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Abstract 

 

Context-specific Genome-scale Metabolic Network Reconstructions (GENREs) provide a 1 

means to understand cellular metabolism at a deeper level of physiological detail. Here, 2 

we use transcriptomics data from chemically exposed rat hepatocytes to constrain a 3 

GENRE of rat hepatocyte metabolism and predict biomarkers of liver toxicity using the 4 

Transcriptionally Inferred Metabolic Biomarker Response (TIMBR) algorithm. We profiled 5 

alterations in cellular hepatocyte metabolism following in vitro exposure to four toxicants 6 

(acetaminophen, carbon tetrachloride, 2,3,7,8-tetrachlorodibenzodioxin, and 7 

trichloroethylene) for six hours. TIMBR predictions were compared with paired fresh and 8 

spent media metabolomics data from the same exposure conditions. Agreement between 9 

computational model predictions and experimental data led to the identification of specific 10 

metabolites and thus metabolic pathways associated with toxicant exposure. Here, we 11 

identified changes in the TCA metabolites citrate and alpha-ketoglutarate along with 12 

changes in carbohydrate metabolism and interruptions in ATP production and the TCA 13 

Cycle. Where predictions and experimental data disagreed, we identified testable 14 

hypotheses to reconcile differences between the model predictions and experimental 15 

data. The presented pipeline for using paired transcriptomics and metabolomics data 16 

provides a framework for interrogating multiple omics datasets to generate mechanistic 17 

insight of metabolic changes associated with toxicological responses.  18 

  19 



Introduction 20 
 21 

Toxicity is an unintended effect of many compounds, resulting in significant health 22 

complications. The liver, kidney, and heart are often subject to adverse, potentially toxic 23 

effects because of their role in drug metabolism (Albini et al. 2010; Chen et al. 2015; 24 

Awdishu and Mehta 2017).  Hepatotoxicity is of particular concern (Zimmerman 1999; 25 

Church and Watkins 2017; Rueda-Zárate et al. 2017), highlighting the need to understand 26 

how liver metabolism is altered as a result of toxicity. Understanding the metabolic 27 

changes to the liver can facilitate understanding the mechanisms associated with toxicity, 28 

thereby guiding development of novel strategies to counterbalance any toxic effects. 29 

Furthermore, with such mechanistic interrogation of liver metabolism, we can identify 30 

potential biomarkers associated with toxicity and potential intervention points involved 31 

with toxicological processes.  32 

 33 

Genome-scale metabolic network reconstructions (GENREs) have emerged as useful 34 

tools for the study of cellular metabolism (Gille et al. 2010; Karlstädt et al. 2012; 35 

Mardinoglu et al. 2013; Väremo et al. 2015) . GENREs represent metabolic reactions in 36 

a stoichiometric matrix that accounts for the stoichiometric coefficients of chemical 37 

transformations and the associated metabolites. GENREs also account for gene-protein-38 

reaction (GPR) rules that map relationships between genes, the proteins they encode, 39 

and the reactions they catalyze in the network. With the GPR mappings and 40 

stoichiometric matrix to account for associated metabolic reactions, GENREs can be used 41 

to predict gene essentiality, changes in metabolites secreted, and the ability of a cell to 42 

catabolize particular carbon substrates; because of these characteristics, GENREs are 43 



increasingly applied to tackle questions about cellular toxicological responses (Bartell et 44 

al. 2014; Gatto et al. 2015; Carbonell et al. 2017; Brunk et al. 2018; Pannala et al. 2018).  45 

 46 

The incorporation of omics data into GENREs allows for cell-type specific interrogation of 47 

metabolism. Transcriptomics and proteomics data are frequently integrated into GENREs 48 

to create cell-type specific models. Several algorithms to integrate omics data into 49 

GENREs have been developed (Shlomi et al. 2008; Zur et al. 2010). Often with such 50 

methods, the integration of omics data constrains the GENRE by turning “on” and “off” 51 

genes and their associated reactions, reflecting gene expression in different conditions. 52 

These expression integration algorithms help to contextualize these omics data and 53 

improve predictions of cellular metabolic functions.  54 

 55 

Biomarkers are currently used in the diagnosis of cancer, cardiac function, and renal 56 

function (Shlipak et al. 2012; Jungbauer et al. 2016; Pan et al. 2018; Lotan et al. 2018 57 

Mar 31) among other pathologies, often associating the presence or absence of a 58 

molecule with a specific diagnosis. For example, alanine aminotransferase (AST) is a 59 

protein that is used frequently as a biomarker of liver function (Zimmerman 1999; Dufour 60 

et al. 2000); high levels of this protein indicate that the liver has been damaged. A recently 61 

developed computational method for predicting biomarkers is called Transcriptionally 62 

Inferred Biomarker Response (TIMBR) algorithm (Blais et al. 2017), which uses gene 63 

expression data contextualized in a GENRE to estimate relative changes in secreted 64 

metabolite levels. In a previous study (Blais et al. 2017), TIMBR predicted changes in 65 

extracellular metabolite levels based on gene expression data for cells exposed to various 66 



chemical compounds. Predictions of a limited number of metabolite biomarkers for one 67 

chemical were validated, but a global evaluation of how well the biomarker predictions 68 

matched experimental data was missing. In this study, predictions from TIMBR are 69 

compared with paired metabolomics data to observe the differences between 70 

computational predictions and experimental data. Agreement between predictions and 71 

experimental data can be illustrative of mechanism behind an observed biomarker; 72 

disagreements between the computational model and experimental data can facilitate the 73 

development of specific testable hypotheses. 74 

 75 

Here, we exposed primary rat hepatocytes to four chemical compounds and 76 

characterized their acute metabolic response (Figure 1). After exposure, transcriptomics 77 

and metabolomics data were collected from the same sample. We characterized the 78 

response of the hepatocytes to the compounds through changes in gene expression and 79 

metabolite levels, and evaluated similarities and differences between the cell’s responses 80 

across all conditions. The transcriptomics data was integrated into a GENRE of rat 81 

metabolism via iMAT (Zur et al. 2010) to create a hepatocyte-specific network model, 82 

then the TIMBR algorithm was used to predict changes in the secreted metabolite profile. 83 

We compared these predictions with the coupled metabolomics data. With this 84 

methodology, we present a comprehensive strategy to characterize the toxicological 85 

response of hepatocytes to compounds of interest, and provide a framework to identify 86 

further areas of study in hepatocyte drug and toxicity metabolism. 87 

  88 

Methods 89 



Hepatocyte growth conditions 90 

Frozen, primary rat hepatocytes (male, Sprague-Dawley) were purchased from Thermo 91 

Fisher Scientific and cultured according to manufacturer’s directions. Briefly, cells were 92 

rapidly thawed in a water bath (37°C), resuspended in plating media (William’s E media 93 

base supplemented with FBS, dexamethasone, penicillin/streptomycin, insulin, 94 

GlutaMAX, and HEPES; Gibco #CM3000), pelleted (50 x g, 5 min), and plated at ~85% 95 

confluence in 12-well tissue culture plates. After 24 hours, plating media was replaced 96 

with maintenance media (William’s E media base supplemented with dexamethasone, 97 

penicillin/streptomycin, ITS+, GlutaMAX and HEPES; Gibco #CM4000) and cells were 98 

incubated at 37°C under 5% CO2 for the remainder of the experiment.  99 

  100 

Hepatocyte exposure to compounds 101 

Hepatocytes were exposed to a hepatotoxicant and general toxicants at sub-toxic levels. 102 

Sub-toxic levels were defined as concentrations that resulted in minimal cell death but 103 

observed phenotypic changes (e.g., decreases in albumin production, ATP levels, 104 

increases in cytochrome p450 activity) (Supplemental Information). The compounds 105 

were acetaminophen (APAP) at 3mM, carbon tetrachloride (CCl4) at 10mM, 106 

trichloroethylene (TCE) at 1mM, and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) at 1nM. 107 

APAP and CCl4 are known hepatotoxicants, while TCDD and TCE are not considered 108 

primary hepatotoxicants typically, but do indeed induce hepatotoxicity. APAP, TCDD, and 109 

TCE conditions have 4 replicates, while CCl4 and the DMSO controls have 3 replicates. 110 

Solutions were made in WEM containing 0.1% DMSO with 0.1% DMSO as a control. 111 

Cells were exposed to the compounds for six hours. Concentrations and the 6 hour time 112 



point were selected based off literature evidence of comparable studies and conditions 113 

(Mitchell et al. 1985; Cai et al. 2005; Aly and Domènech 2009; Kienhuis et al. 2009; 114 

Uehara et al. 2010; Dere et al. 2011; Xu et al. 2012; Forgacs et al. 2013).  115 

 116 

RNA isolation, sequencing, and analysis  117 

After supernatants were collected, cells from each condition were treated with TRIzol® 118 

and then scraped and collected into tubes. Chloroform was added to each tube and after 119 

shaking, cells were poured into pre-spun phase-lock gel tubes (5PRIME). Tubes were 120 

then spun in a cold room, the upper phase was collected, and isopropanol and glycogen 121 

were added to each tube followed by gentle inversion. Supernatants were again spun in 122 

a cold room and the resulting pellet was washed twice with 75% ethanol. The pellet was 123 

semi-dried and then dissolved in nuclease-free H2O. RNA samples were treated with 124 

DNA-free DNA removal kit (Ambion/Invitrogen), according to manufacturer’s instructions, 125 

to remove any remaining DNA. RNA was quantified using the Qubit RNA broad range kit 126 

and sample integrity assessed using Agilent. RNA samples were subjected to rRNA 127 

depletion prior to library construction and sequencing; all services were performed by 128 

GENEWIZ. Libraries were sequenced using the Illumina HiSeq2500 platform in a 129 

2x100bp pair-end (PE) configuration in High Output mode (V4 chemistry). The Unix-130 

based program Kallisto  v. 0.43.0 (Bray et al. 2016) was used to process RNA sequence 131 

data in fastq format and quantify transcript abundances. Normalized transcript abundance 132 

values (TPM, Transcripts Per Million) were calculated by Kallisto, using default settings, 133 

and imported to R for differential analysis. To quantify transcript abundances and 134 

aggregate toward the gene level, the package tximport in R was used (Soneson et al. 135 



2015). Differential gene expression was then performed with the standard DESeq2 R 136 

package (Love et al. 2014) to obtain a list of differentially expressed genes with their log2 137 

fold change values.  138 

 139 

Metabolomics  140 

After hepatocytes were exposed to the different compounds, supernatants were collected 141 

and stored at -20°C. Supernatants were then shipped to West Coast Metabolomics 142 

(http://metabolomics.ucdavis.edu/) at the University of California, Davis and untargeted 143 

analysis of primary metabolites, complex lipids, and biogenic amines was conducted on 144 

each sample, DMSO controls, and on blank media. An extraction solvent of 3:3:2 145 

acetonitrile/isopropanol/water was prepared to use with the collected samples for Gas 146 

Chromatography Mass Spectrometry (GC-MS) to analyze primary metabolites. External 147 

and internal standards for quality control were also prepared along with the samples. Raw 148 

results were reported as peak heights for quantification ion at the specific retention index. 149 

A full description of the protocol was outlined previously (Fiehn 2016). Lipidomics analysis 150 

was performed by preparing samples with methanol, methyl tert-butyl ether (MTBE), and 151 

water before running Liquid Chromatography Mass Spectrometry (LC-MS). LipidBlast 152 

was used to identify and annotate lipids, and peak heights were reported according to the 153 

published protocol (Cajka and Fiehn 2017).  154 

 155 

Biogenic amine peak heights were quantified using Hydrophilic Interaction 156 

Chromatography Quadrupole Time of Flight (HILIC-QTOF) Mass Spectrometry, and peak 157 

heights were calculated followed methods previously described (Meissen et al. 2015). 158 



Samples were processed and analyzed according to West Coast Metabolomics protocols. 159 

Proteins and small polar hydrophilic small molecules were separated from lipids 160 

according to the protocol published by Matyash et al (Matyash et al. 2008). Data was 161 

acquired using the following chromatographic parameters. Ultrapure water with 10mM 162 

ammonium formate and 0.125% formic acid (pH 3) for mobile phase A, and 95:5 v/v 163 

acetonitrile:ultrapure water with 10mM ammonium formate with 0.125% formic acid (pH 164 

3) for mobile phase B. A column temperature of 40˚C, with the flow rate of 0.4 mL/min 165 

and injection volume of 3µL for ESI (+) and temperature of 4˚C was used. The ESI 166 

Capillary voltage was +4.5kV for ESI (+), the scan range was m/z 60-1200 Da, and the 167 

mass resolution was 10,000 for ESI (+) on an Agilent 6530 QTOF MS. After raw peaks 168 

were obtained, they were processed by mzMine 2.0 software to find peaks in up to 300 169 

chromatograms. Relative peak intensities of both identified and unidentified metabolites 170 

were generated and used for further analyses.  171 

  172 

Data analysis 173 

Before differential expression analysis, genes with no counts were removed from analysis 174 

to avoid skewing the results. A gene was considered significantly differentially expressed 175 

if the False Discovery Rate (FDR) corrected p-value was < 0.1. Standard Euclidean 176 

hierarchical clustering was performed on all the gene expression data and clustering was 177 

done by each individual gene. For the metabolomics dataset, primary metabolites, 178 

lipidomics, and biogenic amines were read in and combined into one data frame to 179 

analyze the data similarly. Experimental replicates were averaged together and fold 180 

changes were calculated from the cell samples and the fresh media samples. Significance 181 



of metabolite differences were determined with a p-value < 0.05 using the Mann-Whitney 182 

U test. All statistical analyses were performed using R version 3.4.0. 183 

  184 

Gene enrichment analysis 185 

To perform gene enrichment analysis, the Database for Annotation, Visualization, and 186 

Integrated Discovery (DAVID) Bioinformatics Resource was used with a list of 187 

differentially expressed genes for each compound (Huang et al. 2009a; Huang et al. 188 

2009b). The Functional Annotation Tool was used to determine which Kyoto 189 

Encyclopedia of Genes and Genomes (KEGG) pathways were overrepresented, or 190 

enriched. Entrez gene IDs were submitted to the DAVID Bioinformatics Resource website 191 

and the Rattus norvegicus species was selected. The category “KEGG pathways” and 192 

functional annotation clustering were selected. KEGG pathway terms were considered 193 

significantly enriched if the FDR corrected p-value was less than 0.1.  194 

 195 

Flux balance analysis and the creation of tissue-specific models 196 

The stoichiometric matrix (S matrix) was analyzed using the COBRA toolbox v. 2.0.6 197 

(Schellenberger et al. 2011). The iRno reconstruction of rat metabolism, which accounts 198 

for the function of 5620 metabolites, 2324 genes, and 8268 reactions, was used to make 199 

computational predictions (Blais et al. 2017). iRno has been curated to perform liver-200 

specific metabolic tasks, making it appropriate as a base model of liver metabolism. Flux 201 

Balance Analysis (FBA) was performed using the optimizeCBmodel function in the 202 

COBRA toolbox in MATLAB v. R2016b. Condition-specific models were then created 203 

using the iMAT algorithm in the COBRA toolbox. The createTissueSpecificModel function 204 



in the COBRA toolbox was used, with iMAT set as the method for expression data 205 

integration, using reactions associated with differentially expressed genes and exchange 206 

reactions as high confidence reactions to include in the model. Log-fold changes for 207 

differentially expressed genes were supplied as inputs along with a model with genes 208 

created for exchange reactions, while the hepatocyte-specific model was provided as an 209 

output.   210 

   211 

TIMBR Algorithm  212 

The TIMBR algorithm combines the transcriptomics data with the iRno network 213 

reconstruction to determine production scores for each exchangeable metabolite relative 214 

to a control as previously described (Blais et al. 2017). The transcriptomics data was used 215 

to generate weights for a control case and a treatment case on each reaction in the 216 

reconstruction. Next, for each metabolite, the weighted flux through each reaction was 217 

minimized while maintaining positive flux through that metabolite's exchange reaction for 218 

the control and treatment conditions. Production scores are normalized using the 219 

previously described formula (Blais et al. 2017) to determine whether a metabolite has 220 

increased or decreased production relative to the control and used for further downstream 221 

analysis. The scripts used to generate each of the datasets can be found on the github 222 

site (www.github.com/csbl) published with the TIMBR algorithm.  223 

Results 224 

Transcriptomics data reveal compound-specific responses of hepatocytes  225 

Hepatocytes were exposed to acetaminophen (APAP), carbon tetrachloride (CCl4) 226 

2,3,7,8-tetrachlorodibenzodioxin (TCDD), or trichloroethylene (TCE) for six hours to 227 



characterize the differential toxicity-induced metabolic response. Figure 1 shows the 228 

experimental layout; after hepatocytes were exposed to each compound, supernatants 229 

were collected for metabolomics analyses and RNA was isolated for transcriptomics 230 

analysis. DMSO was used as a non-drug control. The number of differentially expressed 231 

genes (DEGs) for each condition and time point were determined (Table 1) and a list of 232 

genes from the differential gene analysis was produced (Supplementary Data 1). APAP 233 

induced the most DEGs in the hepatocytes, while TCE induced the least number of DEGs. 234 

To further analyze the genes that were differentially expressed, we used the DAVID 235 

Bioinformatics platform to identify enriched KEGG pathways for each compound. Figure 236 

2A shows the enrichment results of the differentially expressed genes for APAP, CCl4, 237 

TCDD, and TCE (Complete enrichment results are shown in Supplementary Data 2). 238 

APAP at six hours showed an enrichment for metabolic pathways, while CCl4, TCDD and 239 

TCE at six hours did not (Figure 2), suggesting that the hepatocyte’s metabolism was 240 

more altered globally in response to APAP compared to the other three compounds.  As 241 

evidenced in the enrichment analysis, APAP exposure induced a wide variety of gene 242 

expression changes, while gene expression changes after CCl4, TCDD, and TCE 243 

exposure appeared focused towards RNA and protein processing. After investigating the 244 

broad effects of the compounds, we then focused on metabolic genes to evaluate how 245 

each compound perturbed hepatocyte metabolism.  246 

 247 

Figure 2B shows a heat map of the log2 fold changes of all the metabolic DEGs with a 248 

Benjamini-Hochberg adjusted p-value of less than 0.1 in at least one condition. This 249 

heatmap shows that CCl4 and TCE elicit similar changes in gene expression. We 250 



observed changes in expression for the Cyp450 family of genes, often associated with 251 

metabolizing drugs (Guengerich 2008). We saw a decrease in Cyp3a4 in APAP 252 

(Supplementary Figure 3) but no changes in the other compounds, likely because other 253 

Cyp450 genes play a role in rat metabolism of compounds (Tran et al. 2001; Zuber et al. 254 

2002). Specifically, Cyp2e1 is induced in hepatotoxicity (Jaeschke et al. 2002; McGill et 255 

al. 2012). We saw upregulation of Cyp2e1 in APAP-induced toxicity, but not for TCDD- 256 

and TCE-induced toxicity; however, there were other genes in the Cyp450 family that 257 

were differentially expressed in these other conditions. In APAP- and TCDD-induced 258 

toxicity, the Cyp450 gene Cyp2d4, also associated with the metabolism of drugs (Mizuno 259 

et al. 2003), was upregulated. TCDD-induced toxicity resulted in upregulation of most 260 

other Cyp450-related genes, while TCE-induced toxicity resulted in downregulation for 261 

many of the same genes. This result highlights that even though there are common 262 

pathways of toxicity associated with the liver, these compounds ultimately result in 263 

different specific effects on the hepatocytes. In an effort to identify potential biomarkers 264 

specific to each compound, we next interrogated the metabolomics data to identify 265 

differential effects of each compound. 266 

 267 

Metabolomic data discriminates the response of the primary hepatocytes specific 268 

to each treatment.   269 

APAP produces the most distinct signature of the three compounds, while TCDD and 270 

TCE display a similar profile. The metabolomics data are illustrated in scatter plots for 271 

APAP (Figure 3A), CCl4 (Figure 3B), TCDD (Figure 3C), and TCE (Figure 3D) exposure 272 

conditions and fold changes with respect to the DMSO control is described in 273 



Supplementary Data 3. The scatter plots show each metabolite, with the fold change of 274 

average relative metabolite peak intensity compared to blank medium on the x-axis, and 275 

compared to the DMSO controls on the y-axis. With this arrangement, metabolites are 276 

classified as having increased or decreased production if the fold change relative to blank 277 

is positive, or increased or decreased consumption if the fold change relative to blank is 278 

negative. Metabolites are also color coordinated, to help distinguish metabolites that were 279 

increased or decreased in their production or consumption. Only metabolites that were 280 

significantly changed in either the treated vs. control, or treated vs. blank cases are 281 

displayed. From these data, we see that APAP induces the greatest number of 282 

metabolites with an increase in production, while the other compounds induced a 283 

decrease in production of most measured metabolites. There is a trend for metabolites to 284 

either be increased in production (upper right) or decreased in production (lower right). 285 

This trend is clear in each condition, as these were the two categories with the most 286 

metabolites, although many of these metabolites are not yet identified. In APAP-induced 287 

toxicity, there were several amino acids that decreased in production compared to the 288 

control case (Supplementary Figure 3A, bottom left and right). This result indicates that 289 

hepatocytes consumed more amino acids after being exposed to APAP. TCDD and TCE 290 

both caused hepatocytes to decrease production of fatty acids (Supplementary Figure 291 

3C and 3D, bottom right), while APAP triggered an increased production of fatty acids 292 

(Supplementary Figure 3A, top right). The results from the metabolomics data suggests 293 

a clear metabolic difference in the hepatocytes treated with different compounds, and that 294 

the mechanism of action or off target effects of the toxicants may be the likely cause of 295 

this shift.  296 



  297 

We next decided to interrogate the total metabolic response of the hepatocytes to further 298 

discriminate treatment conditions. Figure 3E shows a heatmap of the individual 299 

metabolite levels, and whether or not the amount of the metabolites increased or 300 

decreased with respect to the control condition. Again, we noticed that TCE and TCDD 301 

showed a similar but distinct pattern of changes in metabolite levels. Valine and leucine 302 

were uniquely increased in TCE, while tryptophan, serine, and glutamate were uniquely 303 

decreased in TCDD. Between both compounds, nicotinate, glucose-1-phosphate, and 304 

aminomalonate all decreased. There were only seven metabolites that increased for both 305 

TCDD and TCE, 1,3-diheptadecanoyl-2-(10Z-heptadecenoyl)-glycerol d5 and six 306 

unidentified metabolites. There were 80 metabolites that decreased between both 307 

compounds including both identified and unidentified metabolites. In the heatmap in 308 

Figure 3D there are a few prominent clusters of metabolites. There was a small cluster 309 

of unidentified metabolites in the TCDD and TCE condition whose levels were decreased 310 

when compared to the control condition. APAP did not follow this trend, as a number of 311 

those same metabolites were increased. Within this large cluster the only identified 312 

metabolite was nicotinate. Of the 559 metabolites we were able to detect, only 115 could 313 

be identified. Of the identified metabolites, we then looked at the unique metabolites 314 

altered by each condition to compare and contrast each compound’s effect on the 315 

hepatocytes. Common metabolites that consistently decreased across all conditions were 316 

L-lactate, glycerate, and alpha-ketoglutarate (AKG), which have been shown to decrease 317 

in other toxicity studies (Kim and Moon 2012). Other studies have shown decreases in 318 

citrate and AKG (Ishihara et al. 2006), which have been attributed to disruptions of the 319 



TCA cycle. Finally, there were increased lipid levels in TCE and TCDD compared to their 320 

controls, suggesting a strong alteration in lipid metabolism in response to these 321 

compounds.     322 

 323 

TIMBR predictions suggest unique responses to each toxicant 324 

To make predictions on metabolite production levels relative to control from the gene 325 

expression data, we created a hepatocyte-specific metabolic model from the 326 

unconstrained iRno GENRE using iMAT (Zur et al. 2010) along with the gene expression 327 

data described earlier. The Transcriptionally Inferred Metabolic Biomarker Response 328 

(TIMBR) response algorithm (Blais et al. 2017) was used to create normalized production 329 

scores for each metabolite that could be secreted by the model and we compared these 330 

values with the fold changes calculated from the metabolomics data above 331 

(Supplementary Data 4). Figure 4A shows a distribution of normalized TIMBR 332 

production scores by compound, with the median indicated by the notches and black line 333 

and the mean represented by the white diamond in the middle of the box plot. From 334 

Figure 4A we see that each group has its mean at about zero, however the median for 335 

each group is different. The APAP and TCE conditions show that more scores have 336 

positive TIMBR scores while CCl4 has slightly more negative TIMBR scores. This result 337 

suggests that hepatocytes are predicted to produce more metabolites in response to 338 

APAP and TCE exposure compared to other toxicant conditions.   339 

 340 

We then compared common metabolites that were predicted to increase or decrease after 341 

all treatments, which indicate common metabolic shifts in response to drug treatment. 342 



Figures 4B and 4C shows Venn diagrams of the metabolites that were predicted to 343 

commonly increase or decrease in production, or uniquely increase or decrease in 344 

response to APAP, CCl4, TCDD, or TCE at six hours, respectively. Similar to the trend 345 

noted in all of the TIMBR production scores (Figure 4A), CCl4 exposure was predicted to 346 

decrease a higher number of metabolite production scores (Figure 4C) that do not also 347 

decrease in other conditions. However, APAP exposure was predicted to increase more 348 

metabolite production scores that were not increased in other conditions (Figure 4B), 349 

which is consistent with the prediction of more positive production scores. We then 350 

classified metabolites according to their Human Metabolome Database (HMDB) sub-351 

classification (Supplementary Data 5) that were changing in each condition from the 352 

results shown in Figures 4B and 4C. The bar charts in Figures 4D-4H indicate the 353 

number of metabolites uniquely predicted to increase or decrease production after 354 

toxicant exposure according to their sub-classification. For shared metabolites across all 355 

conditions (Figure 4D), a small number of amino acids are predicted to decrease, while 356 

bile acids are predicted to increase. APAP exposure (Figure 4E) resulted in the highest 357 

number of fatty acids predicted to increase in production, followed by amino acids. The 358 

increase in bile acids and amino acids suggests alterations in these pathways in response 359 

to liver injury, and has been observed in literature (Kumar et al. 2012; Sun et al. 2013). In 360 

CCl4 exposure (Figure 4F), carbohydrate compounds are predicted to decrease in 361 

production, while these same metabolites were predicted to increase in the other three 362 

conditions. With TCDD exposure (Figure 4G), amino acids are predicted to decrease in 363 

production while with TCE exposure bile acids are predicted to decrease (Figure 4H) 364 

which is similar to CCl4. Overall the TIMBR predictions illustrate that the response of the 365 



hepatocytes to each compound is primarily due to carbohydrate and amino acid 366 

metabolism, which could represent a generic response towards toxic compounds. 367 

However, predictions from APAP exposure indicate a distinct response in fatty acid 368 

metabolism, with CCl4 and TCE eliciting more of a change in bile acid metabolism, 369 

suggesting that we can predict compound-specific effects on the hepatocytes.  370 

 371 

Comparing TIMBR predictions and metabolomics data  372 

We next wanted to quantify the similarity and dissimilarity between the predictions and 373 

metabolomics data, to determine how indicative gene expression changes were in 374 

predicting metabolite levels. In addition to the fold changes calculated from the 375 

metabolomics data, the Mann-Whitney U test was used to determine statistical 376 

significance at the p < 0.05 level. A change in metabolite levels with p > 0.05 when 377 

compared to the control condition, was classified as “no change”, and represented with a 378 

fold change of zero. We then took the subset of secreted, identified metabolites and 379 

compared this list with our TIMBR predictions which resulted in 20 metabolites we could 380 

validate for each experimental condition. For the TIMBR predictions, metabolite 381 

production scores were ranked, and metabolites in the middle 50% of the list were 382 

classified as no change and given a value of zero for comparing with the metabolomics 383 

data. Figure 5A shows a heatmap of the metabolomics data and the production scores 384 

for metabolites on the y-axis with each condition on the x-axis. Of the 20 metabolites in 385 

each condition, we predicted five correctly in the APAP condition, 10 correctly in the CCl4 386 

condition, nine correctly in the TCDD condition, and nine correctly in the TCE condition. 387 

From the list of successful predictions nicotinate, and glycine were correct in three of the 388 



conditions, while nine metabolites were correct in two of the conditions. There were six 389 

amino acids in the set of 20 that we could make predictions for, and of those six, we 390 

correctly predicted two in the APAP condition, three in the CCl4 condition, while only one 391 

prediction was correct in the TCDD condition and five in the TCE condition. While we 392 

were able to predict broad changes in carbohydrate and energy metabolism from the 393 

TIMBR predictions as described above, the data were too limited to draw the same 394 

conclusions from the subset of experimental data that we were able to validate.   395 

 396 

Figure 5B quantifies our validation results, and shows exactly where predictions were 397 

right and where predictions were wrong. The bulk of the correct predictions came from 398 

identifying no change in both the experimental condition and the computational prediction. 399 

Overall, our accuracy for our predictions was 41%. We made no correct predictions on 400 

metabolites that were measured as increase or predicted to increase. Thirty-seven of the 401 

predictions were incorrect from detecting a change and predicting there was none, or vice 402 

versa. Our sensitivity for detecting no change was 42% and lower for predicting an 403 

increase (0%) or decrease (40%). Our specificity for no change or decrease was high at 404 

75%, but was lower (65%) for the no change condition.  405 

Discussion 406 

There is limited information on biomarkers of toxicity; therefore, novel approaches to 407 

elucidate and validate relevant biomarkers are needed. A promise of metabolomics as an 408 

approach for identifying biomarkers is its connection to cell phenotype as a change in 409 

metabolite levels may represent changes in the functional state of the cells. Here, we 410 

present the first use of paired transcriptomics and metabolomics with GENREs to study 411 



hepatocytes exposed to different compounds and to integrate these data with metabolic 412 

network models to provide insight into the changes that are occurring. At the 413 

concentrations and timepoint we selected for exposure, we used standard measures of 414 

hepatocyte function (albumin production, Cyp450 activity, etc.) to ensure we were not 415 

killing the cells (Supplemental Information). While we observed minimal changes in 416 

traditional measurements of toxicity after 6 hour exposure (Supplemental Figures 1-3), 417 

we observed changes in metabolism as indicated by the transcriptomics and 418 

metabolomics data. Additionally, connecting transcriptomic changes to secreted 419 

metabolites even at low-toxic compound concentration can be useful in clinical settings, 420 

as these secreted metabolites can be measured to gain an early indication of hepatic 421 

injury. Secreted metabolites can then be connected back to transcriptional changes using 422 

metabolic network models, which allows us to generate mechanistic insight into observed 423 

changes in transcript or metabolite levels.  424 

 425 

From this study, we observed a number of transcriptional changes in metabolic genes of 426 

hepatocytes following exposure to compounds. Analyses of transcriptional changes 427 

highlighted that APAP produced the largest change in hepatocyte gene expression, as 428 

expected (Ben-Shachar et al. 2012; McGill and Jaeschke 2013; Sjogren et al. 2014; 429 

Taguchi et al. 2015). There were 31 differentially expressed metabolic genes that were 430 

shared across all four compounds. There were five genes that were upregulated in each 431 

of the four treatment conditions. Among the group of upregulated genes includes two 432 

glutathione S-transferase genes, indicative of detoxification mechanisms given 433 

glutathione is used to conjugate toxic metabolites (Monks et al. 1990; Guengerich 2008). 434 



Furthermore, glutathione S-transferase is responsible for the detoxification of NAPQI, a 435 

toxic metabolite that is generated from metabolizing APAP (Henderson et al. 2000). In 436 

the metabolomics data, glutathione production was decreased in APAP (albeit p = 0.34). 437 

For the TIMBR predictions, in the APAP condition we did predict to see decreased 438 

production of glutathione, which is attributed towards glutathione detoxifying NAPQI in 439 

the hepatocytes.  440 

 441 

Twelve differentially expressed metabolic genes that were shared across all compounds 442 

were downregulated. Among this group was isocitrate dehydrogenase 3 (Idh3a), which is 443 

responsible for the NAD+ dependent conversion of isocitrate to alpha-ketoglutarate. In 444 

the metabolomics data, we observed decreased production of alpha-ketoglutarate in 445 

response to APAP, TCDD and TCE compared to their respective controls. We also 446 

computationally predicted this decrease in AKG in the APAP condition (Figure 5). These 447 

examples suggest that there are some transcriptional changes that are indicative of 448 

downstream metabolite changes.  449 

 450 

Glycolysis and the TCA cycle were disrupted as a result of compound exposure. In the 451 

metabolomics data, we observed that glycerate was decreased in response to exposure 452 

to APAP, TCDD and TCE, and glucose-1-phosphate was decreased after treatment with 453 

TCDD and TCE. Both glucose-1-phosphate and glycerate can feed into glycolysis and 454 

then progress to the TCA cycle. Decreases in these metabolites indicate that the 455 

hepatocytes are inefficiently producing ATP via the TCA cycle. This observation is also 456 

further supported by the measured decrease in alpha-ketoglutarate in most of the 457 



conditions as well as the decrease in citrate in response to APAP. Carbohydrates also 458 

feed into glycolysis, and a decrease in carbohydrates can also decrease TCA activity. In 459 

Figure 4, we observe that carbohydrates were predicted to decrease in production after 460 

exposure to APAP and CCl4, which are both hepatotoxicants. While we were not able to 461 

correctly predict changes in glycerate production in every condition (Figure 5), we were 462 

able to predict this shift in metabolism via the carbohydrates, which is supported by the 463 

metabolomics data. Thus, TIMBR predictions can be useful for suggesting pathway level 464 

differences of a treatment that can be experimentally validated.   465 

 466 

We compared our in vitro and computational results with other in vivo toxicity studies that 467 

have been done. Across the different studies, lipid metabolism, amino acid metabolism, 468 

and energy metabolism (TCA Cycle) were all affected by exposure to different 469 

compounds. One study that focused on TCDD-induced transcriptomic changes identified 470 

several genes associated with these pathways that were both upregulated and down 471 

regulated (Boverhof et al. 2006). From a metabolomics perspective, TCA cycle 472 

intermediates were down regulated in response to APAP (Sun et al. 2008), which agreed 473 

wit our data. These same pathways came up in common with our TIMBR predictions 474 

(Figure 4) which are based on our measured transcriptional changes. One study noted 475 

that in response to APAP-induced toxicity, metabolite levels for glycerol and kynurenine 476 

were increased, while threonine, serine, ornithine, lysine, glycerate, and glutathione were 477 

reduced (Pannala et al. 2018). The authors also observed enrichment in the glycine, 478 

serine, and threonine metabolic pathway (Pannala et al. 2018). While we did not observe 479 

the decrease in glutathione levels, we did note enrichment in the glycine, serine, and 480 



threonine pathway in the APAP condition (Figure 2A). The decrease in glutathione in 481 

APAP was shown to occur at later time points, due to increasing progression of liver injury 482 

as noted by the authors (Pannala et al. 2018). Lastly, CCl4 is known to cause hepatocytes 483 

to increase urinary bile acid levels (Yang et al. 2008). We observed that there were a few 484 

bile acids predicted to increase (Figure 4D), but unique to CCl4 was the observation that 485 

most of the bile acids were predicted to decrease (Figure 4F). Since in vitro conditions 486 

do not fully capture in vivo conditions due to differences in time-scales, actual exposure 487 

concentrations, among other variables, there is not complete agreement between the in 488 

vitro and in vivo results as expected. However, our in vitro experiment provides a means 489 

to study changes in hepatocyte metabolism without the variability of an in vivo 490 

experiment,. While results may not fully match, general trends in metabolic chagnes do 491 

agree, as indicated by the shift in fatty acid metabolism from TCA cycle and amino acid 492 

breakdown noted earlier, which highlights the utility of in vitro systems for interrogating 493 

toxicological responses. 494 

 495 

One limitation of this study that affected the ability to make predictions was the lack of 496 

overlap between the metabolomics data, and metabolites for which we were able to make 497 

TIMBR predictions. For the primary metabolites in the metabolomics dataset, only 115 498 

out of 559 were identifiable. Of these 115, there were only 21 metabolites in the subset 499 

that were secreted and that were accounted for in our current network reconstruction, as 500 

shown in Figure 5. While the number of correct predictions was limited, we were still able 501 

to make predictions on glycolysis, the TCA cycle, and amino acid metabolism which were 502 

supported by either the metabolomics data or literature from other toxicity studies (Beger 503 



et al. 2010; Kumar et al. 2012). There are opportunities for further curation of the network 504 

reconstruction to account for more metabolites and metabolic reactions, as well as further 505 

curation of the metabolomics data. 506 

 507 

This study used transcriptomics data paired with metabolomics data to provide insight 508 

into the changes induced by these toxicants on hepatocytes. Protein fold changes could 509 

be used in place of gene expression data and ultimately could have been used for TIMBR 510 

predictions because we can map such data to the metabolic reactions accounted for in 511 

the metabolic network reconstruction. As large data sets are made accessible or easy to 512 

collect, the use of multi-omic datasets to predict and validate modeling results becomes 513 

critical in interrogating specific phenotypes of interest for a chosen system. Our paired 514 

experimental and computational approach is one step towards characterizing the cellular 515 

response to a compound and identifying potential biomarkers indicative of cell state. 516 

  517 

  518 
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expressed genes and DAVID Enrichment results are included in Supplementary Data 1 729 

and Supplementary Data 2, respectively. Metabolomics data and analysis are available 730 

in Supplementary Data 3. TIMBR production scores are available in Supplementary 731 

Data 4. Supplemental Data 5 provides annotations to uniquely increased or decreased 732 

TIMBR production scores for each condition, and Supplemental Data 6 provides gene 733 

inputs and reaction outputs for the iMAT model created to run TIMBR predictions. All 734 

supplementary files are stored on the Dryad Digital Repository website (Rawls et al. 735 

2019), accessible at https://datadryad.org/review?doi=doi:10.5061/dryad.04vk390. 736 

Source data needed to reproduce figures can be obtained via the code available at 737 

github.com/csbl/hepatocyte_omicsdata. All other data supporting the findings of this 738 

study are available within the article and its supplementary information files.  739 
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Figures 741 
 742 

 743 

Figure 1: Schematic of the experimental set up 744 

(A) Primary rat hepatocytes were plated in 12-well format and exposed to acetaminophen, 745 

carbon tetrachloride, 2,3,7,8-Tetrachlorodibenzodioxin (TCDD), or trichloroethylene for 746 

six hours. After compound exposure, supernatants were collected and sent for 747 

metabolomics analysis. Hepatocytes were lysed and RNA was collected for sequencing. 748 

(B) Cellular RNA was isolated and sequenced by Genewiz. With the raw sequencing 749 

reads as an input, the program kallisto was used to align sequencing reads to a reference 750 

transcriptome. The R packages TxImport and DESeq2 were used to summarize transcript 751 

counts to the gene level and to perform differential gene analysis respectively. Spent 752 



media from the hepatocytes were collected and sent for GC-MS, LC-MS, and HILIC-753 

QTOF metabolomics at West Coast Metabolomics. After receiving metabolite peak 754 

intensities, the data was processed in R to generate a list of differentially abundant 755 

metabolites in each condition.   756 



 757 

Figure 2: Gene enrichment and metabolic gene expression data   758 

(A) DAVID enrichment of KEGG Pathways for six hours in APAP-, CCl4-,TCDD-, and 759 

TCE- induced toxicity conditions. The heat map above shows the log2 fold changes of 760 

the metabolic genes from sequencing (B). Each condition is listed on the x-axis, and the 761 

individual genes are listed on the y-axis. Genes that are upregulated are shown in red, 762 

while downregulated genes are shown in blue. Genes on the x-axis are clustered by 763 

Euclidean distance, using complete linkage.  764 

  765 



 766 

Figure 3: Overview of the metabolomics data  767 

The scatter plots show the distribution of metabolites that are significantly (p < 0.05) 768 

changed when compared to either the control media or blank media, and colored 769 

according to their levels when compared to both sets of media. Metabolites in gold have 770 

decreased overall consumption, metabolites in orange have increased overall 771 

consumption, light blue indicates decreased overall production, while purple shows 772 



increased overall production, all with respect to the control media. Plots are shown for 773 

APAP- (A), CCl4 – (B), TCDD- (C), and TCE- (D) induced toxicity conditions at six hours. 774 

The heat map above shows the log2 fold changes for metabolites compared to their 775 

respective controls (E). Each condition is listed on the x-axis, and the metabolites are 776 

listed on the y-axis. Metabolites that are elevated in production with respect to the control 777 

condition are shown in red, while metabolites reduced in production, compared to the 778 

control condition, are shown in blue. Metabolites on the x-axis are clustered by Euclidean 779 

distance, using complete linkage.  780 
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 785 

 786 

Figure 4: Summary and Distribution of TIMBR production scores  787 



The distribution of TIMBR production scores are shown (A) indicating that the ranges are 788 

similar, but scores have a slight skew according to their condition. The APAP condition 789 

results in more negative production scores, while TCE results in more positive production 790 

scores. Red lines mark y = 1 and y = -1. Venn Diagrams compare all positive (B) and 791 

negative (C) production scores for each compound, and the overlap between the three 792 

conditions. TIMBR scores that are common across all conditions (D), and unique to APAP 793 

(E), CCl4 (F), TCDD (G), TCE (H) are illustrated. Here, metabolites are classified into 794 

categories taken from the subclass names from the Human Metabolome DataBase 795 

(HMDB) if available. Metabolite in a category that increases were given a light color, while 796 

metabolites in a category that decrease were given a darker color.  797 

 798 
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800 

Figure 5: Validation of TIMBR production scores using Metabolomics Data  801 

The heat map (A) shows the results from the metabolomics data, and the TIMBR 802 

production scores for each metabolite we were able to make a prediction for and validate. 803 

Each condition is listed on the x-axis, and the metabolites are listed on the y-axis. 804 



Metabolomics data are shown in the upper left triangle, and TIMBR Production scores 805 

are shown in the bottom right triangle. Red indicates a metabolite is elevated, or predicted 806 

to be elevated in production, while blue indicates a metabolite is decreased, or predicted 807 

to decrease, in production. The bar chart (B) shows the categories a prediction can fall 808 

into on the y-axis ranging from increase, decrease, or no change for both the experimental 809 

data and the TIMBR predictions. The x-axis contains the number of predictions that fall 810 

into the category on the y-axis. Predictions that agree with the experimental data are 811 

colored with green bars, while disagreement between the data shows red bars.  812 
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Tables  815 

 816 
Table 1 – Comparison of the number of differentially expressed genes in response to 817 

each chemical compound at the six-hour time point, compared to their respective controls.  818 

 819 

 820 
Table 2 – Comparison of the number of differentially changed metabolites for each 821 

chemical compound at the six-hour time point, compared to their respective controls.  822 

 823 

Chemical 
Compound 

Number of differentially 
expressed genes (FDR < 0.1) 

Number of differentially 
expressed genes (FDR < 0.1) in 

the iRno model 
APAP – 6 hours 7370 1009 
CCl4 – 6 hours 824 131 

TCDD – 6 hours 2493 304 
TCE – 6 hours 907 151 

Chemical 
Compound 

Statistically significant 
metabolites changed 

Subset of statistically changed 
metabolites identified 

APAP – 6 hours 82 8 
CCl4 – 6 hours 11 3 

TCDD – 6 hours 102 6 
TCE – 6 hours 84 6 
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