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A quantitative assessment of the progress of small prototype quantum processors towards fault-tolerant
quantum computation is a problem of current interest in experimental and theoretical quantum information
science. We introduce a necessary and fair criterion for quantum error correction (QEC), which must be
achieved in the development of these quantum processors before their sizes are sufficiently big to consider
the well-known QEC threshold. We apply this criterion to benchmark the ongoing effort in implementing
QEC with topological color codes using trapped-ion quantum processors and, more importantly, to guide
the future hardware developments that will be required in order to demonstrate beneficial QEC with small
topological quantum codes. In doing so, we present a thorough description of a realistic trapped-ion
toolbox for QEC and a physically motivated error model that goes beyond standard simplifications in the
QEC literature. We focus on laser-based quantum gates realized in two-species trapped-ion crystals in high-
optical aperture segmented traps. Our large-scale numerical analysis shows that, with the foreseen
technological improvements described here, this platform is a very promising candidate for fault-tolerant
quantum computation.
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I. INTRODUCTION

Solving hard computational problems by exploiting the
quantum-mechanical laws of nature is one of the goals of
current scientific and technological research [1]. To turn
this idea into experimental reality, intense research efforts
are currently devoted to scale existing small prototypes,
which have served for proof-of-principle demonstrations
[2], into larger quantum devices capable of processing
information quantum mechanically even in the presence of
noise and processing errors (i.e., fault tolerantly). This
poses a significant challenge from both fundamental and
technological perspectives.

Fundamentally, the quantum-mechanical features
responsible for the advantage of these processors with
respect to their classical counterparts also give rise to a
different behavior with respect to noise and errors, which
excludes the straightforward application of classical error-
correction schemes. Despite these difficulties, the theory of
quantum error correction (QEC) [3–5] has shown a well-
defined route for the development of large-scale quantum
computers. The main ingredients of QEC to combat the
detrimental impact of noise are as follows: (i) encoding
quantum information redundantly in ever-larger quantum
registers and (ii) detecting and correcting errors during a
computation without altering the encoded quantum infor-
mation. Exploiting these ingredients using particular QEC
codes, it has been shown theoretically that it is possible to
perform quantum-computing sequences of arbitrary com-
plexity fault tolerantly if the noise or error of elementary
operations is maintained below a certain threshold [6]. The
redundant encoding of the information in these QEC
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protocols, which is required to improve the level of
protection against noise for a fault-tolerant computation,
can be achieved by either (a) concatenating elementary
codes in several layers [5] or (b) storing the information in
topological features of registers of increasing size [7,8].
The quest is therefore to implement these QEC ideas in
quantum devices of increasing sizes.
The first experiments on QEC have implemented the

three-qubit [9] and five-qubit [10] quantum codes in nuclear
magnetic resonance. Starting from initial experiments on the
three-qubit codewith trapped ions [11] and superconducting
circuits [12], these two platforms have recently been
employed to show repetitive error correction [13], fault-
tolerant error detection with a four-qubit code [14], and
small-scaleversions of the topological color [15] and surface
[16,17] codes. We note, however, that QEC is also being
pursued in other platforms [18]. The theory of QEC,
described in the paragraph above, defines a clear road
map towards the demonstration of fault tolerance in large
quantum processors. However, despite this remarkable
progress, the hardware platforms are still far away from
the sizes that are required to render the errors on the encoded
data negligibly small. Hence, it would be desirable to define
a set of intermediate QEC goals, which are necessary for the
progress towards the fully fledged fault-tolerant quantum
computer and can serve as a guiding principle in the
experimental design by benchmarking the progress in
building and scaling these smaller quantum codes.
A necessary condition for QEC is that the effect of a

complete round of error detection and correction must be
beneficial for the encoded qubit. This is a nontrivial
condition since the effect of an attempt at error correction,
while aiming to correct the existing errors, inevitably
introduces the risk of new ones. Accordingly, quantifying
such a crossover into beneficial or useful QEC, and
certifying that it is met in a particular QEC code, will
translate into specific requirements on the fidelities of the
various gates, measurements, and other internal processes
that conform the QEC cycle. This can establish a set of
goals that must be achieved by future hardware develop-
ment. Once this is achieved, another necessary criterion is
to verify if the encoding, followed by a complete round of
error detection and correction, is beneficial in comparison
to the degradation of an unprotected physical qubit sub-
jected to the same sources of physical noise during the time
required by the QEC cycle.
We note that the theoretical studies of the performance of

different QEC strategies, quantified by the particular value
of the threshold, depend crucially on the assumptions about
the underlying platform capabilities and noise models.
Using over-simplified noise models, or unrealistic platform
capabilities, can lead to an overestimation or underestima-
tion of the correcting power of a given QEC code.
Therefore, if we are aiming at assessing and guiding the
progress of a particular experimental platform by the above

intermediate QEC goals, a very careful microscopic mod-
eling of the noise and the operational errors is required. The
objective of this work is to present a detailed study along
these lines of trapped-ion quantum processors with current
and anticipated future capabilities in the near term.

A. Summary of the results of this work

In this manuscript, we quantify the above intermediate
goals for beneficial QEC by introducing a quantum-
information protocol with a clear and intuitive operational
meaning in Sec. II. This protocol can serve as a benchmark
scenario to assess the progress of experimental QEC codes.
We focus on trapped-ion implementations of small QEC

codes [11,13–15,19] and use the above measure to theo-
retically assess the methodological and technological
improvements that would be required to reach the break-
even point for a logical qubit, i.e., to enter the regime of
beneficial QEC. In order to reach this goal, it is of the
utmost importance to choose and adapt QEC schemes
according to the particular technological advantages and
disadvantages of the hardware platform at hand. One must
exploit the particular technological strengths and simulta-
neously mitigate the dominant sources of noise. This
requires a detailed knowledge of the state of the art and
foreseeable technological improvements, which we discuss
in Sec. III. We present a thorough description of an
experimental toolbox for QEC using a high-optical-access
segmented ion trap to manipulate dual-species ion crystals
in a cryogenic environment (see Fig. 1). We consider a
universal set of single-qubit and multiqubit entangling
gates [20] that differs from the more standard CNOT-based
approaches [1]. The current and anticipated performance of
these elementary operations, as discussed in detail below, is
summarized in Table II. These tools will be combined with
spectroscopic decoupling of a subset of ions (i.e., hiding-
based approach) and with crystal-reconfiguration tech-
niques (i.e., shuttling-based approach) as summarized in
Table IV, which includes splitting ion crystals, shuttling
ions across trap segments, and merging two sets of ions into
a larger crystal. Together with the possibility of using a
dual-species crystal for sympathetic recooling of the ions
and stabilizer readout, this toolbox contains all the ingre-
dients required for trapped-ion QEC. In addition to this
knowledge of experimental capabilities, assessing the
prospects of QEC also requires a detailed modeling of
the main sources of noise and errors for these operations,
which we address in Sec. IV.
Equipped with this toolbox, we develop different

approaches for trapped-ion QEC in Sec. V. We start by
describing how multiqubit Mølmer-Sørensen (MS) gates
[22,23] can be exploited for efficient stabilizer readout [24],
as experimentally demonstrated in Ref. [15]. In the context
of fault-tolerant QEC, however, different schemes based on
one-qubit gates and two-qubit MS gates would be required.
Since fault-tolerant QEC schemes have typically been
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conceived using single-qubit and two-qubit CNOT gates
[25,26], it would be desirable to devise trapped-ion circuits
that exploit MS gates directly and to study how errors
propagate on those circuits to demonstrate fault tolerance.
We address these points by presenting a detailed descrip-
tion of a generic MS-based toolbox for QEC. We apply this
toolbox to the seven-qubit topological color code with
trapped ions, either using a non-fault-tolerant stabilizer
readout with seven data qubits and one additional ancillary
qubit (i.e., 7þ 1-qubit scheme) based on multiqubit or
sequential two-qubit MS gates, or by using fault-tolerant
stabilizer readout via MS-based schemes that realize the
equivalent of the CNOT DiVincenzo-Shor (DVS) protocol
for 7þ 5 qubits [25] or the DiVincenzo-Aliferis (DVA)
protocol for 7þ 4 qubits [26]. Although we have focused
on this particular code, we remark that this trapped-ion
QEC toolbox for stabilizer readout can be generalized to
any other stabilizer QEC code of interest and scaled to
larger-size codes in a modular fashion.
The MS-based stabilizer readout is used, in combination

with some of the elementary operations of Tables II and IV,
as a building block for the development of trapped-ion
QEC protocols in Sec. VI. As already outlined above, we
explore different scenarios according to varying experi-
mental capabilities:

(1) Shuttling-based protocol.— Here, we consider
trapped-ion crystals with either a single or two
species of ions species, i.e., data and ancillary qubits
being encoded in the same or different atomic
species. We develop sequences of crystal-reconfig-
uration operations and stabilizermappings to perform
a full QEC cycle on a single logical qubit.We explore
how the ability of crystal recooling by sympathetic
cooling via the ancillary ion at intermediate stages
affects the performance of the protocol.

(2) Hiding-based protocol.— Here, we consider the
protocols realized in a static ion crystal. Qubits
are selectively addressed by shelving inactive ions
via spectroscopic decoupling and recoupling pulses,
and combined with stabilizer mappings to perform a
full QEC cycle on a single logical qubit. We consider
encoding of data and ancillary qubits in two different
species and the possibility to apply recooling after
the readout.

These QEC protocols are complemented with the error
model introduced in Sec. IV, which improves upon custom-
ary circuit-error models that consider a unique quantum
channel for all elementary operations in a QEC cycle. This
allows us to perform a detailed study that goes beyond
standard, albeit not very realistic, assumptions: (i) We
consider that the different gates (including the identity), the
state preparation, and the measurements do not take the
same amount of time. (ii) We use distinct error channels
affecting the different stages of the QEC protocols. For
instance, idle qubits are subjected to dephasing in a
trapped-ion setup, whereas single- and multiqubit gates
are subjected to depolarizing noise. More importantly,
(iii) the different channels are not all characterized by a
unique error probability. Certainly, single- and multiqubit
gates do not have the same error in any known experimental
platform. We use a microscopic modeling of the ion
crystals to derive the particular expressions or values of
the corresponding error rates for each operation. Therefore,
our treatment not only goes beyond models that do not
consider, or simplify, the occurrence of errors on the
syndrome readout, but it also goes beyond the standard
so-called circuit-level noise model, which typically makes
these over-simplifications.
These sections set the stage for a large-scale numerical

analysis that investigates the performance of such protocols
in Sec. VII. The criterion introduced for beneficial or useful
QEC is used to quantify the three essential requirements
that will need to be met in forthcoming experiments for
trapped-ion QEC: (i) sufficiently small natural physical
error rates from fundamental error sources, (ii) detection
and dynamical correction of errors at a fast enough rate, and
(iii) sufficiently accurate realizations of unavoidably imper-
fect error-correction routines so that there is still an overall
gain of applying (imperfect) QEC procedures.
Finally, in Sec. VIII, we present our conclusions.

FIG. 1. The Sandia HOA2 trap as a QEC platform: In our
envisioned scheme, 40Caþ ions (blue and red dots) are cotrapped
with 88Srþ ions (green dots) in a quantum zone divided into three
storage regions S1, S2, S3 and two manipulations zones M1, M2.
Some of the 40Caþ ions can be used as data qubits to encode
quantum information according to a QEC code (blue dots), while
others (red dots) can be used as ancilla qubits for syndrome
extraction. The 88Srþ ions (green dots) are used as sympathetic
coolants to reduce the number of phonons prior to the entangling
gates. Possible crystal-reconfiguration operations are shown in
the panel in the lower-right corner: (a) splitting of an ion crystal,
(b) shuttling of an ion and subsequent merging with another ion
to form a crystal, and (c) rotation (swapping) of a mixed species
crystal. Schematics of the trap are adapted from a micrograph
in Ref. [21].
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II. ASSESSING THE PROGRESS ON QEC BY
SMALL QUANTUM CODES

While small quantum codes have already been demon-
strated on different platforms [9–17], it would be of interest
to ultimately demonstrate fault tolerance on existing or
near-future hardware. However, this would require showing
the supremacy (i.e., reducing the error rate) of the small
codes with respect to the best-possible unencoded qubits on
all representative quantum circuits belonging to a large set
of protocols [27]. Depending on the platform, this com-
parison can be very stringent. For instance, ion-trap
processors can use decoherence-free qubits [28] or the
μ-metal shielded Zeeman qubits [29] with very long
coherence times, such that the error on the identity quantum
circuit would be very hard to beat using any small QEC
code. Additionally, single-qubit and two-qubit gates with
bare qubits have, so far, the smallest achieved infidelities in
any experimental platform [30,31], and it also seems
unlikely that small QEC codes, with their large overhead
in complexity, will be capable of beating them. We thus
believe that alternative criteria have to be established,
which serve as reasonable guiding principles in the devel-
opment of future technologies that improve upon existing
QEC codes.

A. Breakeven point for useful QEC

In this section, we introduce the criteria used in our work
to judge whether a particular combination of hardware and
quantum code can successfully perform QEC, thus sus-
taining a logical encoded qubit. As mentioned in the
Introduction, a first necessary condition that must be
verified by any implementation of a QEC code is that
the effect of a complete round of error detection and
correction proves to be beneficial. In order to make it
quantitative, we must define a measure for the quality, or
integrity, of a logical qubit.
The fidelity of the logical encoded state subjected to

noise or errors ~ρL with respect to its ideal form
ρL ¼ jψLihψLj, namely, F ¼ hψLj~ρLjψLi, and, in particu-
lar, how it changes if we perform a QEC cycle on the
imperfect ~ρL or not, might first appear as a natural measure.
However, one encounters difficulties. Consider a logical
qubit ~ρL that has completely decohered under the effect of
independent depolarizing noise on the constituent n physi-
cal qubits. The collective entity no longer contains any
information about the initial logical state jΨLi. Its fidelity is
F ¼ 2−n since the system is in an equal mixture of all
possible states regardless of the initial encoded state. The
problem is that a round of error correction will seem to
improve the quality of this logical qubit: It will map all the
states in the mixture to either the logical zero j0Li or the
logical one j1iL, creating a mixture of these two,
ρQEC ¼ 1

2
ðj0iLh0jL þ j1iLh1jLÞ. Consequently, the fidelity

will rise to FQEC ¼ 1
2
under an ideal QEC cycle (or close to

this number for imperfect correcting circuits). Thus, if we
were to select fidelity as our measure for the quality of a
logical qubit, we would be faced with the unsatisfactory
feature that a logical qubit that has been completely lost,
and is free of any meaningful information, seems to be
partially recovered.
One might attempt to correct this issue by projecting the

n-qubit state into the logical subspace and only then
computing the fidelity. Nonetheless, this leads to another
unsatisfactory feature: One would find an equality in
apparent performance between a device that maintains
the logical qubit entirely in that subspace and one that
allows a large component of the state to leave the subspace,
regardless of the nature of the part of the state outside the
proper subspace. As we will later remark, the approach we
take in this work can be thought of as essentially a more
sophisticated variant of this idea.
The alternative measure we employ has a very clear and

intuitive operational meaning. It is best illustrated with a
quantum-information protocol that separates the role of
encoding the logical qubit from the task of reading it. We
use the labels Alice and Bob for two entities that have these
roles (see Fig. 2). Now suppose that a random qubit state
jψi ¼ αj0i þ βj1i is selected, and Alice is instructed to
prepare a logical qubit jψiL ¼ αj0iL þ βj1iL using the
code of her choice. This logical qubit of n physical qubits
ρL is then subjected to some noise channel, which may
have any form, including correlated noise (e.g., spatial or
temporal correlations arising from global fluctuating mag-
netic fields with a characteristic correlation time) and
coherent noise (e.g., resulting from over-rotations in
single-qubit gate operations). The now-imperfect logical
qubit ~ρL is presented to Bob, along with the following
classical information: “The original state was either jψi ¼
αj0i þ βj1i or jψ⊥i ¼ β�j0i − α�j1i.” In other words, Bob
is given a choice of two states, the true qubit state and the
state that is orthogonal to it. Now, Bob is challenged to
make his best guess as to which state the n physical qubits
encode: It is a problem of state discrimination with the
imperfect logical qubit as the resource. He may use any

FIG. 2. Cartoon illustration of the protocol for assessing the
efficacy of our QEC cycle. Strictly speaking, Alice and Bob have
ideal experimental equipment capable of encoding and decoding
a quantum state perfectly, whereas only Igor has the imperfec-
tions of our real laboratory setting. The stages of the protocol are
detailed in Table I.
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physically allowed process in his analysis, and in particular,
he can perform error correction, decode to a single physical
qubit, and destructively measure it.
For simplicity, we assume that Alice and Bob are ideal

agents in the following, i.e., perfect encoding and analysis
of the logical qubit. Then, the probability PBðρL; ~ρLÞ that
Bob guesses correctly will vary only with the quality of the
received qubit: An error-free logical qubit will score
PB;max ¼ 1.0, since Bob will certainly succeed in his
state-discrimination task, whereas (for example) a logical
qubit that has undergone complete depolarization will score
PB;min ¼ 0.5 since Bob can only guess randomly. We
define the integrity I of our memory as simply a scaled
probability,

I ¼ 2PBðρL; ~ρLÞ − 1: ð1Þ

The scaling thus provides us with the natural limits of unity
for a perfect memory and zero for a memory that provides
Bob with no useful information whatsoever.
For any given decoherence model, one can find the

probability that Bob will guess correctly given a fully
decohered logical qubit. If, as in the following analysis, the
decoherence is restricted to a specific channel, then Bob’s
performance can be higher; i.e., there will be instances in
the random selection of the qubit state to be encoded by
Alice that happen to be robust against the specific channel.
In the cases we are concerned with in the following section,
restricting to a purely dephasing environment is an excel-
lent approximation, in which case, if we happen to select
j0i or j1i for Alice to encode, the effect of decoherence on
the encoded qubit will not degrade Bob’s capacity to
differentiate: He only needs to measure all qubits in the
z basis and determine whether the observed pattern belongs
to the set of states associated with j0iL or j1iL. Conversely,
if we had selected jþi or j−i for Alice to encode, then after
full dephasing, Bob would not be able to gain any value
from his analysis and his probability of guessing correctly
would be 0.5. His performance when Alice randomly
selects qubit states, sampled uniformly over the Bloch
sphere, is found to be Pmin ¼ 0.75 after full dephasing.
Therefore, when we plot the average P for any degree of
pure dephasing, we find that it varies in the range
0.75 ≤ PBðρL; ~ρLÞ ≤ 1.
Armed with this notion of the integrity of a qubit as,

essentially, the extent to which its state can be read out by
Bob, we now ask the question of whether the QEC cycle is
beneficial or harmful by allowing for an imperfect round of
error detection and correction prior to Bob’s guess
~ρL → ρQEC. The full protocol for our measure, where the
code to be used (e.g., surface code, 2D color code, etc.) is to
be specified, is described in Table I. According to our
criterion, the round of imperfect error correction is now
deemed to be beneficial if Bob’s probability of sub-
sequently discriminating the state correctly is higher when

we indeed perform a round of QEC, vs simply opting not to
do so, and allowing the environment to act for time τ
uninterrupted, namely,

PBðρL; ρQECÞ > PBðρL; ~ρLÞ: ð2Þ

The breakeven point for a beneficial QEC occurs when
Eq. (2) is satisfied. For convenience of exposition, we may
imagine that a third party, besides Alice and Bob, is
responsible for the cycle of error correction: Since this
individual is effectively a flawed assistant for Bob, we use
the name Igor after the famous fictional lab assistant (see
Fig. 2). Then, our criterion for successful error correction
can be summarized as, “Is Igor a help or a hindrance
to Bob?”
It is worth noting that Alice’s encoding protocol is

predetermined and may not vary with the particular choice
of qubit she is instructed to encode. Similarly, Igor, who
does not have the classical description of the encoded qubit,
will always perform the same procedure as he attempts to
correct it. Moreover, in all the analysis presented in this
paper, we also fix Bob’s protocol: He simply performs his
own (perfect) round of error correction and then decodes
the logical qubit to a single qubit and measures that qubit in
the basis of his choice. His optimal basis choice, for all
cases considered here, is simply fjψi; jψ⊥ig, and Bob
makes his “guess” according to the outcome. Thus, only the
final step, the measurement, depends on the choice of
encoded qubit that was issued to Alice. It is interesting to
observe that with this choice of Bob’s protocol, Bob is
effectively mapping the state of the n qubits into the logical
subspace (with his round of perfect error correction) and
then making a guess with a probability of success given by
the fidelity of the corrected logical qubit. Thus, our concept
of integrity relates directly to the fidelity after the encoded
qubit is mapped into the logical subspace via the process of
error correction.
Notice that this protocol naturally generalizes to multiple

rounds of error correction, i.e., multiple times when the

TABLE I. Protocol for assessing the beneficial role of QEC.

Step Action

1 We select a qubit state at random.
2 We require Alice to encode it into the n physical

qubits of the code. She does so perfectly.
3 The n physical qubits are subjected to environmental

noise for a time τ=2.
4 Optionally, Igor is asked to apply a full round of

imperfect error correction.
5 The n physical qubits are subjected to environmental

noise for a further time τ=2.
6 Bob takes the final state of the n qubits and performs

an analysis so as to make his best guess of the state.
He does so perfectly.
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imperfect Igor can attempt to help. We simply wait a time
τ=ðmþ 1Þ, have Igor perform his cycle, and repeat until m
cycles are performed. After a final wait of τ=ðmþ 1Þ so
that a total time τ has elapsed, Bob receives the n physical
qubits. For a sufficiently high-performing Igor, and a long
enough time τ, it will be beneficial to have multiple rounds.
Note that in the numerical simulation of the protocols, as
discussed at later stages of this paper, we take into account
the finite duration that applications of the QEC cycles
require.
Provided that this criterion has been fulfilled, and that

QEC is proven beneficial, we can turn to the second
desirable property of QEC, namely, that encoding, error
detection, and error correction are beneficial in comparison
to the degradation of an unprotected physical qubit
ρ ¼ jψihψ j → ~ρ. For the particular task at hand, this
amounts to proving that

PBðρL; ρQECÞ > PBðρ; ~ρÞ; ð3Þ

and it would essentially demonstrate that the encoded
logical qubit outperforms the quantum memory built with
a single unprotected physical qubit of the same sort as those
used to form the logical qubit.

III. TRAPPED-ION EXPERIMENTAL
TOOLBOX FOR QEC

A. Experimental architecture

The proposed setup consists of a 1D segmented high-
optical-access (HOA) ion trap fabricated by Sandia
National Laboratories [21] and operated in a cryogenic
environment (see Fig. 1). We consider 40Caþ ions for
hosting the qubits, 88Srþ ions for providing the capabilities
for sympathetic cooling, and mixed-species readout for
syndrome extraction. We consider that ions undergoing the
quantum logic operations can be separated and shuttled
across the segmented trap array by using high-speed
(diabatic), low-excitation protocols in order to minimize
cross-talk on neighboring qubits. The required pulsed
control of the qubits, system synchronization, measure-
ment, and fast-feedback as required for QEC can be
achieved by a custom-engineered high-speed controller.
The choice of the trap is motivated by the requirements

for the realization of a QEC code, which demand high-
fidelity quantum operations on the order of more than 10
ions. Therefore, a microfabricated segmented ion trap that
enables multiple trapping zones and versatile ion-crystal
reconfigurations is required. This increases the complexity
of the trap to a level that can, to date, only be satisfied by
quasiplanar trap structures, which reduce the trapping depth
such that precautions against ion loss have to be taken. This
can be mitigated by lowering the pressure of the vacuum
environment by operating the experiment at cryogenic
temperatures.

The encoded qubit will be realized in 40Caþ ions, which
allow for an optical as well as a ground-state qubit.
The chosen species enables high-fidelity state detection
of the optical qubit because of its simple electronic
structure. The optical qubit is formed by the 4S1=2ðmf ¼
−1=2Þ ground state and 3D5=2ðmf ¼ −1=2Þ metastable
excited state. The excited state has a lifetime of 1.1 s, which
sets the upper limit on the qubit storage time [20]. Quantum
operations are performed with a laser that is nearly resonant
to this transition at a wavelength of about 729 nm. It is also
possible to encode a qubit in the two 4S1=2ðmf ¼ �1=2Þ
Zeeman substates. The coherence of this qubit is only
limited by magnetic field fluctuations, where recent
improvements resulted in a coherence time of more than
one second [29]. State manipulation of this qubit is
performed by Raman lasers close to the 4S1=2 to 4P1=2

transition. Because of the complexity of the QEC algo-
rithm, a second ion species for sympathetic cooling and
stabilizer readout will also be explored. For this, 88Srþ ions
can be used.
The quality of quantum operations is limited by different

processes for the optical and the spin qubit. For the optical
qubit, the absolute phase noise of the laser driving the
transition limits the achievable coherence, whereas the spin
qubit is only sensitive to the differential phase noise in the
two Raman laser beams. For the spin qubit, off-resonant
excitation of the 4P1=2 state is a process reducing the gate
fidelity, which can only be mitigated by simultaneously
increasing the intensity and detuning of the Raman laser
beams. However, dynamic control of light at 397 nm ismore
challenging than control at a longer wavelength of 729 nm.
We expect that the encoding and QEC of a single logical

qubit with a low-distance code can be implemented
in a single segmented linear trap with the ion-crystal-
reconfiguration techniques outlined below. However, multi-
ple logical qubits will likely require a more capable
architecture in which ion reconfiguration can be performed
more efficiently using three- or four-way junctions. This
allows multiple processing regions where syndrome mea-
surements can be performed in parallel, which is also
crucial for an extensible QEC architecture.

B. Gate operations

1. State of the art

The experimentally available set of operations consid-
ered in this work consists of (i) global laser-driven MS

entangling operations [22,23], which can be expressed as

UMS;ϕðθÞ ¼ e−iðθ=4ÞS
2
ϕ ;

Sϕ ¼
Xn
i¼1

ðcosϕXi þ sinϕYiÞ; ð4Þ

whereϕ is controlled by the laser phase and θ by its intensity
and pulse duration. Here, Xi ¼ σxi and Yi ¼ σyi are Pauli
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matrices. Additionally, the global laser beams can also drive
(ii) global rotations around the Bloch sphere of an individual
qubit with a rotation axis in the equatorial plane,

UR;ϕðθÞ ¼ e−iðθ=2ÞSϕ ; ð5Þ

which are also controlled via the phase, intensity, and pulse
duration of the laser beam. Finally, (iii) the addressed ac-
Stark shifts result in rotations around the z axis on the Bloch
sphere of an individual qubit,

URj;zðθÞ ¼ e−iðθ=2ÞZj ; ð6Þ

where θ is controlled by the intensity of the off-resonant
laser beam, its detuning, and the pulse duration. Here, Zi ¼
σzi is one of the Pauli matrices. This gate set is described in
detail in Ref. [20], and a numerical method to find an
efficient decomposition of an arbitrary quantumalgorithm in
a sequence of these gates is presented in Ref. [32]. In the rest
of the manuscript, we extensively use the following single-
qubit operations:

XjðθÞ ¼ e−ðiθ=2ÞXj ; YjðθÞ ¼ e−ðiθ=2ÞYj ;

ZjðθÞ ¼ e−ðiθ=2ÞZj ; ð7Þ

which can be obtained either directly from the available set
ZjðθÞ ¼ URj;zðθÞ or bymeans of dynamic error-suppression
sequences (see Sec. III C). In addition,we useMS gates (4) of
X type or Y type acting on a pair of ions, i and j. These MS

gates are defined as

X2
i;jðθÞ ¼ e−ðiθ=2ÞXiXj ; Y2

i;jðθÞ ¼ e−ðiθ=2ÞYiYj ; ð8Þ

and obtained (up to a global phase) fromUMS;ϕðθÞ in Eq. (4)
by setting ϕ ¼ 0 and ϕ ¼ ðπ=2Þ, respectively; they can be
implemented by using spectroscopic decoupling techniques
or ion-crystal-reconfiguration steps, such that the MS laser
beams only couple to the ion pair i, j. Using this notation,
θ ¼ ðπ=2Þ MS gates are “fully entangling,” as they map the
computational basis states of N qubits to GHZ states
(up to local unitary rotations) of N qubits. For instance,
for two ions, X2

i;jðπ=2Þ ¼ ðI − iXiXjÞ=
ffiffiffi
2

p
, and one finds

X2
i;jðπ=2Þj0iij0ij ¼ ðj0iij0ij − ij1iij1ijÞ=

ffiffiffi
2

p
. Throughout

this manuscript, we use the term multiqubit MS gates to
refer to MS gates acting on more than two qubits.
The entangling MS gates are performed on the axial

center-of-mass mode of the ion string. This has the
advantage that only a single loop in phase space has to
be closed to erase unwanted spin-motion entanglement.
However, this mode cannot be used for longer ion strings as
the ion string approaches a zigzag configuration. This
scheme allows for operations generating a maximally
entangled GHZ state of up to eight ions, which can be
implemented in about 50 μs for optical qubits with state

fidelities of f98.6; 95.7; 81.7g% for f2; 4; 8g ions [33]. If
the limiting factor on the gate quality is phase noise on the
laser driving the qubit transition, this could be improved by
a laser with smaller phase noise or by switching to ground-
state Zeeman qubits, which are only susceptible to the
phase difference of the two Raman lasers. Recently, high-
fidelity entangling operations for two ground-state hyper-
fine qubits have been demonstrated, reaching infidelities
below 10−3 [30,31].
Carrying out high-fidelity dual-species QIP protocols,

such as 40Caþ and 88Srþ in our case, is generally more
difficult than single-species experiments. Complicating
factors include a more complex motional mode structure
and cooling requirements. However, dual-species entan-
gling gates have already been achieved [34,35], showing
Bell-state infidelities of 2 × 10−2 and 2 × 10−3. Moreover,
we have also achieved preliminary dual-species operations
for QEC, with 40Caþ and 9Beþ using global optical beams,
including experimental approaches for handling dual-
species crystals, as well as initial dual-species gates for
XX and ZZ stabilizer readout of a two-ion 9Beþ crystal with
a single 40Caþ ion. Preliminary infidelity estimates obtained
from Bell state preparation are listed in Table II; SPAM
(state preparation and measurement) errors are included in
the errors given.

TABLE II. Current and anticipated gate-operation infidelities
and durations. Single-qubit operations are a 90-degree rotation on
the Bloch sphere; whole entangling operations correspond to
fully entangling Mølmer-Sørensen operations (see Sec. III). The
reported dual-species operations have been performed in a
9Beþ–40Caþ crystal. For the parameter marked by the ⋆ symbol,
i.e., the anticipated value of the qubit-reset fidelity, numerical
simulations were performed for both the value 5 × 10−3 and the
value 1 × 10−4.

Operation
Current
duration

Current
infidelity

Anticipated
duration

Anticipated
infidelity

Single-qubit
gates

5 μs 5 × 10−5 1 μs 1 × 10−5

Entangling
(2 qubits)

40 μs 1 × 10−2 15 μs 2 × 10−4

Entangling
(5 qubits)

60 μs 5 × 10−2 15 μs 1 × 10−3

Dual species
entangling
(2 qubits)

60 μs 3 × 10−2 15 μs 4 × 10−4

Dual species
entangling
(3 qubits)

80 μs 5 × 10−2 15 μs 6 × 10−4

Dual species
entangling
(5 qubits)

� � � � � � 15 μs 2 × 10−3

Measurement 400 μs 1 × 10−3 30 μs 1 × 10−4

Recooling 400 μs n̄ < 0.1 100 μs n̄ < 0.1
Qubit reset 50 μs 5 × 10−3 10 μs 5 × 10−3 ⋆
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2. Experimental input for the noise model

To assess the performance of a QEC procedure with a
reasonably sized ion register, one requires a simplified, yet
sufficiently realistic, error model. In several studies, circuit
noise is assumed to affect the single- and two-qubit gates of
the QEC protocol equally. However, in many experimental
setups, the leading source of noise affecting idle qubits,
single-qubit gates, and entangling operations can be very
different, thus requiring more elaborate noise models. The
chosen error model in this work includes perfect gate
operations followed by a depolarizing channel on the active
qubits, and inactive qubits are affected by dephasing noise.
We use microscopic calculations and experimental results
to set the parameters of this error model, which has the
advantage that it can be numerically simulated efficiently
even for large qubit registers by using parallelizable
Monte Carlo techniques, providing quantitative target gate
fidelities. More details on this error model can be found
in Sec. IV.

3. Expected performance

The required parameters for the chosen noise model can
be fixed by the knowledge of (i) the state infidelity for the
gates, which describes the strength of the depolarizing
noise, and (ii) the duration of the gates, which are used to
estimate the effect of dephasing on idling qubits. Table II
shows a summary of current and anticipated gate operations
for these parameters. The current coherence time on the
ground-state qubit is 2 seconds. By improving the mag-
netic-field stability, it is expected that this can be extended
to 10 seconds. The current coherence time on the optical
qubit is 200 ms, which is anticipated to be improved to the
limit given by the spontaneous decay from the metastable
excited state to about 2 seconds.

C. Dynamic error suppression

In developing a trapped-ion experimental toolbox for
QEC, we are motivated to explore how the capabilities on
hand in the laboratory may be crafted to maximize
compatibility with the stringent demands on quantum error
correction. Our primary objectives are twofold: (1) ensure
gate errors are suppressed to rates as low as practicable
relative to fault-tolerance thresholds and (2) ensure com-
patibility of the underlying error model with the math-
ematical assumptions of fault tolerance in QEC. In our
experiments, we therefore routinely turn to open-loop
control protocols applied at the physical layer and designed
to improve gate performance in advance of QEC.
The strict requirements of fault tolerance on qubit error

rates have motivated the development of error-suppressing
physical-layer control techniques [36–52] known as
dynamic error suppression (DES). In these feedback-free
protocols, temporal modulation of the qubit control field is
employed in order to effectively average away decoherence

induced by environmental fluctuations or control imper-
fections. These protocols are considered an important
complement to QEC [43,53,54], both because of their
potential to improve the resource efficiency of QEC and the
fact that these protocols work in the presence of noise with
strong temporal correlations, a regime that violates most
error models underpinning the functionality of QEC. In
fact, even in the presence of strong qubit decoherence, DES
can extend the effective qubit lifetime by decoupling from
slowly varying noise sources. We expect that, in general,
targeted application of DES will be implemented at the
physical level for qubit manipulation.

1. Relevant control protocols

We consider control protocols with diverse historical
origins but a common framework for implementation.
Physical qubit operations consist of multiple elementary
control operations, which are sequentially applied in such a
way that the desired target operation (quantum gate) is
realized while simultaneously reducing the net sensitivity
to error. We treat control protocols by taking the form
of an n-segment sequence of unitaries, executed over the
time period ½0; τ�. This implies a partition of the sequence
duration τ into n subintervals Il ¼ ½tl−1; tl�, l ∈ f1;…; ng,
such that the lth control unitary has duration τl ¼ tl − tl−1.
The total operation can thus be expressed as

Rðθ;ϕ; τÞ ≔
Y
l

UR;ϕl
ðθlÞ ¼

Y
l

e−iðθl=2ÞSϕl ; ð9Þ

where we have used the rotations in Eq. (5) and defined
θl ≡Ωlτl in terms of the time-independent Rabi frequency
Ωl during the lth time interval ½tl−1; tl�. The resultant
generator leads to a rotation of the Bloch vector through
an angle θl about an arbitrary axis l ¼ ( cosðϕlÞ;
sinðϕlÞ; 0).
The assignment of the relevant control parameters for

each segment, fΩl; τl;ϕlg, may be determined by a variety
of techniques. “Composite-pulse” constructions address a
combination of static pulse-length and off-resonance con-
trol errors and are generally implemented via piecewise-
constant phase modulation. Representative sequences
include the so-called SK1 and BB1, correcting for pure
amplitude errors [55,56], CORPSE for pure detuning errors
[56,57], and both reduced CinSK (CORPSE in SK1) and
reduced CinBB (CORPSE in BB1) [58] for simultaneous
errors. Dynamically corrected gate (DCG) protocols are
constructed similarly (via different underlying mathemat-
ics, recently unified in Refs. [59–61]) but employ piece-
wise-constant amplitude and phase modulation of the
applied segmented control fields. Representative
approaches include the Walsh family of DCGs [61,62].
The approach of producing composite sequential

operations achieved through modulation of a control field
can be extended to the implementation of two-qubit
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Mølmer-Sørensen gates. Here, one may exploit phase
modulation of the driving field used to generate the effective
spin-spin coupling via an intermediate bosonic mode [63].
Application of a piecewise-constant, phase-modulation
pattern to the driving field permits simultaneous decoupling
of “spectator” bosonic modes and the suppression of
temporal fluctuations in control amplitude without the need
to consider nonlinearities in optical instruments associated
with amplitude modulation. The analytic framework in
which these gates may be defined rests on a mathematical
underpinning similar to that used for the construction of
single-qubit DES strategies. This approach is particularly
effective in achieving high-order suppression of residual
spin-motional entanglement in the ion chain.
DES protocols adapted for idle periods and known as

dynamic decoupling [51] are also commonly implemented
to correct for a variety of error sources. For instance, we
employ spectroscopic decoupling to store idle qubits
temporarily in Zeeman sublevels that are not affected by
the lasers responsible for QEC gates [15]. In the spirit of
refocusing of dynamics, this decoupling is achieved by a
sequence composed of Np ¼ 9 pulses that can be applied to
a set of l idle ions to be hidden or unhidden, labeled by
h1; � � � hl ∈ f1;…; Ng. The composite pulse sequence is
designed in a way which, to lowest order, echoes out
addressing errors due to residual light intensity on neigh-
boring ions [15]–for related recent work on how to further
reduce systematically addressing errors see also [64].

2. Evaluating control performance

The operational fidelity for an imperfect operation is
given by F avðτÞ¼1

4
hjTrð ~UðτÞÞj2i, following Refs. [65,66],

where the error propagator ~UðτÞ captures the influence of
noise and approaches the identity in the limit of vanishing
errors. Calculating the fidelity requires the error propagator
to be expressed as an infinite series using the so-called
Magnus expansion as ~UðτÞ ¼ exp½−iΦðτÞ�, where the
effective error operator ΦðτÞ ¼ P∞

μ¼1ΦμðτÞ at the end of
the interaction has expansion terms that take the form of
time-ordered integrals over nested commutators of the
so-called toggling-frame Hamiltonian. Considering unitary

errors, it is convenient to define the error vectors aμðτÞ by
reexpressing the operators ΦμðτÞ ¼ aμðτÞ · σ in the basis of
Pauli operators [65]. Then, one can expand the exponential
in the error propagator to obtain the fidelity in the small noise
limit,

F av ¼ 1 − ha21i −
�
ha22i þ 2ha1aT3 i −

ha41i
3

�
þ
X∞
k¼3

Oðξ2kÞ;

ð10Þ
with a2μ ≔ aμðτÞaμðτÞT the norm square of the error vector.
This expression contains a collection of terms with
equal magnitude arising from different orders of the
Magnus expansion (e.g., a22 vs a41). An expression for the
leading-order fidelity that keeps terms only to a1ðτÞ but
approximates the full expansion [62] is given by

F avðτÞ ≈ F χ ¼
1

2
f1þ exp½−χðτÞ�g; ð11Þ

where we have defined χðτÞ ≔ ha21i. We may conveniently
move to the Fourier domain via the formalism of the filter-
transfer function using

χðτÞ ¼ 1

2π

Z
∞

−∞

dω
ω2

X
i¼a;d

SiðωÞFiðωÞ: ð12Þ

Here, we have introduced the noise power spectral densities
in the amplitude (i ¼ a) and dephasing (i ¼ d) quadratures,
SiðωÞ, describing the statistical properties of the environ-
mental noise process afflicting the control operations (see
the second column of Table III for different examples).
According to this discussion, the key quantities describ-

ing the effect of the control modulation are then FiðωÞ;
these objects characterize the spectral properties of the
applied control and can be calculated analytically for any
piecewise-constant sequence [65,67], thus providing a
simple quantitative means to compare control protocols
of interest in the presence of generic, multiaxis, time-
dependent noise. Because the net infidelity for an operation
is given via an overlap integral of the noise power spectral
density SiðωÞ, and FiðωÞ for the control, we may describe

TABLE III. Single-qubit DES-protected gates enacting net operation Rðθ; 0Þ, following Ref. [59]. Here, ϕ1 ¼ cos−1ð−θ=4πÞ,
k ¼ arcsin½sinðθ=2Þ=2�, a is amplitude noise, d is detuning noise, and s is for simultaneous amplitude and detuning noise. Unless
otherwise noted, the Rabi frequency Ω remains fixed during all segments. The Walsh-modulated DCG sequence (WAMF) [49,61,62]
maintains constant segment durations τl and employs amplitude modulation of the Rabi rate as described below.

Composite pulse Error model (θ1, ϕ1) (θ2, ϕ2) (θ3, ϕ3) (θ4, ϕ4) (θ5, ϕ5) (θ6, ϕ6)

SK1 a (θ, 0) (2π;−ϕ1) (2π;ϕ1) � � � � � � � � �
BB1 a (θ, 0) (π;ϕ1) (2π; 3ϕ1) (π;ϕ1) � � � � � �
CORPSE d (2π þ θ=2 − k; 0) (2π − 2k; π) (θ=2 − k; 0) � � � � � � � � �
WAMF d (Ω, θ, 0) (Ω=2, θ=2, 0) (Ω=2, θ=2, 0) (Ω, θ, 0) � � � � � �
Reduced CinSK s (2π þ θ=2 − k; 0) (2π − 2k; π) (θ=2 − k; 0) (2π;−ϕ1) (2π;ϕ1) � � �
Reduced CinBB s (2π þ θ=2 − k; 0) (2π − 2k; π) (θ=2 − k; 0) (π;ϕ1) (2π; 3ϕ1) (π;ϕ1)
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these objects using the language of filter design and refer to
them as filter-transfer functions.
The filter order characterizes the performance of a filter-

transfer function by performing a Taylor expansion of the
filter-transfer function about ω ¼ 0. Assuming noise with
dominant spectral weight at low frequencies, the approxi-
mation FðωÞ ∝ ðωÞ2p holds for some p associated with the
most significant power-law expansion term. The associated
control protocol thus defines a high-pass filter with filter
order p − 1. This parameter takes on particular relevance in
determining the efficacy of a selected control protocol
subject to broadband noise. This filter order must be
distinguished from the Magnus order of error cancellation
associated with quasistatic errors, which can be understood
from the DC limit of our filter-function formalism for
constant noise fields. A pulse sequence for which the

Magnus expansion terms fulfill ΦðDCÞ
1 ¼ … ¼ ΦðDCÞ

μ−1 ¼ 0

is then said to compensate static errors to Magnus order
(μ − 1) (see Refs. [61,65]). The residual error is then
dominated by terms proportional to the μth power in the
magnitude of the error scaling. This distinction is particu-
larly important when considering more general expressions
for the fidelity beyond leading order, in which contributions
to the error from multiple Magnus orders appear in the
fidelity and are captured through the exponentiated form of
F χ in Eq. (11).

3. Expected performance and protocol selection

The tools outlined above and detailed in publications
including Refs. [59,62,63,65,66] suggest an efficient sup-
pression of gate error rates due to noise processes exhibit-
ing strong temporal correlations. Given realistic error
models for dephasing noise and slow control-amplitude
drifts, factors of error suppression exceeding about 100×
are projected using state-of-the-art systems and substanti-
ated using both numeric simulations and analytic calcu-
lations [59]. Key implementation challenges relate to the
calibration of the requisite control phases and amplitudes,
generally achieved through rf modulation protocols such as
IQ or ΦM. The addition of time segments to a basic gate
operation or complex modulation patterns introduces new
paths for error. The errors that are systematic may be
efficiently suppressed by judicious choice of DES strategy.
Stochastic errors may accumulate as a result of the more
complex protocol, but because of their independence, they
scale only approximately linearly with added gate time
under DES (a proxy measure for complexity). Therefore,
DES has the potential to provide substantial benefits.
Taking into consideration the discussion above, we

determine a critical path to selection of appropriate modu-
lation protocols. We first observe that high-order error
suppression in the Magnus expansion does not imply high-
order time-domain noise filtering and vice versa. This has
been validated using experiments on trapped ions [62] and

formalized rigorously in Ref. [60]. Given the “whitening”
effect of DES protocols on low-frequency-dominated
noise, it is naively expected that the residual errors under
DES will exhibit lower correlations than would otherwise
be achieved. However, the order of error cancellation in the
Magnus expansion is the primary determinant of correla-
tions between residual errors that can cause failure of QEC
protocols. Accordingly, the choice of a DES strategy will
first involve a determination of the requisite Magnus order
of error cancellation to suppress residual error correlations,
next a determination of the high-frequency behavior of
system noise, and finally consideration of how added
complexity in high-order DES strategies introduces new
pathways for error due to poor pulse calibration.
Demonstrations of the suppression of residual error corre-
lations using analyses of randomized benchmarking vali-
date this general approach and will be the subject of a
forthcoming manuscript.

D. Ion-crystal-reconfiguration techniques

1. State of the art

Since the seminal proposal for the Quantum CCD [68],
the advent of segmented ion traps and fast multichannel
arbitrary waveform generators has enabled the demonstra-
tion of ion shuttling operations [69]. These operations need
to be performed fast on the time scale set by gate
operations. This is required to avoid excessive overhead
and decoherence from qubit dephasing, as well as anoma-
lous heating of the ion crystal. On the other hand, motional
excitations from shuttling must also be avoided in order not
to compromise the phonon-mediated MS entangling oper-
ations. Thus, the required waveform generators have to
fulfill the requirements of (i) analog update rates below
typical trap frequencies, (ii) simultaneous and real-time
update of many (10–80) channels, and (iii) superior signal
integrity, i.e., low noise at trap frequencies, low glitch
impulse areas, and low digital crosstalk. Designs for such
devices have been reported in Refs. [70,71]. With seg-
mented traps and waveform generators available, interseg-
ment shuttling of single ions within a few trap periods has
been reported for 9Beþ [72] and for 40Caþ [73]. While fast
separation has also been reported in Ref. [72], the reali-
zation for 40Caþ from Ref. [73] has been more challenging
because of the low transient minimum trap frequency
resulting from the increased mass. Recently, a fast rotation
of two 40Caþ ions with low resulting excitation, which can
be used for reordering the qubit register, has also been
demonstrated [74]. These experimental results are summa-
rized in Table IV.

2. Role of ion-string length on crystal reconfiguration

The extent to which shuttling operations have to be
employed for logical qubit encoding, syndrome readout,
error correction, and gate operations depends on the
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experimental capabilities to store and coherently manipu-
late ion crystals of intermediate size. For ion strings of
increasing size, addressing errors increase, and the presence
of more spectator vibrational modes decreases the fidelities
of entangling MS gates [22]. Additionally, for segmented
microtraps, the ions are confined in smaller potential wells
with increased anharmonicities. Furthermore, the more
complex geometry does not always allow for precise
micromotion compensation in all spatial directions at a
reasonable experimental effort. These two effects can give
rise to decreased confinement stability, presumably via
parametric resonances. As a consequence, decrystallization
and trap loss occur at increased rates, such that this can
represent a serious obstacle. To our knowledge, these
effects have not been thoroughly investigated or quantita-
tively characterized.
Therefore, the following particular points have to be

addressed by future experimental investigations: (a) the
actual extent to which the speed of low-excitation shuttling
operations can be increased (see Table IV), (b) the exten-
sibility of low-excitation separation or merging and reor-
dering operations beyond two ions, and to mixed-species
scenarios, (c) the scaling of the attainable fidelities of
entangling gates with the ion register size, (d) the actual
decrease of duration or increase of fidelity of laser-
addressed hide or unhide operations, which—as shuttling
operations—serve the task of selecting a subset of ions for
QEC, and (e) the impact of decay from the metastable state
for hidden qubits on the overall error rates, which is to be
determined from simulations.

3. Experimental input for the effective noise model

In order for simulation results to provide guidance
towards the best strategy for logical qubit operation, we
need to establish a noise model that captures the essential
mechanisms for how shuttling operations contribute to
errors but keeps the complexity and computational require-
ments reasonably small. We thus chose the following
model: Each shuttling operation contributes, with a fixed
amount of energy, to the radial and axial degrees of freedom
of each ion involved in the operation. Despite the fact that
the energy is mostly contributed in the form of a coherent
oscillator displacement, we assume that there is no fixed
phase relation between consecutive displacements corre-
sponding to different shuttling operations. Therefore, the
shuttling operations lead to momentum kicks, which heat
up the ions. We do not distinguish different collective
modes and rather keep track of the mean motional energies
of each ion. For merging of ion strings, we assume
instantaneous thermalization, such that the total energies
are equally distributed among the ions. Whenever entan-
gling gate operations are carried out, we take the motional
excitation into account to estimate gate imperfections
according to the infidelity estimates discussed in Sec. IV,
which consider the excitation on spectator vibrational
modes, as well as the excitation of the gate-mediating
bus mode.

4. Expected performance for shuttling operations

The anticipated improvements are due to ongoing efforts
such as the following: (a) Filter undistortion—the distortion
induced by second-order low-pass filters on the segment
supply lines is partially undone by correcting for the filter-
transfer function, at the expense of control voltage ampli-
tude as a resource. This increases the degree of control.
(b) Increased control voltage range—the larger segment
voltages generated by a second-generation waveform gen-
erator will increase the minimum confinement throughout
separation or merger operations and enable crystal reorder-
ing at larger radial trap frequencies. (c) Ramp generation—
software for automated voltage ramp generation will find
optimized voltage ramps, possibly employing control
techniques such as shortcuts to adiabaticity or optimal
control [76]. According to these improvements of an
existing setup with 40Caþ ions, the anticipated key metrics
for the different elementary shuttling operations are shown
in Table IV.

E. Readout and electronic control

Protecting a logical qubit via QEC will require repetitive
ancilla readout (see Fig. 5) and reset, feedback on the
logical qubits, and likely sympathetic recooling of the
crystal. Achieving high single-qubit readout fidelity gen-
erally requires a trade-off between minimizing the dark-
and bright-state histogram overlap and minimizing decay

TABLE IV. Current and anticipated metrics for different shut-
tling operations, carried out with 40Caþ ions in a multilayer trap
(see Sec. III and lower inset of Fig. 1). The axial trap frequency is
about 2π × 1.4 MHz, while the radial frequencies are around
2π × 3 MHz. The shuttling is carried out with one ion, while the
other operations are carried out with two ions. Note that the
3.6-μs duration for low-excitation shuttling is obtained with an
amplitude- and phase-calibrated deexcitation kick [75]. Since
shuttling duration will not be the bottleneck as compared to other
operations, we can anticipate a slightly longer duration of 5 μs
with similar low excitations, but a smaller calibration effort.

Operation
Shuttling (one
segment) [75]

Separation or
merger [73]

Rotation
[74]

Duration 3.6 μs 80 μs 42 μs
Excitation axial
(phonons)

<0.1 6 <0.3

Excitation radial
(phonons)

N=A <0.1 <0.2

Anticipated duration 5 μs 30 μs 20 μs
Anticipated excitation
axial (phonons)

<0.2 <1 <0.2

Anticipated excitation
radial (phonons)

<0.01 <0.1 <0.1
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from the excited to the ground state (as well as repumping
of dark states in hyperfine qubits). Additionally, state
discrimination must be performed in real time; post-
processing techniques cannot be used to enhance fidelities.
A control system, the M-ACTION, has been designed to
address these challenges in the context of maintaining a
logical qubit: Structured around a fast CPU communicating
to field programmable gate arrays (FPGAs), this control
system minimizes real-time processing delay, allows rapid
prototyping of algorithms in C++, and can feed back to
hardware with low latency.

1. State of the art

Carrying out experiments on most trapped-ion control
systems typically involves describing the experiment on a
PC in a simple domain-specific language, running a simple
compiler to produce real-time bytecode, and executing this
on a peripheral device such as a FPGA board or PC card
[20,77] running a simple finite-state machine. This
approach does not support arbitrary feedback requiring
nontrivial calculation within latencies comparable to other
ion-trapping operations, i.e., well below 10 μs.
An alternative approach is to design the system to have

significant low-level processing power directly at the FPGA
board; this allows more complex real-time decisions and
calculations without being limited by communication
bandwidth and will be essential for QEC and other
protocols requiring feedback. This design principle has
been implemented in the M-ACTION system [78] used in a
number of recent experiments on calcium ions [79,80]. The
system uses a chip consisting of a FPGA tightly coupled to
two physical ARM central processing units, which allows
standard C++ to be compiled. Thus, the numerical libraries
of C++ can be fully utilized in decision processes, allowing
low-latency decisions during experimental sequences [80].
Control electronics, including synthesizers generating

qubit drive fields, must be linked to a stable master clock
for both synchronization of distributed control electronics
and provision of a stable phase reference against which qubit
coherence is measured. This is vital because the common
decoherence mechanism of dephasing represents a relative
measure of the phase coherenceof two effective oscillators, as
outlined inRef. [36]. Common approaches to the provision of
stable references include the use of an atomic frequency
standard with good long-term stability, such as commercial
rubidium and cesium clocks, followed by a quartz oscillator
providing superior broadband phase noise. Both long-term
stability and short-term phase noise represent critical sources
of error; analyses have demonstrated that the use of common
lab-grade synthesizers serving as system master clocks can
produce error rates nearing the percent level in less than
100 μs. Such error rates are easily suppressed bymore than 4
orders of magnitude through appropriate selection of the
master clock. In future systemswithmultiplemaster clocks, it
will be essential to ensure that slowly varying drifts between

clocks areminimized tomaintain a fixed laboratory reference
frame for operations [36].

2. Building blocks and expected performance

In the planned QEC scheme, a common step is to map a
syndrome onto an ancilla qubit, read out its state, and
reinitialize the ancilla as well as cool the ion chain. The
dominant source of readout infidelity in both 40Caþ and
88Srþ optical qubits will likely be background counts for
short readout times, which increase the dark and bright
histogram overlap. This can be counteracted by increasing
the photon collection time or efficiency, such that more
photons are collected and the dark and bright histograms
become more separated. Spontaneous decay from the D
states is another source of infidelity for longer readout
times, exceeding 10−4 after roughly 100 μs for 40Caþ and
dominating for very large detection times.
Assuming a reasonable collection efficiency of 0.6% and

a background count rate of 104=s, and considering possible
beam intensities similar to those available for 40Caþ, the
delay incurred in reading out the 88Srþ ancilla will be
100–300 μs with an infidelity of below 10−3. A readout
infidelity of 10−4 in 150 μs for the optical transition in 40Caþ
has been achieved using Bayesian schemes that incorporate
photon arrival times in the state estimate and attempt to
identify spontaneous decays [81]. By increasing the photon
collection efficiency and thus reducing the detection time to
below 20 μs, this will be attainable with a background count
rate of 2 × 103=s and collection efficiency of 3.5%.
After readout, the ion chain can be recooled using

electromagnetically induced transparency (EIT) cooling on
the radial modes [82] and sideband cooling on the bus mode
for multiqubit gates. EIT cooling takes several hundred
microseconds depending on the geometry, ion-level struc-
ture, and initial temperature. The initial temperature depends
strongly on the fluorescence lasers: On resonance, they will
cause significant heating, whereas by red-detuning and by
weakening them, Doppler cooling will occur at the expense
of photon counts. Thus, an optimum may be found between
readout time, readout fidelity, and heating, such that the total
readout and cooling time is minimized.
After EIT cooling, the mean phonon number will already

be below n̄ ¼ 1; thus, few sideband-cooling pulses are
required. Since cooling times will be at least several
hundred microseconds, there is significant time available
for classical computation (determining if and where an
error has occurred) and feedback latency (preparing the
error-correction pulse or pulses) in M-ACTION. If the
chain were cooled only once per several readouts, however,
these classical delays could become the bottleneck.
Computation for a seven-qubit code, even when using
Bayesian readout, should take 5 μs, and feedback latency is
around 50 μs. Ongoing efforts to reduce this will lead to a
latency of 1.5 μs.
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The corrective operation when an error is detected,
which involves a single-qubit rotation on a data qubit, is
an optional step that can be avoided by altering future gates
on that qubit to take the error into account. This requires
more classical computation; however, we do not anticipate
the computation time being a problem for a single logical
qubit. It could, however, result in an increasingly broad tree
of sequences. These must either be precomputed and
preloaded onto the FPGA hardware or loaded onto the
hardware in real time. Preloading the sequences will require
more memory on the hardware and is infeasible beyond
approximately 5–10 feedback cycles, whereas real-time
loading will take up to 1 ms for tens of pulses. A scalable
solution will be real-time loading using either a more
efficient encoding scheme or a high-bandwidth communi-
cation link.

IV. EFFECTIVE ERROR MODELS FOR
ELEMENTARY QEC OPERATIONS IN

TRAPPED IONS

In Sec. VI, we introduce specific trapped-ion protocols to
assess the progress of QEC. In this section, we build on our
previous discussion of the state-of-the-art and future devel-
opments in trapped-ion technology tomodel the noise on the
elementary operations of these QEC protocols by certain
quantum channels. As already noted previously in this
manuscript, several works on QEC use circuit-error models
with a unique quantum channel equally affecting all the
elementary operations of the QEC cycle. In this work, we go
beyond these assumptions and develop a more involved
modelwith several distinct channels, the parameters ofwhich
can be set by microscopic calculations and/or experimental
measurements. This model contains certain simplifications
or limitations, which we comment on in due course.

A. Dephasing channel for idle qubits

During the QEC cycles, there are several operations in
which the internal states of a subset of qubits are not
affected. More specifically, these operations are (i) crystal
reconfiguration, leaving all the qubit states unchanged,
(ii) single-qubit rotations and MS entangling gates, which
leave the spectator qubits unchanged, and (iii) ancillary
qubit measurement and recooling where the data qubits
remain idle. In all of these processes, the idling qubits
suffer mainly dephasing due to their coupling to the
environment, e.g., fluctuating magnetic fields, which can
be modeled by the identity followed by a dephasing
channel acting on the particular subset of m idle qubits
i1; i2;…; im ∈ f1;…; Ng. To simplify the model, we
assume that the noise channel fulfills the i.i.d. criterion;
i.e., it is temporally and spatially uncorrelated. This leads to
the usual dephasing channel as described in Ref. [1] but
applied to the set of idle qubits εdðρÞ ¼ εdi1∘εdi2∘ � � � ∘εdimðρÞ,
where

εdi ðρÞ ¼ ð1 − pdÞρþ pdσ
z
iρσ

z
i ð13Þ

is a Kraus map and pd is the probability for a single phase
flip. It would also be interesting to study spatially corre-
lated dephasing, which does not necessarily imply a faster
decoherence as occurs for GHZ states [33], but it also
enables almost decoherence-free subspaces in certain
codes [15].
One can easily estimate the phase-flip probability by

calculating the time evolution of a single qubit subjected to
a fluctuating shift of the transition frequency, which is
modeled by a stochastic process. Assuming a Markovian
regime, one finds pd ¼ 1

2
ð1 − e−ΓdtiÞ ≈ ðΓd=2ÞtI , where tI

is the time interval where the qubit remains idle, and Γd is
the rate of dephasing. This leads to a dephasing time
T2 ¼ 1=Γd, as measured in Ramsey-interferometry experi-
ments where hXiðtIÞi ¼ hXið0Þie−tI=T2 (see Sec. III B),
which yields pd ¼ tI=2T2.

B. Depolarizing channel for stabilizer mappings

During the QEC cycles, the stabilizer readout is accom-
plished by mapping the syndrome information of the data
qubits onto ancillary qubits. As described below, this can be
accomplished by the combination of two multiqubit MS

gates or by a sequence of two-qubit MS gates. We model the
leading error of this mapping using a depolarizing channel,
as described, for instance, in Ref. [1], after each stabilizer
mapping in the QEC protocol. We have explored three
types of depolarizing channels affecting n active qubits
involved in the MS gates (e.g., n ¼ 5 active qubits for QEC
using multiqubit MS gates, formed by four data and one
ancillary qubit labeled by j1; j2; j3; j4; j5 ∈ f1;…; Ng):

(i) Independent depolarizing noise.—The first error
model consists of independent depolarizing chan-
nels εMSðρÞ ¼ εMS

j1
∘εMS

j2
∘ � � � ∘εMS

jn
ðρÞ acting on each

of the active qubits,

εMS
j ðρÞ ¼ ð1 − pMSÞρþ

pMS

3

X
α∈Λα

σαjρσ
α
j ; ð14Þ

where pMS is the probability for a MS depolarizing
error, and Λα ¼ fx; y; zg. We note that this error
model underestimates the occurrence of multiple-
qubit errors during the entangling gate and can thus
overestimate the correcting power of the QEC.
Therefore, we have also explored other channels.

(ii) Two-qubit depolarizing noise.—Provided that the
N-ion MS gate (4) can be understood as an all-to-all
interaction between qubit pairs and is thus local-
unitary equivalent to applying CNOTs between all
NðN − 1Þ=2 ion pairs, an error model that considers
single- and two-qubit errors with the same error
probability may be more realistic. This will certainly
be the case for the QEC schemes based on sequences
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of five-qubit MS gates, where the noise is described
by the quantum operation

εMSðρÞ ¼ ð1 − pMSÞρþ
pMS

105

X
i∈Λa

X
α∈Λα

σαi ρσ
α
i

þ pMS

105

X
j1;j2∈Λa

X
α;β∈Λα

σαj1σ
β
j2
ρσαj1σ

β
j2
: ð15Þ

Here, pMS is the probability for a MS depolarizing
error, we have introduced the set of n indices for the
active ionsΛa, and the sum over multiple ion indices
excludes coincidences of the pair of indices. For the
five-ion MS gate, local unitary equivalent to 10
CNOTs, with each pair of ions potentially undergoing
15 possible Pauli errors (six single-qubit and nine
two-qubit Pauli operators), this results in the pre-
factor 1=105.

(iii) Multiqubit depolarizing noise.—As a worst-case
scenario for the schemes based on multiqubit MS

gates, we have also explored a model where any
five-qubit error can occur with the same error
probability because of a faulty five-ion MS gate.
This can be described by the quantum operation

εMSðρÞ¼ð1−pMSÞρþ
pMS

1023

×
X
j∈Λa

X
α∈ ~Λα

σαj1σ
β
j2
σγj3σ

κ
j4
σζj5ρσ

α
j1
σβj2σ

γ
j3
σκj4σ

ζ
j5
;

ð16Þ

where pMS is the probability for a MS depolarizing
error to occur, and we have introduced
j ¼ ðj1; j2; j3; j4; j5Þ, and α ¼ ðα; β; γ; κ; ζÞ in
~Λα ¼ f0; x; y; zg. Here, the sum over multiple ion
indices excludes coincidences of any indices; we
have introduced σ0 ¼ I2 as the identity operation;
and the sum over possible Pauli errors excludes the
global identity α ¼ β ¼ γ ¼ κ ¼ ζ ¼ 0 (i.e., no
error), thus giving rise to a total of 45 − 1 ¼ 1023
possible Pauli error configurations.

To estimate how the error probability of the above
depolarizing channels pMS depends on the different exper-
imental parameters,we calculate the state fidelity of the ideal
MS gate followed by each of the depolarizing channels in
Eqs. (14) and (15), F ¼ hΨtjεMSðUMSjΨ0ihΨ0jU†

MSÞjΨti,
where the ideal gate produces a GHZ-type state jΨti ¼
UMS;ϕðπ=2ÞjΨ0i.
For the (i) independent depolarizing channel in

Eq. (14), one obtains F¼ð1−pMSÞ5þ 1
30
ð1−pMSÞ3p2

MSþ
1
15
ð1−pMSÞp4

MS≈1–5pMS for pMS ≪ 1. In this case,
only the processes where no error occurs contribute to
the fidelity at the lowest order in pMS, such that the
error probability is simply pMS ¼ ð1 − F Þ=5. For the

(ii) two-qubit depolarizing channel that includes one-
and two-qubit errors with the same probability, Eq. (15),
one finds F¼1− 95

105
pMS, such that pMS ¼ 105ð1 − F Þ=95.

In this case, processes with no error and two Z-type errors
leave the GHZ state invariant and contribute with the same
order in pMS. Finally, for the (iii) multiqubit depolarizing
channel that includes all five-qubit errors with the same
probability, Eq. (16), one finds F ¼ 1 − 1008

1023
pMS, such that

pMS ¼ 1023ð1 − F Þ=1008. In this case, processes with no
error, and two or four Z-type errors leave the GHZ state
invariant and contribute with the same order in pMS.
The probability of the depolarizing channel can then be

extracted by comparing it to the GHZ infidelity ε ¼ 1 − F
obtained by a microscopic Hamiltonian modeling the
evolution of the trapped-ion MS gate [22]. In this way,
one can include possible sources of noise and experimental
imperfections that lead to evolutions that depart from the
ideal MS gate [22,23]. We now discuss three different
sources of infidelity.
(a) Gate infidelity due to the motional excitations.—The

employed MS gate utilizes a bichromatic laser-ion inter-
action that simultaneously drives the blue and red motional
sidebands corresponding to the c.m. axial mode. This acts
as a bus mode that mediates an all-to-all qubit-qubit
interaction, Eq. (4), capable of generating the aforemen-
tioned GHZ states. The motional excitation of this mode, as
well as the presence of additional vibrational modes of the
ion chain, lead to an infidelity caused by two main sources:
(i) off-resonant couplings to the sidebands of spectator
modes and (ii) fluctuation of the effective Rabi frequency of
the laser-ion coupling due to the motional excitations of bus
and spectator modes, i.e., Debye-Waller factors. If one
assumes, as argued in Sec. III D, that there is a fast
equilibration after ion-reconfiguration operations, resulting
in a thermal vibrational state with a mean phonon number
that increases after each particular crystal reconfiguration
according to Table IV, it is possible to estimate the infidelity
of the N-ion fully entangling MS gate F ¼ 1 − εm as

εm ≈
πNðδ − ωzÞ

2ω2
ztg

0.8ðn̄þ 1Þ

þ π2NðN − 1Þη4
8N2

ð1.2n̄2 þ 1.4n̄Þ; ð17Þ

where ωz is the c.m. axial mode frequency with mean
phonon number n̄, δ is the symmetric detuning of the
bichromatic laser beams with respect to the electronic
transition, tg is the gate time, and η ¼ kL=

ffiffiffiffiffiffiffiffiffiffiffiffi
2mωz

p
is the

single-ion axial Lamb-Dicke parameter. The first term in
this equation represents the infidelity due to unclosed
phase-space trajectories of the spectator modes, whereas
the second one is from the decrease of the Rabi frequency
due to the thermal background of all modes, i.e., the Debye-
Waller factor. Note that, although all the modes of the ion
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crystal participate in the infidelity, the error can be bounded
with quantities that are characterized by the mean phonon
number of the c.m. mode.
In order to apply this error estimate, Eq. (17), to the

different steps of the QEC cycle based on crystal recon-
figuration, we assume that the gate time tgðn̄fÞ after a
number of crystal reconfigurations that increase the mean
phonon number to n̄f is modified with respect to the
optimized gate time tgðn̄0Þ in Table II, where n̄0 ≈ 0 after
laser cooling. This is accomplished by modifying the laser
detuning, such that phase-space trajectories of the c.m.
mode are still closed for the modified time

tgðn̄fÞ ¼ tgð0Þ
�
1þ η2ð2n̄þ 1Þ

N

�
: ð18Þ

Therefore, the gates become slightly slower the higher the
mean phonon number is. Note that this delay will not result
in an appreciable change in the dephasing, Eq. (13), that
idle qubits suffer for each stabilizer readout, and one can
assume that 2tgð0Þ is the dephasing time for idle qubits
during each N-ion stabilizer mapping [see Eq. (13) above].
This motional infidelity εm can become the leading

source of error in the QEC protocol where the ancillary
(readout) and physical ions are of the same species and are
shuttled, merged, split, or rotated during the QEC cycle to
extract the syndrome. Accordingly, recooling of the motion
of the ion crystal via the ancillary ion cannot be exploited,
as the scattered light would perturb the quantum state
encoded in the data qubits. In this situation, the motional
excitation of the ion string resulting from the different
reconfiguration steps can become very large (see Table IV),
yielding a motional infidelity that overcomes other possible
sources of noise.
(b) Gate infidelity due to magnetic-field and laser-

intensity fluctuations.—Another possible source of noise
in the MS gate is caused by fluctuations between the qubit
frequency and the laser frequency, as well as laser-intensity
fluctuations. We model these two sources of noise by
stochastic processes that yield fluctuations of the qubit
frequencies, and of the laser coupling strengths to the
motional sidebands of the MS scheme, respectively. If one
assumes that the time correlations of these processes decay
much faster than the gate time (i.e., Markovian assump-
tions), then the gate infidelity can be expressed as
F ≈ 1 − ðεd þ εIÞ, where εI is the error due to intensity
fluctuations and εd is the dephasing error due to, e.g.,
fluctuating magnetic fields experienced by the qubits
during the gate. Such an error can be approximated by

εd ≈ 2Γdtg
X
i;j

e−jz
0
i−z

0
j j=ξc ; ð19Þ

where Γd is the rate of dephasing leading to a dephasing
time T2 ¼ 1=Γd, z0i are the positions of the ions in the

string, and ξc is a typical length scale over which magnetic-
field fluctuations are correlated; i.e., for ξc ¼ 0, we have
local noise and εd ≈ 2tgN=T2, whereas for ξc ≫ jz01 − z0N j,
we have global magnetic-field fluctuations and εd ≈
2tgN2=T2 would be the dephasing rate affecting a GHZ
state. We note that, for the different mappings of the
syndrome information into the ancilla qubits, the actual
dephasing error will lie between these two limits, and its
particular value will depend on the collective state of the
qubits at the instants of time where the MS gates are applied.
To simplify the description, we consider a conservative,
worst-case scenario and use an error rate εd ≈ 2tgN2=T2

consistent with the values reported in Table II.
Finally, intensity fluctuations during the gate will have

two effects. On the one hand, the time dependence of the
fluctuations can lead to a residual spin-motion entangle-
ment due to imperfect closure of the phase-space trajecto-
ries of the bus c.m. mode. On the other hand, the acquired
phase that depends on the area of the enclosed trajectory
may also differ from the one required to generate the
desired GHZ state. These two sources of error are
accounted for, in corresponding order, by means of the
following expression:

εIn ≈ ΓIntgη2
�
n̄þ 1

2

�
þ ΓIntg

η2ðN − 1Þ
4

: ð20Þ

Here, ΓIn is the rate of intensity fluctuations, obtained
through its zero-frequency power spectral density, and it
sets a typical time scale for the effects of intensity noise
TIn ¼ 1=ΓIn. We adjust this parameter to be consistent with
the fidelities reported in experiments (see Table II).
In the QEC protocols based on two species, we use a

different ion species for the ancillary and data qubits. Thus,
we can exploit the ancillary ion for intermediate sympa-
thetic recooling of the ion crystal. In any case, the
population of vibrational modes remains small prior to
the stabilizer mapping via MS gates. Hence, the (i) error due
to thermal motional excitation in Eq. (17) will not be
leading, but instead, it will contribute, together with other
sources of error. We also consider (ii) dephasing and
(iii) intensity fluctuations during the gate as additional
sources of gate infidelity following Eqs. (19) and (20).
Therefore, the MS-gate infidelity that can be used to extract
the probability of the depolarizing channels corresponds
to ε ¼ εm þ εd þ εI.

C. Depolarizing channel for spectroscopic decoupling

Because of the use of spectroscopic decoupling protocols
(see Sec. III C), in the noise model used in this study,
we do not consider residual errors on the neighboring ions,
and we model the error in this decoupling process
by independent single-qubit depolarizing channels acting
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on each of the qubits being hidden or unhidden, εhðρÞ ¼
εh1∘εh2∘ � � � ∘εhmðρÞ, where

εhðρÞ ¼ ð1 − phÞρþ
ph

3

X
α∈Λα

σαhρσ
α
h; ð21Þ

and ph is the error probability. Taking the current and
expected single-qubit gate infidelities ε1 reported in
Table II into account, we can estimate the probability of
the depolarizing channel for spectroscopic decoupling
as ph ¼ 9ε1.

D. Bit-flip channel for measurement and reset

The QEC cycles also require a measurement and reset of
the ancillary qubit. Faulty measurement or reset can be
modeled by a bit-flip channel, as introduced in Ref. [1], that
acts on the set of na ancillary qubits fa1; a2; � � �anag ∈
f1;…; Ng, namely, εbðρÞ ¼ εa1∘εa2∘ � � � ∘εana ðρÞ, where

εaðρÞ ¼ ð1 − pbÞρþ pbσ
x
aρσ

x
a; ð22Þ

with pb the probability for a bit-flip error to occur. We
estimate the value of this probability through the infidelities
for measurement pb ¼ εmeas and qubit reset pb ¼ εres
reported in Table II.

V. TRAPPED-ION TOPOLOGICAL QEC
AND FAULT TOLERANCE

A. Basic properties of the seven-qubit color code

We focus on the development of trapped-ion QEC
protocols to implement a logical qubit based on the
seven-qubit color code, assessing their potential to be
useful for QEC by the operational measure described in
Sec. II. The seven-qubit code constitutes an enabling
building block of two main routes towards fault-tolerant
quantum computation (FTQC). On the one hand, it is
equivalent (up to local unitaries) to the seven-qubit Steane
code [1,5] and can, as such, be used as an elementary unit to
achieve more and more robust logical qubits by means of
concatenation. On the other hand, it constitutes the small-
est, though functionally complete, representative of the
class of 2D topological color codes [8], for which logical
qubits of increasing robustness can be achieved by using
codes defined in lattices of increasing size. We note that
topological codes typically display higher error thresholds
in comparison to concatenated ones, thus offering a
practical and very promising route towards large-scale
QEC.
One of the goals of our study is the identification of the

accuracy requirements of the experimental building blocks
used to realize complete QEC cycles on the logical qubit.
For instance, a series of limitations on the experimental
approach used in Ref. [15], such as a large overhead in
spectroscopic decoupling operations, has already been

identified. By a numerical analysis of the operational
measures in Eqs. (2) and (3), we aim at deriving quanti-
tative estimates on the experimental requirements to make a
QEC based on this protocol beneficial. Moreover, the
measure will also allow us to benchmark the performance
of other protocols that avoid spectroscopic decoupling. In
this sense, exploring a variety of protocols for this code is
an ideal test bed for the development of key tools, which
would be equally required in the implementation of other
small- and medium-size quantum codes, such as the nine-
qubit Bacon-Shor code (see, e.g., Ref. [83]) or the rotated
nine-qubit surface code of distance 3 [84].
Let us briefly summarize a few central properties of the

seven-qubit color code that are relevant for the QEC
protocols developed and studied below. This code allows
one to store and manipulate a k ¼ 1 logical qubit, which is
redundantly encoded in entangled states distributed over
n ¼ 7 physical qubits. The code has a logical distance of
d ¼ 3 and thus allows one to detect and correct at least
t ¼ 1 arbitrary error (phase and/or bit-flip error) on any of
the seven physical qubits. The code belongs to the family of
CSS codes [4,5] and thus allows one to independently
detect and correct bit- and phase-flip errors. Errors are
identified by measuring the corresponding error syndrome,
which is deduced from the sets of three four-qubit Z- and
X-type stabilizer operators associated with the three
plaquettes of the code (see Fig. 3). If we denote the set
of Pauli matrices of the physical qubits as fXi ¼ σxi ;
Yi ¼ σyi ; Zi ¼ σzigni¼1, the stabilizers are

Sð1Þx ¼X1X2X3X4; Sð2Þx ¼X2X3X5X6; Sð3Þx ¼X3X4X6X7;

Sð1Þz ¼ Z1Z2Z3Z4; Sð2Þz ¼ Z2Z3Z5Z6; Sð3Þz ¼ Z3Z4Z6Z7:

ð23Þ

FIG. 3. Scheme of the seven-qubit color code: One logical qubit
is embedded in seven data qubits forming a 2D triangular color-
code structure of three plaquettes. The code space is defined via Sxi
and Szi stabilizer operators (generators), each acting on a plaquette
that involves four physical qubits. Logical operators such as
ZL ¼ Q

iZi, and similarly the other logical single-qubit Clifford-
gate generators XL≔

Q
iXi,HL ≔

Q
iHi ¼

Q
ið1=

ffiffiffi
2

p ÞðXi þ ZiÞ,
and SL ≔

Q
iS

†
i ¼

Q
ie

−iðπ=4Þð1−ZiÞ, can be realized in a trans-
versal, i.e., bit-wise, way.
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Logical states are encoded in the code space, which is
defined as the simultaneous eigenspace of eigenvalueþ1 of
the set of all s ¼ 6 stabilizer generators (23), such that k ¼
n − s ¼ 1 coincides with the number of encoded qubits.
Logical qubits employing larger distance codes, and thus
allowing for the correction of multiple errors, can be
constructed by encoding a logical qubit in larger lattice
structures involving more physical qubits [8]. An interest-
ing representative of this procedure is the distance-5 color
code (of 4-8-8 type [8]), which encodes a single logical
qubit in 17 physical qubits arranged on a 2D lattice
structure of eight plaquettes.
A distinguishing feature, as compared, e.g., to Kitaev’s

surface code [85,86], is that the color code [8] permits a
transversal realization of the entire group of Clifford-
gate operations [1]. Thus, the realization of a logical
Clifford gate on the logical qubit amounts to a bit-wise
application of the corresponding gates on all physical
qubits XL ¼ Q

iXi, ZL ¼ Q
iZi and, similarly, the other

logical single-qubit Clifford-gate operations, such as the
Hadamard HL and K gate KL. This property not only
facilitates the practical implementation of logical gate
operations, but, more crucially, it also prevents an uncon-
trolled propagation of errors through the quantum hardware
—a central requirement to ultimately reach the FTQC
regime. A universal set of logical gate operations can be
achieved by complementing the Clifford operations with a
single non-Clifford gate. For 2D color codes such an
additional gate operation, e.g., the T gate [1] by magic-
state injection [87], involves a quantum-state teleportation
process between the register of system qubits and an
ancilla qubit.

B. Trapped-ion alternatives to CNOT-based QEC

In this section, we develop trapped-ion alternatives to
CNOT-based schemes for the readout of the four-qubit
stabilizer operators of the color code, Eq. (23). This is
the essential operation in a QEC cycle, which consists of
measuring all X- and Z-type stabilizers and performing
conditional operations on the physical qubits. These read-
out schemes are also essential to encode a particular qubit
state: Starting from ⊗i j0i, one would measure all of the
X-type stabilizers, perform conditional operations to project
onto the code subspace, and apply a single-qubit rotation at
the logical level followed by the required QEC cycles.
In this section, we start by describing rules for the

propagation of errors in circuits involving MS gates. These
rules are used to understand the properties of schemes that
work with a single ancillary ion (i.e., non-fault-tolerant
schemes) and use either five-ion [Eq. (4)] or two-ion
[Eq. (8)] MS entangling gates. The motivation to study
these schemes is to gain insight on how important it is to
avoid the direct occurrence of multiqubit errors in QEC
protocols [15]. By using five or four ancillary qubits and
sequences of two-ion MS gates, it is also possible to

implement a trapped-ion version of the CNOT-based
schemes for fault-tolerant stabilizer readout by
DiVincenzo-Shor (DVS) [25] and DiVincenzo-Aliferis
(DVA) [26], respectively. The main goal of exploring these
schemes is to assess under which conditions, and in which
experimental parameter regimes, such fault-tolerant proto-
cols might offer advantages in reaching the breakeven point
for useful QEC. Let us remark that the techniques presented
here can easily be generalized to any other stabilizer of a
different QEC code. Therefore, they will be an essential
ingredient of future trapped-ion efforts for QEC.

1. MS-gate error propagation

For the construction of fault-tolerant quantum circuits, it
is important to understand how errors propagate from one
qubit to others by means of the entangling gate operations.
The circuit identities in the left panel of Fig. 4 show thewell-
known propagation of X- and Z-type single-qubit errors
through CNOT gates. Analogous error-propagation proper-
ties can be derived for fully entangling two-ion X2

i;jðπ=2Þ
and Y2

i;jðπ=2Þ MS gates [Eq. (8)] (see right panel of Fig. 4).
Errors of the same type as the basis of the MS gate commute
with the gate operation, e.g., X2

i;jðπ=2ÞXi ¼ XiX2
i;jðπ=2Þ,

and thus do not propagate to the second qubit. On the
contrary, errors of a type different from the MS-gate basis,
e.g., aZi occurring before a MS gateX2

i;jðπ=2Þ, are converted
into an error of the type that is complementary to the
error type, i.e., into a Yi error in this case. In addition,
this triggers the creation of an error on the second qubit
involved in the gate, i.e., here an Xj error. This can be seen

X
=

X

X

X
=

X

Z
=

Z

Z
=

Z

Z

xx
X X

= xx

xx
Y Z

= xx
X

xx
Z Y

= xx
X

yy
X Z

= yy

yy
Y Y

= yy

yy
Z X

= yy
Y

Y

Error propagation 
through CNOT gates

Error propagation 
 through MS gates

FIG. 4. Error propagation through CNOT and MS gates. (Left
panel) An incoming Pauli error of the X (Z) type at the control
(target) qubit propagates onto a target (control) error of the same
X (Z) type after a CNOT gate. Conversely, an incoming Pauli error
of the Z (X) type at the control (target) qubit does not propagate
into the target (control) qubit. (Right panel) Error propagation
through an MS gate up to phase factors irrelevant for fault-tolerant
arguments. The left column corresponds to XX-type MS gates
X2
i;j, whereas the right column describes YY-type MS gates Y2

i;j.
Pauli errors that anticommute with the MS-gate basis are rotated
and propagated to the other qubit. Pauli errors in the same MS-
gate basis do not propagate.
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from the identities X2
i;jðπ=2ÞZi¼ð1= ffiffiffi

2
p ÞðI−iXiXjÞZi¼

iZiXiXjð1=
ffiffiffi
2

p ÞðI−iXiXjÞ¼−YiXjX2
i;jðπ=2Þ, which, in an

analogous fashion, also hold for Y-type MS gates and the
other types of errors. Note that, in contrast to the CNOT-gate
operation, the MS gate is symmetric in the indices of
the two qubits; i.e., these propagation rules hold equally
for errors arriving on the second qubit of the gate,
e.g., Y2

i;jðπ=2ÞZj ¼ YiXjY2
i;jðπ=2Þ.

2. Non-fault-tolerant stabilizer readout

In this section, we start by reviewing the scheme for
stabilizer readout of the seven-qubit code [15], which uses a
single-ancilla ion and multiqubit MS gates. We then extend
this scheme to a protocol that is based on two-ion MS gates,
which will be used to explore how important it is to avoid
the direct occurrence of multiqubit errors from the multi-
ion MS gates.

(i) Multiqubit MS stabilizer readout.—The readout of
the stabilizers [Eq. (23)] can be accomplished by
mapping the syndrome information of the data
qubits onto a single ancillary qubit using two global
five-ion MS gates [Eq. (4)] and an intermediate
single-qubit rotation via a local ac-Stark shift
[Eq. (6)] since

UMS;0ð−π=2ÞURj;zð−π=2ÞUMS;0ðπ=2Þ
¼ eiðπ=4ÞZjΠi≠jXi ; ð24Þ

as shown in Ref. [24]. By applying this sequence to
the ancillary ion and a particular subset of four
qubits fj1; j2; j3; j4g belonging to a particular
plaquette stabilizer [Eq. (23)], one can map all

stabilizers fSð1Þα ; Sð2Þα ; Sð3Þα gα¼x;z onto the ancillary
qubit. For instance, for the first X-type stabilizer,
one finds UMS;0ð−π=2ÞUR0;zð−π=2ÞUMS;0ðπ=2Þ ¼
expðiðπ=4ÞZ0S

ð1Þ
x Þ. The stabilizer information can

then be measured by performing a Ramsey-type
sequence on the ancillary qubit (see Fig. 5). The
ancilla qubit is initialized in j0i0, and after the pulse
UR0;ϕ ¼ UR;ϕðθ=2ÞUR0;zðπÞUR;ϕð−θ=2ÞUR0;zð−πÞ,
one maps the stabilizer information into the
ancilla using the above scheme. Finally, after apply-
ing the pulse on the ancilla qubit UR0;ϕþπ=2 ¼
UR;ϕþπ=2ðθ=2ÞUR0;zðπÞUR;ϕþπ=2ð−θ=2ÞUR0;zð−πÞ,
one measures it in the computational basis Mz

0,
obtaining �1 when the ancilla qubit is found in
state j0i0 or j1i0, respectively. These outcomes
correspond to the �1 eigenvalue information of
the corresponding stabilizer.

(ii) Two-qubit MS stabilizer readout.—Let us now
introduce a circuit for the readout of a four-qubit
stabilizer based on two-ion MS gates. Such a circuit
could be constructed by compiling the known

circuits based on four CNOTs, using the fact that a
two-ion MS gate is equivalent to a two-qubit CNOT,
up to local unitary operations [88]. Alternatively,
one can construct such circuits that minimize the
building blocks by noticing that

Uði;jÞ
x ≔ jxþihxþji ⊗ Ij þ jx−ihx−ji ⊗ iXj

¼ Xj

�
−π
2

�
X2
i;j

�
π

2

�
;

Uði;jÞ
y ≔ jyþihyþji ⊗ Ij þ jy−ihy−ji ⊗ iYj

¼ Yj

�
−π
2

�
Y2
i;j

�
π

2

�
; ð25Þ

where jx�i ¼ ðj0i � j1iÞ= ffiffiffi
2

p
and jy�i ¼

ðj0i � ij1iÞ= ffiffiffi
2

p
. This identity shows that a combi-

nation of a two-qubit MS gate between an ancillary-
data qubit pair ð0; jÞ and a single-qubit π=2 pulse on
the data qubit j acts essentially as a rotated version
of a CNOT gate. Thus, by sequentially applying this
pair of operations between the ancilla qubit and the
four plaquette qubits, we realize the mapping of

certain stabilizers SðmÞ
x ¼ Xj1Xj2Xj3Xj4 onto the

ancilla qubit. Considering that the ancilla qubit is
initially in j0i0, while the data qubits are in an
arbitrary state jψi, we find

FIG. 5. Stabilizer readout based on multiqubit MS gates: The
yellow box contains two five-ion MS gates, interspersed by a
single-qubit rotation of the ancillary qubit around the Z axis. This
sequence realizes a coherent mapping of the þ1= − 1 eigenvalue
information of X-type stabilizers [Eq. (23)] onto two orthogonal
states of the ancilla qubit (red dot), initially prepared in a
superposition state on the equator of the Bloch sphere. Note
that the basis of the initial rotation UR;ϕðπ=2Þ required to prepare
the ancilla qubit in this way, specified by the angle ϕ, can be
arbitrary as long as the final rotation UR;ϕþπ=2ðπ=2Þ of the ancilla
is shifted by π=2. In other words, the relative phase between these
two single-qubit pulses on the ancilla needs to be well defined,
but there does not need to be a fixed phase reference between the
addressed laser, driving resonant single-qubit rotations, and the
lasers driving global rotations and the entangling MS gate. For
the readout of Z-type stabilizers [Eq. (23)], the data qubits must
be rotated via Yð�π=2Þ at the beginning and at the end of
the mapping, to effectively switch between X- and Z-type
stabilizers.
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Y4
n¼1

Uð0;jnÞ
x j0i0jψi ¼ j0i0

1

2
ð1þ SðmÞ

x Þjψi

þ j1i0
1

2
ð1 − SðmÞ

x Þjψi: ð26Þ

Hence, the two possible values of the stabilizer �1
can be directly inferred by measuring the ancilla
qubitMz

0 in the Z basis, such that the initial and final
Ramsey pulses of the multiqubit readout of Fig. 5 are
not required any longer. Similarly, Z-type stabilizer
operators can be measured by interchanging the
basis of the data (plaquette) qubits from X to Z
before and after applying the above sequence of
gates, Yjðπ=2ÞXjYjð−π=2Þ ¼ −Zj. The resulting
circuits for measuring X- and Z-type stabilizer
operators are shown in Fig. 6.

Note, however, that using a single ancillary qubit does
not allow for a fault-tolerant measurement of the stabilizers
for the seven-qubit code. The reason for this is that a single-
qubit error can propagate to the set of data qubits and lead
to two errors therein. In the subsequent round of QEC,
these will then lead to a logical error (see Fig. 7 for details).
Similar effects would occur for the previous scheme based
on five-ion MS gates, also forbidding a fault-tolerant
behavior.

3. Fault-tolerant DiVincenzo-Shor stabilizer readout
with two-ion MS gates

In this section, we develop a fault-tolerant version of the
stabilizer readout using two-ionMSgates. Let us consider the
CNOT-based approach by DVS [25], in which a four-qubit
ancillaGHZ-type state (“cat state”) is prepared, verified, and
subsequently coupled transversally, and thus fault tolerantly,

to the respective four data qubits. This scheme requires,
besides the seven data qubits of the color code, five addi-
tional ancilla qubits: four for the ancilla GHZ state (indices
a1, a2, a3, and a4) and one extra ancilla qubit (a0) for
verifying the GHZ state in a measurement. The preparation,
verification, transversal coupling, and decoding for the
readout of a single stabilizer can be accomplished by 12
CNOT gates and a couple of Hadamard gates. Since the CNOT
for two ion qubits in a larger register can be constructed
using a single MS gate and four single-qubit rotations
Yanð−π=2ÞXanð−π=2ÞXjnð−π=2ÞX2

an;jn
ðπ=2ÞYan ðπ=2Þ ¼

eiπ=4ðj0ih0jan ⊗ Ijn þ j1ih1jan ⊗ XjnÞ, the straightforward
translation of the DVS protocol onto a trapped-ion hardware
would require 12 MS gates and 50 single-qubit rotations. Let
us now discuss, step by step, an alternative MS-based
approach that reduces the total number of gates (see
Figs. 8 and 9).

(i) Preparation of the ancilla GHZ state.—The four-
qubit GHZ state can be prepared by a sequence of
two-ion XX and YY MS gates acting on the ancilla
qubits initially prepared in jψ0i ¼ j0a1 ; 0a2 ; 0a3 ; 0a4i.
A single XX MS gate leads to a Bell state of the
ancilla qubits a1,a2, rewritten as X2

a1;a2ðπ=2Þjψ0i¼
ð1= ffiffiffi

2
p Þðjxþia1 jy−ia2þjx−ia1 jyþia2Þj0a3 ;0a4i≕ jψ1i.

A subsequent YY entangling gate applied to a2 and
a3 extends this state into a three-qubit GHZ-type
state, namely, Y2

a2;a3ðπ=2Þjψ1i ¼ ð1= ffiffiffi
2

p Þðjxþia1
jy−ia2 jx−ia3 þ jx−ia1 jyþia2 jxþia3Þj0a4i ≕ jψ2i. Fi-
nally, a X-type MS gate on a3 and a4 produces a
GHZ-type state X2

a3;a4ðπ=2Þjψ2i ≕ jψ3i, where we
have introduced

FIG. 6. Stabilizer readout based on sequential two-qubit MS

gates: X-type (α ¼ x) and Z-type (α ¼ z) stabilizer readout
circuits, using sequential two-ion MS X2

0;j gates [Eq. (8)], depicted
by solid lines with black dots between the single ancilla qubit and
each of the data qubits involved in a particular stabilizer, and with
an XX label that defines the basis of the entangling gate [Eq. (4)].
The MS gates have to be combined with single-qubit rotations
Xjðπ=2Þ; Yjð�π=2Þ on the data qubits [Eq, (25)] to achieve the
stabilizer mapping [Eq. (26)]. The measurement of the ancillary
qubit in the computational basis is denoted as Mz

0.

(a) (b)

(c) (d)

FIG. 7. Non-fault tolerance of single-ancilla MS-based stabi-
lizer readout: Illustration of an error event, in which a single
phase-flip error Z on the ancilla qubit occurs between the second
and the third MS gates (a). This error propagates into the data
qubit layer (b) after the third MS gate, where it results in two bit
single-qubit flip errors on the data qubits (c). These two errors
correspond ultimately to a logical bit-flip error (d) that cannot be
corrected by the code.
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jψ3i ¼
1ffiffiffi
2

p ðjxþia1 jy−ia2 jx−ia3 jyþia4
þ jx−ia1 jyþia2 jxþia3 jy−ia4Þ; ð27Þ

which can be converted into a standard GHZ-type
state after its verification.

(ii) Verification of the GHZ state.—The GHZ-type state
jψ3i [Eq. (27)] can be verified by coupling the first
a1 and fourth a4 ancilla qubits to the verification
ancilla qubit a0 via X- and Y-type MS gates, which,
together with local unitary rotations on the verifi-

cation qubit, yield the operationsUða1;a0Þ
x andUða4;a0Þ

y

in Eq. (25), respectively. The expressions (25) show

that, under these two operations, the ancilla verifi-
cation qubit initially prepared in j0ia0 is either not
flipped at all (i.e., first component of the GHZ state
jψi3) or flipped twice (i.e., second component of the
GHZ state jψ3i), gaining an additional phase shift
that can be compensated with a local Z rotation.
Therefore, for a perfect preparation of the GHZ-type

state Uða4;a0Þ
y Za0ð−π=2ÞUða1;a0Þ

x j0a0ijψ3i¼j0a0ijψ3i,
and the verification qubit should ideally end up in
j0ia0 , which can be checked by measuringMz

0 ¼ þ1

in the computational basis.
The state jψ3i is finally converted by local

Z rotations into the desired GHZ state
Za2ðπ=2ÞZa3ðπÞZa4ð−π=2Þjψ3i ¼ jGHZi, where
we have introduced

jGHZi ¼ 1ffiffiffi
2

p ðjxþ; xþ; xþ; xþi þ jx−; x−; x−; x−iÞ;

ð28Þ

which will be coupled transversally to the data
qubits. The circuit for the MS-based scheme used
for the preparation as well as verification of the
ancilla GHZ state is shown in Fig. 8.

(iii) Coupling of the ancilla GHZ state to the data
qubits.—To realize the readout of anX-type stabilizer
operator, the verified four-qubit ancilla GHZ state is
then coupled transversally to the corresponding four
data qubits. Again, using the operators in Eq. (25),
it can be shown that the sequence of pairwise

unitaries Uð4Þ
x ¼Q

4
n¼1U

ðan;jnÞ
x leads to jψ4i¼

Uð4Þ
x jGHZijψi¼ð1= ffiffiffi

2
p Þðjxþ;xþ;xþ;xþijψiþjx−;x−;

x−;x−iSðmÞ
x jψiÞ, where we have introduced an arbi-

trary basis state of the four data qubits jψi.
Accordingly, these sequential operations
map the �1 eigenvalue information of a stabilizer

SðmÞ
x ¼ Xj1Xj2Xj3Xj4 , and thus part of the error

syndrome, onto the relative phase of the
ancillas jψ4i ¼ ð1= ffiffiffi

2
p Þðjxþ; xþ; xþ; xþi � jx−;

x−; x−; x−iÞjψi. This relative phase ofþ1 or −1 will
result in even or odd parity of the combined outcome
ðMz

1;M
z
2;M

z
3;M

z
4Þ of a subsequent measurement of

the four ancilla qubits in the Z basis as shown in
Fig. 9. In this figure, we also show the additional local
rotations thatmust be performed for themeasurement
of Z-type stabilizers. As customary for stabilizer
codes, the same circuit can be used as a building block
to prepare the state of the encoded qubit.

To demonstrate the fault-tolerant nature of the con-
structed circuit, we must show that, if at most a single
error (single-qubit error, two-qubit gate error, or measure-
ment error) occurs anywhere in the circuit, it will not result
in an uncorrectable error on the data qubits that would yield

FIG. 9. MS-based circuit for transversal coupling in the

DiVincenzo-Shor scheme: The stabilizer SðnÞα information is
encoded in the relative phase of the ancilla GHZ state
ð1= ffiffiffi

2
p Þðjxþxþxþxþi � jx−x−x−x−iÞ by a sequence of two-ion

MS gates and local rotations (25). This relative phase is revealed
by the even or odd parity of the Z-basis measurements of the four
ancilla qubits.

FIG. 8. MS-based circuit for preparation and verification of a
GHZ state in the DiVincenzo-Shor scheme: The first three MS
gates create a four-qubit GHZ state, which is, up to single-
qubit Z rotations, equivalent to the desired GHZ state
ð1= ffiffiffi

2
p Þðjxþ; xþ; xþ; xþi þ jx−; x−; x−; x−iÞ. The state is verified

by coupling it via two additional MS gates involving the first and
the fourth ancilla qubit to a verification qubit. Note that the
Z-type rotation on the ancilla verification qubit is incorporated to
remove a relative phase in the GHZ state. Some parts of the
circuit can be executed in parallel, such as part of the verification
circuit, while the GHZ state is still being built up.
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a logical error. Note that X errors resulting at the output of
the circuit are not dangerous, as they can only result in a
wrong relative sign of the GHZ state, which is later coupled
to the data qubits. This can ultimately result in stabilizer
measurement errors. Such stabilizer measurement errors are
taken care of by applying several rounds (up to three) of
readout to reliably decode the error syndrome. With respect
to the fault tolerance of the circuit, the key point is that such
X errors never propagate to data qubits since they commute
with the XX MS gates used during the coupling stage, both
for X- and Z-type stabilizer readout.
In contrast, undetected phase-flip errors (Z) generated

during the preparation and verification of the GHZ state in
Fig. 8 will propagate to the data qubit layer during the
coupling step in Fig. 9, resulting in bit-flip errors (X). If
two bit-flip errors are introduced into the code, this will
result in an uncorrectable logical error. However, the
preparation and verification circuit is constructed in such
a way that any combination of two phase-flip errors is
detectable, as it will necessarily result in an Mz

0 ¼ −1
measurement of the ancilla verification qubit a0. If this is
the case, the GHZ state must be discarded, and another
attempt is made at preparing and verifying the required
ancilla GHZ state. It is tedious but straightforward to show
that all dangerous two-qubit phase-flip errors that can
affect the data qubits are equivalent to a Z3Z4 error and
will be detected in the verification step through the
outcome Mz

0 ¼ −1. Note that a Z1Z2 error is equivalent
to a Z3Z4 error, as the resulting two bit-flip errors in the
code are equivalent up to an Sx stabilizer. Three-qubit
phase-flip errors, e.g., Z2Z3Z4, are equivalent to a single
phase-flip error Z1 using the same argument, which
propagates to the data layer but only results in a single
X1 bit-flip error. This is an allowed process, as single-
qubit errors will be picked up and corrected for in the next
QEC round to leading order.

4. Fault-tolerant DiVincenzo-Aliferis stabilizer
readout with two-ion MS gates

In this section, we develop a fault-tolerant MS-based
version of the DVA approach [26], which was originally
introduced in terms of CNOT gates. Similar to the DVS
scheme discussed above, an ancilla GHZ state (28) is
initially prepared by a sequence of MS gates. The main
difference of the DVA protocol is that its verification is
postponed until the end of the readout step. Hence, the
GHZ state is coupled transversally to the data qubits, after
which the ancilla state is decoded and measured to obtain
the stabilizer information. Importantly, the decoding cir-
cuit is constructed in such a way that it also allows one to
unambiguously detect the occurrence of two single-qubit
errors that have propagated to the data qubits, potentially
causing a logical error. If such a situation is detected, the
corresponding two-qubit error-correction operation is

either physically applied to the data qubits or used on a
software level to update the Pauli frame.
DiVincenzo and Aliferis argue that, by postponing the

verification step involving measurements to the end, this
scheme can be highly beneficial and avoid bottlenecks
when the measurements of qubits are much slower than
gate operations [26], which is typically the case in trapped-
ion hardware (see Tables II and IV). Furthermore, only four
ancilla qubits are needed, as compared to the five needed
for the DVS scheme of Fig. 8. Another nice feature is that
the verification is not of a stochastic nature, which can
considerably simplify the time control and synchronization
in a larger QEC protocol. Previous studies have aimed at a
comparison of DVS and DVA CNOT-based schemes for the
Steane code in a trapped-ion architecture [89]. Here, we
develop similar schemes based on two-ion MS gates and
take into account the specific architectural constraints of
our experimental system.

(i) DiVincenzo-Aliferis QEC based on CNOT gates.—
Figure 10 shows the standard circuit based on CNOT

gates for the fault-tolerant measurement of a four-
qubit stabilizer. If no error occurs at all, the
measurementMx

2 in the X basis of the second ancilla
qubit, which was initially prepared in jxþia2 ,
will reveal the desired �1 stabilizer information
after decoding. Additionally, the remaining ancilla
qubits (“check qubits”) will end up in the state j0ian
and yield an Mz

1 ¼ þ1, Mz
3 ¼ þ1, and Mz

4 ¼ þ1

outcome. For this circuit, it can be shown that all
dangerous two-qubit errors on the ancilla qubits that
propagate to the data qubits, and would induce a
logical error, are equivalent to an Xa3Xa4 error. This
error, which could result, e.g., from a bit-flip error
before the CNOT gate involving ancilla qubits a3 and
a4 during the GHZ-state preparation (encoding),
would propagate through two of the CNOT gates in

Ancilla encoding Decoding

Data 
qubits

Coupliing

Mz
4

Mz
1

Mx
2

Mz
3

FIG. 10. CNOT-based circuit for DiVincenzo-Aliferis-type QEC:
This circuit involves the preparation of an ancilla four-qubit GHZ
state by CNOT gates, its transversal coupling to the data qubit
layer, the ancilla state decoding, and the measurements of the
ancillas.
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the coupling step to the j3 and fourth j4 qubits. Note,
however, that the circuit is constructed in such a way
that these two errors, Xa3Xa4 , propagate among the
ancilla qubits during the decoding stage, causing a
bit flip on all three ancilla check qubits and thus
yielding Mz

1 ¼ −1, Mz
3 ¼ −1, and Mz

4 ¼ −1. One
can finally show that this outcome on the check
ancillas is uniquely associated with the occurrence
of such an Xa3Xa4 error. In other words, any single
error on a data qubit occurring during the decoding
circuit cannot cause the same outcome and thus
cannot be confused with the Xa3Xa4 error. Therefore,
if the ð−1;−1;−1Þ outcome is obtained, one can
correct the two errors by applying Xj3Xj4 to the data
qubits, be it physically or on a software book-
keeping level.

(ii) DiVincenzo-Aliferis QEC based on MS gates.—
Figure 11 displays the detailed circuit for a fault-
tolerant DiVincenzo-Aliferis-type stabilizer meas-
urement based on two-ion MS gates. The encoding of
the four ancilla qubits, i.e., the preparation of the
four-qubit GHZ state [see Eq. (28)] by three two-ion
MS gates followed by three local Z-type rotations,
occurs in the same way as for the DVS scheme, as
discussed in Sec. V B 3. Similarly, the coupling to
the data qubits takes place transversally by a series
of four XX MS gates and four local X rotations on the

data qubits. Before the decoding step, the four
ancilla qubits are ideally (if no error has occurred)
in the state ð1= ffiffiffi

2
p Þðjxþxþxþxþi � jx−x−x−x−iÞ,

depending on whether the data qubits are in a þ1
or −1 eigenstate of the measured stabilizer. Under
the two Z rotations of Fig. 11, this state is trans-
formed into Za2ðπ=2ÞZa4ðπ=2Þð1=

ffiffiffi
2

p Þðjxþia1 jxþ
ia2 jxþia3 jxþia4 � jx−ia1 jx−ia2 jx−ia3 jx−ia4Þ ≕ j ~ψ3i,
which is a locally equivalent GHZ-type state

j ~ψ3i ¼
1ffiffiffi
2

p ðjxþia1 jyþia2 jxþia3 jyþia4
� jx−ia1 jy−ia2 jx−ia3 jy−ia4Þ: ð29Þ

From this state, it can be readily seen that the
subsequent X-type MS gate on ancillas a1, a4 and
the Y-type MS gate on ancillas a2, a3 decouple the
third and fourth qubits, leaving the first two ancilla
qubits in one of two possible Bell-type states
Y2
a2;a3ðπ=2ÞX2

a1;a4ðπ=2Þj ~ψ3i ¼ jB�i⊗ j1ia3 ⊗ j0ia4 ,
where

jB�i ¼
1ffiffiffi
2

p ðjxþia1 jyþia2 ∓ jx−ia1 jy−ia2Þ: ð30Þ

Let us now discuss how to access the stabilizer
eigenvalue information, simultaneously tracking possible
dangerous errors. The first two ancilla qubits being in the
Bell-type state [Eq. (30)] are measured, revealing the �1

FIG. 11. MS-based circuit for DiVincenzo-Aliferis-type QEC:
Initially, a sequence of three two-ion MS gates and local Z
rotations is used to prepare the ancilla jGHZi [see Eq. (28)]. This
state is subsequently coupled transversally by four X-type MS

gates to the data qubits, thereby mapping the Sx stabilizer
eigenvalue information onto the relative phase of the GHZ
state. The decoding circuit, formed by local Z rotations and
two two-ion MS gates, is constructed in such a way that a harmful
two-qubit error, which has propagated to the code layer, is
unambiguously signaled by the Mz

3 ¼ þ1;Mz
4 ¼ −1 measure-

ment outcome of the third and fourth ancilla qubits. The
measurement of Z-type stabilizers (α ¼ z) is almost identical,
also introducing Y rotations of the four data qubits before and
after applying the four X-type MS gates of the coupling step.

(a) (b)

(d)(c)

FIG. 12. Dangerous error propagation during the encoding step
of the DiVincenzo-Aliferis-type scheme: Subfigures (a)–(d) illus-
trate how a single phase-flip error Za3 , occurring after the YY MS

gate of the encoding step, results in two phase-flip errors Za3Za4
that feed into the data qubits. Note that in the last step [from (c) to
(d)], we have made use of the fact that a two-qubit Ya3Ya4 error is
equivalent toZa3Za4 . This can be seen, e.g., by recognizing that the
Ya3Ya4 error corresponds to simultaneous bit- and phase-flip errors
on both qubits, Ya3Ya4 ≡ Za3Za4Xa3Xa4 , and that Xa3Xa4 leaves

the ancilla GHZ state ð1= ffiffiffi
2

p Þðjxþxþxþxþi þ jx−x−x−x−iÞ
invariant.
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stabilizer eigenvalue by the odd or even parity of the
outcome ðMz

1;M
z
2Þ. The third and fourth ancilla qubits

act as checks and are expected to yield Mz
3 ¼ −1 and

Mz
4 ¼ þ1 in the ideal case without any errors. Similar to

the case of the DVS scheme discussed above, it can be
shown that all dangerous two-qubit errors in the circuit of
Fig. 11 are equivalent to a Za3Za4 error at the end of the
encoding circuit. One example of such dangerous error
histories is shown in Figs. 12–14 for the encoding,
transversal coupling, and decoding steps of the DVA-
type scheme, respectively. As shown in these figures,
this type of Za3Za4 error (see Fig. 12), which has
propagated to two Xj3Xj4 errors in the code layer (see
Fig. 13), is unambiguously signaled by the Mz

3 ¼ þ1;
Mz

4 ¼ −1 outcome of the third and fourth ancilla qubits
(see Fig. 14).

VI. TRAPPED-ION PROTOCOLS TO ASSESS THE
BREAKEVEN POINT FOR BENEFICIAL QEC

Based on the description of the experimental capabilities
in Sec. III, the development of an effective error model
composed of different quantum channels in Sec. IV, and the

trapped-ion toolbox for QEC in Sec. V, we can now present
the different trapped-ion protocols to assess the breakeven
point for beneficial QEC [Eqs. (2) and (3)] in the seven-
qubit color code. This code, being equivalent to the seven-
qubit Steane code [5], has been subjected to a series of
studies assessing its QEC performance and error thresholds
(we refer the reader to Ref. [90] for a comparative study of
this code and other small-scale QEC codes). Depending on
the modeling of the noise, typical error thresholds lie
around the 10−4 level [90,91]. Additionally, we remark that
previous work has also explored the performance of this
code in a trapped-ion architecture [89], considering CNOT-
gate and shuttling-based protocols in a two-dimensional
array of coupled traps, paying particular attention to the
influence of available ancilla resources.
As mentioned in the introduction, the QEC protocols that

we explore in this work exploit optimized MS-gate-based
circuitry and are embedded in a single, segmented linear
trap. Thevarious protocolswe investigate are based on either
(i) spectroscopic decoupling, i.e., storing idling qubits
temporarily in Zeeman sublevels that do not belong to the
computational subspace, or (ii) ion reconfiguration, i.e.,
combination of shuttling, splitting,merging, and rotations of
the ion crystal to physically move idle qubits to the storage
region. For all the different protocols within these two types,
we have developed three conceptual layers:
(1) Real-space representation.— A sketch of the se-

quence of operations in real space and time, which
is particularly useful to visualize the effect of
ion-crystal reconfigurations in the shuttling-based
protocols.

(2) Circuit representation.— Circuit diagrams that
show the entirety of elementary operations that
should be applied in the real experiment. Besides
the gate operations, measurements, etc., these con-
tain a list of the ion-crystal-reconfiguration building
blocks (splitting, shuttling, merging, and rotation
operations).

(3) Quantum-channel representation.— Circuit dia-
grams containing information about the sequence
of quantum channels, which reflect the effective
noise models used to describe imperfect operations
in Sec. IV, as well as the dependence of channel
parameters on the experimentally relevant metrics
(e.g., gate times and infidelities, coherence times).
This underlies the numerical simulations of the
following section.

In the following, we describe in detail these three layers
for the first shuttling-based protocol and restrict to the real-
space representation for the remaining ones.

A. Non-fault-tolerant trapped-ion QEC protocols

In this section, we discuss the protocols for a QEC cycle
with an eight- or nine-ion crystal, where seven data qubits
are used to implement the aforementioned seven-qubit

(a) (b)

FIG. 13. Dangerous error propagation during the coupling step
of the DiVincenzo-Aliferis-type scheme: The circuits show how
an incoming Za3Za4 error, resulting, e.g., from a single phase-flip
error in the encoding step in Fig. 12, is converted into a pair of
Y-type errors on the ancilla qubits and furthermore propagate into
the data qubit layer, where they result in two bit-flip Xj3Xj4
errors.

(a) (b) (c)

FIG. 14. Detection of the dangerous two-qubit errors in the
DiVincenzo-Aliferis-type scheme: The circuits show how an
incoming Ya3Ya4 error, resulting from the transversal-coupling
step in Fig. 13, results in bit flips (Ya3 and Xa4 ) on the third and
fourth ancilla qubits. However, in this case, the third and fourth
qubits end up in j0ia3 and j1ia4 , respectively, which results in an
Mz

3 ¼ þ1;Mz
4 ¼ −1 measurement outcome.
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color code, and one additional ancillary qubit is exploited
for syndrome extraction by measuring the six stabilizers in
Eq. (23) (see Fig. 3). For one of the protocols, we require an
extra ion to implement laser cooling of the ion crystal. By
using a single ancillary qubit, this QEC protocol cannot be
made fault tolerant (see Sec. V B 2). However, even in this
case, it is very instructive to use it to benchmark the
experimental progress towards fault-tolerant quantum com-
putation according to the criteria in Eqs. (2) and (3). As
shown in Sec. VII, one could already prove the nontrivial
beneficial character of our QEC protocol by improving the
experimental hardware according to Tables II and IV.
Moreover, this is the less-demanding possible scenario
for future trapped-ion experiments along the lines of
Ref. [15].
We consider both shuttling- and hiding-based

approaches, as well as stabilizer mappings based on either
multiqubit MS gates (cf. Fig. 5) or on a sequence of two-
qubit MS gates (cf. Fig. 6). The criteria for beneficial QEC
exposed in Eqs. (2) and (3) of Sec. II can be assessed
through the quantum-information protocols detailed in
Table I. In order to implement this protocol numerically,
we now present the explicit scheduling of different shut-
tling- and hiding-based approaches for a single QEC cycle
in a trapped-ion seven-qubit color code.

1. Shuttling-based, single-species, multiqubit
gate protocol

Let us start by considering a shuttling-based approach to
the multiqubit mapping of each of the data-qubit stabilizers
onto the ancillary qubit (see Fig. 5), both of which belong
to the same atomic species. Since all the ions in this
protocol are of the same species, and the lasers responsible
for the entangling MS gates [Eq. (4)] act globally on the ion
chain, one needs to combine storage and processing or
manipulation zones in the trap, and reconfigure the ion
crystal in order to sequentially apply the readout of all six
stabilizers of the code [Eq. (23)].
In Fig. 15, we depict the real-space representation of this

protocol, which utilizes a single arm of the segmented ion
trap of Fig. 1. In this case, we only make use of two storage
zones, S1 and S2, surrounding a central manipulation region
M2, within one arm of the trap. Initially, Alice encodes an
arbitrary state jψi ¼ αj0i þ βj1i in the seven data qubits
and hands them to Bob, who can ask his assistant Igor to
perform an imperfect round of QEC before he decides if the
original state was either jψi or jψ⊥i ¼ β�j0i − α�j1i. In this
protocol, Igor has an additional ancillary ion of the same
species, which can be used for the readout of the stabilizer
information. He distributes the seven data qubits within the
two storage zones forming two separate ion crystals and
locates the ancillary ion in the manipulation zone (see
Fig. 15). The steps of such a QEC cycle are described by
different operations in the figure (time evolution occurs
downwards), in which these crystals are split, such that the

data qubits of a given stabilizer can be shuttled to the
manipulation region and merged with the ancillary ion. At
this stage, Igor applies the stabilizer mapping in Fig. 5 by
shining the corresponding lasers onto the ions of the
manipulation zone. After splitting the chain and shuttling
the data qubits back to the storage zone, the ancillary ion
can be measured by state-dependent fluorescence, such that
Igor can collect the syndrome information. Note that the
scattered photons do not affect the information stored in the
physical qubits, as these have been shuttled to the distant
storage regions.
These steps must be repeated for each of the stabilizers

[Eq. (23)] of the seven-qubit color code. As depicted in
Fig. 15, the last two stabilizer mappings require a reorder-
ing of the ion crystals in the storage zones, which can be
accomplished by rotating the crystal, effectively imple-
menting a mirror image about the symmetry axis of the
code, such that the roles of plaquettes 2 and 3 are
interchanged (see Fig. 3). In this way, one can repeat the
same crystal-reconfiguration operations of the second set of
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FIG. 15. Real-space representation of shuttling-based one-
species QEC cycle with multiqubit MS gates: Data and ancillary
ions are represented by blue and red dots, respectively, and are
distributed within the storage and manipulation regions of the
first row. The black arrows pointing to the storage zone represent
splitting operations followed by a shuttling of a subset of physical
ions onto the processing zone, after which they all merge with the
static ancillary ion. The black arrows towards the storage zones
represent splitting operations, followed by a shuttling of the
physical ions back to the storage zone, where they are merged
with any physical ions that might already be present there. The
blue arrows within the storage zone represent crystal rotations
that reorder the physical ions. On the right column, we specify the

times where the stabilizer mappings Map SðmÞ
α , implemented by

multiqubit entangling gates and represented by red ellipses, and
ancillary measurements or reset (Meas or reset), represented by a
black detector, are applied.
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stabilizers and finalize the syndrome extraction. We note
that similar combinations of rotations and split, shuttler or
merge operations will be a crucial building block of all
shuttling-based QEC protocols in the following sections.
In Fig. 16, we describe the circuit representation of this

protocol, where one can keep track of the sequential order
of the different elementary operations (time evolving from
left to right in this figure). At each time step, a given box
describes which operation takes place on which set of ions
(see the caption of Fig. 16 for a detailed account).
In order to explore the performance of Igor’s QEC cycle

under realistic experimental errors and sources of noise, we
need to consider the time intervals during which these
operations take place, as idle qubits will be subjected to a
dephasing noise [Eq. (13)] that degrades the information
stored in the code. Moreover, we also need to consider that
the ion reconfigurations excite the motional modes of the
ion crystal, affecting the fidelity of the MS gates [Eq. (17)]
in subsequent stabilizer mappings, which enter in the
depolarizing channels of Eqs. (14)–(16). This goes beyond
standard noise models in the literature, all of which assume
that the gate errors are nonincreasing with the depth of the
circuit. Finally, we need to take into account that the
measurement and reset of the ancillary ion are also faulty,
which is accounted for by the bit-flip channel [Eq. (22)].
Accordingly, the circuit representation is translated into the
quantum-channel description of Fig. 17, where the above
errors are represented as particular Markovian error

channels (see Sec. IV) with error probabilities that depend
on the history of previous operations and on the total time
required for each of the steps (see the caption of Fig. 17 for
details). This circuit of ideal gates, interspersed with
dephasing, depolarizing, and bit-flip channels, is numeri-
cally simulated in Sec. VII to estimate the breakeven point
that determines when the QEC cycle becomes useful.

2. Shuttling-based, two-species, multiqubit gate protocol

Let us now reconsider the same QEC cycle with a two-
species ion crystal, where the seven data qubits and the
additional ancillary qubit are of a different atomic species.
This has two important implications: (i) It reduces the
number of crystal reconfigurations that must be imple-
mented by Igor since the measurement of the ancillary
qubit does not need to be performed on an isolated qubit.
Even if the physical ions are in the same processing region
as the ancilla ion, the photons that are scattered while the
ancilla ion is being measured will not be absorbed by them,
and thus the encoded state will not be affected. On the other
hand, the photon recoil onto the ion crystal can induce
motional excitations that would compromise the fidelities
of subsequent MS entangling gates. However, (ii) the use of
two species allows Igor to apply sympathetic recooling of
the ion crystal, which minimizes the number of motional
excitations due to recoil or crystal reconfigurations prior to
any MS gate in the stabilizer mappings and thus reduces the
motional error [Eq. (17)] during the entangling gates.

FIG. 16. Circuit representation of shuttling-based one-species QEC cycle with multiqubit MS gates: The data fd1;…; d7g and ancillary
a0 ions are arranged vertically, and a set of boxes represents the elementary operations taking place at a particular time step: “Sh.” stands
for shuttling of the ions within the green boxes, “M.” stands for the merging of the two sets of ions separated by a dotted line within the
blue boxes, “Sp.” stands for splitting of the crystal into two sets of ions separated by a dotted line within the yellow boxes, “Meas.”
stands for the ancillary ion measurement in the orange boxes, and “Rot.” stands for the rotation of the ion crystal within the purple boxes,
with arrows representing the corresponding crystal reordering. Note that some crystal-reconfiguration operations, such as merging or

splitting and shuttling, can be operated simultaneously in different trap zones. Finally, Map SðmÞ
α stands for the mapping of a particular

stabilizer SðmÞ
α involving the data and ancillary ions within the red boxes. These red boxes contain the sequence of quantum

gates in Fig. 5.
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The real-space representation of this two-species proto-
col is depicted in Fig. 18. As mentioned previously, the
number of crystal-reconfiguration operations is highly
reduced with respect to the one-species protocol in
Fig. 15. Additionally, intermediate recooling steps can also
be introduced before any stabilizer mapping, such that the
fidelity of the corresponding MS entangling gates is not
compromised as the QEC cycle proceeds. The circuit and
quantum-channel representations are somewhat similar to
those of the one-species protocol in Figs. 16 and 17, and
will not be presented in detail. However, we note that they
are also important, as they provide a scheduling of the
physical operations that would have to be applied in an
experiment, and they also contain the relevant information
for the numerical modeling of Sec. VII.

3. Shuttling-based, two-species, two-qubit gate protocol

We now consider a similar shuttling-based, two-species
QEC protocol, but we rely on sequential two-qubit MS gates
for the stabilizer mapping (see Sec. V B 2). We recall that
using the combination of a MS gate between a pair of ancilla
a0 and data dj qubits, followed by a rotation on the data

qubit, one can implement the conditional gates U
ða0;djÞ
x in

Eq. (25). The sequential combination of these gates,
together with possible rotations on data qubits

Ydjð�π=2Þ, leads to a mapping of the stabilizer information
into the ancilla qubit (see Fig. 6), which can be obtained
from its fluorescence Mz

0.
In order to reduce the complexity of all the crystal

reconfigurations required to perform the sequential gates of
the QEC cycle, Igor makes use of all five regions of the
segmented trap in Fig. 1 (i.e., two manipulation zones M1

and M2 interspersed between three storage regions S1, S2,
S3). Moreover, since the ancilla qubit is not measured after

each of the conditional gates U
ða0;djÞ
x , Igor needs to recool

the crystal several times during each stabilizer readout
without affecting the ancilla and data qubits. Therefore, we
consider that the ancilla and data ions are of the same
species, but we equip Igor with an extra ion of a different
species c for sympathetic recooling of the crystal. Hence,
Igor has 7þ 1þ 1 ions for his imperfect round of QEC,
which he distributes within the segmented trap as depicted
in the starting configuration of Fig. 19. The data qubits of a
given stabilizer are shuttled one by one from the
storage regions onto the manipulation zone M2, where
sympathetic recooling represented by blue rectangles

is applied prior to the data-ancilla mapping U
ða0;djÞ
x or

Ydjðþπ=2ÞUða0;djÞ
x Ydjð−π=2Þ for an X- or Z-type stabilizer

readout, labeled as Mapða0; djÞ and represented by red
ellipses. After all the four data qubits of a particular

FIG. 17. Quantum-channel representation of shuttling-based one-species QEC cycle with multiqubit MS gates: The ion reconfiguration
steps of Fig. 16 lead to an increase of the phonon populations and a dephasing of the idle qubits during the time required for these
reconfigurations to take place. Additionally, idle ions also dephase during the time lapse of the stabilizer mapping. These time intervals
are Tsh for shuttling, TM for merging or splitting, TMap for stabilizer mapping, Tmeas for measuring, and Trot for rotations. The dephasing
channel applied during a certain period is depicted by light grey boxes, with the channel εdðnshTsh þ nMTM þ nMapTMap þ nmeasTmeas þ
nrotTrotÞ acting on a particular qubit, where no is the number of operations of the type o that occur within that period. The actual channel
corresponds to Eq. (13) with a probability pd ¼

P
onoTo=2T2, with T2 being the coherence time of the qubits. The ancilla readout and

reset measure is modeled by a bit-flip channel (22) acting on the ancillary qubit εb with a probability given by the sum of the
measurement and reset errors pb ¼ εmeas þ εres, as reported in Table II, and represented by dark grey boxes after each measurement.
Finally, map is modeled by an ideal stabilizer mapping acting on the particular set of qubits, followed by a depolarizing channel εMS (i.e.,
grey box) given by one of the three channels of Eqs. (14)–(16) with an error probability pd ¼ εm þ εd þ εI that depends on the current
phonon number through Eq. (17), and the gate time via Eqs. (19) and (20).
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stabilizer have been coupled to the ancilla ion, Igor can
proceed to isolate the ancilla-cooling pair of ions in the
manipulation zone and collect the state-dependent fluores-
cence of the ancilla ion, in this way inferring the stabilizer
information.
As can be seen in this figure, the complexity of the

crystal-reconfiguration operations increases considerably,
such that idle qubits will suffer more environmental
dephasing during the QEC cycle. Therefore, although
the multiqubit errors [Eq. (16)] of the collective stabilizer
mapping of the previous subsections are avoided in this
scheme, and the fidelity for two-qubit MS gates is higher
than that of five-multiqubit ones (see Table II), we do not
expect any big improvement of the non-fault-tolerant
protocol. A possible advantage can only take place if a
fully fault-tolerant scheme is implemented.

4. Hiding-based, two-species, multiqubit gate protocol

An alternative approach to the shutting-based protocols
presented above is to work with a static ion crystal but
equip Igor with spectroscopic decoupling capabilities.
Accordingly, Igor can take a particular subset of ions from
a given stabilizer mapping by spectroscopically decoupling

them and coherently shelving the physical qubit’s popula-
tion in electronic states that do not couple to the lasers that
drive the gate operations on the qubit transition (see also
Secs. III B and IV C).
We consider the scenario of a two-species encoding. This

allows one to measure the ancilla qubit after the stabilizer

FIG. 18. Real-space representation of shuttling-based, two-
species QEC cycle with multi-qubit MS gates: We use the same
conventions as in Fig. 15. As announced in the main text, the
number of crystal reconfigurations is reduced with respect to the
shuttling-based one-species protocol. In the rightmost column,
we specify the times when crystal rotations, stabilizer mappings,
ancillary measurements, and the new sympathetic (Recooling),
represented by blue rectangles, are applied.

FIG. 19. Real-space representation of shuttling-based two-
species QEC cycle with two-qubit MS gates: We represent half
of a cycle of QEC for the sequential measurement of

fSð1Þα ; Sð2Þα ; Sð3Þα g, either for α ¼ x or for z, and use the same
conventions as in Figs. 15 and 18, placing the extra cooling ion
(green circle) in the manipulation zone M2. In the rightmost
column, we specify the time steps when crystal-reconfiguration
operations, sympathetic recooling, and ancilla measurement/reset
take place. The new mapping functions, represented by red
ellipses, consist of the data-ancilla conditional gate

Mapða0; djÞ ¼ U
ða0;djÞ
x for a X-type stabilizer or its combination

with local rotations Mapða0; djÞ ¼ Ydjðþπ=2ÞUða0;djÞ
x Ydjð−π=2Þ

for a Z-type stabilizer. We recall that these local rotations
can be obtained from the available set of gates in
Eqs. (5) and (6) by simple refocusing sequences YdjðθÞ ¼
UR;π=2ðθ=2ÞURdj

;zðπÞUR;π=2ð−θ=2ÞURdj
;zð−πÞ.
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mapping, without affecting the state of nonhidden data
qubits. In addition, the ancilla qubit, encoded in an ion
species that is different from the data qubits, enables
recooling of the entire ion string after each fluorescence
ancilla measurement, thus minimizing motional excitations
due to photon recoil.

The scheme for a complete QEC cycle involves an
overall number of 12 hiding and unhiding operations, each
of which can be realized by a composite pulse sequence
(nine single-ion pulses detailed in Sec. III C) that maps the
state of data qubits to a set of storage D states coherently
[15]. Rather than displaying the real-space configuration, it

FIG. 20. Circuit representation of the hiding-based, two-species QEC cycle with multiqubit MS gates: We use the same conventions as
in Fig. 16. The additional hiding h and unhiding operations h−1, represented by green boxes, are realized by composite pulse sequences
to coherently map the state of physical qubits from 4S1=2ðmf ¼ −1=2Þ and 3D5=2ðmf ¼ −1=2Þ to a set of storage D states
(see Sec. III C).

FIG. 21. Real-space representation of the shuttling-based, two-species QEC cycle with a DiVincenzo-Shor scheme: We represent the

sequence of operations for the fault-tolerant DiVincenzo-Shor readout of a single stabilizer operator Sð1Þα for α ¼ x or z in two panels,
and we use the same conventions as in Figs. 15, 18, and 19. The extra cooling ions c1, c2 are placed in the manipulation zonesM1,M2,
and are again depicted by a green circle. The rightmost columns of both panels contain the sequence of operations that take place. In
addition to the ones described in previous figures, we include X- and Y-type MS gates XXði; jÞ and YYði; jÞ depicted by red ellipses, as
well as single-qubit rotations XðjÞ, X invðjÞ corresponding to Xjð�π=2Þ (7), and analogously for YðjÞ; Y invðjÞ, and ZðjÞ; Z invðjÞ, all
of which are depicted by yellow ellipses. We also introduce Z2ðjÞ, which corresponds to ZjðπÞ. Finally, some YðjÞ; Y invðjÞ rotations
on the rightmost columns of each panel are shown inside a yellow rectangle, which implies that they are only applied for a Z-type
stabilizer readout (α ¼ z). We have also included a classical relabeling operation, Relabel, conditional on the measurement outcomeMz

0.
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is more instructive in this case to give the circuit repre-
sentation since no crystal reconfiguration is used and all
ions reside in the same manipulation zone. In Fig. 20, green
boxes depict the hiding or unhiding pulses, which deter-
mine which qubits are involved in the respective stabilizer
represented by red boxes. Idle qubits undergo dephasing
with a strength according to the time durations of the
respective mapping, measurement, recooling, and (un)
hiding operations acting on the other qubit(s).

B. Fault-tolerant, trapped-ion QEC protocols

In this section, we discuss the trapped-ion protocols for
fault-tolerant QEC with the seven-qubit color code. As
emphasized in previous sections, we need to go beyond a
single ancillary qubit by focusing on either the DVS or
DVA schemes described in Secs. V B 3 and V B 4, respec-
tively. We consider only shuttling-based approaches since
the number of spectroscopic decoupling pulses for a
hiding-based scheme would increase dramatically for these
fault-tolerant protocols. Therefore, a fully hiding-based
fault-tolerant protocol with a static ion crystal is likely to
perform worse than the shuttling-based alternatives.

1. Shuttling-based, two-species, DiVincenzo-Shor scheme

We first consider the trapped-ion implementation of the
DVS scheme, which combines the ancilla encoding and
verification of Fig. 8 with the subsequent transversal
coupling to data qubits of Fig. 9 for each of the code
stabilizers. To implement a cycle of QEC using this

scheme, Igor must be equipped with five additional
ancillary ions a0;…; a4. Furthermore, to simplify all of
the required crystal reconfigurations, we equip Igor with a
couple of cooling ions c1, c2 of a different atomic species
such that sympathetic recooling can be implemented prior
to any entangling MS gate. Igor distributes the seven data
qubits, together with the ancillary and cooling ions,
according to the starting configuration of Fig. 21. In the
left panel of this figure, prior to the ancilla measurement
Mz

0, we depict the different operations that Igor must apply
for the ancilla encoding and verification. If this part of the
protocol is successful, Mz

0 ¼ þ1, one relabels the ancillary
qubits and proceeds with the rest of the scheme. The set of
instructions that follow this relabeling corresponds to the
transversal coupling to the data qubits of Fig. 9 and
ends in the measurement of the remaining ancillas
ðMz

1;M
z
2;M

z
3;M

z
4Þ, the parity of which allows Igor to infer

the Sð1Þα stabilizer information. After reordering of the data
qubits to move the ions of another stabilizer to the storage
region S2, one can repeat the same procedure in Fig. 9 for
the next stabilizer and proceed to complete a full round of
QEC. Note that most of these reordering operations can be
implemented during the measurement period such that no
extra dephasing occurs. To take advantage of the fault-
tolerant nature of the scheme, Igor should run two full
rounds of stabilizer readout. If the results coincide, he
should then apply a decoder to determine which error has
occurred and apply a particular single-qubit X- or Z-type
rotation to the corresponding data qubit to correct for it.

FIG. 22. Real-space representation of the shuttling-based, two-species QEC cycle with a DiVincenzo-Aliferis scheme: We represent

the operations for the fault-tolerant DiVincenzo-Aliferis readout of a single stabilizer operator Sð1Þα , either for α ¼ x or z, in two panels,
and we use the same conventions as in Figs. 15, 18, 19, and 21.
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If the measurement results do not match, Igor should apply
the full readout scheme once more and use the decoder
on the third set of stabilizer values.

2. Shuttling-based, two-species,
DiVincenzo-Aliferis scheme

Let us now describe the trapped-ion implementation of
the DVA scheme in which the ancilla encoding, coupling,
and verification must occur along the prescription of
Fig. 11. In this case, it suffices to equip Igor with four
additional ancillary ions a1;…; a4 and a couple of cooling
ions c1, c2 of a different atomic species. The distribution of
these ions within the different zones of the segmented trap
is specified in the real-space representation of Fig. 22,
where we also list the operations that Igor must perform for

the readout of the Sð1Þα stabilizer. In contrast to the DVS
scheme, the verification step takes place in the final
measurement step and depends on the outcome
ðMz

3;M
z
4Þ of the check ancilla qubits. If Igor obtains

ðþ1;−1Þ, this signals that two errors have propagated into
the code space, and Igor must apply X- or Z-type rotations
to the ðj3; j4Þ data qubits. Simultaneously, Igor uses the
parity of ðMz

1;M
z
zÞ to infer the eigenvalue information of

the stabilizer. Once again, he proceeds with the readout of
the remaining stabilizers in a modular fashion, which
requires an intermediate reordering of the data qubits
(i.e., bringing the ions belonging to the stabilizer to be
measured into the storage zone S2). Once this is achieved,
the sequence of operations is again described by the real-
space representation of Fig. 22.
To take full advantage of the fault-tolerant nature of the

scheme, Igor must perform two or three rounds of stabilizer
readout and then apply a minimum-weight decoder to
determine which error has occurred and how to correct it.

VII. NUMERICAL STUDIES OF THE
PERFORMANCE OF TRAPPED-ION QEC

PROTOCOLS

A. Computing resources and numerical approach

Having established our criterion for beneficial QEC in
Eqs. (2) and (3), and described the different trapped-ion
protocols together with their quantum-channel description
in Figs. 15–22, let us now describe our numerical approach
to assess the performance of these QEC schemes.
Our strategy for numerical analysis is to perform exact

simulation of the physical system using pure states in a
Monte Carlo method. The results of the simulation are
achieved by averaging over the output of at least tens of
thousands of individual runs; in each run, at each oppor-
tunity for an error event, the question of whether it occurs
(and, when relevant, what the error’s severity is) is resolved
by drawing a random number. Once sufficiently many
results are aggregated, one obtains the same data as would
result from a single numerical run using a density matrix.

The advantages are twofold: First, the memory require-
ments of the pure state simulation are more modest,
allowing for a simulation on the order of 30–40 qubits.
A direct simulation of 30 qubits with the density matrix
approach would require a matrix of 260 ≈ 1018 elements,
which is infeasible. This will become crucial when con-
sidering fault-tolerant schemes and also when upgrading
these protocols to include larger-distance codes or instances
with more than one logical qubit. The second advantage of
the Monte Carlo approach is that it is trivial to parallelize;
thus, one can fully make use of cluster computing
resources.
The hardware used for this work is a cluster of

approximately 400 nodes, each of which is based on a
motherboard with two Intel E5-2640v3 CPUs and between
64 and 256 GB of memory. The nodes are connected by
Intel TruScale QDR Infiniband, and, in principle, they can
be efficiently used to collectively model a quantum system.
However, in practice, the efficient use is to operate the
nodes in parallel and independently of one another,
aggregating results afterwards according to the
Monte Carlo paradigm outlined above.

B. Simulation results

In this subsection, we present the simulation results for
all the different QEC protocols discussed above. One type
of QEC cycle is based on the multiqubit MS gate (see
Figs. 15 and 18), whereas the other is based on the
sequential two-qubit MS gates, including both the non-
fault-tolerant (see Fig. 19) and the fault-tolerant approaches
(see Figs. 21 and 22). Generally, we will use the same
Alice-Igor-Bob framework for assessment of the beneficial
character of QEC, which has been discussed earlier: Alice
prepares a perfect instance of the encoded qubit, and this
logical qubit is then subjected to a period of environmental
exposure during which Igor may perform one or more
cycles of error correction before Bob assesses the integrity
of the qubit by attempting to determine the encoded state
(from one of the two choices). For the simulations with
multiqubit MS gates, the initial encoded state was chosen
randomly, while for those simulations with two-qubit MS

gates, since they proved to show more encouraging results,
we only let Alice encode the jþi state since it is the most
vulnerable state under dephasing environmental noise.
Therefore, Bob’s success probability PB, shown in the
following two sections, has two ranges: The first is from 1
to 0.75, while the second varies from 1 to 0.5; however,
both cases correspond to the complete decay of the qubit
from full coherence to total decoherence.
For each of these cases, two sets of figures are presented

depending on the choice of trapped-ion parameters: First,
we present a set of figures drawn from the best fidelities that
have been reported to date in relevant experiments. An
exception is the single-species shuttling-based scheme and
the two-species shuttling-based DVS scheme, where the
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performance of the MS gates after a few stabilizer mappings
is expected to be so bad that one can directly discard the
approach (see Tables II–V). Second, we present a set of
figures for the future parameters that we anticipate will be
possible to reach in the near future. We refer to these two
cases as the “Current” and the “Future” (or “anticipated”)
performance, respectively.

1. Shuttling- and hiding-based QEC with
multiqubit MS gates

Figures 23–27 constitute the results of our first set of
simulations, i.e., those involving MS gates with multiple
qubits (five qubits, specifically). Note that for these
simulations, the qubit-reset fidelity is assumed to be
5 × 10−3 (see Table II). The results shown in each figure
correspond to one of the trapped-ion QEC protocols
described in detail in the previous section, and we refer
to them here as “single-species shuttling without cooling”
(shuttling-based protocol 1, in Fig. 24), “dual-species
shuttling with cooling” (shuttling-based protocol 2, in
Figs. 25 and 26), and “hiding” (hiding-based protocol,
in Figs. 23 and 27).
Each data point in our figures is the averaged result of at

least 40 000 runs. Each curve is formed from 200 data
points and therefore involves eight million runs in total. For
reference, the grey curves show how a single physical qubit
would perform if used in the same setting described in
Sec. II; i.e., Alice prepares it in a given state and Bob
measures it to guess the state (vs the orthogonal state) after
the state has been subjected to environmental noise.
Moreover, the red curve in each figure shows the perfor-
mance of the color code of seven physical qubits but
without the error correction provided by Igor midway
through the time τ during which the encoded state is
subjected to environmental noise. The blue curves show
how this changes when Igor’s cycle is indeed performed.
Regrading the criteria for beneficial QEC discussed in
Sec. II, we wish to see the blue curve above the red one
such that criterion [Eq. (2)] is achieved, and ideally even
above the grey one, implying that (at least for some choices

of duration of the experiment) Eq. (3) is also fulfilled. If our
simulations display such crossing, we can conclude that
advantageous QEC could be achieved in the experiments,
given that the particular performance of the different

TABLE V. MS-gate infidelities in different QEC cycle scenarios: We use our model of the MS gate ε ¼ εm þ εd þ εI in Eqs. (17), (19),
and (20) to reproduce the current performance of five-ion MS gates in Table II. Then, we use the model to predict the infidelities for the
stabilizer mappings for the scenarios of QEC with a warmer ion background and those with the expected improved conditions.

Ion-crystal reconfiguration Spectroscopic decoupling

Approach One species without recooling Two species with recooling Two species with recooling

Five-ion MS infidelity Current value Anticipated value Current value Anticipated value Current value Anticipated value
Map Sx1 2.1% 0.29% 4.9% 0.21% 4.9% 0.21%
Map Sz1 5.2% 0.46% 4.9% 0.21% 4.9% 0.21%
Map Sx2 � � � 0.85% 4.9% 0.21% 4.9% 0.21%
Map Sz2 � � � 1.5% 4.9% 0.21% 4.9% 0.21%
Map Sx3 � � � 2.4% 4.9% 0.21% 4.9% 0.21%
Map Sz3 � � � 3.2% 4.9% 0.21% 4.9% 0.21%

FIG. 23. Success probability PB under the hiding-based, two-
species protocol QEC cycle with multiqubit MS gates (cf. Fig. 20):
The parameters underlying the simulation correspond to the
current values from Tables II–V. Here and in the following
figures, the x axis gives time in units of the environmental
dephasing time T2. The noise model for the imperfect five-ion MS

gate operations corresponds to the quantum channel (i) of
independent depolarizing noise [Eq. (14)]. Results show that
even for this optimistic noise model, there is no time window in
which the application of an imperfect QEC cycle is beneficial as
compared to not applying it [i.e., the regime in Eq. (2) is never
attained]. The underlying reason for this is that the current five-
ion MS gate fidelity is insufficient to reach the crossover point.
Although not shown in the figure, we note that similar results are
found for the shuttling-based protocol 2, for which reaching
the crossover point with current parameters is not possible.
Here and elsewhere, each random qubit selected for Alice to
encode is Uj0i, where unitary U is formed by selecting three
angles ϕ1, ϕ2, and ϕ3 uniformly from 0 to 2π and setting
U ¼ cosϕ1ðcosϕ2I þ i sinϕ2ZÞ þ i sinϕ1ðcosϕ3Y þ sinϕ3XÞ,
where I is the identity and X, Y, Z are the Pauli operators.
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building blocks is realized. We note that in Fig. 26 there is
an additional curve, in green, which shows the effect of
applying Igor’s correction twice, at 33% and 67% of the
Alice-Bob time interval; again, one hopes to see the curves
associated with Igor surpass the red or even the grey curves.
From our numerical simulations (see Fig. 23 for the

hiding approach), we can conclude that the “Current”
performance figures for the gate times, fidelities, and so
on, would be insufficient, in general, to prove a beneficial
QEC cycle: The curves representing the integrity of the
logical qubit at the end of the period τ are strictly lower
when error correction is applied midway vs simply omitting
any such correction. This is principally caused by the
complexity of the required circuits and by the higher error

rate of the entangling MS gates as compared to other
building blocks of the protocol. Essentially, in these
low-distance codes, the MS gates introduce more noise
than can be removed by the QEC cycle. For the shuttling-
based approaches with current parameters (not shown in
figures), a similar poor performance is found [e.g., for the
one-species scheme without recooling, the MS gates
become so noisy after a few rounds (see Table V) that
we can directly discard it from reaching the breakeven
point, Eq. (2)].
Remarkably, our results for the “Future” performance are

far more encouraging. The least successful hardware
variant is QEC protocol based on a single-species shuttling
without recooling (cf. Fig. 24). For this protocol, the
crossing into beneficial effects of the QEC cycle
[Eq. (2)] occurs only when the total time τ is such that
the logical qubit receives considerable dephasing from the
environment. Moreover, the beneficial effect can vanish
entirely when one moves to a more pessimistic model for
the MS gate noise including correlations [noise models (ii)
and (iii) discussed in Sec. IV B]. Additionally, the desirable
property of outperforming the unprotected physical qubit in

FIG. 24. Success probability PB under the single-species,
shuttling-based QEC cycle with multiqubit MS gates (cf. Fig. 17):
The parameters underlying the simulation correspond to the
anticipated improved values from Tables II–V. We use two noise
models for the imperfect five-ion MS gate operations involved in
the stabilizer mappings: the optimistic model (i) of independent
depolarizing channels [Eq. (14)] and the pessimistic model
(iii) with a multiqubit depolarizing channel [Eq. (16)]. When
we adopt the optimistic noise model and we employ Igor (purple
curve), then for t=T2 > 0.3 there exists a small advantage as
compared to not using Igor to correct the logical qubit (red curve).
Thus, Eq. (2) is fulfilled. However, when multiple qubit errors are
fully enabled by the noise model, and we use the multiqubit
depolarizing channel (“Igor,” blue data points), the advantage
disappears. This highlights the importance of modeling correlated
errors appropriately, thus going beyond simplified error models
that use the same single-qubit channel after each elementary
operation in the quantum circuit. For reference, the behavior of an
unencoded, bare physical qubit under the same environmental
(dephasing) noise is also shown (grey data points). The inset
shows a zoom of the parameter interval in which QEC becomes
advantageous: For a total waiting time τ larger than about 300 ms,
it becomes advantageous to apply an imperfect Igor QEC cycle
but only for independent depolarizing noise. In this figure and
those following, the inset shares the same axes labels as the
main plot.

FIG. 25. Success probability PB under the two-species, shut-
tling-based QEC cycle with multiqubit MS gates (cf. Fig. 18): The
parameters underlying the simulation correspond to the antici-
pated improved values from Tables II–V. The noise model for the
imperfect five-ion MS gate operations corresponds to the worst-
case noise model (iii) of multiqubit depolarizing noise [Eq. (16)].
Results show that there exists an ample parameter region (at times
larger than about 100 ms) in which the application of an imperfect
Igor QEC cycle becomes advantageous [Eq. (2)] as compared to
not applying it. Note that this takes place at PB values of 0.981,
much higher than in the shuttling-based scenario 1, with a
marginal gain at PB values of about 0.92. Note that in the
present scheme, for not-too-long total times τ, below about
200 ms, applying an imperfect QEC cycle is advantageous even
as compared to a single, nonencoded physical qubit undergoing
dephasing noise of the same strength, such that the more-stringent
regime [Eq. (3)] for beneficial QEC can also be achieved.
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our particular task of state discrimination through the QEC
cycle [Eq. (3)] cannot be achieved. Fortunately, the results
for the two-species shuttling (cf. Figs. 25 and 26) and the
hiding protocols (cf. Fig. 27), using the future performance
numbers, are considerably more encouraging. One sees that
the crossing to a beneficial error-correction cycle happens
early and with a high value of integrity. Importantly, this
implies that multiple rounds of error correction can be
beneficially applied such that the logical qubit can be
sustained for a longer time (see Fig. 26).
Let us now address if one could obtain still better results

by implementing the QEC using sequential two-qubit MS

gates rather than multiqubit MS gates. While this would
necessitate more gates in total, each gate has a higher
fidelity and, moreover, would propagate errors from the
ancillary qubits onto the data qubits in a more restricted

fashion. In addition to addressing this question numerically,
the sequential two-qubit MS gates will be an essential
ingredient for the realization of fault-tolerant QEC, which
we also explore in this section. The necessary analysis and
scheduling for this second approach was described above in
Sec. VI B. We now describe the results of the correspond-
ing set of simulations, which employ the two-qubit MS gate
as the entangling operation. For this second set of simu-
lations, we also assumed the better value of 1 × 10−3 for the
qubit-reset fidelity from Table II.

2. Shuttling-based, two-species QEC with two-qubit
MS gates: Exploring fault tolerance

Before presenting the simulation results to explore the
breakeven point for the full fault-tolerant QEC protocols,
let us first present a simpler analysis to verify that the
DiVincenzo-Shor and DiVincenzo-Aliferis schemes with
MS gates of Sec. V are indeed fault tolerant in the formal
sense. To achieve this, the periods τ of environmental
exposure in the Alice-Igor-Bob scenario are removed.
Instead, Alice presents the flawless logical qubit directly
to Igor, who performs a redundant round of error correction
and then directly passes the logical qubit to Bob for the
logical state discrimination. Hence, there is no effect of the
environmental noise, except during the time when Igor is

FIG. 26. Success probability PB under repetitive, two-species,
shuttling-based QEC cycles with multiqubit MS gates (cf. Fig. 18):
We consider the same scenario as in Fig. 25 with the anticipated
improved values of Tables II–V, but the model for the imperfect
five-ion MS gate operations corresponds to the physically moti-
vated noise model (ii) of one- and two-qubit depolarizing
quantum channels [Eq. (15)]. For a single QEC cycle, direct
comparison to the results of Fig. 25 shows no appreciable
difference. Hence, we can conclude that using the more-
pessimistic noise model with a multiqubit depolarizing channel
[Eq. (16)] or using the one with equally likely one- and two-qubit
errors [Eq. (15)] does not make any difference. We also depict the
results for two rounds of QEC (green dots), where one sees an
increase of the region [Eq. (3)] where QEC is advantageous
compared to a single nonencoded physical qubit with respect to
the case with a single QEC round. The inset plots Δ, which is PB
relative to that for the single-qubit memory. We see that multiple
rounds of QEC allow us to sustain the logical qubit for a longer
period of time. In the inset, we display the relative performance Δ
of the encoded (red), single-cycle QEC (blue), and two-cycle
QEC (green) with respect to the unprotected physical qubit,
which is obtained by subtracting the bare qubit PB of the main
panel (grey line), from PB for the different schemes, also in the
main panel. As emphasized before, we observe a wider region of
advantage for the two cycles of QEC.

O

No

FIG. 27. Success probability PB under the hiding-based, two-
species QEC cycle with multiqubit MS gates (cf. Fig. 20): The
parameters underlying the simulation correspond to the future
improved values from Tables II–V. Experimental capabilities
(two-species, cooling, etc.) are the same as in Fig. 23, and we use
the more challenging (worst-case) noise model (iii) of multiqubit
depolarizing noise [Eq. (16)]. Results show that there exists a
clear parameter window for which the application of an imperfect
Igor QEC cycle becomes advantageous both as compared to not
applying it [Eq. (2)] and compared to an unprotected single
physical qubit [Eq. (3)]. Note that the PB value where the QEC
cycle crossover towards a beneficial Igor takes place is around
0.982, which is very similar to the behavior found for the
shuttling-based protocol 2 with future parameters (cf. Fig. 25).
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applying his imperfect error-correction cycle. We introduce
a parameter λ to control the severity of the imperfections in
the operations applied by Igor, which multiplies the error
rates that have been identified as the expected hardware
targets (see Tables II–V). Setting λ ¼ 1 corresponds to
assuming that all these targets are exactly met. By plotting
Bob’s success probability PB as a function of λ, we should
see a linearly descending curve for a non-FT protocol
(because any single gate failure within Igor’s circuit can
have the consequence of reducing PB), whereas a charac-
teristically inverted quadratic curve should arise for a true
FT protocol (because it requires two or more gate failures to
damage the integrity, the probability of which goes as λ2).
The results of our numerical simulations are shown in
Fig. 28. The predicted shape of the curve is indeed
observed through our numerics, thus verifying that the
analytically derived protocols based on MS gates, and their
translation into the numerical simulation, are correctly fault
tolerant.
It is relevant to note that our approach of requiring better-

than-breakeven performance, when Igor enters the picture,
is closely related to the concept of a pseudo-threshold
where a higher level of concatenation outperforms the
preceding level (see, e.g., Ref. [91]). Moreover, as we noted
in the introduction to Sec. VI, thresholds in the range of
10−4 are expected in the context of fault tolerance [90,91].
Therefore, the crossing seen in Fig. 28 and the

corresponding gate fidelities (i.e., 1.75 times those in
Tables II–V) are reassuringly close to expectations. The
very recent suggestions of Chao and Reichardt [92] for
smaller ancilla structures in fault-tolerant circuits may
provide some further boost to the transition.
Having thus verified the nature of the circuits, we can

proceed to assess their performance when there are finite
periods of exposure to the environment. First, we simulate
using the current values of operational infidelities from
Tables II–V. The results are shown in Fig. 29. In this figure,
and the remaining figures in this section, the underlying
protocol is that of two-species shuttling with recooling (as
described in previous sections). Typically, for the figures in
this section, each data point is aggregated from 106

numerical experiments, and each full curve involves about
100 data points; thus, a curve represents approximately 108

numerical experiments.
Figure 29 shows two reference lines for the criteria of

beneficial QEC: The grey line indicates the performance
with a single physical qubit [Eq. (3)], while the red line
shows the performance with an encoded logical qubit when
no error correction is performed by Igor [Eq. (2)]. As one
would expect, for very short periods of environmental
exposure, the red line lies above the grey one since the
probability for two (or more) errors affecting the encoded
data qubits is much smaller than the single-qubit error
probability affecting the bare qubit. The yellow line shows

FIG. 28. Success probability PB under two-species, shuttling-
based QEC cycles with only QEC errors: This graph shows how
PBðρL; ρQECÞ changes with parameter λ, which is defined in the
main text and adjusts error rates within Igor’s cycle. The three
plots show a non-fault-tolerant, two-species, shuttling-based
scheme based on two-qubit MS gates (cf. Fig. 19), and the
fault-tolerant DV-S scheme (cf. Fig. 21), and the fault-tolerant
DV-A scheme (cf. Fig. 22). As described in the text, the inverted
quadratic curves, as compared to the linear behavior, are the
signature of a correct fault-tolerant circuit. The simulation
parameters correspond to the future improved values from
Tables II–V. The noise applied for the imperfect two-ion MS

gate operations follows the standard depolarizing model.

FIG. 29. Today’s hardware: Success probability PB with QEC
according to the shuttling-based, two-species protocol. The
standard Alice-Igor-Bob protocol with the parameters underlying
the simulation corresponding to the current values from
Tables II–V. The red curve shown here is Bob’s performance
in the absence of Igor, such that the occurring errors only come
form the environment (see Table I). For reference, the equivalent
plot for a single physical qubit with the same environmental noise
is also shown (grey curve). We see that using a logical qubit and
the non-FT QEC cycle (yellow) can produce a small positive
effect; the shaded area indicates this beneficial region. However,
the fully FT protocol (purple line), when it is possible (see main
text), is always inferior.
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the performance of the non-FT QEC protocol that employs
sequential two-qubit MS gates (cf. Fig. 19). As can be
observed, while this line never beats the PB for the bare
physical qubit [Eq. (3)], it does indeed exceed the perfor-
mance of the encoded qubit [Eq. (2)] when the environ-
mental exposure is severe. Note that this result indicates the
superior performance of the QEC schemes with two-ion MS

gates vs the previous ones based on multi-ion MS gates. We
recall that for the corresponding multi-ion MS circuits, no
clear advantage could be seen using current hardware
performance; i.e., there was no equivalent to the yellow-
red crossing of Fig. 29. Let us remark that this result is
nontrivial since the complexity of the circuits using
sequential two-ion MS gates increases considerably with
respect to the schemes that exploit multiqubit MS gates
(compare Fig. 19 to Fig. 18). In any case, the breakeven
point [Eq. (2)] is achieved when the integrity of the qubit has
already decayed considerably. In order to take full advan-
tage of QEC, improving on this feature, we now consider
the DV-S and DV-A schemes for fault-tolerant QEC.
The purple line of Fig. 29, just visible in the lower-right

corner of the plot, is the performance of the DV-A protocol.
The line does not exist over the majority of the graph
simply because there is insufficient time to perform a full
error-correction cycle because of the long circuit depth
associated with Fig. 22. The time required for Igor’s actions
is summarized in Tables VI and VII. Note that for the FT
approaches, it is necessary to evaluate each stabilizer more

than once in order to control measurement errors; Igor
performs the checks twice and then a third time if the first
two outcomes do not agree. For the Shor FT scheme, it is
necessary to prepare and verify an ancilla state prior to
stabilizer measurement. If the verification fails, we must
restart the ancilla preparation. In our simulations, we allow
for up to four such restarts; the probability that more are
needed is negligible even for current technologies.
Notice that in Fig. 29, even when the total protocol time

is large enough to permit Igor to act, the performance of the
DV-A scheme is very poor, and none of the breakeven
points for useful QEC can be reached. The conclusion from

TABLE VI. Resource overview for the different QEC protocols. We describe the number of various operations that conform each QEC
cycle [i.e., measurement of all the six stabilizers, Eq. (23)] within the different trapped-ion protocols introduced in Sec. VI. The number
of basic operations can be obtained from the different schemes presented in the Figs. 15–22. In the two rightmost columns, we present
the total time required for each QEC cycle according to the current and anticipated values given in Tables II and IV. Note, however, that
some of the local single-qubit gates require the use of refocusing techniques that combine various single-qubit gates and that some
operations can be done in parallel in different manipulation zones of the ion trap. The latter can lead to a minimization of the overall time
of the QEC cycle (see Table VII for the optimized QEC cycle times).

Two-ion
MS gate

Five-ion
MS gate

Single-qubit
gate Meas. Recooling

Split, shuttle,
and merge Rotation

Total time
(current)
(ms)

Total time
(anticipated)

(ms)

Non-fault-tolerant trapped-ion
QEC protocols

Shuttling-based, single-species
multiqubit gate (A.1.)

� � � 12 42 6 � � � 20 2 6.7 1.7

Shuttling-based, two-species
multiqubit gate (A.2.)

� � � 12 42 6 6 6 2 6.8 1.4

Shuttling-based, two-species
two-qubit gate (A.3.)

24 � � � 48 6 24 54 36 23.6 7.2

Hiding-based, two-species
multiqubit gate (A.4.)

� � � 12 150 6 6 � � � � � � 6.3 1.1

Fault-tolerant trapped-ion
QEC protocols

Shuttling-based, two-species
DiVincenzo-Shor (B.1.)

54 � � � 84 24 54 190 150 71.2 22.4

Shuttling-based, two-species
DiVincenzo-Aliferis (B.2.)

54 � � � 78 24 54 190 144 71.0 22.2

TABLE VII. Time required for one cycle of error correction
with both current and future hardware, assuming the shuttling-
based, two-species protocol. Parameter n is the number of rounds
of error correction applied (usually n ¼ 2, but n ¼ 3 when the
initial two rounds disagree). Parameter m is the number of
additional attempts at preparing the GHZ ancilla state beyond the
minimum because of detection of error(s) when verifying the
ancilla. On average,m ¼ 0.66 for current hardware andm ¼ 0.02
for future hardware.

Protocol
Total time

(current) (ms)
Total time

(anticipated) (ms)

non-FT 21.2 5.9
FT DVA 49.3 × n 14.3 × n
FT DVS 46.0 × nþ 3.7 ×m 13.1 × nþ 1.0 ×m

ASSESSING THE PROGRESS OF TRAPPED-ION … PHYS. REV. X 7, 041061 (2017)

041061-35



this set of simulations is that a device built with the
“current” performance numbers could suffice for a basic
demonstration of QEC but could not possibly make a
successful demonstration of a fault-tolerant QEC code.
Fortunately, this picture changes as we move to the future
performance figures.
Figure 30 shows the results of repeating the simulations

in Fig. 29 but now with the future anticipated values from
Tables II–V. One can see that the performance is pro-
foundly improved. Now, the lines for the non-FT Igor, and
both the DV-A and DV-S fault-tolerant protocols, lie almost
on top of one another. Moreover, they both beat the
“no-Igor” red line, fulfilling Eq. (2) for the whole period
of time studied numerically. Additionally, they also lie
above the “single physical qubit” grey line, fulfilling
Eq. (3), over a wide range of values of the environmental
exposure time. Finally, we note that for longer times, one
could use multiple rounds of error correction. Although the
non-FT curve and the two FT curves seem nearly identical,
the latter outperform the non-FT protocol for small levels of
environmental error (see top left of the figure). This is
consistent with our expectations from Fig. 28, where we
learned that, when Igor’s hardware performs exactly at the
future anticipated level (i.e., λ ¼ 1), the FT protocols are
superior to the non-FT one.
The curves in Fig. 30 are so encouraging that the

trapped-ion hardware development may not need to reach
the expected values of Tables II–V in order to achieve the
goal of beneficial QEC. In order to test this feature, we have
tripled the error rates in all operations and analyzed the
performance for the QEC procedures. The results are
shown in Fig. 31. We see that now there is a slight variation
in performance with the non-FT Igor marginally superior to
FT-DV-A, which in turn is marginally superior to FT-DV-S.

(Note that it is to be expected that the FT circuits are now
inferior to the non-FT circuit since by tripling the error we
are now at the far right of the range in Fig. 28.) In Fig. 31,
we also see that the non-FT Igor is quicker to perform than
DV-A, which in turn is quicker than DV-S, since the curves
are not plotted when there is an insufficient Alice-Bob time
interval for a complete Igor cycle. Additionally the figure
shows that the crossing of the curves with error correction
and the physical qubit occurs only slightly earlier in Fig. 31
(0.894) than in Fig. 30. The conclusion from this figure is
that, even using a system with 3 times greater operational
infidelities with respect to the expected future estimates of
our work, one could nevertheless support a strong dem-
onstration of beneficial QEC. This is very encouraging for
the near-term development of trapped-ion QEC.
In our final set of simulations, shown in Fig. 32, we

consider multiple rounds of error correction considering the
future expected levels of infidelity. These results show that,
by several rounds of QEC, one can protect the logical qubit
at a level that is superior to a single physical qubit over a
sustained period of time. By the simple principle of
selecting the number of Igor cycles according to the total
Alice-Bob interval, we find that the coherence time of the
logical qubit can reach values nearly twice as big as the raw
physical qubit—a very significant alteration that should be
easily observed and that demonstrates the “encoded qubit
alive” goal clearly. Of course, a factor of 2 is far from
sufficient to achieve large-scale quantum computing, but
this is to be expected since we are employing only one layer
of a small code. For further error suppression, one would

FIG. 30. Future hardware: Success probability PB with QEC
according to the shuttling-based, two-species protocol. The
scenario simulated in this case is the same as in Fig. 29, except
that the parameters applied correspond to the future improved
values from Tables II–V. Performance is obviously profoundly
improved, as discussed in the main text.

Crossing at 0.894

FIG. 31. Inferior future hardware: Success probability PB with
QEC according to the shuttling-based, two-species protocol. The
error model and scenarios simulated here are the same as in
Fig. 30. The operational numbers are scaled to yield a perfor-
mance that is 3 times worse than those of the future improved
values: Each operation takes 3 times longer, and the gate fidelities
are 3 times worse (the environmental dephasing rate remains
unchanged). As discussed in the main text, while the performance
here is degraded vs the preceding figure, it is nevertheless
sufficient to largely demonstrate the goal of beneficial QEC.

A. BERMUDEZ et al. PHYS. REV. X 7, 041061 (2017)

041061-36



either concatenate the Steane code (recursively replacing
each data qubit with a full logical qubit, through at least
three or four levels) or one would scale using topological
techniques. As the Steane code is the smallest instance of
the 2D color code, the latter would be an attractive option—
but such considerations are beyond the scope of the
present paper.
This concludes our review of our numerical simulations.

It is worth reiterating that, in every case, we presume that
Alice and Bob are perfect since we are interested in the
integrity of the memory itself, separate from the creation or
analysis of the logical qubit. One may wonder whether this
presents difficulties for experimental tests since, in reality,
Alice, Igor, and Bob are merely phases of a single
experiment and presumably suffer the same error rates.
An analysis of this point is beyond the scope of the present
paper, but it has been considered in a subsequent work [93].
The encouraging conclusion is that, for a broad class of
error models (including the typical ones), experimental
evaluation of integrity is possible even with noisy Alice and
Bob. The key observation is that it typically suffices for
Alice to randomly choose between a fixed subset of
possible states to send; then, if one can find a fault-tolerant
circuit for Alice to use to prepare each such state, and a
corresponding fault-tolerant analysis method for Bob, one
finds that the noisy nature of their actions has relatively
little impact on the measured integrity.

Finally, we remark that while the error models consid-
ered here have been stochastic, the framework we have
introduced applies to any form of noise; therefore, a full
exploration of coherent and even non-Markovian noise is
an interesting prospect. A recent paper has highlighted the
potential for coherent errors to impact QEC performance in
a qualitatively different way [94].

VIII. CONCLUSIONS AND OUTLOOK

In this work, we have presented a detailed description of
current and future experimental capabilities for the imple-
mentation of topological QEC with trapped-ion crystals.
We have also described the characteristics of the main
sources of noise and imperfections in the experiments.
Based on this discussion, we have introduced a complete
trapped-ion toolbox for QEC, including a discussion of
fault-tolerant designs based on the characteristics of the
trapped-ion set of available gate operations. Using this
toolbox, we have presented different protocols to imple-
ment a QEC cycle based on the seven-qubit color code,
which exploit either crystal reconfiguration or spectro-
scopic decoupling or recoupling techniques. We have
derived effective error models for the different building
blocks of these QEC cycles, which are closely connected
with the experimental sources of noise and go well beyond
the simplified standard approaches that use quantum
channels affecting all QEC operations with the same
probability. Using these effective models for the current
and expected performance of the QEC building blocks, we
have performed extensive numerical simulations to deter-
mine the experimental conditions that are required for these
QEC protocols to become beneficial, a fundamental and
necessary condition for any future implementation of QEC.
Moreover, we have also assessed the conditions for the
encoded logical qubit to outperform the physical unpro-
tected qubit for a particular quantum-information task.
From this study, and in light of our numerical results, we

can draw the following conclusions. The performance of
the seven-qubit trapped-ion color code for the single- or
two-species, shuttling- or hiding-based, QEC protocols
with multiqubit MS gates, and assuming the “current”
performance of the experimental building blocks, is inad-
equate to achieve the breakeven point of beneficial QEC.
Therefore, the trapped-ion hardware must be improved.
Using the operational criteria [Eqs. (2) and (3)] introduced
in this work, we have been able to assess and quantify the
required experimental improvements towards the QEC goal
and to present realistic values of the different building
blocks that must be achieved (see Tables II–V). Our
numerical results for the “future” expected improvements
show that the crossing onto a beneficial QEC cycle can
indeed be achieved with either the shuttling- or the hiding-
based protocols with multiqubit MS gates and that it occurs
at much earlier times and with a much higher value of the
integrity of the encoded qubit. Therefore, we conclude that

FIG. 32. Multiple cycles of future hardware: Success proba-
bility PB with QEC according to the shuttling-based, two-species
protocol. The parameters underlying the simulation correspond to
the future improved values from Tables II–V. The QEC method
used here is the non-fault-tolerant one (cf. Fig. 19), as it takes the
shortest possible time and thus has more potential if more error-
correction cycles are to be applied within one round. Results
show that the application of more QEC cycles sustains the logical
qubit for a longer time, as depicted by the grey dashed line,
which is drawn based on the envelope of the different curves.
As discussed in the main text, the dashed line allows us to
infer the effective rate of decay of integrity of the logical
qubit.
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it will be of primary importance to incorporate and optimize
the QEC building blocks towards the values introduced in
Tables II–IV for the success of trapped-ion implementa-
tions of the QEC color code with two-species ion crystals.
Moreover, we have observed a clear advantage of the QEC
schemes based on sequential two-qubit MS gates, especially
in the context of the fault-tolerant designs. Therefore, our
studies show that the natural next step in the progress
towards trapped-ion fault-tolerant QEC will be to upgrade
the syndrome extraction routines according to the schemes
introduced here. We finally note that, for the protocols
presented, not only is the necessary condition for a
beneficial QEC cycle [Eq. (2)] fulfilled, but we have also
shown that the encoded qubit can perform better than the
unprotected qubit [Eq. (3)]. Moreover, we have shown that
repetitive QEC cycles can sustain the integrity of the logical
qubit for increasing periods of time, provided that the above
breakeven point is achieved.
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