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Certification of Cyber-Physical Systems

• Evidence of Safe Behavior

- Logic: Correct actions (e.g., stop)

- Timing: At the right time (e.g., before crash)

- Control: according to physics (e.g., aerodynamics, wind, etc.)

Mathematical Verification to Provide Evidence for Certification:

• BUT: techniques do not scale to size of full systems

Our Solution:

• Add simpler verified runtime enforcers to 
make prevent unsafe actions

• Formally: specify, verify, and compose multiple enforcers:

- Logic: Enforcer intercepts/replaces unsafe action 

- Timing: at right time

• Protect enforcers against failures/ cyber-attacks

Enforcement-Based Verification of Cyber-Physical Systems

Controller
Logical

Enforcer

at(x,y)

moveTo(x,y)
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Mathematical Logical Model
Statespace

• 𝑆 = {𝑠}

• 𝜙 ⊆ 𝑆

Periodic actions

• Transition: 𝑅𝑃 𝛼 ⊆ 𝑆 × 𝑆

• Destination state: 𝑅𝑃 𝛼, 𝑠 = 𝑠′ 𝑠, 𝑠′ ∈ 𝑅(𝛼)}

Identify states too close to safety border

• Inertia lead to unsafe state even if enforced

• Enforceable states: 
𝐶𝜙 = {𝑠|∃𝛼: 𝑅𝑃 𝛼, 𝑠 ∈ 𝐶𝜙}

Safe actions:

• 𝑆𝑎𝑓𝑒𝐴𝑐𝑡 𝑠 = {𝛼|𝑅𝑃 𝛼, 𝑠 ∈ 𝐶𝜙}

Logical Enforcer: 𝐸 = (𝑃, 𝐶𝜙, 𝜇)

• Set of safe actions:
𝜇 𝑠 ⊆ 𝑆𝑎𝑓𝑒𝐴𝑐𝑡(𝑠)

• Monitor and enforce safe action:

 𝛼 =  
𝛼, 𝛼 ∈ 𝜇(𝑠)

𝑝𝑖𝑐𝑘(𝜇 𝑠 ), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑆

𝜙𝑠1 𝑠2

𝑠3

𝛼1
𝛼2

𝑠4

𝛼3

𝐶𝜙

𝑠5

Inertia+𝛼∗

We use tools that directly verify C source code Certification evidence



5
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and 

unlimited distribution

Ensuring drone senses environment and corrects actions
on time
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GANTT Chart:

Multiple threads

taking turns to

execute

Sensing & actions must 
occur every period to 

be safe
in all threads

Sensing & actions must 
occur every period to 

be safe
in all threads

Sensing & actions must 
occur every period to 

be safe
in all threads

If error delay action. We 
force a safe action

𝑅𝑖
𝜅 = max

𝑞∈ 1…
𝑡𝑖
𝜅

𝑇𝑖

𝑤𝑖,𝑞
𝜅 + 𝜅𝐶𝑖 − 𝑞 − 1 𝑇𝑖

Equations to verify actions always on time

Certification evidence



6
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and 

unlimited distribution

We protect the enforcers to prevent virus from modifying them
(with verified hypervisor  evidence for certification)
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Verifying Interaction with Environment (control)

Lyapunov Theory and Positively     

Invariant Sets 

• Math prove that  enforcer we can always recover safety 

• Safety region                         
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Evidence for Certification



8
© 2019 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and 

unlimited distribution

Enforcers detect and correct unsafe behavior
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With mathematical evidence


