
1
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Delta Airlines

Verifying Drones with Enforcers

PI: Dr. Dionisio de Niz

2
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Copyright 2019 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be
construed as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT
MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests for
permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM19-0579

3
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Certification of Cyber-Physical Systems

• Evidence of Safe Behavior

- Logic: Correct actions (e.g., stop)

- Timing: At the right time (e.g., before crash)

- Control: according to physics (e.g., aerodynamics, wind, etc.)

Mathematical Verification to Provide Evidence for Certification:

• BUT: techniques do not scale to size of full systems

Our Solution:

• Add simpler verified runtime enforcers to
make prevent unsafe actions

• Formally: specify, verify, and compose multiple enforcers:

- Logic: Enforcer intercepts/replaces unsafe action

- Timing: at right time

• Protect enforcers against failures/ cyber-attacks

Enforcement-Based Verification of Cyber-Physical Systems

Controller
Logical

Enforcer

at(x,y)

moveTo(x,y)

4
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Mathematical Logical Model
Statespace

• 𝑆 = {𝑠}

• 𝜙 ⊆ 𝑆

Periodic actions

• Transition: 𝑅𝑃 𝛼 ⊆ 𝑆 × 𝑆

• Destination state: 𝑅𝑃 𝛼, 𝑠 = 𝑠′ 𝑠, 𝑠′ ∈ 𝑅(𝛼)}

Identify states too close to safety border

• Inertia lead to unsafe state even if enforced

• Enforceable states:
𝐶𝜙 = {𝑠|∃𝛼: 𝑅𝑃 𝛼, 𝑠 ∈ 𝐶𝜙}

Safe actions:

• 𝑆𝑎𝑓𝑒𝐴𝑐𝑡 𝑠 = {𝛼|𝑅𝑃 𝛼, 𝑠 ∈ 𝐶𝜙}

Logical Enforcer: 𝐸 = (𝑃, 𝐶𝜙, 𝜇)

• Set of safe actions:
𝜇 𝑠 ⊆ 𝑆𝑎𝑓𝑒𝐴𝑐𝑡(𝑠)

• Monitor and enforce safe action:

 𝛼 =
𝛼, 𝛼 ∈ 𝜇(𝑠)

𝑝𝑖𝑐𝑘(𝜇 𝑠), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑆

𝜙𝑠1 𝑠2

𝑠3

𝛼1
𝛼2

𝑠4

𝛼3

𝐶𝜙

𝑠5

Inertia+𝛼∗

We use tools that directly verify C source code Certification evidence

5
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Ensuring drone senses environment and corrects actions
on time

S
c

h
e

d
u

le
r

𝑠 𝛼 𝛼𝑠 𝑠 𝛼𝛼∗

𝛼
𝛼

𝛼

𝑠

𝑠

sense

action

time

GANTT Chart:

Multiple threads

taking turns to

execute

Sensing & actions must
occur every period to

be safe
in all threads

Sensing & actions must
occur every period to

be safe
in all threads

Sensing & actions must
occur every period to

be safe
in all threads

If error delay action. We
force a safe action

𝑅𝑖
𝜅 = max

𝑞∈ 1…
𝑡𝑖
𝜅

𝑇𝑖

𝑤𝑖,𝑞
𝜅 + 𝜅𝐶𝑖 − 𝑞 − 1 𝑇𝑖

Equations to verify actions always on time

Certification evidence

6
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

We protect the enforcers to prevent virus from modifying them
(with verified hypervisor evidence for certification)

𝑠 𝛼 𝛼𝑠 𝑠 𝛼

𝛼
𝛼𝑠

𝛼∗

VM

XMHF
System safe even if VM dies

𝛼∗ 𝛼∗ 𝛼∗

𝜏1

𝜏2

𝜅1

𝜅2

g
u

e
s
t
ta

s
k
s

H
y
p

e
r

ta
s
k
s

7
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Verifying Interaction with Environment (control)

Lyapunov Theory and Positively

Invariant Sets

• Math prove that enforcer we can always recover safety

• Safety region

7

Evidence for Certification

8
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution

Enforcers detect and correct unsafe behavior

8

With mathematical evidence

