
©2019 Carnegie Mellon University
Building a Trustworthy Computing Platform
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

Building a Trustworthy
Computing Platform

Gabriel L. Somlo, Ph.D.
<glsomlo@cert.org>

SEI, CERT Division
Carnegie Mellon University
Pittsburgh, PA 15213

2
©2019 Carnegie Mellon University
Building a Trustworthy Computing Platform
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government
position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering
Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN
“AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY
KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for
non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting
formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute
at permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM19-0566

3
©2019 Carnegie Mellon University
Building a Trustworthy Computing Platform
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

Bottom Line Up Front

● Research: μChip Trojans, Backdoors easy to insert!
● Need trustworthy comp. platform (Soft & Hardware)

– Trust anchor: full set of sources to all components
● available to (buildable by) system owner
● Self-hosting property: no external black-box dependencies!

● Obtaining full, buildable sources to proprietary vendor
HDL toolchains is challenging

● Goal: Proof of Concept with Open Source
EDA toolchain

4
©2019 Carnegie Mellon University
Building a Trustworthy Computing Platform
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

Motivation
● Off-shored μChip Design, Development,

Fabrication
● Known (methods to insert) hardware privilege

escalation bugs during all stages of Hw. lifecycle
● Need capability to validate Hardware+Software as

comprehensive, self-contained stack

5
©2019 Carnegie Mellon University
Building a Trustworthy Computing Platform
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

Trust Anchors for Fielded Systems

source
(blueprint,
schematic,
recipe, etc.)

fielded
systembuild tool

6
©2019 Carnegie Mellon University
Building a Trustworthy Computing Platform
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

Trust Anchors for Fielded Systems

source
(blueprint,
schematic,
recipe, etc.)

fielded
systembuild tool

source

7
©2019 Carnegie Mellon University
Building a Trustworthy Computing Platform
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

Trust Anchors for Fielded Systems

source
(blueprint,
schematic,
recipe, etc.)

fielded
systembuild tool

source

source

8
©2019 Carnegie Mellon University
Building a Trustworthy Computing Platform
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

Trust Anchors for Fielded Systems

source
(blueprint,
schematic,
recipe, etc.)

fielded
systembuild tool

source

source

C
compiler

9
©2019 Carnegie Mellon University
Building a Trustworthy Computing Platform
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

Trust Anchors for Fielded Systems

source
(blueprint,
schematic,
recipe, etc.)

fielded
systembuild tool

source

source

C
compiler

≡

10
©2019 Carnegie Mellon University
Building a Trustworthy Computing Platform
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

Trusting Trust: Problem and Solution

● Self-propagating compiler hack (Ken Thompson)
– Malicious C compiler inserts Trojan during victim program build

● Clean source → malicious binary
– Including compiler’s own sources!

● Compiler source hack no longer needed after 1st iteration!

● David A. Wheeler’s defense: Diverse Double Compilation
– Suspect compiler A: source SA, binary BA

– Trusted compiler T: binary BT

SA → BA → X SA → BT → Y
● X and Y are functionally identical, but different binaries

SA → X → X1 SA → Y → Y1

● X1 and Y1 must be identical binaries (since X, Y functionally identical)

https://dl.acm.org/citation.cfm?id=358210
https://www.dwheeler.com/trusting-trust/

11
©2019 Carnegie Mellon University
Building a Trustworthy Computing Platform
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

Attack Surface Spans All Stages

● Even for steps performed inside the US!

● Flaws in HDL sources (design):
– e.g., Meltdown & Spectre (unintentional or malicious)

● Compromised compiler tool chain:
– Clean HDL source → Malicious masks or bitstream

● Malicious ASIC foundry:
– Insertion of Trojan privilege escalation backdoor
– Compromise of encryption strength

https://meltdownattack.com/meltdown.pdf
https://spectreattack.com/spectre.pdf
https://dl.acm.org/citation.cfm?doid=2966986.2967054
https://web.eecs.umich.edu/~taustin/papers/OAKLAND16-a2attack.pdf
https://pdfs.semanticscholar.org/6407/ebd0a24026e4dad84bcc10fbba165d521a50.pdf

12
©2019 Carnegie Mellon University
Building a Trustworthy Computing Platform
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

ASIC vs. FPGA

● Field Programmable
Gate Array

● Grid of programmable
blocks + interconnect
– Bitstream

● “Soft” IP cores

● Application Specific
Integrated Circuit

● Dedicated, optimized
etched silicon
– Photolitho. masks

● “Hard” IP cores

https://en.wikipedia.org/wiki/Photolithography

13
©2019 Carnegie Mellon University
Building a Trustworthy Computing Platform
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

μChip Design, Devel., Fabrication

● HDL (Hw. Descr. Language): Verilog, VHDL
– Functional / Declarative programming!
– Compiled (via tool chain) into masks or bitstream

module alu_mod (
 input alu_op_t op,
 input logic [31:0] a, b,
 output logic [31:0] res);

 always_comb begin
 unique case (op)
 ALU_ADD: res = a + b;
 ALU_MUL: res = a * b;
 ALU_XOR: res = a ^ b;
 ALU_AND: res = a & b;
 ALU_OR : res = a | b;
 default: res = 32’b0;
 endcase
 end
endmodule: alu_mod

...0101010...

14
©2019 Carnegie Mellon University
Building a Trustworthy Computing Platform
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

μChip Design, Devel., Fabrication

● Elaboration Stage
– HDL constructs → Standard Library Blocks

module alu_mod (
 input alu_op_t op,
 input logic [31:0] a, b,
 output logic [31:0] res);

 always_comb begin
 unique case (op)
 ALU_ADD: res = a + b;
 ALU_MUL: res = a * b;
 ALU_XOR: res = a ^ b;
 ALU_AND: res = a & b;
 ALU_OR : res = a | b;
 default: res = 32’b0;
 endcase
 end
endmodule: alu_mod

 ALU

a

b

op

 res

+

x

and

or

 xor

a

b 0

 res
m
u
x

op

15
©2019 Carnegie Mellon University
Building a Trustworthy Computing Platform
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

μChip Design, Devel., Fabrication

● Logic Synthesis and Optimization:
– Library Blocks → Logic Gates

 ALU

a

b

op

 res

+

x

and

or

 xor

a

b 0

 res
m
u
x

op

16
©2019 Carnegie Mellon University
Building a Trustworthy Computing Platform
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

μChip Design, Devel., Fabrication

● Technology Mapping, Placement & Routing:
– ASIC: Gates → Transistors → Photolitho. Masks

17
©2019 Carnegie Mellon University
Building a Trustworthy Computing Platform
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

μChip Design, Devel., Fabrication

● Technology Mapping, Placement & Routing:
– FPGA: Gates → CLBs → Bitstream

(CLB = Configurable Logic Block)

 ...0101010…

18
©2019 Carnegie Mellon University
Building a Trustworthy Computing Platform
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

Recommendations

● Prefer FPGAs and Soft IP cores
– Most severe malicious-foundry attacks based on

understanding purpose, functionality of ASIC masks
● Using FPGAs withholds knowledge necessary for

targeting privilege escalation attacks!

– Improve sustainment, operational/acquisition agility
● Fix HDL design, tool-chain flaws via bitstream update!

– Like firmware update, but at even lower level

– Modern FPGA performance sufficient for e.g.,
embedded, or basic development platform

19
©2019 Carnegie Mellon University
Building a Trustworthy Computing Platform
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

Recommendations

● Retain ability to field strip our cyber-weapons!
– Require capability to rebuild system from sources

● Including tool chain sources: HDL & software compilers!

– Show of good faith from upstream supplier(s)
– Built-in sustainment capability from day one

● Solve “Trusting Trust” concerns
– Available source code (to everything) acting as trust anchor

20
©2019 Carnegie Mellon University
Building a Trustworthy Computing Platform
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

Bootstrapping a Trustworthy Platform

● Use DDC to obtain a clean C [cross-]compiler
● [Cross-]compile HDL compiler toolchain
● Cross-compile target OS (kernel, glibc, utilities)
● Build FPGA bitstream with HDL toolchain
● Boot target OS on FPGA

– Self-hosting from this point forward
● Any system component can be (re)built on the system itself!

– Trust anchor: the cumulative set of source code
● HDL, OS (kernel, glibc, utilities), and Compilers (C & HDL)

https://en.wikipedia.org/wiki/Self-hosting

21
©2019 Carnegie Mellon University
Building a Trustworthy Computing Platform
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

List of Ingredients

● FPGA development board
– Lattice ECP5 Versa: LFE5UM5G-45F-VERSA

● Free/Open HDL (Hardware Description Language) toolchain
– Verilog front-end: https://github.com/YosysHQ/yosys
– ECP5 device db. & bitstream tools: https://github.com/SymbiFlow/prjtrellis
– Place & Route back-end: https://github.com/YosysHQ/nextpnr

● Free/Open 64-bit CPU (RISC-V ISA)
– RocketChip: https://github.com/freechipsproject/rocket-chip

● Free/Open System-on-Chip (SoC) environment (sys. bus & peripherals)
– LiteX: https://github.com/enjoy-digital/litex

● Software stack (Linux, GCC, glibc)
– Fedora: https://fedoraproject.org/wiki/Architectures/RISC-V

https://www.latticesemi.com/en/Products/DevelopmentBoardsAndKits/ECP55GVersaDevKit
https://github.com/YosysHQ/yosys
https://github.com/SymbiFlow/prjtrellis
https://github.com/YosysHQ/nextpnr
https://github.com/freechipsproject/rocket-chip
https://github.com/enjoy-digital/litex
https://fedoraproject.org/wiki/Architectures/RISC-V

22
©2019 Carnegie Mellon University
Building a Trustworthy Computing Platform
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

Simplified Computer Architecture

CPUMemory
Controller

Peripheral (MMIO) Bus

UART
UART
(serial)

UART
Eth.net

UARTμSD

23
©2019 Carnegie Mellon University
Building a Trustworthy Computing Platform
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

Simplified Computer Architecture

CPUMemory
Controller

Peripheral (MMIO) Bus

UART
UART
(serial)

UART
Eth.net

UARTμSD

LiteX

RocketChip

24
©2019 Carnegie Mellon University
Building a Trustworthy Computing Platform
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

Project Status

● LiteX builds & runs on ECP5 FPGA with
Free/Open toolchain
– Boots Linux on 32-bit (VexRiscv) CPU

● LiteX + 64-bit RocketChip builds and runs in
simulation, expected to run on FPGA within
weeks

● Next: boot Fedora (only available in 64bit flavor)
– Port yosys/trellis/nextpnr packages from x86 to rv64
– Build LiteX + 64-bit Rocket ON LiteX + 64-bit Rocket!

25
©2019 Carnegie Mellon University
Building a Trustworthy Computing Platform
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

Next Steps

● Need FPGA development board w. more RAM!

● Collaborate with Formal Verification experts on
measuring trustworthiness of comprehensive
source bundle (now provably equivalent to
deployed FPGA SoC embedded system)

26
©2019 Carnegie Mellon University
Building a Trustworthy Computing Platform
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

Extra Slides

27
©2019 Carnegie Mellon University
Building a Trustworthy Computing Platform
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

Software vs. Hardware Programming

Image credit: Ed Klingman, “FPGA programming step by step”, 2004

https://www.design-reuse.com/articles/7330/fpga-programming-step-by-step.html

28
©2019 Carnegie Mellon University
Building a Trustworthy Computing Platform
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

Malicious Foundry Attack Examples

● A2 Trojan
– 20 transistors + 1 capacitor
– Incremental charge via unpriv.

instr. sequence
– Flip bit reg. – privilege flag

● Dopant-level Trojan
– Swap PNP ↔ NPN polarity on

selected transistors
– Visually undetectable
– Predictably weaken RNG

randomness

> 1.5 bn components!

https://web.eecs.umich.edu/~taustin/papers/OAKLAND16-a2attack.pdf
https://pdfs.semanticscholar.org/6407/ebd0a24026e4dad84bcc10fbba165d521a50.pdf

29
©2019 Carnegie Mellon University
Building a Trustworthy Computing Platform
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

Confusion re. “Open Source”

● Open Source Intelligence (OSINT)
– Used in Military, Intelligence, Government,

Law Enforcement communities
– Data collected from public sources

(vs. trusted, classified, access-controled sources)
– Often associated with decreased reliability!

● Free or Open Source Software (F/OSS)
– Software development principles & methodology
– High quality: Linux, BSD, Apache, Firefox, etc.
– Serious participants: RedHat, IBM, Google, etc.

● Competitors collaborate to avoid “reinventing wheel”

https://en.wikipedia.org/wiki/Open-source_intelligence
https://www.fsf.org/about/
https://opensource.org/osd-annotated

30
©2019 Carnegie Mellon University
Building a Trustworthy Computing Platform
Gabriel L. Somlo, Ph.D.
[Distribution Statement A]
Approved for public release and unlimited distribution.

Glossary
● CPU, ISA: Central Processing Unit; implements a specified Instruction Set Architecture (e.g. x86, ARM,

PowerPC).
● GPU, SIMD: Graphics (rather, vector) Processing Unit; a processor operating on vector data, running a

Single Instruction on Multiple Data simultaneously; originally targeted at graphics acceleration, useful in
high performance computing.

● ASIC: Application Specific Integrated Circuit; dedicated etched silicon implementing a specified
microelectronic design.

● Hard IP Core: well-delimited functional unit of an ASIC, based on Intellectual Property provided by a
specific vendor.

● FPGA, CLB: Field Programmable Gate Array; in itself a special-purpose ASIC, with the application or
purpose of dynamically and reconfigurably implementing a given microelectronic design. An FPGA
consists of a grid of identical Configurable Logic Blocks that can communicate with each other through a
programmable interconnect.

● Bitstream: stream of bits populating memory cells that control the CLBs and programmable interconnect
on an FPGA, determining the exact nature of the design to be implemented.

● Soft IP Core: well-delimited functional unit of a microelectronic design, based on Intellectual Property
from a specific vendor, incorporated into a design laid out on top of an FPGA using Bitstream.

● SoC: System-On-a-Chip; instead of soldering multiple, frequently-used-together ASICS and/or FPGAs
together on a Printed Circuit Board (PCB), they are connected together on the same set of masks, and
etched onto the same silicon die. This saves space, reduces power, and improves reliability.

