.83/32 ,192.168.200.10/32 \
--pass= traffic2 .rw

<5>$ rwstats --fields =dip ,dport --values =flows ,bytes --count =6 \
traffic2 .rw

INPUT: 11846 Records for 1954 Bins and 11846 Total Records
OUTPUT : Top 6 Bins by Records

dIP|dPort| Records | Bytes| % Records | cumul_ %|
192.168.200.10| 8082| 5906| 8252849| 49.856492| 49.856492|

10.0.40.83|56018| 45| 6357| 0.379875| 50.236367|
10.0.40.83|55026| 18| 4653| 0.151950| 50.388317|

192.168.200.10| 137| 15| 3510| 0.126625| 50.514942|
10.0.40.83| 771| 15| 2520| 0.126625| 50.641567|
10.0.40.83|56348| 3| 3390| 0.025325| 50.666892|

<6>$ rwstats --fields =dip ,dport --values =bytes ,flows --count =6 \
traffic2 .rw

INPUT: 11846 Records for 1954 Bins and 39548165 Total Bytes
OUTPUT : Top 6 Bins by Bytes

dIP|dPort| Bytes| Records | %Bytes| cumul_ %|
10.0.40.83|49375| 13139355| 3| 33.223678| 33.223678|

192.168.200.10| 8082| 8252849| 5906| 20.867843| 54.091521|
10.0.40.83|54964| 1488312| 3| 3.763290| 57.854811|
10.0.40.83|49408| 1488312| 3| 3.763290| 61.618100|
10.0.40.83|54345| 328470| 3| 0.830557| 62.448657|
10.0.40.83|54404| 328470| 3| 0.830557| 63.279214|

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

3.2. GENERATE TOP N LISTS 49

192.158.200.10 is the server and 10.0.40.83 is the client. These two IP addresses account for at most a little
over a third of one percent of the records. Port 137 is the Windows netbios name service port, and port 771
is an ICMP data artifact that will be discussed below.

For a contrasting look at the data, command 6 calls rwstats to summarize port utilization by the number
of bytes (as a rough measure of the size of the communication taking place). By this measure, the largest
contributor is not the traffic on port 8082, but rather traffic on an ephemeral port. This illustrates the need
for analysts to examine the data from several perspectives to clarify its interpretation.

3.2.2 Interpreting the Top-N Lists

One key to interpreting the results shown in Example 3.3 is provided in the output from command 3. The
last column of results is the count of distinct values for the bytes in each flow that is assigned to that bin.
In this case, it is the number of bytes in each flow going to a specific IP address. For the last two entries,
the value is less than 10 percent of the record count, indicating that communication with the same number
of bytes is common, which in turn suggests that this is automated, rather than human-driven, traffic.

In this light, the results shown from command 5 suggest that this traffic averages about 1,400 bytes per
flow to the server, with smaller acknowledgement traffic being returned to the client via the ephemeral
ports. This suggestion, however, is contradicted by the results shown from command 6, which indicate that
several very large-byte flows occur to the clients on the ephemeral port, indicating that data transfer is bi-
directional. Confirming the data transfer dynamics and determining if any indications of threat are present
requires further analysis—pulling more traffic to see if these hosts shift behavior across time as threats in
their contacts to additional hosts.

In the results for command 5, the traffic to UDP port 137 (name service) is not answered with service traffic.
Instead, it is responded to with messages using protocol 1, ICMPv4 (which appears with a 771 port number,
although ICMP does not use ports). This is suggested by the common number of flows associated with
these ports. It was confirmed by an inspection of the data using rwcut that was too long to show in the
example. The flow generators encode the ICMP message type and code in the dPort field of NetFlow and
IPFIX records.

In the example, the value of 771 corresponds to a message indicating that name service is unreachable. While
the number of repetitions is not extensive (15 across 3 days of traffic), that repetition despite unreachable
service indicates that the server is generating the port 137 traffic automatically.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

50 CHAPTER 3. BASIC CASE STUDY

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

Chapter 4

Intermediate Multi-path Analysis
with SiLK: Explaining and
Investigating

This chapter introduces intermediate multi-path analysis through application of the analytic development
process with the SiLK tool suite. It discusses iteration, conditional analysis steps, categorization, and
behavior identification.

Upon completion of this chapter you will be able to

• describe intermediate multi-path analysis and how it maps to the analytic development process

• describe SiLK tools commonly used with intermediate multi-path analysis

• provide example multi-path network flow analysis workflows

4.1 Multi-path Analysis: Concepts

4.1.1 What Is Multi-path Analysis?

Some network behaviors are not visible within the single view of the network flow data provided by single-
path analysis. Finding them requires investigating and integrating several different views of the data. This
type of analysis is known as multi-path analysis.

A multi-path analysis involves a deeper, multi-pronged dive into network flow data than can be accomplished
with a single-path analysis. While a single-path analysis may involve looking at summary data or just one
part of a data set, multi-path analysis explores different aspects of the data set (ports, IP addresses, protocols,
packet and byte volumes, flow types and volumes, etc.) to find trends, leftovers, and groupings that are not
necessarily visible in a single view of the data. Multi-path analysis builds upon single-path analysis; often,
a single-path analysis is performed as just one phase of a multi-path analysis.

Multi-path analysis follows the general analysis framework described in Section 1.5. The overall process
includes several steps:

51 [DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

52 CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

1. Formulate the problem and gather context about the data. Is this event similar to other incidents?
Which aspects of the data set should be investigated? How should we classify and group the data?

2. Model and test the data. What network behaviors are we looking for? Which statistics and metrics
give us insight into these behaviors of interest?

3. Analyze the results. What did we find? How can we integrate the results of our different investigations
into the data? Is our model of the event borne out by the results of our analysis?

4. Refine the analysis. Now that we have an idea of what might be going on, we can optionally take
another look at the data and our assumptions to improve the analysis.

In multi-path analysis, the Formulate and Model steps are performed on multiple categories of data, each
associated with aspects of the overall behavior of interest. After gathering context about the data, retrieving
the data from the SiLK repository, building a model, and summarizing the data, a multi-path analysis
includes an integration and analysis step that ties together the separate results to further characterize
network behavior. The analyst can then iterate these steps to further refine the analysis.

Figure 4.1: Multi-Path Analysis

4.1.2 Example of a Multi-path Analysis: Examining Web Service Traffic

A short example of a multi-path analysis is shown in Example 4.1. It looks at statistics on ports related to
web traffic.

During the Formulate step of our multi-path analysis, we gather information about related categories of
data. Multiple ports are used for web traffic: the normal HTTP port (TCP port 80), the HTTP secure

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

4.1. MULTI-PATH ANALYSIS: CONCEPTS 53

port (TCP port 443), the alternate web ports (TCP ports 8080 and 8443), and so forth. We would like to
examine traffic on each of these ports.

A single-path analysis would gather flows from all of these ports into one pool of data to produce a composite
model in the next step. In contrast, the multi-path analysis in Example 4.1 gathers traffic from each port
as a separate pool of data. It investigates each pool individually in the Model step, profiling individual
characteristics and summarizing variations.

• Command 1 uses the mkfifo command to create a set of named pipes, or FIFO (first-in-first-out) files,
to support a complex series of rwfilter calls in Command 2. Each one is named after a port number
(e.g., multi-port8080.fifo) to indicate that it carries data related to that port.

Hint: Named pipes efficiently transfer data from one SiLK command to another without the
overhead of writing data to a disk file at each step, making the analytic run more
quickly. Using named pipes also makes the analytic easier to script. Unlike regular
operating system pipes (|), named pipes persist after a command finishes executing
and can therefore be used as a source of input data for subsequent SiLK commands.
See Appendix B.2.5 for more information.

• Commands 2 through 5 set up an analytical structure known as a manifold, which is discussed in
more detail in section 4.2.1. The pipelined series of rwfilter calls in Command 2 first pulls from
the repository all outbound complete TCP flows (shown in the selection and partitioning commands
in the first rwfilter call). These outbound flows (selected by --type=out,outweb) include traffic
produced by the monitored network. Selecting complete TCP flows (partitioned by a combination
of --proto, --flags-all, --packets, and --bytes-per) avoids data that includes scans, extended
sessions, redundant flow termination, and other data artifacts—all of which might confuse the analysis.
The subsequent rwfilter calls in Command 2 then divide the retrieved flow records into separate
pools, one for each of the web-related ports using both standard output and the FIFO files. Each of
these rwfilter calls culminates (at the end of Command 2 and in Commands 3 through 5) in a call
to rwbag to generate a summary set of byte counts per source IP address in each pool. Section 4.2.4
describes more about the bag tools.

• To make all of this work in Linux, these commands have to operate in a producer-consumer manner
as background processes. Command 6 is a shell command that causes the script to wait until the
producer-consumer processes have finished, so that the counts are all complete.

• Commands 7 through 10 use rwbagcat to calculate descriptive statistics for each of the pool of data.
They send each set of statistics to a separate text file.

• Commands 11 and 12 show two of these statistics, mean and standard deviation, across the pools of
data to produce integrated summaries of outbound web traffic on these ports.

4.1.3 Exploring Relationships and Behaviors With Multi-path Analysis

Many possible relationships in network traffic can be explored during multi-path analyses, in addition to the
port-protocol alternatives in the web traffic analysis shown in Example 4.1.

• Address relationships can be explored by looking at the behavior of a block of addresses as seen
by varying sensors, looking at variations in behavior between addresses within a block, or looking at

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

54 CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

Example 4.1: Examining Flows for Web Service Ports
<1>$ mkfifo /tmp/multi - port8080 .fifo; \

mkfifo /tmp/multi - port443 .fifo; \
mkfifo /tmp/multi - port8443 .fifo

<2>$ rwfilter --start =2015/06/15 --end =2015/06/21 \
--type=out , outweb --proto =6 --flags -all=SAF/SAF ,SAR/SAR \
--packets =4- --bytes -per =65- --pass= stdout \

| rwfilter stdin --aport =8080 \
--pass =/ tmp/multi - port8080 .fifo --fail= stdout \

| rwfilter stdin --aport =443 --pass =/ tmp/multi - port443 .fifo \
--fail= stdout \

| rwfilter stdin --aport =8443 \
--pass =/ tmp/multi - port8443 .fifo --fail= stdout \

| rwfilter stdin --aport =80 --pass= stdout \
| rwbag --bag -file=sipv4 ,bytes ,./ output /tmp80.bag &
<3>$ rwbag --bag -file=sipv4 ,bytes ,./ output / tmp443 .bag \

/tmp/multi - port443 .fifo &
<4>$ rwbag --bag -file=sipv4 ,bytes ,./ output / tmp8443 .bag \

/tmp/multi - port8443 .fifo &
<5>$ rwbag --bag -file=sipv4 ,bytes ,./ output / tmp8080 .bag \

/tmp/multi - port8080 .fifo &
<6>$ wait
<7>$ rwbagcat --print -stat =./ output /out80.txt \

./ output /tmp80.bag
<8>$ rwbagcat --print -stat =./ output / out8080 .txt \

./ output / tmp8080 .bag
<9>$ rwbagcat --print -stat =./ output / out443 .txt \

./ output / tmp443 .bag
<10>$ rwbagcat --print -stat =./ output / out8443 .txt \

./ output / tmp8443 .bag
<11>$ grep 'mean ' ./ output /out {80 ,8080 ,443 ,8443}. txt
./ output / out80.txt: mean: 5.471e+06
./ output / out8080 .txt: mean: 4.707e+07
./ output / out443 .txt: mean: 2.585e+07
./ output / out8443 .txt: mean: 1.367e+08
<12>$ grep 'standard ' ./ output /out {80 ,8080 ,443 ,8443}. txt
./ output / out80.txt: standard deviation : 2.021e+07
./ output / out8080 .txt: standard deviation : 6.655e+07
./ output / out443 .txt: standard deviation : 5.704e+07
./ output / out8443 .txt: standard deviation : 9.266e+06

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

4.1. MULTI-PATH ANALYSIS: CONCEPTS 55

behaviors of several blocks within a given Autonomous System that is handled by a common route.
These address relationships might be useful for analysis tasks such as confirming suspected malware
propagation or isolating targeted scanning from more general scanning.

• Timing relationships can be explored by separately summarizing and examining behavior before,
during, and after the times associated with network events. They can also be explored by profiling
behavior around an event in comparison to a period of normal activity that goes on for a similar period
of time. These timing relationships could be useful to identify more subtle intrusions, for example, or
to isolate activity that might indicate malicious pivoting between parts of the network.

• Volumetric relationships can be explored to find more complex relationships between pools of data
depending on byte volumes or transfer rates. These volumetric relationships could help to indicate
covert data exfiltration, for example, or detect when services are exploited to support malicious activity.

4.1.4 Integrating and Interpreting the Results of Multi-path Analysis

During the Model phase of the analysis, the focus is often about determining values to provide insight on the
relationships in the data. Measures of central tendency (such as averages) are frequently useful. They should
be extended by measures of extent (such as range or standard deviation) to provide context for variation
between pools of data. With these measures calculated, a range of activity can be specified. In the web
traffic analysis shown in Example 4.1, for instance, each pool of network traffic associated with a port is
profiled into an output text file using the rwbagcat --print-stat command, which computes a variety of
descriptive statistical measures, including mean and standard deviation.

Once the measures are calculated, integrate them by matching them across the pools of data to establish
trends or contrast values for the identified relationships. In Example 4.1, the standard deviations are almost
all larger than the mean values, indicating that the count distribution has a long tail. More traffic values
are lower than the mean than higher, but the higher ones go quite high.

Interpreting the results involves examining the statistics given and applying what insight the analyst can
provide. Consider a variety of explanations for the behavior. If necessary, refine and iterate the analysis to
support or deny these explanations.

Generally, consider benign interpretations for behavior first, and only reject them if appropriate contradiction
can be found. In Example 4.1, the benign interpretation is that much of the traffic across these ports cannot
be readily differentiated; the main difference is which port it was sent on. An alternative interpretation is
that the large bulk of relatively low-byte traffic and the long tail of relatively high-byte traffic should be
examined separately to determine if suspicious traffic is present. This would involve iterating the analysis
to partition and separately examine low-byte and high-byte traffic for each port.

4.1.5 “Gotchas” for Multi-path Analysis

While it is quite possible to explore combinations of relationships within a given analysis, some care is
needed. As the number of relationships being combined increases, so does both the size and the complexity
of the results. This raises several concerns in performing combined multi-path analyses:

• Interpreting the results can require a lot of rather tedious effort for limited results. It is likely that
the number of data combinations that need to be evaluated will yield many cases that are not of
interest to the investigation, but may still need to be explored either for completeness or to be sure

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

56 CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

that all interesting cases are dealt with. If the combination of data relationships is not carefully chosen,
analysts may spend a lot of time without much compensating insight.

• The amount of data required to fully explore combinations of relationships can be extensive, which
will both slow the gathering step and require iteration across cases. Finding appropriate data to cover
combinations can involve effort—for example, establishing that “normal” network activity does not
itself contain malicious activity!

• As the number of combinations involved in analysis increases, so does the possibility that observed
differences may occur by coincidence. This can lead to unintended “cooking” of the results, focusing
on combinations that confirm the analysts’ preconceptions, rather than on a more holistic view of the
behaviors.

Based on these concerns, we recommend that you keep your multi-path analyses as simple as possible,
given the behaviors being studied. It may well be preferable to perform a series of simpler analyses rather
than a single, complex, multi-factor analysis—both more manageable in action and producing more easily
understood results.

4.2 Multi-path Analysis: Analytics

The SiLK commands, parameters, and examples described in this chapter can be employed with any analysis
method. However, they involve more complex uses of the SiLK tool suite than the commands described in
Chapter 2. Multi-path analyses frequently make use of these commands to construct analytics and store
intermediate and final results.

4.2.1 Complex Filtering With rwfilter

Complex filtering combines operating system pipes with rwfilter output parameters to perform large-scale,
multi-path, flow analyses. It is an important concept to adopt and incorporate into the multi-path analysis
process discussed in Section 4.1 and the overall SiLK workflow described in Section 1.5.

The conditional steps, refinement, and iteration of multi-path analysis usually require multiple rwfilter
queries. Wide time periods, large network ranges, and increasing network traffic are a few examples that
complicate this process. Unfortunately, the increasing rwfilter directory and file searches needed to support
such analyses also impact disk input/output (I/O) performance and latency.

To address these trade-offs, rwfilter provides three output parameters to optimize repository queries and
classify traffic behavior.

• --pass-destination writes flow records that pass all partitioning criteria to a path.

• --fail-destination writes flow records that fail any partitioning criteria to an alternate path.

• --all-destination writes all partitioned flow records to a third path.

These parameters are so commonly used that the remainder of this handbook will refer to them by their
common abbreviations (--pass, --fail, and --all). All three can be combined and repeated within the
same rwfilter statement. They can write network flow records to a newly-created file, a named pipe,
standard output (stdout), or standard error (stderr).

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

4.2. MULTI-PATH ANALYSIS: ANALYTICS 57

Multi-level Filtering With Pipes and Manifolds

A manifold combines several rwfilter commands to categorize traffic. By using operating system pipes
and switches with the --pass and --fail parameters, analysis can chain multiple rwfilter statements
together to reduce an initial broad data pull into smaller sets of results that isolate traffic of interest for
further analysis. After examining your manifold’s initial categorization of network flow data, you can adjust
the parameters of subsequent rwfilter calls to re-categorize data and find additional records of interest.

Manifolds perform complex traffic categorization by filtering data into overlapping and non-overlapping
traffic categories.

Manifolds with Non-overlapping Traffic. If the categories are non-overlapping, the manifold uses the
--pass parameter to write matching traffic to a file, as shown in Figure 4.2. The shaded arrows indicate
data flows from the SiLK repository to the series of rwfilter commands that comprise the manifold. Each
rwfilter command uses the --pass parameter to save the records that meet the filtering criteria to a file. It
also uses the --fail parameter to transfer the remaining traffic to the next rwfilter command for further
filtering. The final rwfilter command in Figure 4.2 saves the last category and uses the --fail parameter
to discard the remaining uncategorized traffic. (Alternatively, the manifold could save the discarded traffic
to a file.)

Figure 4.2: Diagram of a Simple, Non-overlapping Manifold

Manifolds with Overlapping Traffic. If the categories are overlapping, the manifold again uses the
--pass parameter to filter traffic in a category. But it would use the --all parameter as shown in Figure
4.3 to transfer all traffic to the next call to rwfilter. With overlapping categories, the manifold is not done
with a record just because it assigned a first category to it. The record may belong to other categories as
well, which would be identified by subsequent calls to rwfilter.

Figure 4.3: Diagram of a Complex, Overlapping Manifold

Figure 4.3 also shows how records can be passed to subsequent rwfilter calls via the --fail parameter.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

58 CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

Using successive rwfilter calls that combine the --pass, --fail, and --all parameters gives you a high
degree of control over how your network traffic is categorized for analysis.

Simple Manifold: Filtering Incoming Client and Server Traffic

In Example 4.2, we look for inbound flows from external servers and clients. The manifold sorts these flows
into two separate files. This is an example of a non-overlapping manifold, since incoming client and server
traffic have independent characteristics.

Example 4.2: Simple Manifold to Select Inbound Client and Server Flows
<1>$ rwfilter --start =2015/06/17 T15 --sensor =S5 --type=in \

--protocol =6 --flags - initial =SA/SA --packets =3- \
--fail= stdout --pass=inbound - clients .rw \

| rwfilter stdin --flags - initial =S/SA --packets =3- \
--pass=inbound - servers .rw

• The first rwfilter command in the manifold filters out all incoming client traffic.

– The --start and --sensor selection parameters specify the time period and network sensor of
interest.

– --protocol=6 selects Transmission Control Protocol (TCP) traffic.
– --flags-initial=SA/SA selects traffic where TCP flags on the first packet of the flow record are

set to ”SYN/ACK”, indicating that the source IP address is a server.
– --packets=3- selects flow records with three or more packets to identify TCP sockets.
– --pass=incoming-client.rw stores flow records that match the filtering criteria to the file

incoming-client.rw.
– --fail=stdout sends all records that do not match the filtering criteria to the second part of the

manifold.

Hint: Figure 4.4 shows the TCP flags for client and server communication. The client first
sends a SYN flag to initiate the TCP connection. The server responds with a SYN flag
to initiate its own TCP connection with the client and an ACK flag to acknowledge
the client’s request for a TCP connection. For more detailed information about TCP
flags, see Appendix A.5.2.

• The second rwfilter command in the manifold selects incoming server traffic.

– stdin tells the rwfilter command to process flow records from standard input (i.e., the output
from the previous rwfilter command).

– The command does not filter on Sensor, Type and Protocol. It looks at traffic that does not meet
those criteria.

– --flags-initial=S/SA selects traffic where TCP flags on the first packet of the flow record are
set to “SYN” with no “ACK,” indicating the source IP address is a client.

– --packets=3- selects flow records with three or more packets, which is the minimum number
required to open a TCP socket.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

4.2. MULTI-PATH ANALYSIS: ANALYTICS 59

Figure 4.4: Client and Server TCP flags

– --pass=incoming-server.rw stores flow records that match the filtering criteria to the file
incoming-server.rw

– Notice that the second rwfilter command did not specify a --fail destination. We are only
interested in the records that pass the filtering criteria in the second part of the manifold, so there
is no need to save the ones that fail.

Expanding the Simple Manifold: Filtering for Incoming and Outgoing Client and Server Traffic

To expand the simple manifold in the previous example to partition both inbound and outbound traffic, we
make three modifications as shown in Example 4.3.

1. Prefilter traffic to ignore flows that we know are unwanted. These consist of non-TCP flow types other
than in and out plus flows with fewer than three packets.

2. Filter traffic from internal and outgoing servers and clients into files.

3. Store the leftover flows in a file for later use.

• The first rwfilter command in the manifold filters out unwanted traffic.

--start and --sensor selection specify the time period and network sensor of interest.
--protocol=6 selects Transmission Control Protocol (TCP) traffic.
--packets=3- selects flow records with three or more packets indicating TCP sockets.
--pass=stdout sends all records that match the filtering criteria to the second part of the mani-
fold. Records that do not match are ignored.

• The second rwfilter command in the manifold filters out inbound server traffic.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

60 CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

Example 4.3: Complex Manifold to Select Inbound Client and Server Flows
<1>$ rwfilter --start =2015/06/17 T15 --sensor =S5 --type=in ,out \

--protocol =6 --packets =3- --pass= stdout \
| rwfilter stdin --type=in --flags - initial =SA/SA \

--pass=incoming - server .raw --fail= stdout \
| rwfilter stdin --type=in --flags - initial =S/SA \

--pass=incoming - client .raw --fail= stdout \
| rwfilter stdin --type=out --flags - initial =SA/SA \

--pass=outgoing - server .raw --fail= stdout \
| rwfilter stdin --type=out --flags - initial =S/SA \

--pass=outgoing - client .raw --fail= leftover .raw
<2>$ for f in incoming - server .raw incoming - client .raw \

outgoing - server .raw outgoing - client .raw leftover .raw; \
do echo -n "$f: "; \
rwfileinfo --fields =count - records $f; \
done

incoming - server .raw: incoming - server .raw:
count - records 1001

incoming - client .raw: incoming - client .raw:
count - records 41

outgoing - server .raw: outgoing - server .raw:
count - records 41

outgoing - client .raw: outgoing - client .raw:
count - records 1002

leftover .raw: leftover .raw:
count - records 2

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

4.2. MULTI-PATH ANALYSIS: ANALYTICS 61

stdin tells the rwfilter command to process flow records from standard input (i.e., the output
from the previous rwfilter command).
--type=in selects inbound traffic.
--flags-initial=SA/SA selects traffic where TCP flags on the first packet of the flow record are
set to ”SYN/ACK”, indicating that the source IP address is a server.
--pass=incoming-server.raw stores flow records that match the filtering criteria to the file
incoming-server.raw
--fail=stdout sends all records that do not match the filtering criteria to the next part of the
manifold.

• The third rwfilter command in the manifold filters out inbound client traffic.

--type=in selects inbound traffic.
--flags-initial=S/SA selects traffic where TCP flags on the first packet of the flow record are
set to ”SYN”, indicating the source IP address is a client.
--pass=outgoing-client.raw stores flow records that match the filtering criteria to the file
outgoing-client.raw.

• The fourth rwfilter command in the manifold filters out outbound server traffic.

--type=out selects outbound traffic.
--flags-initial=SA/SA selects traffic where TCP flags on the first packet of the flow record are
set to ”SYN/ACK”, indicating the source IP address is a server.
--pass=outgoing-server.raw stores flow records that match the filtering criteria to the file
outgoing-server.raw

• The fifth (and final) rwfilter command in the manifold filters out outbound client traffic.

--type=out selects outbound traffic.
--flags-initial=S/SA selects traffic where TCP flags on the first packet of the flow record are
set to ”SYN”, indicating the source IP address is a client.
--pass=outgoing-client.raw stores flow records that match the filtering criteria to the file
outgoing-client.raw
--fail=leftover.rw saves all records that do not match the filtering criteria in the file leftover.raw.

4.2.2 Finding Low-Packet Flows with rwfilter

The TCP state machine is complex (see Figure A.4). As described in Appendix A.5, legitimate service
requests require a minimum of three (more commonly four) packets in the flow from client to server. Flows
from server to client may only have two packets.

Several types of illegitimate traffic (such as port scans and responses to spoofed-address packets) involve
TCP flow records with low numbers of packets. Although legitimate TCP flow records occasionally have
low numbers of packets (such as continuations of previously timed-out flow records, contact attempts on
hosts that do not exist or are down, services that are not configured, and RST packets on already closed
connections), this behavior is relatively rare. Understanding where low-packet TCP network traffic comes

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

62 CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

from and when such flow records are collected most frequently can therefore help you to identify traffic that
is potentially illegitimate.

Example 4.4 shows how to use the manifold concept from Section 4.2.1 to find low-packet traffic. It illustrates
how rwfilter can be used to refine selections to isolate flow records of interest.

1. The first call to rwfilter in command 1 selects all incoming flow records in the repository on
6/17/2015, that describe TCP traffic, and that had one to three packets in the flow record. It is
the only rwfilter call that pulls data directly from the SiLK repository; as such, it is the only one
that uses selection parameters.

This call also uses a combination of partitioning parameters (--protocol and --packets) to isolate
low-packet TCP flow records from the selected time range. It uses the --pass switch twice: once to
save the selected records to the file /.Ex4-data/lowpacket.rw and once to direct the selected records
to standard output (stdout) for use by the next rwfilter command in the manifold.

The --print-statistics parameter saves information about the rwfilter call to the file temp-all.txt,
including the number of repository files retrieved by rwfilter, the total number of flow records, and
the number of records that passed or failed the filter.

2. The second call to rwfilter in command 1 uses --flags-all as a partitioning parameter to pull out
flow records of interest. It passes flow records that had the SYN flag set in any of their packets, but do
not have the ACK, RST, and FIN flags set in any of their packets. It fails those that did not show this
flag combination. It saves statistics to the file temp-syn.txt. Records that fail this filter are passed
to the next rwfilter call via the --fail=stdout parameter.

3. The third call to rwfilter extracts the flow records that have the RST flag set, but had the SYN and
FIN flags not set. It saves statistics to the file temp-rst.txt.

4. Command 2 displays the statistics information saved at each step in the manifold. We can see how
the succession of calls to rwfilter progressively refine the data, and how data passes from one filter
to the next.

Example 4.4: Extracting Low-Packet Flow Records
<1>$ rwfilter --start -date =2015/06/17 \

--type=in ,inweb --protocol =6 --packets =1-3 \
--print - statistics =temp -all.txt \
--pass =./ Ex4 -data/ lowpacket .rw --pass= stdout \

| rwfilter --flags -all=S/SARF \
--print - statistics =temp -syn.txt \
--pass =./ Ex4 -data/ synonly .rw --fail= stdout stdin \

| rwfilter --flags -all=R/SRF \
--print - statistics =temp -rst.txt \
--pass =./ Ex4 -data/reset.rw stdin

<2>$ cat temp -all.txt output /temp -syn.txt output /temp -rst.txt
Files 415. Read 9083613. Pass 906016. Fail 8177597.
Files 1. Read 906016. Pass 97279. Fail 808737.
Files 1. Read 808737. Pass 130145. Fail 678592.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

4.2. MULTI-PATH ANALYSIS: ANALYTICS 63

4.2.3 Time Binning, Options, and Thresholds With rwstats, rwuniq and rwcount

Approximating Flow Behavior Over Time

SiLK flow records do not contain information about the time distribution of packets and bytes during a flow.
Grouping packets into flow records results in a loss of timing information; specifically, it is not possible to
tell how the packets in a flow are distributed over time. Even at the sensor, the information about the time
distribution of packets in a flow is lost.

By default, SiLK distributes the packets and bytes equally across all the milliseconds in the flow’s duration.
This approximation works well for investigating overall trends in network behavior.

However, some types of analysis benefit from intentionally changing the time distribution of packets. For
example, incident analysis investigates behavior during specific time bands. Changing the time distribution
of packets and bytes (or load-scheme) emphasizes different flow characteristics of interest.

Analysts can impose a specific time distribution on rwcount by using the --load-scheme parameter.
rwcount can assign one of seven time distributions of packets and bytes in the flow to allocate the vol-
ume to time bins.

Figure 4.5 illustrates the allocation of flows, packets, and bytes to time bins under different load-schemes
(which are described more fully in Table C.12). The squares depict a fixed number of packets or bytes. The
partial squares are proportional to the complete squares. The wide, solidly filled rectangles depict entire
flows, along with their packets and bytes. They appear once in schemes 1, 2, and 3 (where one bin receives
the entire flow with its packets and bytes) and in every bin for scheme 5 (where every bin receives the entire
flow). The wide, hollow rectangles only appear in scheme 6 and represent whole flows with no packets or
bytes.

Figure 4.5: Allocating Flows, Packets and Bytes via rwcount Load-Schemes

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

64 CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

Using Thresholds to Profile a Slice of Flows

rwuniq allows you to set thresholds to segregate IP addresses by the number of flows, sizes of flows, and
other values. Recall that rwuniq reads SiLK flow records, groups them according to a key composed of
user-specified flow attributes, then computes summary values for each group (or bin), such as the sum of
the bytes fields for all records that match the key. Thresholding limits the output of rwuniq to bins where
the summary value meets user-specified minimum or maximum values.

The --bytes, --packets, and --flows parameters are all threshold operators for filtering. For example, to
show only the source IP addresses with 200 flow records or more, use the --flows=200- parameter as shown
in Example 4.5.

Example 4.5: Constraining Counts to a Threshold by using rwuniq --flows
<1>$ rwfilter --start -date =2015/06/17 T15 --type=in --protocol =0- \

--pass =./ Ex4 -data/ in_month .rw
<2>$ ls -l ./Ex4 -data/ in_month .rw
-rw -r--r--. 1 analyst analyst 7409538 Apr 25 17:22 ./Ex4 -data/ in_month .rw
<3>$ rwuniq ./Ex4 -data/ in_month .rw --field=sIP --value=Flows \

--flows =200 - \
| head -n 10

sIP| Records |
192.168.143.57| 481|
192.168.161.26| 443|

192.168.40.51| 254|
10.0.40.23| 5128|

192.168.165.83| 378|
192.168.40.25| 11951|

192.168.162.160| 401|
10.0.40.92| 1838|

192.168.143.162| 635|

In addition, rwuniq can count bytes and packets for a flow threshold through the bytes and packets values
in the --values parameter, as shown in Example 4.6. This example counts the byte and packet volumes for
all IP addresses that exceed a minimum flow threshold of 2000 records (--values=Bytes,Packets,Flows
--flows=2000-).

If a range (such as --flows=2000-) is not specified, the parameter simply adds the named count to the
list started by the --values parameter. We recommend using the --values parameter for this purpose.
--values provides greater control over the order in which the values are displayed than the other thresholding
parameters.

Hint: rwuniq provides three ways to specify ranges: with the low and high bounds separated
by a hyphen (e.g., 200–2000); with a low bound followed by a hyphen (e.g., 200–)
denoting that there is no upper bound; and with a low bound alone (e.g., 200). Unlike
rwfilter partitioning values, the last method denotes a range with no upper bound,
not just a single value. We do not recommend using this method because it
can lead to confusion.

If multiple threshold parameters are specified, rwuniq will print all records that meet all of the threshold
criteria, as shown in Example 4.7.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

4.2. MULTI-PATH ANALYSIS: ANALYTICS 65

Example 4.6: Setting Minimum Flow Thresholds with rwuniq --values
<1>$ rwfilter --start -date =2015/06/17 T15 --type=in --protocol =0- \

--pass =./ Ex4 -data/ in_month .rw
<2>$ ls -l ./Ex4 -data/ in_month .rw
-rw -r--r--. 1 analyst analyst 7409538 Apr 25 17:22 ./Ex4 -data/ in_month .rw
<3>$ rwuniq ./Ex4 -data/ in_month .rw --field=sIP \

--values =Bytes ,Packets ,Flows --flows =2000 - \
| head -n 10

sIP| Bytes| Packets | Records |
10.0.40.23| 9331109| 108622| 5128|

192.168.40.25| 6066944| 58819| 11951|
192.168.20.58| 4128957| 54314| 28189|

10.0.40.53| 64029248| 281180| 33917|
192.168.200.10| 6089612| 20535| 8816|

10.0.40.54| 6131060| 42785| 7075|
10.0.40.20| 36120528| 345466| 149284|
10.0.20.58| 4043680| 55644| 21253|
67.215.0.8| 1499433280| 6096359| 30549|

Example 4.7: Constraining Flow and Packet Counts with rwuniq --flows and --packets
<1>$ rwfilter --start -date =2015/06/17 T15 --type=in --protocol =0- \

--pass =./ Ex4 -data/ in_month .rw
<2>$ ls -l ./Ex4 -data/ in_month .rw
-rw -r--r--. 1 analyst analyst 7409538 Apr 25 17:23 ./Ex4 -data/ in_month .rw
<3>$ rwuniq ./Ex4 -data/ in_month .rw --field=sIP \

--values =Bytes ,Packets ,Flows --flows =2000 - \
--packets =100000 -

sIP| Bytes| Packets | Records |
10.0.40.23| 9331109| 108622| 5128|
10.0.40.53| 64029248| 281180| 33917|
10.0.40.20| 36120528| 345466| 149284|
67.215.0.8| 1499433280| 6096359| 30549|

192.168.40.20| 67729921| 283002| 106848|

Profiling Using Compound Keys

Profiling can also be done by counting and thresholding combinations of fields, in addition to the simple
counting shown previously. To use a compound key, specify it using a comma-separated list of values or
ranges in the rwuniq --fields parameter. Keys can be manipulated in the same way as with rwcut:
--fields=3,1 is a different key than --fields=1,3.

In Example 4.8, the --fields parameter is used to identify communication between clients and specific
services only when the number of flows for the key exceeds a threshold. It counts and thresholds incoming
traffic to identify those source IP addresses with the highest number of flow records that connect to specific
TCP ports (--fields=sIP,sPort).

Alternatively, you can use the rwstats command with compound keys to perform this analysis. In Exam-
ple 4.9, the --fields parameter is similarly used to count incoming traffic and identify the eleven source IP

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

66 CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

Example 4.8: Profiling IP addresses with rwuniq --fields
<1>$ rwfilter --start -date =2015/06/17 T15 --type=in --protocol =6 \

--pass =./ Ex4 -data/ in_month .rw
<2>$ ls -l ./Ex4 -data/ in_month .rw
-rw -r--r--. 1 gtsanders domain users 2059092 May 14 12:15 ./Ex4 -data/ in_month .rw
<3>$ rwuniq --fields =sIP ,sPort --value=Flows --flows =20- \

./Ex4 -data/ in_month .rw \
| head -n 11

sIP|sPort| Records |
192.168.143.162| 591| 26|
192.168.111.131| 591| 28|
192.168.122.141| 591| 26|

10.0.40.20| 88| 476|
10.0.40.20| 139| 1189|

192.168.164.119| 591| 26|
192.168.40.20|60309| 20|
192.168.40.25| 445| 120|

192.168.165.216| 591| 26|
192.168.40.20| 135| 265|

addresses with the highest number of flow records that connect to specific TCP ports (--fields=sIP,sPort).
In addition to counting and displaying these records, rwstats computes their cumulative statistics. This
allows you to directly compare the amount of traffic carried by each source IP-port combination.

Isolating Behaviors of Interest

rwuniq can be used in conjunction with rwfilter to profile flow records for a variety of behaviors:

1. Use rwfilter to filter records for the behavior of interest. (To filter for multiple behaviors, set up a
manifold as described in Section 4.2.1.)

2. Use rwuniq to count the records that exhibit that behavior.

This can help you to understand the behavior of hosts that use or provide a variety of services. Example 4.10
shows how to generate data that compare hosts showing DNS (domain name system) and non-DNS behavior
among a group of flow records. We can find DNS servers by filtering the file in_month.rw (created in
Example 4.8) for hosts that carry traffic on port 53 with the UDP protocol (17).

1. Command 1 first isolates the set of hosts of interest by using rwfilter to filter records from in_month.
rw with UDP traffic on port 53 (--protocol=17 --aport=53). It then uses rwset to generate an IPset
(interest.set) from the records that pass the filter.

2. Command 2 uses interest.set to filter in_month.rw again to distinguish IP addresses with general
UDP traffic from the set of hosts that carry DNS traffic on port 53. It then uses rwuniq to count the
DNS flow records and sorts them by source address.
Although rwuniq will correctly sort the output rows by IP address without zero-padding, the upcoming
join command will not understand that the input is properly sorted without rwuniq first preparing
the addresses with the --ip-format=zero-padded parameter.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

4.2. MULTI-PATH ANALYSIS: ANALYTICS 67

Example 4.9: Profiling IP addresses with rwstats --fields
<1>$ rwfilter --start -date =2015/06/17 T15 --type=in --protocol =6 \

--pass =./ Ex4 -data/ in_month .rw
<2>$ ls -l ./Ex4 -data/ in_month .rw
-rw -r--r--. 1 analyst analyst 2059092 May 14 12:26 ./Ex4 -data/ in_month .rw
<3>$ rwstats --count =11 --fields =sIP ,sPort --value=Flows \

./Ex4 -data/ in_month .rw \
INPUT: 124356 Records for 11637 Bins and 124356 Total Records
OUTPUT : Top 11 Bins by Records

sIP|sPort| Records | % Records | cumul_ %|
10.0.40.53| 5723| 33103| 26.619544| 26.619544|
67.215.0.8|11009| 12479| 10.034900| 36.654444|
67.215.0.8|11007| 10714| 8.615588| 45.270031|
67.215.0.8| 135| 7181| 5.774550| 51.044582|
10.0.40.23| 8443| 5128| 4.123645| 55.168227|

192.168.40.20| 88| 3296| 2.650455| 57.818682|
10.0.40.20| 445| 1986| 1.597028| 59.415710|
10.0.40.20| 389| 1367| 1.099263| 60.514973|
10.0.40.20| 139| 1189| 0.956126| 61.471099|

192.168.70.10| 8082| 1077| 0.866062| 62.337161|
10.0.40.20|49158| 1071| 0.861237| 63.198398|

3. Command 3 counts the non-DNS flow records created with the --fail switch in Command 2 and sorts
them by source address.

4. Command 4 merges the two count files by source address and then sorts them by number of DNS
flows with the results shown. Hosts with high counts in both columns should be either workstations
or gateways. Hosts with high counts in DNS and low counts in non-DNS should be DNS servers.6

For more complex summaries of behavior, use the rwbag command and its related utilities as described in
Section 4.2.4.

4.2.4 Summarizing Network Traffic with Bags

IPsets contain lists of IP addresses. However, it’s often useful to associate a value with each address in an
IPset. For instance, you may want to associate the IP addresses that engage in web traffic with the volume
of flows, packets, or bytes of web traffic that each address carries. Bags are extended sets that contain these
types of key-value pairs.

Where IPsets record the presence or absence of key values, bags add the ability to count the number of
instances of a particular key value—that is, the number of bytes, the number of packets, or the number of
flow records associated with that key. Bags also allow the analyst to summarize traffic on characteristics
other than IP addresses—specifically on protocols and ports.7

Bags can be thought of as enhanced IPsets. Like IPsets, they are binary structures that can be manipulated
using a collection of tools. As a result, operations that are performed on IPsets have analogous bag operations,

6The full analysis to identify DNS servers is more complex and will not be dealt with in this handbook.
7PySiLK allows for even more general bag key values and count values. See the documentation PySiLK: SiLK in Python

for more information.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

68 CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

Example 4.10: Isolating DNS and Non-DNS Behavior with rwuniq
<1>$ rwfilter in_month .rw --protocol =17 --aport =53 --pass= stdout \
| rwset --sip -file= interest .set
<2>$ rwfilter in_month .rw --sipset = interest .set --protocol =17 \

--pass= stdout \
| rwfilter stdin --aport =53 --fail=not -dns.rw --pass= stdout \
| rwuniq --fields =sIP --no - titles --ip - format =zero - padded \

--sort - output --output -path=dns -saddr.txt
<3>$ rwuniq not -dns.rw --fields =sIP --no - titles \

--ip - format =zero - padded --sort - output \
--output -path=not -dns -saddr.txt

<4>$ echo ' sIP| DNS || not DNS|' \
; join -t'|' dns -saddr.txt not -dns -saddr.txt \
| sort -t'|' -nrk2 ,2 \
| head -n 5

sIP| DNS || not DNS|
010.000.040.020| 124652|| 14322|
192.168.040.020| 98128|| 797|
192.168.200.010| 7123|| 64|
192.168.040.025| 5188|| 5127|
192.168.165.216| 508|| 47|

such as addition (the equivalent to union). Analysts can also extract a cover set (the set of all IP addresses
in the bag) for use with rwfilter and the IPset tools.

Generating Bags from Network Flow Data

The rwbag command creates bags from raw network flow data, either directly output from the rwfilter
command or stored in a file. The key parameter specifies the network flow record field that serves as the
key for the bag. Examples of keys include source IP address (sIPv4, sIPv6), destination IP address (dIPv4,
dIPv6), source port (sPort), destination port (dport), protocol, packets, and bytes.

The counter parameter sums up the number of records, flows, packets, or bytes for the flow record field
specified by key. outputfile is the name of the file where the bag is stored, such as mybag.bag. Bags are stored
in binary format to make analysis tasks faster and more efficient. Use the rwbagcat command to display
the contents of a bag.

Example 4.11 shows an example of how to use rwbag in conjunction with rwfilter. You may specify
multiple --bag-file parameters when you issue the rwbag command.

Example 4.11: Generating Bags with rwbag
<1>$ rwfilter --type=in ,inweb --start -date =2015/06/18 T12 \

--protocol =6 --pass= stdout \
| rwbag --sip - packets =x.bag --dip -flows=y.bag
<2>$ file x.bag y.bag
x.bag: data
y.bag: data

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

4.2. MULTI-PATH ANALYSIS: ANALYTICS 69

See Appendix C.18 for more information about the rwbag command. To view a complete list of command
options, type rwbag --help at the command line.

Summarizing Network Traffic with Bags

To show how useful bags can be, we return to the task mentioned earlier in this section: analyzing outgoing
web traffic. We want to find out which IP addresses engage in web traffic and will narrow our study to
outgoing TCP flows on ports 80 and 443. We can find these IP addresses by using the rwfilter and rwuniq
commands as shown in Example 4.12.

Example 4.12: Summarizing Network Traffic with rwuniq
<1>$ rwfilter --start -date =2015/06/17 --sensors =S1 --type= outweb \

--protocol =6 --sport =80 ,443 --packets =3- --pass= stdout \
| rwuniq --fields =sip --values =bytes

sIP| Bytes|
192.168.40.24| 877782|
192.168.20.59| 1392516|
192.168.40.91| 124548|
192.168.40.92| 124548|

This provides us with addresses and byte counts in text format. However, we would like to use this informa-
tion during further analysis with SiLK—for example, as an IPset with the addresses and some way to store
the number of bytes for each address. To store such a list, we need to create a bag with the rwbag command
as shown in Example 4.13. We want the key to be the IP address and the value to be the number of bytes
of outbound web traffic.

Example 4.13: Summarizing Network Traffic with Bags
<1>$ rwfilter --start -date =2015/06/17 --sensors =S1 --type= outweb \

--protocol =6 --sport =80 ,443 --packets =3- --pass= stdout \
| rwbag --bag -file=sipv4 ,sum -bytes , outgoingweb .bag \
<2>$ file outgoingweb .bag
outgoingweb .bag: SiLK , RWBAG v3 , Little Endian , LZO compression
<3>$ rwbagcat outgoingweb .bag

192.168.20.59| 1392516|
192.168.40.24| 877782|
192.168.40.91| 124548|
192.168.40.92| 124548|

The file outgoingweb.bag contains the list of IP addresses that carry outgoing web traffic and the volume
of outbound traffic in bytes that flows through each address. Unlike the output of the rwuniq command,
this information is stored in a single binary file, as shown in 4.13. We can now use this file during further
analysis of outbound web traffic.

Generating Bags From IP Sets or Text: A Scanning Example

You can create a bag from an existing set or a text file by using the rwbagbuild tool. This allows you to
associate counts with items in a set or file. It also gives you more flexibility with creating bags than the

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

70 CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

rwbag command does. For instance, you can use rwbagbuild to count something other than bytes, packets,
or flow records for an address.

rwbagbuild takes either an IPset (as specified in --set-input) or a text file (as specified in --bag-input),
but not both.

• For IPset input, the --default-count parameter specifies the count value for each set element in the
output bag. If no --default-count value is provided, the count will be set to one.

• For text-file input, the lines of the file are expected to consist of a key value, a delimiter (by default the
vertical bar), and a count value. Keys can be IP addresses (including canonical forms, CIDR blocks,
and SiLK address wildcards) or unsigned integers.

See Appendix C.19 for more information about the rwbagbuild command. To view a complete list of
command options, type rwbagbuild --help at the command line.

Example 4.14 shows how to use the rwbagbuild command in conjunction with the rwscan command to
create a bag that contains IP addresses that show evidence of scanning activity and the number of flows
associated with them.

rwscan analyzes SiLK flow records for signs of network scanning—when an external host gathers information
about a network during the reconnaissance phase of an attack. It takes sorted network flow records as input
and outputs in columnar text format any IP addresses that show signs of network scanning. This is useful
for identifying hosts that are conducting reconnaissance and the ports and protocols of interest to them.
Pairing this command with rwbagbuild allows you to create a bag that stores scanner IP addresses and
attributes of their activity for further investigation.

1. Command 1 uses rwfilter to pull inbound TCP traffic (--proto=6 --type=in,inweb).

2. The rwscan command requires input to be pre-sorted by source IP address, protocol, and destination
IP address. Command 1 therefore calls rwsort --fields=sip,proto,dip to sort the selected records.

3. Command 1 then uses rwscan to search for IP addresses that show signs of scanning activity. It pipes
the output through the operating system cut command to remove the delimiters (|) in the rwscan
output.

4. Finally, command 1 use the rwbagbuild command to create a bag (scanners.bag) from the rwscan
output. It uses the scanning IP addresses as the key and the number of flow records as the associated
count for the bag entries.

5. Commands 2 and 3 display the list of scanners created in command 1. Command 2 uses the rwbagcat
command to create a text file that contains the contents of scanners.bag. (rwbagcat is described
later in this section.) Command 3 shows that file.

Specifying IP addresses with rwbagbuild. The rwbagbuild command does not support mixed input
of IP addresses and integer values, since there is no way to specify whether the number represents an IPv4
address or an IPv6 address. (For example, does 1 represent ::FFFF.0.0.0.1 or ::1?) rwbagbuild also does not
support symbol values in its input, so some types commonly expressed as symbols (TCP flags, attributes)
must be translated into an integer form.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

4.2. MULTI-PATH ANALYSIS: ANALYTICS 71

Example 4.14: Creating a Bag of Network Scanners with rwbagbuild and rwscan
<1>$ rwfilter --start -date =2015/06/02 --end -date =2015/06/18 \

--proto =6 --type=in ,inweb --pass= stdout \
| rwsort --fields =sip ,proto ,dip \
| rwscan --scan -model =2 --output -path= stdout --no -title \
| cut -f1 ,5 -d'|' \
| rwbagbuild --bag -input=stdin --key -type=sIPv4 \

--counter -type= records >scanners .bag
<2>$ echo 'Scanner | Flows|' >scanners .txt \
; rwbagcat scanners .bag >>scanners .txt
<3>$ cat scanners .txt
Scanner | Flows|

192.168.181.8| 45428|

Similarly, rwbagbuild does not support formatted time strings. Times must be expressed as unsigned integer
seconds since UNIX epoch. If the delimiter character is present in the input data, it must be followed by
a count. If the --default-count parameter is used, its argument will override any counts in the text-file
input; otherwise the value in the file will be used. If no delimiter is present, either the --default-count
value will be used or the count will be set to 1 if no such parameter is present. If the key value cannot be
parsed or a line contains a delimiter but no count, rwbagbuild prints an error and exits.

Displaying the Contents of Bags

To view or summarize the contents of a bag, use the rwbagcat command. By default, it displays the contents
of a bag in sorted order as shown in Example 4.15.

Example 4.15: Viewing the Contents of a Bag with rwbagcat
<1>$ rwbagcat x.bag \

| head -n 5
192.0.2.198| 1281|
192.0.2.227| 12|
192.0.2.249| 90|

198.51.100.227| 3|
198.51.100.244| 101|

See Appendix C.20 for more information about the rwbagcat command. To view a complete list of command
options, type rwbagcat --help at the command line.

Thresholding Bags. In Example 4.15, the counts (the number of elements that match a particular IP
address) are printed per key. rwbagcat can also print values within ranges of both counts and keys, as shown
in Example 4.16.

These thresholding values can be used in any combination.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

72 CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

Example 4.16: Thresholding Results with rwbagcat --mincounter, --maxcounter, --minkey, and --maxkey
<1>$ rwbagcat --mincounter =100 --maxcounter =600 kerbserv .bag

10.0.40.20| 574|
67.215.0.5| 245|

<2>$ rwbagcat --minkey =10.0.0.0 --maxkey =192.168.255.255 \
kerbserv .bag

10.0.40.20| 574|
67.215.0.5| 245|

192.168.40.20| 4596|

Counting Keys in Bags. In addition to thresholding, rwbagcat can also reverse the index; that is,
instead of printing the number of counted elements per key, it can produce a count of the number of keys
matching each count using the --bin-ips parameter. This reverse count is shown in Example 4.17.

• In Command 1, it is shown using linear binning—one bin per value, with the counts showing how many
keys had that value.

• In Command 2, it is shown with binary binning—values collected by powers of two and with counts of
keys having summary volume values in those ranges.

• In Command 3, it is shown with decimal logarithmic binning—values collected in bins that provide
one bin per value below 100 and an even number of bins for each power of 10 above 100, arranged
logarithmically and displayed by midpoint. This option supports logarithmic graphing options.

Example 4.17: Displaying Unique IP Addresses per Value with rwbagcat --bin-ips
<1>$ rwbagcat --bin -ips dns.bag \
| head -n 5

1| 1|
3| 1|

14| 1|
18| 1|
30| 1|

<2>$ rwbagcat --bin -ips= binary dns.bag \
| head -n 5

2^00 to 2^01 -1| 1|
2^01 to 2^02 -1| 1|
2^03 to 2^04 -1| 1|
2^04 to 2^05 -1| 2|
2^09 to 2^10 -1| 3|

<3>$ rwbagcat --bin -ips= decimal dns.bag \
| head -n 5

1| 1|
3| 1|

14| 1|
18| 1|
30| 1|

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

4.2. MULTI-PATH ANALYSIS: ANALYTICS 73

The --bin-ips parameter can be particularly useful for distinguishing between sites that are hit by scans
(where only one or two packets may appear) from sites that are engaged in legitimate activity.

Formatting Key Values for Bags. If the bag is not keyed by IP address, the optional --key-format
parameter makes it much easier to read the output of rwbagcat. Example 4.18 shows the difference in
output for a sIP-keyed bag counting bytes, where the IP addresses are shown in decimal and hexadecimal
formats.

Example 4.18: Displaying Decimal and Hexadecimal Output with rwbagcat --key-format
<1>$ rwbagcat kerbserv .bag

10.0.40.20| 751382|
67.215.0.5| 395218|

192.168.40.20| 5510424|
<2>$ rwbagcat --key - format = decimal kerbserv .bag

167782420| 751382|
1138163717| 395218|
3232245780| 5510424|
<3>$ rwbagcat --key - format = hexadecimal kerbserv .bag

a002814 | 751382|
43 d70005 | 395218|
c0a82814 | 5510424|

Comparing the Contents of Bags

Once you have created bags to store key-value pairs, you can compare their contents to identify common
values and trends. For example, you may want to compare the traffic volumes associated with two groups of
IP addresses, each in a separate bag file. Use the rwbagtool --compare parameter to compare the contents
of two bags. It stores the output from this comparison in a new bag file.

For each key that appears in both bag files, the --compare option compares the value of the key’s associated
counter (i.e., the number of bytes, packets, or records summed up by the rwbag or rwbagbuild command)
in the first file to the value of the key’s counter in the second file.

• If the comparison is true, the key appears in the resulting bag file with a counter of 1.

• If the comparison is false, the key is not present in the output file.

• Keys that appear in only one of the input bag files are ignored.

rwbagtool --compare can perform the following comparisons:

lt Finds keys in the first bag file whose counters are less than those in the second bag file.

le Finds keys in the first bag file whose counters are less than or equal to those in the second bag file.

eq Finds keys whose counters are equal in both files.

ge Finds keys in the first bag file whose counters are greater than or equal to those in the second bag file.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

74 CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

gt Finds keys in the first bag file whose counters are greater than those in the second bag file.

See Appendix C.21 for more information about the rwbagtool command. To view a complete list of command
options, type rwbagtool --help at the command line.

4.2.5 Working with Bags and IPsets

Since bags are essentially enhanced IPsets, SiLK provides operations that enable you to create IPsets from
bags and compare the contents of bags with those of IPsets.

Extracting IPsets from Bags

Sometimes you will want to extract an IPset from a bag—for instance, if you used the rwbagtool --compare
command to compare traffic associated with IP addresses in two bags and want to analyze the set of IP
addresses in the new bag. Use the rwbagtool --coverset parameter to generate a cover set: the set of IP
addresses in a bag. The resulting IPset file can be used with rwfilter and manipulated with any of the
rwset commands.

Example 4.19 shows how to extract an IPset from a bag file. The rwsetcat command displays the contents
of the resulting set and the rwbagcat command displays the contents of the original bag—showing that the
IP addresses that comprise the set are identical to those in the bag.

Example 4.19: Creating an IP Set from a Bag with rwbagtool --coverset
<1>$ rwbagtool outgoingweb .bag --coverset \

--output -path= outgoingweb .set
<2>$ rwsetcat outgoingweb .set \
| head -n 3
192.168.20.59
192.168.40.24
192.168.40.91
<3>$ rwbagcat outgoingweb .bag \
| head -n 3

192.168.20.59| 1392516|
192.168.40.24| 877782|
192.168.40.91| 124548|

Hint: Be careful of bag contents when using rwbagtool --coverset. Since rwbagtool does
not limit operations by the type of keys contained within a bag, the --coverset pa-
rameter will interpret the keys as IP addresses even if they are actually protocol or
port keys. This will lead to confusion and analysis errors!

Intersecting Bags and IPsets

You may want to find out whether the IP addresses in an IPset are also contained in a bag. You may also
want to limit the contents of a bag to a specific group of IP addresses—for instance, those on a specific
subnet.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

4.2. MULTI-PATH ANALYSIS: ANALYTICS 75

The rwbagtool --intersect and --complement-intersect parameters are used to intersect an IPset with
a bag. Example 4.20 shows how to use these parameters to extract a specific subnet.

Example 4.20: Using rwbagtool --intersect to Extract a Subnet
<1>$ echo '10.0.20.x' >f.set.txt
<2>$ rwsetbuild f.set.txt f.set
<3>$ rwbagtool x.bag --intersect =f.set --output -path=xf.bag
<4>$ rwbagcat x.bag

10.0.20.58| 522|
10.0.20.59| 1652|

67.215.0.55| 88|
117.34.28.84| 12|

155.6.3.10| 30|
155.6.4.10| 30|

192.168.200.10| 3913|
<5>$ rwbagcat xf.bag

10.0.20.58| 522|
10.0.20.59| 1652|

4.2.6 Masking IP Addresses

When working with IP addresses and utilities such as rwuniq and rwstats, you may want to analyze activity
across networks rather than individual IP addresses. For example, you may wish to examine all of the activity
originating from the /24s constituting the enterprise network rather than generating an individual entry for
each address. To perform this type of analysis, use the rwnetmask command to reduce IP addresses to
prefix values of a parameterized length. See Appendix C.9 for more information about rwnetmask or type
rwnetmask --help at the command line.

The query in Example 4.21 is followed by an rwnetmask call to retain only the first 24 bits (three octets) of
source IPv4 addresses, as shown by the rwcut output.

Example 4.21: Abstracting Source IPv4 addresses with rwnetmask
<1>$ rwfilter --type=out , outweb --start -date =2015/06/02 \

--end -date =2015/06/18 --sensors =S0 ,S1 --protocol =6 \
--max -pass - records =3 --pass= stdout \

| rwnetmask --4sip -prefix - length =24 --4dip -prefix - length =24 \
| rwcut --fields =1-5

sIP| dIP|sPort|dPort|pro|
10.0.40.0| 192.168.124.0| 1065| 591| 6|
10.0.40.0| 192.168.166.0| 1066| 591| 6|
10.0.40.0| 192.168.40.0|58083| 88| 6|

As Example 4.21 shows, rwnetmask replaces the last 8 bits8 of the source and destination IP addresses with
zero, so all IP addresses in the 10.0.40/24 block (for example) will be masked to produce the same IP address.

832 bits total for an IPv4 address minus the 24 bits specified in the command for the prefix length leaves 8 bits to be masked.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

76 CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

This replaces both source and destination IP addresses with zero. With rwnetmask, an analyst can use any
of the standard SiLK utilities on networks in the same way the analyst would use the utilities on individual
IP addresses.

4.2.7 Working With IPsets

Iterative multi-path analyses commonly result in multiple SiLK IPset files. These files are usually named
to describe their association with a specific aspect of analysis, such as byte thresholds as discussed in
Section 2.2.8. As analyses progress, however, it is necessary to understand how IPsets compare and contrast.
rwsetbuild, rwsettool, and rwsetmember are three important SiLK IPset tools that are often used together
to identify network infrastructure and traffic flow.

Creating IPsets from Text Files

rwsetbuild creates binary IPsets from text input files. It can be used to build reference sets to start an
analysis, as previously discussed in Section 2.2.8. See Appendix C.17 for a command summary or type
rwsetbuild --help at the command line.

Example 4.22 shows how to build an IPset of the FCCX-15 internal network reference from the ipblocks
statements in the sensors.conf configuration file. Command 1 displays the first five lines of the monitored_
nets.set.txt textual input file. Command 2 shows the use of the rwsetbuild to build the binary IPset
from text. Finally, command 3 shows the file command to verify the monitored_nets.set filetype.

Example 4.22: Generating a Monitored Address Space IPset with rwsetbuild
<1>$ head -n 5 monitored_nets .set.txt
Text file of monitored networks
Build from sensor .conf ipblocks
10.0.10.0/24
10.0.20.0/24
10.0.30.0/24
<2>$ rwsetbuild monitored_nets .set.txt monitored_nets .set
<3>$ file monitored_nets .set
monitored_nets .set: SiLK , IPSET v2 , Little Endian , LZO compression

Example 4.23 shows a similar approach to build an IPset of the broadcast address space with rwsetbuild.

Example 4.23: Generating a Broadcast Address Space IPset with rwsetbuild
<1>$ echo 255.255.255.255 >broadcast .set.txt
<2>$ rwsetbuild broadcast .set.txt broadcast .set
<3>$ file broadcast .set
broadcast .set: SiLK , IPSET v2 , Little Endian , LZO compression

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

4.2. MULTI-PATH ANALYSIS: ANALYTICS 77

Manipulating IPsets: DNS Server Example

Once you have constructed SiLK IPsets, use the rwsettool command for manipulating them. It provides
common algebraic set operations for arbitrary numbers of IPset files. See Appendix C.16 for a summary of
its syntax and most of its parameters or type rwsettool --help at the command line.

Example 4.24 shows an example of how to combine two sets to create a comprehensive IPset of the FCCX-
15 internal network. It uses the rwsettool --union operation to combine both input set files, resulting
in a summary set file, internal_nets.set. This file represents the FCCX-15 internal network addresses,
including IP broadcasts that should not route to public IP space.

Example 4.24: Performing an IPset Union with rwsettool
<1>$ rwsettool --union monitored_nets .set broadcast .set \

>internal_nets .set

Analysts should determine the time period required for an analysis after creating reference sets. Exam-
ple 4.25 shows how to use rwsiteinfo with the --fields=repo-start-date,repo-end-date parameter to
determine the full time range of FCCX-15 data: 2015/06/02T13:00:00 to 2015/06/18T18:00:00.

Example 4.25: Displaying Repository Dates with rwsiteinfo
<1>$ rwsiteinfo --fields =repo -start -date ,repo -end -date

Start -Date| End -Date|
2015/06/02 T13 :00:00|2015/06/18 T18 :00:00|

The dates identified in Example 4.25 are then used as input to the rwfilter command to inventory
all out type Domain Name System (DNS) servers, as shown in Example 4.26. Command 1 shows how
to use rwfilter to query the entire FCCX-15 repository for DNS servers, which carry out type traffic
on port 53 (--dport=53) with the UDP protocol (--protocol=17). It saves those IP addresses to the
dns_servers_out.set file. Command 2 shows that there were outbound requests to 22 DNS servers on
port 53/UDP during the period 2015/06/02 to 2015/06/18.

Example 4.26: Counting Outbound DNS Servers with rwset
<1>$ rwfilter --start -date =2015/06/02 --end -date =2015/06/18 \

--protocol =17 --type=out --dport =53 --pass= stdout \
| rwset --dip -file= dns_servers_out .set
<2>$ rwsetcat --count dns_servers_out .set
22

Although Example 4.26 generated a comprehensive IPset of outbound DNS servers (dns_servers_out.set),
it contains all servers that carry out type traffic. This means that DNS servers that are contained within the
network perimeter may also reside in the resulting IPset. To differentiate between the internal and external
network, IP addresses of internal DNS servers must be removed from the set.

Example 4.27 shows how to use the rwsettool --difference option to remove the IP addresses of internal
DNS servers from the set of DNS servers that reside outside the network perimeter. Command 1 shows
how to create the external_dns_servers.set set file by finding the difference between the DNS servers

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

78 CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

contained in dns_servers_out.set, but not contained in internal_nets.set. Command 2 shows a total
of 16 DNS servers that reside external to the network in the FCCX-15 data.

Example 4.27: Finding IPset Differences with rwsettool
<1>$ rwsettool --difference dns_servers_out .set \

internal_nets .set >external_dns_servers .set
<2>$ rwsetcat --count external_dns_servers .set
16

The remaining internal DNS servers can be identified with the rwsettool --symmetric-difference option.
A symmetric difference is the elements of two sets that are members of either set, but not members of both.
Example 4.28 shows how the internal_dns_server.set set file is generated from a symmetric difference of
the external_dns_servers.set and dns_servers_out.set files, finding a total of 6 internal DNS servers.

Example 4.28: Finding IPset Symmetric Difference with rwsettool
<1>$ rwsettool --symmetric - difference external_dns_servers .set \

dns_servers_out .set >internal_dns_servers .set
<2>$ rwsetcat --count internal_dns_servers .set
6

Using Set Membership to Understand Traffic Flow

Once DNS server infrastructure is identified, multi-path analyses may also require identifying traffic flow
to specific DNS servers. Use the rwsetmember command to identify if an IP address or pattern is con-
tained within one or more IPset files. This command shows how network traffic flows through a network
infrastructure.

rwsetmember begins by building per-sensor IPset inventories of outbound traffic to DNS servers, as shown
in Example 4.29.

Command 1 shows how to use rwsiteinfo to generate a list of sensors for the FCCX-15 dataset. This list of
sensors is then used in commands 2-3 of the dns_servers_by_sensor.sh script to loop through each sensor
name and build an IPset of the DNS servers that are monitored by each sensor.

After creating the per-sensor DNS server IPsets, we can use the rwsetmember command as shown in Exam-
ple 4.30 to identify sensors that monitor specific external DNS servers.

• Command 1 shows how to use rwsetmember to identify the sensors that monitor 8.8.x.x DNS servers.
The results indicate that sensors S0, S1, S2, S3, and S12 logged DNS requests to 8.8.x.x IP addresses.

• Command 2 shows how these sensors can be combined into a list with rwsiteinfo to display their
descriptions. The output from the rwsiteinfo command shows that DNS clients in the Div0Ext,
Div1Ext, Div0Int, Div1Int1, and Div1svcmonitored networks execute DNS queries to 8.8.x.x internet
servers.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

4.2. MULTI-PATH ANALYSIS: ANALYTICS 79

Example 4.29: Grouping Outbound DNS Servers by Sensor
<1>$ rwsiteinfo --fields = sensor :list

Sensor :list|
S0 ,S1 ,S2 ,S3 ,S4 ,S5 ,S6 ,S7 ,S8 ,S9 ,S10 ,S11 ,S12 ,S13 ,S14 ,S15 ,S16 ,S17 ,S18 ,S19 ,S20 ,S21|
<2>$ cat dns_servers_by_sensor .sh
SDATE ="2015/06/02"
EDATE ="2015/06/18"
SENSORS ="S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14"
SENSORS +=" S15 S16 S17 S18 S19 S20 S21"
for SENSOR in $SENSORS ; do

rwfilter --start -date= $SDATE --end -date= $EDATE --type=out \
--proto =17 --dport =53 --sensor = $SENSOR --pass= stdout \
| rwset --dip -file =" $SENSOR " _dns_servers_out .set

done
<3>$ sh dns_servers_by_sensor .sh

Example 4.30: Identifying DNS Traffic Flow
<1>$ rwsetmember 8.8.x.x S*. set
S0_dns_servers_out .set
S12_dns_servers_out .set
S1_dns_servers_out .set
S2_dns_servers_out .set
S3_dns_servers_out .set
<2>$ rwsiteinfo --fields =sensor ,describe - sensor \

--sensors =S0 ,S1 ,S2 ,S3 ,S12
Sensor |Sensor - Description |

S0| Div0Ext |
S1| Div1Ext |
S2| Div0Int |
S3| Div1Int1 |

S12| Div1svc |

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

80 CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

The rwsettool --intersection option can also be used to identify infrastructure that shares traffic flows.
This option intersects IP addresses that are members of two sets. Command 1 of Example 4.31 shows using
rwsettool with --intersection to identify the DNS servers that both the S0 and S1 sensors monitor.

Example 4.31: Identifying Shared DNS Monitoring
<1>$ rwsettool --intersect S0_dns_servers_out .set \

S1_dns_servers_out .set | rwsetcat
8.8.4.4
8.8.8.8
67.215.0.5
128.8.10.90
128.63.2.53
192.5.5.241
192.33.4.12
192.36.148.17
192.58.128.30
192.112.36.4
192.203.230.10
192.228.79.201
193.0.14.129
198.41.0.4
199.7.83.42
202.12.27.33

Displaying the Contents of IPsets

Use the rwsetcat command to view the contents of IPsets. It reads one or more set files, then displays the
IP addresses in each file or prints out statistics about the set in each file. See Appendix C.15 for a command
summary or type rwsetcat --help at the command line.

In Example 4.32, the call to rwsetcat prints out all the addresses in the set; IP addresses appear in ascending
order.

Example 4.32: Displaying the Contents of IP Sets with rwsetcat
<1>$ rwsetcat medtcp -dest.set | head -n 5
192.168.45.27
192.168.61.26

In addition to printing out IP addresses, rwsetcat can also perform counting and statistical reporting, as
shown in Example 4.33. These features are useful for describing the set without dumping out all the IP
addresses in the set. Since sets can have any number of addresses, counting with rwsetcat tends to be much
faster than counting via text tools such as wc.

• Command 1 shows how many IP addresses are in the IPset.

• Command 2 shows summary statistics and network structure for the addresses in the IPset.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

4.2. MULTI-PATH ANALYSIS: ANALYTICS 81

Example 4.33 also shows the wide variety of network information that can be displayed by using the
--network-structure parameter.

• In Command 3, there are no list-lengths and no summary-lengths. As a result, a default array of summary
lengths is supplied.

• In Command 4 there is a list-length, but no slash (/) introducing summary-lengths, so the netblock with
the specified prefix length is listed, but no summary is produced.

• In Command 5, a prefix length is supplied that is sufficiently large to list multiple netblocks.

• Command 6 shows two prefix lengths in list-lengths.

• Command 7 shows that a prefix length of zero (no network bits, so no choice of networks) treats the
entire address space as a single network and labels it TOTAL.

• Command 8 shows that summarization occurs not only for the summary-lengths but also for every prefix
length in list-lengths that is larger than the current list length.

• In Command 9, the slash introduces summary-lengths, but the array of summary lengths is empty; as a
result, the word “hosts” appears as if there will be summaries, but there aren’t any.

• In Command 10, the S replaces the slash and summary lengths, so default summary lengths are used.

• In Command 11, the list length is larger than the smallest default summary length, so that summary
length does not appear.

• In Command 12, H (host) is used for a list length.

• Command 13 shows that H is equivalent to 32 for IPv4.

Example 4.33: rwsetcat Options for Showing Structure
<1>$ rwsetcat medtcp -dest.set --count -ips
93
<2>$ rwsetcat medtcp -dest.set --print - statistics
Network Summary

minimumIP = 10.0.40.20
maximumIP = 192.168.166.233

93 hosts (/32s), 0.000002% of 2^32
2 occupied /8s, 0.781250% of 2^8
2 occupied /16s, 0.003052% of 2^16

20 occupied /24s, 0.000119% of 2^24
66 occupied /27s, 0.000049% of 2^27

<3>$ rwsetcat medtcp -dest.set --network - structure
TOTAL| 93 hosts in 2 /8s, 2 /16s, 20 /24s, and 66 /27s
<4>$ rwsetcat medtcp -dest.set --network - structure =4

0.0.0.0/4| 10
192.0.0.0/4| 83

<5>$ rwsetcat medtcp -dest.set --network - structure =18
10.0.0.0/18| 10

192.168.0.0/18| 15
192.168.64.0/18| 27

192.168.128.0/18| 41

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

82 CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

<6>$ rwsetcat medtcp -dest.set --network - structure =4 ,18
10.0.0.0/18 | 10

0.0.0.0/4 | 10
192.168.0.0/18 | 15
192.168.64.0/18 | 27
192.168.128.0/18 | 41

192.0.0.0/4 | 83
<7>$ rwsetcat medtcp -dest.set --network - structure =0 ,18

10.0.0.0/18 | 10
192.168.0.0/18 | 15
192.168.64.0/18 | 27
192.168.128.0/18 | 41

TOTAL | 93
<8>$ rwsetcat medtcp -dest.set --network - structure =4 ,18/24

10.0.0.0/18 | 10 hosts in 2 /24s
0.0.0.0/4 | 10 hosts in 1 /18 and 2 /24s

192.168.0.0/18 | 15 hosts in 3 /24s
192.168.64.0/18 | 27 hosts in 6 /24s
192.168.128.0/18 | 41 hosts in 9 /24s

192.0.0.0/4 | 83 hosts in 3 /18s and 18 /24s
<9>$ rwsetcat medtcp -dest.set --network - structure =4/

0.0.0.0/4| 10 hosts
192.0.0.0/4| 83 hosts

<10>$ rwsetcat medtcp -dest.set --network - structure =4S
0.0.0.0/4| 10 hosts in 1 /8, 1 /16, 2 /24s, and 4 /27s

192.0.0.0/4| 83 hosts in 1 /8, 1 /16, 18 /24s, and 62 /27s
<11>$ rwsetcat medtcp -dest.set --network - structure =12S

10.0.0.0/12| 10 hosts in 1 /16, 2 /24s, and 4 /27s
192.160.0.0/12| 83 hosts in 1 /16, 18 /24s, and 62 /27s

<12>$ rwsetcat medtcp -dest.set --network - structure =H \
| head -n 5

10.0.40.20|
10.0.40.23|
10.0.40.53|
10.0.40.83|
10.0.50.11|

<13>$ rwsetcat medtcp -dest.set --network - structure =32 \
| head -n 5

10.0.40.20|
10.0.40.23|
10.0.40.53|
10.0.40.83|
10.0.50.11|

4.2.8 Indicating Flow Relationships

A useful step in a multi-path analysis is to identify a set of flow records that have common attributes—for
instance, records that are part of the same TCP session. Use rwgroup and rwmatch to label a set of flow
records that share attributes. This identifier, or group ID, is stored in the next-hop IP (nhIP) field. It can
be manipulated as an IP address (that is, either by directly specifying a group ID or by using IPsets). The
two tools generate group IDs in different ways.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

4.2. MULTI-PATH ANALYSIS: ANALYTICS 83

• rwgroup scans a file of flow records and groups records with common attributes, such as source or
destination IP address pairs.

• rwmatch groups records of different types (typically, incoming and outgoing types), creating a file
containing groups that represent TCP sessions or groups that represent other behavior.

Hint: To improve scalability, the grouping tools require the data they process to first be
sorted using rwsort. The sorted data must be sorted on the criteria fields: in the case
of rwgroup, the ID field and delta fields; in the case of rwmatch, start time and the
fields specified in the --relate parameter(s).

Labeling Flow Records Based on Common Attributes

The rwgroup command groups flow records that have common field values. Grouped records can be out-
put separately (with each record in the group having a common ID) or summarized by a single record.
Applications of rwgroup include the following:

• grouping together all flow records for a long-lived session: By specifying that records are grouped
together by their port numbers and IP addresses, an analyst can assign a common ID to all the flow
records making up a long-lived session.

• reconstructing web sessions: Due to diversified hosting and caching services such as Akamai®, a single
webpage on a commercial website is usually hosted on multiple servers. For example, the images may be
on one server, the HTML text on a second server, advertising images on a third server, and multimedia
on a fourth server. An analyst can use rwgroup to tag web traffic flow records from a single user that
are closely related in time and then use that information to identify individual webpage fetches.

• counting conversations: An analyst can group all the communications between two IP addresses to-
gether and see how much data was transferred between both sites regardless of port numbers. This is
particularly useful when one site is using a large number of ephemeral ports.

See Appendix C.26 for a command summary or type rwgroup --help at the command line.

Flow records are grouped when the fields specified by --id-fields are identical and the field specified by
--delta-field matches within a value less than or equal to the value specified by --delta-value.

Creating a group is a two-step process:

1. Sort the records using rwsort as described in Section 2.2.7. rwgroup requires input records to be
sorted by the fields specified in --id-fields and --delta-field.

2. Run rwgroup to create a group that matches the grouping criteria specified by --id-fields, --delta-field,and
--delta-value. Records in the same group are assigned a common group ID.

rwgroup outputs a stream of flow records. Each record’s next-hop IP address field is set to the value of the
group ID.

Grouping Records By Session. The most basic use of rwgroup is to group together flow records that
constitute a single longer session, such as the components of a single FTP session (or, in the case of Exam-
ple 4.34, a Microsoft® Distributed File System Replication Service session). To do this, the example does
the following:

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

84 CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

1. Command 1 uses rwfilter to pull the desired flow records from the repository. It then uses the rwsort
command to sort these records by source and destination IP address, source and destination port, and
start time.

2. Command 2 uses rwgroup to group together flow records that have closely-related start times.

3. Command 3 uses the rwfilter and rwcut commands to display grouped records. It filters for records
with --next-hop-id=0.0.0.1,28 (the group IDs), then displays the source and destination IP ad-
dresses, source and destination ports, and the group ID (nhIP).

This creates a group of records that comprise a session.

Example 4.34: Grouping Flows of a Long Session with rwgroup
<1>$ rwfilter --type=in ,out --start -date =2015/06/02 \

--end -date =2015/06/18 --packets =4- --protocol =6 \
--bytes -per - packet =60- --duration =1000 - --pass= stdout \

| rwsort --fields =1,2,3,4, sTime --output -path= sorted .rw
<2>$ rwgroup sorted .rw --id - fields =1,2,3,4 --delta -field=sTime \

--delta -value =3600 --output -path= grouped .rw
<3>$ rwfilter grouped .rw --next -hop -id =0.0.0.1 ,28 --pass= stdout \
| rwcut --fields =1-4, nhIP

sIP| dIP|sPort|dPort| nhIP|
10.0.40.20| 192.168.40.20|55425| 5722| 0.0.0.1|
10.0.40.20| 192.168.40.20|55425| 5722| 0.0.0.1|
10.0.40.20| 192.168.40.20|55425| 5722| 0.0.0.1|

192.168.40.20| 10.0.40.20| 5722|55425| 0.0.0.28|
192.168.40.20| 10.0.40.20| 5722|55425| 0.0.0.28|
192.168.40.20| 10.0.40.20| 5722|55425| 0.0.0.28|

Thresholding Groups By Number of Records. By default, rwgroup outputs one flow record for every
flow record it receives as input. You can set a threshold for flow record output by using the --rec-threshold
parameter, as shown in Example 4.35. This parameter specifies that rwgroup only passes records that belong
to a group with at least as many records as given in --rec-threshold. All other records are dropped silently.

This allows you to filter out smaller groups of records. For instance, if you are only interested in grouping
significant amounts of traffic, you could drop groups with low flow counts. Example 4.35 shows how this
thresholding works. In the first case, there are several low-flow-count groups. When rwgroup is invoked with
--rec-threshold=4, these groups are discarded by rwgroup, while the groups with 4 or more flow records
are output.

Generating a Single Summary Record for a Group. rwgroup can also generate a single summary
record with the --summarize parameter. When this parameter is used, rwgroup only produces a single
record for each group. The summary record uses the first record in the group for its addressing information
(IP addresses, ports, and protocol). The total number of bytes and packets for the group is recorded in the
summary record’s corresponding fields, and the start and end times for the record will be the extrema for
that group.9

9This is only a quick version of condensing long flows—TCP flags, termination conditions, and application labeling may not
be properly reflected in the output.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

4.2. MULTI-PATH ANALYSIS: ANALYTICS 85

Example 4.35: Dropping Trivial Groups with rwgroup --rec-threshold
<1>$ rwgroup sorted .rw --id - fields =1,2,3,4 --delta -field=sTime \

--delta -value =3600 \
| rwcut --num -recs =10 --field =1-5, nhIP

sIP| dIP|sPort|dPort|pro| nhIP|
10.0.40.20| 192.168.40.20| 5722|60309| 6| 0.0.0.0|
10.0.40.20| 192.168.40.20|55425| 5722| 6| 0.0.0.1|
10.0.40.20| 192.168.40.20|55425| 5722| 6| 0.0.0.1|
10.0.40.20| 192.168.40.20|55425| 5722| 6| 0.0.0.1|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 0.0.0.2|

<2>$ rwgroup sorted .rw --id - fields =1,2,3,4 --delta -field=sTime \
--delta -value =3600 --rec - threshold =4 \

| rwcut --num -recs =10 --field =1-5, nhIP
sIP| dIP|sPort|dPort|pro| nhIP|

10.0.50.12| 192.168.40.100| 3088| 8005| 6| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 0.0.0.2|

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

86 CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

Example 4.36 shows how summarizing works: The 10 original records are reduced to two group summaries,
and the byte totals for those records are equal to the sum of the byte values of all the records in the group.

Example 4.36: Summarizing Groups with rwgroup --summarize
<1>$ rwgroup sorted .rw --id - fields =1,2,3,4 --delta -field=sTime \

--delta -value =3600 --rec - threshold =3 \
| rwcut --fields =1-5, bytes ,nhIP --num -recs =10

sIP| dIP|sPort|dPort|pro| bytes| nhIP|
10.0.40.20| 192.168.40.20|55425| 5722| 6| 5523| 0.0.0.1|
10.0.40.20| 192.168.40.20|55425| 5722| 6| 21084| 0.0.0.1|
10.0.40.20| 192.168.40.20|55425| 5722| 6| 11500| 0.0.0.1|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 977689| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 977689| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 977689| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 977689| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 977689| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 977689| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 959308| 0.0.0.2|

<2>$ rwgroup sorted .rw --id - fields =1,2,3,4 --delta -field=sTime \
--delta -value =3600 --rec - threshold =3 --summarize \

| rwcut --fields =1-5, bytes ,nhIP --num -recs =5
sIP| dIP|sPort|dPort|pro| bytes| nhIP|

10.0.40.20| 192.168.40.20|55425| 5722| 6| 38107| 0.0.0.1|
10.0.50.12| 192.168.40.100| 3088| 8005| 6| 46529266| 0.0.0.2|
10.0.50.12| 192.168.40.100| 3089| 8005| 6| 46726003| 0.0.0.3|
10.0.50.12| 192.168.40.100| 3090| 8005| 6| 46497279| 0.0.0.4|
10.0.50.12| 192.168.40.100| 3091| 8005| 6| 46448588| 0.0.0.5|

Grouping Records via IPsets. For any data file, calling rwgroup with the same --id-fields and
--delta-field values will result in the same group IDs being assigned to the same records. As a result, an
analyst can use rwgroup to manipulate groups of flow records where the group has a specific attribute. This
can be done by using rwgroup and IPsets, as shown in Example 4.37.

1. Command 1 uses rwfilter to filter for traffic with the TCP protocol (--protocol=6) and destination
ports 20 and 21 (--dport=20,21). It then calls rwsort to sorts the data and uses rwgroup to convert
the results into a file, out.rw, grouped as FTP communications between two sites. All TCP port 20
and 21 communications between two sites are part of the same group.

2. Command 2 filters through the collection of groups for those group IDs (as next-hop IP addresses
stored in control.set) that use FTP control.

3. Finally, Command 3 uses that next-hop IPset to pull out all the flows (ports 20 and 21) in groups that
had FTP control (port 21) flows.

Labeling Matched Groups of Flow Records

As part of a larger analysis, you may want to group network flow records. For instance, you could group
records from both sides of a bidirectional session, such as HTTP requests and responses, for further exam-

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

4.2. MULTI-PATH ANALYSIS: ANALYTICS 87

Example 4.37: Using rwgroup to Identify Specific Sessions
<1>$ rwfilter --start -date =2015/06/02 --end -date =2015/06/18 \

--protocol =6 --type=out --dport =20 ,21 --pass= stdout \
| rwsort --fields =1,2, sTime \
| rwgroup --id - fields =1,2 --output -path=out.rw
<2>$ rwfilter out.rw --dport =21 --pass= stdout \
| rwset --nhip -file= control .set
<3>$ rwfilter out.rw --nhipset = control .set --pass= stdout \
| rwcut --fields =1-5, sTime --num -recs =5

sIP| dIP|sPort|dPort|pro| sTime|
192.168.70.10| 10.0.40.83|65360| 21| 6|2015/06/16 T20 :38:57.018|
192.168.70.10| 10.0.40.83|65360| 21| 6|2015/06/16 T20 :38:57.018|
192.168.70.10| 10.0.40.83|65360| 21| 6|2015/06/16 T20 :38:57.146|
192.168.70.10| 10.0.40.83|57096| 21| 6|2015/06/17 T04 :41:35.525|
192.168.70.10| 10.0.40.83|57096| 21| 6|2015/06/17 T04 :41:35.525|

ination. You may also wish to create groups with more flexible matching, such as matching groups across
protocols to identify traceroute messages, which use the UDP and ICMP protocols.

Use the rwmatch to create matched groups. A matched group consists of an initial record (usually a query)
followed by one or more responses and (optionally) additional queries. (For more information about this
command’s syntax and common options, see Appendix C.25 or type rwmatch --help at the command line.)

A response is a record that is related to the query (as specified in the rwmatch command). However, it is
collected from a different direction or from a different router. As a result, the fields relating the two records
may be different. For example, the source IP address in one record may match the destination IP address
in another record.

A relationship in rwmatch is established using the --relate parameter, which takes two numeric field IDs
separated by a comma (e.g., --relate=3,4 or --relate=5,5). The first value corresponds to the field ID in
the query file,. The second value corresponds to the field ID in the response file. For example, --relate=1,2
states that the source IP address in the query file must match the destination IP address in the response
file. The rwmatch tool will process multiple relationships, but each field in the query file can be related to,
at most, one field in the response file.

The two input files to rwmatch must be sorted before matching. The same information provided in the
--relate parameters, plus sTime, must be used for sorting. The first fields in the --relate value pairs,
plus sTime, constitute the sort fields for the query file. The second fields in the --relate value pairs, plus
sTime, constitute the sort fields for the response file.

The --relate parameter always specifies a relationship from the query to the responses, so specifying
--relate=1,2 means that the records match if the source IP address in the query record matches the
destination IP address in the response. Consequently, when working with a protocol where there are implicit
relationships between the queries and responses, especially TCP, these relationships must be fully specified.
Example 4.38 shows the impact that not specifying all the fields has on TCP data. Note that the match
relationship specified (query’s source IP address matches response’s destination IP address) results in all the
records in the response matching the initial query record, even though the source ports in the query file may
differ from a response’s destination port (as seen with the third matched record).

Example 4.39 shows the relationships that could be specified when working with TCP or UDP. This example

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

88 CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

Example 4.38: Using rwmatch with Incomplete Relate Values
<1>$ rwfilter --type=in ,out --start -date =2015/06/02 \

--end -date =2015/06/18 --protocol =6 --dport =88 \
--pass= stdout \

| rwsort --fields =1 --output -path=query.rw
<2>$ rwfilter --type=in ,out --start -date =2015/06/02 \

--end -date =2015/06/18 --protocol =6 --sport =88 \
--pass= stdout \

| rwsort --fields =2 --output -path= response .rw
<3>$ rwcut query.rw --fields =1-4, sTime --num -recs =4

sIP| dIP|sPort|dPort| sTime|
10.0.40.26| 192.168.40.20|57288| 88|2015/06/17 T17 :06:38.871|
10.0.40.26| 192.168.40.20|57287| 88|2015/06/17 T17 :06:38.865|
10.0.40.26| 192.168.40.20|52176| 88|2015/06/16 T16 :22:08.659|
10.0.40.26| 192.168.40.20|57287| 88|2015/06/17 T17 :06:38.856|

<4>$ rwcut response .rw --fields =1-4, sTime --num -recs =4
sIP| dIP|sPort|dPort| sTime|

192.168.40.20| 10.0.40.26| 88|57390|2015/06/17 T17 :32:21.501|
192.168.40.20| 10.0.40.26| 88|52724|2015/06/16 T18 :54:21.810|
192.168.40.20| 10.0.40.26| 88|52725|2015/06/16 T18 :54:21.818|
192.168.40.20| 10.0.40.26| 88|57389|2015/06/17 T17 :32:21.493|

<5>$ rwmatch --relate =1,2 query.rw response .rw stdout \
| rwcut --fields =1-4, nhIP --num -recs =10

sIP| dIP|sPort|dPort| nhIP|
10.0.40.26| 192.168.40.20|57390| 88| 0.0.0.1|

192.168.40.20| 10.0.40.26| 88|57390| 255.0.0.1|
192.168.40.20| 10.0.40.26| 88|52724| 255.0.0.1|
192.168.40.20| 10.0.40.26| 88|52725| 255.0.0.1|
192.168.40.20| 10.0.40.26| 88|57389| 255.0.0.1|
192.168.40.20| 10.0.40.26| 88|51466| 255.0.0.1|
192.168.40.20| 10.0.40.26| 88|57321| 255.0.0.1|
192.168.40.20| 10.0.40.26| 88|57320| 255.0.0.1|
192.168.40.20| 10.0.40.26| 88|52030| 255.0.0.1|
192.168.40.20| 10.0.40.26| 88|52031| 255.0.0.1|

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

4.2. MULTI-PATH ANALYSIS: ANALYTICS 89

specifies a relationship between the query’s source IP address and the response’s destination IP address, the
query’s source port and the response’s destination port, and the reflexive relationships between query and
response.

rwmatch is designed to handle not just protocols where source and destination are closely associated, but
also where partial associations are significant.

Example 4.39: Using rwmatch with Full TCP Fields
<1>$ rwsort query.rw --fields =1,2, sTime \

--output -path= squery .rw
<2>$ rwsort response .rw --fields =2,1, sTime \

--output -path= sresponse .rw
<3>$ rwmatch --relate =1,2 --relate =2,1 --relate =3,4 --relate =4,3 \

squery .rw sresponse .rw stdout \
| rwcut --fields =1-4, nhIP --num -recs =5

sIP| dIP|sPort|dPort| nhIP|
10.0.40.26| 192.168.40.20|52396| 88| 0.0.0.1|

192.168.40.20| 10.0.40.26| 88|52396| 255.0.0.1|
10.0.40.26| 192.168.40.20|51466| 88| 0.0.0.2|

192.168.40.20| 10.0.40.26| 88|51466| 255.0.0.2|
10.0.40.26| 192.168.40.20|51466| 88| 0.0.0.3|

To establish a match group, a response record must first match a query record. For that to happen all the
fields of the query record specified as first values in relate pairs must match all the fields of the response record
specified as second values in the relate pairs. Additionally, the start time of the response record must fall in
the interval between the query record’s start time and its end time extended by the value of --time-delta.
Alternatively, if the --symmetric-delta parameter is specified, the query record’s start time may fall in the
interval between the response record’s start time and its end time extended by --time-delta. The record
whose start time is earlier becomes the base record for further matching.

Additional target records from either file may be added to the match group. If the base and target records
come from different files, field matching is performed with the two fields specified for each relate pair. If the
base and target records come from the same file, field matching is done with the same field for both records.

In addition to matching the relate pairs, the target record’s start time must fall within a time window
beginning at the start time of the base record. If --absolute-delta is specified, the window ends at
the base record’s end time extended by --time-delta. If --relative-delta is specified, the window
ends --time-delta seconds after the maximum end time of any record in the match group so far. If
--infinite-delta is specified, time matching is not performed.

As with rwgroup, rwmatch sets the next-hop IP address field to an identifier common to all related flow
records. However, rwmatch groups records from two distinct files into single groups. To indicate the origin
of a record, rwmatch uses different values in the next-hop IP address field. Query records will have an IPv4
address where the first octet is set to zero; in response records, the first octet is set to 255. rwmatch only
outputs queries that have a response grouped with all the responses to that query.

rwmatch discards queries that do not have a response and responses that do not have a query unless
--unmatched is specified. It tells rwmatch to write unmatched query and/or response records to an output
file or standard output.

• q writes query records. Unmatched query records have their next hop IPset to 0.0.0.0.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

90 CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

• r writes response records. Unmatched response records have their next hop IPset to 255.0.0.0.

• b writes both query and response records.

As a result, rwmatch’s output usually has fewer records than the total of the two source files. rwgroup can
be used to compensate for this by merging all the query records for a single session into one record.

Example 4.39 matches all addresses and ports in both directions. As with rwgroup, rwmatch requires sorted
data, and in the case of rwmatch, there is always an implicit time-based relationship controlled using the
--time-delta parameter. As a consequence, always sort rwmatch data on the start time. (Example 4.38
generated the query and response files from a query that might not produce sorted records; Example 4.39
corrected this by sorting the input files before calling rwmatch.)

4.2.9 Managing IPset, Bag, and Prefix Map Files

During a multi-path analysis, an analyst typically performs many intermediate steps while isolating the
behavior of interest. The rwfileinfo command prints information about binary SiLK files, helping you to
manage the files generated as part of this process.

rwfileinfo can display information about all types of binary SiLK files: flow record files, IPset files, bag
files, and prefix map (or pmap) files. Section 2.2.4 describes how to use rwfileinfo for viewing information
about flow record files. The current section describes how to use rwfileinfo to view information about
set, bag, and pmap files, such as the record count, file size, and the SiLK command(s) that created the file.
Additionally, rwfileinfo displays information specific to each type of file. This information is displayed
by default along with the rest of the file information, or can be explicitly viewed by using the --fields
parameter.

• For IPset files, it shows the nodes, branches and leaves of the IPset (--fields=ipset).

• For bag files, it shows the key-value pairs that make up the bag (--fields=bag).

• For pmap files, it shows the internal prefix map name (--fields=prefix-map). If a prefix map was
created without a map name, rwfileinfo returns an empty result for the prefix-map-specific field.

Example 4.40 show how rwfileinfo handles these files.

1. Commands 1, 2 and 3 create a set, a bag, and a pmap for the example.

2. Command 4 shows a full rwfileinfo result for the set file.

3. Commands 5, 6 and 7 show just the specific information for the IPset, bag, and pmap file, respectively.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

4.2. MULTI-PATH ANALYSIS: ANALYTICS 91

Example 4.40: rwfileinfo for Sets, Bags, and Prefix Maps
<1>$ rwfilter --start -date =2015/06/02 --end -date =2015/06/18 \

--sensors =S0 ,S1 --type=out , outweb --protocol =0- \
--pass= stdout \

| rwbag --bag -file=sIPv4 ,flows , internal .bag
<2>$ rwbagtool --coverset --ipset -record - version =4 \

--output -path= internal .set internal .bag
<3>$ rwpmapbuild --input -file= internal .pmap.txt \

--output -file= internal .pmap
<4>$ rwfileinfo internal .set
internal .set:

format (id) FT_IPSET (0 x1d)
version 16
byte -order littleEndian
compression (id) lzo1x (2)
header - length 56
record - length 1
record - version 4
silk - version 3.16.1
count - records 1184
file -size 506
ipset IPv4

<5>$ rwfileinfo internal .set --fields =ipset
internal .set:

ipset IPv4
<6>$ rwfileinfo internal .bag --fields =bag
internal .bag:

bag key: sIPv4 @ 4 octets ; counter : records @ 8 octets
<7>$ rwfileinfo internal .pmap --fields =prefix -map
internal .pmap:

prefix -map v1: internal

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

92 CHAPTER 4. INTERMEDIATE MULTI-PATH ANALYSIS

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

Chapter 5

Case Studies: Intermediate
Multi-path Analysis

This chapter features detailed case studies of multi-path analyses, using concepts from previous chapters.
They employ the SiLK workflow, rwfilter and other SiLK tools, UNIX commands, and networking concepts
to provide practical examples of multi-path analyses with network flow data.

Upon completion of this chapter you will be able to

• describe how to combine several tasks to form a multi-path analyses

• execute multi-path analyses with various SiLK tools in one automated program

• associate sets of IP addresses (IPsets) with network flow sensors

5.1 Building Inventories of Network Flow Sensors With IPsets

Flow sensors commonly monitor strategic points in enterprise networks where different network environ-
ments meet. This environmental complexity affects sensor flow collection and analyst knowledge as network
infrastructure evolves. For example, multiple sensors may overlap their flow collection for failover purposes;
as the network routes traffic, analysts may need to determine which sensor is the primary flow collector.

To mitigate these issues, analysts can create and maintain inventories of network sensors, making it easier
to review and validate them. These sensor inventories consist of SiLK IPsets that contain internal network
addresses monitored by a flow sensor. They are generated by applying the following multi-path analysis
workflow.

1. Path 1 associates network addresses with a single sensor.

2. Path 2 associates network addresses of the remaining sensors.

3. Path 3 associates network shared addresses.

4. Finally, the results of each part of the multi-path analysis are merged to create a complete inventory
of sensors.

93 [DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

94 CHAPTER 5. INTERMEDIATE CASE STUDY

This case is an example of how a multi-path analysis can be built from successive single-path analyses. It
demonstrates how to build IPset inventories by merging the results of three single-path analyses into a single
IPset inventory. Like the case study and command examples earlier in this guide, it uses the FCCX dataset
described in Section 1.7. All analysis steps are shown in Example 5.1. Each part of the multi-path analysis
is described in its own section.

Example 5.1: Building an IPset Inventory for Sensor S0
<1>$ rwfilter --sensor =S0 --type=out , outweb --start =2015/06/01 \

--end =2015/06/30 --proto =0- --pass= stdout \
| rwset --sip -file=S0 -out.set --copy= stdout \
| rwbag --bag -file=sipv4 ,flows ,S0 -out.bag
<2>$ rwfilter \

--sensor =S1 ,S2 ,S3 ,S4 ,S5 ,S6 ,S7 ,S8 ,S9 ,S10 ,S11 ,S12 ,S13 ,S14 ,S15 ,\
S16 ,S17 ,S18 ,S19 ,S20 ,S21 \
--type=out , outweb --start =2015/06/01 --end =2015/06/30 \
--proto =0- --pass= stdout \

| rwset --sip -file=S0 -other.set --copy= stdout \
| rwbag --bag -file=sipv4 ,flows ,S0 -oth.bag
<3>$ rwsettool --difference S0 -out.set S0 -other.set \

--output =S0 -only.set
<4>$ rwbagtool --compare =ge S0 -out.bag S0 -oth.bag \

--output =S0 -most.bag
<5>$ rwbagtool --coverset S0 -most.bag --output =S0 -most.set
<6>$ rwsetcat --net =27 S0 -most.set S0 -only.set \
| cut -f1 -d '|' \
| rwsetbuild stdin cand.set
<7>$ rwfilter --sensor =S0 --type=in ,inweb --start =2015/06/01 \

--end =2015/06/30 --dipset =cand.set --pass= stdout \
| rwset --dip -file=S0 -in.set
<8>$ rwsettool --difference S0 -in.set S0 -most.set S0 -only.set \

--output =S0 -close.set
<9>$ rwsettool --union S0 -only.set S0 -most.set S0 -close.set \

--output =S0.set

5.1.1 Path 1: Associate Addresses with a Single Sensor

To begin generating IPsets, you must select a sensor for the inventory (referenced as an inventory sensor for
this case study).

1. Command 1 of Example 5.1 shows how to use the rwfilter command to select all outbound traffic
on inventory sensor S0 from the repository.

2. Command 1 then calls the rwset command to generate a source IPset of internal addresses (S0-out.set)
that pass the rwfilter query. This IPset contains all outbound source IP addresses monitored by sen-
sor S0 for the defined time period.

3. The rwset --copy switch copies the rwfilter results to rwbag, generating a SiLK bag of flow counts
per source IP address for the same time period (S0-out.bag).

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

5.1. BUILDING INVENTORIES OF NETWORK FLOW SENSORS WITH IPSETS 95

The resulting IPset and bag provide a detailed inventory of all source IP addresses and their flow volumes
monitored by sensor S0.

5.1.2 Path 2: Associate Addresses of Remaining Sensors

Command 2 of Example 5.1 shows the next path in the multi-path analysis: associating the addresses for
non-inventory sensors in the repository. This procedure is similar to that of command 1. However, command
2 selects outbound traffic for the remaining repository sensors (S1 through S21) and generates source IP
address sets and bag files for the same time period (S0-other.set, S0-oth.bag).

5.1.3 Path 3: Associate Shared Addresses

The third path of the multi-path analysis associates the addresses that may be monitored (or shared) by
multiple sensors.

Identify Uniquely-Monitored Addresses

To begin path three, you need to identify addresses that are uniquely monitored by the inventory sensor, S0.

1. Command 3 of Example 5.1 shows how to use rwsettool --difference to generate an IPset of
addresses that are uniquely monitored by sensor S0 (S0-only.set). This command compares the set
of addresses from command 1 that are monitored by S0 (S0-out.set) to the set of addresses from
command 2 that are monitored by all the other sensors (S0-other.set), and saves the IP addresses
that are only found in S0-out.set to S0-only.set.

2. Command 4 of Example 5.1 checks to see if the inventory sensor S0 is the primary flow collection
sensor. It compares the IP address flow volumes of the inventory sensor to those of the other sensors to
determine if S0 monitors the majority of network traffic for an IP address. To perform this comparison,
it uses rwbagtool to compare the bag files created in commands 1 and 2 (S0-out.bag and S0-oth.bag).
IP addresses that are monitored by the inventory sensor and have flow volumes greater than or equal
to those monitored by the non-inventory sensors are saved to the S0-most.bag file.

3. Command 5 shows how to use rwbagtool --coverset to generate an IPset (S0-most.set) from the
S0-most.bag file.

Find Asymmetric and Missing Flow Data

To continue Path 3 of the multi-path analysis, you must account for asymmetric and missing network flow
data. Causes of this include outages, routing, and network backdoors. To address each case, the third path
should identify inbound network traffic to internal hosts closely adjacent to other inventory sensor addresses.
This can be accomplished using a small CIDR range, such as /27.

1. Command 6 of Example 5.1 shows how to use the rwsetcat and rwsetbuild commands to build a
cand.set candidate set from the S0-only and S0-most IPset files. The --net=27 parameter specifies
the CIDR range for closely adjacent addresses in the two sets.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

96 CHAPTER 5. INTERMEDIATE CASE STUDY

2. This candidate set is then used as a destination IPset (--dipset=cand.set) for the rwfilter query
in Command 7 to identify any remaining addresses not previously found in Commands 1 and 2.

3. Command 8 then uses rwsettool --difference to create the S0-close.set IPset, which contains IP
addresses that are closely adjacent to inventory sensor addresses.

5.1.4 Merge Address Results

After completing the third path of the multi-path analysis, you will have three subsets of the sensor inventory:
S0-only.set, S0-most.set, and S0-close.set. To complete the full sensor inventory, all three subsets
must be merged together into a single IPset that contains the inventory of IP addresses associated with the
inventory sensor, S0.

Command 9 of Example 5.1 shows how to generate the final sensor inventory with the rwsettool --union
switch. This command performs an algebraic union on S0-only.set, S0-most.set, and S0-close.set to
produce S0.set, which contains all of the IP addresses in the sensor inventory.

Analysts can use and maintain the sensor inventory IPset to gain a better understanding of the networks
monitored by a specific network flow sensor (in this example, S0) and identify any situational awareness
changes.

5.2 Automating IPset Inventories of Network Flow Sensors

Section 5.1 described how to manually generate a sensor IPset inventory by performing a multi-path analysis.
This process is fine if you only need to inventory a single sensor. However, what if you need to inventory
all of the sensors in the SiLK repository? Manually executing this workflow for every sensor would quickly
become time consuming and represents an inefficient use of analyst time and resources.

Instead, create a shell program to automatically execute this workflow. An automated program can use
the rwsiteinfo command to compile a list of all sensors in the repository, then execute the analytic from
Section 5.1 for every sensor. Automating the workflow is more efficient and accurate than manually executing
it for each sensor. It makes compiling and updating a complete sensor inventory much easier: simply run
the program as needed to automatically generate a new inventory for all sensors that are currently in the
SiLK repository. This improves your situational awareness of the network.

This section discusses Example 5.2, a simple Bash shell program that automates the process of building
sensor IPset inventories. This program consists of two main sections, a header and loop, that are discussed
in detail below.

5.2.1 Program Header

The first section of this automated program is the header, which contains information used throughout
program execution.

Line 1 of Example 5.2, commonly known as the she-bang, identifies this as a Bourne-again (Bash) shell
program to the system shell. The comment in Line 2 helps users to understand the overall purpose of the
program.

Lines 5-8 define variables that are referenced throughout the remainder of the program.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

5.2. AUTOMATING IPSET INVENTORIES OF NETWORK FLOW SENSORS 97

• The START and END variables specify the dates that are used with rwfilter --start-date and
--end-date switches.

• The INBOUND and OUTBOUND variables specify the options for inbound and outbound rwfilter queries
that are executed in the program’s for loop.

5.2.2 Program Loop

The remainder of the program, a Bash for loop, executes most of the program’s automated tasks.

Line 11 of Example 5.2 loops through the sensors in the SiLK repository. The rwsiteinfo --sensor
command generates a complete list of sensors in the repository. The for loop cycles through this list to
generate an inventory for each sensor.

Lines 13-15 define a variable (FILES in this example) of temporary files that will be deleted at the end of
the for loop (Line 47).

Line 17 follows with a visual output of the current inventory sensor using the UNIX echo command. This
indicates that the program has started building an IPset inventory for that sensor.

With the exception of Lines 23-25, the remainder of the program repeats the analytic in Example 5.1 using
the variables defined in the program header. Lines 23-25 are an addition to the original analytic. They call
rwsiteinfo with the --fields=sensor:list option to generate a comma-delimited list of sensors. This
list of sensors is then passed to a series of sed commands to remove the inventory sensor, effectively building
an OTHERS variable that contains a list of non-inventory sensors. The OTHERS variable is then used to build
the set of non-inventory sensors used in the rest of the analytic.

Line 49 again displays the name of the current sensor and indicates that the program has finished building
an inventory for that sensor.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

98 CHAPTER 5. INTERMEDIATE CASE STUDY

Example 5.2: Automating IPset Inventories
1 #!/ bin/bash

Script to automate sensor IPSet inventories

4 # Variables
START ="2015/06/01"
END ="2015/06/30"

7 OUTBOUND ="-- type=out , outweb --start= $START --end=$END --proto =0-"
INBOUND ="-- type=in ,inweb --start= $START --end=$END --dipset =cand.set"

10 # Loop through each sensor in the repository
for SEN in $(rwsiteinfo --no - titles --no -final --fields = sensor); do

13 FILES ="$SEN -out.set $SEN -out.bag $SEN -close.set $SEN -other.set"
FILES +=" $SEN -oth.bag $SEN -only.set cand.set"
FILES +=" $SEN -most.set $SEN -in.set $SEN -most.bag"

16
echo " Sensor : $SEN -- Start"

19 rwfilter --sensor =$SEN $OUTBOUND --pass= stdout \
| rwset --sip -file=${SEN}-out.set --copy= stdout \
| rwbag --bag -file=sipv4 ,flows ,${SEN}-out.bag

22
OTHERS =$(rwsiteinfo --no - titles --no -final --fields = sensor :list \

| sed -e "s/,$SEN ,/ ,/" \
25 | sed -e "s/^$SEN ,//" | sed -e "s/,$SEN$ //")

rwfilter --sensor = $OTHERS $OUTBOUND --pass= stdout \
28 | rwset --sip -file=${SEN}-other.set --copy= stdout \

| rwbag --bag -file=sipv4 ,flows ,${SEN}-oth.bag

31 rwsettool --difference ${SEN}-out.set ${SEN}-other.set \
--output =${SEN}-only.set

rwbagtool --compare =ge ${SEN}-out.bag ${SEN}-oth.bag \
34 --output =${SEN}-most.bag

rwbagtool --coverset ${SEN}-most.bag --output =${SEN}-most.set

37 rwsetcat --net =27 ${SEN}-most.set ${SEN}-only.set \
| sed -e 's/|.*// ' | rwsetbuild stdin cand.set

40 rwfilter --sensor =$SEN $INBOUND --pass= stdout \
| rwset --dip -file=${SEN}-in.set

43 rwsettool --difference ${SEN}-in.set ${SEN}-most.set \
${SEN}-only.set --output =${SEN}-close.set
rwsettool --union ${SEN}-only.set ${SEN}-most.set \

46 ${SEN}-close.set --output =${SEN }. set
rm -f $FILES

49 echo " Sensor : $SEN -- End"
done

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

Chapter 6

Advanced Exploratory Analysis with
SiLK: Exploring and Hunting

This chapter introduces advanced exploratory analysis through application of the analytic development
process with the SiLK tool suite. It discusses the exploratory analysis process, starting points for exploration,
and advanced SiLK commands and techniques that can be employed during an analysis.

Upon completion of this chapter you will be able to

• describe advanced exploratory analysis and how it maps to the analytic development process

• describe SiLK tools that often are used during exploratory analysis

• provide example workflows for exploratory network flow analysis

6.1 Exploratory Analysis: Concepts

The exploratory approach is the most open-ended of the analysis workflows described in this guide. It
provides a framework for investigating more complex questions about network traffic. As the name suggests,
exploratory analysis involves asking questions about trends, processes, and dynamic behavior that do not
necessarily have fixed or obvious answers. Often the analysis leads to more questions!

Exploratory analysis uses single-path and multi-path analyses as building blocks to provide insight into
network events. It typically considers more than one indicator of network behavior to provide a more
complete understanding of what happened. Each building block represents a question (or part of a question)
whose answer feeds into subsequent steps in the analysis. Analysts can assemble these building blocks by
hand to prototype an analysis or examine one-time phenomena, iterating if necessary. This manual analysis
can then transition to scripted analysis to save time, make it easier to repeat the analysis, and ensure more
consistent results.

As Figure 6.1 indicates, this form of analysis rarely proceeds directly from initial question to final result.
Instead, it gathers a variety of contextual information, and goes forward in a search pattern to reach the
result.

99 [DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

100 CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

Figure 6.1: Exploratory Analysis

6.1.1 Exploring Network Behavior

Exploratory analysis follows the general SiLK analysis workflow described in Figure 1.3. The overall course
of exploratory analysis generally follows these steps:

1. come up with initial questions as the starting point (the Formulate stage)

2. apply a set of analyses to provide insight into a given question (the Model and Test stages)

3. integrate the results of these analyses with previously-available data (the Analyze stage)

4. refine the results (the Refine stage)

5. identify new questions to be investigated with further analyses (return to the Formulate stage to begin
another iteration of the exploratory analysis)

In contrast to single-path and multi-path analysis, analysts explore with iterations of questions and their
associated analyses. We may not have a specific set of behaviors, known event, or identified service in mind
at the start of an exploratory analysis. Instead, we start with a general question and seek a clearer target
during the iterations of the analysis.

As the exploration progresses, the scope of these questions often becomes more associated with any features
of interest that are identified in the data. These features can be identified during the initial stages of
establishing context for the network behavior to be investigated and gathering data about it. They also can
emerge from the results of preliminary single-path or multi-path analyses of the data, which help to refine
the scope of the exploratory analysis.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

6.1. EXPLORATORY ANALYSIS: CONCEPTS 101

Exploratory analysis often takes a deep dive into the data to examine the possible causes or conditions
related to the features of interest. The analyst may form, test, and either continue to investigate or abandon
hypotheses about sources of the behavior. This exploration continues until the analyst reaches a sufficient
level of confidence in understanding the features to either identify the causes of the event and share the results,
or close the hypothesis. When all threatening hypotheses have been closed, we can close the investigation
and associate the behavior with unremarkable network activity.

6.1.2 Starting Points for Exploratory Analysis

The first question that normally arises during an exploratory analysis is, “Where should it start?”

One set of starting points for exploratory analyses involves investigating unexplained activity on the moni-
tored network. This produces initial questions such as

• What activity is present that could be malicious or damaging?

• What is the impact of this unexpected activity?

• What led to this unexpected activity?

The initial stage of the investigation may be a relatively straightforward profiling analysis or an inventory
of traffic of interest across specific servers. Further iterations use the results of these profiles and inventories
to identify outliers, inconsistencies, and behaviors exhibited by the unexplained activity. These outliers,
inconsistencies, and behaviors then become the focus of exploration for the next iteration. At this point in
the analysis, a case-by-case frequency summary or time-based trends can provide insight into the activity.
The iterations of analysis continue until the analyst identifies a reasonable explanation of the activity,
rejecting alternate explanations.

Another set of starting points for exploratory analyses involves unusual levels or directions of network services.
This produces initial questions such as

• What led to these services?

• Is there a change in the population of external hosts employing these services?

• Does this change in service match with a model of network attack?

Analyses for these questions often summarize network activities via time series or service-by-service counts
of incoming activity versus outgoing activity. The analyst integrates and examines these summaries and
counts, looking for points of significant change in trends or traffic levels. These points of change, and the
hosts involved in those changes, become the focus of the next iteration of the exploratory analysis.

6.1.3 Example Exploratory Analysis: Investigating Anomalous NTP Activity

As an example of an exploratory analysis, consider an investigation into Network Time Protocol (NTP)
usage. NTP is associated with UDP port 123, so our starting point would be to find out what level of
activity is observed on this port.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

102 CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

Compare Inbound and Outbound UDP Activity on Port 123

The rwfilter commands in Example 6.1 provide an initial view of UDP activity on port 123. Command 1
profiles the outgoing activity to UDP/123. Command 2 profiles the incoming activity from this port. The
size of the outgoing activity is surprisingly large (almost double the flow records, and one third larger in
bytes) and worth looking at more closely.

Example 6.1: Using rwfilter to Profile NTP Activity
<1>$ rwfilter --start =2015/06/16 --sensor =S0 ,S1 ,S2 ,S3 ,S4 \

--type=out --proto =17 --dport =123 --pass=NTP -out.raw \
--print -vol= stdout

| Recs| Packets | Bytes| Files|
Total| 5566807| 15791472| 2646290347| 60|

Pass| 7040| 8410| 659800| |
Fail| 5559767| 15783062| 2645630547| |

<2>$ rwfilter --start =2015/06/16 --sensor =S0 ,S1 ,S2 ,S3 ,S4 \
--type=in --proto =17 --sport =123 --pass=NTP -in.raw \
--print -vol= stdout

| Recs| Packets | Bytes| Files|
Total| 3549008| 15506147| 3118288427| 60|

Pass| 3936| 6148| 493968| |
Fail| 3545072| 15499999| 3117794459| |

Differentiate Benign and Malicious Traffic

The second phase of this sample exploratory analysis examines the UDP activity on port 123 more closely
to look for patterns that might differentiate between benign and malicious traffic. rwuniq is well suited for
this task, since it allows us to look at the traffic over a variety of contingencies. RFC 590510 specifies that
NTP packets must have a byte size of 76 bytes for a request and 96 bytes for a response. We would therefore
expect to find flow bytes that are a multiple of either of these two values.

Example 6.2 runs rwuniq on the output files from Example 6.1. Command 1 shows an excerpt of the various
byte counts for outgoing flows. Command 2 shows a similar excerpt for the incoming flows. The byte sizes
are the ones expected: 76, 96, 152 = 2× 76, 192 = 2× 96. (While not shown in the excerpt, all of the other
byte sizes are multiples of either 76 or 96.)

What is surprising are the further columns on the last line of the excerpts in Example 6.2. NTP is a protocol
where machines on a network make queries to a few servers for time values, then adjust their clocks based
on the answers received. We would therefore expect outgoing traffic to come from only a few addresses but
go to multiple hosts in the local network.

For flows with byte size 192 (double the response value), the number of local hosts and the number of remote
hosts are nearly equal, which is unusual. Additionally, the number of incoming packets is larger than the
number of outgoing requests. This disparity is also unusual, indicating that further exploration of this traffic
is needed.

10Internet Engineering Task Force (IETF) Request for Comments 5905 (https://www.ietf.org/rfc/rfc5905.txt)

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

https://www.ietf.org/rfc/rfc5905.txt

6.1. EXPLORATORY ANALYSIS: CONCEPTS 103

Example 6.2: Using rwuniq to examine NTP Activity
<1>$ rwuniq --fields =bytes \

--values =Flows ,packets , distinct :dip , distinct :sip --sort \
NTP -out.raw \

| head -5
bytes| Records | Packets |dIP - Distin |sIP - Distin |

76| 5728| 5728| 2| 17|
96| 362| 362| 6| 75|

152| 563| 1126| 1| 1|
192| 323| 646| 50| 46|

<2>$ rwuniq --fields =bytes \
--values =Flows ,packets , distinct :dip , distinct :sip --sort \
NTP -in.raw \

| head -5
bytes| Records | Packets |dIP - Distin |sIP - Distin |

76| 2083| 2083| 16| 1|
96| 66| 66| 27| 5|

152| 1126| 2252| 1| 1|
192| 615| 1230| 50| 46|

Plot Anomalous Flows

Now that we have identified the anomalous flows, it’s time to take a more detailed look at them. Example 6.3
uses rwfilter to isolate the incoming 192-byte flows, then calls rwcount to generate a time series of that
traffic. The results are somewhat lengthy, since the rwcount command splits a day of traffic in five minute
bins.

Command 1 uses rwcount options to generate a comma-separated-value file (CSV), which can be fed into
Microsoft Excel or another graphing program. The resulting time series plot is shown in Figure 6.2.

NTP traffic is normally expected to either cluster around the point at which computers are connecting to
the network, or occur periodically thereafter as the computers adjust their clocks. As can be seen in the
figure, while there are regular pulses of traffic (visible more to the right end of the timeline), there are also
irregular collections of traffic earlier in the day.

Example 6.3: Using rwcount to generate NTP Timelines
<1>$ rwfilter NTP -in.raw --bytes =192 -192 --pass= stdout \
| rwcount --bin -size =300 --delim=',' >NTP -in.csv

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

104 CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

Figure 6.2: Time Series Plot of NTP Traffic

Is the Irregular NTP Traffic Related to Client-side Initialization?

To determine if this early irregular traffic is related to initialization of the client side of the NTP traffic,
Example 6.4 generates summary bags for the hosts involved. Command 1 starts this process by identifying
the earliest start time for each client (internal recipient) of the NTP traffic, using a combination of rwfilter
and rwuniq. The output of the rwuniq is formatted for easy parsing in command 3, then saved to the file
source-fields.txt.

An obvious approach at this point would be to issue another call to rwfilter to pull traffic prior to the start
of the NTP traffic for the destinations involved, then call rwuniq to summarize the traffic. One complication
to this approach is that the start times for the NTP traffic are not aligned. Rather than setting a fixed
time (such as the minimum start time), it seems wise to analyze client traffic on a one-by-one basis. This
individual approach has two disadvantages: it requires more programming (14 lines of commands, as opposed
to two or three), and it is somewhat slower in execution (for the data being examined, about five seconds,
rather than an immediate result). However, these disadvantages are outweighed by the increased precision
of the results.

Command 2 of Example 6.4 prepares to analyze traffic for individual clients by creating an empty bag.

Command 3 is the loop that reads the start time information for each client (shown by the redirection at
the end and the read call in the while statement’s condition). The body of the loop then uses date as the
NTP start time for the client and calculates a ten minute time window prior to the start time (using shell
arithmetic and awk to reformat the range elements as SiLK formatted date-time values).

The bag initialized in command 2 (cur.bag) is updated for each source IP address. The loop in command 3
calls rwfilter using the time range for each address to find activity prior to the NTP traffic, using rwbagtool
to add the results to the bag. Since cur.bag is initially empty but keyed by the client IP address, the prior
activity is calculated for each client in turn. Although the rwbagtool call adds the bags, it is really just
inserting the new entry in the summary bag, using temp.bag as an intermediate that is renamed in the mv
call to overwrite the summary bag.

After all of the clients are summarized, command 4 displays the first few entries in cur.bag. They represent
a brief sample of the 48 lines of full output.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

6.1. EXPLORATORY ANALYSIS: CONCEPTS 105

Example 6.4: Using rwuniq and Bags to Summarize Prior Traffic on NTP Clients
<1>$ rwfilter NTP -in.raw --bytes =192 -192 --pass= stdout \
| rwuniq --fields =dip --values =stime - earliest --no - titles \

--delim=' ' --output =source - fields .txt
<2>$ rwbagbuild --bag -input =/ dev/null --key -type=sipv4 \

--counter -type= records --output =cur.bag
<3>$ while IFS ="" read -r line || [[-n "$line"]]; \
do srcArray =($line); \

StEpoch =$(date -d ${ srcArray [1]} +"%s"); \
StTimeE =$(echo $(($StEpoch - 1)) \
| awk '{print strftime ("%Y/%m/%dT%T",$1)} '); \
StTimeS =$(echo $(($StEpoch - 600)) \
| awk '{print strftime ("%Y/%m/%dT%T",$1)} '); \
rwfilter --start =2015/06/16 --sensor =S0 ,S1 ,S2 ,S3 ,S4 \
--type=out , outweb --saddress =${ srcArray [0]} \
--stime=${ StTimeS }-${ StTimeE } --pass= stdout \
| rwbag --bag -file=sipv4 ,flows , stdout \
| rwbagtool --add cur.bag stdin --output =temp.bag; \
mv temp.bag cur.bag; \

done < source - fields .txt
<4>$ rwbagcat cur.bag | head -10

10.0.40.54| 1452|
192.168.40.25| 1777|
192.168.40.50| 183|
192.168.40.51| 123|
192.168.50.11| 63|

192.168.111.109| 211|
192.168.111.131| 319|

192.168.121.57| 325|
192.168.121.77| 291|

192.168.121.145| 248|

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

106 CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

• Low values (in the tens) would support the hypothesis that the host in question is in the process of
initialization, as is possible for 192.168.50.11.

• High values (in the hundreds to thousands) would support that the host in question is in ongoing use,
as is the case for most of the hosts.

Possible Explanations for Anomalous NTP Traffic

While it is clear that there is a range of flow counts during the ten-minute time window prior to the start of
NTP traffic, the numbers are large enough to eliminate the idea that the anomalous NTP traffic is due to
initialization of the clients. The irregular traffic could be due to a variety of causes:

• It could be a covert means of mapping clients: send NTP results to the clients, then see which ones
respond with an ICMP host unreachable message.

• It could be a covert signaling or command interface for malicious software that is running on the clients.

• It could reflect some flaw in the NTP implementation on the network. However, the relative maturity
of NTP and its implementations and the halting of the irregular traffic discount this possibility.

• It could be a reflection attack against the target network. However, the nature of the exercise under
way and the overall level of traffic involved discount that possibility.

Testing and evaluating these possibilities is left for further rounds of exploratory analysis!

6.1.4 Observations on Exploratory Analysis

The initial examination of inbound and outbound data in an exploratory analysis is the basis for all that
follows. It is the starting point for an accumulating body of experience that aids the analyst in interpreting
the results.

The odd behavior shown in Example 6.2 reflects a general aspect of exploratory analysis: it is shaped by
the dynamics of network behavior. Since the analyst is exploring previously-unexamined behaviors, the
process incorporates consideration of new behaviors and trends. This is done by both noting results that are
expected in a given situation and those that are surprising.

Surprising results (such as those in Example 6.2) often serve as starting points for further rounds of analysis.
Networks are not static: the traffic they carry constantly changes over time. Analysts therefore must build
an evolving understanding of their behavior.

The exploratory analysis in this section uses a variety of SiLK tools. It also employs tabular data, graphical
summary, and calculation of specific values. This diverse set of tools and techniques reflects the open-ended
nature of exploratory analysis. Analysts need to obtain different views into the data to obtain a good
understanding of the target of the analysis.

The outcome of an exploratory analysis can take several forms. As the analysis proceeds, it produces more
and more background information on the network hosts and their traffic. As this information is captured, it
aids in interpreting both results obtained later in the analysis and the results of other analyses.

Background information is not the only thing that can be reused in an exploratory analysis! Its component
parts can be applied in other analyses as filters or analytics. For example, the date math portion of Ex-
ample 6.4 is also incorporated into the case study discussed in Chapter 7. As the body of such filters and

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

6.2. EXPLORATORY ANALYSIS: ANALYTICS 107

analytics expands, you can perform further exploratory analyses more easily—simply reuse those developed
for earlier analyses.

6.2 Exploratory Analysis: Analytics

The SiLK commands described in this chapter involve sophisticated uses of the SiLK tool suite that are
often appropriate for exploratory analyses. However, they can be used with any analysis method.

6.2.1 Using Tuple Files for Complex Filtering

Partitioning criteria for many analyses comprise specific combinations of field values, any one of which can
be considered as passing. While you can make repeated rwfilter calls and merge them later, this approach
is often inefficient as it may involve pulling the same records from the repository several times.

For example, consider an analysis that is looking for a Simple Network Management Protocol (SNMP) call
generated from viewing a malicious email message. SNMP is associated with UDP port 161, email receipt
with TCP port 25. The naive approach would be a call to rwfilter that simply merges these two ports:

rwfilter --protocol=6,17 --dport=25,161

This call to rwfilter actually uses four permutations of the selection parameters to select records (protocol
6 and dport 25, protocol 6 and dport 161, protocol 17 and dport 25, protocol 17 and dport 161), not just
the two that apply for this example (protocol 6 and dport 25, protocol 17 and dport 161).

As shown in Example 6.5, you could use two calls to rwfilter to pull the desired port-protocol permutations
separately, then combine the data files with the rwappend command. However, this approach involves two
calls to rwfilter that re-read the input flow records. If the analysis includes many cases, the same data
would be read many times. On top of that, if the data set is large, each pull from the repository could take
a significant amount of time.

Example 6.5: Using Multiple Data Pulls to Filter on Multiple Criteria
<1>$ rwfilter --start =2015/06/17 --type=in ,out --protocol =6 \

--dport =25 --pass= result .raw
<2>$ rwfilter --start =2015/06/17 --type=in ,out --protocol =17 \

--dport =161 --pass=part2.raw
<3>$ rwappend result .raw part2.raw
<4>$ rm part2.raw

A more efficient approach is to store partitioning criteria as a tuple file and use that file with rwfilter to
pull the records in a single operation. A tuple file is a text file consisting of the five-tuple fields (sIP, dIP,
sPort, dPort, protocol) delimited by vertical bars (|). rwfilter pulls the flow records that match the
entries in the tuple file from the SiLK repository.

To select the protocol-dport combinations of (6,25) and (17,161), you could create a tuple file that contains
both combinations:

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

108 CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

protocol|dport
6|25
17|161

Running rwfilter with the --tuple-file switch set to the name of this tuple file will select only those
flow records with (protocol 6, dport 25) and (protocol 17, dport 161). Only one call to rwfilter would be
needed to pull these records, not two (as in Example 6.5).

Using Tuple Files to filter Web Servers

Example 6.6 shows a tuple file that is used to choose web server addresses on different ports.

• Command 1 shows the tuple file, webservers.tuple. The first line contains headers that identify the
fields associated with the columns, dIP and dPort. The rest of the tuple file lists the destination IP
address and destination port combinations of interest.

• This file can then be used with rwfilter as shown in command 2. The --tuple-file option need
not be the only partitioning option. In command 2, the --protocol parameter also is specified as a
partitioning criterion.

In some cases, you can obtain results more quickly by using seemingly redundant command-line options to
duplicate some of the values from the tuple file. For instance, adding --dport=80,443,8443 to the rwfilter
call in Example 6.6 reduces the number of records that need to be examined with the tuple file. No matter
where they appear in the rwfilter call, tuple files are always processed after the parameters that partition
based on individual flow record fields, and before those using plug-ins or Python. However, filtering by
multiple destination ports is not a substitute for the tuple file in Example 6.6, as these criteria are not
sufficiently restrictive to produce the desired results.

6.2.2 Manipulating Bags

Using bags to store key values and counts (as described in Section 4.2.4) can be very helpful to store the
intermediate and final results of a multi-path analysis. SiLK supports several advanced options for working
with bags. In addition to comparing bags with rwbagtool (Section 4.2.4) and extracting sets from bags
(Section 4.2.5), you can use rwbagtool to do the following:

• add and subtract bags (analogous to the SiLK set operations)

• multiply bags by scalar numbers

• divide bags

• threshold bags (filter bags on volume)

The result of these operations is a bag with new volumes.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

6.2. EXPLORATORY ANALYSIS: ANALYTICS 109

Example 6.6: Filtering on Multiple Criteria with a Tuple File
<1>$ cat <<EOF >webservers .tuple

dIP|dPort
10.0.40.21| 443
10.0.40.23| 8443
10.0.20.59| 80

192.168.20.59| 80
10.0.40.21| 80

192.168.40.24| 443
192.168.40.27| 443
192.168.40.91| 443
192.168.40.92| 443

EOF
<2>$ rwfilter --type=in ,inweb --start -date =2015/06/02 \

--end -date =2015/06/18 --dport =80 ,443 ,8443 \
--protocol =6 --flags -all=SAF/SAF ,SAR/SAR \
--tuple -file= webservers .tuple --sensors =S0 ,S1 \
--pass= stdout \

| rwuniq --fields =dIP ,dPort --value= Records
dIP|dPort| Records |

10.0.20.59| 80| 29720|
10.0.40.21| 443| 355791|
10.0.40.23| 8443| 30934|

192.168.40.91| 443| 6|
192.168.40.27| 443| 9|
192.168.40.92| 443| 3|
192.168.20.59| 80| 10652|

10.0.40.21| 80| 1565|
192.168.40.24| 443| 24|

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

110 CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

Adding and Subtracting Bags

Suppose you want to find the total number of records associated with the IP addresses that are stored in
two bags. You can add the contents of the two bags together to create a new bag that holds the sum of their
contents.

To add bags together, use the rwbagtool --add parameter. The --output-path parameter specifies where
to deposit the results. Most of the results from rwbagtool are bags themselves. Example 6.7 shows how to
use bag addition to find the total number of flows of inbound web traffic over a two-day period.

1. The rwbagcat calls in commands 1 and 2 display the contents of the two bags to be added, web-20150616.bag
and web-20150617.bag. Each bag contains a day’s worth of inbound web traffic flows.

2. Command 3 adds the two bags with the rwbagtool --add parameter.

3. The results of the addition are stored in web-sum.bag, which is shown in command 4.

• If an IP address appears in both bags, the rwbagtool --add command sums up the number of
flows in the two bags. For instance, the IP address 10.0.20.59 appears in both bags. The number
of flows for this IP address in web-sum.bag is the sum of the flows in the two bags.

• If an IP address appears in just one bag, the rwbagtool --add command still includes it in the
results. For instance, the IP address 190.168.40.27 only appears in the bag web-20150616.bag
but is included in the results stored in web-sum.bag.

Similarly, you may want to subtract the byte counts in one bag from those stored in another bag to find out
how many are left over after a step in your analysis. Use the rwbagtool --subtract command to subtract
the contents of bags.

Bag subtraction operates in the same fashion as bag addition, but all bags after the first are subtracted from
the first bag specified in the command. Bags cannot contain negative values: any subtraction resulting in a
negative number causes rwbagtool to omit the corresponding key from the resulting bag.

Hint: Bags do store information in the file header about which types of keys and counts they
contain. However, the information is not used to restrict bag operations. Consequently,
rwbagtool will add or subtract byte bags and packet bags without warning, producing
meaningless results.

If unequal but compatible types are added or subtracted, a meaningful result type will
be produced. For example, keys of sIPv4 and dIPv4 will produce a result key of type
any-IPv4. When incompatible types are combined, the resulting type will be custom
(the most generic bag type). Use rwfileinfo --fields=bag to view this information,
as described in Section 4.2.9.

Multiplying and Dividing Bags

You can multiply the values in a bag by a scalar number and divide the contents of a bag by the contents
of another bag. This is useful for operations such as computing percentages (for instance, to compare traffic
levels during different time periods).

• Use the rwbagtool --scalar-multiply command to multiply all of the counter values in a bag by a
scalar value. Bags can only be multiplied by a scalar value.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

6.2. EXPLORATORY ANALYSIS: ANALYTICS 111

Example 6.7: Merging the Contents of Bags Using rwbagtool --add
<1>$ rwbagcat web -20150616. bag

10.0.20.59| 7977|
10.0.40.21| 135757|
10.0.40.23| 11700|

192.168.20.59| 3980|
192.168.40.24| 17|
192.168.40.27| 9|
192.168.40.91| 3|

<2>$ rwbagcat web -20150617. bag
10.0.20.59| 15248|
10.0.40.21| 221599|
10.0.40.23| 19234|

192.168.20.59| 6672|
192.168.40.24| 7|
192.168.40.91| 3|
192.168.40.92| 3|

<3>$ rwbagtool --add web -20150616. bag web -20150617. bag \
>web -sum.bag

<4>$ rwbagcat web -sum.bag
10.0.20.59| 23225|
10.0.40.21| 357356|
10.0.40.23| 30934|

192.168.20.59| 10652|
192.168.40.24| 24|
192.168.40.27| 9|
192.168.40.91| 6|
192.168.40.92| 3|

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

112 CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

• Use the rwbagtool --divide command to divide the counter values in one bag by those of another.

Hint: Be very careful when dividing bags. The second (denominator) bag must contain
every key found in the first (numerator) bag—do not divide by zero! To
ensure that the elements of the two bags match, use the rwbagtool --intersect
command to remove mismatched elements.

1. Extract the set of IP addresses from the denominator bag by using rwbagtool
--coverset as described in Section 4.2.5.

2. Run rwbagtool --intersect on the numerator bag to remove all elements that
are not found in the denominator bag as described in Section 4.2.5.

3. Use rwbagtool --divide to divide the contents of the numerator bag by those
of the denominator bag.

Example 6.8 shows how to use scalar multiplication and division. The example computes the percentage
change in traffic between the two bags from Example 6.7. It uses rwbagtool --coverset to remove the
IP addresses that do not appear in both bags, then uses the rwbagtool options --scalar-multiply and
--divide to compute the percentage change in traffic between the IP addresses in both bags.

Thresholding Bags with Count and Key Parameters

Sometimes, you may want to threshold the contents of a bag to items that are larger than a minimum value
or smaller than a maximum value. This thresholding can be used to limit key values (e.g., eliminating IP
addresses that are lower or higher than the specified address value) as well as count values (e.g., eliminating
IP addresses with packet counts that are lower than the desired volume).

The --minkey, --maxkey, --mincounter, and --maxcounter parameters supported by rwbagcat are also
supported by rwbagtool. In this case, they specify the minimum and maximum key and count values for
output. They can optionally be combined with an operation parameter (e.g., --add, --subtract) or a
masking parameter (i.e., --intersect or --complement-intersect) to perform other operations on a bag.
Example 6.10 shows an example of thresholding by minimum and maximum counts.

6.2.3 Sets Versus Bags: A Scanning Example

Both sets and bags can be employed to search for network scanners. This section provides some examples
of each and contrasts how they are used within an analysis.

Fine-tuning IP Sets to Find Scanners

Using IP sets can focus on alternative representations of traffic and identify network scanning and other
activities. Example 6.9 drills down on IP sets themselves and provides a different view of this traffic.

This example isolates the set of hosts that exclusively scan from a group of flow records using rwfilter to
separate the set of IP addresses that complete legitimate TCP sessions from the set of IP addresses that never
complete sessions. As this example shows, the final.set set file consists of two IP addresses in contrast to
the set of thirty-six that produced low-packet flow records—these addresses are consequently suspicious.11

11While this might be indicative of scanning activity, the task of scan detection is more complex than shown in Example 6.9.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

6.2. EXPLORATORY ANALYSIS: ANALYTICS 113

Example 6.8: Using rwbagtool to Generate Percentages
<1>$ rwbagtool --coverset 20150616. bag >20150616. set
<2>$ rwbagtool --coverset 20150617. bag >20150617. set
<3>$ rwsettool --intersect 20150616. set 20150617. set \

>common .set
<4>$ rwbagtool --scalar - multiply =100 --intersect = common .set \

20150616. bag >multiply .bag
<5>$ rwbagcat multiply .bag

10.0.20.59| 797700|
10.0.40.21| 13575700|
10.0.40.23| 1170000|

192.168.20.59| 398000|
192.168.40.24| 1700|
192.168.40.91| 300|

<6>$ rwbagcat 20150617. bag
10.0.20.59| 15248|
10.0.40.21| 221599|
10.0.40.23| 19234|

192.168.20.59| 6672|
192.168.40.24| 7|
192.168.40.91| 3|
192.168.40.92| 3|

<7>$ rwbagtool --intersect = common .set 20150617. bag \
>predivide .bag

<8>$ rwbagtool --divide multiply .bag predivide .bag >divide .bag
<9>$ rwbagcat divide .bag

10.0.20.59| 52|
10.0.40.21| 61|
10.0.40.23| 61|

192.168.20.59| 60|
192.168.40.24| 243|
192.168.40.91| 100|

Example 6.9: Using rwset to Filter for a Set of Scanners
<1>$ rwfilter --start -date =2015/06/02 --protocol =6 \

--type=in ,inweb --packets =1-3 --pass= stdout \
| rwset --sip -file=low.set
<2>$ rwfilter --start -date =2015/06/02 --protocol =6 \

--type=in ,inweb --packets =4- --pass= stdout \
| rwset --sip -file=high.set
<3>$ rwsettool --difference low.set high.set \

--output -path=final.set
<4>$ rwsetcat low.set --count -ips
36
<5>$ rwsetcat final.set --count -ips
2

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

114 CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

Using Bags to Find Scanners

To show how bags differ from sets, let’s revisit the scanning filter presented in Example 6.9. The difficulty
with that code is that if a scanner completed any handshake, it would be excluded from the low.set file.
Many automated scanners would fall under this exclusion if any of their potential victims responded to the
scan. It would be more robust to include as scanners hosts that complete only a small number of their
connections (10 or fewer) and have a reasonable number of flow records covering incomplete connections (10
or more).

By using bags, Example 6.10 is able to incorporate counts, resulting in the detection of more potential
scanners.

1. The calls to rwfilter in commands 1 through 3 are piped to rwbag to create bags for incomplete,
FIN-terminated, and RST-terminated traffic.

2. Commands 4 and 5 use rwbagtool --coverset to generate the cover sets for these bags. These
commands also use thresholding to generate two sets: fast-low.set, which contains only IP addresses
with fewer than 10 low-packet connections (--mincounter=10) and fast-high.set, which contains
only IP addresses with more than 10 incomplete connections (--maxcounter=10).

3. Command 6 uses rwsettool --difference to find the set of IP addresses that are members of
fast-low.set but not members of fast-high.set. The result, scan.set, represents the set of IP
addresses that responded to the scans.

4. Command 7 uses rwsetcat to count the number of IP addresses in each bag.

6.2.4 Manipulating SiLK Files

Combining Flow Record Files to Provide Context

When you are profiling flow records, you may want to drill down into the data to find specific behaviors.
This is especially useful for analyzing traffic with large volumes (for example, by the duration of transfer and
by protocol). Issuing repeated rwfilter calls subdivides large data sets into smaller ones that are easier to
examine and manipulate. However, sometimes this obscures the “big picture” of what is happening during
an event. Combining flow record files is one way to provide this kind of context.

Use one of the following SiLK commands to merge multiple flow record files:

• rwcat concatenates flow record files in the order in which they are listed. It creates a new flow record
file that contains the merged records.

• rwappend places the contents of the flow record files at the end of the first specified flow record file. It
does not create a new file.

Scanners sometimes complete connections to hosts that respond (to exploit vulnerable machines); non-scanning hosts sometimes
consistently fail to complete connections to a given host (contacting a host that no longer offers a service). A more complete
set of scan detection heuristics is implemented in the rwscan tool, which is discussed in Section 4.2.4.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

6.2. EXPLORATORY ANALYSIS: ANALYTICS 115

Example 6.10: Using rwbagtool to Filter Out a Set of Scanners
<1>$ rwfilter --start -date =2015/06/02 --end -date =2015/06/18 \

--type=in ,inweb --bytes =2048 - --pass= stdout \
| rwfilter stdin --duration =1200 - --pass= slowfile .rw \

--fail= fastfile .rw
<2>$ rwfilter fastfile .rw --protocol =6 --flags -all=S/SRF \

--packets =1-3 --pass= stdout \
| rwbag --sip -flows=fast -low.bag
<3>$ rwfilter fastfile .rw --protocol =6 \

--flags -all=SAF/SARF ,SR/SRF --pass= stdout \
| rwbag --sip -flows=fast -high.bag
<4>$ rwbagtool fast -low.bag --mincounter =10 --coverset \

--output -path=fast -low.set
<5>$ rwbagtool fast -high.bag --maxcounter =10 --coverset \

--output -path=fast -high.set
<6>$ rwsettool --difference fast -low.set fast -high.set \

--output -path=scan.set
<7>$ rwsetcat fast -low.set fast -high.set scan.set --count -ips
fast -low.set :40
fast -high.set :104
scan.set :37

Hint: As an alternative to combining flow files, many of the SiLK tools accept multiple flow
record files as input to a single call. For example, rwfilter can accept several flow
files to filter during a single call and rwsort can accept several flow files to merge and
sort during a single call. Very often, it is more convenient to use multiple inputs than
to combine flow files.

In Example 6.11, rwcat is used to combine previously filtered flow record files to permit the counting of
overall values.

1. The initial call to rwfilter in command 1 pulls out all records in the period of interest: 2015/6/10
through 2015/6/24. Subsequent calls to rwfilter split these records into three files, depending on the
duration of the flow:

• slow flows of at least 20 minutes duration (i.e., those that match the partitioning criteria of
--duration=1200-)

• medium flows of 1–20 minutes duration (i.e., those that match the partitioning criteria of
--duration=60-1199),

• fast flows of less than 1 minute duration (the remainder of the flows, which had failed both
partitioning criteria and must therefor be less than one minute long)

2. The calls to rwfilter in Commands 2 through 4 split each of the initial divisions based on protocol:
UDP (17), TCP (6), and ICMPv4 (1). They are saved to files whose names correspond to their speed
and protocol (e.g., slow17.rw, med17.rw, fast17.rw).

3. The calls to rwcat in commands 5–7 combine the three splits for each protocol into one overall file per
protocol (e.g., all17.rw).

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

116 CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

4. Command 8 is a short script that produces a summary output reflecting the volume of records in each
of the composite files.

When using the rwfileinfo command, be aware that rwcat creates a new file and can record annotation
(using --note-add and --note-file-add) in the output file header. However, it does not preserve this
information from its input files. rwappend cannot add annotations and command history to the output file.

For more information about the rwcat command, see Appendix C.10 or enter the command rwcat --help.

For more information about the rwappend command, see Appendix C.11 or enter the command rwappend
--help.

6.2.5 Dividing or Sampling Flow Record Files with rwsplit

In addition to being able to join flow record files, some analyses are facilitated by dividing or sampling flow
record files. To facilitate coarse parallelism, one approach is to divide a large flow record file into pieces
and concurrently analyze each piece separately. For extremely high-volume problems, analyses on a series of
robustly taken samples can produce a reasonable estimate using substantially fewer resources. rwsplit is a
tool that facilitates both of these approaches to analysis.

Each call to rwsplit requires the --basename switch to specify the base file name for output files. In
addition, one of these parameters must be present:

• --ip-limit specifies the IP address count at which to begin a new output file

• --flow-limit specifies the flow count at which to begin a new output file

• --packet-limit specifies the packet count at which to begin a new output file

• --byte-limit specifies the byte count at which to begin a new output file

Example 6.12 is an example of a coarsely parallelized process.

1. Command 1 pulls a large number of flow records with the rwfilter command, then use the rwsplit
command to divide those records into a series of 400,000-record files with a base name of part.

2. Command 2 initializes a list of generated filenames. It then uses the rwfilter command to separate
the records in each file based on sets that contain IP addresses of interest (mission.set, threat.set,
casual.set).

3. In command 3, each of these files is then fed into an rwfileinfo call to count the number of records
that fall into the selection categories (mission, threat, and casual).

Example 6.13 is an example of a sampled-flow process. These commands estimate the percentage of UDP
traffic moving across a large infrastructure over a workday.

1. Command 1 invokes rwfilter to perform the initial data pull, retrieving a very large number of
flow records. It then uses the rwsplit command to pull 100 samples of 1,000 flow records each
(--flow-limit=1000 --sample-ratio=100), with a 1% rate of sample generation (that is, of 100
samples of 1,000 records, only one sample is retained).

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

6.2. EXPLORATORY ANALYSIS: ANALYTICS 117

Example 6.11: Combining Flow Record Files with rwcat to Count Overall Volumes
<1>$ rwfilter --type=in ,inweb --start -date =2015/6/10 \

--end -date =2015/6/24 --protocol =0- --note -add='example ' \
--pass= stdout \

| rwfilter stdin --duration =1200 - --pass= slowfile .rw \
--fail= stdout \

| rwfilter stdin --duration =60 -1199 --pass= medfile .rw \
--fail= fastfile .rw

<2>$ rwfilter slowfile .rw --protocol =17 --pass= slow17 .rw \
--fail= stdout \

| rwfilter stdin --protocol =6 --pass=slow6.rw --fail= stdout \
| rwfilter stdin --protocol =1 --pass=slow1.rw
<3>$ rwfilter medfile .rw --protocol =17 --pass=med17.rw \

--fail= stdout \
| rwfilter stdin --protocol =6 --pass=med6.rw --fail= stdout \
| rwfilter stdin --protocol =1 --pass=med1.rw
<4>$ rwfilter fastfile .rw --protocol =17 --pass= fast17 .rw \

--fail= stdout \
| rwfilter stdin --protocol =6 --pass=fast6.rw --fail= stdout \
| rwfilter stdin --protocol =1 --pass=fast1.rw
<5>$ rwcat slow17 .rw med17.rw fast17 .rw --output -path=all17.rw
<6>$ rwcat slow1.rw med1.rw fast1.rw --output -path=all1.rw
<7>$ rwcat slow6.rw med6.rw fast6.rw --output -path=all6.rw
<8>$ echo -e "\ nProtocol , all , fast , med , slow "; \
for p in 6 17 1; \

do rm -f ,c.txt ,t.txt ,m.txt
echo " count - records -" >,c.txt
for s in all fast med slow; \

do rwfileinfo sp.rw --fields =count - records \
| tail -n1 >,t.txt
join ,c.txt ,t.txt >,m.txt
mv ,m.txt ,c.txt

done
sed -e "s/^ *count - records - */$p ,/" \

-e "s/\([^ ,]*\) ,* */\1 , /g" ,c.txt
done

Protocol , all , fast , med , slow
6, 6327373 , 6280726 , 46274 , 373,
17, 7304579 , 7258750 , 45029 , 800,
1, 131843 , 124221 , 6271 , 1351 ,

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

118 CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

Example 6.12: rwsplit for Coarse Parallel Execution
<1>$ rwfilter --type=inweb , outweb --start -date =2015/6/10 \

--end -date =2015/6/24 --bytes -per - packet =45- \
--pass= stdout \

| rwsplit --flow -limit =400000 --basename =part
keep track of files generated
<2>$ s_list =(skip); \
for f in part *; \
do n=$(basename $f); \
t=${n%.*}; \
rm -f $t{-miss ,-threat ,-casual ,-other }.rw; \
rwfilter $f --anyset = mission .set --pass=$t -miss.rw \

--fail= stdout \
| rwfilter stdin --anyset = threat .set --pass=$t - threat .rw \

--fail= stdout \
| rwfilter stdin --anyset = casual .set --pass=$t - casual .rw; \
s_list =(${ s_list [*]} $t{-miss ,-threat ,- casual }.rw); \
done
<3>$ echo -e "\ nPart -name , mission , threat , casual "; \
prev =" "; \
for f in ${ s_list [*]}; \
do if ["$f" = skip]; \
then continue ; \
fi; \
cur=${f% -*}; \
if ["$prev" != " "]; \
then if ["$cur" != "$prev"]; \
then echo; \
echo -n "$cur , "; \
fi; \
else echo -n "$cur , "; \
fi; \
prev=$cur; \
echo -n $(rwfileinfo --fields =count - records $f | tail -n1 \
| sed -e "s/^ *count - records *//")" , "; \
done; \
echo

Part -name , mission , threat , casual
part .00000000 , 342291 , 2191 , 5741 ,
part .00000001 , 337363 , 2331 , 6036 ,
part .00000002 , 351400 , 1365 , 3403 ,
part .00000003 , 324637 , 1438 , 4880 ,
part .00000004 , 59355 , 9590 , 45748 ,
part .00000005 , 32648 , 9042 , 43983 ,
part .00000006 , 42775 , 13484 , 56446 ,
part .00000007 , 52733 , 11759 , 62119 ,
part .00000008 , 45304 , 13089 , 60488 ,
part .00000009 , 61153 , 3854 , 19262 ,

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

6.2. EXPLORATORY ANALYSIS: ANALYTICS 119

2. Commands 2 through 4 create a file to store the summary results (udpsample.txt), then use the
rwstats command to summarize each sample and isolate the percentage of UDP traffic (protocol
17) in the sample. The results in udpsample.txt are then sorted using the operating system sort
command.

3. Commands 5 through 7 profile the resulting percentages to report the minimum, maximum, and median
percentages of UDP traffic.

Example 6.13: rwsplit to Generate Statistics on Flow Record Files
<1>$ rwfilter --type=in ,inweb --start -date =2015/6/10 \

--end -date =2015/6/24 --proto =0 -255 --pass= stdout \
| rwsplit --flow -limit =1000 --sample -ratio =100 \

--basename = sample --max - outputs =100
<2>$ echo -n >udpsample .txt
<3>$ for f in sample *rwf; \
do rwstats $f --values = records --fields = protocol --count =30 \

--top \
| grep "17|" | cut -f3 "-d|" >>udpsample .txt
done
<4>$ sort -nr udpsample .txt >tmp.txt
<5>$ echo -n "Max UDP %: "; \

head -n 1 tmp.txt
Max UDP %: 83.700000
<6>$ echo -n "Min UDP %: " ; \

tail -n 1 tmp.txt
Min UDP %: 1.700000
<7>$ echo -n " Median UDP %: "; \
head -n 50 tmp.txt \
| tail -n 1
Median UDP %: 68.800000

For more information about the rwsplit command, see Appendix C.12 or enter the command rwsplit
--help.

6.2.6 Generate Flow Records From Text

The rwtuc (Text Utility Converter) tool creates SiLK flow record files from columnar text. rwtuc is effectively
the inverse of rwcut, with additional parameters to supply values not given by the columnar input.

rwtuc is useful when you need to work with tools or scripting languages that manipulate text output. For
example, some scripting languages (Perl in particular) have string-processing functions that may be useful
during an analysis. However, for later processing, you may need to use a binary file format for compactness
and speed. In this situation, you could use rwcut to convert the binary flow record files to text, process the
resulting file with a scripting language, and then use rwtuc to convert the text output back to the binary
flow record format.

If scripting can be done in the Python programming language, the programming interface contained in the
silk module allows direct manipulation of the binary flow records without converting them to text (and

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

120 CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

back again). This binary manipulation is more efficient than text-based scripting.12 See Chapter 8 for more
information on using Python with SiLK.

On the other hand, rwtuc gives you complete control of the binary representation’s content. This is very
useful if you need to cleanse a flow record file before exchanging data13 (for instance, to anonymize IP ad-
dresses). To ensure that unreleasable content is not present in the binary form, an analyst can convert binary
flow records to text, perform any required edits on the text file, and then generate a binary representation
from the edited text. Example 6.14 shows a sample use of rwtuc for anonymizing flow records. After rwtuc
is invoked in command 3, both the file-header information and non-preserved fields have generic or null
values.

Example 6.14: Simple File Anonymization with rwtuc
<1>$ rwfilter --sensor =S0 --type=in --start -date =2015/06/02 \

--end -date =2015/06/18 --protocol =17 \
--bytes -per - packet =100 - --pass= bigflows .rw

<2>$ rwcut bigflows .rw --fields =1-5, stime --num -recs =20 \
| sed -re 's /([0 -9]+\.){3}/192.168.200./g' \

>anonymized .rw.txt
<3>$ rwtuc anonymized .rw.txt --output -path= anonymized .rw
<4>$ rwfileinfo anonymized .rw
anonymized .rw:

format (id) FT_RWIPV6ROUTING (0 x0c)
version 16
byte -order littleEndian
compression (id) lzo1x (2)
header - length 88
record - length 88
record - version 1
silk - version 3.16.0
count - records 20
file -size 512
command -lines

1 rwtuc --output -path= anonymized .rw anonymized .rw.txt
<5>$ rwcut anonymized .rw --fields =sIP ,dIP ,sTime , sensor \

--num -recs =4
sIP| dIP| sTime|sen|

192.168.200.205| 192.168.200.20|2015/06/16 T12 :50:02.144| S0|
192.168.200.5| 192.168.200.20|2015/06/16 T12 :50:03.139| S0|

192.168.200.218| 192.168.200.20|2015/06/16 T12 :50:05.189| S0|
192.168.200.160| 192.168.200.20|2015/06/16 T12 :50:09.997| S0|

rwtuc expects input in the default format for rwcut output. The record fields should be identified either in
a heading line or in a --fields parameter of the call. rwtuc has a --column-separator parameter, with an
argument that specifies the character-separating columns in the input. For debugging purposes, input lines
that rwtuc cannot parse can be written to a file or pipe which the --bad-input-lines option names. For

12In several published examples, analysts encoded non-flow information as binary flow records using rwtuc or PySiLK so that
SiLK commands could be used for the fast filtering and processing of that information.

13Ensuring that data content can be shared is quite complex, and involves many organization-specific requirements. rwtuc
helps with mechanics, but often more transformations are required. The rwsettool command contains parameters ending in
-strip that also help to cleanse IP sets.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

6.2. EXPLORATORY ANALYSIS: ANALYTICS 121

fields not specified in the input, an analyst can either let them default to zero (as shown in Example 6.14,
especially for sensor) or use parameters of the form --FixedValueParameter=FixedValue to set a single fixed
value for that field in all records, instead of using zero. Numeric field IDs are supported as arguments to the
--fields parameter, not as headings in the input file.

For more information about the rwtuc command, see Appendix C.13 or enter the command rwtuc --help.

6.2.7 Labeling Data with Prefix Maps

Some analyses are easier to conceptualize and perform when you assign a text label to data of interest. You
can identify this data and think of it in context by the label you’ve given it, not just as an abstract group
of flow records. You can then filter and perform other operations on the data according to how it is labeled.

SiLK allows you to create a prefix map (often abbreviated as pmap) to assign user-defined text labels to
ranges of IP addresses or protocols and ports. You can use the resulting pmap file to retrieve, partition,
sort, count, and perform other operations on network flow records by their labels. This enables you to work
with data semantically.

What Are Prefix Maps?

A prefix map file is a binary file that maps a value (either an IP address or a protocol-port pair) to a text
label. SiLK supports two general types of prefix maps.

• User-defined prefix maps assign arbitrary text labels to IP addresses or protocol-port combinations.

• Predefined prefix maps are specialized prefix maps that are typically included with the SiLK dis-
tribution and facilitate analysis by country code or traffic direction.

Both types of pmap can be used interchangeably with the rwfilter, rwcut, rwsort, rwuniq, rwstats,
rwgroup, and rwpmaplookup commands to perform operations on SiLK network data according to how it is
labeled.

Comparing Prefix Maps to Sets and Bags. Like SiLK IP sets and bags, prefix maps allow you to
create user-defined groups of IP addresses to facilitate further analysis. However, prefix maps are more
generalized groupings than sets and bags. Where a set creates a binary association between an IP address
and a condition (an address is either in the set or not in the set), and a bag between an IP address and
a numeric value, a prefix map assigns arbitrary, user-defined text labels to many different address ranges.
Prefix maps also expand the type of groupings to include assigning labels to protocol-port ranges.

It is often easier to examine IP addresses by label rather than by whether they belong to a bag or set. For
example, suppose you want to look at traffic from IP addresses that are linked to different types of malware.
You could create multiple IP sets or bags that contain the addresses associated with each type of malware
and compute traffic statistics individually for each set or bag. However, this would be cumbersome and
time-consuming to script.

Alternatively, you could create a single, user-defined pmap file that labels the addresses by the type of
malware that is associated with each address. You could then use the pmap file to filter network flow data
and compute traffic statistics according to the type of malware, all in a single analytic. This is a more
intuitive and easier way to perform that type of analysis.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

122 CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

Creating a User-defined Prefix Map From a Text File

To create a binary prefix map from a text file, use the rwpmapbuild tool. Creating a user-defined pmap is
a two-step process:

1. Create a text file that contains the mapping of IP addresses or protocol-port pairs to their labels.

2. Use the rwpmapbuild command to translate this text-based file into a binary pmap file.

Creating the Text File. Each mapping line in the text file contains either an IP address or protocol-port
pair range with a corresponding label. They are separated by whitespace (spaces and tabs). Include the
following information when creating a text file for use with the rwpmapbuild command:

• The input file may specify a name for the pmap via the line map-name mapname where mapname is the
name of the pmap. Pmap names cannot contain whitespaces, commas, or colons.

• mode specifies the type of pmap.

– ipv4 creates a pmap containing IPv4 addresses

– ipv6 creates a pmap containing IPv6 addresses

– proto-port creates a pmap containing protocol-port pairs

• If you are creating an IP address pmap, specify an address range with either a CIDR block or a
whitespace-separated low IP address and high IP address (formatted in canonical form or as integers).
Specify a single host as a CIDR block with a prefix length of 32 for IPv4 or 128 for IPv6.

• If you are creating a protocol-port pmap, specify a range that is either a single protocol or a protocol
and a port separated by a slash character (/). If the range is a single port, specify that port number
as the starting and ending value of the range. For example, 17/17 specifies general UDP traffic; 17/53
17/53 specifies DNS traffic (UDP on port 53), and 17/67 17/68 specifies DHCP client and server
traffic (UDP on ports 67 and 68).

• Do not use commas, which invalidate the pmap for use with rwfilter.

• Comment lines begin with the pound or hashtag character (#). Do not use this character in text labels.

• The input file may also contain a default label to be used when there is no matching range in the text
file. This default is specified by the line default deflabel, where deflabel is the text label specified by
the analyst for otherwise-unlabeled address ranges.

For more information about the rwpmapbuild command, see Appendix C.23 or enter the command rwpmapbuild
--help.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

6.2. EXPLORATORY ANALYSIS: ANALYTICS 123

Building the Prefix Map File. Example 6.15 shows an example of how to create a prefix map of FCC
network labels from the FCCX dataset described in Section 1.7. The FCC network description is contained
in the file fccnets.pmap.txt. It associates network address ranges with text labels that identify their
subnetwork locations (Div0Ext, Div1Ext, etc.).

In addition to the address list, the text file specifies the prefix map name (map-name fccnets). This name
is used in SiLK commands to identify which prefix map is being used. Using the map name as the name of
the text file and resulting pmap file helps you to keep track of and organize your user-defined prefix maps.
Note also that the text file includes a default label (default None) that is assigned to IP addresses that are
not listed in the FCC network description.

The rwpmapbuild command takes fccnets.pmap.txt as input to create a binary pmap file, fccnets.pmap.

Example 6.15: Using rwpmapbuild to Create a FCC Pmap File
<1>$ cat <<-EOF >fccnets .pmap.txt
map -name fccnets
default None

FCC network descriptions
10.0.10.0/24 Div0Ext
10.0.20.0/24 Div0Ext
10.0.30.0/24 Div0Ext
10.0.40.0/24 Div0Ext
10.0.50.0/24 Div0Ext
192.168.10.0/24 Div1Ext
192.168.20.0/24 Div1Ext
192.168.30.0/24 Div1Ext
192.168.40.0/24 Div1Ext
192.168.50.0/24 Div1Ext
192.168.60.0/24 Div1Ext
192.168.70.0/24 Div1Ext
192.168.110.0/23 Div1Ext
192.168.120.0/23 Div1Ext
192.168.122.0/23 Div1Ext
192.168.124.0/24 Div1Ext
192.168.130.0/23 Div1Ext
192.168.140.0/23 Div1Ext
192.168.142.0/23 Div1Ext
192.168.150.0/23 Div1Ext
192.168.160.0/23 Div1Ext
192.168.162.0/23 Div1Ext
192.168.164.0/23 Div1Ext
192.168.166.0/24 Div1Ext
192.168.170.0/24 Div1Ext
10.0.40.0/24 Div0Int
10.0.50.0/24 Div0Int
192.168.20.0/24 Div1Int1
192.168.40.0/24 Div1Int1
192.168.50.0/24 Div1Int1
192.168.60.0/24 Div1Int1
192.168.70.0/24 Div1Int1
192.168.110.0/23 Div1Int1
192.168.120.0/23 Div1Int1

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

124 CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

192.168.122.0/23 Div1Int1
192.168.124.0/24 Div1Int1
192.168.130.0/23 Div1Int1
192.168.140.0/23 Div1Int1
192.168.142.0/23 Div1Int1
192.168.150.0/23 Div1Int1
192.168.160.0/23 Div1Int1
192.168.162.0/23 Div1Int1
192.168.164.0/23 Div1Int1
192.168.166.0/24 Div1Int1
192.168.170.0/24 Div1Int1
192.168.60.0/24 Div1Int2
192.168.110.0/23 Div1Int2
192.168.120.0/23 Div1Int2
192.168.122.0/23 Div1Int2
192.168.124.0/24 Div1Int2
192.168.130.0/23 Div1Int2
192.168.140.0/23 Div1Int2
192.168.142.0/23 Div1Int2
192.168.150.0/23 Div1Int2
192.168.160.0/23 Div1Int2
192.168.162.0/23 Div1Int2
192.168.164.0/23 Div1Int2
192.168.166.0/24 Div1Int2
192.168.170.0/24 Div1Int2
192.168.121.0/24 Div1log1
192.168.122.0/24 Div1log2
192.168.123.0/24 Div1log3
192.168.124.0/24 Div1log4
192.168.141.0/24 Div1ops1
192.168.142.0/24 Div1Ext0
192.168.143.0/24 Div1Ext1
192.168.40.0/24 Div1Ext2
192.168.111.0/24 Div1Ext3
192.168.20.0/24 Div1Ext4
192.168.164.0/24 Div1Ext5
192.168.166.0/24 Div1Ext6
192.168.165.0/24 Div1Ext7
192.168.50.0/24 Div1Ext8
192.168.161.0/24 Div1Ext9
192.168.162.0/24 Div0Int0
192.168.163.0/24 Div0Int1
EOF
<2>$ rwpmapbuild --input -file= fccnets .pmap.txt \

--output -file= fccnets .pmap
<3>$ file fccnets .pmap.txt fccnets .pmap
fccnets .pmap.txt: ASCII text
fccnets .pmap: SiLK , PREFIXMAP v2 , Little Endian , Uncompressed

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

6.2. EXPLORATORY ANALYSIS: ANALYTICS 125

Predefined Prefix Maps: Country Codes and Address Types

SiLK has two predefined prefix maps to facilitate common analyses: filtering by country codes and by address
types (internal, external, non-routable). They can be used as input to SiLK commands just like user-defined
pmaps.

Filtering by Country Code. Country codes identify the nations where IP addresses are registered and
are used by the Root Zone Database (e.g., see https://www.iana.org/domains/root/db). They are described
in a country_codes.pmap file in the share directory underneath the directory where SiLK was installed or
in the file specified by the SILK_COUNTRY_CODES environment variable.

If the current SiLK installation does not have this file, either contact the administrator that installed SiLK
or look up this information on the Internet.14 Country code maps are not in the normal pmap binary format
and cannot be built using rwpmapbuild.

Filtering Internal, External, and Non-routable Addresses. For common separation of addresses
into specific types, normally internal versus external, a special pmap file may be built in the share directory
underneath the directory where SiLK was installed. This file, address_types.pmap, contains a list of CIDR
blocks that are labeled internal, external, or non-routable.

The rwfilter parameters --stype or --dtype use this pmap to isolate internal and external IP addresses.
The rwcut parameter --fields specifies the display of this information when its argument list includes
sType or dType. A value of 0 indicates non-routable, 1 is internal, and 2 is external. The default value
is external.

Using Prefix Maps to Filter Flow Records

You can use prefix maps to filter network flow records with the rwfilter command. This allows you to pull
and partition SiLK repository data based on how it is labeled.

The pmap provides context for filtering network traffic and allows you to perform complex filtering operations
in a single analytic. For example, you could create a user-defined pmap that labels IP addresses in network
spaces of interest (such as the one created in Example 6.15) and filter records based on their subnetworks.
You could use the predefined country code pmap (country_codes.pmap) to filter source or destination IP
addresses based on their country of origin. You could create a user-defined port-protocol pmap to filter
records for specific port and protocol combinations in order to search for unusual protocols. These types of
analysis are easier to perform with data that is labeled via prefix map.

rwfilter supports four pmap parameters.

• --pmap-file specifies which compiled prefix map file to use and optionally associates a mapname with
that pmap. This switch must be specified before the other prefix map switches.

• --pmap-any-mapname specifies the the set of labels used to filter records based on both source and
destination IP addresses. Any source or destination IP addresses that matches an IP address with the
specified label passes the filter.

14One such source is the GeoIP® Country database or free GeoLite™ database created by MaxMind® and available at
https://www.maxmind.com/; the SiLK tool rwgeoip2ccmap converts this file to a country-code pmap.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

https://www.iana.org/domains/root/db
https://www.maxmind.com/

126 CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

• --pmap-src-mapname and --pmap-dst-mapname specify the set of labels for filtering by source or
destination IP address, respectively. mapname is the name given to the pmap during construction or
in --pmap-file. The --pmap-file parameter must come before any use of the mapname in other
parameters.

Example 6.16 shows how to use the fccnets.pmap file from Example 6.15 to select flow records associated
with web traffic from hosts on the subnetwork Div1Int1 in the FCC network.

1. The initial call to rwfilter pulls all flow records from the date of interest (--start-date=2015/06/17)
that contain inbound and outbound web traffic (--type=inweb,outweb).

2. The output goes to a second rwfilter command that uses the --pmap-file parameter to load the
file fccnets.pmap and create the mapname fccnets. The --pmap-any-fccnets=Div1Int1 parameter
filters for all flow records whose source IP address or destination IP address matches any of the
IP addresses with the label Div1Int1 in the pmap file. These source and destination IP addresses
represent traffic that flows into, within, and out of the hosts on the Div1Int1 subnet. (Note that the
--pmap-file parameter comes before the --pmap-any parameter.)

3. Records that pass the pmap-based filter are saved in fccnets.rw.

Example 6.16: Using Pmap Parameters with rwfilter
<1>$ rwfilter --start -date =2015/06/17 --type=inweb , outweb \

--protocol =6 --pass= stdout \
| rwfilter stdin --pmap -file= fccnets : fccnets .pmap \

--pmap -any - fccnets = Div1Int1 --pass= fccnets .rw
<2>$ rwfileinfo fccnets .rw --fields =count - records
fccnets .rw:

count - records 722193

Displaying Prefix Values

To view the actual value of a prefix map label, use the rwcut command with the --pmap-file parameter. It
takes an argument of a filename or a map name coupled to a filename with a colon. The map name typically
comes from the argument for --pmap-file; if none is specified there, the name in the source file applies.

The --pmap-file parameter adds src-mapname and dst-mapname as arguments to --fields. Essentially,
it tells rwcut to treat the pmap value as just another flow record field. The --pmap-file parameter
must precede the --fields parameter. The two pmap fields display labels associated with the source and
destination IP addresses.

Example 6.17 shows how to display the prefix labels for IP addresses in the flow record file fccnets.rw
(created in Example 6.16). The names of the pmap and its file (--pmap-file=fccnets:fccnets.pmap) are
specified.

Sorting, Counting, and Grouping Records with Prefix Maps

You can also count, sort, and group flow records by prefix value. This lets you work with network data
according to how it is labeled in the prefix map, which can be easier and more intuitive than some of the

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

6.2. EXPLORATORY ANALYSIS: ANALYTICS 127

Example 6.17: Viewing Prefix Map Labels with rwcut
<1>$ rwcut fccnets .rw --pmap -file= fccnets : fccnets .pmap \

--fields =src -fccnets ,sPort ,dIP ,dPort --num -recs =5
src - fccnets |sPort| dIP|dPort|

Div1Int1 |50373| 10.0.20.59| 80|
Div1Int1 |63440| 10.0.20.59| 80|
Div1Int1 |57862| 10.0.20.59| 80|
Div1Int1 |62669| 10.0.20.59| 80|
Div1Int1 |54211| 10.0.20.59| 80|

other methods for summarizing data. The rwsort, rwgroup, rwstats, and rwuniq tools all work with prefix
maps. The prefix map parameters are the same as those used in the rwcut command and sort, group, and
count records according to the values in the prefix map file.

Example 6.18 sorts flow records by the prefix value defined in fccnets.pmap for source IP addresses and
bytes (--fields=src-fccnets,bytes). It then uses the rwcut command to display the pmap labels and
port numbers. The first five records in the data file are displayed.

Notice that the results in Example 6.18 list None as their label. This is the default label from Example 6.15
that was assigned to IP addresses that are not included in the pmap. It indicates that these source IP
addresses do not belong to the FCC network space. However, they exchanged traffic with hosts that are
labeled as belonging to Div1Int1 on the FCC network. Because the rwfilter command in Example 6.16
filtered for all records that contained IP addresses labeled as Div1Int1 in the pmap, it included records
where either the source or destination IP address was not part of this subnetwork.

Example 6.18: Sorting by Prefix Map Labels
<1>$ rwsort fccnets .rw --pmap -file= fccnets : fccnets .pmap \

--fields =src -fccnets ,bytes \
| rwcut --pmap -file= fccnets .pmap --fields =src -fccnets ,sport \

--num -recs =5
src - fccnets |sPort|

None |55862|
None |55862|
None |54392|
None |54393|
None |54394|

Example 6.19 shows how to count the number of records in the file fccnets.rw with labels defined in
fccnets.pmap. Records without a label are listed as None. It also displays the destination port and the
number of distinct destination IP addresses.

Again, the rwuniq command counts records with source or destination IP addresses that are not part of the
Div1Int1 subnet. Because these hosts communicated with hosts on the Div1Int1 subnet, they are included
in the count. The records in this case all are filtered to be TCP traffic, which makes the port numbers
meaningful. TCP and UDP are the main protocols that use ports, and so are the most common ones for
port/protocol pmaps. SiLK does encode ICMP type and Code into the destination port (sometimes the
source port), so ICMP port/protocol pmaps are also used by some analysts.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

128 CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

Example 6.19: Counting Records by Prefix Map Labels
<1>$ rwuniq fccnets .rw --pmap -file= fccnets : fccnets .pmap \

--fields =src -fccnets ,dPort --values =flows ,dIP - Distinct \
| head -n 5
src - fccnets |dPort| Records |dIP - Distin |

Div0Ext |52963| 8| 1|
None |57113| 4| 1|
None |58924| 12| 1|

Div1Int1 |55777| 2| 1|

Querying Prefix Map Labels

When using prefix maps, you may need to look up which labels correspond to specific IP addresses or
protocol-port pairs. Use the rwpmaplookup command to query prefix map files—either user-defined pmaps
or one of the two predefined pmaps that often are created as part of the SiLK installation (country codes
and address types).

You can query a pmap with rwpmaplookup by doing one of the following:

• specify the addresses or protocol-port pairs in a text file (the default),

• use the --ipset-files parameter to query the addresses in one or more IP sets,

• use the --no-files parameter to list the addresses or protocol-port pairs to be queried directly on the
command line.

In any of these cases, one and only one of --country-codes, --address-types, or --map-name is used.

IP addresses are specified as described earlier in this section. For protocol-port pmaps, only the names of text
files having lines in the format protocolNumber/portNumber or the --no-files parameter followed by strings
in the same format are accepted. protocolNumber must be an integer in the range 0–255, and portNumber
must be an integer in the range 0–65,535.

If the prefix map being queried is a protocol-port pmap, it makes no sense to query it with an IP set.
rwpmaplookup prints an error and exits if --ipset-files is given.

Example 6.20 shows how to use rwpmaplookup.

• Command 1 creates a list of IP addresses and stores it in the file ips_to_find.

• Command 2 uses rwpmaplookup to find the country codes associated with these addresses. If an IP
address is not listed in the country code pmap, the command returns -- as its value.

• Command 3 looks up the address types of the IP addresses. The first address has a value of 1, indicating
an internal address. The second address has a value of 2, indicating an external address. The third
address has a value of 0, indicating a non-routable address.

• Commands 4 and 5 build a protocol-port prefix map.

• Command 6 looks up protocol/port pairs from the command line.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

6.2. EXPLORATORY ANALYSIS: ANALYTICS 129

Example 6.20: Query Addresses and Protocol/Ports with rwpmaplookup
<1>$ cat <<END_FILE >ips_to_find
192.88.209.244
128.2.10.163
127.0.0.1
END_FILE
<2>$ rwpmaplookup --country -codes ips_to_find

key|value|
192.88.209.244| us|

128.2.10.163| us|
127.0.0.1| --|

<3>$ rwpmaplookup --address -types ips_to_find
key|value|

192.88.209.244| 1|
128.2.10.163| 2|

127.0.0.1| 0|
<4>$ cat <<END_FILE >mini_icmp .pmap.txt
map -name miniicmp
default Unassigned
mode proto -port
1/0 1/0 Echo Response
1/768 1/768 Net Unreachable
1/769 1/769 Host Unreachable
1/2048 1/2048 Echo Request
END_FILE
<5>$ rwpmapbuild --input -file= mini_icmp .pmap.txt --output -file= mini_icmp .pmap
<6>$ rwpmaplookup --map -file= mini_icmp .pmap --no -files 1/769 1/1027

key| value|
1/769| Host Unreachable |

1/1027| Unassigned |

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

130 CHAPTER 6. ADVANCED EXPLORATORY ANALYSIS

For more information about the rwpmaplookup command, see Appendix C.24 or enter the command rwpmaplookup
--help.

6.2.8 Translating IDS Signatures into rwfilter Calls

Traditional intrusion detection depends heavily on the presence of payloads and signatures: distinctive packet
data that can be used to identify a particular intrusion tool. In general, the SiLK tool suite is intended
for examining trends. However, it it can also be used to identify specific intrusion tools. While directed
intrusions are still a threat, tool-based, broad-scale intrusions are more common. Sometimes it is necessary
to translate an intrusion signature into SiLK filtering rules; this section describes some standard guidelines
to accomplish this task.

To convert signatures, consider the intrusion tool behavior as captured in a signature:

• What service is it targeting? This can be converted to a port number.

• What protocol does it use? This can be converted to a protocol number.

• Does it involve several protocols? Some tools, malicious and benign, will use multiple protocols, such
as TCP and ICMP.

• What about packets? Buffer overflows are a depressingly common form of attack and are a function
of the packet’s size as well as its contents. Identifying a specific packet size can help you to figure out
which intrusion tool (or tools) may have been employed for the attack.

Hint: When working with packet sizes, remember that the SiLK suite includes packet headers.
For example, a 376-byte UDP payload will be 404 bytes long after adding 20 bytes for
the IP header and eight bytes for the UDP header.

• How large are sessions? An attack tool may use a distinctive session each time (for example, a session
of 14 packets with a total size of 2,080 bytes).

The rwidsquery command supports direct translation of rules and alert logs from the SNORT® intrusion
detection system (IDS) into rwfilter queries. This helps an analyst examine network behavior shortly
before, during, and after an alert is generated. Look for possible event triggers as well as behaviors that
show the alert to be a false positive.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

Chapter 7

Case Studies: Advanced Exploratory
Analysis

This chapter features a detailed case study of exploratory analysis, using concepts from previous chapters.
The study employs the SiLK workflow, SiLK tools, UNIX commands, and networking concepts to provide a
practical example of exploratory analyses with network flow data.

Upon completion of this chapter you will be able to

• describe how to use single-path and multi-path analyses as the building blocks of an exploratory analysis

• execute these analyses with various SiLK tools in one automated program

Each level of the exploratory analysis case is posed as a question. The case study builds upon the answers
to these questions to investigate unusual network traffic and revealing changes of network behavior.

Like the previous case studies and command examples, the exploratory analysis case study uses the FCCX
dataset described in Section 1.7. From the diagram in Figure 7.1, we know that sensors S0 through S4monitor
the operating network. These sensors are part of the inventory generated via the example in Chapter 5.

131 [DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

132 CHAPTER 7. ADVANCED CASE STUDY

Figure 7.1: FCC Network Diagram

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

7.1. LEVEL 0: WHICH TCP REQUESTS ARE SUSPICIOUS? 133

7.1 Level 0: Which TCP Requests are Suspicious?

In the initial phase of our exploratory analysis, we want to identify which TCP requests might represent
illegitimate traffic. For most services, the flows containing client requests tend to be close in number with
those containing responses to those requests. We will exploit this tendency to identify irregular traffic.

In particular, we want to look at traffic on service ports to find out which ports carry a much higher volume
of inbound data than outbound data. This is one of the fingerprints (or indicators) of network scanning
and several other behaviors that may be of concern. However, although this traffic imbalance is outside the
range of typical behavior, it may not represent malicious activity. We need to identify these ports to take a
closer look at their TCP traffic and to assess any impact it might have.

Example 7.1 shows how to find this type of data anomaly with SiLK. We will retrieve inbound and outbound
TCP requests on all network ports, then find the ports that have a much higher level of inbound requests
than outbound requests.

1. Command 1 uses rwfilter to pull inbound TCP (protocol 6) traffic for sensors S0 through S4 sent
to all reserved ports (0 - 1023), which are dedicated to network services. It pipes the results to the
rwuniq command, which counts flows and bytes for each destination port, then sorts the results to
present the ports in ascending order.

2. Similarly, command 2 uses rwfilter to pull outbound TCP traffic and rwuniq to count and sort traffic
for each source port.

3. Comparing the corresponding ports in the results for commands 1 and 2, we see that most of the
service ports carry similar levels of inbound and outbound TCP traffic. However, ports 21, 22, and
591 carry higher inbound than outbound TCP traffic.

Activity on these ports will be investigated further.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

134 CHAPTER 7. ADVANCED CASE STUDY

Example 7.1: Looking for Service Ports with Higher Inbound than Outbound TCP Traffic
<1>$ rwfilter --sensor =S0 ,S1 ,S2 ,S3 ,S4 --start =2015/06/01 \

--end =2015/06/30 --type=in --proto =6 --dport =0 -1023 \
--pass= stdout \

| rwuniq --fields =dport --values =flows ,bytes --sort
dPort| Records | Bytes|

21| 6184| 418452|
22| 6180| 481760|
53| 35| 88237|
88| 47187| 74586782|

135| 6996| 6940590|
137| 6064| 364320|
139| 57313| 93274792|
389| 22095| 118221682|
445| 81039| 363318703|
591| 112702| 76762887|

<2>$ rwfilter --sensor =S0 ,S1 ,S2 ,S3 ,S4 --start =2015/06/01 \
--end =2015/06/30 --type=out --proto =6 --sport =0 -1023 \
--pass= stdout \

| rwuniq --fields =sport --values =flows ,bytes --sort
sPort| Records | Bytes|

21| 200| 28288|
22| 204| 99024|
53| 35| 18860|
88| 47184| 76069648|

135| 6991| 4052306|
137| 80| 3200|
139| 51631| 47100178|
389| 22214| 110222710|
445| 75426| 205229733|
591| 55161| 17580192|

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

7.2. LEVEL 1: HOW CAN WE IDENTIFY AND REACT TO ILLEGITIMATE REQUESTS? 135

7.2 Level 1: How Can We Identify and React to Illegitimate Re-
quests?

The nest step in our exploratory analysis is to separate normal and abnormal TCP requests on the service
ports identified in Section 7.1. Specifically, we need to identify mismatched TCP flows: flows that have
either no request or no response. These flows are odd, and worth examining to see if they are malicious.
The goal is to describe this behavior in a way that supports further analysis.

Example 7.2 shows how to detect mismatched flows and identify the IP addresses of their sources, contrasting
those addresses with sources of matched flows.

1. Command 1 uses rwfilter to pull inbound TCP traffic for sensors S0 through S4 on the suspect
destination ports 21, 22, and 591. It then uses rwsort to sort this traffic by source IP address,
destination port, destination IP address, source port, protocol, and start time. The sorted inbound
flow records are saved in the file app-in.raw. This sort order sets up the data for matching in command
3.

2. Similarly, command 2 uses rwfilter to pull outbound TCP traffic for the sensors and ports of interest.
It sorts this traffic by destination IP address, source port, source IP address, protocol, and start time.
The sorted outbound flow records are saved in the file app-out.raw. This sort order allows records to
be matched efficiently with those from command 1, using rwmatch.

3. To find mismatched flows, command 3 uses rwmatch to match queries in the inbound TCP flows in
app-in.raw to responses in the outbound TCP flows in app-out.raw. Mismatched flows that do not
belong to sessions can indicate illegitimate activity.

• --relate=1,2 matches the inbound source IPs to the outbound destination IPs.
• --relate=2,1 matches the inbound destination IPs to the outbound source IPs.
• --relate=3,4 matches the inbound source ports to the outbound destination ports.
• --relate=4,3 matches the inbound destination ports to the outbound source ports.
• --relate=5,5 matches the inbound and outbound protocols.
• --unmatched=b saves the unmatched inbound and outbound records instead of discarding them.

These unmatched records are the ones we will want to investigate for illegitimate behavior.

The matched records are indicated by setting the (mostly unused) next-hop IP address. Rather than
a real IP address, rwmatch uses 0 followed by a positive integer value for a request, and 255 followed
by the corresponding integer for a response. For a request without a response, rwmatch uses 0.0.0.0
for a response without a request, rwmatch uses 255.0.0.0. Command 3 then calls rwsort to sort the
matched records by start time and saves them in a temporary file, temp-match.raw.

4. Command 4 runs rwfilter on temp-match.raw to filter records that have a next-hop IP indicating
unmatched inbound requests, then saves these records in temp-noresp.raw. A second call to rwfilter
filters records that have a next-hop IP indicating unmatched outbound responses, then saves those
records in temp-noreq.raw. The records that fail both filters represent flows with matching responses
and are saved in app-match.raw.

5. Command 5 runs the rwstats command on temp-noresp.raw to display information about the top
five source IP addresses and destination ports of flows with no response flows. Since there are only two
source IP addresses in this data (one with two destination ports), only three are displayed.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

136 CHAPTER 7. ADVANCED CASE STUDY

6. Command 6 runs the rwstats command on app-match.raw to display information about the top five
source IP addresses and source ports of flows that do have matching query and response flows. Since
there are 3,848 source IP addresses for the matching records, the top five are shown. None of these are
the sources for the unmatched records.

Given the distribution of source addresses between the matched and unmatched traffic, these sources are
clearly worth investigating further.

Example 7.2: Identifying Abnormal TCP Flows and their Originating Hosts
<1>$ rwfilter --sensor =S0 ,S1 ,S2 ,S3 ,S4 --start =2015/06/01 \

--end =2015/06/30 --type=in --proto =6 --dport =21 ,22 ,591 \
--pass= stdout \

| rwsort --fields =sip ,dport ,dip ,sport ,protocol ,stime \
--output =app -in.raw

<2>$ rwfilter --sensor =S0 ,S1 ,S2 ,S3 ,S4 --start =2015/06/01 \
--end =2015/06/30 --type=out --proto =6 --sport =21 ,22 ,591 \
--pass= stdout \

| rwsort --fields =dip ,sport ,sip ,dport ,protocol ,stime \
--output =app -out.raw

<3>$ rwmatch --relate =1,2 --relate =2,1 --relate =3,4 --relate =4,3 \
--relate =5,5 --unmatched =b app -in.raw app -out.raw stdout \

| rwsort --fields =stime --output =temp -match.raw
<4>$ rwfilter temp -match.raw --next =0.0.0.0 \

--pass=temp - noresp .raw --fail= stdout \
| rwfilter stdin --next =255.0.0.0 --pass=temp -noreq.raw \

--fail=app -match.raw
<5>$ rwstats --fields =sip ,dport --values =flows --count =5 \

temp - noresp .raw
INPUT: 69810 Records for 3 Bins and 69810 Total Records
OUTPUT : Top 5 Bins by Records

sIP|dPort| Records | % Records | cumul_ %|
10.0.40.21| 591| 57582| 82.483885| 82.483885|

192.168.181.8| 22| 6180| 8.852600| 91.336485|
192.168.181.8| 21| 6048| 8.663515|100.000000|

<6>$ rwstats --fields =sip ,sport --values =flows --count =5 \
app -match.raw

INPUT: 110478 Records for 3848 Bins and 110478 Total Records
OUTPUT : Top 5 Bins by Records

sIP|sPort| Records | % Records | cumul_ %|
192.168.165.216| 591| 1708| 1.546009| 1.546009|
192.168.161.124| 591| 1691| 1.530621| 3.076631|
192.168.122.195| 591| 1663| 1.505277| 4.581908|
192.168.122.141| 591| 1657| 1.499846| 6.081754|

192.168.121.57| 591| 1657| 1.499846| 7.581600|

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

7.3. LEVEL 2: WHAT ARE THE ILLEGITIMATE SOURCES AND DESTINATIONS DOING? 137

7.3 Level 2: What are the Illegitimate Sources and Destinations
Doing?

In the next part of our exploratory analysis, we will investigate the activities of the illegitimate source and
destination hosts identified in Section 7.2 to see what patterns emerge.

7.3.1 Level 2A: What are the Illegitimate Source IPs Doing?

First, we will take a look at activity on the illegitimate destination IP addresses. As shown in Example 7.3,
we will find the sources of illegitimate traffic and look at the network behavior associated with scanning.
Scan queries typically have low byte counts and often lack corresponding responses, since the scanned hosts
lack the service being sought.

1. Command 1 calls rwbag and rwbagtool --coverset to create a set of source IPs that did not have
matching queries (noresp.set). As input, it uses the file of no-response flows created in Section 7.2
(temp-noresp.raw).

2. Command 2 calls rwfilter to pull records coming from the source IP addresses noresp.set—in other
words, records with source IPs that produced unmatched flows. It saves these records in sources.raw.

3. To find the actual scanning flows, command 3 uses rwfilter on sources.raw to filter flows with
very low byte counts (0-60 bytes), indicating those with only a header, or with a header and optional
extensions. It then uses the rwuniq command to profile these flows and saves the results in source.txt.
This file is human readable, and contains a breakdown by protocol and bytes per flow, showing how
many hosts were the destination of these flows, when the earliest of them started, and when the latest
ended.

A copy of the low-volume flows is sent to a second call to rwuniq to save the earliest start and latest end
times of the flows from each source IP to the file source-fields.txt. The output here is generated
without column headings and vertical bar delimiter to facilitate processing by commands 5-9. As it
happens, all of these low-volume flows come from a single source IP address, so the source-fields.txt
only contains one line.

4. Command 4 displays the contents of the human-readable profile. There are several features in this
output:

• There are few distinct byte sizes in these results: only one for TCP flows, and only two for UDP
flows.

• The TCP flows are by far the most numerous, and go to by far the most distinct addresses.

• The earliest start times are all within a one minute range.

• The latest end times are all within a five second span.

These results support an interpretation of this behavior as scan traffic, and of a common direction
behind this traffic. That all of these flows come from a single source IP address further supports this
interpretation.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

138 CHAPTER 7. ADVANCED CASE STUDY

Example 7.3: Finding Activity of Illegitimate Destination IP Addresses
<1>$ rwbag --bag -file=sipv4 ,flows , stdout temp - noresp .raw \
| rwbagtool --coverset --output = noresp .set
<2>$ rwfilter --sensor =S0 ,S1 ,S2 ,S3 ,S4 --start =2015/06/01 \

--end =2015/06/30 --type=in ,out --sipset = noresp .set \
--pass= sources .raw

<3>$ rwfilter sources .raw --bytes =0 -60 --pass= stdout \
| rwuniq --fields =protocol ,bytes \

--values =flows , distinct :dip ,stime -earliest ,etime - latest \
--sort --output = sources .txt --copy= stdout \

| rwuniq --fields =sip --values =stime -earliest ,etime - latest \
--no - titles --delim=' ' --output =source - fields .txt

<4>$ cat sources .txt
pro| bytes| Records |dIP - Distin | sTime - Earliest | eTime - Latest |

6| 60| 29492| 768|2015/06/17 T16 :12:58|2015/06/17 T16 :41:21|
17| 29| 68| 17|2015/06/17 T16 :13:54|2015/06/17 T16 :41:21|
17| 42| 136| 17|2015/06/17 T16 :13:54|2015/06/17 T16 :41:26|

<5>$ srcArray =($(cat source - fields .txt))

7.3.2 Level 2B: What Behavior Changes do Destination IPs Show?

Next, we will investigate traffic patterns on the destination hosts (the targets of the scans). Using the start
times and end times of the scan from Example 7.3, we will look at traffic patterns before and afterwards as
shown in Example 7.4.

1. Commands 1 through 5 locate the start times (StTime, StEpoch) and end times (EnTime, EnEpoch),
using the source-fields.txt file created in Example 7.3. This identifies the“before” and “after”
boundaries of the scan.

• Command 1 stores the contents of the file (one line) in a shell array for ease of reference to the
fields.

• Command 2 converts the earliest start time of the scan into an integer epoch value (number of
seconds since Midnight January 1, 1970). This format is used to make it easy to calculate.

• Command 3 subtracts one from the epoch value to get a time briefly before the scan activity
started, then uses the string processing language awk to convert the epoch date back into a SiLK
formatted date.

• Commands 4 and 5 do an analogous process to commands 2 and 3, but with the ending time of
the scanning activity, producing a value just after the scanning ended.

2. Command 6 uses rwfilter to pull inbound and outbound non-web traffic for the destination IPs in
noresp.set in the time window before the start of the scan, saving these flows to dest-before.raw.

3. Command 7 uses rwfilter to pull inbound and outbound traffic for the illegitimate IPs in noresp.set
in the time window after the end of the scan, saving these files to dest-after.rw.

4. For clarity of display, command 8 calls rwuniq, then uses the head command to pull off the column
headers and store them in the file myhead.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

7.3. LEVEL 2: WHAT ARE THE ILLEGITIMATE SOURCES AND DESTINATIONS DOING? 139

Example 7.4: Finding Changed Behavior in Destination IPs
<1>$ srcArray =($(cat source - fields .txt))
<2>$ StEpoch =$(date -d ${ srcArray [1]} +"%s")
<3>$ StTime =$(echo $(($StEpoch - 1)) | awk '{print \

strftime ("%Y/%m/%dT%T",$1)}')
<4>$ EnEpoch =$(date -d ${ srcArray [2]} +"%s")
<5>$ EnTime =$(echo $(($EnEpoch + 1)) | awk '{print \

strftime ("%Y/%m/%dT%T",$1)}')
<6>$ rwfilter --sensor =S0 ,S1 ,S2 ,S3 ,S4 --start =2015/06/01 \

--end =2015/06/30 --type=in ,out --dipset = noresp .set \
--etime =2015/06/01 -2015/06/17 T09 :12:57 \
--pass=dest - before .raw

<7>$ rwfilter --sensor =S0 ,S1 ,S2 ,S3 ,S4 --start =2015/06/01 \
--end =2015/06/30 --type=in ,out --dipset = noresp .set \
--stime =2015/06/17 T09 :41:27 -2015/06/30 \
--pass=dest -after.raw

<8>$ rwuniq --fields =bytes , protocol \
--values =Flows , distinct :sip , distinct :dip dest - before .raw \
| head -1 >myhead

<9>$ cat myhead ; \
rwuniq --fields =bytes , protocol \

--values =Flows , distinct :sip , distinct :dip --sort \
dest - before .raw \

| tail -5
bytes|pro| Records |sIP - Distin |dIP - Distin |

884| 17| 2| 1| 1|
988| 1| 4| 1| 1|

1028| 17| 5| 2| 1|
1326| 17| 1| 1| 1|
1976| 1| 3| 1| 1|

<10>$ cat myhead ; \
rwuniq --fields =bytes , protocol \

--values =Flows , distinct :sip , distinct :dip --sort \
dest -after.raw \

| tail -5
bytes|pro| Records |sIP - Distin |dIP - Distin |

5128| 1| 8| 2| 1|
5488| 1| 4| 1| 1|
5756| 1| 4| 1| 1|
5844| 1| 4| 1| 1|
6020| 1| 4| 1| 1|

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

140 CHAPTER 7. ADVANCED CASE STUDY

5. After displaying the column headers with cat, command 9 uses rwuniq to calculate the counts of
flows for each byte size in dest-before.rw, which contains data from the time period before the start
of scanning. It sorts the byte sizes in ascending order, then calls tail to display the largest flows.
(Because we use tail for this, we had to separately save and display the column headers; without that,
no column labels would be shown.)

6. To profile network behavior after scanning, command 10 uses rwuniq to find the flows with the largest
byte sizes in the file dest-after.rw, which contains data from the time period after scanning ended.

7.4 Level 3: What are the Commonalities Across The Cases?

Our exploratory analysis of the network traffic shows likely scanning behavior during a tight time frame: a
28-minute interval, ending within a few seconds.

A further look at the results reveals a definite change in behavior of the suspected scanners. One IP address
is active before and during the scan. Another is active after, with much larger flows to the destination after
the scan completed. All of this is highly suspicious. Even more concerning, the large traffic after the scan
is all ICMP traffic (which is normally quite modest in size). These large ICMP flows are highly unusual for
any benign purpose.

Future areas for investigation include

• looking for additional hosts that exhibit behavior that is similar to the scan/exploit hosts, during the
periods before and after the scan

• investigating the behavior of the scan and exploit hosts for further confirmation of their malicious
character

• looking for other activities associated with the scan/exploit hosts. What else are they up to?

As the analysis continues, these areas will likely suggest others to be explored. One difficulty here is knowing
when to stop. Analysts need to keep the desired level of output firmly in mind, steering their explorations
to provide suitable results. They need to stop either when those results are found (a likely compromise
is identified, a sufficient understanding of the service has resulted, or interactions across the network are
understood), or when it is clear no such results will emerge (i.e., everything is benign).

In this case, having identified a definite change in behavior, the analysis has reached its end. Information
about the affected hosts could then be passed to incident handlers or system administrators for response.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

Chapter 8

Extending the Reach of SiLK with
PySiLK

This chapter discusses how to use PySiLK, the SiLK Python extension, to support analyses that are difficult
to implement within the normal constraints of the SiLK tool suite. Sometimes, an analyst needs to use
parts of the SiLK suite’s native functionality in a modified way. The capabilities of PySiLK simplify these
analyses.

This chapter does not discuss the issues involved in composing new PySiLK scripts or how to code in the
Python programming language. Several example scripts are shown, but the detailed design of each script
will not be presented here.

Upon completion of this chapter, you will be able to

• explain the purpose of PySiLK in analysis

• use and modify PySiLK plug-ins to match records in rwfilter

• use and modify PySiLK plug-ins to add fields for rwcut and rwsort

• use and modify PySiLK plug-ins to add key fields and summary values for rwuniq and rwstats

Additional PySiLK and Python programming language resources include

• a brief guide to coding PySiLK plug-ins, provided by the silkpythonmanual page (see man silkpython
or Section 3 of The SiLK Reference Guide at https://tools.netsa.cert.org/silk/reference-guide.pdf)

• detailed descriptions of the PySiLK structures, provided in PySiLK: SiLK in Python (https://tools.
netsa.cert.org/silk/pysilk.pdf)

• larger PySiLK examples, provided in the PySiLK “tooltips” webpage (https://tools.netsa.cert.org/
confluence/display/tt/Writing+PySiLK+scripts)

• generic programming in the Python programming language, as described in many locations on the
web, particularly on the Python official website (https://www.python.org/doc/)

141 [DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

https://tools.netsa.cert.org/silk/reference-guide.pdf
https://tools.netsa.cert.org/silk/pysilk.pdf
https://tools.netsa.cert.org/silk/pysilk.pdf
https://tools.netsa.cert.org/confluence/display/tt/Writing+PySiLK+scripts
https://tools.netsa.cert.org/confluence/display/tt/Writing+PySiLK+scripts
https://www.python.org/doc/

142 CHAPTER 8. EXTENDING SILK

8.1 Using PySiLK

PySiLK is an extension to the SiLK tool suite that expands its functionality via scripts written in the Python
programming language. The purpose of PySiLK is to support analytical use cases that are difficult to express,
implement, and support with the capabilities natively built into SiLK, while using those capabilities where
appropriate.

To extend the SiLK tools with PySiLK, first write a Python file that calls Python functions defined in the
silk.plugin Python module. To use this Python file, specify the --python-file switch for one of the SiLK
tools that supports PySiLK. (The rwfilter, rwstats, rwuniq, rwcut, and rwsort tools can all make use
of PySiLK extensions.) The tool then loads the Python file and makes the new functionality available.

8.1.1 PySiLK Requirements

To use PySiLK:

1. Install the appropriate version of the Python language15 on your system.

2. Load the PySiLK library (a directory named silk) in the site-packages directory of the Python
installation.

3. To ensure that the PySiLK library works properly, set the PYTHONPATH environment variable to include
the site-packages directory.

8.1.2 PySiLK Scripts and Plug-ins

PySiLK code comes in two forms: standalone Python programs and plug-ins for SiLK tools. Both of these
forms use a Python module named silk that is provided by CERT®as part of the PySiLK library. PySiLK
provides the capability to manipulate SiLK objects (flow records, IPsets, bags, etc.) with Python code.

For analyses that will not be repeated often or that are expected to be modified frequently, the relative brevity
of PySiLK renders it an efficient alternative. As with all programming, analysts need to use algorithms that
meet the speed and space constraints of the project. Often (but not always), building upon the processing
of the SiLK tools by use of a plug-in yields a more suitable solution than developing a stand-alone script.

PySiLK plug-ins for SiLK tools use an additional component, also provided by CERT®, called silkpython.
The silkpython component creates the application programming interfaces (APIs), simple and advanced,
that connect a plug-in to SiLK tools. Currently, silkpython supports the following SiLK tools: rwfilter,
rwcut, rwgroup, rwsort, rwstats, and rwuniq.

• For rwfilter, silkpython permits a plug-in to provide new types of partitioning criteria.

• For rwcut, plug-ins can create new flow record fields for display.

• For rwgroup and rwsort, plug-ins can create fields to be used as all or part of the key for grouping or
sorting records.

• For rwstats and rwuniq, two types of fields can be defined: key fields used to categorize flow records
into bins and summary value fields used to compute a single value for each bin from the records in
those bins.

15Python 2.7.x for SiLK Version 3.8.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

8.2. EXTENDING RWFILTER WITH PYSILK 143

• For all of the tools, silkpython allows a plug-in to create new SiLK tool switches (parameters) to
modify the behavior of the aforementioned partitioning criteria and fields.

The silkpython module provides only one function for establishing (registering) partitioning criteria (filters)
for rwfilter. The simple API provides four functions for creating key fields for the other five supported
SiLK tools and three functions for creating summary value fields for rwstats and rwuniq. The advanced
API provides one function that can create either key fields or summary value fields, and permits a higher
degree of control over these fields.

8.2 Extending rwfilter with PySiLK

PySiLK extends the capabilities of rwfilter by letting the analyst create new methods for partitioning flow
records.16

For a single execution of rwfilter, PySiLK is much slower than using a combination of rwfilter parameters
and usually slower than using a C-language plug-in. However, there are several ways in which using PySiLK
can replace a series of several rwfilter executions with a single execution and ultimately speed up the
overall process.

Without PySiLK, rwfilter has limitations using its built-in partitioning parameters:

• Each flow record is examined without regard to other flow records. That is, no state is retained.

• There is a fixed rule for combining partitioning parameters: Any of the alternative values within a
parameter satisfies that criterion (i.e., the alternatives are joined implicitly with a logical or operation).
All parameters must be satisfied for the record to pass (i.e., the parameters are joined implicitly with
a logical and operation).

• The types of external data that can assist in partitioning records are limited. IP sets, tuple files, and
prefix maps are the only types provided by built-in partitioning parameters.

PySiLK is useful to expand the capabilities of rwfilter in these cases:

• Information from prior records may help to partition subsequent records into the pass or fail categories.

• A series of nontrivial alternatives form the partitioning condition.

• The partitioning condition employs a control structure or data structure.

8.2.1 Using PySiLK to Incorporate State from Previous Records: Eliminating
Inconsistent Sources

For an example of where some information (or state) from prior records may help in partitioning subsequent
records, consider Example 8.1. This script (ThreeOrMore.py) passes all records that have a source IP address
used in two or more prior records. This can be useful if you want to eliminate casual or inconsistent sources
of particular behavior. The addrRefs variable is the record of how many times each source IP address has

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

144 CHAPTER 8. EXTENDING SILK

Example 8.1: ThreeOrMore.py: Using PySiLK for Memory in rwfilter Partitioning
import sys # stderr

bound = 3 # default threshold for passing record
addrRefs ={} # key = IP address , value = reference count

def threeOrMore (rec):
global addrRefs # allow modification of addrRefs

keyval = rec.sip # change this to count on different field
addrRefs [keyval] = addrRefs .get(keyval , 0) + 1
return addrRefs [keyval] >= bound

def set_bound (integer_string):
global bound

try:
bound = int(integer_string)

except ValueError :
print >>sys.stderr , '--limit value , %s, is not an integer .' % integer_string

def output_stats ():
AddrsWithEnufFlows = len ([1 for k in addrRefs .keys ()

if addrRefs [k] >= bound])
print >>sys.stderr , 'SIPs: %d; SIPs meeting threshold : %d' % (len(addrRefs),

AddrsWithEnufFlows)

register_filter (threeOrMore , finalize = output_stats)
register_switch ('limit ', handler =set_bound , help=' Threshold for passing ')

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

8.2. EXTENDING RWFILTER WITH PYSILK 145

been seen in prior records. The threeOrMore function holds the Python code to partition the records. If it
determines the record should be passed, it returns True; otherwise it returns False.

In Example 8.1, the call to register_filter informs rwfilter (through silkpython) to invoke the specified
Python function (threeOrMore) for each flow record that has passed all the built-in SiLK partitioning criteria.
In the threeOrMore function, the addrRefs dictionary is a container that holds entries indexed by an IP
address and whose values are integers.

When the get method is applied to the dictionary, it obtains the value for the entry with the specified key,
keyval, if such an entry already exists. If this is the first time that a particular key value arises, the get
method returns the supplied default value, zero. Either way, one is added to the value obtained by get. The
return statement compares this incremented value to the bound threshold value and returns the Boolean
result to silkpython, which informs rwfilter whether the current flow record passes the partitioning
criterion in the PySiLK plug-in.

In Example 8.1, the set_bound function is not required for the partitioning to operate. It provides the
capability to modify the threshold that the threeOrMore function uses to determine which flow records
pass. The call to register_switch informs rwfilter (through silkpython) that the --limit parameter
is acceptable in the rwfilter command after the --python-file=ThreeOrMore.py parameter, and that if
the user specifies the parameter (e.g., --limit=5) the set_bound function will be run to modify the bound
variable before any flow records are processed. The value provided in the --limit parameter will be passed
to the set_bound function as a string that needs to be converted to an integer so it can participate later in
numerical comparisons.

If the user specifies a string that is not a representation of an integer, the conversion will fail inside the
try statement, raising a ValueError exception and displaying an error message; in this case, bound is not
modified.

8.2.2 Using PySiLK to Incorporate State from Previous Records: Detecting
Port Knocking

For an example in which some information (or state) from prior records may help in partitioning subsequent
records, consider port knocking. This is a technique used to thwart port scanning. Port scanning involves
sending single packets to particular ports on a target host to see what response, if any, is returned by the
target. The response, or lack of one, is interpreted to determine if there is a service available on that port
on the target host. Port knocking is employed by the administrator of the target host to make all ports look
as if there are no services available on any of them.

Port knocking requires legitimate users (or their software) to know the secret combination of actions that
must be taken before an attempt is made to connect to a service port. These actions consist of attempts to
connect (or knocks) to certain other ports in the correct order right before attempting a connection to the
service port. Achieving the correct sequence of knocks creates a temporary rule in the firewall to allow the
sender of the knocks to connect to a particular service. Profiling a network to obtain situational awareness
could include port knocking detection to explain what would otherwise look like strange traffic.

Example 8.2 implements a plug-in for rwfilter that takes a simple approach. The plug-in requires that
its input be sorted by IP addresses and time. That way the port knocks appear in the input right before
the service connection attempt. This means that the plug-in needs to retain state for only one connection
attempt at a time, simplifying the code and greatly reducing the memory requirements.

16These partitioning methods may also calculate values not normally part of rwfilter’s output, typically emitting those
values to a file or to the standard error stream to avoid conflicts with flow record output.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

146 CHAPTER 8. EXTENDING SILK

The plug-in looks for three consecutive flow records where the first two (the port knocks) attempt to initiate
TCP connections to different ports, but there are no following packets with the ACK flag that would indicate
the connection had been established. After the two port knock flows, there must be a flow for a third port
which does have additional packets with the ACK flag.

These criteria are somewhat simple. We could add constraints such as specifying that the three ports must
have a certain ordinal relationship (e.g., lower-higher-lower). However, Example 8.2 shows the essential
elements. When the three-flow sequence is found, the third flow passes the filter and a text record is
displayed.

Example 8.2: portknock.py: Using PySiLK to Retain State in rwfilter Partitioning
import datetime # timedelta ()
import sys # stdout

REQDKNOCKS = 2 # number of required knocks with distinct port numbers
INTERVAL = datetime . timedelta (seconds =5) # knocks & conn this close in time
TCP = 6 # protocol number

portListWidth = REQDKNOCKS * 7
lastsip = None

def note_first_knock (rec):
global lastsip , lastdip , portlist , lastetime
lastsip = rec.sip
lastdip = rec.dip
portlist = [rec.dport]
lastetime = rec.etime
return

def examine_flow (rec):
global lastsip , lastdip , portlist , lastetime
if (rec. protocol == TCP and rec. initial_tcpflags is not None and

rec. initial_tcpflags . matches ('S/SA ')): # initial SYN (client to server)
if lastsip is not None and rec.sip == lastsip and rec.dip == lastdip :

if rec.stime - lastetime <= INTERVAL :
if rec. session_tcpflags .ack: # established connection

connected to knocked port or insufficient knocks ?
if rec.dport in portlist or len(portlist) < REQDKNOCKS :

lastsip = None
else: # enough prior knocks ?

sys. stdout .write ('%15s %15s %*s %5d\n' % (lastsip , lastdip ,
portListWidth , portlist , rec.dport))

lastsip = None
return True # flow record passes filter

else: # connection not established ; just a knock
if rec.dport in portlist : # already seen this port

note_first_knock (rec) # start over as 1st knock
else:

if len(portlist) >= REQDKNOCKS : # add a knock
del portlist [0] # delete oldest knock , make room for new

portlist . append (rec.dport)
lastetime = rec.etime

last knock was too long ago

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

8.2. EXTENDING RWFILTER WITH PYSILK 147

elif rec. session_tcpflags .ack: # established connection
lastsip = None

else: # too long ago and connection not established ; just a knock
note_first_knock (rec) # start over as 1st knock

new sip and/or dip
elif not rec. session_tcpflags .ack: # conn not established ; just a knock

note_first_knock (rec) # start over as 1st knock
return False # flow record fails filter

def show_heading ():
sys. stdout .write ('%15s %15s %*s %5s\n' % ('sIP ', 'dIP ', portListWidth ,

'Knock -Ports ', 'Estab '))

register_filter (examine_flow , initialize = show_heading)

8.2.3 Using PySiLK with rwfilter in a Distributed or Multiprocessing Envi-
ronment

An analyst could use a PySiLK script with rwfilter by first calling rwfilter to retrieve the records
that satisfy a given set of conditions, then piping those records to a second rwfilter call that uses the
--python-file parameter to invoke the script. This is shown in Example 8.3. This syntax is preferred to
simply including the --python-file parameter on the first call, since its behavior is more consistent across
execution environments. If rwfilter is running on a multiprocessor configuration, running the script on the
first rwfilter call cannot be guaranteed to behave consistently for a variety of reasons, so running PySiLK
scripts via a piped rwfilter call is more consistent.

Example 8.3: Calling ThreeOrMore.py
<1>$ rwfilter --start -date =2015/06/02 --end -date =2015/06/18 \

--type=inweb --protocol =6 --dport =443 \
--bytes -per - packet =65- --packets =4- \
--flags -all=SAF/SAF ,SAR/SAR --pass= stdout \

| rwfilter stdin --python -file= ThreeOrMore .py \
--pass=web.rw

SIPs: 81; SIPs meeting threshold : 81

8.2.4 Simple PySiLK with rwfilter --python-expr

Some analyses that do not lend themselves to solutions with just the SiLK built-in partitioning parameters
may be so simple with PySiLK that they center on an expression that evaluates to a Boolean value. Using
the rwfilter --python-expr parameter will cause silkpython to provide the rest of the Python plug-in
program.

Example 8.4 partitions flow records that have the same port number for their source port and destination
port (sport and dport). Although the name for the flow record object is specified by a function parameter
in user-written Python files, with --python-expr, the record object is always called rec. The source port

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

148 CHAPTER 8. EXTENDING SILK

Example 8.4: Using --python-expr for Partitioning
<1>$ rwfilter flows.rw --protocol =6 ,17 --python -expr='rec.sport == rec.dport ' \

--pass= equalports .rw

and destination port therefore can be specified as rec.sport and rec.dport. Checking whether their values
are equal becomes very simple.

With --python-expr, it is not possible to retain state from previous flow records as in Example 8.1. Nor
is it possible to incorporate information from sources other than the flow records. Both of these require a
plug-in invoked by --python-file.

8.2.5 PySiLK with Complex Combinations of Rules

Example 8.5 shows an example of using PySiLK to filter for a condition with several alternatives. This code
is designed to identify virtual private network (VPN) traffic in the data, using IPsec, OpenVPN®, or VPNz®.
This involves having several alternatives, each matching traffic either for a particular protocol (50 or 51) or
for particular combinations of a protocol (17) and ports (500, 1194, or 1224). This could be done using a
pair of rwfilter calls (one for UDP [17] and one for both ESP [50] and AH [51]) and rwcat to put them
together, but this is less efficient than using PySiLK.

Example 8.5: vpn.py: Using PySiLK with rwfilter for Partitioning Alternatives
def vpnfilter (rec):

return ((rec. protocol == 17 and # UDP
(rec.dport in (500 , 1194 , 1224) or # IKE , OpenVPN , VPNz

rec.sport in (500 , 1194 , 1224)))
or rec. protocol in (50, 51)) # ESP , AH

register_filter (vpnfilter)

8.2.6 Use of Data Structures in Partitioning

Example 8.6 shows the use of a data structure in an rwfilter condition. This particular case identifies
internal IP addresses responding to contacts by IP addresses in certain external blocks. The difficulty is that
the response is unlikely to go back to the contacting address and likely instead to go to another address on
the same network. Matching this with conventional rwfilter parameters is very slow and repetitive. By
building a list of internal IP addresses and the networks they’ve been contacted by, rwfilter can partition
records based on this list using the PySiLK script in Example 8.6, called matchblock.py.

In Example 8.6, lines 1 and 2 import objects from two modules. Line 3 sets a constant (with a name in all
uppercase by convention). Line 4 creates a global variable to hold the name of the file containing external
netblocks and gives it a default value. Lines 6, 10, and 32 define functions to be invoked later. Line 42 informs
silkpython of two things: (1) that the open_blockfile function should be invoked after all command-line
switches (parameters) have been processed and before any flow records are read and (2) that in addition to
any other partitioning criteria, every flow record must be tested with the match_block function to determine

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

8.2. EXTENDING RWFILTER WITH PYSILK 149

if it passes or fails. Line 43 tells silkpython that rwfilter should accept a --blockfile parameter on the
command line and process its value with the change_blockfile function before the initialization function,
open_blockfile, is invoked.

When open_blockfile is run, it builds a list of external netblocks for each specified internal address. Line 25
converts the specified address to a PySiLK address object; if that’s not possible, a ValueError exception is
raised, and that line in the blockfile is skipped. Line 26 similarly converts the external netblock specification
to a PySiLK IP wildcard object; if that’s not possible, a ValueError exception is raised, and that line in
the file is skipped. Line 26 also appends the netblock to the internal address’s list of netblocks; if that list
does not exist, the setdefault method creates it.

When each flow record is read by rwfilter, silkpython invokes match_block, which tests every external
netblock in the internal address’s list to see if it contains the external, destination address from the flow
record. If an external address is matched to a netblock in line 35, the test passes. If no netblocks in the list
match, the test fails in line 39. If there is no list of netblocks for an internal address (because it was not
specified in the blockfile), the test fails in line 38.

Example 8.7 uses command-line parameters to invoke the Python plug-in and pass information to the plug-in
script (specifically the name of the file holding the block map). Command 1 displays the contents of the block
map file. Each line has two fields separated by a comma. The first field contains an internal IP address; the
second field contains a wildcard expression (which could be a CIDR block or just a single address) describing
an external netblock that has communicated with the internal address. Command 2 then invokes the script
using the syntax introduced previously, augmented by the new parameter.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

150 CHAPTER 8. EXTENDING SILK

Example 8.6: matchblock.py: Using PySiLK with rwfilter for Structured Conditions
from silk import IPAddr , IPWildcard

2 import sys # exit (), stderr
PLUGIN_NAME = 'matchblock .py '
blockname =' blocks .csv '

5
def change_blockfile (block_str):

global blockname
8 blockname = block_str

def open_blockfile ():
11 global blockfile , blockdict

try:
blockfile = open(blockname)

14 except IOError , e_value :
sys.exit ('%s: Block file: %s' % (PLUGIN_NAME , e_value))

blockdict = dict ()
17 for line in blockfile :

if line. lstrip ()[0] == '#': # recognize comment lines
continue # skip entry

20 fields = line.strip (). split (',') # remove NL and split fields on commas
if len(fields) < 2: # too few fields ?

print >>sys.stderr , '%s: Too few fields : %s' % (PLUGIN_NAME , line)
23 continue # skip entry

try:
idx = IPAddr (fields [0]. rstrip ())

26 blockdict . setdefault (idx , []). append (IPWildcard (fields [1]. strip ()))
except ValueError : # field cannot convert to IPAddr or IPWildcard

print >>sys.stderr , '%s: Bad address or wildcard : %s' % (PLUGIN_NAME , line)
29 continue # skip entry

blockfile .close ()

32 def match_block (rec):
try:

for netblock in blockdict [rec.sip]:
35 if rec.dip in netblock :

return True
except KeyError : # no such inside addr

38 return False
return False # no netblocks match

41 # M A I N
register_filter (match_block , initialize = open_blockfile)
register_switch ('blockfile ', handler = change_blockfile ,

44 help='Name of file that holds CSV block map. Def. blocks .csv ')

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

8.3. EXTENDING SILK WITH FIELDS DEFINED WITH PYSILK 151

Example 8.7: Calling matchblock.py
<1>$ cat blockfile .csv
198.51.100.17 , 192.168.0.0/16
203.0.113.178 , 192.168. x.x
<2>$ rwfilter out_month .rw --protocol =6 --dport =25 --pass= stdout \

| rwfilter stdin --python -file= matchblock .py \
--blockfile = blockfile .csv --print - statistics

Files 1. Read 375567. Pass 8. Fail 375559.

8.3 Extending SiLK with Fields Defined with PySiLK

Five SiLK tools support fields defined with PySiLK: rwcut, rwgroup, rwsort, rwstats, and rwuniq. All
five support newly defined key fields, although for rwcut these fields are not really the key to any sorting or
grouping operation; they are simply available for display. Two of the tools, rwstats and rwuniq, support
newly defined summary value fields. For fields that require the use of the advanced API, the programmer will
want to determine which of the five tools will be used with these fields to avoid unnecessary programming. By
examining the characteristics of the new field the programmer can determine which tools can take advantage
of the field.

rwcut can make use of any key field that produces character strings (text). It does not matter if field values
can be used in computations, comparisons, or sorting. As long as the field can be represented as text, rwcut
can use it. When registering such fields, a function to produce a text value must be provided.

For rwgroup and rwsort to utilize a field defined with PySiLK, the field registration must provide a function
that produces binary (non-text) values that can be compared. For rwgroup, the comparison is only for
equality to determine if two consecutive records belong in the same group. For rwsort the comparison must
also determine the order of unequal values.

For rwstats and rwuniq, a key field not only needs a binary representation for grouping purposes, it also
needs a function to convert the binary key (bin) to text for display purposes. Furthermore, it must make
sense semantically for the field to produce a many-to-one mapping from its inputs to its value. This is
necessary for the field to make a good key (or partial key) for bins. A field makes a poor binning key if
nearly every record produces a unique field value, or if nearly every record produces the same field value.

8.4 Extending rwcut and rwsort with PySiLK

PySiLK is useful with rwcut and rwsort in these cases:

• An analysis requires a value based on a combination of fields, possibly from a number of records.

• An analyst chooses to use a function on one or more fields, possibly conditioned by the value of one or
more fields. The function may incorporate data external to the records (e.g., a table of header lengths).

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

152 CHAPTER 8. EXTENDING SILK

8.4.1 Computing Values from Multiple Records

Example 8.8 shows the use of PySiLK to calculate a value from the same field of two different records in
order to provide a new column to display with rwcut. This particular case, which will be referred to as
delta.py, introduces a delta_msec column, with the difference between the start time of two successive
records. Potential uses for this column including ready identification of flows that occur at very stable
intervals, such as keep-alive traffic or beaconing.

The plug-in uses global variables to save the IP addresses and start time between records and then returns
to rwcut the number of milliseconds between start times. The register_int_field call allows the use of
delta_msec as a new field name and gives rwcut the information that it needs to process the new field.

Example 8.8: delta.py
last_sip = None

def compute_delta (rec):
global last_sip , last_dip , last_time
if last_sip is None or rec.sip != last_sip or rec.dip != last_dip :

last_sip = rec.sip
last_dip = rec.dip
last_time = rec. stime_epoch_secs
deltamsec = 0

else: # sip and dip same as previous record
deltamsec = int (1000. * (rec. stime_epoch_secs - last_time))
last_time = rec. stime_epoch_secs

return deltamsec

register_int_field (' delta_msec ', compute_delta , 0, 4294967295)
fieldname function min max

To use delta.py, Example 8.9 sorts the flow records by source address, destination address, and start
time after pulling them from the repository. After sorting, the example passes them to rwcut with the
--python-file=delta.py parameter before the --fields parameter so that the delta_msec field name is
defined. Because of the way the records are sorted, if the source or destination IP addresses are different
in two consecutive records, the latter record could have an earlier sTime than the prior record. Therefore,
it makes sense to compute the time difference between two records only when their source addresses match
and their destination addresses match. Otherwise, the delta should display as zero.

8.4.2 Computing a Value Based on Multiple Fields in a Record

Example 8.10 shows the use of a PySiLK plug-in for both rwsort and rwcut that supplies a value calculated
from several fields from a single record. In this example, the new value is the number of bytes of payload
conveyed by the flow. The number of bytes of header depends on the version of IP as well as the Transport-
layer protocol being used (IPv4 has a 20-byte header, IPv6 has a 40-byte header, and TCP adds 20 additional
bytes, while UDP adds only 8 and GRE [protocol 47] only 4, etc.).

The header_len variable holds a mapping from protocol number to header length. Protocols omitted from
the mapping contribute zero bytes for the Transport-layer header. This is then multiplied by the number of
packets and subtracted from the flow’s byte total. This code assumes no packet fragmentation is occurring.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

8.4. EXTENDING RWCUT AND RWSORT WITH PYSILK 153

Example 8.9: Calling delta.py
<1>$ rwfilter --type=out --start -date =2015/06/02 \

--end -date =2015/06/18 --protocol =17 --packets =1 \
--pass= stdout \

| rwsort --fields =sIP ,dIP ,sTime \
| rwcut --python -file=delta.py \

--fields =sIP ,dIP ,sTime , delta_msec --num -recs =20
sIP| dIP| sTime| delta_msec |

10.0.20.58| 128.8.10.90|2015/06/17 T20 :50:50.725| 0|
10.0.20.58| 128.8.10.90|2015/06/17 T20 :50:50.725| 0|
10.0.20.58| 128.8.10.90|2015/06/17 T20 :50:50.725| 0|
10.0.20.58| 199.7.83.42|2015/06/17 T20 :50:46.717| 0|
10.0.20.58| 199.7.83.42|2015/06/17 T20 :50:46.717| 0|
10.0.40.20| 10.0.20.58|2015/06/16 T12 :48:08.030| 0|
10.0.40.20| 10.0.20.58|2015/06/16 T12 :48:08.268| 237|
10.0.40.20| 10.0.20.58|2015/06/16 T12 :48:08.580| 312|
10.0.40.20| 10.0.20.58|2015/06/16 T12 :48:08.580| 0|
10.0.40.20| 10.0.20.58|2015/06/16 T12 :48:08.674| 94|
10.0.40.20| 10.0.20.58|2015/06/16 T12 :48:09.015| 341|
10.0.40.20| 10.0.20.58|2015/06/16 T12 :48:09.043| 27|
10.0.40.20| 10.0.20.58|2015/06/16 T12 :48:09.215| 171|
10.0.40.20| 10.0.20.58|2015/06/16 T12 :48:09.397| 182|
10.0.40.20| 10.0.20.58|2015/06/16 T12 :48:10.228| 830|
10.0.40.20| 10.0.20.58|2015/06/16 T12 :48:10.620| 391|
10.0.40.20| 10.0.20.58|2015/06/16 T12 :48:10.622| 2|
10.0.40.20| 10.0.20.58|2015/06/16 T12 :48:10.622| 0|
10.0.40.20| 10.0.20.58|2015/06/16 T12 :48:11.069| 447|
10.0.40.20| 10.0.20.58|2015/06/16 T12 :48:11.415| 345|

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

154 CHAPTER 8. EXTENDING SILK

The same function is used to produce both a value for rwsort to compare and a value for rwcut to display,
as indicated by the register_int_field call.

Example 8.10: payload.py: Using PySiLK for Conditional Fields with rwsort and rwcut
ICMP IGMP IPv4 TCP UDP IPv6 RSVP
header_len ={1:8 , 2:8, 4:20 , 6:20 , 17:8 , 41:40 , 46:8 ,

47:4 , 50:8 , 51:12 , 88:20 , 132:12}
GRE ESP AH EIGRP SCTP

def bin_payload (rec):
transport_hdr = header_len .get(rec.protocol , 0)
if rec. is_ipv6 ():

ip_hdr = 40
else:

ip_hdr = 20
return rec.bytes - rec. packets * (ip_hdr + transport_hdr)

register_int_field ('payload ', bin_payload , 0, (1 << 32) - 1)
fieldname function min max

Example 8.11 shows how to use Example 8.10 with both rwsort and rwcut. The records are sorted into
payload-size order and then output, showing both the bytes and payload values.

8.4.3 Defining a Character String Field for rwcut

PySiLK has no function in the simple API for creating character-string fields. Do not be tempted to use
an enumeration where there are many possible strings produced for the field; an enumeration can be quite
memory-intensive. It will not sort correctly in rwsort or in rwuniq with the --sort-output parameter.

Creating a character-string field with the advanced API (register_field function) is not difficult. Starting
with an example of a string field that works only with rwcut, Example 8.12 is a PySiLK plug-in that
makes large values in the built-in duration field more understandable by breaking it down into days, hours,
minutes, and seconds (including milliseconds). This field does not provide a binary value, so the field has
no usefulness with rwsort or rwgroup, which produce non-text output. Since this field embodies the same
information as the built-in duration field, the built-in field is better suited for use with these tools as it will
yield much better performance. The usefulness of decode_duration with rwstats and rwuniq is dubious
as well; although these tools produce textual output, the lack of a many-to-one mapping makes this field an
ideal candidate for use only with rwcut.

Example 8.13 shows both the built-in duration field and the associated decode_duration field for several
flow records.

8.4.4 Defining a Character String Field for Five SiLK Tools

A plug-in to create a character-string field not only for rwcut, but also for rwgroup, rwsort, rwstats, and
rwuniq needs a little more code. In Example 8.14 a regular expression is used to provide a pattern for the
site-name portion of a sensor name. Since the regular expression does not permit numeric digits as part of
the site name, the pattern matching ends when a digit is reached in the sensor name. In addition to defining

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

8.4. EXTENDING RWCUT AND RWSORT WITH PYSILK 155

Example 8.11: Calling payload.py
<1>$ rwsort inbound .rw --python -file= payload .py --fields = payload \

| rwcut --python -file= payload .py --fields =5, packets ,bytes , payload
pro| packets | bytes| payload |

6| 1007| 40280| 0|
1| 1| 28| 0|
6| 2| 92| 12|
6| 8| 332| 12|
1| 1| 48| 20|

17| 1| 51| 23|
1| 14| 784| 392|

80| 3| 762| 702|
50| 16| 1920| 1472|
17| 1| 2982| 2954|
47| 153| 12197| 8525|
50| 77| 11088| 8932|
17| 681| 212153| 193085|

6| 309| 398924| 386564|
51| 5919| 773077| 583669|
51| 10278| 1344170| 1015274|

6| 820| 1144925| 1112125|
97| 2134784|2770949632|2728253952|

Example 8.12: decode_duration.py: A Program to Create a String Field for rwcut
'''Define a field for rwcut which formats the flow duration as a string

representation of days , hours , minutes , seconds , and milliseconds .
'''

SECPERHOUR = 3600
SECPERMIN = 60

def decode_duration (rec):
(hours , seconds) = divmod (rec. duration .seconds , SECPERHOUR)
(minutes , seconds) = divmod (seconds , SECPERMIN)
return '%02dd %02 dh %02 dm %02d.%03ds ' % (rec. duration .days , hours , minutes ,

seconds , rec. duration . microseconds // 1000)

register_field (' decode_duration ', column_width =16, rec_to_text = decode_duration ,
description =' Decomposition of duration into days , hours ,'

' minutes , seconds , and milliseconds ')

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

156 CHAPTER 8. EXTENDING SILK

Example 8.13: Calling decode_duration.py
<1>$ rwcut flows.rw --python -file= decode_duration .py \

--fields = decode_duration , duration
decode_duration | duration |

01 d07h32m49 .161s |113569.161|
00 d00h29m00 .450s| 1740.450|
00 d19h05m22 .667s |68722.667|
00 d00h00m03 .000s| 3.000|

a function that derives a string from a SiLK flow record, we need a function to pad the strings so their
lengths are the same for all records, and a function to strip the padding.

The functions provided here should work for other string-field plug-ins, except for the call to get_site,
which derives the string from the record. Then we must establish the maximum length of the field, and
supply a few additional parameters to the register_field call. Example 8.15 shows how use of the derived
field reduces the output to fewer lines than the number of sensors.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

8.4. EXTENDING RWCUT AND RWSORT WITH PYSILK 157

Example 8.14: sitefield.py: A Program to Create a String Field for Five SiLK Tools
import re # compile (), SRE_Pattern .match (), SRE_Match .group ()

Global variables that may be modified for the enterprise .
MAX_FIELD_LEN = 8
regex = re. compile (r"^[-A-Za -z]+")

def get_site (rec):
'''Derive site name from sensor field in flow record .'''

return regex.match(rec. sensor). group ()

def remove_padding (bin):
'''Remove padding from fixed - length string .'''

for Python 3.x, change "bin" to "str(bin , 'UTF -8 ')"
return bin. rstrip ('\0')

def pad_to_fixed_length (rec):
'''Make site names all the same length .'''

for Python 3.x, enclose the entire expression in "bytes(, 'UTF -8 ')"
return get_site (rec). ljust(MAX_FIELD_LEN , '\0')

register_field ('Site ',
bin_bytes = MAX_FIELD_LEN ,
bin_to_text = remove_padding ,
column_width = MAX_FIELD_LEN ,
description ='Site name derived from sensor .',
rec_to_bin = pad_to_fixed_length ,
rec_to_text = get_site)

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

158 CHAPTER 8. EXTENDING SILK

Example 8.15: Calling sitefield.py
<1>$ rwcut flows.rw --python -file= sitefield .py --fields =sensor ,Site

sensor | Site|
NewYork1 | NewYork |
NewYork2 | NewYork |

London0 | London |
London1a | London |
NewYork1 | NewYork |
NewYork2 | NewYork |
NewYork3 | NewYork |

London0 | London |
London1a | London |
London1a | London |
London1a | London |
NewYork2 | NewYork |
NewYork2 | NewYork |
NewYork3 | NewYork |
NewYork3 | NewYork |
NewYork2 | NewYork |
London1a | London |
<2>$ rwuniq flows.rw --python -file= sitefield .py --field=Site --sort - output

Site| Records |
London | 7|

NewYork | 10|

8.5 Defining Key Fields and Summary Value Fields for rwuniq and
rwstats

In addition to defining key fields that rwcut can use for display, rwsort can use for sorting, and rwgroup can
use for grouping, rwuniq and rwstats can make use of both key fields and summary value fields. Key fields
and summary fields use different registration functions in the simple API, however the registered callback
functions do not have to be different. In Example 8.16, the same function, rec_bpp, is used to compute the
bytes-per-packet ratio for a flow record for use in binning records by a key and in proposing candidate values
for the summary value.

Example 8.16: bpp.py
def rec_bpp (rec):

return int(round(float(rec.bytes) / float(rec. packets)))

register_int_field ('bpp ', rec_bpp , 0, (1 < <32) - 1)
register_int_max_aggregator ('maxbpp ', rec_bpp , (1 < <32) - 1)

In Example 8.17, Command 2 uses the Python file, bpp.py, to create a key field for binning records.
Command 3 creates an summary value field instead. The summary value in the example finds the maximum
value of all the records in a bin, but there are simple API calls for minimum value and sum as well. For
additional summaries, the analyst can use the advanced API function, register_field.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

8.5. DEFINING KEY FIELDS AND SUMMARY VALUE FIELDS FOR RWUNIQ AND RWSTATS 159

Example 8.17: Calling bpp.py
<1>$ rwfilter --type=in --start -date =2015/06/02 \

--end -date =2015/06/18 --protocol =0- \
--max -pass - records =70 --pass=tmp.rw

<2>$ rwuniq tmp.rw --python -file=bpp.py --fields =protocol ,bpp \
--values = records

pro| bpp| Records |
17| 70| 1|

6| 132| 2|
6| 410| 1|

17| 74| 2|
6| 201| 1|
6| 116| 1|

17| 72| 1|
17| 85| 1|

6| 409| 1|
6| 217| 1|

17| 213| 1|
17| 84| 1|

6| 434| 1|
6| 140| 1|
6| 40| 15|
6| 160| 1|
6| 46| 1|
6| 236| 1|
6| 45| 29|

17| 73| 1|
6| 174| 5|
6| 154| 1|

<3>$ rwuniq tmp.rw --python -file=bpp.py --fields = protocol \
--values = maxbpp

pro| maxbpp |
6| 434|

17| 213|

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

160 CHAPTER 8. EXTENDING SILK

As shown in this chapter, PySiLK simplifies several previously difficult analyses, without requiring coding
large scripts. While the programming involved in creating these scripts has not been described in much
detail, the scripts shown (or simple modifications of these scripts) may prove useful to analysts.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

Appendix A

Networking Primer

This appendix reviews basic topics in Transmission Control Protocol/Internet Protocol (TCP/IP). It is not
intended as a comprehensive summary of this topic, but it will help to refresh your knowledge and prepare
you for using the SiLK tools for analysis.

Upon completion of this appendix, you will be able to

• describe the structure of IP packets and the relationship between the protocols that constitute the IP
protocol suite

• explain the mechanics of TCP, such as the TCP state machine and TCP flags

A.1 Understanding TCP/IP Network Traffic

This section provides an overview of the TCP/IP networking suite. TCP/IP is the foundation of internetwork-
ing. All packets analyzed by the SiLK system use protocols supported by the TCP/IP suite. These protocols
behave in a well-defined manner. One possible sign of a security breach is a deviation from accepted behav-
ior. In this section, you will learn about what is specified as accepted behavior. While there are common
deviations from the specified behavior, knowing what is specified forms a basis for further knowledge.

This section is intended as a refresher. The TCP/IP suite is a complex collection of more than 50 protocols
and comprises far more information than can be covered in this section. A number of online documents and
printed books provide other resources on TCP/IP to further your understanding of the TCP/IP suite.

A.2 TCP/IP Protocol Layers

Figure A.1 shows a basic breakdown of the protocol layers in TCP/IP. The Open Systems Interconnection
(OSI) Reference Model, the best known model for layered protocols, consists of seven layers. However,
TCP/IP wasn’t created with the OSI Reference Model in mind. TCP/IP conforms with the Department
of Defense (DoD) ARPANET Reference Model (RFC17 871, found at https://tools.ietf.org/html/rfc871), a

17A Request for Comments is an official document, issued by the Internet Engineering Task Force. Some RFCs have Standards
status; others do not.

161 [DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

https://tools.ietf.org/html/rfc871

162 APPENDIX A. NETWORKING PRIMER

four-layer model. Although TCP/IP and the DoD ARPANET Reference Model have a shared history, it is
useful and customary to describe TCP/IP’s functions in terms of the OSI Reference Model. OSI is the only
model in which network professionals sometimes refer to the layers by number, so any reference to Layer 4,
or L4, definitely refers to OSI’s Transport layer.

Figure A.1: TCP/IP Protocol Layers

Starting with the top row of Figure A.1, a network application (such as email, telephony, streaming televi-
sion, or file transfer) creates a message that should be understandable by another instance of the network
application on another host. This is known as an application-layer message. Sometimes the character set,
graphics format, or file format must be described to the destination host—as with Multipurpose Internet
Mail Extensions (MIME) in email—so the destination host can present the information to the recipient in
an understandable way; this is done by adding metadata to the presentation-layer header.

Sometimes users want to be able to resume communications sessions when their connections are lost, such as
with online games or database updates; this is accomplished with the session-layer checkpointing capabilities.
Many communications do not use functions of the presentation and session layers, so their headers are
omitted. The transport-layer protocols identify with port numbers which process or service in the destination
host should handle the incoming data; a protocol like User Datagram Protocol (UDP) does little else, but a
more complicated protocol like TCP also performs packet sequencing, duplicate packet detection, and lost
packet retransmission.

The network layer is where we find Internet Protocol, whose job is to route packets from the network interface
of the source host to the network interface of the destination host, across many networks and routers in the
internetwork. Those networks are of many types (such as Ethernet, Asynchronous Transfer Mode [ATM],
cable modem [DOCSIS®], or digital subscriber line [DSL]), each with its own frame format and rules described
by its data-link-layer protocol. The data-link protocol imposes a maximum transmission unit (MTU) size
on frames and therefore on datagrams and segments as well. The vast majority of enterprise network traffic
is transferred over Ethernet at some point, and Ethernet has the lowest MTU (normally 1,500; 1,492 with

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

A.3. STRUCTURE OF THE IP HEADER 163

IEEE® 802.2 LLC) of any modern Data-Link layer protocol. So Ethernet’s MTU becomes the effective MTU
for the full path.

Finally, the frame’s bits are transformed into an energy (electrical, light, or radio wave) signal by the
physical layer and transmitted across the medium (copper wire, optical fiber, or space). The process of each
successively lower layer protocol adding information to the original message is called encapsulation because
it’s like putting envelopes inside other envelopes.

Each layer adds metadata to the packet that it receives from a higher layer by prepending a header like
writing on the outside of that layer’s envelope. When a signal arrives at the destination host’s network
interface, the entire process is reversed with decapsulation.

A.3 Structure of the IP Header

IP passes collections of data as datagrams. Two versions of IP are currently used: versions 4 and 6, referred
to as IPv4 and IPv6, respectively. IPv4 still constitutes the vast majority of IP traffic in the Internet. IPv6
usage is growing, and both versions are fully supported by the SiLK tools. Figure A.2 shows the breakdown
of IPv4 datagrams. Fields that are not recorded by the SiLK data collection tools are grayed out. With
IPv6, SiLK records the same information, although the addresses are 128 bits, not 32 bits.

Figure A.2: Structure of the IPv4 Header

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

164 APPENDIX A. NETWORKING PRIMER

A.4 IP Addressing and Routing

IP can be thought of as a very-high-speed postal service. If someone in Pittsburgh sends a letter to someone
in New York, the letter passes through a sequence of postal workers. The postal worker who touches the mail
may be different every time a letter is sent, and the only important address is the destination. Normally,
there is no reason that New York has to respond to Pittsburgh, and if it does (such as for a return receipt),
the sequence of postal workers could be completely different.

IP operates in the same fashion: There is a set of routers between any pair of sites, and packets are sent to
the routers the same way that the postal system passes letters back and forth. There is no requirement that
the set of routers used to pass data to a destination must be the same as the set used for the return trip,
and the routes can change at any time.

Most importantly, the only IP address that must be valid in an IP packet is the destination address. IP
itself does not require a valid source address, but some other protocols (e.g., TCP) cannot complete without
valid source and destination addresses because the source needs to receive the acknowledgment packets to
complete a connection. (However, there are numerous examples of intruders using incomplete connections
for malicious purposes.)

A.4.1 Structure of an IP Address

The Internet has space for approximately four billion unique IPv4 addresses. While an IPv4 address can be
represented as a 32-bit integer, it is usually displayed in dotted decimal (or dotted quad) format as a set of
four decimal integers separated by periods (dots); for example, 128.2.118.3, where each integer is a number
from 0 to 255, representing the value of one byte (octet).

IP addresses and ranges of addresses can also be referenced using CIDR blocks. CIDR is a standard for
grouping together addresses for routing purposes. When an entity purchases or leases a range of IP addresses
from the relevant authorities, that entity buys/leases a routing block, that is used to direct packets to its
network.

CIDR blocks are usually described with CIDR notation, consisting of an address, a slash (/), and a prefix
length. The prefix length is an integer denoting the number of bits on the left side of the address needed to
identify the block. The remaining bits are used to identify hosts within the block. For example, 128.2.0.0/16
would signify that the leftmost 16 bits (2 octets), whose value is 128.2, identify the CIDR block and the
remaining bits on the right can have any value denoting a specific host within the block. So all IP addresses
from 128.2.0.0 to 128.2.255.255, in which the first 16 bits are unchanged, belong to the same block. Prefix
lengths range from 0 (all addresses belong to the same unspecified network; there are 0 network bits speci-
fied)18 to 32 (the whole address is made of unchanging bits, so there is only one address in the block; the
address is a single host).

With the introduction of IPv6, all of this is changing. IPv6 addresses are 128 bits in length, for a staggering
3.4× 1038 (340 undecillion or 340 trillion trillion trillion) possible addresses. IPv6 addresses are represented
as groups of eight hexadectets (four hexadecimal digit integers); for example

FEDC:BA98:7654:3210:0037:6698:0000:0510

Each integer is a number between 0 and FFFF (the hexadecimal equivalent of decimal 65,535). IPv6 addresses
are allocated in a fashion such that the high-order and low-order digits are manipulated most often, with

18CIDR /0 addresses are used almost exclusively for empty routing tables and are not accepted by the SiLK tools. This
effectively means the range for CIDR prefix lengths is 1–32 for IPv4.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

A.4. IP ADDRESSING AND ROUTING 165

long strings of hexadecimal zeroes in the middle. There is a shorthand of :: that can be used once in each
address to represent a series of zero-valued hexadectets. The address FEDC::3210 is therefore equivalent to
FEDC:0:0:0:0:0:0:3210.

IPv4-compatible (::0:0/96) and IPv4-mapped (::FFFF:0:0/96) IPv6 addresses are displayed by the SiLK
tools in a mixed IPv6/IPv4 format (complying with the canonical format), with the network prefix displayed
in hexadecimal, and the 32-bit field containing the embedded IPv4 address displayed in dotted quad decimal.
For example, the IPv6 addresses ::102:304 (IPv4-compatible) and ::FFFF:506:708 (IPv4-mapped) will be
displayed as ::1.2.3.4 and ::FFFF:5.6.7.8, respectively.

The routing methods for IPv6 addresses are beyond the scope of this handbook—see RFC 4291 (https://
tools.ietf.org/html/rfc4291) for a description. Blocks of IPv6 addresses are generally denoted with CIDR
notation, just as blocks of IPv4 addresses are. CIDR prefix lengths can range from 0 to 128 in IPv6. For
example, ::FFFF:0:0/96 indicates that the most significant 96 bits of the address ::FFFF:0:0 constitute
the network prefix (or network address), and the remaining 32 bits constitute the host part.

In SiLK, the support for IPv6 is controlled by configuration. Check for IPv6 support by running
any_SiLK_tool --version (e.g., rwcut --version). Then examine the output to see if “IPv6 flow record
support” is “yes.”

A.4.2 Reserved IP Addresses

While IPv4 has approximately four billion addresses available, large segments of IP address space are reserved
for the maintenance and upkeep of the Internet. Various authoritative sources provide lists of the segments
of IP address space that are reserved. One notable reservation list is maintained by the Internet Assigned
Numbers Authority (IANA) at https://www.iana.org/assignments/ipv4-address-space. IANA also keeps a
list of IPv6 reservations at https://www.iana.org/assignments/ipv6-address-space.

In addition to this list, the Internet Engineering Task Force (IETF) maintains several RFCs that specify
other reserved spaces. Most of these spaces are listed in RFC 6890, “Special-Purpose IP Address Registries”
at https://tools.ietf.org/html/rfc6890. Table A.1 summarizes major IPv4 reserved spaces. IPv6 reserved
spaces are shown in Table A.2.

Examples in this handbook use addresses in the private and documentation spaces, or addresses that are
obviously fictitious, such as 1.2.3.4. This is done to protect the identities of organizations on whose data
we tested our examples. Analysts may observe, in real captured traffic, addresses that are not supposed to
appear on the Internet. This may be due to misconfiguration of network infrastructure devices or to falsified
(spoofed) addressing.

In general, link-local (169.254.0.0/16 in IPv4, FE80::/10 in IPv6) and loopback (127.0.0.0/8 and ::1) des-
tination IP addresses should not cross any routers. Private IP address space (10.0.0.0/8, 172.16.0.0/12,
192.168.0.0/16, and FC00::/7) should not enter or traverse the Internet, so it should not appear at edge
routers. Consequently, the appearance of these addresses at these routers indicates a failure of routing pol-
icy. Similarly, traffic should not come into the enterprise network from these addresses; the Internet as a
whole should not route that traffic to the enterprise network.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

https://tools.ietf.org/html/rfc4291
https://tools.ietf.org/html/rfc4291
https://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xhtml
https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml
https://tools.ietf.org/html/rfc6890

166 APPENDIX A. NETWORKING PRIMER

Table A.1: IPv4 Reserved Addresses

Space Description RFC
0.0.0.0/8 This host (0) or specified host on this network (source) 1122
10.0.0.0/8 Private networks 1918
100.64.0.0/10 Carrier-grade Network Address Translation 6598
127.0.0.0/8 Loopback (self-address) 6890
169.254.0.0/16 Link local (autoconfiguration) 6890
172.16.0.0/12 Private networks 1918
192.0.0.0/24 Reserved for IETF protocol assignments 6890
192.0.0.0/29 Dual-Stack Lite 6333
192.0.0.170/31 NAT64/DNS64 Prefix Discovery 7050
192.0.2.0/24 Documentation (example.com or example.net) 5737
192.31.196.0/24 Nameserver for AS112 Redirection Using DNAME 7535
192.52.193.0/24 Automatic Multicast Tunneling 7450
192.88.99.0/24 6to4 relay anycast (border between IPv6 and IPv4) 3068
192.168.0.0/16 Private networks 1918
192.175.48.0/24 Direct Delegation AS112 Service 7534
198.18.0.0/15 Network Interconnect Device Benchmark Testing 2544
198.51.100.0/24 Documentation (example.com or example.net) 5737
203.0.113.0/24 Documentation (example.com or example.net) 5737
224.0.0.0/4 Multicast (destination) 5771
240.0.0.0/4 Future use (except 255.255.255.255) 1112
255.255.255.255 Limited broadcast (destination) 919

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

https://tools.ietf.org/html/rfc1122
https://tools.ietf.org/html/rfc1918
https://tools.ietf.org/html/rfc6598
https://tools.ietf.org/html/rfc6890
https://tools.ietf.org/html/rfc6890
https://tools.ietf.org/html/rfc1918
https://tools.ietf.org/html/rfc6890
https://tools.ietf.org/html/rfc6333
https://tools.ietf.org/html/rfc7050
https://tools.ietf.org/html/rfc5737
https://tools.ietf.org/html/rfc7535
https://tools.ietf.org/html/rfc7450
https://tools.ietf.org/html/rfc3068
https://tools.ietf.org/html/rfc1918
https://tools.ietf.org/html/rfc7534
https://tools.ietf.org/html/rfc2544
https://tools.ietf.org/html/rfc5737
https://tools.ietf.org/html/rfc5737
https://tools.ietf.org/html/rfc5771
https://tools.ietf.org/html/rfc1112
https://tools.ietf.org/html/rfc919

A.4. IP ADDRESSING AND ROUTING 167

Table A.2: IPv6 Reserved Addresses

Space Description RFC
::/128 “Unspecified” address (source) 4291
::1/128 Loopback address [similar to 127.0.0.0/8] 4291
::0.0.0.0/96 IPv4-compatible addresses (deprecated by RFC 4291) 1933
::FFFF:0.0.0.0/96 IPv4-mapped addresses 4291
64:FF9B::0.0.0.0/96 IPv4-IPv6 translation with well-known prefix 6052
100::/64 Discard-only address block 6666
2001::/23 IETF protocol assignments 2928
2001::/32 Teredo tunneling 4380
2001:1::1/128 Port Control Protocol Anycast 7723
2001:2::/48 Benchmarking 5180
2001:3::/32 Automatic Multicast Tunneling 7450
2001:4:112::/48 Nameserver for AS112 Redirection Using DNAME 7535
2001:10::/28 Overlay Routable Cryptographic Hash IDentifiers (deprecated) 4843
2001:20::/28 ORCHIDv2 7343
2001:DB8::/32 Documentation addresses [similar to 192.0.2.0/24] 3849
2002::/16 6to4 addresses [related to 192.88.99.0/24] 3056
2620:4F:8000::/48 Direct Delegation AS112 Service 7534
FC00::/7 Unique local addresses [similar to RFC 1918 private 4193

addresses] primarily seen as FD00::/8
FE80::/10 Link-local unicast (similar to 169.254.0.0/16) 4291
FEC0::/10 Formerly reserved for site-local unicast addresses 1884

(deprecated by RFC 3879)
FF00::/8 Multicast [similar to 224.0.0.0/4] 4291

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

https://tools.ietf.org/html/rfc4291
https://tools.ietf.org/html/rfc4291
https://tools.ietf.org/html/rfc4291
https://tools.ietf.org/html/rfc1933
https://tools.ietf.org/html/rfc4291
https://tools.ietf.org/html/rfc6052
https://tools.ietf.org/html/rfc6666
https://tools.ietf.org/html/rfc2928
https://tools.ietf.org/html/rfc4380
https://tools.ietf.org/html/rfc7723
https://tools.ietf.org/html/rfc5180
https://tools.ietf.org/html/rfc7450
https://tools.ietf.org/html/rfc7535
https://tools.ietf.org/html/rfc4843
https://tools.ietf.org/html/rfc7343
https://tools.ietf.org/html/rfc3849
https://tools.ietf.org/html/rfc3056
https://tools.ietf.org/html/rfc7534
https://tools.ietf.org/html/rfc1918
https://tools.ietf.org/html/rfc4193
https://tools.ietf.org/html/rfc4291
https://tools.ietf.org/html/rfc1884
https://tools.ietf.org/html/rfc3879
https://tools.ietf.org/html/rfc4291

168 APPENDIX A. NETWORKING PRIMER

A.5 Major Protocols

A.5.1 Protocol Layers and Encapsulation

In the multi-layered scheme used by TCP/IP, lower layer protocols encapsulate higher layer protocols, like
envelopes within envelopes. When we open the innermost envelope, we find the message that belongs to
the highest layer protocol. Conceptually, the envelopes have metadata written on them. In practice, the
metadata are recorded in headers. The header for the lowest layer protocol is sent over the network first,
followed by the headers for progressively higher layers. Finally, the message from the highest layer protocol
is sent after the last header.

TCP/IP was created before the OSI Reference Model. But if we refer to a layer by its number (e.g., Layer 3
or L3), we always mean the specified layer in that model. While the preceding description of encapsulation is
generally true, the model actually assigns protocols to layers based on the protocol’s functions, not its order
of encapsulation. This is most apparent with Internet Control Message Protocol (ICMP), which the model
assigns to the Network layer (L3), even though its header and payload are encapsulated by IP, which is also
a Network layer protocol. From here on, we will ignore this fine distinction, and we will consider ICMP to
be a Transport layer (L4) protocol because it is encapsulated by IP, a Layer 3 protocol.

A.5.2 Transmission Control Protocol (TCP)

TCP, the most commonly encountered transport protocol on the Internet, is a stream-based protocol that
reliably transmits data from the source to the destination. To maintain this reliability, TCP is very complex:
The protocol is slow and requires a large commitment of resources.

Figure A.3 shows a breakdown of the TCP header, which adds 20 additional bytes to the IP header. Con-
sequently, TCP packets will always be at least 40 bytes (60 for IPv6) long. As the shaded portions of
Figure A.3 show, most of the TCP header information is not retained in SiLK flow records.

Figure A.3: TCP Header

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

A.5. MAJOR PROTOCOLS 169

TCP is built on top of an unreliable infrastructure provided by IP. IP assumes that packets can be lost
without a problem, and that responsibility for managing packet loss is incumbent on services at higher
layers. TCP, which provides ordered and reliable streams on top of this unreliable packet-passing model,
implements this feature through a complex state machine as shown in Figure A.4. The transitions in this
state machine are described by labels in a stimulus

action format, where the top value is the stimulating event and
the bottom values are actions taken prior to entry into the destination state. Where no action takes place,
an “x” is used to indicate explicit inaction.

This handbook does not thoroughly describe the state machine in Figure A.4 (see https://tools.ietf.org/
html/rfc793 for a complete description), however, flows representing well-behaved TCP sessions will behave
in certain ways. For example, a flow for a complete TCP session must have at least four packets: one packet
that sets up the connection, one packet that contains the data, one packet that terminates the session, and
one packet acknowledging the other side’s termination of the session.19 TCP behavior that deviates from
this provides indicators that can be used by an analyst. An intruder may send packets with odd TCP flag
combinations as part of a scan (e.g., with all flags set on). Different operating systems handle protocol
violations differently, so odd packets can be used to elicit information that identifies the operating system
in use or to pass through some systems benignly, while causing mischief in others.

TCP Flags

TCP uses flags to transmit state information among participants. A flag has two states: high or low; so a
flag represents one bit of information. There are six commonly used flags:

ACK: Short for “acknowledge,” ACK flags are sent in almost all TCP packets and used to indicate that
previously sent packets have been received.

FIN: Short for “finalize,” the FIN flag is used to terminate a session. When a packet with the FIN flag
is sent, the target of the FIN flag knows to expect no more input data. When both have sent and
acknowledged FIN flags, the TCP connection is closed gracefully.

PSH: Short for “push,” the PSH flag is used to inform a TCP receiver that the data sent in the packet
should immediately be sent to the target application (i.e., the sender has completed this particular
send), approximating a message boundary in the stream.

RST: Short for “reset,” the RST flag is sent to indicate that a session is incorrect and should be terminated.
When a target receives a RST flag, it terminates immediately. Some implementations terminate sessions
using RST instead of the more proper FIN sequence.

SYN: Short for “synchronize,” the SYN flag is sent at the beginning of a session to establish initial sequence
numbers. Each side sends one SYN packet at the beginning of a session.

URG: Short for “urgent” data, the URG flag is used to indicate that urgent data (such as a signal from
the sending application) is in the buffer and should be used first. The URG flag should only be seen in
Telnet-like protocols such as Secure Shell (SSH). Tricks with URG flags can be used to fool intrusion
detection systems (IDS).

Reviewing the state machine will show that most state transitions are handled through the use of SYN, ACK,
FIN, and RST. The PSH and URG flags are less directly relevant. Two other rarely used flags are understood

19It is technically possible for there to be a valid three-packet complete TCP flow: one SYN packet, one SYN-ACK packet
containing the data, and one RST packet terminating the flow. This is a very rare circumstance; most complete TCP flows
have more than four packets.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793

170 APPENDIX A. NETWORKING PRIMER

Figure A.4: TCP State Machine

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

A.5. MAJOR PROTOCOLS 171

by SiLK: ECE (Explicit Congestion Notification Echo) and CWR (Congestion Window Reduced). Neither
is relevant to security analysis at this time, although they can be used with the SiLK tool suite if required.
A ninth TCP flag, NS (Nonce Sum), is not recognized or supported by SiLK.

Major TCP Services

Traditional TCP services have well-known ports; for example, 80 is Web, 25 is SMTP, and 53 is DNS. IANA
maintains a list of these port numbers at https://www.iana.org/assignments/service-names-port-numbers.
This list is useful for legitimate services, but it does not necessarily contain new services or accurate port
assignments for rapidly changing services such as those implemented via peer-to-peer networks. Furthermore,
there is no guarantee that traffic seen (e.g., on port 80) is actually web traffic or that web traffic cannot be
sent on other ports.

A.5.3 UDP and ICMP

After TCP, the most common protocols on the Internet are UDP and ICMP. While IP uses its addressing and
routing to deliver packets to the correct interface on the correct host, Transport layer protocols like TCP and
UDP use their port numbers to deliver packets inside the host to the correct process or service. Whereas TCP
also provides other functions, such as data streams and reliability, UDP provides only delivery. UDP does
not understand that sequential packets might be related (as in streams); UDP leaves that up to higher layer
protocols. UDP does not provide reliability functions, like detecting and recovering lost packets, reordering
packets, or eliminating duplicate packets. UDP is a fast but unreliable message-passing mechanism used for
services where throughput is more critical than accuracy. Examples include audio/video streaming, as well
as heavy-use services such as the Domain Name System (DNS).

ICMP, a reporting protocol that works in tandem with IP, sends error messages and status updates, and
provides diagnostic capabilities like echo.

Figure A.5: UDP and ICMP Headers

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

https://www.iana.org/assignments/service-names-port-numbers

172 APPENDIX A. NETWORKING PRIMER

UDP and ICMP Packet Structure

Figure A.5 shows a breakdown of UDP and ICMP packets, as well as the fields collected by SiLK. UDP
can be thought of as TCP without the additional state mechanisms; a UDP packet has both source and
destination ports, assigned in the same way TCP assigns them, as well as a payload.

ICMP is a straight message-passing protocol and includes a large amount of information in its first two
fields: Type and Code. The Type field is a single byte indicating a general class of message, such as
“destination unreachable.” The Code field contains a byte indicating greater detail about the type, such as
“port unreachable.” ICMP messages generally have a limited payload; most messages have a fixed size based
on type, with the notable exceptions being echo request (ICMPv4 type 8 or ICMPv6 type 128) and echo
reply (ICMPv4 type 0 or ICMPv6 type 129).

Major UDP Services and ICMP Messages

UDP services are covered in the IANA webpage whose URL is listed above. As with TCP, the values given
by IANA are slightly behind those currently observed on the Internet. IANA also excludes port utilization
(even if common) by malicious software such as worms. Although not official, numerous port databases on
the web can provide insight into the current port utilization by services.

ICMPv4 types and codes are listed at https://www.iana.org/assignments/icmp-parameters. ICMPv6 types
and codes are listed at https://www.iana.org/assignments/icmpv6-parameters. These lists are definitive and
include references to RFCs explaining the types and codes.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xhtml

Appendix B

Using UNIX to Implement Network
Traffic Analysis

This appendix provides a review of basic UNIX operations. SiLK is implemented on UNIX (e.g., Apple®

OS X®, FreeBSD®, Solaris®) and UNIX-like operating systems and environments (e.g., Linux®, Cygwin);
consequently an analyst must be able to work with UNIX to use the SiLK tools.

B.1 Using the UNIX Command Line

UNIX uses a program known as a shell to obtain commands from a user and either perform the task described
by that command or invoke another program that will. Linux usually uses Bash (Bourne-Again SHell) for its
shell. When the shell is ready to accept a command from the user, it displays a string of characters known
as a prompt to let the user know that he or she can enter a command now. Besides notifying the user that
a command can be accepted at this time, the prompt may convey additional information. The choice of
information to be conveyed may be made by the user by providing a prompt template to the shell. In this
handbook, the prompt will appear as in Example B.1.

Example B.1: A UNIX Command Prompt
<1>$

The integer between angle brackets will be used to refer to specific commands in examples. Commands
can be invoked by typing them directly at the command line. UNIX commands are typically abbreviated
English words and accept space-separated parameters. Parameters are just values (like filenames), an option-
name/value pair, or just an option name. Option names are double dashes followed by hyphenated words,
single dashes followed by single letters, or (rarely) single dashes followed by words (as in the find command).
Table B.1 lists some of the more common UNIX commands. To see more information on these commands
type man followed by the command name. Example B.2 and the rest of the examples in this handbook show
the use of some of these commands.

173 [DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

174 APPENDIX B. USING UNIX

Table B.1: Some Common UNIX Commands

Command Description
cat Copies streams and/or files onto standard output (show file content)
cd Changes [working] directory
chmod Changes file-access permissions. Needed to make script executable
cp Copies a file from one name or directory to another
cut Isolates one or more columns from a file
date Shows the current or calculated day and time
echo Writes arguments to standard output
exit Terminates the current shell or script (log out) with an exit code
export Assigns a value to an environment variable that programs can use
file Identifies the type of content in a file
grep Displays from a file those lines matching a given pattern
head Shows the first few lines of a file’s content
kill Terminates a job or process
less Displays a file one full screen at a time
ls Lists files in the current (or specified) directory

-l (for long) parameter to show all directory information
man Shows the online documentation for a command or file
mkdir Makes a directory
mv Renames a file or moves it from one directory to another
ps Displays the current processes
pwd Displays the working directory
rm Removes a file
sed Edits the lines on standard input and writes them to standard output
sort Sorts the contents of a text file into lexicographic order
tail Shows the last few lines of a file
time Shows the execution time of a command
top Shows the running processes with the highest CPU utilization
uniq Reports or omits repeated lines. Optionally counts repetitions
wc Counts the words (or, with -l parameter, counts the lines) in a file
which Verifies which copy of a command’s executable file is used
$(...) Inserts the output of the contained command into the command line
var=value Assigns a value to a shell variable. For use by the shell only, not programs

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

B.1. USING THE UNIX COMMAND LINE 175

Example B.2: Using Simple UNIX Commands
<1>$ echo Here are some simple commands :
Here are some simple commands :
<2>$ date
Thu Jul 3 15:56:24 EDT 2014
<3>$ date -u
Thu Jul 3 19:56:24 UTC 2014
<4>$ # This is a comment line. It has no effect .
<5>$ #The next command lists my running processes
<6>$ ps -f
UID PID PPID C STIME TTY TIME CMD
user1 8280 8279 0 14:43 pts /2 00:00:00 -bash
user1 10358 10355 1 15:56 pts /2 00:00:00 ps -f
<7>$ cat animals .txt
Animal Legs Color
------ ---- -----
fox 4 red
gorilla 2 silver
spider 8 black
moth 6 white
<8>$ file animals .txt
animals .txt: ASCII text
<9>$ head -n 3 animals .txt
Animal Legs Color
------ ---- -----
fox 4 red
<10>$ cut -f 1,3 animals .txt
Animal Color
------ -----
fox red
gorilla silver
spider black
moth white

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

176 APPENDIX B. USING UNIX

B.2 Standard In, Out, and Error

Many UNIX programs, including most of the SiLK tools, have a default for where to obtain input and where
to write output. The symbolic filenames stdin, stdout, and stderr are not the names of disk files, but
rather they indirectly refer to files. Initially, the shell assigns the keyboard to stdin and assigns the screen
to stdout and stderr. Programs that were written to read and write through these symbolic filenames will
default to reading from the keyboard and writing to the screen. But the symbolic filenames can be made to
refer indirectly to other files, such as disk files, through shell features called redirection and pipes.

B.2.1 Output Redirection

Some programs, like cat and cut, have no way for the user to tell the program directly which file to use
for output. Instead these programs always write their output to stdout. The user must inform UNIX, not
the program, that stdout should refer to the desired file. The program then only knows its output is going
to stdout, and it’s up to UNIX to route the output to the desired file. One effect of this is that any error
message emitted by the program that refers to its output file can only display “stdout,” since the actual
output filename is unknown to the program.

The shell makes it easy to tell UNIX that you wish to redirect stdout from its default (the screen) to the
file that the user specifies. This is done right on the same command line that runs the program, using the
greater-than symbol (>) and the desired filename (as shown in Command 1 of Example B.3).

SiLK tools that write binary (non-text) data to stdout will emit an error message and terminate if stdout is
assigned to a terminal device. Such tools must have their output directed to a disk file or piped to a SiLK
tool that reads that type of binary input.

Example B.3: Output Redirection
<1>$ cut -f 1,3 animals .txt >animalcolors .txt
<2>$ cat animalcolors .txt
Animal Color
------ -----
fox red
gorilla silver
spider black
moth white
<3>$ rm animalcolors .txt
<4>$ ls animalcolors .txt
ls: animalcolors .txt: No such file or directory

B.2.2 Input Redirection

A very few programs, like tr, have no syntax for specifying the input file and rely entirely on UNIX to
connect an input file to stdin. The shell provides a method for redirecting input very similar to redirecting
output. You specify a less-than symbol (<) followed by the input filename as shown in Command 2 of
Example B.4.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

B.2. STANDARD IN, OUT, AND ERROR 177

Example B.4: Input Redirection
<1>$ # Translate hyphens to slashes
<2>$ tr - / <animals .txt
Animal Legs Color
////// //// /////
fox 4 red
gorilla 2 silver
spider 8 black
moth 6 white

B.2.3 Pipes

The real power of stdin and stdout becomes apparent with pipes. A pipe connects the stdout of the first
program to the stdin of a second program. This is specified in the shell using a vertical bar character (|),
known in UNIX as the pipe symbol.

Example B.5: Using a Pipe
<1>$ head -n 4 animals .txt | cut -f 1,3
Animal Color
------ -----
fox red
gorilla silver

In Example B.5, the head program reads the first four lines from the animals.txt file and writes those
lines to stdout as normal, except that stdout does not refer to the screen. The cut program has no input
filename specified and is programmed to read from stdin when no input filename appears on the command
line. The pipe connects the stdout of head to the stdin of cut so that head’s output lines become cut’s input
lines without those lines ever touching a disk file. cut’s stdout was not redirected, so its output appears on
the screen.

B.2.4 Here-Documents

Sometimes we have a small set of data that is manually edited and perhaps doesn’t change from one run of
a script to the next. If so, instead of creating a separate data file for the input, we can put the input data
right into the script file. This is called a here-document, because the data are right here in the script file,
immediately following the command that reads them.

Example B.6 illustrates the use of a here-document to supply several filenames to a SiLK program called
rwsort. The rwsort program has an option called --xargs telling it to get a list of input files from stdin.
The here-document supplies data to stdin and is specified with double less-than symbols («), followed by a
string that defines the marker that will indicate the end of the here-document data. The lines of the script
file that follow the command are input data lines until a line with the marker string is reached.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

178 APPENDIX B. USING UNIX

Example B.6: Using a Here-Document
<1>$ rwsort --xargs --fields =sTime --output -path=week.rw <<END -OF -LIST
sunday .rw
monday .rw
tuesday .rw
wednesday .rw
thursday .rw
friday .rw
saturday .rw
END -OF -LIST
<2>$ rwfileinfo --fields =count - records *day.rw week.rw

B.2.5 Named Pipes

Using the pipe symbol, a script creates an unnamed pipe. Only one unnamed pipe can exist for output from
a program, and only one can exist for input to a program. For there to be more than one, you need some
way to distinguish one from another. The solution is named pipes.

Unlike unnamed pipes, which are created in the same command line that uses them, named pipes must be
created prior to the command line that employs them. As named pipes are also known as FIFOs (for First
In First Out), the command to create one is mkfifo (make FIFO). Once the FIFO is created, it can be
opened by one process for reading and by another process (or multiple processes) for writing.

Scripts that use named pipes often employ another useful feature of the shell: running programs in the
background. In Bash, this is specified by appending an ampersand (&) to the command line. When a
program runs in the background, the shell will not wait for its completion before giving you a command
prompt. This allows you to issue another command to run concurrently with the background program. You
can force a script to wait for the completion of background programs before proceeding by using the wait
command.

SiLK applications can communicate via named pipes. In Example B.7, we create a named pipe (in Command
1) that one call to rwfilter (in Command 2) uses to filter data concurrently with another call to rwfilter
(in Command 3). Results of these calls are shown in Commands 5 and 6. Using named pipes, sophisticated
SiLK operations can be built in parallel. A backslash (\) at the very end of a line indicates that the command
is continued on the following physical line.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

B.3. SCRIPT CONTROL STRUCTURES 179

Example B.7: Using a Named Pipe
<1>$ mkfifo /tmp/ namedpipe1
<2>$ rwfilter --start -date =2014/03/21 T17 --end -date =2014/03/21 T18 \

--type=all --protocol =6 \
--fail =/ tmp/ namedpipe1 --pass= stdout \

| rwuniq --fields = protocol --output -path=tcp.out &
<3>$ rwfilter /tmp/ namedpipe1 --protocol =17 --pass= stdout \

| rwuniq --fields = protocol --output -path=udp.out &
<4>$ wait
<5>$ cat tcp.out
pro| Records |

6| 34866860|
<6>$ cat udp.out
pro| Records |

17| 17427015|
<7>$ rm /tmp/ namedpipe1 tcp.out udp.out

B.3 Script Control Structures

Some advanced examples in this handbook will use control structures available from Bash. The syntax

for name in word-list-expression; do . . . done

indicates a loop where each of the space-separated values returned by word-list-expression is given in turn to
the variable indicated by name (and referenced in commands as $name), and the commands between do and
done are executed with that value. The syntax

while expression; do . . . done

indicates a loop where the commands between do and done are executed as long as expression evaluates to
true.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

180 APPENDIX B. USING UNIX

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

Appendix C

SiLK Commands

This appendix lists the SiLK commands that are used in this guide and describes their most commonly-used
options. Section C.27 surveys features, including parameters, that are common across several tools.

C.1 Getting Help with SiLK Tools

All SiLK tools include a help screen that provides a summary of command information. To view the help
screen, specify the --help parameter with the command.

$ command --help

SiLK is distributed with UNIX manual pages that explain all the parameters and functionality of each tool
in the suite.

$ man command

All SiLK tools also have a --version parameter that identifies the version installed. Since the suite is still
being extended and evolved, this version information may be quite important.

$ command --version

181 [DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

182 APPENDIX C. SILK COMMANDS

C.2 rwsiteinfo Command Summary

rwsiteinfo
Description Displays SiLK configuration file information for a site, its sensors, and the

traffic they collect.
Call rwsiteinfo --fields=parameters --sensor=sensors
Parameters --fields Displays information about the parameters specified in a comma-

separated list (required). See Table C.1 for a list of commonly-used pa-
rameters. Specify :list after a parameter to display output in a comma-
separated list instead of columns.

--sensor Displays information about the specified sensor or sensors
--type Displays information about the SiLK types specified in a comma- sep-

arated list
--column-separator Uses the specified character as a column separator

(default is |)
--no-titles Do not print column headers.
--list-delimiter Uses the specified character as a list delimiter (default is ,)

For additional parameters, see Table C.17 and Table C.18.

Table C.1: Parameters for rwsiteinfo --fields

Parameter Description
sensor Name of sensor
describe-sensor Description of sensor from configuration file
type Type of SiLK network data (see Section 1.2.6 for more information)
repo-start-date Time and date of first data file written to SiLK repository
repo-send-date Time and date of last data file written to SiLK repository
repo-file-count Number of files written to SiLK repository

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

C.3. RWFILTER COMMAND SUMMARY 183

C.3 rwfilter Command Summary

rwfilter
Description Searches for, retrieves, and partitions SiLK flow records
Call rwfilter {selection | input} partition output [other]
Parameters Specify either selection or input parameters.

selection parameters (described in Table C.2) tell rwfilter to pull data from
SiLK repository files by supplying desired attributes of the records
stored in the repository.

input parameters specify a SiLK data source other than the repository and
can include filenames (e.g., infile.rw) or pipe names (e.g., stdin or
/tmp/my.fifo) to specify locations from which to read records. As
many filenames as desired may be given, with both files and pipes
used in the same command. The --xargs parameter specifies a file
containing filenames from which to read flow records.

partition parameters define tests that divide the input records into two groups:
(1) “pass” records, which satisfy all the tests and (2) “fail” records, which
fail to satisfy at least one of the tests. Each call to rwfilter must have
at least one partitioning parameter unless the only output parameter is
--all-destination, which does not require the difference between passing
and failing to be defined. Commonly used partitioning parameters are
listed in Tables C.3–C.9.)

output specify which statistics or sets of records should be returned from the
call. There are five output parameters, as described in Table C.10. Each
call to rwfilter must have at least one of these parameters.

For additional parameters, see Table C.17 and Table C.18.

rwfilter Selection Parameters

Table C.2: rwfilter Selection Parameters

Parameter Example Description
--data-rootdir /datavol/repos Location of SiLK repository
--sensors∗ 1–5 Sensor(s) used to collect data
--class∗ all Category of sensors
--type∗ inweb,in,outweb,out Category of flows within class
--flowtypes∗ c1/in,c2/all Class/type pairs
--start-date 2014/6/13 First day or hour of data to examine
--end-date 2014/3/20T23 Final day or hour of data to examine

∗These selection keywords may be used as partitioning options if an input file or pipe is named.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

184 APPENDIX C. SILK COMMANDS

rwfilter Partitioning Parameters

Figure C.1 shows several groups of partitioning parameters. This section focuses on the parameters that
partition records based on fields in the flow records. Section 5.1.3 discusses IP sets and how to filter with
those sets. Section 6.2.7 describes prefix maps and country codes. Section 6.2.1 discusses tuple files and
the parameters that use them. Lastly, Section 8.1.2 describes the use of PySiLK plug-ins. Figure C.1 also
illustrates the relative efficiency of the types of partitioning parameters. Choices higher in the illustration
may be more efficient than choices lower down. So analysts should prefer IPsets to tuple files when either
would work, and they should prefer --saddress or --scidr to IPsets when those would all work.

Figure C.1: rwfilter Partitioning Parameters

Table C.3: Single-Integer- or Range-Partitioning Parameters

Parameter Example Partition Based on
--packets 1–3 Packet count in flow
--bytes 400–2400 Byte count in flow
--bytes-per-packet 1000–1400 Average bytes/packet in flow
--duration 1200– Duration of flow in seconds
--ip-version 6 IP version of the flow record

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

C.3. RWFILTER COMMAND SUMMARY 185

Table C.4: Multiple-Integer- or Range-Partitioning Parameters

Parameter Example Partition Based on
--protocol 0,2–5,7–16,18– Protocol number (1=ICMP, 6=TCP, 17=UDP)
--sport 0–1023 Source port
--dport 25 Destination port
--aport 80,8080 Any port. Like --sport, but for either source or destination
--application 2427,2944 Application-layer protocol

(see https://tools.netsa.cert.org/yaf/applabel.html#LABELS)
--icmp-type 0–41,253,254 Type of ICMP message
--icmp-code 0,16 Subtype of ICMP message

Table C.5: Address-Partitioning Parameters

Parameter Example Partition Based on
--saddress 198.51.100.1,254 Single address, CIDR block, or wildcard for source
--daddress 198.51.100.0/24 Like --saddress, but for destination
--any-address 2001:DB8::x Like --saddress, but for either source or destination
--next-hop-id 10.2–5.x.x Like --saddress, but for next hop address
--scidr 198.51.100.1,203.0.113.64/29 Multiple addresses and CIDR blocks for source address
--dcidr FC00::/7,2001:DB8::/32 Like --scidr, but for destination
--any-cidr 203.0.113.199,192.0.2.44 Like --scidr, but for either source or destination
--nhcidr 203.0.113.8/30,192.0.2.6 Like --scidr, but for next hop address
--sipset tornodes.set Source address existing in IPset file
--dipset websvrs.set Destination address existing in IPset file
--anyset dnssvrs.set Either source or destination address in IPset file
--nhipset lgvolume.set Next hop address in IPset file
--not-param Any address parameter can be inverted using the --not- prefix

Table C.6: High/Mask Partitioning Parameters

Parameter Example Partition Based on
--flags-all SF/SF,SR/SR Accumulated TCP flags
--flags-initial S/SA TCP flags in the first packet of flow
--flags-session /FR Flags in the packets after the first
--attributes T/T,C/C Termination attributes or packet size uniformity

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

https://tools.netsa.cert.org/yaf/applabel.html#LABELS

186 APPENDIX C. SILK COMMANDS

Table C.7: Time-Partitioning Parameters

Parameter Example Partition Based on
--stime 2014/4/7–2014/4/8T12 Flow’s start time
--etime 2014/4/7T8:30–2014/4/8T8:59 Flow’s end time
--active-time 2014/4/7T11:33:30– Overlap of active range and period

between flow’s start and end times

Table C.8: Prefix-Map-Partitioning Parameters

Parameter Example Partition Based on
--pmap-src-mapname Zer0n3t,YOLOBotnet Source mapping to a specified label
--pmap-dst-mapname DMZ,bizpartner Destination mapping to a specified label
--pmap-any-mapname mynetdvcs Source or destination mapping to a specified label

(see Section 6.2.7 on page 121)
--scc ru,cn,br,ko Source address’s country code
--dcc ca,us,mx Destination address’s country code
--any-cc a1,a2,o1,-- Source or destination address’s country code
--stype 1 category index of source address
--dtype 2 category index of destination address

Table C.9: Miscellaneous Partitioning Parameters

Parameter Example Partition Based on
--tuple-file torguard.tuple Match to any specified combination of field values

(see Section 6.2.1 on page 107)
--python-expr 'rec.sport==rec.dport' Truth of expression (see Section 8.2 on page 143)
--python-file complexrules.py Truth of value returned by the program in the

Python file (see Section 8.2 on page 143)
--plugin flowrate.so Custom partitioning with a C language program

(see Section 8.1 on page 142)

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

C.3. RWFILTER COMMAND SUMMARY 187

Note on specifying partitioning parameters: Partitioning parameters specify a collection of flow
record criteria, such as the protocols 6 and 17 or the specific IP address 198.51.100.71. As a result, almost
all partitioning parameters describe some group of values. These ranges are generally expressed in the
following ways:

Value range: Value ranges are used when all values in a closed interval are desired. A value range is two
numbers separated by a hyphen, such as --packets=1-4, which indicates that flow records with a
packet count from one through four (inclusive) belong to the pass set of records. Some partitioning
parameters (such as --duration) only make sense with a value range (searching for flows with a
duration exact to the millisecond would be fruitless); An omitted value on the end of the range (e.g.,
--bytes=2048-) specifies that any value greater than or equal to the low value of the range passes.
Omitting the value at the start of a range is not permitted. The options in Table C.3 should be
specified with a single value range, except --ip-version which accepts a single integer.

Value alternatives: Fields that have a finite set of values (such as ports or protocol) can be expressed
using a comma-separated list. In this format a field is expressed as a set of numbers separated by
commas. When only one value is acceptable, it is presented without a comma. Examples include
--protocol=3 and --protocol=3,9,12. Value ranges can be used as elements of value alternative
lists. For example, --protocol=0,2-5,7-16,18- says that all flow records that are not for ICMP (1),
TCP (6), or UDP (17) traffic are desired. The options in Table C.4 are specified with value alternatives.

IP addresses: IP address specifications are expressed in three ways: a single address; a CIDR block (a
network address, a slash (/), and a prefix length); and a SiLK address wildcard. The --saddress,
--daddress, --any-address, and --next-hop-id options, and the --not- forms of those options ac-
cept a single specification that may be any of three forms. The --scidr, --dcidr, --any-cidr, and
--nhcidr options, and the --not- forms of those options accept a comma-separated list of specifica-
tions that may be addresses or CIDR blocks but not wildcards. SiLK address wildcards are address
specifications with a syntax unique to the SiLK tool suite. Like CIDR blocks, a wildcard specifies mul-
tiple IP addresses. But while CIDR blocks only specify a continuous range of IP addresses, a wildcard
can even specify discontiguous addresses. For example, the wildcard 1-13.1.1.1,254 would select
the addresses 1.1.1.1, 2.1.1.1, and so on until 13.1.1.1, as well as 1.1.1.254, 2.1.1.254, and so on until
13.1.1.254. For convenience, the letter x can be used to indicate all values in a section (equivalent to
0-255 in IPv4 addresses, 0-FFFF in IPv6 addresses). CIDR notation may also be used, so 1.1.0.0/16
is equivalent to 1.1.x.x and 1.1.0-255.0-255. Any address range that can be expressed with CIDR
notation also can be expressed with a wildcard. Since CIDR notation is more widely understood, it
probably should be preferred for those cases. As explained in Section A.4.1, IPv6 addresses use a
double-colon syntax as a shorthand for any sequence of zero values in the address and use a CIDR
prefix length. The options in Table C.5, except the set-related options, are specified with IP addresses.
The set-related options specify a filename.

TCP flags: The --flags-all, --flags-initial, and --flags-session options to rwfilter use a com-
pact, yet powerful, way of specifying filter predicates based on the presence of TCP flags. The argument
to this parameter has two sets of TCP flags separated by a forward slash (/). To the left of the slash
is the high set; it lists the flags that must be set for the flow record to pass the filter. The flag set
to the right of the slash contains the mask; this set lists the flags whose status is of interest, and the
set must be non-empty. Flags listed in the mask set but not in the high set must be off to pass. The
flags listed in the high set must be present in the mask set. (For example, --flags-initial=S/SA
specifies a filter for flow records that initiate a TCP session; the S flag is high [on] and the A flag is low
[off].) The options in Table C.6, except --attributes, are specified with TCP flags; --attributes
also specifies flags in a high/mask format, but the flags aren’t TCP flags.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

188 APPENDIX C. SILK COMMANDS

Attributes: The --attributes parameter takes any combination of the letters S, T, and C, expressed in
high/mask notation just as for TCP flags. S indicates that all packets in the flow have the same length
(never present for single-packet flows). T indicates the collector terminated the flow collection due to
active timeout. C indicates the collector produced the flow record to continue flow collection that was
terminated due to active timeout. Only the --attributes parameter uses attributes for values.

Time ranges: Time ranges are two times, potentially precise to the millisecond, separated by a hyphen; in
SiLK, these times can be expressed in their full YYYY/MM/DDThh:mm:ss.mmm form (e.g.,
2005/02/11T03:18:00.005-2005/02/11T05:00:00.243). The times in a range may be abbreviated
by omitting a time (but not date) component and all the succeeding components. If all the time
components are omitted, the T (or colon) that separates the time from the date may also be omit-
ted. Abbreviated times (times without all the components down to the millisecond) are treated as
though the last component supplied includes the entire period specified by that component, not just
an instant (i.e., if the last component is the day, it represents a whole day; if it’s the hour, it repre-
sents the whole hour.) So 2014/1/31 represents one whole day. 2014/1/31-2014/2/1 represents two
days. 2014/1/31T14:50-2014/1/31T14:51 represents two whole minutes. 2014/1/31T12- represents
all time from 2014/1/31 noon forward. The options in Table C.7 are specified with time ranges.

Country codes: The --scc, --dcc, and --any-cc parameters take a comma-separated list of two-letter
country codes, as specified by IANA.20 There are also four special codes: -- for unknown, a1 for
anonymous proxy, a2 for satellite provider, and o1 for other. The options in Table C.8 are specified
with country codes. These options require a country-code mapping file to be built and installed.

Address types: The --stype and --dtype parameters accept a single index. Records pass if their source or
destination addresses produce a matching index when looked up in address-types mapping file. These
parameters require the mapping file to be built and installed.

rwfilter Output Parameters

Table C.10: rwfilter Output Parameters

Parameter Example Description
--pass-destination stdout Send SiLK flow records matching all partitioning parame-

ters to pipe or file
--fail-destination faildata.rw Like --pass, but for records failing to match
--all-destination allrecs.rw Like --pass, but for all records
--print-statistics — Print (default to stderr) count of records passing and fail-

ing
--print-volume-statistics out-vol.txt Print counts of flows/bytes/packets read, passing, and fail-

ing to named file or stderr

20https://www.iana.org/domains/root/db/

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

https://www.iana.org/domains/root/db/

C.3. RWFILTER COMMAND SUMMARY 189

Miscellaneous rwfilter Parameters

Additional rwfilter parameters that are commonly useful in analysis or maintaining the repository are
listed below. These depend on the implementation and are described in Table C.11.

The --threads parameter takes an integer scalar N to specify using N threads to read input files and filter
records. The default value is one or the value of the SILK_RWFILTER_THREADS environment variable if that is
set. Using multiple threads is preferable for queries that look at many files but return few records. Current
experience is that performance peaks at about two to three threads per CPU (core) on the host running
rwfilter, but this result is variable with the type of query and the number of records returned from each
file. There is no advantage in having more threads than input files. There may also be a point of diminishing
returns, which seems to be around 20 threads.

To improve query efficiency when few records are needed, the --max-pass-records parameter allows the
analyst to specify the maximum number of records to return via the path specified by the --pass parameter.

Table C.11: Miscellaneous rwfilter Parameters

Parameter Description
--print-missing-files Print names of missing repository files to stderr. Doubles as a selection

parameter.
--threads Specify number of process threads to be used in filtering
--max-pass-records Specifies the maximum number of records to return as matching partition-

ing parameters
--max-fail-records Specifies the maximum number of records to return as not matching parti-

tioning parameters
--dry-run Performs a sanity check on parameters. Does not retrieve records. Prints

a list of the names of files that would be accessed.
For additional parameters, see Table C.17 and Table C.18 .

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

190 APPENDIX C. SILK COMMANDS

C.4 rwstats Command Summary

rwstats
Description Summarizes SiLK flow records by one of a limited number of key-and-value

pairs and displays the results as a top-N or bottom-N list
Call rwstats flowrecs.rw --fields=protocol --values=Records --top

--count=20
Parameters Choose one or none:

--top Prints the top N keys and their values (default)
--bottom Prints the bottom N keys and their values
--overall-stats Prints minima, maxima, quartiles, and interval-count statis-

tics for bytes, packets, and bytes per packet across all flows
--detail-proto-stats Prints overall statistics for each specified protocol.

Protocols are specified as integers or ranges separated by commas.

Choose one for --top or --bottom:
--count Displays the specified number of key-and-value pairs
--percentage Displays key-and-value pairs where the value is greater than

(--top) or less than (--bottom) this percentage of the total value
--threshold Displays key-and-value pairs where the the specified constant is

greater than or less than a threshold value.

Options for --top or --bottom:
--fields Uses the indicated fields as the key (see Table C.13) – required
--values Calculates values for the specified fields (default: Records)
--presorted-input Assumes input is already sorted by key
--no-percents Does not display percent-of-total or cumulative-percentage
--bin-time Adjusts sTime and eTime to multiple of the argument in seconds
--temp-directory Specifies the location for temporary data when memory is

exceeded

For additional parameters, see Table C.17 and Table C.18.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

C.5. RWCOUNT COMMAND SUMMARY 191

C.5 rwcount Command Summary

rwcount
Description Calculates volumes over time periods of equal duration
Call rwcount flowrecs.rw --bin-size=3600
Parameters --bin-size Specifies the number of seconds per bin (default 30)

--load-scheme Specifies how the flow volume is allocated to bins (see Ta-
ble C.12 for details)

--skip-zeroes Does not print empty bins
--start-time Specifies the initial time of the first bin
--end-time Specifies a time in the last bin, extended to make a whole bin
--bin-slots Displays timestamps as internal bin indices

For additional parameters, see Table C.17 and Table C.18.

Table C.12: Time distribution options for rwcount --load-scheme

Value Parameter Name Volume Allocation Guidelines for Use
0 bin-uniform Allocates equal parts of vol-

ume to every bin in timespan
Computes the average load per bin,
smoothing out peaks and valleys.

1 start-spike Stores entire volume in the
first millisecond of flow (i.e.,
the flow’s stime bin)

Emphasizes the onset of periodic behav-
ior. Puts all packets and bytes into one
bin even if the flow spans multiple bins.

2 end-spike Stores entire volume in the
last millisecond of the flow
(i.e., the flow’s etime bin)

Emphasizes flow termination. Puts all
packets and bytes into one bin even if
the flow spans multiple bins.

3 middle-spike Stores entire volume in the
middle millisecond of the flow

Emphasizes payload transfer. Puts all
packets and bytes into one bin even if
the flow spans multiple bins.

4 time-proportional Proportionally allocates the
flow’s bytes, packets, and
record count (1 for one flow)
to all bins in the flow accord-
ing to how much time the flow
spent in each bin’s timespan

Default load scheme; recommended
for most analyses. Gives the average
load per time period. Smooths out peaks
and valleys over time.

5 max-volume Assigns entire flow volume to
each bin

Overestimates load; computes worst-case
scenario for service loading.

6 min-volume Assigns one flow to each bin Underestimates load; computes best case
scenario for service loading.

• For --load-scheme values 0 through 4, the flow record count adds up to 1. The byte and packet
counts add up to the counts in the flow record.

• For --load-scheme values 5 and 6, the flow record count does not add up to 1. The byte and packet
counts do not add up to the counts in the flow record.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

192 APPENDIX C. SILK COMMANDS

C.6 rwcut Command Summary

rwcut
Description Reads SiLK flow data and displays it as text
Call rwcut flowrecs.rw --fields=1-5,sTime
Parameters Choose one or none:

--fields Specifies which fields to display (default is 1–12)
--all-fields Displays all fields

Options:
--start-rec-num Specifies record offset of first record from start of file
--end-rec-num Specifies record offset of last record from start of file
--tail-recs Specifies record offset of first record from end of file (cannot com-

bine with --start-rec-num or --end-rec-num)
--num-recs Specifies maximum number of output records

For additional parameters, see Table C.17 and Table C.18.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

C.6. RWCUT COMMAND SUMMARY 193

Table C.13: Arguments for the --fields Parameter

Field
Number Field Name Description

1 sIP Source IP address for flow
2 dIP Destination IP address for flow
3 sPort Source port for flow (or 0)
4 dPort Destination port for flow (or 0)
5 protocol Transport-layer protocol number for flow
6 packets, pkts Number of packets in flow
7 bytes Number of bytes in flow (starting with IP header)
8 flags Cumulative TCP flag fields of flow (or blank)
9 sTime Start date and time of flow
10 duration Duration of flow
11 eTime End date and time of flow
12 sensor Sensor that collected the flow
13 in Ingress interface or VLAN on sensor (usually zero)
14 out Egress interface or VLAN on sensor (usually zero)
15 nhIP Next-hop IP address (usually zero)
16 sType Type of source IP address (pmap required)
17 dType Type of destination IP address (pmap required)
18 scc Source country code (pmap required)
19 dcc Destination country code (pmap required)
20 class Class of sensor that collected flow
21 type Type of flow for this sensor class
— iType ICMP type for ICMP and ICMPv6 flows (SiLK V3.8.1+)
— iCode ICMP code for ICMP and ICMPv6 flows (SiLK V3.8.1+)
25 icmpTypeCode Both ICMP type and code values (before SiLK V3.8.1)
26 initialFlags TCP flags in initial packet
27 sessionFlags TCP flags in remaining packets
28 attributes Termination conditions
29 application Standard port for application that produced the flow

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

194 APPENDIX C. SILK COMMANDS

C.7 rwsort Command Summary

rwsort
Description Sorts SiLK flow records using key field(s)
Call rwsort unsorted1.rw unsorted2.rw --fields=1,3

--output-path=sorted.rw
Parameters --fields Specifies key fields for sorting (required)

--presorted-input Specifies only merging of already sorted input files
--reverse Specifies sort in descending order
--temp-directory Specifies location of high-speed storage for temp files
--sort-buffer-size Specifies the in-memory sort buffer (2 GB default)

For additional parameters, see Table C.17 and Table C.18.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

C.8. RWUNIQ COMMAND SUMMARY 195

C.8 rwuniq Command Summary

rwuniq
Description Counts records per combination of multiple-field keys
Call rwuniq filterfile.rw --fields=1-5,sensor --values=Records
Parameters --fields Specifies fields to use as key (required)

--values Specifies summary counts (default: Records)
--bin-time Establishes bin size for time-oriented bins
--presorted-input Reduces memory requirements for presorted records
--sort-output Sorts results by key, as specified in the --fields parameter

For options to filter output rows, see Table C.14.
For additional parameters, see Table C.17 and Table C.18.

Table C.14: Output-Filtering Options for rwuniq

Parameter Description
--bytes Only output rows whose byte counts are in the specified range
--packets Only output rows total packet counts are in the specified range
--flows Only output rows whose flow (record) counts are in the specified range
--sip-distinct Only output rows whose counts of distinct (unique) source IP addresses are in the

specified range
--dip-distinct Only output rows whose counts of distinct (unique) destination IP addresses are in

the specified range

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

196 APPENDIX C. SILK COMMANDS

C.9 rwnetmask Command Summary

rwnetmask
Description Zeroes all bits past the specified prefix length on the specified address in SiLK

flow records
Call rwnetmask flows.rw --4sip-prefix-length=24

--output-path=sip-24.rw
Parameters Choose one or more:

--4sip-prefix-length Gives number of high bits of source IPv4 address to
keep

--4dip-prefix-length Gives number of high bits of destination IPv4 to keep
--4nhip-prefix-length Gives number of high bits of next-hop IPv4 to keep
--6sip-prefix-length Gives number of high bits of source IPv6 to keep
--6dip-prefix-length Gives number of high bits of destination IPv6 to keep
--6nhip-prefix-length Gives number of high bits of next-hop IPv6 to keep

For additional parameters, see Table C.17 and Table C.18.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

C.10. RWCAT COMMAND SUMMARY 197

C.10 rwcat Command Summary

rwcat
Description Concatenates SiLK flow record files and copies to a new file
Call rwcat someflows.rw moreflows.rw --output-path=allflows.rw
Parameters --ipv4-output Converts IPv6 records to IPv4 records following the asv4 pol-

icy; ignores other IPv6 records
--byte-order Writes the output in this byte order. Possible choices are native

(the default), little, and big

For additional parameters, see Table C.17 and Table C.18.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

198 APPENDIX C. SILK COMMANDS

C.11 rwappend Command Summary

rwappend
Description Appends the flow records from the successive files to the first file
Call rwappend allflows.rw laterflows.rw
Parameters --create Creates the output file if it does not already exist. Determines the

format and version of the output file from the flow record file optionally
named in this parameter

--print-statistics Prints to standard error the count of records that are
read from each input file and written to the output file

For additional parameters, see Table C.17 and Table C.18.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

C.12. RWSPLIT COMMAND SUMMARY 199

C.12 rwsplit Command Summary

rwsplit
Description Divides the flow records into successive files
Call rwsplit allflows.rw --flow-limit=1000 --basename=sample
Parameters Choose one:

--ip-limit Specifies the IP address count at which to begin a new sample file
--flow-limit Specifies the flow count at which to begin a new sample file
--packet-limit Specifies the packet count at which to begin a new sample file
--byte-limit Specifies the byte count at which to begin a new sample file

Options:
--basename Specifies the base name for output sample files (required)
--sample-ratio Specifies the denominator for the ratio of records read to num-

ber written in a sample file (e.g., 100 means to write 1 out of 100 records)
--seed Seeds the random number generator with this value
--file-ratio Specifies the denominator for the ratio of sample filenames gen-

erated to the total number written (e.g., 10 means 1 of every 10 files will
be saved)

--max-outputs Specifies the maximum number of files to write to disk

For additional parameters, see Table C.17 and Table C.18.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

200 APPENDIX C. SILK COMMANDS

C.13 rwtuc Command Summary

rwtuc
Description Generates SiLK flow records from textual input similar to rwcut output
Call rwtuc flows.rw.txt --output-path=flows.rw
Parameters --fields Specifies the fields to parse from the input. Values may be

• a field number: 1–15, 20–21, 26–29
• a field name equivalent to one of the field numbers above (see Ta-

ble C.13 on page 193)
• the keyword ignore for an input column not to be included in the

output records.
The parameter is unnecessary if the input file has appropriate column
headings.

--bad-input-lines Specifies the file or stream to write each bad input line to
(filename and line number prepended)

--verbose Prints an error message for each bad input line to standard error
--stop-on-error Prints an error message for a bad input line to standard error

and exits
--fixed-value-parameter Uses the value as a fixed value for this field in all

records. See Table C.15 for the parameter name for each field.

For additional parameters, see Table C.17 and Table C.18.

Table C.15: Fixed-Value Parameters for rwtuc

Field Parameter Name Field Parameter Name
sIP --saddress in --input-index
dIP --daddress out --output-index
sPort --sport nhIP --next-hop-ip
dPort --dport class --class
protocol --protocol type --type
packets --packets iType --icmp-type
bytes --bytes iCode --icmp-code
flags --flags-all initialFlags --flags-initial
sTime --stime sessionFlags --flags-session
duration --duration attributes --attributes
eTime --etime application --application
sensor --sensor

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

C.14. RWSET COMMAND SUMMARY 201

C.14 rwset Command Summary

rwset
Description Generates IP-set files from flows
Call rwset flows.rw --sip-file=flows_sip.set
Parameters Choose one or more:

--sip-file Specifies an IP-set file to generate with source IP addresses from
the flows records

--dip-file Specifies an IP-set file to generate with destination IP addresses
from the flows records

--nhip-file Specifies an IP-set file to generate with next-hop IP addresses
from the flows records

--any-file Specifies an IP-set file to generate with both source and destination
IP addresses from the flows records

Options:
--record-version Specifies the version of records to write to a file. Allowed

arguments are 0, 2, 3, and 4; record version affects size and backwards
compatibility. It can also be set by the SILK_IPSET_RECORD_VERSION en-
vironment variable.

--invocation-strip Does not copy command lines from the input files to the
output files

For additional parameters, see Table C.17 and Table C.18.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

202 APPENDIX C. SILK COMMANDS

C.15 rwsetcat Command Summary

rwsetcat
Description Lists contents of IP-set files as text on standard output
Call rwsetcat low_sip.set >low_sip.set.txt
Parameters --network-structure Prints the network structure of the set.

Syntax: [v6:|v4:][list-lengths[S][/[summary-lengths]]]
A length may be expressed as an integer prefix length (often preferred) or
a letter: T for total address space (/0), A for /8, B for /16, C for /24, X
for /27, and H for Host (/32 for IPv4, /128 for IPv6); with S for default
summaries.

--cidr-blocks Groups IP addresses that fill a CIDR block
--ip-ranges Groups consecutive addresses; provides the most compact display
--count-ips Prints the number of IP addresses. Disables default printing of

addresses
--print-statistics Prints set statistics (min-/max-IP address, etc.). Also

disables default printing of addresses
--print-ips Prints IP addresses when count or statistics parameter is given

For additional parameters, see Table C.17 and Table C.18.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

C.16. RWSETTOOL COMMAND SUMMARY 203

C.16 rwsettool Command Summary

rwsettool
Description Manipulates IP-set files to produce new IP-set files
Call rwsettool --intersect src1.set src2.set --output-path=both.set
Parameters Choose one:

--union Creates set containing IP addresses in any input file
--intersect Creates set containing IP addresses in all input files
--difference Creates set containing IP addresses from first file not in any of

the remaining files
--mask Creates set containing one IP address from each block of the specified

bitmask length when any of the input IPsets have an IP address in that
block

--fill-blocks Creates an IPset containing a completely full block with the
specified prefix length when any of the input IPsets have an IP address in
that block

--sample Creates an IPset containing a random sample of IP addresses from
all input IPsets. Requires either the --size or --ratio option

Options:
--size Specifies the sample size (number of IP addresses sampled from each

input IPset). Requires the --sample parameter
--ratio Specifies the probability (as a floating point value between 0.0 and 1.0)

that an IP address will be sampled. Requires the --sample parameter
--seed Specifies the random number seed integer for the --sample parameter

and is used only with that parameter
--note-strip Does not copy notes from the input files to the output file
--invocation-strip Does not copy command history from the input files to

the output file
--record-version Specifies the IP-set record version to write. v2 only sup-

ports IPv4; v3 requires SiLK 3; v4 is more compact and requires SiLK 3.7
or later; 0 uses v2 for IPv4 sets, and v3 otherwise.

For additional parameters, see Table C.17 and Table C.18.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

204 APPENDIX C. SILK COMMANDS

C.17 rwsetbuild Command Summary

rwsetbuild
Description Create a binary IPset file from a list of IP addresses
Call rwsetbuild myset.set.txt myset.set
Parameters --ip-ranges=DELIM Range of IP addresses, where DELIM is the delimiter.

--invocation-strip Do not include the command line in the file

For additional parameters, see Table C.17 and Table C.18.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

C.18. RWBAG COMMAND SUMMARY 205

C.18 rwbag Command Summary

rwbag
Description Generates bags from flow records
Call rwbag flow.rw --sip-bytes=x.bag --sip-flows=y.bag
Parameters --key-count Writes bag of count by unique key value. May be specified multiple

times. Allowed values for key and count are
Key Count

sip Source IP address flows Count flow records
dip Destination IP address packets Sum packets in records
nhip Next-hop IP address bytes Sum bytes in records
input Router input port
output Router output port
sport Source port
dport Destination port
proto Protocol
sensor Sensor ID

For additional parameters, see Table C.17 and Table C.18.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

206 APPENDIX C. SILK COMMANDS

C.19 rwbagbuild Command Summary

rwbagbuild
Description Creates a binary bag from non-flow data (expressed as text)
Call rwbagbuild --bag-input=ip-byte.bag.txt --key-type=sIPv4

--counter-type=sum-bytes --output-path=ip-byte.bag
Parameters Choose one:

--set-input Creates a bag from the specified IPset, which may be stdin or a
hyphen (-)

--bag-input Creates a bag from a delimiter-separated text file, which can be
stdin or a hyphen (-)

Options:
--delimiter Specifies the delimiter separating the key and value for the

--bag-input parameter. Cannot be the pound sign (#) or the line-break
character (new line)

--default-count Specifies the integer count for each key in the new bag, over-
riding any values present in the input

--key-type Sets the key type to this value. Allowable options are shown in
Table C.16.

--counter-type Sets the counter type to this value. Allowable options are
shown in Table C.16.

For additional parameters, see Table C.17 and Table C.18.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

C.19. RWBAGBUILD COMMAND SUMMARY 207

Table C.16: rwbagbuild Key or Value Options

Type Description, allowed values
sIPv4 Source IP addresses, IPv4 only, dotted quad, CIDR, wild-

card, or integer
dIPv4 Destination IP address, IPv4 only, dotted quad, CIDR,

wildcard, or integer
sPort Source port, integer 0–65,535
dPort Destination port, integer 0–65,535
protocol IP protocol, integer 0–255
packets Packet count, integer
bytes Byte count, integer
flags Bit string of TCP cumulative TCP flags (CEUAPRSF),

integer 0–255
sTime Starting time of the flow, integer seconds from UNIX epoch
duration Duration of the flow, integer seconds
eTime Ending time of the flow, integer seconds from UNIX epoch
sensor Sensor ID, integer
input SNMP index of input interface, integer
output SNMP index of output interface, integer
nhIPv4 Next-hop IP address, IPv4 only, dotted quad, CIDR, wild-

card, or integer
initialFlags TCP flags in first packet in the flow, integer 0–255
sessionFlags Cumulative TCP flags excluding the first packet, integer

0–255
attributes Flags for termination conditions and packet size unifor-

mity, integer
application Guess as to the content of the flow, as set by the flow

generator, integer 0–65,535
class Class of the sensor, integer
type Type of the flow, integer
icmpTypeCode An encoded version of the ICMP type and code, where the

type is in the upper byte and the code is in the lower byte
sIPv6 Source IP address, IPv6, canonical form or integer
dIPv6 Destination IP address, IPv6, canonical form or integer
nhIPv6 Next-hop IP address, IPv6, canonical form or integer
records Count of flows, integer
sum-packets Sum of packet counts, integer
sum-bytes Sum of byte counts, integer
sum-duration Sum of duration values, integer seconds
any-IPv4 Source, destination, or next-hop IPv4 address, dotted quad

or integer
any-IPv6 Source, destination or next-hop IPv6 address, canonical

form or integer
any-port Source or destination port, integer 0–65,535
any-snmp Input or output SNMP index of interface, integer
any-time Start or end time value, integer seconds since UNIX epoch
custom An integer

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

208 APPENDIX C. SILK COMMANDS

C.20 rwbagcat Command Summary

rwbagcat
Description Displays or summarizes bag contents
Call rwbagcat x.bag --output-path=x.bag.txt
Parameters Choose one or none:

--network-structure Prints the sum of counters for each specified CIDR block
in the comma-separated list of CIDR block sizes and/or letters

--bin-ips Inverts the bag and counts keys by distinct volume values. Allowed
arguments are linear (count keys with each volume [the default]), binary
(count keys with volumes that fall in ranges based on powers of 2), and
decimal (count keys that fall in ranges determined by a decimal logarith-
mic scale).

Options:
--mincounter Displays only entries with counts of at least the value given as

the argument
--maxcounter Displays only entries with counts no larger than the value given

as the argument
--minkey Displays only entries with keys of at least the value given as the

argument
--maxkey Displays only entries with keys no larger than the value given as the

argument
--key-format Specifies the formatting of keys for display. Allowed argu-

ments are canonical (display keys as IP addresses in canonical format),
zero-padded (display keys as IP addresses with zeroes added to fully
fill width of column), decimal (display keys as decimal integer values),
hexadecimal (display keys as hexadecimal integer values), and force-ipv6
(display all keys as IP addresses in the canonical form for IPv6 with no
IPv4 notation).

--mask-set Outputs records whose keys appear in the argument set-file
--zero-counts Prints keys with a counter of zero (requires --mask-set or both

--minkey and --maxkey)
--print-statistics Prints statistics about the bag to given file or standard

output

For additional parameters, see Table C.17 and Table C.18.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

C.21. RWBAGTOOL COMMAND SUMMARY 209

C.21 rwbagtool Command Summary

rwbagtool
Description Manipulates bags and generates cover sets
Call rwbagtool --add x.bag y.bag --output-path=z.bag
Parameters Choose one (or none with one input bag):

--add Adds bags together (union)
--subtract Subtracts from the first bag all the other bags (difference)
--minimize Writes to the output the minimum counter for each key across all

input bags
--maximize Writes to the output the maximum counter for each key across all

input bags
--divide Divides the first bag by the second bag
--scalar-multiply Multiplies each counter in the bag by the specified value.

Accepts a single bag file as input.
--compare Compares key/value pairs in exactly two bag files using the oper-

ation (OP) specified by the argument. Keeps only those keys in the first
bag that also appear in the second bag and whose counter satisfies the
OP relation with those in the second bag. The counter for each key that
remains is set to 1. Allowed OPs are lt (less than), le (less than or equal
to), eq (equal to), ge (greater than or equal to), gt (greater than).

Choose zero or more masking/limiting parameters to restrict the results of the
above operation or the sole input bag:

--intersect Intersects the specified set with keys in the bag
--complement-intersect Masks keys in the bag using IP addresses not in

given IP-set file
--minkey Cuts bag to entries with key of at least the value given as an argument
--maxkey Cuts bag to entries with key of at most the value given as an argument
--mincounter Outputs records whose counter is at least the value given as an

argument, an integer
--maxcounter Outputs records whose counter is not more than the value given

as an argument, an integer

Options:
--coverset Generates an IPset for bag keys instead of creating a bag
--invert Counts keys for each unique counter value
--note-strip Does not copy notes from the input files to the output file
--output-path Specifies where resulting bag or set should be stored

For additional parameters, see Table C.17 and Table C.18.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

210 APPENDIX C. SILK COMMANDS

C.22 rwfileinfo Command Summary

rwfileinfo
Description Displays summary information about one or more SiLK files
Call rwfileinfo allflows.rw --fields=count-records,command-lines
Parameters --fields Selects which summary information to display via number or name

(by default, all the available fields). Possible values include
Field Description
1 format Binary file format indicator
2 version Version of file header
3 byte-order Byte order of words written to disk
4 compression Type of space compression used
5 header-length Number of bytes in file header
6 record-length Number of bytes in fixed-length records
7 count-records Number of records in the file unless record-

length=1
8 file-size Total number of bytes in the file on disk
9 command-lines List of stored commands that generated this

file
10 record-version Version of records in file
11 silk-version Software version of SiLK tool that produced

this file
12 packed-file-info Information from packing process
13 probe-name Probe info for files created by flowcap
14 annotations List of notes
15 prefix-map Prefix map name and header version
16 ipset IP-set format information
17 bag Bag key and count information

--summary Prints a summary of total files, file sizes, and records

For additional parameters, see Table C.17 and Table C.18.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

C.23. RWPMAPBUILD COMMAND SUMMARY 211

C.23 rwpmapbuild Command Summary

rwpmapbuild
Description Creates a prefix map from a text file
Call rwpmapbuild --input-file=sample.pmap.txt --output-file=sample.pmap
Parameters --input-file Specifies the text file that contains the mapping between ad-

dresses and prefixes. When omitted, read from stdin
--mode Specifies the type of input as if a mode statement appeared in the input.

Valid values are ipv4, ipv6, and proto-port.
--output-file Specifies the filename for the binary prefix map file
--ignore-errors Writes the output file despite any errors in the input

For additional parameters, see Table C.17 and Table C.18.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

212 APPENDIX C. SILK COMMANDS

C.24 rwpmaplookup Command Summary

rwpmaplookup
Description Shows label associated with an addresses’ prefix map, address type, or country

code
Call rwpmaplookup --map-file=spyware.map address-list.txt
Parameters Choose one:

--map-file Specifies the pmap that contains the prefix map to query
--address-types Finds IP addresses in the address-types mapping file specified

in the argument or in the default file when no argument is provided
--country-codes Finds IP addresses in the country-code mapping file specified

in the argument or in the default file when no argument is provided

Options:
--fields Specifies the fields to print. Allowed values are: key (key used to

query), value (label from prefix map), input (the text read from the input
file [excluding comments] or IP address in canonical form from set input
file), block (CIDR block containing the key), start-block (low address
in CIDR block containing the key), and end-block (high address in CIDR
block containing the key.) Default is key,value.

--no-files Does not read from files and instead treat the command line argu-
ments as the IP addresses or protocol/port pairs to find

--no-errors Does not report errors parsing the input
--ipset-files Treats the command-line arguments as names of binary IP-set

files to read

For additional parameters, see Table C.17 and Table C.18.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

C.25. RWMATCH COMMAND SUMMARY 213

C.25 rwmatch Command Summary

rwmatch
Description Matches IPv4 flow records that have stimulus-response relationships (IPv6 sup-

port introduced in Version 3.9.0)
Call rwmatch --relate=1,2 --relate=2,1 query.rw response.rw

matched.rw
Parameters Choose one or none:

--absolute-delta Includes potentially matching flows that start less than the
interval specified by --time-delta after the end of the initial flow of the
current match (default)

--relative-delta Continues matching with flows that start within the interval
specified by --time-delta from the greatest end time seen for previous
members of the current match

--infinite-delta After forming the initial pair of the match, continues match-
ing on relate fields alone, ignoring time

Options:
--relate Specifies the numeric field IDs (1–8; see Figure C.13 on page 193)

that identify stimulus and response (required; may be specified multiple
times) Starting with Version 3.9.0 values may be 1–8, 12–14, 20–21, 26–29,
iType, and iCode; values may be specified by name or numeric ID.

--time-delta Specifies the number of seconds by which a time window is ex-
tended beyond a record’s end time. The default value is zero.

--symmetric-delta Also makes an initial match for a query that starts between
a response’s start time and its end time extended by --time-delta

--unmatched Includes unmatched records from the query file and/or the re-
sponse file in the output. Allowed arguments (case-insensitive) are one of
these: q (query file), r (response file), b (both)

For additional parameters, see Table C.17 and Table C.18.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

214 APPENDIX C. SILK COMMANDS

C.26 rwgroup Command Summary

rwgroup
Description Flags flow records that have common attributes
Call rwgroup --id-fields=sIP --delta-field=sTime --delta-value=3600

--output-path=grouped.rw
Parameters Choose one or both:

--id-fields Specifies the fields that need to be identical
--delta-field Specifies the field that needs to be close. Requires the

--delta-value parameter

Options:
--delta-value Specifies closeness for the --delta-field parameter
--objective Specifies that the --delta-value argument applies relative to the

first record, rather than the most recent
--rec-threshold Specifies the minimum number of records in a group
--summarize Produces a single record as output for each group, rather than all

flow records

For additional parameters, see Table C.17 and Table C.18.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

C.27. FEATURES COMMON TO SEVERAL COMMANDS 215

C.27 Features Common to Several Commands

Many of the SiLK tools share features such as using common parameters, providing help, handling the two
versions of IP addresses, and controlling the overwriting of existing output files.

C.27.1 Parameters Common to Several Commands

Many options apply to several of the SiLK tools, as shown in Table C.17.

Table C.18 lists the same options as in Table C.17 and provides descriptions of the options. Three of
the options described accept a small number of fixed values; acceptable values for --ip-format are listed
and described in Table C.19, values for --timestamp-format are described in Table C.20, and values for
--ipv6-policy are described in Table C.18 on page 217.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

216 APPENDIX C. SILK COMMANDS

Table C.17: Common Parameters in Essential SiLK Tools

Parameter rwfilter rwstats rwcount rwcut rwsort rwuniq

--help 3 3 3 3 3 3

--legacy-help 3

--version 3 3 3 3 3 3

--site-config-file 3 3 3 3 3 3

filenames 3 3 3 3 3 3

--xargs 3 3 3 3 3 3

--print-filenames 3 3 3 3 3 3

--copy-input 3 3 3 3

--pmap-file 3 3 3 3 3

--plugin 3 3 3 3 3

--python-file 3 3 3 3 3

--output-path 3 3 3 3 3

--no-titles 3 3 3 3

--no-columns 3 3 3 3

--column-separator 3 3 3 3

--no-final-delimiter 3 3 3 3

--delimited 3 3 3 3

--ipv6-policy 3 3 3

--ip-format 3 3 3

--timestamp-format 3 3 3 3

--integer-sensors 3 3 3

--integer-tcp-flags 3 3 3

--pager 3 3 3 3

--note-add 3 3

--note-file-add 3 3

--dry-run 3 3

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

C.27. FEATURES COMMON TO SEVERAL COMMANDS 217

Table C.18: Parameters Common to Several Commands

Parameter Description
--help Prints usage description and exits
--legacy-help Prints help for legacy switches
--version Prints this program’s version and installation parameters
--site-config-file Specifies the name of the SiLK configuration file to use instead of the file

in the root directory of the repository
filenames Specifies one or multiple filenames as non-option arguments
--xargs Specifies the name of a file (or stdin if omitted) from which to read input

filenames
--print-filenames Displays input filenames on stderr as each file is opened
--copy-input Specifies the file or pipe to receive a copy of the input records
--pmap-file Specifies a prefix-map filename and a map name as mapname:path to create

a many-to-one mapping of field values to labels. For rwfilter, this creates
new partitioning options: --pmap-src-mapname , --pmap-dst-mapname , and
--pmap-any-mapname . For other tools, it creates new fields src-mapname
and dst-mapname (see Section 6.2.7)

--plugin For rwfilter, creates new switches and partitioning options with a plug-in
program written in the C language. For other tools, creates new fields

--python-file For rwfilter, creates new switches and partitioning options with a plug-in
program written in Python. For other tools, creates new fields

--output-path Specifies the output file’s path
--no-titles Doesn’t print column headings
--no-columns Doesn’t align neat columns. Deletes leading spaces from each column
--column-separator Specifies the character displayed after each column value
--no-final-delimiter Doesn’t display a column separator after the last column
--delimited Combines --no-columns, --no-final-delimiter, and, if a character is

specified, --column-separator
--ipv6-policy Determines how IPv4 and IPv6 flows are handled when SiLK has been

installed with IPv6 support (see Table C.17)
--ip-format Chooses the format of IP addresses in output (see Table C.19)
--timestamp-format Chooses the format and/or timezone of timestamps in output (see Ta-

ble C.20)
--integer-sensors Displays sensors as integers, not names
--integer-tcp-flags Displays TCP flags as integers, not strings
--pager Specifies the program used to display output one screen at a time
--note-add Adds a note, specified in this option, to the output file’s header
--note-file-add Adds a note from the contents of the specified file to the output file’s header
--dry-run Checks parameters for legality without actually processing data

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

218 APPENDIX C. SILK COMMANDS

Table C.19: --ip-format Values

Value Description
canonical Displays IPv4 addresses as dotted decimal quad and most IPv6 addresses as colon-

separated hexadectets. IPv4-compatible and IPv4-mapped IPv6 addresses will be dis-
played in a combination of hexadecimal and decimal. For both IPv4 and IPv6, leading
zeroes will be suppressed in octets and hexadectets. Double-colon compaction of IPv6
addresses will be performed.

zero-padded Octets are zero-padded to three digits, and hexadectets are zero-padded to four digits.
Double-colon compaction is not performed, which simplifies sorting addresses as text.

decimal Displays an IP address as a single, large decimal integer.
hexadecimal Displays an IP address as a single, large hexadecimal integer.
force-ipv6 Display all addresses as IPv6 addresses, using only hexadecimal. IPv4 addresses are

mapped to the ::FFFF:0:0/96 IPv4-mapped netblock.

Table C.20: --timestamp-format format, modifier, and timezone Values

Value Description
default Formats timestamps as YYYY/MM/DDThh:mm:ss.sss (rwcut and rwcount may display mil-

liseconds; rwuniq and rwstats never do)
iso Formats timestamps as YYYY-MM-DD hh:mm:ss.sss
m/d/y Formats timestamps as MM/DD/YYYY hh:mm:ss.sss
epoch Formats timestamps as the number of seconds since 1970/01/01 00:00:00 UTC (UNIX

epoch) ssssssssss.sss

no-msec Truncates milliseconds (.sss) from sTime, eTime, and dur fields – rwcut only
utc Specifies timezone to use Coordinated Universal Time (UTC)
local Specifies timezone to use the TZ environment variable or the system timezone

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

Appendix D

Additional Information on SiLK

Network Traffic Analysis with SiLK has been designed to provide an overview of data analysis with SiLK on
an enterprise network. This overview has included the definition of network flow data, the collection of that
data on the enterprise network, and the analysis of that data using the SiLK tool suite. The last chapter
provided a discussion on how to extend the SiLK tool suite to support additional analyses.

This handbook provides a large group of analyses in the examples, but these examples are only a small part
of the set of analyses that SiLK can support. The SiLK community continues to develop new analytical
approaches and provide new insights into how analysis should be done. The authors wish the readers of this
handbook good fortune in participation as part of this community.

D.1 SiLK Support and Documentation

The SiLK tool suite is available in open-source form at https://tools.netsa.cert.org/silk/.

Before asking others to help with SiLK questions, it is wise to look first for answers in these resources:

SiLK_tool --help: All SiLK tools (e.g., rwfilter or rwcut) support the --help option to display terse
information about the syntax and usage of the tool.

man pages: All SiLK tools have online documentation known as manual pages, or man pages, that describe
the tool more thoroughly than the --help text. The description is not a tutorial, however. man pages
can be accessed with the man command on a system that has SiLK installed or via web links listed on
the SiLK Documentation webpage at https://tools.netsa.cert.org/silk/docs.html#manuals.

The SiLK Reference Guide: This guide contains the entire collection of man pages for all the SiLK tools
in one document. It is provided at https://tools.netsa.cert.org/silk/reference-guide.html in HTML for-
mat and at https://tools.netsa.cert.org/silk/reference-guide.pdf in Adobe® Portable Document Format
(PDF) .

SiLK Tool Suite Quick Reference booklet: This very compact booklet (located at https://tools.netsa.
cert.org/silk/silk-quickref.pdf) describes the dozen most used SiLK commands in a small (5.5′′× 8.5′′)
format. It also includes tables of flow record fields and transport layer protocols.

219 [DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

https://tools.netsa.cert.org/silk/
https://tools.netsa.cert.org/silk/docs.html#manuals
https://tools.netsa.cert.org/silk/reference-guide.html
https://tools.netsa.cert.org/silk/reference-guide.pdf
https://tools.netsa.cert.org/silk/silk-quickref.pdf
https://tools.netsa.cert.org/silk/silk-quickref.pdf

220 APPENDIX D. ADDITIONAL INFORMATION

SiLK FAQ: This webpage answers frequently asked questions about the SiLK analysis tool suite. Find it
at https://tools.netsa.cert.org/silk/faq.html.

SiLK Tooltips: This wiki contains tips and tricks posted by clever SiLK users. This useful information
often is not immediately obvious from the standard documentation. Find it at
https://tools.netsa.cert.org/tooltips.html.

PySiLK Tooltips: Tips for writing PySiLK scripts are provided at https://tools.netsa.cert.org/confluence/
display/tt/Writing+PySiLK+scripts.

D.2 FloCon Conference and Social Media

The CERT Division of the SEI supports FloCon®, an annual international conference devoted to large-scale
data analysis for improving the security of networked systems—including flow analysis. More information
on FloCon is provided at http://www.flocon.org.

Since the FloCon conference covers a range of network security topics, including network flow analysis, the
conference organizers encourage ongoing discussions. In support of this, the following social networking
opportunities are offered:

@FloCon_News Twitter account: The FloCon conference organizers post notices related to FloCon
here. View (and follow!) the FloCon tweets at https://twitter.com/FloCon_News.

“FloCon Conference” LinkedIn member: The FloCon Conference member page
(https://www.linkedin.com/in/flocon) displays postings from the conference organizers, as well as from
participants.

“FloCon” LinkedIn group: You can request membership to this private LinkedIn group at
https://www.linkedin.com/groups?gid=3636774. Here, members discuss matters related to the FloCon
conference and network flow analysis.

D.3 Email Addresses and Mailing Lists

The primary SiLK email addresses and lists are described below:

netsa-tools-discuss@cert.org: This distribution list is for discussion of tools produced by the CERT/CC
for network situational awareness, as well as for discussion of flow usage and analytics in general.
The discussion might be about interesting usage of the tools or proposals to enhance them. You can
subscribe to this list at https://lists.sei.cmu.edu.

netsa-help@cert.org: This email address is for bug reports and general inquiries related to SiLK, especially
support with deployment and features of the tools. It provides relatively quick response from CERT/CC
users and maintainers of the SiLK tool suite. While a specific response time cannot be guaranteed,
this address has proved to be a valuable asset for bugs and usage issues.

netsa-contact@cert.org: This email address provides an avenue for recipients of CERT Situational Aware-
ness Group technical reports to reach the reports’ authors. The focus is on analytical techniques. Public
reports are provided at https://www.cert.org/netsa/publications/.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

https://tools.netsa.cert.org/silk/faq.html
https://tools.netsa.cert.org/confluence/display/tt/Tooltips
https://tools.netsa.cert.org/confluence/display/tt/Writing+PySiLK+scripts
https://tools.netsa.cert.org/confluence/display/tt/Writing+PySiLK+scripts
http://www.flocon.org
https://twitter.com/FloCon_News
https://www.linkedin.com/in/flocon
https://www.linkedin.com/groups?gid=3636774
mailto:netsa-tools-discuss@cert.org
https://lists.sei.cmu.edu/mailman/listinfo
mailto:netsa-help@cert.org
mailto:netsa-contact@cert.org
https://www.cert.org/netsa/publications/

D.3. EMAIL ADDRESSES AND MAILING LISTS 221

flocontact@cert.org: General email address for inquiries about FloCon.

flocommunity@cert.org: This distribution list addresses a community of analysts built on the core of
the FloCon conference. The list is not focused exclusively on FloCon itself, although it will include
announcements of FloCon events.

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

mailto:flocontact@cert.org
mailto:flocommunity@cert.org

222 APPENDIX D. ADDITIONAL INFORMATION

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

Appendix E

Further Reading and Resources

This chapter gives helpful background information for many of the topics discussed in this guide. It is
intended to be a starting point for further learning!

E.1 Network Flow and Related Topics

Much has been written on NetFlow, SiLK, and related analysis. Here we provide a non-comprehensive list of
examples you may wish to consider. Several related topics will enhance your ability to to use SiLK effectively.

E.1.1 Technical Papers

Rick Hofstede, et al. Flow Monitoring Explained: From Packet Capture to Data Analysis With NetFlow and
IPFIX, IEEE Communications Surveys and Tutorials (Volume 16, Issue 4, Fourth quarter 2014) https://
ieeexplore.ieee.org/document/6814316/?arnumber=6814316&tag=1

T. Taylor, S. Brooks, J. McHugh. “NetBytes Viewer: An Entity-Based NetFlow Visualization Utility for
Identifying Intrusive Behavior.” In: Goodall J.R., Conti G., Ma KL. (eds) VizSEC 2007. Mathematics and
Visualization. Springer, Berlin, Heidelberg. https://link.springer.com/chapter/10.1007/978-3-540-78243-8_
7#citeas

T. Taylor, D. Paterson, J. Glanfield, C. Gates, S. Brooks and J. McHugh, “FloVis: Flow Visualization
System,” 2009 Cybersecurity Applications and Technology Conference for Homeland Security, Washing-
ton, DC, 2009, pp. 186-198. doi: 10.1109/CATCH.2009.18 http://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=4804443&isnumber=4804414

Jeff Janies, Red Jack. Protographs: Graph-Based Approach to NetFlow Analysis. FloCon 2011 https://
resources.sei.cmu.edu/asset_files/Presentation/2011_017_101_50576.pdf

M. Thomas, L. Metcalf, J. Spring, P. Krystosek and K. Prevost, “SiLK: A Tool Suite for Unsampled Network
Flow Analysis at Scale,” 2014 IEEE International Congress on Big Data, Anchorage, AK, 2014, pp. 184-
191. doi: 10.1109/BigData.Congress.2014.34 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
6906777&isnumber=6906742

V. Marinov, J. Schoenwaelder. “Design of an IP Flow Record Query Language.” In: D. Hausheer, J.

223 [DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

https://ieeexplore.ieee.org/document/6814316/?arnumber=6814316&tag=1
https://ieeexplore.ieee.org/document/6814316/?arnumber=6814316&tag=1
https://link.springer.com/chapter/10.1007/978-3-540-78243-8_7#citeas
https://link.springer.com/chapter/10.1007/978-3-540-78243-8_7#citeas
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4804443&isnumber=4804414
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4804443&isnumber=4804414
https://resources.sei.cmu.edu/asset_files/Presentation/2011_017_101_50576.pdf
https://resources.sei.cmu.edu/asset_files/Presentation/2011_017_101_50576.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6906777&isnumber=6906742
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6906777&isnumber=6906742

224 APPENDIX E. FURTHER READING

Schoenwaelder (eds) Resilient Networks and Services. AIMS 2008. Lecture Notes in Computer Science, vol
5127. Springer, Berlin, Heidelberg, 2008

M. M. Najafabadi, T. M. Khoshgoftaar, C. Calvert and C. Kemp,“Detection of SSH Brute Force Attacks
Using Aggregated Netflow Data,” 2015 IEEE 14th International Conference on Machine Learning and Ap-
plications (ICMLA), Miami, FL, 2015, pp. 283-288. doi: 10.1109/ICMLA.2015.20 http://ieeexplore.ieee.
org/stamp/stamp.jsp?tp=&arnumber=7424322&isnumber=7424247

Udaya Wijesinghe, Udaya Tupakula, Vijay Varadharajan. “An Enhanced Model for Network Flow Based
Botnet Detection.” Proceedings of the 38th Australasian Computer Science Conference (ACSC 2015), Sydney,
Australia, 27 - 30 January 2015 http://crpit.com/confpapers/CRPITV159Wijesinghe.pdf

E.1.2 Books on Network Flow and Network Security

Michael W. Lucas. Network Flow Analysis. no starch press. June 2010, ISBN-13: 978-1-59327-203-6
https://nostarch.com/networkflow

Omar Santos, Network Security with NetFlow and IPFIX. 2016 Cisco Systems, Inc, Cisco Press, Indianapolis,
IN http://www.ciscopress.com/store/network-security-with-netflow-and-ipfix-big-data-analytics-9781587144387

E.2 Bash Scripting Resources

Throughout this book, we use bash scripts to organize and execute collections of SiLK commands. There
are many books, online classes, and web tutorials on Bash and its uses. Here are some that may be helpful.

E.2.1 Online Tutorial

Online Shell Scripiting Tutorial: https://www.shellscript.sh

E.2.2 Books on Bash Scripting

Many books have been written on Bash and shell scripting in general. See the following publishers for their
current list of titles relating to Bash.

Google search for Bash scripting books: https://www.google.com/search?q=list+of+books+on+Bash+
scripting

O’Reilly
https://www.oreilly.com
https://ssearch.oreilly.com/?q=bash

No Starch Press, Inc.
https://nostarch.com
https://nostarch.com/search/node/bash%20scripting

John Wiley and Sons/WROX
http://www.wrox.com/WileyCDA/Section/id-WROX_SEARCH_RESULT.html?query=bash

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7424322&isnumber=7424247
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7424322&isnumber=7424247
http://crpit.com/confpapers/CRPITV159Wijesinghe.pdf
https://nostarch.com/networkflow
http://www.ciscopress.com/store/network-security-with-netflow-and-ipfix-big-data-analytics-9781587144387
https://www.shellscript.sh
https://www.google.com/search?q=list+of+books+on+Bash+scripting
https://www.google.com/search?q=list+of+books+on+Bash+scripting
https://www.oreilly.com
https://ssearch.oreilly.com/?q=bash
https://nostarch.com
https://nostarch.com/search/node/bash%20scripting
http://www.wrox.com/WileyCDA/Section/id-WROX_SEARCH_RESULT.html?query=bash

E.3. VISUALIZATION 225

Addison Wesley
https://openlibrary.org/search?q=bash+scripting&mode=everything

Linux Training Academy
https://www.linuxtrainingacademy.com/books

E.3 Visualization

The following tools are useful for visually displaying SiLK data.

E.3.1 Rayon

Rayon is a Python library and set of tools for generating basic, two-dimensional statistical visualizations.
Rayon can be used to automate reporting; provide data visualization in command-line, GUI or web applica-
tions; or do ad-hoc exploratory data analysis.

https://tools.netsa.cert.org/rayon/index.html

E.3.2 FloViz

FloViz is a comprehensive and extensible set of visualization tools. It is integrated with the SiLK tool suite
via a relational database that stores data such as sets and multisets (bags) that are derived from NetFlow
and similar sources.

https://web.cs.dal.ca/~sbrooks/projects/NetworkVis/index.html

E.3.3 Graphviz - Graph Visualization Software

Network flow records can be visualized as directed graphs. Graphviz can be used to produce such visualiza-
tions.

https://www.graphviz.org

E.3.4 The Spinning Cube of Potential Doom

First implemented as a demonstraton, it is an interesting display of network traffic at the Supercomputing
conference in 2004. It has since taken on a life of its own.

http://www.nersc.gov/news-publications/nersc-news/nersc-center-news/1998/cube-of-doom

Stephen Lau. “The Spinning Cube of Potential Doom.” Commun. ACM 47, 6 (June 2004), 25-26. https://
dx.doi.org/10.1145/990680.990699

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

https://openlibrary.org/search?q=bash+scripting&mode=everything
https://www.linuxtrainingacademy.com/books
https://tools.netsa.cert.org/rayon/index.html
https://web.cs.dal.ca/~sbrooks/projects/NetworkVis/index.html
https://www.graphviz.org
http://www.nersc.gov/news-publications/nersc-news/nersc-center-news/1998/cube-of-doom
https://dx.doi.org/10.1145/990680.990699
https://dx.doi.org/10.1145/990680.990699

226 APPENDIX E. FURTHER READING

E.4 Networking Standards

Service Name and Transport Protocol Port Number Registry
https://www.iana.org/assignments/service-names-port-numbers

RFC 871, A Perspective on the ARPANET Reference Model.
https://tools.ietf.org/html/rfc871

ETF RFC 3954, Cisco Systems NetFlow Services Export Version 9, 2004
https://www.ietf.org/rfc/rfc3954.txt

RFC 4291, IP Version 6 Addressing Architecture
https://tools.ietf.org/html/rfc4291

RFC 6890, Special-Purpose IP Address Registries
https://tools.ietf.org/html/rfc6890.

IPFIX standards:

RFC3917: Requirements for IP Flow Information Export (IPFIX)

RFC3955: Candidate Protocols for IP Flow Information Export (IPFIX)

RFC5101: Specification of the IP Flow Information Export (IPFIX) Protocol for the Exchange of IP
Traffic Flow Information (IPFIX)

RFC5102: Information Model for IP Flow Information Export

RFC5103: Bidirectional Flow Export Using IP Flow Information Export

RFC5153: IPFIX Implementation Guidelines

RFC5470: Architecture for IP Flow Information Export

RFC5471: Guidelines for IP Flow Information Export (IPFIX) Testing

RFC5472: IP Flow Information Export (IPFIX) Applicability

RFC5473: Reducing Redundancy in IP Flow Information Export (IPFIX) and Packet Sampling
(PSAMP) Reports

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

https://www.iana.org/assignments/service-names-port-numbers
https://tools.ietf.org/html/rfc871
https://www.ietf.org/rfc/rfc3954.txt
https://tools.ietf.org/html/rfc4291
https://tools.ietf.org/html/rfc6890

Index

ACK, 58, 169
address relationships, 53
address types, 188
addressing, 164
advanced analysis, see exploratory analysis
all, 7
anonymization, 120
application layer, 162

bags, 67, 137
adding, 110
binning, 72
comparing contents of, 73
counters, 67, 68
cover sets, 112
creating, 68, 69
displaying counts and key values, 71
dividing, 110, 112
finding scanners, 114
formatting display of, 73
intersecting with IPsets, 74
key values, 67, 68
multiple, 68
multiplying by a scalar value, 110, 112
relationship to IPsets, 67, 112
relationship to prefix maps, 121
sensor inventories, 93
subtracting, 110
summarizing NTP traffic, 104
summarizing web traffic, 69
thresholding, 71, 112, 114
viewing file information, 90

Bash, 142, 179
basic analysis, see single-path analysis
behavioral analysis, 35
bins, 28, 30

allocating flows, packets and bytes, 63
bag counts, 72
bottom-N and top-N, 30
counting traffic volumes, 32
plotting, 33

size of, 29
skipping zero-size, 35
varying sizes of, 34

bottom-N lists, 30
bytes, 3, 17

counting, 28, 32
destination port usage, 47
field number, 3
filtering by byte count, 29, 44
sorting by count, 35
thresholding, 64

case studies, 43, 93, 131
dataset for, 13
scripting, 96

CIDR notation, 37, 47, 122, 164
client, 58, 61
command line, 173
complement intersect, 74
conditional fields, 152
counters, 67, 71

comparing, 73
examples of, 68

country codes, 3, 125, 188
cover sets, 74, 112, 114

data structures, 148
dataset for examples, 13
date format, 8
destination IP address, 3

CIDR notation for, 47
creating IPsets, 38
displaying, 25
sorting by, 35

destination IP type, 3
destination port, 3, 47

displaying, 25
DHCP, 31
dIP, see also destination IP address, 3

displaying, 25
field number, 3

227 [DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

228 INDEX

distributed environments, 147
DNS, 31, 40, 47, 66, 77, 78, 171
Domain Name System, see DNS
domain names, 40
dPort, see also destination port, 3

displaying, 25
field number, 3

dType, 3
field number, 3

duration, 3
field number, 3
filtering by, 44

Dynamic Host Configuration Protocol, see DHCP31

end time, 3
enterprise network, 6, 93, 162, 165

sensor information, 6, 17
subnet, 39

entry, 73
eTime, see also end time, 3

field number, 3
exploratory analysis, 10, 99, 106

case study, 131
commands, 107
dataset for examples, 13
example of, 101
overview of, 99
relationship to single and multi-path analysis, 99
starting points, 101
workflow, 100

ext2ext, 7

FCCX dataset, 13, 122
network diagram for, 131

fields, 3
character string, 154
conditional, 152
extending with PySiLK, 151
names and numbers for, 3, 26, 192
sorting by, 35
stored vs. derived, 3

FIFO, 53, 178
files

appending, 114
bag, 90
binary, 24
combining, 114
filtering, 23
flow repository, 7, 18
IPset, 37, 90

network flow record, 3, 23, 26, 29
prefix map, 90, 122
simple anonymization, 120
splitting, 116
temporary, 36
variable record length, 27
viewing contents of, 24
viewing information about, 26, 90

filtering, 11, 44, 53
all destinations, 56
by byte count, 29
by country code, 125
by prefix value, 125
complex, 56, 148
extending with PySiLK, 143
inbound client traffic, 61
inbound server traffic, 58, 59
inbound TCP traffic, 58
internal, external, and non-routable addresses,

125
IPsets, 66
isolating behaviors of interest, 66
low-packet flows, 61
manifold, 57
outbound client traffic, 61
outbound server traffic, 61
overlapping traffic, 57
pass-fail, 56, 57
prefix maps, 125
removing unwanted flows, 47, 59
role of partitioning parameters, 21
tuple files, 107

FIN, 169
five-tuple, 3, 107
flags, see TCP flags
FloCon conference, 220
FloViz, 225
flow data, see network flow records
flow file, see network flow records
flow label, 2
flow record, see network flow records
flow repository, 2, 7

querying, 16
retrieving records from, 21
structure of, 7
viewing time information, 20

flow type, 3
field number, 3
retrieving and filtering data, 23

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

INDEX 229

viewing, 18
flows, 1, 4

approximating over time, 63
counting, 28, 30, 32
destination port usage, 47
grouping, 82
low-byte vs. high-byte, 28
mismatched, 135
packets, 169
split, 4
statistical summaries of, 28
thresholding, 64

formulate, 10

Graphviz, 225
groups, 82

by prefix value, 126
creating from IPsets, 86
matching queries and responses, 86
sorting, 83
summarizing, 84
thresholding, 84

help with SiLK, 181
here-documents, 177

ICMP, 31, 49, 171
in, 7, 58, 70
inicmp, 7
innull, 7
input parameters, 21
int2int, 7
intermediate analysis, see multi-path analysis
intrusion detection signatures, 130
inweb, 7, 70
IP, 161, 162, 164
IP addresses, 2, 70, 164, 187

associating with sensor, 94
bags, 67
binning, 72
CIDR notation, 37, 122
counting, 112
displaying prefix values, 128
filtering by CIDR block, 47
format of, 164
IPsets, 37
IPv4 vs. IPv6, 25, 164
labeling with prefix maps, 122
limiting, 74, 77
masking, 75

removing from bags, 112
reserved, 165
resolving to domain name, 40
thresholding, 64
wildcard notation, 38

IPFIX, 3, 226
IPsets, 17, 37, 40, 76

algebraic operations, 77
by sensor, 78
combining, 77, 96
counting members of, 38, 80
cover set, 112
creating, 37, 76, 112
creating bags from, 69
difference between, 77, 112
displaying members of, 38, 80
extracting from bags, 74, 112
filtering with, 66
finding scanners, 112
generating from rwfilter, 66
generating from bags, 114
grouping, 86
intersecting, 78
intersecting with bags, 74
limiting IP addresses, 77
members of, 78
relationship to bags, 67, 112
relationship to prefix maps, 121
sensor inventories, 93
summary statistics for, 39
symmetric difference, 78
time period for, 77
viewing file information, 90

IPv4, 25, 110, 163, 187, 213
address format, 164
prefix maps, 122
reserved addresses, 165

IPv6, 25, 163
address format, 164
prefix maps, 122
reserved addresses, 165

iterating, 12, 55, 99

key values, 67, 71
comparing, 73
examples of, 68
in cover sets, 74

load scheme, 63, 191

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

230 INDEX

manifold, 53, 57–59
command examples, 58, 59, 62
filtering low-packet flows, 61
non-overlapping, 57
overlapping, 57
use in profiling, 66

matched groups, 86
matching

flows, 135
incomplete sessions, 135
sorting before, 87

message, 162
mkfifo, 53
multi-path analysis, 9, 51

case studies, 93
common commands, 56
dataset for examples, 13
exploring relationships, 53
interpreting results, 55
overview of, 51
pitfalls, 55
relationship to exploratory analysis, 99
relationship to single-path analysis, 53
scripting, 96
workflow, 51

named pipes, 53, 178
NetFlow, 2
network application, 162
network flow, see flows, network flow records
network flow records, 1–3

collection of, 6
combining files, 114
counting by prefix value, 127
counting in file, 26
creating bags from, 68
creating from text, 119
creating IPsets from, 37
fields in, 3
filtering, 21
flow label, 2
generation, 4
grouping, 82
labeling with prefix maps, 121
pulling from repository, 21
querying, 16
removing unwanted flows, 47, 59
sorting, 35
splitting files, 116
storage of, 7

thresholding, 64
time and date, 8
variable length, 27
viewing in text format, 24
where collected, 6

network layer, 162
network mask, 40, 75
Network Time Protocol, see NTP
network traffic, 2, 7

anomalies, 133
asymmetric and missing data, 95
categorizing, 57
counting, 28, 32
excluding, 17
filtering, 21
finding commonly-used protocols, 30
plotting, 33
profiing around an event, 43
profiling with IPsets, 78
summarizing, 28
types of, 7
web services, 52

network traffic analysis, 9
case studies, 43, 93, 131
exploratory, 10, 99
multi-path, 9, 51
single-path, 9, 15
workflow, 10

next-hop IP, 3, 135
use in groups, 84
use in matching, 89
use in sets, 86

nhIP, see also next-hop IP, 3
field number, 3

NTP, 101

Open Systems Interconnection model
see OSI, 161

OSI, 161
other, 7
out, 7
outicmp, 7
outnull, 7
output parameters, 183

for rwfilter, 22
list of, 188

outweb, 7

packets, 3, 17, 162, 169
and TCP/IP, 161

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

INDEX 231

counting, 28, 32
field number, 3
TCP, 168
thresholding, 64
time distribution, 63
UDP and ICMP, 172

PAGER environment variable, 26
partitioning, 10
partitioning parameters, 21, 183

data structures for, 148
extending with PySiLK, 143, 145
list of, 184
Python boolean expressions, 147

pass-fail filtering, 21, 57
physical layer, 163
pipes, 21, 22, 57, 114, 133, 177

named, 53
use with rwcut, 24
use with rwsort, 35
use with rwuniq, 29
when to use, 29

plots, 33
plug-ins, 141, 142

code examples, 146, 152, 154, 156, 158
use with rwfilter, 143
with silkpython, 142

port knocking, 145
port-protocol pairs, see protocol-port pairs
ports, 2

summarizing traffic with bags, 67
traffic anomalies, 133

prefix maps, 121
counting by prefix value, 126
country codes, 125
creating, 122
displaying prefix values, 126
filtering with, 125
grouping by prefix value, 126
internal, external, and non-routable addresses,

125
naming, 122
querying, 128
relationship to bags and sets, 121
sorting by prefix value, 126
statistics by prefix value, 126
user-defined vs. predefined, 121, 125
viewing file information, 90

presentation layer, 162
protocol, 3, 161, 162, 168

behavioral analysis of activity, 35
displaying, 25
field number, 3
ICMP, 31
sorting by, 35
summarizing traffic with bags, 67
TCP, 31
UDP, 31

protocol layers, 168
protocol-port pairs, 121, 122

building prefix map, 130
displaying prefix values, 128
labeling with prefix maps, 122
notation for, 122

PSH, 169
PySiLK, 141, 142

code examples, 145–149, 152, 154, 156, 158
complex filtering with, 148
conditional values, 152
defining character string fields, 154
defining key and summary value fields, 158
distributed environments, 147
extending fields, 151
preserving state information, 143, 145
programming with, 142
requirements, 142
use with rwcut, 152
use with rwfilter, 143
use with rwsort, 152

Python, 119, 141, 142
boolean expressions and rwfilter, 147
data structures as partitioning parameters, 148

PYTHONPATH environment variable, 142

queries, 10, 16, 21, 44
complex, 56
in exploratory analysis, 101
narrowing focus of, 24
pass-fail, 21
prefix maps, 128

query matching, 87

Rayon, 225
repository, see flow repository
reserved IP addresses, 165
response matching, 87
reverse DNS lookup, 40
RIP, 31
routers, 3
routing, 164

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

232 INDEX

Routing Information Protocol, see RIP
RST, 169
rwappend, 114, 198

command examples, 107
rwbag, 68, 205

command examples, 53, 68, 69, 94, 97, 114, 137
rwbagbuild, 69, 206

command examples, 70, 104
file format, 70

rwbagcat, 208
command examples, 53, 70–75, 104, 110, 112
dividing and multiplying bags, 112

rwbagtool, 73, 209
adding and subtracting bags, 110
command examples, 74, 75, 94, 97, 110, 112, 114,

137
dividing and multiplying bags, 110
extracting cover sets, 74
intersecting bags and IPsets, 74
logical operations on key/counter values, 73

rwcat, 114, 197
command examples, 116

rwcount, 17, 32, 191
command examples, 33, 103
default bin size, 34
load scheme, 63, 191
prefix maps, 126
skip zero size bins, 35
time series plots, 33

rwcut, 17, 24, 192
command examples, 25, 35, 47, 75, 84, 86, 87,

89, 120, 126, 127, 152, 154, 156
conditional values, 152
default fields, 26
defining character string fields, 154
delimiters, 26
display order of fields, 26
displaying fields, 25
extending with PySiLK, 152
number of records, 25
prefix maps, 126
use in behavioral analysis, 35

rwfileinfo, 26, 90, 210
command examples, 27, 90, 116, 120, 126
default fields, 27

rwfilter, 8, 17, 21, 28, 183
code examples, 147, 148
command examples, 22, 23, 30, 37, 45, 47, 53,

58, 59, 62, 64–70, 75, 77, 78, 86, 87, 94, 97,

102–104, 107, 108, 112, 114, 116, 119, 120,
126, 133, 136–138

complex filtering, 56
data flow in, 22
displaying file names, 24
extending with PySiLK, 143, 148
filtering by byte count, 29
finding low-packet flows, 61
IDS signatures, 130
in distributed environments, 147
input parameters, 21
IP address, 23
manifold, 57–59, 61
miscellaneous parameters, 189
multiple input files, 114
output parameters, 22, 188
parameter relationships, 22
partitioning parameters, 21, 184
pass-fail filtering, 22, 23, 56
plug-ins, 146
prefix maps, 125
Python boolean expressions, 147
selection parameters, 21, 183
use as partitioning parameters, 23

sensor, 23
start and end times, 22
tuple files, 107
type, 23
use in behavioral analysis, 35
use with multiple files, 24

rwgroup, 83, 214
command examples, 84, 86
defining character string fields, 154
extending with PySiLK, 154
grouping by session, 83
prefix maps, 126
sorting before use, 83
thresholding, 84

rwidsquery, 130
rwmatch, 86, 213

command examples, 87, 89, 136
sorting before use, 83, 87

rwnetmask, 75, 196
command examples, 75

rwpmapbuild, 122, 211
command examples, 123, 130
input file format, 122

rwpmaplookup, 128, 212
command examples, 130

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

INDEX 233

rwresolve, 40
command example, 40

rwscan, 70
command examples, 70

rwset, 17, 37, 201
command examples, 37, 67, 77, 78, 86, 94, 97,

112
use with rwfilter, 66

rwsetbuild, 17, 37, 76, 204
command examples, 38, 75, 76, 94, 97

rwsetcat, 17, 38, 80, 202
command examples, 39, 40, 74, 77, 78, 80, 81,

94, 97, 112, 114
displaying network structure, 81

rwsetmember, 78
command examples, 78

rwsettool, 77, 203
command examples, 77, 78, 80, 94, 97, 112, 114
difference, 77
displaying repository dates, 77
intersecting IPsets, 78
symmetric difference, 78

rwsiteinfo, 6, 17, 182
command examples, 18, 77, 78
displaying sensors, 18
displaying traffic information, 18

rwsort, 35, 194
command examples, 35, 84, 87, 89, 127, 136, 154
conditional values, 152
defining character string fields, 154
extending with PySiLK, 154
field numbers, 36
multiple files, 36
multiple input files, 114
prefix maps, 126
sort order, 35, 36
sorting before rwgroup and rwmatch, 83, 87
use in behavioral analysis, 35

rwsplit, 116, 199
command examples, 116, 119

rwstats, 17, 28, 190
command examples, 31, 47, 66, 119, 136
compared to rwuniq, 32, 47
defining character string fields, 154
defining key and summary value fields, 158
extending with PySiLK, 154
prefix maps, 126
required fields, 31
thresholding on compound keys, 65

top-N and bottom-N lists, 30
top-N lists, 46

rwtuc, 119, 200
command examples, 120

rwuniq, 17, 28, 29, 195
command examples, 30, 45, 47, 64, 65, 67, 69,

102, 104, 108, 127, 133, 137, 138, 156, 158
compared to rwstats, 32, 47
compound keys, 65
defining character string fields, 154
defining key and summary value fields, 158
extending with PySiLK, 154
prefix maps, 126
profiling, 66
profiling traffic, 102
required parameters, 29
specifying ranges, 64
summarizing web traffic, 69
thresholding, 64

scanning, 112, 114, 140
detecting with rwscan, 70
finding port scanners, 133
use of bags, 69

scripting languages, 141, 179
use with rwtuc, 119

selection parameters, 21, 183
list of, 183
use as partitioning parameters, 23

sensor, 3
class, 8
displaying information for, 17
field number, 3
inventories, 93
locations, 6
network flow collection, 3
retrieving data for, 23
type, 8

sensors, 78
server, 58, 59, 61
services, 171
session layer, 162
sessions

grouping, 83
matched groups, 86

sets, see IPsets
shell scripts, 96, 99, 142, 179

command examples, 97, 116, 138
examples of, 53
help with, 224

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

234 INDEX

SiLK, 1
analysis types, 9, 15, 51
applying workflow, 44
case studies, 43, 93, 131
common parameters, 215
email addresses, 220
flow repository, 7, 8
help with, 181, 219
IPv4 and IPv6 fields, 163
repository, see flow repository
source files, 219
tool suite, 8
use with Python, 142
version, 181
visualization tools, 225
wildcard notation for IP addresses, 38
workflow, 10

SILK_COUNTRY_CODES environment variable, 125
SILK_IPV6_POLICY environment variable, 25
SILK_PAGER environment variable, 26
silkpython, 141, 142
Simple Network Management Protocol, see SNMP
single-path analysis, 9, 15

behavioral analysis, 35
case studies, 43
common SiLK commands for, 17
dataset for examples, 13
interpreting, 49
overview of, 15
relationship to exploratory analysis, 99
relationship to multi-path analysis, 51
workflow, 15, 17

sIP, see also source IP address, 3
displaying, 25
field number, 3

SMTP, 171
SNMP, 31
sorting

by field number, 36
by prefix value, 126
multiple files, 36
on multi-field values, 152
order, 36
with rwsort, 35
with rwuniq, 29

source IP address, 3
CIDR notation for, 47
creating IPsets, 38
displaying, 25

source IP type, 3
source port, 3

displaying, 25
sPort, see also source port, 3

displaying, 25
field number, 3

standard input, 38
standard output, 29
standards, 226
start time, 3

displaying, 25
state information, 143
stderr, 176
stdin, 176
stdout, 176
sTime, see also start time, 3, 29

field number, 3
sType, 3

field number, 3
subnet, 39, 74

in IPset, 39
summary record, 84
SYN, 58, 169

TCP, 31, 161, 162, 168, 171
filtering with TCP flags, 58, 59, 61
finding suspicious requests, 133
header, 168
initial flags, 3
field number, 3

low-packet flows, 61
matching sessions, 89
packets, 169
selecting TCP flows, 53
session flags, 3
field number, 3

state machine, 169
summarizing web traffic, 69

TCP flags, 17, 169, 187
client vs. server, 62
client-server communication, 58
filtering with, 58, 59, 61

TCP/IP, 161, 168
protocol layers, 161

text
converting to network flow records, 119
creating bags from, 69
creating IPsets from, 37, 76
creating prefix maps from, 122
viewing flow records as, 24

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

INDEX 235

thresholding, 31, 32, 64, 84, 112, 114
bag counts, 71
compound keys, 65
min-max, 64
multiple parameters, 64

time bins, see bins
time distribution of packets, 63
time format, 8, 22
time range, 188
timing relationships, 55
top-N lists, 30, 46
traffic, see network traffic
Transmission Control Protocol, see TCP
transport layer, 162
tuple files, 107
tuple files:example of, 108
type, see flow type, 7, 8, 29

UDP, 31, 49, 66, 162, 171
matching sessions, 89
NTP, 101

UNIX, 173
URG, 169

volume relationships, 55

web services, 52, 171
web traffic, 69
wildcard notation for IP addresses, 38, 187
workflow, 44

yaf, 3

[DISTRIBUTION STATEMENT A]
This material has been approved for public

release and unlimited distribution.

©2018 Carnegie Mellon University | 4995 | 05.29.2018

Analyst’s Handbook for SiLK
Version 3.12.0 and Later

August 2018

	Contents
	List of Figures
	List of Tables
	List of Examples
	Acknowledgements
	Handbook Goals
	1 Introduction to SiLK
	1.1 What is SiLK?
	1.2 The SiLK Flow Repository
	1.2.1 What is Network Flow Data?
	1.2.2 Structure of a Flow Record
	1.2.3 Flow Generation and Collection
	1.2.4 Introduction to Flow Collection
	1.2.5 Where Network Flow Data Are Collected
	1.2.6 Types of Network Traffic
	1.2.7 The Collection System and Data Management
	1.2.8 How Network Flow Data Are Organized

	1.3 The SiLK Tool Suite
	1.4 How to Use SiLK for Analysis
	1.4.1 Single-path Analysis
	1.4.2 Multi-path Analysis
	1.4.3 Exploratory Analysis

	1.5 Workflow for SiLK Analysis
	1.5.1 Formulate
	1.5.2 Model
	1.5.3 Test
	1.5.4 Analyze
	1.5.5 Refine

	1.6 Applying the SiLK Workflow
	1.7 Dataset for Single-path, Multi-path, and Exploratory Analysis Examples

	2 Basic Single-path Analysis with SiLK: Profiling and Reacting
	2.1 Single-path Analysis: Concepts
	2.1.1 Scoping Queries of Network Flow Data
	2.1.2 Excluding Unwanted Network Traffic
	2.1.3 Example Single-Path Analysis

	2.2 Single-path Analysis: Analytics
	2.2.1 Get a List of Sensors With rwsiteinfo
	2.2.2 Choose Flow Records With rwfilter
	2.2.3 View Flow Records With rwcut
	2.2.4 Viewing File Information with rwfileinfo
	2.2.5 Profile Flows With rwuniq and rwstats
	2.2.6 Characterize Traffic by Time Period With rwcount
	2.2.7 Sort Flow Records With rwsort
	2.2.8 Use IPsets to Gather IP Addresses
	2.2.9 Resolve IP Addresses to Domain Names With rwresolve

	3 Case Studies: Basic Single-path Analysis
	3.1 Profile Traffic Around an Event
	3.1.1 Examining Shifts in Traffic
	3.1.2 How to Profile Traffic

	3.2 Generate Top N Lists
	3.2.1 Using rwstats to Create Top N Lists
	3.2.2 Interpreting the Top-N Lists

	4 Intermediate Multi-path Analysis with SiLK: Explaining and Investigating
	4.1 Multi-path Analysis: Concepts
	4.1.1 What Is Multi-path Analysis?
	4.1.2 Example of a Multi-path Analysis: Examining Web Service Traffic
	4.1.3 Exploring Relationships and Behaviors With Multi-path Analysis
	4.1.4 Integrating and Interpreting the Results of Multi-path Analysis
	4.1.5 ``Gotchas'' for Multi-path Analysis

	4.2 Multi-path Analysis: Analytics
	4.2.1 Complex Filtering With rwfilter
	4.2.2 Finding Low-Packet Flows with rwfilter
	4.2.3 Time Binning, Options, and Thresholds With rwstats, rwuniq and rwcount
	4.2.4 Summarizing Network Traffic with Bags
	4.2.5 Working with Bags and IPsets
	4.2.6 Masking IP Addresses
	4.2.7 Working With IPsets
	4.2.8 Indicating Flow Relationships
	4.2.9 Managing IPset, Bag, and Prefix Map Files

	5 Case Studies: Intermediate Multi-path Analysis
	5.1 Building Inventories of Network Flow Sensors With IPsets
	5.1.1 Path 1: Associate Addresses with a Single Sensor
	5.1.2 Path 2: Associate Addresses of Remaining Sensors
	5.1.3 Path 3: Associate Shared Addresses
	5.1.4 Merge Address Results

	5.2 Automating IPset Inventories of Network Flow Sensors
	5.2.1 Program Header
	5.2.2 Program Loop

	6 Advanced Exploratory Analysis with SiLK: Exploring and Hunting
	6.1 Exploratory Analysis: Concepts
	6.1.1 Exploring Network Behavior
	6.1.2 Starting Points for Exploratory Analysis
	6.1.3 Example Exploratory Analysis: Investigating Anomalous NTP Activity
	6.1.4 Observations on Exploratory Analysis

	6.2 Exploratory Analysis: Analytics
	6.2.1 Using Tuple Files for Complex Filtering
	6.2.2 Manipulating Bags
	6.2.3 Sets Versus Bags: A Scanning Example
	6.2.4 Manipulating SiLK Files
	6.2.5 Dividing or Sampling Flow Record Files with rwsplit
	6.2.6 Generate Flow Records From Text
	6.2.7 Labeling Data with Prefix Maps
	6.2.8 Translating IDS Signatures into rwfilter Calls

	7 Case Studies: Advanced Exploratory Analysis
	7.1 Level 0: Which TCP Requests are Suspicious?
	7.2 Level 1: How Can We Identify and React to Illegitimate Requests?
	7.3 Level 2: What are the Illegitimate Sources and Destinations Doing?
	7.3.1 Level 2A: What are the Illegitimate Source IPs Doing?
	7.3.2 Level 2B: What Behavior Changes do Destination IPs Show?

	7.4 Level 3: What are the Commonalities Across The Cases?

	8 Extending the Reach of SiLK with PySiLK
	8.1 Using PySiLK
	8.1.1 PySiLK Requirements
	8.1.2 PySiLK Scripts and Plug-ins

	8.2 Extending rwfilter with PySiLK
	8.2.1 Using PySiLK to Incorporate State from Previous Records: Eliminating Inconsistent Sources
	8.2.2 Using PySiLK to Incorporate State from Previous Records: Detecting Port Knocking
	8.2.3 Using PySiLK with rwfilter in a Distributed or Multiprocessing Environment
	8.2.4 Simple PySiLK with rwfilter--python-expr
	8.2.5 PySiLK with Complex Combinations of Rules
	8.2.6 Use of Data Structures in Partitioning

	8.3 Extending SiLK with Fields Defined with PySiLK
	8.4 Extending rwcut and rwsort with PySiLK
	8.4.1 Computing Values from Multiple Records
	8.4.2 Computing a Value Based on Multiple Fields in a Record
	8.4.3 Defining a Character String Field for rwcut
	8.4.4 Defining a Character String Field for Five SiLK Tools

	8.5 Defining Key Fields and Summary Value Fields for rwuniq and rwstats

	A Networking Primer
	A.1 Understanding TCP/IP Network Traffic
	A.2 TCP/IP Protocol Layers
	A.3 Structure of the IP Header
	A.4 IP Addressing and Routing
	A.4.1 Structure of an IP Address
	A.4.2 Reserved IP Addresses

	A.5 Major Protocols
	A.5.1 Protocol Layers and Encapsulation
	A.5.2 Transmission Control Protocol (TCP)
	A.5.3 UDP and ICMP

	B Using UNIX to Implement Network Traffic Analysis
	B.1 Using the UNIX Command Line
	B.2 Standard In, Out, and Error
	B.2.1 Output Redirection
	B.2.2 Input Redirection
	B.2.3 Pipes
	B.2.4 Here-Documents
	B.2.5 Named Pipes

	B.3 Script Control Structures

	C SiLK Commands
	C.1 Getting Help with SiLK Tools
	C.2 rwsiteinfo Command Summary
	C.3 rwfilter Command Summary
	C.4 rwstats Command Summary
	C.5 rwcount Command Summary
	C.6 rwcut Command Summary
	C.7 rwsort Command Summary
	C.8 rwuniq Command Summary
	C.9 rwnetmask Command Summary
	C.10 rwcat Command Summary
	C.11 rwappend Command Summary
	C.12 rwsplit Command Summary
	C.13 rwtuc Command Summary
	C.14 rwset Command Summary
	C.15 rwsetcat Command Summary
	C.16 rwsettool Command Summary
	C.17 rwsetbuild Command Summary
	C.18 rwbag Command Summary
	C.19 rwbagbuild Command Summary
	C.20 rwbagcat Command Summary
	C.21 rwbagtool Command Summary
	C.22 rwfileinfo Command Summary
	C.23 rwpmapbuild Command Summary
	C.24 rwpmaplookup Command Summary
	C.25 rwmatch Command Summary
	C.26 rwgroup Command Summary
	C.27 Features Common to Several Commands
	C.27.1 Parameters Common to Several Commands

	D Additional Information on SiLK
	D.1 SiLK Support and Documentation
	D.2 FloCon Conference and Social Media
	D.3 Email Addresses and Mailing Lists

	E Further Reading and Resources
	E.1 Network Flow and Related Topics
	E.1.1 Technical Papers
	E.1.2 Books on Network Flow and Network Security

	E.2 Bash Scripting Resources
	E.2.1 Online Tutorial
	E.2.2 Books on Bash Scripting

	E.3 Visualization
	E.3.1 Rayon
	E.3.2 FloViz
	E.3.3 Graphviz - Graph Visualization Software
	E.3.4 The Spinning Cube of Potential Doom

	E.4 Networking Standards

	Index

