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Bottom Line Up Front

● Research: μChip Trojans, Backdoors easy to insert!
● Need trustworthy comp. platform (Soft & Hardware)

– Trust anchor: full set of sources to all components
● available to (buildable by) system owner
● Self-hosting property: no external black-box dependencies!

● Obtaining full, buildable sources to proprietary vendor 
HDL toolchains is challenging

● Goal: Proof of Concept with Open Source
EDA toolchain
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Motivation
● Off-shored μChip Design, Development, 

Fabrication
● Known (methods to insert) hardware privilege 

escalation bugs during all stages of Hw. lifecycle
● Need capability to validate Hardware+Software as 

comprehensive, self-contained stack
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Trust Anchors for Fielded Systems

source
(blueprint,
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recipe, etc.)

fielded
systembuild tool
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Trusting Trust: Problem and Solution

● Self-propagating compiler hack (Ken Thompson)
– Malicious C compiler inserts Trojan during victim program build

● Clean source → malicious binary
– Including compiler’s own sources!

● Compiler source hack no longer needed after 1st iteration!

● David A. Wheeler’s defense: Diverse Double Compilation
– Suspect compiler A: source SA, binary BA

– Trusted compiler T: binary BT

SA → BA → X      SA → BT → Y
● X and Y are functionally identical, but different binaries

SA → X → X1      SA → Y → Y1

● X1 and Y1 must be identical binaries (since X, Y functionally identical)

https://dl.acm.org/citation.cfm?id=358210
https://www.dwheeler.com/trusting-trust/
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Attack Surface Spans All Stages

● Even for steps performed inside the US!

● Flaws in HDL sources (design):
– e.g., Meltdown & Spectre (unintentional or malicious)

● Compromised compiler tool chain:
– Clean HDL source → Malicious masks or bitstream

● Malicious ASIC foundry:
– Insertion of Trojan privilege escalation backdoor
– Compromise of encryption strength

https://meltdownattack.com/meltdown.pdf
https://spectreattack.com/spectre.pdf
https://dl.acm.org/citation.cfm?doid=2966986.2967054
https://web.eecs.umich.edu/~taustin/papers/OAKLAND16-a2attack.pdf
https://pdfs.semanticscholar.org/6407/ebd0a24026e4dad84bcc10fbba165d521a50.pdf
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ASIC  vs. FPGA

● Field Programmable 
Gate Array

● Grid of programmable 
blocks + interconnect
– Bitstream

● “Soft” IP cores

● Application Specific 
Integrated Circuit

● Dedicated, optimized 
etched silicon
– Photolitho. masks

● “Hard” IP cores

https://en.wikipedia.org/wiki/Photolithography
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μChip Design, Devel., Fabrication

● HDL (Hw. Descr. Language): Verilog, VHDL
– Functional / Declarative programming!
– Compiled (via tool chain) into masks or bitstream

module alu_mod (
  input  alu_op_t     op,
  input  logic [31:0] a, b,
  output logic [31:0] res);

  always_comb begin
    unique case (op)
      ALU_ADD: res = a + b;
      ALU_MUL: res = a * b;
      ALU_XOR: res = a ^ b;
      ALU_AND: res = a & b;
      ALU_OR : res = a | b;
      default: res = 32’b0;
    endcase
  end
endmodule: alu_mod

...0101010...
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μChip Design, Devel., Fabrication

● Elaboration Stage
– HDL constructs → Standard Library Blocks

module alu_mod (
  input  alu_op_t     op,
  input  logic [31:0] a, b,
  output logic [31:0] res);

  always_comb begin
    unique case (op)
      ALU_ADD: res = a + b;
      ALU_MUL: res = a * b;
      ALU_XOR: res = a ^ b;
      ALU_AND: res = a & b;
      ALU_OR : res = a | b;
      default: res = 32’b0;
    endcase
  end
endmodule: alu_mod
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μChip Design, Devel., Fabrication

● Logic Synthesis and Optimization:
– Library Blocks → Logic Gates
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μChip Design, Devel., Fabrication

● Technology Mapping, Placement & Routing:
– ASIC: Gates → Transistors → Photolitho. Masks
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μChip Design, Devel., Fabrication

● Technology Mapping, Placement & Routing:
– FPGA: Gates → CLBs → Bitstream

(CLB = Configurable Logic Block)

     ...0101010…
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Recommendations

● Prefer FPGAs and Soft IP cores
– Most severe malicious-foundry attacks based on 

understanding purpose, functionality of ASIC masks
● Using FPGAs withholds knowledge necessary for 

targeting privilege escalation attacks!

– Improve sustainment, operational/acquisition agility
● Fix HDL design, tool-chain flaws via bitstream update!

– Like firmware update, but at even lower level

– Modern FPGA performance sufficient for e.g., 
embedded, or basic development platform
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Recommendations

● Retain ability to field strip our cyber-weapons!
– Require capability to rebuild system from sources

● Including tool chain sources: HDL & software compilers!

– Show of good faith from upstream supplier(s)
– Built-in sustainment capability from day one

● Solve “Trusting Trust” concerns
– Available source code (to everything) acting as trust anchor
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Bootstrapping a Trustworthy Platform

● Use DDC to obtain a clean C [cross-]compiler
● [Cross-]compile HDL compiler toolchain
● Cross-compile target OS (kernel, glibc, utilities)
● Build FPGA bitstream with HDL toolchain
● Boot target OS on FPGA

– Self-hosting from this point forward
● Any system component can be (re)built on the system itself!

– Trust anchor: the cumulative set of source code
● HDL, OS (kernel, glibc, utilities), and Compilers (C & HDL)

https://en.wikipedia.org/wiki/Self-hosting
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List of Ingredients

● FPGA development board
– Lattice ECP5 Versa: LFE5UM5G-45F-VERSA

● Free/Open HDL (Hardware Description Language) toolchain
– Verilog front-end: https://github.com/YosysHQ/yosys 
– ECP5 device db. & bitstream tools: https://github.com/SymbiFlow/prjtrellis
– Place & Route back-end: https://github.com/YosysHQ/nextpnr

● Free/Open 64-bit CPU (RISC-V ISA)
– RocketChip: https://github.com/freechipsproject/rocket-chip

● Free/Open System-on-Chip (SoC) environment (sys. bus & peripherals)
– LiteX: https://github.com/enjoy-digital/litex

● Software stack (Linux, GCC, glibc)
– Fedora: https://fedoraproject.org/wiki/Architectures/RISC-V

https://www.latticesemi.com/en/Products/DevelopmentBoardsAndKits/ECP55GVersaDevKit
https://github.com/YosysHQ/yosys
https://github.com/SymbiFlow/prjtrellis
https://github.com/YosysHQ/nextpnr
https://github.com/freechipsproject/rocket-chip
https://github.com/enjoy-digital/litex
https://fedoraproject.org/wiki/Architectures/RISC-V
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Simplified Computer Architecture
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Project Status

● LiteX builds & runs on ECP5 FPGA with 
Free/Open toolchain
– Boots Linux on 32-bit (VexRiscv) CPU

● LiteX + 64-bit RocketChip builds and runs in 
simulation, expected to run on FPGA within 
weeks

● Next: boot Fedora (only available in 64bit flavor)
– Port yosys/trellis/nextpnr packages from x86 to rv64
– Build LiteX + 64-bit Rocket ON LiteX + 64-bit Rocket!
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Next Steps

● Need FPGA development board w. more RAM!

● Collaborate with Formal Verification experts on 
measuring trustworthiness of comprehensive 
source bundle (now provably equivalent to 
deployed FPGA SoC embedded system)



26
©2019 Carnegie Mellon University
Building a Trustworthy Computing Platform
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

Extra Slides
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Software vs. Hardware Programming

Image credit: Ed Klingman, “FPGA programming step by step”, 2004

https://www.design-reuse.com/articles/7330/fpga-programming-step-by-step.html
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Malicious Foundry Attack Examples

● A2 Trojan
– 20 transistors + 1 capacitor
– Incremental charge via unpriv. 

instr. sequence
– Flip bit reg. – privilege flag

● Dopant-level Trojan
– Swap PNP ↔ NPN polarity on 

selected transistors
– Visually undetectable
– Predictably weaken RNG 

randomness

> 1.5 bn components!

https://web.eecs.umich.edu/~taustin/papers/OAKLAND16-a2attack.pdf
https://pdfs.semanticscholar.org/6407/ebd0a24026e4dad84bcc10fbba165d521a50.pdf


29
©2019 Carnegie Mellon University
Building a Trustworthy Computing Platform
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

Confusion re. “Open Source”

● Open Source Intelligence (OSINT)
– Used in Military, Intelligence, Government,

Law Enforcement communities
– Data collected from public sources

(vs. trusted, classified, access-controled sources)
– Often associated with decreased reliability!

● Free or Open Source Software (F/OSS)
– Software development principles & methodology
– High quality: Linux, BSD, Apache, Firefox, etc.
– Serious participants: RedHat, IBM, Google, etc.

● Competitors collaborate to avoid “reinventing wheel”

https://en.wikipedia.org/wiki/Open-source_intelligence
https://www.fsf.org/about/
https://opensource.org/osd-annotated
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Glossary
● CPU, ISA: Central Processing Unit; implements a specified Instruction Set Architecture (e.g. x86, ARM, 

PowerPC).
● GPU, SIMD: Graphics (rather, vector) Processing Unit; a processor operating on vector data, running a 

Single Instruction on Multiple Data simultaneously; originally targeted at graphics acceleration, useful in 
high performance computing.

● ASIC: Application Specific Integrated Circuit; dedicated etched silicon implementing a specified 
microelectronic design.

● Hard IP Core: well-delimited functional unit of an ASIC, based on Intellectual Property provided by a 
specific vendor.

● FPGA, CLB: Field Programmable Gate Array; in itself a special-purpose ASIC, with the application or 
purpose of dynamically and reconfigurably implementing a given microelectronic design. An FPGA 
consists of a grid of identical Configurable Logic Blocks that can communicate with each other through a 
programmable interconnect.

● Bitstream: stream of bits populating memory cells that control the CLBs and programmable interconnect 
on an FPGA, determining the exact nature of the design to be implemented.

● Soft IP Core: well-delimited functional unit of a microelectronic design, based on Intellectual Property 
from a specific vendor, incorporated into a design laid out on top of an FPGA using Bitstream.

● SoC: System-On-a-Chip; instead of soldering multiple, frequently-used-together ASICS and/or FPGAs 
together on a Printed Circuit Board (PCB), they are connected together on the same set of masks, and 
etched onto the same silicon die. This saves space, reduces power, and improves reliability.


