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Abstract
Computing localizable entanglement for noisymany-particle quantum states is difficult due to the
optimization over all possible sets of local projectionmeasurements. Therefore, it is crucial to develop
lower bounds, which can provide useful information about the behaviour of localizable entanglement,
andwhich can be determined bymeasuring a limited number of operators, or by performing the least
number ofmeasurements on the state, preferably without performing a full state tomography. In this
paper, we adopt two different yet related approaches to obtain awitness-based, and ameasurement-
based lower bounds for localizable entanglement. The former is determined by theminimal amount
of entanglement that can be present in a subsystemof themultipartite quantum state, which is
consistent with the expectation value of an entanglement witness. Determining this bound does not
require any information about the state beyond the expectation value of thewitness operator, which
renders this approach highly practical in experiments. The latter bound of localizable entanglement is
computed by restricting the local projectionmeasurements over the qubits outside the subsystemof
interest to a suitably chosen basis.We discuss the behaviour of both lower bounds against local
physical noise on the qubits, and discuss their dependence on noise strength and system size.We also
analytically determine themeasurement-based lower bound in the case of graph states under local
uncorrelated Pauli noise.

1. Introduction

Over the last two decades, quantum entanglement [1] has emerged as a crucial resource in a plethora of quantum
information processing tasks, including quantum teleportation [1–3], quantumdense coding [4–6], quantum
cryptography [7, 8], andmeasurement-based quantum computation [9–11]. It has also been proven useful in
areas other than quantum information science, such as in detecting quantumphase transitions in quantum
many-body systems [12–15], in characterizing topologically ordered states [16–19], in studying the AdS/CFT
correspondence [20–23], and even in areas other than physics, such as in describing the transport properties in
photosynthetic complexes [24–27]. Impressive experimental advancement in creating entangled quantum states
in the laboratory, by using current technology and substrates such as ions [28–30], photons [31–33],
superconducting qubits [34, 35], nuclearmagnetic resonancemolecules [36], and cold atoms in optical lattices
[37–39] has enabled the realization of awide range of entanglement-based quantumprotocols.

Studying the properties of entanglement confined in a subsystemof increasingly largermultipartite
quantum systems remains a pressing task.Many studies aiming at investigating such entanglement have
followed two popular approaches. In one, an appropriate entanglementmeasure is computed for the reduced
state ρN−m of a chosen subsystemΩ that containsN−m qubits, obtained by tracing out them qubits in the rest
of themultipartite system, W, from theN-qubit state ρ, such that TrN mr r=- W [1]. In the other approach, one
attempts to obtain entangled post-measurement states over the regionΩ by performing local projection
measurements over W, so that the average entanglement of the states in the post-measurement ensemble overΩ
is non-zero [40–43]. For instance, anN-qubit Greenberger–Horne–Zeilinger (GHZ) state [44] given by
GHZ 0 1N N1

2
ñ = ñ + ñÄ Ä∣ (∣ ∣ ) is a classic example where the second approach is particularly useful. Here, the

reduced state ofN−m qubits for anym�N−2, given by 0 0 1 1N m
N m N mGHZ 1

2
r = ñá + ñá-

Ä - Ä -[(∣ ∣) ] (∣ ∣) ]( ) ( ) has
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zero entanglement. On the other hand, the post-measurement states of, say, two qubits, obtained by performing
local projectionmeasurements on any one qubit in, say, a three-qubit GHZ state in the basis of PauliXmatrix,
aremaximally entangled Bell sates 00 11 2f ñ = ñ + ñ∣ (∣ ∣ ) . Thismotivates one to define localizable
entanglement as themaximumaverage entanglement, asmeasured by an appropriate entanglementmeasure,
localized overΩ by performing local projectionmeasurements over W [41–43]. Localizable entanglement has
been proven to be indispensable in investigating the correlation length in quantummany-body systems
[41, 42, 45, 46], in studying quantumphase transitions in cluster-Ising [47, 48] and cluster-XYmodels [49], in
protocols like percolation of entanglement in quantumnetworks [50], and in quantifying local entanglement in
stabilizer states [10, 51–53].

Onemajor challengewith respect to localizable entanglement, even in qubit systems, is its computability,
due to themaximization that needs to be performed over all possible local projectionmeasurements on them
measured parties in theN-partite system [41–43]. Since the number of independent real parameters over which
themaximization is to be performed increases with increasing number ofmeasured qubits in themultipartite
state [43], the computation of localizable entanglement becomes in general difficult even in states of a small
number of qubits. Also, in experiments, performing all possible local projectionmeasurements on a set of qubits
and determining the post-measurement states by performing state tomography is resource-intensive and
becomes certainly impractical for systems of a large number of qubits.Moreover, an additional complication
arises from the fact that one needs to deal with experimentalN-qubit states which due to noise necessarily
deviate to some degree from ideal, often pure target states. In such cases, determination of the localizable
entanglement becomes difficult also due to the limited number of computablemeasures of entanglement in
multipartitemixed states [43], if one is interested in localizable entanglement in sets involvingmore than two
qubits.

In this situation, a promising approach towards understanding the behaviour of localizable entanglement
under noise for large stabilizer states is to develop non-trivial as well as computable lower bounds of the actual
quantity. Thismay provide useful information about the system and the dependence of localizable entanglement
over different relevant parameters. For example, in the case of the dependence of the localizable entanglement
on the noise strength, a non-zero value of the lower bound of the localizable entanglement at a specific value of
the noise strength implies sustenance of the actual localizable entanglement for that noise strength. Note that a
similar approach of determining computable lower bounds has been adopted in the case of concurrence and
entanglement of formation [54–58], where the optimization involved in the computation of the actual quantity
is difficult to achieve [59–63]. However, in order to satisfy practical purposes, one requires the lower bound of
localizable entanglement to be easily computable from limited knowledge of the quantum state, andwithout
performing a full state tomography, for which the requiredmeasurement resources increase if the system size is
large. It is therefore also imperative to develop bounds that can be computed by performing the least number of
localmeasurements.

There have been attempts to determine the entanglement content and to characterize the dynamics of
entanglement in noisy stabilizer states.Methods have been developed in order to obtain lower aswell as upper
bounds of entanglement between two subparts in an arbitrarily large graph state under noise [64, 65]. Also, the
behaviour of long-range entanglement [66], relative entropy of entanglement [67], andmacroscopic bound
entanglement [68] in cluster states under thermal noise has been investigated. The problemof efficiently
estimating relative entropy of entanglement in an experimentally created noisy graph state by stabilizer
measurement has also been addressed [69]. Since localizable entanglement is the natural choice for quantifying
entanglement between two parties in amultiqubit graph state with orwithout noise, an in-depth analysis of
localizable entanglement in general noisy large-scale graph states is nownecessary.

In this paper, we showhow computable lower bounds of localizable entanglement can be constructed. For
concreteness, we focus on stabilizer states [10, 51–53] and,more specifically, within this class of states, on
graph states [9–11, 52], since the characterization of graph states and their properties is well developed and a
versatile language for the description of these systems exists. However, since any stabilizer state can bemapped
on to a graph state by local unitary operation [51, 52], our results are either directly translatable, or derivable in a
similar way for arbitrary stabilizer states.

We adopt two different, yet related approaches to obtain computable lower bounds for localizable
entanglement in the case ofmixed quantum states. Thefirst approach is based on entanglementwitnesses
[70–76] that are local observables whose expectation value signals the presence of entanglement.We use a class
of witnesses, called localwitnesses [74–76], andwe showhow they can be used to estimate a lower bound of the
value of localizable entanglement in subsystems of qubits. Lower bounds of the localizable entanglement can be
computed from the expectation values of thewitness operators evaluated in the noisy quantum state [77–81].
We show that the entanglementmeasure, estimated by the expectation values of thesewitness operators, serves
as a faithful lower bound to the actual localizable entanglement on chosen subsystems of specific size. In the
second scheme that we explore, we obtain a lower bound of localizable entanglement by considering a specific
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measurement strategy, thereby restricting the full set of local projectionmeasurement required to compute the
localizable entanglement.More specifically, for noisy graph states, we show that a computable lower bound of
localizable entanglement is obtained by performing localZmeasurements over all qubits in the graph except for
the qubits in the region of interest.We establish a relation between these two seemingly unrelated approaches,
and test the performance of the obtained lower bounds by benchmarking them for graph states undergoing
uncorrelated Pauli noise.

The paper is organized as follows. In section 2, we introduce the notationwe use and review key concepts of
localizable entanglement and graph states, including graph-diagonal states, used throughout this paper.
Section 3 contains a discussion on the local witness-based and localmeasurement-based lower bounds (MLBs)
of localizable entanglement and the interrelation between these bounds. In section 4, we demonstrate and
compare the performances of the lower bounds in the case of specific noisemodels, and determine an analytical
formula for theMLB in terms of noise strength and the system size of the analysed states. Section 5 contains
concluding remarks.

2.Definitions

2.1. Localizable and restricted localizable entanglement (RLE)
The localizable entanglement (LE) [41–43] over a numberNΩ�2 of selected qubits forming the regionΩ in a
multi-qubit system is defined as themaximumaverage entanglement that can be accumulated overΩ by
performing localmeasurements over the qubits in the set W, where W Ç W = Æ, and ÈW W represents the
multiqubit system.We denote the state of anN-qubit systemby ρ, where the qubits constituting the system are
labelled from1 toN such thatΩ={1, 2, 3,L,NΩ}, and N N N1, 2, ,W = + +W W { }.We label them
(m N N N 2= - -W ) qubits in W by {r1, r2,L, rm}, with r N N N1, 2, ,i Î + +W W { }, and perform local
measurements on them.We restrict ourselves to rank-1 projectionmeasurements

k; 0, 1, 2, , 2 1k
m º = -{ }, in theHilbert space of W, which is of dimension 2m. The post-

measurement ensemble p ,k krW{ } is represented by theN-qubit post-measurement state ρ k
Ω, given by

Tr

Tr
, 1k k k
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and the probability withwhich ρ k
Ω is obtained, given by

p Tr . 2k
k k r= [ ] ( )†

Here, k denotes themeasurement outcome, and p 1k
k

0
2 1m

å ==
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theN-qubit system is given by

E p Esup , 3
k

k k

0

2 1m


år r=W
=

-

W( ) ( ) ( )

where E is a pre-decided entanglementmeasure. The supremum in equation (3) is taken over the complete set of
rank-1 projectionmeasurements over the qubits in W.

Rank-1 projectionmeasurements on the qubits in W can be parametrized as k kk r r ri i i
 º = ñáÎW{ ⨂ ∣ ∣},

where k r0 1,r ii
Î " Î W{ } , and kri

ñ{∣ }are given by [82]
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with 0 , 1ñ ñ{∣ ∣ }being the computational basis, and i m, ; 1, 2, ,r ri i
q f = {( ) } are m2 real parameters, such

that 0 ri
 q p, 0 2ri

 f p< . Here, one can interpret the outcome index k as themulti-index k k kr r rm1 2
 ,

where the value of k is the decimal representation of the binary sequence k k kr r rm1 2
 . Therefore, the

optimization in equation (3) reduces to an optimization over a space of m2 real parameters. In general, such
optimizations are hard problemswhenm is large, and can be analytically performed only for a handful of
quantum states even in the case of qubit systems [41–43].

Instead of computing the actual localizable entanglement, onemay define a restricted LE (RLE) (see [83] for
similar quantities defined in context of quantum information-theoreticmeasures, such as quantumdiscord
[84, 85]), where only single-qubit projectionmeasurements corresponding to the basis of the Pauli operators are
allowed. This implies that for each qubit in W, the possible values of ,r ri i

q f( ) are (i) 0, 0r ri i
q f= =( )

corresponding to the basis 0 , 1r ri i
ñ ñ{∣ ∣ }of Zri

, (ii) 2, 0r ri i
q p f= =( ) corresponding to the basis ri

ñ{∣ }of Xri
,

and (iii) 2, 2r ri i
q p f p= =( ) corresponding to the basis y ri

ñ{∣ }ofYri
, where {X,Y,Z} denote the standard

Pauli operators.
We denote the complete set of all possible Paulimeasurement settings over them qubits in W by

l; 0, 1, 2, , 3 1l
m  º = -{ }. Corresponding to a specific value of l, there can be 2mmeasurement
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outcomes, denoted by the index k, corresponding to each of which the projection operator is given by

I
1

2
1 , 5l k

r

k
l,

i

ri
ri

 s= + -
ÎW

⨂ [ ( ) ] ( )( )

where l 0, 1, 2ri
Î { } represents the direction of local projectionwithσ0=Z,σ1=X, andσ2=Y for a specific

ri, and k 0ri
= k 1ri

=( ) corresponds to the outcome+1(−1) of the projectionmeasurement. Here, we interpret
the index l as themulti-index l l l lr r rm1 2

º  , where the value of l is the base 3 representation of the string
l l lr r rm1 2

 , and the outcome index k as themulti-index k k k kr r rm1 2
º  , where the value of k is the base 2

representation of the string k k kr r rm1 2
 . Using this notation and following equation (3), the RLE is given by
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Clearly, E E W W , thereby providing a lower bound to the LEwhen the optimization is not achieved by Pauli
measurements. However, there are important examples and large classes of quantum states, for which
E E =W W . These include (i) graph states [52], (ii)N-qubit generalizedGHZ and generalizedW states [43], (iii)
Dicke states and superposition ofDicke states with different excitations and afixed number of qubits [43], (iv)
ground states of paradigmatic quantum spinmodels like the one-dimensional anisotropicXYmodel in a
magnetic field and theXXZmodel [41–43, 86], and also (v) the ground states of quantum spin systems described
by stabilizerHamiltonians in the presence of external perturbations in the formofmagnetic field or spin–spin
interaction, such as the cluster-Isingmodel [47].

2.2. Graph states and stabilizer formalism
Amathematical graph [52, 87, 88] ,  ( ) is composed of a set  ofNnodes, labelled by N N1, 2, , 1,-
and a set  of edges or links (i, j) (i j¹ ) connecting the nodes i and j, where i j, Î . A graph is represented by
the adjacencymatrixΓ, given by

i j

i j

1, for , ,

0, for , ,
9ij




G =

Î
Ï

⎧⎨⎩
( )
( )

( )

which is anN×N binarymatrix. In this paper, we consider simple, undirected, and connected graphs [52, 87, 88]
only. A simple graph does not contain a loop, i.e., a link connecting a node to itself, andmultiple edges between a
pair of nodes. A graph  is connected if for each pair of sites i j, Î{ } , there exists a path , constituted of a set
of links k l, Î{( )} with k l, Î , which connects the nodes i and j. Also, in an undirected graph, the links (i, j)
and ( j, i) are equivalent.We denote the neighbourhood of a node i by i Ì , which is the set of nodes {j} in
which each node is connected to i by a link, i.e., i j, Î( ) ∀ j iÎ .

Let us now consider a region in the graph  , denoted byΩ, which is designated by only the nodes inΩ. For
the subgraph , WW W( ) corresponding to a regionΩ, with W Ì and  ÌW , all the above definitions remain
valid, and W contains only the links {(i, j)} such that i j, Î W.We denote the cardinality ofΩ byNΩ (N NW ).
In agreementwith the notation used in section 2.1, the rest of the graph is denoted by , WW W( ), where W has a
definition similar to that of W and the set of all nodes is  È= W W. The set of links i r, j{( )}between a node
i Î W and a node rj Î W is denoted by g , so that the complete set of existing links is    È È= gW W . The

boundary ¶W Ì W of the regionΩ is composed by the nodes in W that are linkedwith nodes inΩ (see figure 1(a)
for examples of W, W, ¶W, and g in a simple graph).Without loss of generality, one can label the nodes such

thatΩ={1, 2, 3,L,NΩ}, and N N N1, 2, ,W = + +W W { }, which leads to

. 10
Tg

g
G = G

G
W

W

⎛
⎝⎜

⎞
⎠⎟ ( )

Here,ΓΩ and GW are the adjacencymatrices corresponding to W and W, respectively, while the
(N−NΩ)×NΩmatrix γ represents the set of links connectingΩ and W. In order to keep parity between the
notations in sections 2.1 and 2.2, wewould like to determine the LE over the regionΩ in  , implying
NΩ=N−m.

A graph state ñ∣ is amultiqubit stabilizer quantum state associated to an undirected graph  , where a qubit
is placed at every node in the graph. The state is defined by a set, G NÎ , ofmutually commuting generators

4

New J. Phys. 20 (2018) 063017 DAmaro et al



[52], gi, where gi  ñ = ñ∣ ∣ ∀i=1, 2,L,N. Here, N denotes the Pauli group [52, 82], and the formof the
generators {gi}, given by

g X Z , 11i i
j

j
ij



= Ä
Î

G
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥⨂ ( )

is determined by the underlying graph structure (see figure 1(a) for an explicit example in afive-qubit graph).
The generators {gi} share common eigenstates, and the state ñ∣ is the common eigenstate of {gi}with eigenvalue
+1. The rest of the 2N−1 eigenstates of {gi} are local unitary equivalent to ñ∣ , given by Z ñ = ñn

n{∣ ∣ }, where
0, 1, 2, , 2 1Nn = - , and Z Zj j=n

n
Î⨂ , where 0, 1jn Î { }. The index ν is amulti-index N1 2n n n nº  ,

and can be interpreted as the decimal representation of the binary sequence N1 2n n n . In this representation,
0 ñ = ñ∣ ∣ . The set of eigenstates  ñn{∣ } forms a complete orthonormal basis of theHilbert space of the system,

and any state that is diagonal in this basis, written as [52, 64, 65, 89–92]

p , 12GD
0

2 1N

 år = ñá
n

n
n n

=

-

∣ ∣ ( )

is a graph-diagonal (GD) state, where ,  dá ñ =n n
n n

¢
¢∣ , ,dn n ¢ being theKronecker delta, and pn{ } is any

probability distribution. Fromnowon, we shall use thewords qubits and nodes interchangeably, and denote
themwith the same labels, since each node in  accounts for a specific qubit in ñ∣ .

There exist graph states that are connected to each other by local unitary operations, thereby having identical
entanglement properties [52]. A specific set of such states are of particular interest, which correspond to the
different graphs connected to each other by the local complementation (LC) operation [51, 52, 93]. The LC
operationwith respect to a qubit i, denoted by .it ( ), on a graph  deletes all the links {( j, k)} if j k, iÎ , and

j k, Î( ) , and creates all the links {( j, k)} if j k, iÎ , and j k, Ï( ) . The operation τi that transforms  into
a new graph ¢ is equivalent to a set of local unitary operations, denoted byUC

i , on the corresponding graph state
so that UC

i  ñ  ñ = ¢ñ∣ ∣ ∣ , where

Figure 1.Graph state, stabilizers, and local complementation operation. (a)Afive-qubit graph ,  ( ), constituted of nodes
1, 2, 3, 4, 5 = { } and links 1, 2 , 1, 4 , 2, 3 , 2, 4 , 3, 4 , 4, 5 = {( ) ( ) ( ) ( ) ( ) ( )} is depicted, and the corresponding stabilizer

generators {g1, g2, g3, g4, g5}, according to equation (11) are explicitly shown. As an example, we consider the subgraph , = WW W( )
corresponding to the regionΩ constituted of nodes 1, 5 =W { } and no links, i.e.,  = ÆW . On the other hand, , = WW W( ) is
constituted of nodes 2, 3, 4W = { }and links 2, 3 , 2, 4 , 3, 4 =W {( ) ( ) ( )}. The boundary∂Ω, in this case, is given by∂Ω={2, 4},
and 1, 2 , 1, 4 , 4, 5 =g {( ) ( ) ( )}. (b)ALCoperationw.r.t. the node 2 leads to the graph ¢ withmodified connectivity, and the
corresponding transformation of the graph states,  ñ  ¢ñ∣ ∣ is given by a local unitary transformation according to equation (13), as
shown explicitly in thefigure.
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U u u , 13C
i

i
x

j
j
z

i

= Ä
Î

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥⨂ ( )

with u Xexp i 4i
x

ip= -[( ) ]and u Zexp i 4j
z

jp= [( ) ]being local Clifford operations (for an example, see
figure 1(b)). For afixed value ofN, the set of all possible graphs connected by (sequences of) LCoperations over
different nodes in the graph is called an orbit [52]. Theremay existmore than one orbit for a specific value ofN.
The orbits aremutually disjoint sets, and the union of all the orbits corresponding to afixed value ofN provides
the complete set of all possible connected graphs.

3. Lower bounds of localizable entanglement

In this section, we establish a relation between the LE over a regionΩ in a graph  with local entanglement
witnesses, and provide a hierarchy of bounds of LE based on suitably chosen localmeasurements and the
expectation values of local entanglement witnesses.

3.1.Witness- andmeasurement-based lower bounds
An entanglementwitness [70–76] is an operator with non-negative expectation values in all separable states,
implying that a negative expectation value (Tr 0r <( ) ) of thewitness operator unambiguously signals the
presence of genuine entanglement in ρ. Awitness operator g that detects the genuineN-partite entanglement
in amultiparty pure state yñ∣ and a state ρ that is close to yñ∣ is called a global witness operator, and can be chosen
to be of the form [72]

I . 14g a y y= - ñá∣ ∣ ( )

Here, I is the identity operator in theHilbert space of yñ∣ , andα is the largest Schmidt coefficient of yñ∣ , given by
max S

2
B

a f y= á ñfñÎ ∣ ∣ ∣{∣ } , SB being the complete set of all biseparable states. If yñ∣ is a graph state ñ∣ , then it is

genuinelymultiparty entangled if the underlying graph is connected, and g with 1

2
a = provides the global

entanglement witness operator that can detect entanglement of a noisy state ρ close to the ideal state ñ∣ . Here, ρ
may originate from the exposure of an already prepared state ñ∣ to noise (wherewe assume that the state ñ∣ has
been preparedwith a highfidelity with the actual target state), or in an experiment, where the target state is ñ∣ ,
but one ends upwith amixed state ρ due to noise in the experimental apparatus. Assuming that the effect of
noise in both scenarios can be simulated by knownphysical noisemodels, we consider r r= L( ), where

 r = ñá∣ ∣, and the operationΛ(·) describes the transformation  rñ ∣ .
A local witnessW is an operator that detects the entanglement in a subsetΩ of qubits constituting the state

ρ. If the subgraph W is connected, a local witness can be constructed from the generators {gi} as [74–76]

I
I g1

2 2
, 15

i

i = -
+

W
ÎW

( )

with the property that the expectation value ofW in the state ρ is the same as the expectation value of the
witness operator gW in the reduced state ρΩ, i.e.,

Tr Tr . 16g w r r= =W W W( ) ( ) ( )

Here thewitness operator gW is globalwith reference to the regionΩ in  , so that [74–76]

I
1

2
, 17g  = - ñáW W W∣ ∣ ( )

 ñW∣ being the graph state corresponding to the subgraph W. The reduced state ρΩ lives only inΩ, and is given by

U UTr , 181r r= g gW W
-( ) ( )

where the unitary operatorUγ disentangles  ñW∣ from  ñW∣ , so thatU   ñ = ñ Ä ñg W W∣ ∣ ∣ [52]. The unitary
operatorUγ, written as

U U , 19
i r

ir
CZ

, j

j


=g
Î g

( )
( )

is constituted of controlled phase unitaries acting on the links i r, j Î g( ) with i Î W and rj Î W, given by
U I Z Z I Zir

CZ
r r i r r

1

2j j j j j
= + + -[( ) ( )]. Note here that the operatorWW (equation (15)) is constituted of generators

{gi}with i Î W. Under the transformationU g Ui
1

g g
- , the resulting generator no longer has support on W.

Therefore, the unitary operatorUγ transformsW into
gW as

U U I . 20g1 = Äg gW
-

W W ( )
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Next, we notice that the unitary operatorUγ is constituted of controlled phase unitariesUir
CZ

j
which involve

operators I Zr r
1

2 j j
( ) corresponding to the qubits rj Î ¶W inZ. Therefore, writing the identity operator

corresponding to theHilbert space of a specific qubit rj Î W ¶W⧹ as I I Z I Z 2r r r r rj j j j j
= + + -[( ) ( )] , the form

of the unitary operator can be expanded as

U
I Z1

2
, 21

k

k

r

k
r

j

rj
jå =

+ -
g W

ÎW

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )
( )

where the correction unitaries kW{ }are given by

Z , 22k

i
i
k i = g

W
ÎW

( )·

where γi is the ith columnof γ, k is a rowmatrix constituted of the individualmeasurement outcomes krj

corresponding to the qubits rj Î W, and u v· indicates amatrix product calculatedmodulo 2 for thematricesu

and v. Note here that kW acts only onΩ, and it is determined entirely according to the links in g , and the values
of krj

{ } for rj Î ¶W. Then,

U U pTr , 23
k

k k k k0, 0, år r r= =g gW W W W W( ) ( )( ) ( )

where k0,rW
( ) and p(0, k) are for l=0 in equations (7) and (8) respectively.

3.1.1. Hierarchy of lower bounds
Weare now in a position to establish a hierarchy between a set of quantities that are relevant in investigating the
behaviour of localizable entanglement. It is clear from the definition of RLE that although the computational
complexity of RLE is less than the same corresponding to a computation of the exact LE, one has in principle still
to consider 3m possible Paulimeasurement settings, which grows exponentially withm. For largem, where this
becomes impractical, onemay compute the average entanglement that can be localized onΩ, obtained by
choosing a particular setting of Paulimeasurement, say, l , in W, instead of considering the full set of 3m

elements of . Here, we have adopted the notation used in section 2.1. The value of the average entanglement
computed in this way depends completely on the choice of the value of l. In the scenarios where the choice is not
an optimal setting, the average entanglement serves as a lower bound of the RLE, and by extension a lower bound
of LE, i.e.,

E E E . 24l r r rW W W( ) ( ) ( ) ( )

Wecall such a lower bound themeasurement-based lower bound (MLB) in the following. Unless otherwise
stated, throughout this paper, we shall consider Paulimeasurements only, and discard the superscript  from all
the operators to keep themuncluttered.Note that a poor choice of the settingmay result in vanishing average
entanglement corresponding to a trivial lower bound of LE, which highlights the importance of an informed
choice ofmeasurement setting fromwithin the full set of Paulimeasurements.

In the case of l=0, the lower bound E 0
W corresponds to localZmeasurements on all qubits in W, and

equation (24) becomes

E E E . 250 r r rW W W( ) ( ) ( ) ( )

Anon-zero value of E 0
W is likely whenΩ in  is connected because 0 is an optimalmeasurement setting in the

absence of noise (i.e., for  r = ñá∣ ∣). The use of E 0
W as theMLB is justified in scenarios where the state ρ is very

close to the graph state ñ∣ , i.e., when the noise acting on the state has very low strength, or when in an
experiment the prepared state has very highfidelity with the target state ñ∣ . In such situations, one expects the
optimalmeasurement to not deviatemuch from the optimal one in the absence of noise.However, in subsequent
sections, we shall demonstrate that there exist situations inwhich E 0

W serves as a good choice forMLB evenwhen
the noise strength is considerably high.

A clear connection between E 0
W and the local entanglement witnesses can nowbe drawn by using

equation (23). The local unitary invariance of entanglementmeasures [1] implies E Ek k k k0, 0, r r=W W W W( ) ( )( ) ( ) ,
which leads to

E p E , 26
k

k k k k0 0, 0, år r=W W W W( ) ( ) ( )( ) ( )

for a specific choice of the entanglementmeasure E. Using the convexity property of entanglementmeasures
[1, 94] results in E E0 r rW W( ) ( ), where ρΩ is given by equation (18), and one canmodify equation (25) as

E E E E . 270  r r r rW W W W( ) ( ) ( ) ( ) ( )
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The quantityE(ρΩ)may still be difficult to compute in the general case if the regionΩ is large and if ρΩ is a
mixed state. However, the expectation value Tr gw r= W W( ), which is obtained bymeasuringW on ρ, can
typically be determined, say, in an experiment, with a number of resources that depends only on the size ofΩ,
unlike obtaining ρΩ from ρ and the posterior full state tomography for it, which require an effort that depends on
the total size of system. From the definition of witness operators, one expectsω corresponding to a goodwitness
operator and a specific quantum state to be highly negative if the state is highly entangled.Motivated by this, one
may use aminimal set of data, and solve an optimization problemwhich aims to answer the question as towhat
theminimumamount of entanglement, Emin rW( ), asmeasured by any bipartite ormultipartitemeasure E, is
among all states ñ, subject to ñ that are consistent with the data ofω. In otherwords, one aims tofind the quantity
given by [79–81]

E Einf , 28min 


r =W( ) ( ) ( )

subject to

Tr Tr , 29g g w r= =W W W( ) ( ) ( )

where ñ is in theHilbert space ofΩ, ñ�0, andTr(ñ)=1. In themost general scenario, the expectation values of
the local witness operators would provide a lower bound of Emin rW( ), given by E wW ( ), so that the inequality in
(27) can be further appended as

E E E E E , 300    r r r r wW W W W W( ) ( ) ( ) ( ) ( ) ( )

wherewe refer the quantity E wW ( ) as thewitness-based lower bound (WLB) of LE, which is a function of only
the expectation value of a local witness Tr w r= W( ).

In the following sections 3.2 and 3.3we provide technically detailed discussions ofmodifications of the
hierarchy of lower bounds given in (30) in particular situations, such as under local unitary transformations and
forGD states.More specifically, we show that forGD states, E E0 r r=W W( ) ( ), andwe use logarithmic negativity
[95–97] as a bipartite entanglementmeasure to show that forGD states and a regionΩ constituted of two qubits
only, E Er w=W W( ) ( ). Readers interested in the demonstration of the different lower bounds in the case of
graph states under physical noise can skip these discussions, andmove on to section 4, wherewe demonstrate the
behaviour of the lower bounds under local Pauli noise as functions of the noise strength.

3.2. Lower bounds under local unitary transformation
An important requirement for the construction of the local witness operatorW is that the regionΩ in the
graph has to be connected. Also, in the case of lownoise strength, the value of E 0

W can be expected to be non-zero
iffΩ is connected in  , since in the absence of noise, computing E 0

W yields zero ifΩ is not connected. However,
theremay arise situationswhere the chosen regionΩ in a graph  is not connected. In that scenario, onemay
arrive at a graph ¢ by performing LCoperations over a set of chosen qubits in the graph, so that the regionΩ
becomes connected in ¢, and the hierarchies given in (30) hold good. For example, let us consider a regionΩ of
two disconnected qubits a and b. The fact that the original graph  is connected ensures the existence of a path 
constituted of links i j, Î{( )} that connects a and b. A series of LC operations on selected qubits i Í{ } ,
where i a b,¹ , creates a link between the qubits a and b, thereby resulting in a new graph ¢withmodified
connectivity, where the link (a, b) is present.We illustrate this infigure 2with the example of a square graph.
However, a series of LC operations over a graph is equivalent to a local Clifford unitary transformation of the
graph state, as demonstrated in section 2.2. Therefore, in order to checkwhether equation (30) is valid in the case
of a graphwhere the selected region is not connected, one has to checkwhether the inequalities remain invariant
under such local unitary transformation.

Remembering that the LC operation on a set of qubits in a graph is equivalent to the application of local
Clifford unitaries on a set of qubits in the graph state [51, 52], without loss of generality, onemaywrite

U , 31L ¢ñ = ñ∣ ∣ ( )

whereU UL i
N

i1= Ä = , {Ui} being the set of local Clifford unitary operators acting on the qubits i Î . In the case
of a quantum state ρ originating from the graph state due to noise or some error in the experimental setup,
without any loss in generality, U UL L

1r r¢ = - , where r¢ is the quantum state resultingwhen ¢ñ∣ has undergone
the same transformation as ñ∣ up to the local unitaryUL. Note that since ρ and ρ′ are connected by local unitary
operators, and since LE is invariant under local unitary transformation of the quantum state, E Er r= ¢W W( ) ( )
for any connected region W Î .Moreover, we note that theClifford unitary operators have the property

U U , 32i i i i
1s s= ¢- ( )

where bothσi and is¢ are Pauli operators corresponding to the qubit i, up to themultiplicative factors 1, i { },
whileσi is not necessarily equal to is¢. Since computing the RLE includes all possible Paulimeasurement settings,
this implies E E r r= ¢W W( ) ( ).
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Clearly, the optimalmeasurement bases for computing LE for ρ and ρ′ are not identical. However, the
measurement basis corresponding to ρ can be determined by using the knowledge ofUL, and an appropriate
measurement basis for ρ′. In this scenario, we expect ρ′ to be close to the graph state ¢ñ∣ where the regionΩ is
connected, so that the appropriatemeasurement basis for ρ′ should be 0 , which involves only local
Z-measurement over all qubits in W. But due to their local unitary connection, the localizable entanglement
E 0 r¢W( ) equals E l rW( ), where the value of l l l lr r rm1 2

º  is such that for all ri Î W, U Z Ul L r L
1

ri i
s = - , up to the

multiplicative factors 1, i { }.
In connectionwith the local witness operator, one has to now consider

I
I U g U1

2 2
, 33

i

L i L
1

 ¢ = -
+ ¢

W
ÎW

-⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

with g
i
¢{ }being the generators of ¢ñ∣ and U g UL i L

1 ¢-{ }are products of the generators gj{ }of ñ∣ . Note that the

state r¢W corresponding to ¢ is obtained from ρ′ according to equations (18) and (19), but using a different
unitary operatorUg¢, which is defined according to the connectivity of ¢. In light of this, the hierarchies of lower
bounds in equation (30), in the case of ¢, become

E E E E E , 34l    r r r r w¢ ¢W W W W W( ) ( ) ( ) ( ) ( ) ( )

where Tr w r¢ = ¢W( ) and U UTrr r¢ = ¢g gW ¢ ¢( )† , withUg¢ being the disentangling unitary of equation (19)
for ¢ñ∣ .

In scenarios whereΩ is not connected, in the absence of noise, an optimalmeasurement setting for
computing the LE over the regionΩ is the one that corresponds to a sequence of graph operations that results in
a connected regionΩ. For example, in the case of a disconnected regionΩ constituted of only two qubits, say, ‘a’,
and ‘b’, one of the optimalmeasurement settings corresponds to (i)Xmeasurements on all the qubits that are
situated on a path connecting qubits ‘a’ and ‘b’, and (ii)Zmeasurements on rest of the qubits in the graph [52].
However, theremay existmore than one such Paulimeasurement setting. Note also that theremay exist
different sets of local unitary operations that connect ñ∣ to different graph states whereΩ is connected. Both
MLB andWLBdescribed above can therefore bemade tighter by considering all such possible cases, and then
choosing themaximumof the values.

3.3. Lower bounds in graph-diagonal states
In this section, we focus on the hierarchies of lower bounds in the case of GD states. Themotivation behind
determining the structure of lower bounds forGD states stems from the fact that these states occur naturally
when graph states are subjected to Pauli noise [64, 65], as is demonstrated in section 4. Also, any quantum state
can be transformed into aGD state by local operations, as demonstrated in [89–91].

Figure 2.Creation of a link (a, b) by successive application of local complementation operations. (a)A square graph S with a regionΩ
of two disconnected qubits a and b denoted by black nodes, joined by a path , constituted of the qubits {a, 1, 2, b} and the links {(a,
1), (1, 2), (2, b)}, denoted by thick black continuous lines. (b) Local complementation operation on qubit ‘1’ (blue) leading to the
graph S1 t ( )). The new links created by the operation are denoted by blue continuous lines. Note that the link (a, 2) has been created in
this local complementation operation, which is crucial for the creation of the link (a, b) in the next step.No links are deleted in the
operation τ1. (c) Local complementation operation on qubit ‘2’ (red) in the graph S1 t ( ) result in themodified graph S2 1 t t¢ = ◦ ( ),
in which the link (a, b) is present. The new links created by this operation are denote by red continuous lines. Note that four of the blue
links created in the previous step alongwith four links from the original graph are deleted by this operation.
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Let usfirst consider themeasurement operation k0 0, = { }( ) with l=0 for theN-qubit graph state,
where the formof l k,( ) is defined in equation (5) (see section 2.1). Unless otherwise stated, we keep the value of
lfixed at l=0 here and throughout the rest of the paper. To keep notation simple, we discard the subscript l
fromnowon, and denote themeasurement operation by k0 º { }. Here, k r ki ri

 = ÎW⨂ , with

k 0, 1ri
Î { }. Denoting the graph state as , , r = W W ñá W W∣ ( ) ( )∣, implying that , W W ñ∣ ( ) consists of the

qubits in W andΩ, the effect of operating kri
 on r for a specific ri Î W is given by [52]

Tr
1

2
35r

k
r k k

k
r

k
i

ri
i ri ri

ri
i

ri    r r r= =- -( ) ( )( ) ( )

with

Z . 36k

j
j
k

ri

ri

ri


=
Î
⨂ ( )

Here, ri
 represents the neighbourhood of the qubit ri, and r r, ,r i ii

 r = W - W ñá W - W- ∣ ( ) ( )∣( )
corresponds to the graph r ,i W - W( ), obtained from , W W( ) by deleting the qubit ri and all the links that are
connected to it. Performing localZ-measurement over all qubits in W, the normalized post-measurement state

k
r corresponding to themeasurement outcome k can bewritten as k k

k
k   r r= Ä

W
( ) , where

 r = W ñá W
W

∣ ( ) ( )∣ is the graph state corresponding to the subgraph W, and the corresponding probability is
p 2k m= - , which is independent of k. The correction is a local operator that can be factorized in a part acting on
Ω and a part acting on the rest of the qubits, i.e., k k k  = ÄW W. Here, kW is the outcome-dependent

correction applied to the qubits inΩ due to the localZmeasurements over the qubits in W (see equation (22)).
Therefore, tracing out the qubits in W, the post-measurement state onΩ corresponding to outcome k is

. 37k k k  r r= W WW W
( )

Similar to equations (21) and (22), kW only depends on the links in g .

In the case of GD states, theN-qubit post-measurement state, k
k kGD GD r r= , corresponding to a

specific outcome k, can bewritten as

p . 38k
k kGD    år = ñá

n
n

n n∣ ∣ ( )

Using equation (35) in (38), one obtains the normalized post-measurement state corresponding to the
outcome k as

p Z Z , 39k k
k

k
GD

0  år r= Ä
n

n n nW
( ) ( )

where 0
r W

is given by 0   r r= = W ñá W
W W

∣ ( ) ( )∣.Without loss of generality, wewrite Zn as Z ZÄn nW W, where

the indices nW ( 0, 1, 2, , 2 1N mn = -W
- ) and nW ( 0, 1, 2, , 2 1mn = -W  ) are such that

Z Z Z Z, , 40
i

i
r

r

i

j

j

rj

= =n
n

n
n

ÎW ÎW
W

W
W

W⨂ ⨂ ( )

with , 0, 1i rjn n ÎW W { }. Tracing out the qubits in W, the post-measurement state k
GD,r W corresponding to the

regionΩ can bewritten as

, 41k k k
GD, GD,

0 r r=W W W W ( )

with

p Z Z p, 42GD,
0 0  

å år r= = W ñá W
n

n n n
n

n
n n

W
W

W W W W
W

W
W W˜ ˜ ∣ ( ) ( )∣

( )

being the post-measurement state corresponding to k=0 (i.e., Ik =W W), where p p ,d= ån n n n n¢ ¢
W W W

˜ . Note here

that themeasurement outcome is reflected only through the correction kW. Therefore, the post-measurement
states k

GD,r W corresponding to differentmeasurement outcomes k 0¹ are connected to GD,
0r W by local unitary

operators of the form kW. Next, we determine the formofU UGD
1rg g

- , given by

U U p Z U U Z . 43GD
1 0 1

år r=g g
n

n n g g n
- - ( )

Since by the definition ofUγ,U U0 1 0 0
  r r r= Äg g

-
W W

, U UTrGD, GD
1r r= g gW W

-( ) leads to

p Z Z , 44GD,
0

GD,
0

år r r= =
n

n n nW W
W

W W W W
˜ ( )

with the definitions of nW as given above.
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Wenow consider the hierarchy of bounds given in (30), and observe that E E0
GD GD,

0r r=W W( ) ( ) due to
equation (41) and the local unitary invariance of entanglementmeasures. Also, from equation (44),
E EGD, GD,

0r r=W W( ) ( ). Combining these observations, the relation in (30) ismodified as

E E E E E 45GD GD
0

GD GD, GD
   r r r r w=W W W W W( ) ( ) ( ) ( ) ( ) ( )

forGD states, where TrGD GDw r= W( ).

3.3.1.Witness-based lower bound for regions of size two
Wenow focus on theWLB in the case of GD states where the regionΩ of interest has size two. For concreteness,
we choose logarithmic negativity [95–97] as themeasure of bipartite entanglement. For bipartite quantum states
ñAB of two partiesA andB, logarithmic negativity is defined as

L Nlog 1 , 46g AB g AB2 = +( ) ( ( ) ) ( )

where Ng AB( ) is the negativity of ñAB, based on the Peres–Horodecki separability criterion [98, 99], given by

N 1. 47g AB
T

1
A= -  ( )

Here, AB
TA is the partial transposition of the state ñABwith respect toA performed in the computational basis,

and Tr1  =  † is the trace-normof ñ. The negativity of the state ñAB can then be computed as

N 2 , 48g i
0i

å l=
l <

∣ ∣ ( )

where {λi} are the eigenvalues of AB
TA . In the case of witness operators gW given by equation (17), the lower

bound E wW ( ) ofNg, corresponding to a regionΩ of two or three qubits, is given by (see appendix A)

E
2 , for 0,

0, for 0.
49

w w w
w

=
- <

W
⎧⎨⎩( ) ( )

Wedemonstrate the following results for negativity, which can be straightforwardly extended in the case of
logarithmic negativity.

Using the formof ρGD,Ω in equation (44) and thewitness operator
gW in equation (17), one can determine

pTr g
GD GD,

1

2 0w r= = -W W( ) ˜ , implying E p2 1GD 0
 w = -W ( ) ˜ when p0

1

2
>˜ (i.e.,ωGD<0), and

E 0GD
 w =W ( ) for p0

1

2
˜ (i.e.,ωGD�0).

Considering now the two qubits inΩ to be the two partiesA andB, T
GD,

Ar W is also diagonal in the graph state

basis, similar to GD,r W, with the eigenvalues of
T
GD,

Ar W given by

p p p p1 2 , 1 2 , 1 2 , 1 2 . 500 3 1 2 2 1 3 0l l l l= - = - = - = -˜ ˜ ˜ ˜ ( )

If pi
1

2
˜ ∀i 0, 1, 2, 3Î { },λi�0, implying N 0g GD,r =W( ) . On the other hand, if any of theweights pi{ ˜}, say

p pmaxj i=˜ { ˜} is 1

2
> , then pi j

1

2
<¹˜ . If j=0, thenλ3<0, implying N p2 1g GD, 0r = -W( ) ˜ .

Therefore, N Eg GD, GD
r w=W W( ) ( ) if p pmax i0 =˜ { ˜}, i 0, 1, 2, 3= , implying that in case of negativity as the

entanglementmeasure, and forΩhaving size two, equation (45) forGD states becomes

E E E E E . 51GD GD
0

GD GD, GD
  r r r r w= =W W W W W( ) ( ) ( ) ( ) ( ) ( )

The corresponding logarithmic negativity of ρGD,Ω is given by L plog 2g GD, 2 0r =W( ) ( ˜ ), following equation (46).
In section 4, we consider local, spatially uncorrelated Pauli noise, giving rise toGD states inwhich p0

1

2
>˜ is a

commonoccurrence.
As a final comment, in a regionΩ constituted of two qubits, the bipartite and the genuinemultipartite

entanglements coincide, but this is not the case ifΩ containsmore than two qubits.We shall demonstrate that
the use of a bipartite entanglementmeasure for a region of two qubits results in a tighterWLBwhere EW
matches with E 0 r¢W( ), while such property is absent whenΩ is bigger (see figures 3(a), (b) and the subsequent
discussions). The procedure of obtaining aWLB for localizable entanglement over a regionΩ having size bigger
than two qubits remains the same as described in sections 3.1–3.3 and appendix A, the only difference being in
the functional formof E wW ( ) (equation (49)), which depends explicitly on the chosen entanglementmeasure.
For demonstration, in this paper, we have chosen logarithmic negativity as themeasure of bipartite
entanglement between the two qubits inΩ due to the computability of themeasure. Themain challenge in
obtaining a properWLB for a regionΩ of size larger than two qubits remains in the scarcity of computable
genuinemultipartitemeasure of entanglement formixedmultiparty states. However, given such a computable
multiparty entanglementmeasure exists,WLB corresponding to thatmeasure for a region larger than two qubits
can be computed by determining E wW ( ).

11

New J. Phys. 20 (2018) 063017 DAmaro et al



4. Performance of the lower bounds

In this section, we discuss the performance of theMLB and theWLBdiscussed in section 3. For concreteness, to
this endwe consider graph states  under local uncorrelated Pauli noise and local amplitude-damping (AD)
noise [82], and discuss how theMLB and theWLB can be computed over a connected regionΩ in theN-qubit
system.We employ theKraus operator representation [64, 65, 82, 100], where the evolution of the graph state r
under noise is given by  r r r = L( ), andwhere the operationΛ(.) can be expressed by an operator-sum
decomposition [82, 100] given by

K K q J J . 52
0

4 1

0

4 1N N

  å år r r r= L = =
a

a a
a

a a a
=

-

=

-

( ) ( )† †

Here, K q J=a a a{ }are the Kraus operators satisfying the completeness condition K K Iå =a a a
† ,

with I being the identity operator in theHilbert space of the system. ThemapΛ(.) in equation (52) is a
completely positive trace-preserving (CPTP)map, and q is the driving parameter of the noisemodel,
which introduces the notion of time, t, depending on the type of the physical process throughwhich the
system evolves.

For uncorrelated Pauli noise, the individual Kraus operators,Kα can bewritten as the product of identity, I,
and the three Pauli operators,X,Y, andZ acting on the individual qubits. The operators {Jα} in equation (52)
nowhave the form

J , 53
i

N

1
is=a a

=
⨂ ( )

and

q q , 54
i

N

1
i=a a

=

( )

with 0, 1, 2, 3ia Î { }, q 10
3

i i
å =a a= , andσ0=Ii,σ1=Xi,σ2=Yi, andσ3=Zi. Note here that the indexα

on the left hand side can be interpreted as themulti-index N1 2a a a aº  , whereα is represented in base 4 by
the string N1 2a a a . Examples of Pauli noise include bit-flip (BF), bit-phase-flip (BPF), phase-flip (PF), and
depolarizing (DP) channels, with the corresponding values of the probability q

ia given for completeness as
follows:

q
q

q
q

q qBF: 1
2

,
2

, 0, 0; 550 1 2 3= - = = = ( )

q
q

q q
q

qBPF: 1
2

, 0,
2

, 0; 560 1 2 3= - = = = ( )

Figure 3. Localizable entanglement over regions of different size against noise parameter for linear graphs. (a)Variations ofE13(ρ),
E13
 r( ), E13

0 r¢( ) and E13
 w( ) as functions of the noise parameter q for the regionΩ≡{1, 3} in the linear graph ,L L L  = { }

composed of four qubits, where 1, 2, 3, 4L = { }, and 1, 2 , 2, 3 , 3, 4L = {( ) ( ) ( )}.We consider bit-flip noise applied to all the
qubits. (b)Variations of E1 23 r( )∣ , E1 23

 r( )∣ , E1 23
0 r( )∣ and E1 23

 w( )∣ as functions of q for the regionΩ≡{1, 2, 3}with the bipartition
1 23∣ in the linear graph L under BF noise. (c)Variations of E13(ρ), E13

 r( ), E13
0 r¢( ) and E13

 w( ) as functions of q for the region
Ω≡{1, 3} in the linear graph L under amplitude-damping noise.
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q
q

q q q
q

PF: 1
2

, 0, 0,
2

; 570 1 2 3= - = = = ( )

q
q

q
q

q
q

q
q

DP: 1
3

4
,

4
,

4
,

4
. 580 1 2 3= - = = = ( )

All of these channels induce a complete decoherence on the input quantum state at probability q=1, without
any energy exchangewith environments, thereby representing non-dissipative noisy channels. Note here that an
operation

i
sa ,αi=1, 2, on the qubit i of a pure graph state is equivalent to a PauliZ operator on the qubit i and

its neighbourhood, as shown in the following equations:

Z Z Z, . 59
j

j i
j

j1 2i

i

i

i 

s s« « Äa a=
Î

=
Î

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥⨂ ⨂ ( )

This implies that a graph state under local uncorrelated Pauli noise is a graph-diagonal state [64, 65]. Hence the
discussions in section 3.3 apply.

On the other hand, in the case of local ADnoise, the single-qubit Kraus operators are given by

K
q

K
q1 0

0 1
,

0

0 0
, 600 1= - =

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )

withK2 andK3 being null operators. Note that although the single-qubit Kraus operators in the case of AD
channel can be expanded in terms of Pauli operators, the resulting state ρ due to the application of ADnoise to all
the qubits in a graph state is not aGD state.

Wenow illustrate the behaviour of the different quantities in equation (30) for the specific example of a linear
graph ,L L L  = { }of sizeN=4,where 1, 2, 3, 4L = { }, and 1, 2 , 2, 3 , 3, 4L = {( ) ( ) ( )}.We consider two
specific cases—onewith a regionΩof size 2, constituted of qubits 1 and3 that are not connected by a direct link (see
figure 3(a)), and the otherwith a connected regionΩof three qubits, constituted of the qubits 1, 2, and 3. In thefirst
case, onemay consider a LCoperationon the qubit 2 to create the link (1, 3), so thatΩbecomes connected in the
newgraph L2 t¢ = ( ).WedetermineE13(ρ), E13

 r( ), E13
0 r¢( ), and E wW ( ) as per the discussions in section 3,when

BFnoise is applied to all the qubits.Note here that the transformationτ2(.) corresponds to the local unitary
operationU Z X Zexp i 4 exp i 4 exp i 4L 1 2 3p p p= -( ) ( ) ( ) on L ñ∣ (see section2.2). Therefore, computing E13

0 r¢( )
for the stateρ′ is equivalent to computing E l

13
6 r= ( ) for the stateρbyperformingYmeasurement on the qubit 2

andZ-measurement on thequbit 4. Recall that the value l=6 is the decimal representationof themulti-index l lr r1 2

in base 3 (l 2r1
= for r1≡2, implyingYmeasurement, and l 0r2

= for r 42 º , implyingZ-measurement), following
the notation formeasurement bases as introduced in section 2.1.Note also that this differs from the index
convention for designatingPauli operators used in this section. Infigure 3(a), wehaveplotted the variations of
E13(ρ), E13

 r( ), E13
0 r¢( ), and E w( ) as functions of q.Weobserve that irrespective of the structure of the graph, the

LEover two and three-qubit regions in graph states under local uncorrelated Pauli noise is always optimizedby local
Paulimeasurements, implying E E r r=W W( ) ( ). Also, in accordancewith the results obtained in section 3.3,wefind
that E E13

0 r w¢ =( ) ( ) for all values of q.Wepoint out here that the quantity E l
13

3 r= ( ), corresponding to anX
measurement onqubit 2 (l 1r1

= ) and aZ-measurement onqubit 4(l 0r2
= ), is equal toE13(ρ), as l=3provides the

optimalmeasurement basis in the noiseless case. This is understandable from the fact that themeasurement over
qubit 2 commuteswith theBFnoise applied to it, therebyneutralizing the effect of thenoise. Thiswill be discussed in
more detail in section 4.1.

On the other hand, in the second example, the region of interestΩ≡{1, 2, 3} is already connected. Sincewe
consider a bipartitemeasure, namely, logarithmic negativity as themeasure of entanglement, we focus on the
bipartition 1 23∣ of the regionΩ. However, the results to be reported remain unchanged in the case of other two
bipartitions, 2 13∣ and 12 3∣ also. The variations of E1 23 r( )∣ , E1 23

 r( )∣ , E1 23
0 r( )∣ , and E1 23

 w( )∣ against the noise
parameter q are depicted infigure 3(b). Note here that in contrast to the former example, here
E E1 23

0 r w>( ) ( )∣ for all values of q except at q=0, therefore ensuring the validity of the results obtained in
section 3.3. Lastly, we consider the local ADnoise as an example of non-Pauli noise, and determine the
variations of E13(ρ), E13

 r( ), E13
0 r¢( ), and E wW ( ) as functions of q. The results are depicted infigure 3(c). The

reconstruction of the graph and the corresponding change in themeasurement directions are as the same as in
figure 3(a).

4.1.Measurement-based lower boundunder Pauli noise for arbitrary graphs
From the results presented infigure 3(b), it is clear that there exists situations inwhich E 0

Wmay provide a tighter
lower bound than E w( ). However, in the case of noisy graph states of large size, the computation of the
quantity E 0

W as a lower bound of EWmay turn out to be difficult. In this subsection, we shall describe how E 0
W, in

the case of uncorrelated local Pauli noise and a specific connected regionΩ, can be computed as a function of the
noise parameter, q, by using only the knowledge of the connectivity of the underlying graph. For the purpose of
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demonstration, we consider a region consisting of two qubits a and b only, so thatΩ≡{a, b}. However, the
methodology discussed here can be applied to regions of any size in arbitrary graphs.

Let us consider the general situationwhere a and b are not connected in  . In such a case, onemay obtain a
graph ¢with the link (a, b) by the prescriptions discussed in section 3.2. Application of equation (31) in (52)
leads to

q J J U U , 61L L
0

4 1
1

N

år r r= = ¢
a

a a a
=

-
- ( )†

where

q J J , 62
0

4 1N

år r¢ = ¢ ¢
a

a a a
=

-

¢ ( )

with J U J UL L
1¢ =a a

- , and  r = ¢ñá ¢¢ ∣ ∣. The property of theClifford operators (equation (32)) implies that the

operators J J¢ =a a¢ in equation (62), where Ja¢ is now given by

J 63
i

N

1
i

s=a a¢
=

¢⨂ ( )

with 0, 1, 2, 3ia¢ = , and U Ui i
1

i i
s s=a a¢

- , where the indexα′ can be interpreted as themulti-index

N1 2a a a a¢ º ¢ ¢ ¢ , in the sameway asα. Note that ρ′ is also aGD state.
For reasons thatwill become clear in the subsequent discussion, wewrite themodified operators, Ja¢{ }, and

the probabilities qα in equation (62) as

J J q q q, , 64
r

ab

i

ri ab
s= Ä =a a a a a¢ ¢

ÎW
¢ W

⎡
⎣⎢

⎤
⎦⎥⨂ ( )

where J
ab a b

s s= Äa a a¢ ¢ ¢ , q q q
ab a b
=a a a , and

q q . 65
ri

ri
= aW
ÎW

( )

Here, , , 0, 1, 2, 3r a bi
a a a Î { }, and q 10

3
i i

å =a a= . The indexα′,αab, and aba¢ can be interpreted as the

multi-indices a b r rN1 2
a a a a a¢ º ¢ ¢ ¢ ¢

-
 , ab a ba a aº , and ab a ba a a¢ º ¢ ¢ , in the sameway asα in equation (53). Let

us now consider themeasurement operation 0 , as a result of which theN-qubit post-measurement state,
k

k k r r¢ = ¢ , corresponding to a specific outcome k, can bewritten as

q J J , 66k
k k år r¢ =

a
a a a¢ ¢ ¢ ¢ ¢ ( )

with k r ki ri
 =¢ ÎW ¢⨂ , k 0, 1ri

¢ Î { }, where
. 67k kri ri

ri ri
 s s= a a¢ ¢ ¢ ( )

The interpretation of the index k′ in terms of the indices kri
{ }corresponding to the outcomes of the

measurements on the individual qubits is similar to the other indices, such asα,α′, l, and k. Note that the
transformation in equation (67) does not change the basis of themeasurement, but changes its outcome.

We proceed along the same line as in section 3.3, andwrite the graph state as
a b a b, , , , r = ¢ W ñá ¢ W¢ ∣ ( ) ( )∣. Use of equation (35) in (66) over qubits in W, and then tracing out W lead to

the two-qubit post-measurement state corresponding to qubits a and b, given by

q q J J , 68ab
k

ab ab ab abår r¢ =
a

a a
b

aW ¢ ¢[ ] ( )

where ab abab ab
  r r=b b b and ab abab

 r = ñá∣ ∣ is the two-qubit graph state. Here, the set Z Zab a b
a b = Äb b b{ } is

constituted of all possible outcome-dependent corrections on
ab

r due to different values of k′, whereβa,

βbä {0,1}, Z Ia b a b,
0

,= , Z Za b a b,
1

,= , and a bb b bº is amulti-index given by the decimal representation of the
binary stringβaβb.

Note here that J
aba¢ and q

aba are independent of themeasurement outcome, and depend respectively on the
local unitary operatorUL (equation (62)), and the probability corresponding to theKraus operators acting on the
qubit pair (a, b) only. Therefore, for a specific graph  , further simplification of the formof the state ab

kr¢ is

possible by grouping the termswith identical
ab

rb (i.e.,
ab

rb with the same value ofβ) together. Let us introduce
the noise local to the qubit pair (a, b) asΛab, where
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q J J . 69ab
ab

ab

ab ab ab ab år rL =b

a
a a

b
a¢ ¢( ) ( )

Using this notation, equation (68), for a specific graph  , can bewritten as

q , 70ab
k

ab ab ababår r r¢ = L = L
b

b b
W ( ) ( ˜ ) ( )

where

q 71ab abår r=
b

b b
W˜ ( )

and for afixed value ofβ=β′, q b
W
¢ is the sumof the probabilities qW corresponding to all the values ofα, where

β=β′. Note that ab
k

abr r¢ = ˜ iff 0a ba a¢ = ¢ = , implying 0a ba a= = , i.e., qubits a and b are free fromnoise. If
local uncorrelated Pauli noise is present on qubits a and b, then the entanglement of the qubit pair (a, b) decays,
implying E Eab

k
abr r¢( ) ( ˜ ),E being any entanglementmeasure.We further note that equation (35) suggests that

the corrections over the qubit pair (a, b) are fully determined by the neighbourhood of the qubit pair, denoted by

ab a b  È= , where a b ( ) is the neighbourhood of qubit a (b). Therefore, the probability corresponding
to theKraus operator acting on qubit ri abÏ does not affect the post-measurement state. Since the separability
of Paulimaps indicates that q 1å =a W¢

W¢
for any W¢ Ì W, where aW¢ is themulti-index involving the indices

ri
a{ } such that ri Î W¢, q b

W can be expressed as

q q . 72

ab

å=b

a
bW W

W
WÎ

( )∣

4.1.1.MLB as a function of noise strength and system size
The dependence of q b

W on the noise strength and the system size can be explicitly determined by considering a

general formof the neighbourhood ab in an arbitrary graph ¢, where the qubits a and b are connected. Let us
consider, for example, the neighbourhood ab in the graph S2 1 t t◦ ( ) (figure 2(b)). Infigure 4(a), we present

ab corresponding to S2 1 t t◦ ( ), where the black qubits are the qubits of interest, and ab is constituted of the
gray qubits. The broken links indicate the connectivity of the neighbourhood qubits that are irrelevant in the
context of the corrections applied to the qubit pair (a, b) due to local Paulimeasurements over the qubits in ab .
On the other hand, the continuous links are the links that connect a qubit in ab with either a, or b, or both,
which represent the three types of qubits constituting ab . Evidently, the corrections on (a, b) according to
equation (35) are determined by the connectivity of the qubits in ab represented by the continuous links. These
features remain unaltered even in the case of a pair of connected qubits in an arbitrary graph.

Infigure 4(b), we present themost general formof an isolated neighbourhood ab of a connected qubit pair
(a, b) in an arbitrary ¢. The qubits in ab are categorized into three classes according to their connectivity.Class

Figure 4.General structure of the neighbourhood of a connected two-qubit region in an arbitrary graph. (a)The neighbourhood ab
of the connected qubits a and b in the graph S2 1 t t¢ = ◦ ( ) shown in figure 2(b). The links that are connected directly to either of
the qubits a or b are depicted by continuous lines, while the links {(i, j)}with i j, abÎ are represented by broken lines. (b)General
structure of ab in an arbitrary graph, where the red qubits are the connected qubits of interest, labelled by a and b. The
neighbourhood ab is constituted of three types of qubits : (1) the qubits that are connected to both a and b (the set ab̃ , denoted by
yellow nodes), (2) the qubits that are connected to only a (the set a̃ , denoted by blue nodes), and (3) those connected to only b (the
set b̃ , denoted by green nodes).
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1 consists of the qubits in ab , denoted by a̃ and represented by the blue nodes, that are connected to only
qubit a. The qubits in ab that are denoted by b̃ and are connected to only qubit b, form theClass 2, and are
shownby the green nodes. The rest of the qubits in ab , denoted by ab̃ andmarked by the yellownodes, that
are connected to both of the qubits a and b is denoted byClass 3. Clearly, ab a b ab   È È= ˜ ˜ ˜ ,

a a ab  È= ˜ ˜ , and b b ab  È= ˜ ˜ . From equation (67), one can also categorize the noise on each qubit in
ab into two categories. In the first category denoted byType 1, k kr ri i

¢ ¹ with afinite probability when the

transformation in equation (67) is carried out (BF andDP channel for example), while kri
¢ always equals to kri

when the noise is ofType 2 (for example, PF noise).We denote the set of qubits in ab experiencingType 1 (Type
2)noise by ab

1 ( ab
2 ), where ab ab ab

1 2  È= , and ab ab
1 2 Ç = Æ. Similar notations are adopted for

qubits in a̃ , b̃ and ab̃ also.
Let usfirst determine the formof ab

kr¢ when only the set ab
1 is populated, and ab

2 = Æ. Non-zero

contribution in q b
W is provided by the qubits in ab

1 due to the probabilistic change of the outcome from kri
to

kri
¢ , alongwith the application of appropriate corrections ab

b on
ab

r .Without loss of generality, let us denote the

number of qubits in a
1

̃ , b
1

̃ , and ab
1

̃ by na, nb, and nab, respectively. Let us also assume that corresponding to

a specific outcome k in equation (66), n0a of the outcomes k r;r i a
1

i
Î W Î{ ˜ } are 0, while na1 are 1, such that

n n na a a
0 1= + . Similar definitions apply for nb

0,1 and nab
0,1. Interpreting q b

W as the probability that the correction

ab
b is applied to

ab
r , its explicit form can be determined as (see appendix B for a detailed derivation)

q P P P P P P q P P P P P P

q P P P P P P q P P P P P P

, ,

, , 73

a ab b a ab b a ab b a ab b

a ab b a ab b a ab b a ab b

0 1

2 3

= + = +

= + = +
W

- - - + + +
W

- - + + + -

W
+ - - - + +

W
- + - + - + ( )

with

P q

P q

P q

1

2
1 1 1 ,

1

2
1 1 1 ,

1

2
1 1 1 , 74

a
n n

b
n n

ab
n n

a a

b b

ab ab

1

1

1

=  - -

=  - -

=  - -







[ ( ) ( ) ]

[ ( ) ( ) ]

[ ( ) ( ) ] ( )

wherewe have assumed the noise to be of BF, BPF, orDP type. Therefore, ab
kr¢ (equation (70)), in its explicit

form, can be determined as a function of the size of ab
1 and q by using equations (73), (74) as ab

k
ab abr r¢ = L ( ˜ )

with

q q q q , 75ab ab ab ab ab ab ab ab ab
0 0 0 1 1 1 2 2 2 3 3 3

ab ab ab ab
          r r r r r= + + +W W W W˜ ( )

where the formofΛab is given in equation (69). In the general scenario where ab
2 ¹ Æ, its only contribution to

ab
kr¢ is an extra correction belonging to the set ab

b{ }according to the connectivity of the qubits in ab . However,

ab
b being a local unitary operator, the entanglement properties of ab

kr¢ remain unchanged, and equation (74)
represents the effective formof ab

kr¢ as far as entanglement is concerned. Therefore, the dependence of the

entanglement of ab
kr¢ on the noise strength and the size of the system is solely determined by the qubits in ab

1 .
Note here that the two-qubit post-measurement states corresponding to different values of k are connected by
local unitary operators (see section 3.3), implying that it is sufficient to consider ab

0r¢ , or any other value of k,

since E E Eab ab
k

ab
0 0r r r¢ = ¢ = ¢( ) ( ) ( ) (see equation(45)).

To investigate the features of theMBL as a function of the noise strength and the system size, we choose
logarithmic negativity as themeasure of bipartite entanglement, E. From the expression of ab

kr¢ (equation (75)),
it is clear that L Lg ab

k
g abr r¢( ) ( ˜ ) (see equations (70), (71) and subsequent discussions). For the purpose of

demonstration, we consider the scenario where noise is absent on qubits a and b, i.e., ab
k

abr r¢ = ˜ . One can
compute the logarithmic negativity of the state abr̃ from equation (46). The negativity of the state abr̃ , for afixed

value of q is given by equation (48), where {λi; i=0, 1, 2, 3} are the eigenvalues of ab
Tar̃ . These eigenvalues can be

explicitly computed in a similar fashion as in equation (50) by identifying pĩ to be equivalent to q b
W , where both i,

β=0, 1, 2, 3. As functions of q, na, nb, and nab, {λi} are given by

q q q q q q

q q q q q q

1

4
1 ,

1

4
1 ,

1

4
1 ,

1

4
1 , 76

n n n n n n n n n n n n

n n n n n n n n n n n n

0 1

2 3

a ab a b ab b a ab a b ab b

a ab a b ab b a ab a b ab b

l l

l l

= + - + = + + -

= - + + = - - -

+ + + + + +

+ + + + + +

[ ˜ ˜ ˜ ] [ ˜ ˜ ˜ ]

[ ˜ ˜ ˜ ] [ ˜ ˜ ˜ ] ( )

where q q 1+ =˜ . For the purpose of illustration, let us now consider the situationwhere n n n na ab b= = = .
In this case, the eigenvalues of ab

Tar̃ are q1 n
0 1 2

1

4
2l l l= = = +[ ˜ ], and q1 3 n

3
1

4
2l = -[ ˜ ], of which the
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negative eigenvalue isλ3 in the range q0 1 1

3

n
1

2 < - ( ) . In this range, E0ab as a function of q and n can be

expressed as

E qlog 3 1 1 1. 77ab
n0

2
2= - + -[ ( ) ] ( )

For a specific value of n,E0ab goes to zero at a critical value

q 1
1

3
. 78c

n
1

2

= - ⎜ ⎟⎛
⎝

⎞
⎠ ( )

For q>qc,λ3 becomes positive, and the logarithmic negativity vanishes.
Infigure 5(a), we plot the variation of E0ab as a function of the noise strength qwith n=1, for different types

of noise present on the qubit pair (a, b).We conveniently denote the different types of noise on (a, b) by the
multi-index ab a ba a a¢ º ¢ ¢ , where, for example, 11a ba a¢ ¢ = implies bit-flip noise applied to both qubits a and b.
Wefind that the variation ofE0abwith q in the case of 01, 02, 03, 10, 20, 30a ba a¢ ¢ ={ }are quantitatively
identical. Similar behaviour is observed in the case of 11, 12, 21, 23, 32, 33a ba a¢ ¢ ={ }and

13, 22, 31a ba a¢ ¢ ={ }.With an increase in the value of n, the value ofEab
0 for a fixed value of q decreases, and the

effect of the noise on the regionΩ≡{a, b} becomes less prominent. This is clearly shown by the coincidence of
the variations ofE0ab against q, when the neighbourhood size is increased to n=10 (see figure 5(b)). The
variation ofE0abwith q remains qualitatively unchanged if one considers different relations between na, nab, and
nb instead of na=nab=nb=n. However, identical dynamics is now shown by groups of noise channels,
denoted by specific values of a ba a¢ ¢ , which are different from that in the former case. Infigure 5(b), we plot the
variation of qc as a function of increasing n for different types of noise on the qubits a and b, where the data for

00a ba a¢ ¢ = corresponds to equation (78), and the data corresponding to the rest of the noisemodels are
obtained numerically, by considering E 0ab

0 = for values below a numerical cut-off, concretely, if E 10ab
0 6< - .

The qualitative behaviour of qc against the system size is found to remain invariant for different relations
between na, nab, and nb instead of n n n na ab b= = = .

In the regime of lownoise strengths, q 0 , upon expanding the logarithm and keeping terms up to second
order in q, equation (77) leads to

E
nq n n q

n n n1
3

2 ln 2

3 2

8 ln 2
, , 79ab

0
2

0 1 2  » - +
-

= + +
( )

( ) ( ) ( ) ( )

nk ( ) being the term involving n in order k. The variation ofE0ab as a function of n forfixed values of q is depicted
infigure 6, when the noise strength is small. To determine the leading order of n that describes E0ab for small
values of q, we plot, infigure 6, E n nab

0
0 1 » +( ) ( ) (up tofirst order in n, shown by broken line) and

E n n nab
0

0 1 2  » + +( ) ( ) ( ) (up to second order in n, shownby continuous line) as functions of n. It is clear
fromfigure 6 that for afixed small value of q, E n nab

0
0 1 » +( ) ( )matches the actual variation ofE0ab

satisfactorily when n is very small (∼10).When n increases, the second order term in n starts to become
prominent, and E n n nab

0
0 1 2  » + +( ) ( ) ( ) describes entanglement satisfactorily.

Wewould like to point out here that the prescription for computing the post-measurement densitymatrix to
obtain a form equivalent to equation (75) remains unchanged for a regionΩhaving size larger than two qubits
also. Themajor step in this calculation is the determination of themixing probabilities according to the general
structure of the neighbourhood ofΩ in a graphwhereΩ is connected, which can be achieved following

Figure 5.Measurement-based lower bounds against noise strength forfixed neighbourhood size. (a)Variation ofE0ab as a function of q
for na=nab=nb=nwith n=1, when 00a ba a¢ ¢ = (nonoise on qubits a and b, equation (77)), 01a ba a¢ ¢ = (no noise on qubit a
andBF noise on qubit b), 11a ba a¢ ¢ = (BFnoise on both qubits a and b), and 13a ba a¢ ¢ = (BFnoise on qubit a and PF noise on qubit b).
(b)Variation ofE0ab as a function of q for na=nab=nb=nwith n=10, when 00a ba a¢ ¢ = , 01a ba a¢ ¢ = , 11a ba a¢ ¢ = , and

13a ba a¢ ¢ = . (c)Variation of qc as a function of n in the case of 00a ba a¢ ¢ = (equation (78)), 01, 11, and 13.
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procedure similar to that described in this section and the appendix B. Asmentioned earlier in section 3.3, the
main difficulty of estimating localizablemultipartite entanglement over a region larger than two qubits in the
presence of noise is the lack of computablemeasures of genuinemultipartite entanglement formixed states. In
this paper, we have considered a computable bipartitemeasure of entanglement, namely, logarithmic negativity,
which is equivalent to the genuinemultiparty entanglement whenΩ is constituted of two qubits only.However,
given a computablemultiparty entanglementmeasure formixed states, theMLB to the localizablemultipartite
entanglement over a chosen regionΩ constituted of any number of qubits can, in principle, be computed by
following a procedure same as in the case of a two-qubit region.

4.1.2. Linear graph
Weconclude the discussion on theMLBwith the example of a linear graph L , inwhichwe intend to determine
theMLBover two qubits a and b, where the total number of qubits along the path connecting a and b is n. Note
here that the qubit pair (a, b) can either be (i) the boundary qubits, so that in L , both a and b have size 1, or
they can be (ii) bulk qubits (as infigures 7(a) and (b)), where both a and b have size 2. For the purpose of
demonstration, we consider the scenario where a and b are bulk qubits, n 3  , and PFnoise is applied to each
of the qubits in L . The transformation L  ¢, where {a, b} are connected in ¢, is constituted of successive
LC operations on the qubits in , starting from the qubit nearest to a and ending at the qubit nearest to bwithout
skipping any qubit in themiddle, so that

. 80n n L1 2 1  t t t t¢ = - ◦ ◦ ◦ ◦ ( ) ( )

The structure of ¢ is shown for n 5 = (n 6 = ) infigures 7(a) and (b). The equation (80) can equivalently be
represented as UL L ¢ñ = ñ∣ ∣ , with

U U V U , 81L a
i

i b


= Ä Ä
Î

⎛
⎝⎜

⎞
⎠⎟⨂ ( )

where

U u U u V u u V u u

V u u u j n

, , , ,

; 2 1 , 82

a a
z n

b b
z z n x

n n
x

n
z

j j
z n j

j
x

j
z

1 1
1

1



 
  

  
= = = =

= -

-

-

( ) ( )
( ) ( ) ( )

with ui
x and ui

z defined in section 2.2. Note here that in the case of n 1 = ,U ua a
z= ,U ub b

z= ,V u x
1 1= , while for

n 2 = ,U ua a
z 2= ( ) ,U ub b

z= ,V u uz x
1 1 1= , andV u ux z

2 2 2= . The transformation of the Pauli operators due to the
unitary operators U U V j n, , ; 1, ,a b j = { }are given in appendix C,which describes the change of the type of
noise on individual qubits according to equations (61) and (62). The post-LC operation structures of the graphs,
as demonstrated in the case of n 5, 6, = infigure 7, is such that for n odd, na=0, n n 1 2ab = +( ) , and
n n 1 2b = -( ) , while for n even, na=0 and n n n 2ab b = = . Therefore, E0ab as a function of q and n can
be computed by following themethodology discussed in section 4.1.Note here that the values of na, nb, and nab
in terms of n depend on the structure of the graph ¢ aswell as the noise on the qubits in ab in ¢. For
instance, in the case of the BF noise on all the qubits, irrespective of the value of n, na=nab=nb=1. The
invariance ofE0abwith n in the case of BF noise on all the qubits in L can be understood by noticing the fact that
the optimalmeasurement basis in the absence of noise corresponds toXmeasurements on qubits in , andZ

Figure 6.Measurement-based lower bound as a function of system size. The variations ofE0ab (equation (77)) as functions of n for
different small values of q, with na=nab=nb=n. The broken (continuous) lines correspond to the variations ofE0abwith nwhen
E n nab

0
0 1 = +( ) ( ) (E n n nab

0
0 1 2  = + +( ) ( ) ( )) (see equation (79)).

18

New J. Phys. 20 (2018) 063017 DAmaro et al



measurements on the rest of the qubits except a and b, and themeasurement on qubits in  commutes with the
noise.

5. Conclusions and outlook

In this paper, we have considered two different approaches of determining computable lower bounds of
localizable entanglement for large stabilizer states under noise. One of the approaches is based on local witnesses,
whose expectation values can be used to obtain a lower bound of the localizable entanglement. The other
approach restricts the allowed directions of the local projectionmeasurements over the qubits outside the
specific region of interest over which the localizable entanglement is to be computed. By establishing a relation
between the disentangling operation that reduces the full quantum state to the quantum state corresponding to
the specific regime, and localZmeasurements over qubits outside the region, we have been able to connect these
two seemingly different approaches, and have proposed a hierarchy of lower bounds of localizable
entanglement.

Using graph states for demonstration, we show that in the case of graph states exposed to noise, theMLB is
greater or equal to theWLB. The equality occurs in the case of graph diagonal states, when localizable
entanglement over a region constituted of two qubits is to be determined.We have demonstrated how the
hierarchy of lower bounds of localizable entanglement ismodified due to local unitary transformation, and
discussed the behaviour of the lower bounds under physical noisemodels, such as the local uncorrelated Pauli
noise.We have demonstrated that for two-qubit regions, in the case of graph states under local Pauli noise,
which form a subset of the complete set of graph-diagonal states, theWLB coincides with theMLB. But in the
case of three-qubit regions, theMLB is a tighter lower bound for localizable entanglement.We have also
proposed an analytical approach to determine theMLB for quantum states of arbitrary size under Pauli noise,
and discussed the behaviour of theMLBby performingZ-measurement over the qubits outside a two-qubit
region as a function of noise strength and system size. The results discussed in this paper are either valid for, or
can be translated tomore general stabilizer states due to their connectionwith graph states by local unitary
operation. TheWLBs of localizable entanglement proposed in this paper can be evaluated experimentally
without performing a full state tomography, and by considering only one local witness operator expectation

Figure 7. Schematic representation of local complementation operations on a linear graph under phase-flip noise. (a)On the left, a
linear graph L with two bulk qubits a and b, separated by n 5 = qubits, is shown. The noise on each qubit is of PF type (Z-type), and
is indicated by the labels. A series of LC operations on the qubits in , given by equation (80), takes L to ¢ (on the right), where the
link (a, b) exists. The operation also changes the noise on individual qubits according to equations (61), (62) and appendix C,which is
indicated by the different labels, where labelX andY indicate BF andBPF noise, respectively. (b)A similar transformation is described
for a linear graphwith n 6 = .
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value, whichmakes it a quantity feasible to be computed in experiments. Also, theMLBdiscussed in this paper
does not require a full optimizationwith all possible localmeasurement bases over the qubits outside the region,
but needs only localmeasurement in the computational basis, and can be determined by only knowing the
structure of the graph and the type of noise applied to the qubits. Therefore, we expect the quantities and
methods introduced in this work to be valuable for the investigation of localizable entanglement in experimental
medium- and large-scale noisy stabilizer states.
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AppendixA.Optimizing thewitness-based lower bound

As discussed in section 3.1, we need to determine theminimumvalue of negativity that is consistent with
experimentally determined expectation values {ω} of local witness operators. In our case, we only focus on the
witness operator gW, and the optimization problem aims tofind the solution of

N inf 1, subject to Tr , 0, Tr 1, A1g AB
T

AB
g

AB AB
min

1
A  r r w r r= - = =W ( ) ( ) ( ) ( )

where the optimization is done over all possible states ρAB. Here, we have considered a specific bipartition of the
regionΩ into the subpartsA andB, and E Ng

min min= is the quantity to be computed. Using the variational
characterization of trace-norm, and following the procedure described in [79], one arrives at

N E Dinf Tr 1, subject to Tr , 0, Tr 1, A2g AB
T

AB
g

AB AB
min A  w r r w r r= - = =W W( ) [ ( ) ] [ ] [ ] ( )

whereD is any operator such that D 1=¥  , and the right-hand-side of the inequality in equation (A2)
provides EW corresponding to negativity. ConsideringD to be of the form D f hIg TA= - +W( ) involving the
partial transpose of the local witness operator that has beenmeasured, where the coefficients f and h are such
that D 1=¥  , one arrives at a simple formof the lower bound, given by

E fw h Dmax 1 subject to 1. A3
f h,

 w = - + - =W ¥ ( ) ( ) ( )

Note that the form chosen forD allows one to avoid theminimization involved in (A2). Note also that any set of
values of f, h subject to D 1=¥  provides a value of the lower bound.

However, wewould like tofind the best possible value by performing the optimization in equation (A3). In
order to do so, we note that I1 2g T TA A r= -W W

( ) , and since TA
r W

is diagonal in the graph state basis, so isD. In
the case of a regionΩ of size two,A andB denotes the qubits constitutingΩ, and

Z Z Z Z Z Z Z Z
1

2
, A4T

0 0 1 1 2 2 3 3
A
    r r r r r= + + -
W W W W W

[ ] ( )

following the notation forGD states. In the case ofΩ constituted of three qubits, say, 1, 2, and 3, one can consider
three possible bipartitions ofΩ, which are equivalent under qubit permutations. For the bipartition 1 23∣ , one
obtains

Z Z Z Z Z Z Z Z
1

2
. A5T

0 0 3 3 4 4 7 7
A
    r r r r r= + + -
W W W W W

[ ] ( )

The singular values ofD are h h f, -{∣ ∣ ∣ ∣}and h h f h f, , 2- -{∣ ∣ ∣ ∣ ∣ ∣} for regions of size two and three,
respectively. Since D 1=¥  , themaximum singular value among themmust be 1, which implies

h h fmax , 1- ={∣ ∣ ∣ ∣} , because the third singular value is smaller or equal than the first or the second for any
pair h, f . This can be satisfiedwith four sets of solutions of f and h, given by (i) (h= 1, 0�f�2), (ii) (h=−1,
−2�f�0), (iii) (h=1+f,−2�f�0 ), and (iv) (h=−1−f, 0�f�2 ). Asmentioned earlier, although
any of the four pairs of values of f and h provides a valid lower bound for Ng

min , we choose the best of them. In the
case whenω<0, the optimal pair is (h= 1, f= 2), from (i), and forω�0, the optimal values are (h= 1 and
f= 0) from (i) and (iii), which leads to
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E
2 , for 0,

0, for 0.
A6

w w w
w

=
- <

W
⎧⎨⎩( ) ( )

The lower bound corresponding to the logarithmic negativity also can nowbe straightforwardly obtained from
the value of E wW ( ) by using equation (46).

Appendix B.Determination of themixing probabilities

Herewepresent the crucial steps of the derivationof the formsof q b
W , given in equation (73). For the purpose of

demonstration, let us consider the correction I Iab a b
0 = Ä . Let us assume that the number of ‘1ʼs in the outcome

k k k k kr r r rN1 2 3 2¢ º - , where ri a
1

Î ˜ isma
1, andweuse similar notations for the sets b

1
̃ and ab

1
̃ . According to

equations (35) and (67), the correction ab
0 may result iff (i)ma

1,mab
1 , andmb

1 are all odd, or (ii) all even. The value of
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1
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¢ = , due to the applicationof anoise ofType 1with

probability s (0�s�1), andwhen (b) k 1ri
= remains unchangedwith aprobability (1−s). Let us denote the

number of occurrences of event (a)byma
01, and the same for event (b)byma

11, where m m ma a a
01 11 1+ = . Similar
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1

̃ and ab
1

̃ . Anodd value ofma
1may result eitherwhen (1)ma

01 is
odd andma

11 is even, orwhen (2)ma
01 is even andma

11 is odd. The probability of occurrence of the event (1) is
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These expressions can be simplified by using the following identities, where 0�t�1.
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Using these identities, the probability thatma
1 is odd is obtained as

P P P s
1

2
1 1 1 2 . B4a

n n
1 2 a a

1
= + = - - -- [ ( ) ( ) ] ( )( ) ( )

A similar approach for the probability of obtaining an even value ofma
1 leads to

P s
1

2
1 1 1 2 . B5a

n na a
1

= + - -+ [ ( ) ( ) ] ( )

In analogy, the corresponding probabilities in the case of b
1

̃ and ab
1

̃ are obtained as

P s P s
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Therefore, the probability withwhich a correction ab
0 is applied on the state

ab
r can bewritten as

q P P P P P P , B7a ab b a ab b
0 = +W

- - - + + + ( )

which provides themixing probability corresponding to the state ab
0

ab
rL ( ) in the state ab

kr¢ . Similarly, the

expressions for q b
W ,β=1, 2, 3, corresponding to the corrections I Zab a b

1 = Ä , Z Iab a b
2 = Ä , and

Z Zab a b
3 = Ä , can also be obtained as

q P P P P P P q P P P P P P q P P P P P P, , . B8a ab b a ab b a ab b a ab b a ab b a ab b
1 2 3= + = + = +W

- - + + + -
W

+ - - - + +
W

- + - + - + ( )

Wepoint out here that according to the convention used in the paper (equation (58)), the probability s=q/2 in
the case of the BF, the BPF, and theDP channels, while in the case of the PF channel, s=0.

AppendixC. Transformation of Pauli operators in a linear graph

The transformation UL L ¢ñ = ñ∣ ∣ of the graph state ñ∣ , corresponding to the transformation of the linear
graph given in equation (80), is determined by the local unitary operatorU U V UL a i i b= Ä ÄÎ(⨂ ) , where
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wherem=0, 1, 2,L if n or n j m2 1 - = + , andm=1, 2, 3,L if n or n j m2 - = .
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