
1
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 1

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

AADL V3 Standard Discussions
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

AADL V3 Standard
Discussions
Peter Feiler

June 2019

2
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 2

Copyright 2019 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-

0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research

and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an

official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,

EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF

FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE

MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO

FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form

without requesting formal permission. Permission is required for any other use. Requests for permission should be directed

to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM19-0625

3
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 3

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

AADL V3 Standard Discussions
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

AADL v3 Roadmap

Peter Feiler

4
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 4

Overall Strategy
AADL V2.2

• New AADL V2.2 errata: https://github.com/saeaadl/aadlv2.2

• OSATE issue reports: https://github.com/osate

• Long term support (LTS) for OSATE 2.x

AADL V3
• Working slides

- https://github.com/saeaadl/aadlv3/tree/master/SAEAADLV3

- Issues: https://github.com/saeaadl/aadlv3/issues

• New draft standard document

- Document split into sections

- Revision of packages, component interface, implementation, sucomponent,
configuration

- Document conversion into Restructured Text (RST) to come

• Prototype implementation started

- https://github.com/saeaadl/AadlV3Prototype

https://github.com/osate
https://github.com/saeaadl/aadlv3/tree/master/SAEAADLV3
https://github.com/saeaadl/aadlv3/issues
https://github.com/saeaadl/AadlV3Prototype

5
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 5

Migration Path to V3

Instance model representation with minimal changes

• Most analyses operate on instance model

• Documented API

Declarative model

• Translation from V2.2 to V3

6
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 6

Key V3 Changes
Packages and General Syntax

• Import of namespaces

• Property definitions in packages

• Private classifiers and property definitions

• Simpler syntax: no section keywords, no matching end identifier

• case sensitive

Composition of Component Interfaces aka. component type
• Extends of multiple interfaces

• Interface without category

• Eliminates need for feature group type

Configuration Specification
• Finalize design

• Configuration assignment of subcomponents with implementation, features with
classifier/type (Replaces refined to)

• Assign final property values to any model element

• Annotate with bindings, annexes, flows

• Configurations are composable

• Parameterized configuration limits choice points (Replaces V2 prototype)

7
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 7

Key V3 Changes
Unified type system

• Single type system for properties and data types

• Records, lists, sets, maps, unions

• International System of Units

Properties
• Simplified property value assignment (default, final, override)

Explicit deployment binding concept
• Binding points and binding declarations

• Resources associated with bindings

Virtual platform support
• Virtual memory

• Connectivity between virtual bus, processor, memory

Flows
• (virtual) platform flows

• Flow graphs

Nested component declarations
• Define nested components without explicit classifier

8
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 8

Key V3 Changes

Connections

• Distinguish feature mappings

• Reach down of connection declarations

- Into named interfaces (aka feature groups)

- Into subcomponent hierarchy

No more category refinement

• Abstract component to other component

• Abstract feature to other features

Modes

Annex improvements

9
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 9

AADL V3
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

AADLv3

Table of Contents

10
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 10

AADLv3 table of contents

Goal: Provide an incremental view of AADL concepts

Objective is 4 – x ? Parts, < 60 pages each

Introduction to AADL, Lead: P. Feiler

Part 1: Syntax and general concepts, Lead: P. Feiler

Part 2: Static semantics, Lead: J. Hugues

Part 3: Dynamic semantics, Lead: J. Hugues

Part 4: Property sets & MoC configurations

Allow per part ballot to allow for early prototyping

11
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 11

AADLv3 table of contents

Part 1: Syntax and general concepts

BNF for the core language

AADL concepts: component category, types, implementation,

features, bindings, flows, modes…

Type system (L. Wrage)

Property language definition

12
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 12

AADLv3 table of contents

Part 2: Static semantics, i.e.

Goal is to simply present the static structure of an AADL model

Component categories description

New component category: virtual memory

Architecture modeling through containments, connections and

bindings

13
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 13

AADLv3 table of contents

Part 3: Dynamic semantics

Default semantics of component category and features

Separates the canonical property-less semantics (P3) from the

parametric property-driven semantics (P4)

Rationale is: better to define a per-objective semantics using

AADLv3 configuration sets than a long collection of properties

that are hard to relate.

14
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 14

AADLv3 table of contents

Part 4 : Property sets & MoC configurations

Catalogue of AADL properties

Parametrization of default semantics through properties

Presentation of specific Model of Computation (e.g. scheduler), or

support for verification objectives (e.g. flow latency)

Use v3 configuration sets for specific Model of Computation

15
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 15

Walkthrough: an example

Question: how do I model for scheduling analysis ?

Part 1 defines the general syntax of AADL core

Part 2 defines concepts e.g. threads, virtual processors

Part 3 defines the general state machine of threads, ports

Part 4 introduces properties for scheduling and introduces specific

task models as configuration set

If you’re familiar with AADL, Part 4 should provide all required

information and examples.

Note: to some extend, Part 4 could be read as a collection of annex document,

covering flow analysis, scheduling, memory, data modeling, etc.

16
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 16

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

AADL V3 Standard Discussions
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

AADL Configuration
Specification

Peter Feiler

17
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 17

Architecture Design & Configuration

Architecture design via extends, refines to evolve design space (V2)

• Revise and add to existing architecture design structure

• Add/revise annotation of property values, bindings, annexes

Configuration specification

• Elaborate but do not change architecture structure only expand leaf
nodes

• Configuration assignments assign classifiers

- To subcomponents and features

- Assignments of classifiers are additive

- Via configurations associate collections of property values, bindings,
annexes to given architecture substructure

Composition of configuration specifications

Parameterized configuration specification

• Subcomponent configuration assignment via parameter only

18
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 18

Evolution of System Design

Component Interface Extension

• Addition of features, flows, etc.

• Assignment of types/classifiers to existing features

- Assign missing type

- Override with any type

• Assignment of property values

Component Implementation Extension

• Addition of subcomponents, connections, etc.

• Refinement of existing subcomponents

- Refine to implementation or configuration

Myport => MyDataType;
Same as configuration
assignment syntax

19
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 19

Configuration of a System Design

Configuration Specification elaborates and annotates component

hierarchy

• Associated with an implementation/interface via extends

• Configuration assignment assigns

- implementation or configuration to subcomponent

- Data type or classifier to feature

• Assign property values within existing component hierarchy

• Specify bindings

• Add flow specification

• Add annex subclauses

20
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 20

Design Refinement

Configuration assignment in implementation extensions

• Effectively a refined to but with reach down

- Assign implementation/configuration for specified interface

- Override existing implementation with extension

- Assign interface extensions and their implementations

• Only for direct subcomponent as it may need to add connections

System Top.refined extends top.basic

is

Sub1 => x.i;

Sub2 => y.i;

end;
System top.basic is

Sub1: system x;

Sub2: system y;

End;

21
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 21

Configuration of a System Design

Configuration assignment in configuration

• Elaborate and annotate subcomponent substructure

- Annotate substructure with property values, bindings, annex

subclauses

- Assign component implementation for subcomponent

• Assigned classifier interface must not be an interface extension

• Explicit implementation: it becomes the intended implementation that cannot be

overwritten

• If subcomponent was declared with implementation assignment cannot be of an

implementation extension

configuration Top.config_L1 extends top.basic

is

Sub1 => x.i;

Sub2 => y.i;

end;

System top.basic is

Sub1: system x;

Sub2: system y;

End;

Explicit implementation: at least one configuration
assignment must have an explicit implementation
of the subcomponent only has a type. Otherwise
additional configuration assignments can expand
design with implementation extensions.

22
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 22

Configuration of a System Design

- Assign configurations for subcomponent with implementation

• Configurations for ancestor implementation or interface are ok

configuration Top.config_L1 extends top.L1impl

is

Sub1 => x.i2;

Sub2 => y.performance;

end;
System x.i is

xsub1: process subsubsys;

xsub2: process subsubsys;

System top.L1impl is

Sub1: system x.i;

Sub2: system y;

System x.i2 extends x.i is

xsub3: process subsubsys;

configuration y.performance extends y.i is

xsub1#Period => 20 ms;

System y.i is

ysub1: process subsubsys;

ysub2: process subsubsys;

23
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 23

Configuration Across Multiple Levels

• Reach down configuration assignments

- Left hand side resolved relative to classifier being extended

configuration Top.config_Sub11 extends top.L1impl

is

Sub1.xsub1 => subsubsys.i;

Sub1.xsub2 => subsubsys.i;

end;

System x.i is

xsub1: process subsubsys;

xsub2: process subsubsys;

System top.L1impl is

Sub1: system x.i;

Sub2: system y.i;

No ordering assumption in configuration assignments,
i.e., second assignment cannot reach into the
implementation assigned by the first. Handed by nested
assignments (next slide)

24
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 24

Nested Configuration Assignment
• Nested configuration specification

- Used to configure an assigned classifier

- Left hand side resolved relative to enclosing extended or assigned
classifier

configuration Top.config_Sub1 extends top.basic

is

Sub1 => x.i {

xsub1 => subsubsys.i;

xsub2 => subsubsys.i;

}

end;

Sub1 => x.l2

- Nested configuration for existing subcomponent classifier
configuration Top.config_Sub11 extends top.L1impl

Is

Sub2 => {

ysub1 => subsubsys.i;

ysub2 => subsubsys.i;

@EM {* … *};

#Period => 20 ms

};

end;

Shorter target paths

Annex assignment without explicit configuration specification

Property assignment without target path

System top.basic is

Sub1: system x;

Sub2: system y;

System x.i is

xsub1: process subsubsys;

xsub2: process subsubsys;

System x.l2 extends x.i is

xsub1 => subsubsys.i;

xsub2 => subsubsys.i;

25
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 25

Assignment of Configuration Specifications

Specification and use of separate subsystem configurations

• Configuration of subsystems
Configuration x.config_L1 extends x.i is

xsub1 => subsubsys.i;

xsub2 => subsubsys.i;

end;

Configuration y.config_L1 extends y.i is

ysub1 => subsubsys.i;

ysub2 => subsubsys2.i;

end;

• Use of configuration as assignment value
Configuration Top.config_L2 extends top.basic is

Sub1 => x.config_L1;

Sub2 => y.config_L1;

end;

Configuration Top.config_L1L2 extends top.L1impl is

Sub1 => x.config_L1;

Sub2 => y.config_L1;

end;

Implementation associated with configuration is assigned to the
target subcomponent if the original assignment is an interface

Implementation associated with configuration must be the
same or an ancestor of the original implementation

26
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 26

Configuration of Property Values

Specifying a set of property values
• Property value assignment to any component in the

- subcomponent path resolvable via the classifier referenced by extends

- Should property value assigned in configuration always be final or should users
specify final assignment explicitly and we have a design rule?

Configuration Top.config_Security extends Top.config_L2

is

#myps::Security_Level = L1,

Sub1#myps::Security_Level = L2,

Sub1.xsub1#myps::Security_Level = L0,

Sub2#myps::Security_Level = L1

end;

Configuration Top.config_Safety extends Top.config_L1

is

#myps::Safety_Level = Critical,

Sub1#myps::Safety_Level = NonCritical,

Sub2#myps::Safety_Level = Critical

end;

Configuration x.config_Performance extends x.i

is

xsub1 => subsubsys.i {

#Period = 10ms,

#Deadline = 10ms }

end;

A configuration specification may only annotate property
values or it may also configure and annotate other items.

=> is changeable
= is final

27
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 27

Composition of Configurations

Combine multiple configurations into new configuration specification

• Define configuration with multiple extends

• Multiple configuration assignments to same subcomponent

Rules

• Associated interfaces must be the same

• Associated implementations must have a single extends lineage

- The implementation associated with the composite: most descendant

• Only one assigned property value is allowed for any assignment target

- Two property associations with the same value ok?

- Local assignment may override or should conflict be error?

Configuration Top.config_L2 extends top.config_L1, Top.config_Sub1, Top.config_Sub2 end;

Configuration Top.config_L22 extends Top.config_Sub1, Top.config_Sub2 end;

Configuration Top.config_SafeSecure extends Top.config_L2, Top.config_Safety,

Top.config_Security end;

Configuration Top.config_SafetySecurity extends Top.config_Security, Top.config_Safety end;

28
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 28

Multiple Refinements

Multiple assignments as part of a subcomponent configuration
Configuration Top.config_L2 extends top.basic is

Sub1 => x.config_L1;

Sub1 => x.security;

-- shorthand: Sub1 => x.config_L1, x.security;

Sub2 => y.config_L1;

end;

• Different assigned configurations may contain configuration assignment to same
target component

• Associated interfaces must be the same

• Associated implementations must be same or ancestors of explicitly assigned
implementation

- Explicitly assigned in subcomponent declaration

- Explicitly assigned by one of the configuration assignments

• If derived from configuration users can add an implementation extension through a
ocnfiguration

• Only one property value assignment is allowed for any assignment target

- Property value assignments in configuration specifications are “final”

Multiple assignments to same target within same
configuration or by separate configurations.

29
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 29

Multiple Configuration Assignments

Multiple assignments as part of a configuration
Configuration Top.config_L2 extends top.basic is

Sub1 => x.config_L1;

Sub1 => x.security;

-- shorthand: Sub1 => x.config_L1, x.security;

Sub2 => y.config_L1;

end;

• Different assigned configurations may contain configuration assignment to same
target component and may do so at different levels of the hierarchy

• Associated interfaces must be the same

• Associated implementations must be same or ancestors of explicitly assigned
implementation
- Explicitly assigned in subcomponent declaration

- Explicitly assigned by one of the configuration assignments

• If implementation is derived from collection of configurations (deepest in extends lineage)
users can add an implementation extension through a configuration

• Only one property value assignment is allowed for any assignment target
- Property value assignments in configuration specifications are “final”

- Alternative: Rules about override order as we have for implementations and implementation
extensions

30
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 30

Composition of Flow Configurations

Adding in end to end flows
• End to end flows may be declared in a separate classifier extension

• No conflicting end to end flow declarations

System Top.flows extends top.basic

is

Sensor_to_Actuator: end to end flow sensor1.reading -> … -> actuator1.cmd;

End;

Configuration Top.config_full extends Top.config_L2, Top.flows end;

• Flow specs for end-to-end flow targets may be declared in separate configurations

• Flow implementations for intermediate flow targets may be declared in a separate
configurations

configuration X.flowspec extends X

is

outsource: flow source outp;

End ;

configuration X.flowsequence extends x.i

is

outsource => flow subsub1.flowsrc -> … -> outp;

End;

31
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 31

Configuration/composition of Annex Subclauses

Adding in annex specifications
• Annex subclauses may be declared in a separate classifier extensions

• Different annex specifications may be added
System Top_emv2 extends top is

Annex EMV2 {**

use types ErrorLibrary;

…

**};

End Top_emv2;

Configuration Top.config_full extends Top.config_L2, Top.flows, Top_emv2 end;

Inherited annex subclauses based on classifier extends
• Automatically included

• Extends override rules of annex apply

Separate extensions

• No conflicting declarations

Configuration Top_emv2 extends top

@e {* use types ErrorLibrary; *};

End Top_emv2;

Use @ consistent with reference path usage

32
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 32

Parameterized Configuration
Explicit specification of all choice points

• Configuration of subcomponents via configuration parameters only

- Assignment of formal parameter to one or more subcomponents

• No direct configuration assignment to subcomponents by user

• Substitute the type of the parameter specification
Configuration x.configurable_dual(replicate: system subsubsys) extends x.i is

xsub1 => replicate;

xsub2 => replicate;

end;

Usage

• Supply parameter values
Configuration Top.config_sub1_sub2 extends top.i

is

Sub1 => x.configurable_dual(replicate => subsubsys.i);

end;

Configuration x.configured extends x.configurable_dual(replicate => subsubsys.i)

end;

Configuration parameter actual must match
• an implementation/configuration of the specified interface
• a configuration of the specified implementation or its ancestor or interface

Configuration parameter classifier must the same or an
ancestor of the assignment target

Similar to V2 prototype but we map parameter to targets
instead of requiring all targets to reference prototype

33
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 33

Explicit Specification of Candidates

• Explicit list of candidates
Configuration x.configurable_dual(securityProperties: system {

subsubsys.sec1, subsubsys.sec2 }) extends x.i is

xsub1 => securityProperties;

xsub2 => securityProperties;

end;

34
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 34

Property Values as Parameters
Explicit specification of all values that can be supplied to properties

• Values that can be used for different properties of the same type

• Values for specific properties
Configuration x.configurable_dual(TaskPeriod : time ,

TaskDeadline : #Deadline) extends x.i is

xsub3.T1#Period = TaskPeriod;

xsub3.T1#Deadline = TaskDeadline;

end;

Usage: Supply parameter values
Configuration Top.config_sub1_sub2 extends top.i is

Sub1 => x.configurable_dual(

TaskPeriod = 20ms, TaskDeadline = 30 ms);

end;

Via configuration specification as parameter

• Collections of property value assignments

- Consistent set of property values

• Explicitly specified collections to choose from
Configuration x.configurable_dual1(securityProperties: system subsubsys.i) extends x.i is

xsub1 => securityProperties;

xsub2 => securityProperties;

end;

Configuration x.configurable_dual2(securityProperties: system { subsubsys.sec1, subsubsys.sec2 })
extends x.i is

xsub1 => securityProperties;

xsub2 => securityProperties;

end;

Xsub2.T1 must exist in x.i

Specify value time vs.

property to be assigned

35
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 35

Complete Configuration

• Finalizing choice points of an existing implementation or

configuration
Configuration Top.config_L0() extends top.basic end;

36
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 36

Annotating Parameterized Configurations

• Users should be able to add “missing annotations”

- Additional flows, error model specification, property values

- User can declare extensions of parameterized configuration that

contain the annotations

• Configuration assignments can reach into component with

parameterized configuration but can only add missing property

values, flows, EM

- User can compose multiple such annotations into the configuration

• As new configuration or as part of each usage
Configuration Top.L0_Security extends Top.config_L0

is <security properties> end;

Configuration Top.L0_Safety extends Top.config_L0

is <EMV2 subclause for Top> end;

37
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 37

Configuration Assignment Patterns
Assignment of configuration to classifiers (all instances of classifiers)

Match&replace classifier/data type within a scope

• Match classifier in subcomponents and features, data types in features

Configuration FlightSystem.secure extends FlightSystem.TripleGPS is

all(GPS) => GPS.secure;

all(Dlib::dt) => Secure.securesample;

#Period *=> 20 ms;

end;

Package mine

Device interface GPS

is

inp1: in data port Dlib::dt;

outp1: out data port Dlib::dt;

End;

Device GPS.secure is

Assign GPS.secure for all subcomponents with interface
GPS within scope of FlightSystem.TripleGPS

Package FS

Import mine::*;

System FlightSystem.TripleGPS

is

gps1: device GPS;

gps2: device GPS;

gps3: device GPS;

End;

End;

Assign type Secure.securesample for all features with
type dt within scope of FlightSystem.TripleGPS

Period for all elements within scope of associated
implementation that require a Period

38
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 38

Reusable Configuration Patterns
Match&replace within the scope the configuration pattern is assigned to

• Match classifier or primitive type in subcomponents and features

• Configuration without extends can be

Configuration GenericPattern is

all(Mine::Sensor) => Sensor.Settings;

all(Dlib::dt) => Secure.securesample;

all(Mine::GPS) => GPS.secure { #Period => 50 ms};

all(Your::GPS) => { #Period => 50 ms};

end;

Configuration Sensor.Settings extends Sensor.impl is

#Period => 50 ms;

reading#Data_Size => 20 Bytes;

end;

• Assign configuration pattern to subsystems

Configuration AvionicsSystem.Dual is

FlightSystem1 => FlightSystem.primary, FlightSystem.secure;

FlightSystem2 => FlightSystem.primary, GenericPattern ;

BackupFlightSystem => FlightSystem.backup, SimpleGPS.config;

39
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 39

Assignment of Configurations to All Instances
Configurations as annotations for all subcomponents of a given classifier

• Example: EMV2 configuration for a classifier

• Assign annotations individually

Configuration AvionicsSystem.Dual is

FlightSystem2 => FlightSystem.primary;

all(Mine::Sensor) => Sensor.emv2;

all(Mine::GPS) => { @em {* … *};};

• Specify collection of EM annotations

Configuration FlightSystemEMV2 is

all(Mine::Sensor) => Sensor.emv2;

all(Mine::GPS) => { @em {* … *};};;

end;

• Assign configuration pattern to subsystems

Configuration AvionicsSystem.Dual is

FlightSystem2 => FlightSystem.primary, FlightSystemEMV2 ;

Configuration Sensor.emv2 extends

Sensor

@em {* use types ErrorLibrary; *};

End Top_emv2;

40
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 40

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

AADL V3 Standard Discussions
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

AADL: Bindings and
Resources

Peter Feiler

41
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 41

Bindings between System Hierarchies

AADL supports a (primary) containment hierarchy

Semantic connections represent flow between and within subtrees

• Managed interaction complexity by requiring connections up and

down the hierarchy to restrict arbitrary connectivity

• Note: for subprogram calls we offer both a connection and a

mapping specification

Deployment bindings (aka. allocations) are a mapping from elements

of one subtree to elements of another subtree

• The subtrees represent different virtual machine layers with the

lower layer typically representing resources to the higher layer

• Bindings represent resource allocation

42
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 42

Layer

43
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 43

Issues in Current Binding Approach

Bindings are currently expressed by properties

Binding related properties are not distinguishable from others

• Properties that express bindings

• Properties that relate to bindings

EMV2 propagation paths are derived from bindings

• binding points currently are identified by special keyword

Binding properties reach down the instance containment

hierarchy

• A primary driver for introducing contained property

associations

44
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 44

Resource Flow and Resource Allocation

Resource flow within an architecture: follows interface rules

• Continuous: Electricity, fluid flow, … Discrete: data samples,
messages

• Directional flow with continuous characteristics: producer –>
consumer

• Resource type represented as type (or abstract component type)
- Annotations for discrete or continuous flow

• Fan out/in of flow “volume”
- multiple features & multiple connections from one feature

Resource allocation/binding: Across different architecture layers

• Resource usage that needs to be allocated/scheduled

• SW to computer platform

• Logical to physical

• Resource capacity and demand as provides and requires features
- Feature acts as binding point: resource type as classifier

- Multiple

45
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 45

Binding Specification Proposal

Binding Types

Binding points

• Properties, constraints

Binding instances

• Specify source and target of binding

46
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 46

Binding Types

Define binding type

• User defined name, sets of source and target types
Binding ProcessorBinding : union(thread, thread_group, process) ->

union (processor, virtual processor)

Predefined binding types

• FunctionalBinding to bind elements of a functional architecture to elements of
a physical architecture.

• ThreadBinding to bind a thread to a processor, or to a virtual processor which
in turn is the source of a processor binding to ultimately a processor.

• CodeBinding to bind source code associated with processes or threads to
memory components.

• DataBinding to bind data components as well as source code data including
stacks and heaps.

• ConnectionBinding to bind a connection to a flow sequence in hardware
platform, or a virtual hardware platform whose elements are ultimately bound
to a physical hardware platform.

47
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 47

Binding Instances

Deployment binding

• Binding source and target are components

- Explicit binding type specification

- Binding point identified by binding type
Configuration AS.deploymentconfig extends AS.systemconfig is

Binding1 : ProcessorBinding binding Appsys.sub.proc.thread1 ->

platform.node.cpu1;

Binding2 : ProcessorBinding binding Appsys.sub.proc.thread2 ->

platform.node.cpu2;

48
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 48

Binding Point Specification

As provides/requires binding feature

• As abstraction for targets contained inside a system

• Similar to access features

One component can have multiple binding points

• Binding points of different types

- Need/provision of different resources, e.g., at system level

• Binding points of same type

- E.g., subsets of total resource capacity

49
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 49

Binding Point Specification

Explicit in features section:

• Directional features to be used as source or target of binding

• Identify type of binding

- Binding type

thread task1 is

RequiredMemory: Requires binding Storage;

RequiredCycles: Requires binding Cycles;

System LinuxBox is

ProvidedDisk: Provides binding Storage;

ProvidedCycles: Provides binding Cycles;

end;

type Cycles : union (thread) -> union {processor, virtual processor };

50
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 50

Visibility of Binding Points

How far down can the allocation declaration reach

• Parameterized configuration as boundary for external use

Map binding point at configuration interface to component(s) in

implementation that manage or represent resource
System ASplatform

ComputeCycles: provides binding #ProcessingCycles;

Storage: provides binding #cache;

End ASPlatform;

ASplatform.boundconfig configures ASPlatform.impl {

ComputeCycles -> cpu,

Storage -> Cachememory

};

51
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 51

Connection Bindings

Currently: sequence of target elements

Connection acts as binding point

• Propagation identifies connection by name
connections

Conn1: port sub1.p1 -> sub2.p1 Requires XferBandwidth;

Conn2: abstract sub1.fe1 -> sub2.fe1 Requires WattsPerHour;

Platform flow sequence as binding target

• Expressed by end to end flow declaration

• Source and destination of ETE flow must match binding target of
connection source and destination

• Each element of the flow has binding point of matching type

Virtual bus as binding target

• Virtual bus itself needs to be bound to a sequence of items => ETE flow

Flow sequence as closed platform configuration binding point

• How to expose platform internal ETEF as external binding point? =>
access to virtual bus that is bound to ETE flow

52
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 52

Qualified and Quantified Resources

Resource specification

• Via property on binding point or providing/requiring component

• Quantified via numeric type

• Qualified via enumeration type
thread task1

RequiredCycles: Requires binding Cycles {#Resources::ProcessingCycles => 200
MIPS;};

thread task2

RequiredInstructionSet: Requires binding IntelX86 {#Resources:: InstructionSet =>
X86;};

Processor IntelX86 is

#Resources::ProcessingCycles => 1200 MIPS;

#Resources:: InstructionSet => X86;

Property InstructionSet : enumeration (X86, ARM, RISC) applies to Processor,
virtual processor, system, binding point;

Property ProcessingCycles : real units CycleUnits applies to Processor, virtual
processor, system, binding point;

53
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 53

Binding Type Multiplicity

1-to-n binding Alternatives (*):

• example – multiple cores
Binding MultiCoreBinding :

union(thread, thread_group, system) ->* union (processor)

Bind to virtual processor (resource) or enclosing system:

• It schedules multiple cores

54
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 54

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

AADL V3 Standard Discussions
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

Flows

Peter Feiler

55
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 55

Flow Specifications and Sequences
Flow specification

• Flow source, sink, path

• For features and element in named interface features

Flow implementation

• Assignment of flow sequence to flow specification

End to end flow sequence

56
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 56

Flow Sequence Specification
Currently (V2)

• Alternating component.flowspec and connection

• Alternating component and connection

- Flow spec inferred from connection end points

- Flow related property inferred from value assigned to component

Additional flexibility

• Component.flowspec sequence only

- Infer connections

• Connection sequence only

- Infer component and flow spec

• Reach down for components without flow spec

- E.g., nested subcomponents

• End to end flow starting and endpoint

- Assignment of flow sequence as for flow spec

- We infer the connection and component flow spec instances

57
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 57

Flows at Platform Level
• Flow sequence as target of connection binding

58
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 58

Flow Graphs
Objective: Forward and backward traceability

• Forward: variation in latency/age at all end points

• Backward: variation in latency/age from all contributing sources

• Auto-generate from flow specs and connections

- As we do for propagation graphs

Fan-in/out logic for each component (Merge point semantics)

• Fan in across ports

- Flow path with multiple inputs (AND)

- Separate flow paths as alternatives (OR)

- Pre and post conditions on input/output

• Interpretation of BA logic

- Input on several ports triggers dispatch

- Fan in at single port with multiple incoming connections

• Fan out to multiple ports

- All vs. alternative (Not needed) The fan-in takes care of everything.
John Hatcliff discussion on canonical)

59
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 59

Flow Patterns
• End to end flow spec (endpoints only)

- Etef1: flow sys.proc.thread1.fsrc -> * -> sys.proc2.thread4.snk

- Endpoint spec as reference down the hierarchy

- Infer all possible paths

- Etef2: flow all(GPS.fsrc) -> * -> all(Displays.view)

- Infer all instances, i.e., all paths between any GPS and DIsplay

• Flow impact

- Impact : flow sys.gps.signalsrc -> *

- All(FlowSpec) -> *

• Flow contributors

- Effector : flow * -> sys.actuator.cmd

- Effector : flow * -> sys.actuator.cmd

60
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 60

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

AADL V3 Standard Discussions
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

AADL V3 Property
Language
Peter Feiler

61
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 61

Property Definitions
Define in packages

Utilize unified type system

• No more aadlinteger, …

• Record, list, set, map

• Union of types:

• Integration of proposed Units system (ISO, SysML)

Identify assignment targets (V2 applies to)

• No need to list enclosing categories for inherit

• Component categories

• Specific classifiers

• Other model elements

• Use type system to express model element types, classifiers

62
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 62

Property Association
• Property reference always with #

• Properties on classifier elements

- Directly attached

- Via model element reference (aka contained property association)

63
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 63

Property Values

Property value can be overridden many times in V2

• As part of definition

• Inherited from enclosing component

• Inherited from interface (ancestor)

• Inherited from implementation (ancestor)

• Inherited from subcomponent definition

• Multiple layers of contained property associations

64
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 64

Property Values in V3
Assignment in interface or implementation

• modifiable assignment =>

• final assignment =

Value determination potential options

• Property on component
- Interface and interface extension (#Size => 1 on classifier)

- Implementation, implementation extension (#Size => 1 on classifier)

- Configuration, configuration extension (#Size => 1 on classifier)

- Local subcomponent({ #Size => 2; } and sub1#Size => 2;)

- Configuration assignment (#Size => 1 on classifier)

- Configuration assignment nested {#Size => 2; }

- Contained property associationouter overrides inner (reach down)

• Values on model elements (features, connections, etc)
- Local ({ #Size => 2; } and feat1#Size => 2;)

• Interface and interface extension

• Implementation and implementation extension

• Configuration and configuration extension

- Configuration assignment (feat1#Size => 1 in classifier)

- Contained property association outer overrides inner (reach down)

65
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 65

Property Values in V3

Simple approach

• Component and element properties specified as part of “spec”

- Defined through classifiers during design

- #P for instances of classifier

- {} or identifier#P for all directly contained model elements except

subcomponent.

- Override rules according to extends hierarchy of interface,

implementation

• Configurations finalize a design

- Final property value assignment in configuration specification

- Reach down property associations in implementations

• Containment with first element a subcomponent

66
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 66

Property Values in V3

Conflicting assignment

• Composition of interfaces

- #P assigned values: only one or must be the same value

• Multiple assignment through reach down & multiple configurations

- Assignment is final: only one or must be the same value

67
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 67

Scoped Default Property Values in V3

V3: Scoped value assignment

• #Period *=> 20ms;

• Scope of configuration, implementation, or interface with

assignment

• Used if no value assigned explicitly for contained model element

• Replaces inherit in V2

68
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 68

Property Association in Annexes

Syntax in context of an annex

• FailStop#Ocurence => 2.3e-4;

• ^Process[1].thread2@Failstop#Occurrence => 2.3e-5;

- ^ escape to core model as context

- @ enter same annex type as original

- @(BA) enter specified annex: if we have annex specific properties in the
annex rather than core we may not need this

- [x] array index

Mode specific property value assignment #8

• Currently: => 2.3e-5 in modes (m1), 2.4e-4 in modes (m2);

• => { m1 => 2.3 , m2 => 2.4 };

• Event#Occurrence.m1 =>

• See also error type specific property value and binding specific value

- Use map type: mode, error type, binding target as key

- Syntax for identifying map key in path (.)

69
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 69

Property Set

Definition of property set

• List of property references

• Property set can be listed as element of a set

• Same property reference can be in multiple sets

Usage: Analysis specific property set

• Must be present for analysis

• Analysis supporting multiple fidelities

- Minimum, maximum set

- Precondition vs. validation

Periodic : properties {

Dispatch_Protocol => constant Periodic,

Period, Deadline, Execution_time

};

GPSProperties : properties {

Period, GPSPropertyset::Sensitivity,

GPSPropertyset::Hardening

};

70
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 70

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

AADL V3 Standard Discussions
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

AADL 3
Type System
and Expression
Language

Lutz Wrage

71
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 71

Type System Unification

Unification of type systems and expression languages (Peter,

Lutz*, Alexey, Brian, Serban)

• Data Components

• Property Types

• Classifiers

• Annexes

- Resolute, AGREE

- Data Modeling

- EMV2

- BA, BLESS

• ReqSpec

• Scripting languages (Python)

72
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 72

Current Composite Types

AADL 2.2

Property types

• Range of

• List of

• Record

Data implementations

No operations available except

• List append (+=>)

• Boolean operations

Property expressions provide syntax for literals

ReqSpec adds expressions, uses type inference

73
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 73

Current Usages of Types

Application data that occurs in the modeled system

• Data subcomponents
- Shared data

- Local variables in threads and subprograms

• Data communicated via data and event data ports

Information about the modeled system and individual components

• Properties

Mixture of models and properties

• Component classifiers and model elements as properties
- Bindings

- Specify constraints, e.g., Required_Virtual_Bus_Class

Additions in annexes

• Resolute: sets

• EMV2: error types and type sets, error types can have properties

• BLESS

74
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 74

Type System / Expression Language Goals

Provide types for

• Properties

• Features, e.g., data ports

• Data components

• Error types(?)

Support

• Specification of dependencies / constraints between properties

• Selecting model elements in configurations

• Structural analysis of instance models

- Similar to Resolute

• Requirement specification

- Similar to ReqSpec

Do we need structural analysis of declarative modes?

75
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 75

Type System Unification Approach

Base types

• Numeric, Boolean, String

• Enumeration, Unit

• Category (thread, processor, etc.), Classifier, Model Element

• Range of Numeric (Compute_Execution_Time => 10ms .. 15ms)

Composite types

• List (ordered sequence of arbitrary length)

• Set (unique elements)

• Record (named fields) / Union (named alternatives)

• Tuples (unnamed fields)
- Convenient for multiple return values from a function

• Map
- Modal and binding specific property values in AADL 2.2 are (almost) maps

- Error type specific property values

• Array (ordered sequence of fixed length)

• Bag (?), Graph

76
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 76

Type System Unification Approach

Properties on types

• Information about representation

integer {data_size => 16bit}

• Range of valid values
integer {range => 10 .. 20}

Useful for code generation and analyses the looks at data size (in

memory or on a bus)

Properties are ignored for type checking purposes

77
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 77

User Defined Types

Users can create named types

• type byte: int { range => 0 .. 255 }

• type otherByte: byte { data_size => 16bit }

• type sensed: record { type sensed2: record {
value: integer value: integer
timestamp: integer timestamp: integer

} }

Is a type name just a shorthand, or is it a new type?

• Structural equality as the default

• “Opaque” types would complicate the expression language

78
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 78

Subtypes

Subsets of numeric types (or enumerations?)

• Range constrained Numeric

e.g., integer [100 .. 120]

• Could be considered special syntax for a property on a type

e.g., integer {range => 100 .. 200}

Subset constraints are difficult to maintain for expressions

• Simple assignments are easy to check

• 2 * integer[100 .. 120] results in integer[200 .. 240]

• Sin(integer[100 .. 120]) results in (not quite) real[-1.0 .. 1.0]

Type checking should ignore range constraints, maybe except for

simple assignments

79
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 79

Type Extension

Type extension

• Exists for classifiers (including data components in AADL 2)

• Records

- Add fields

• Unions:

- Add fields to one or more variant(?)

- Add variants

• Add properties to any type

- byte is subtype of integer

- Then: list of byte is subtype of list of integer

• Change property values?

• “refinement”?

• Should there be a complete type hierarchy with something like Object
as the root?

Do we really need type extension for data types?

80
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 80

Expression Language: Literals

Numbers, strings, boolean true/false as in AADL 2

• Automatic conversion from integer literal to real value

Range literals

• In OSATE we run into a lexer limitation: 2..3 vs. 2 ..3

Enumeration and unit literals

• Qualified name: <package>.<enum type>.<enum literal>
e.g., myenums.signaltype.RED

• Need to import enumeration and unit literals in order to use
them

Collections

• Mirror declaration

• list (1,2,3);

• record (intfiled = 1, boolfield = true);

81
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 81

Expression Language: Operations 1

Boolean

• And, or, not, …

Numeric values

• +, -, *, /, div, mod

Ranges

• Union, intersection, contains

Enumerations

• Assign a numeric value to enumeration elements?

• Consider them ordered?

Units

• Get conversion factor

Strings, List

• Append, substring, …

Records

• Access a field value

Union

• Access field depending on variant tag

82
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 82

Expression Language: Operations 2

Set

• union, intersection, contains

Generic collection operations

• forall, exists, filter, fold

• Look for inspiration in existing collection library and copy

Classifiers

• Extends, get extended, get all extending, …

•  methods defined in the AADL meta-model

Named elements

• Get name, get classifier, get all subcomponents, …

•  methods defined in the AADL meta-model

83
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 83

Prototype Implementation

Expression Annex for AADL2

Implemented

• Most types

• Some type checking

• Subset of expressions

• Initial expression evaluation

• No units yet

84
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 84

Measurement Units

Represent a (physical) quantity as a number with a dimension

• Length, Time, Mass, Force

Dimension has associated measurement units

• Length – meter (SI base unit)

• Time – second (SI base unit)

• Mass – kilogram (SI base unit)

• Force – Newton (Derived: 1 𝑁 = 1 𝑘𝑔 ∙𝑚

𝑠2
)

Different unit systems

• SI vs. Imperial

• Non-physical quantities, e.g., bit, byte

• Other: minute, day, year; rpm, angle, …

Users must be able to define new units

85
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 85

Unit Definition 1

Defining dimensions and corresponding measurement units

• Dimension as variation of enumeration types

- type LengthU: unit (cm, m = 100 * cm, …)

- type TimeU: unit (s, ms = s / 1000, …)

- type USLengthU: unit (in, ft = 12 * in, …)

• Similar to AADL2

• Similar to compound type declarations (records, lists, etc.)

Literals with units

- 100 ms

- 12 [ms]

Type declarations with units

• type LengthType: real unit LengthU

• type LengthType: real [LengthU]

86
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 86

Unit Definition 2

Property definition

• Value is a physical quantity

- property distance: real unit USLengthU

- property distance: real [USLengthU]

- distance => 2.5 [in]

• Value is a unit, e.g., to document the unit of the data on a data

port

- property dataUnit: LengthU

- dataUnit => [m]

87
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 87

Standard Metric Prefixes

Metric prefixes

• Base 10: centi, milli, micro µ, deka, kilo, Mega

• Binary: Ki (210), Mi (220), Gi (230)

• These are case sensitive, one is a greek letter

• Not distinct from units: meter vs. milli

Convenient to use them with any unit without repeatedly defining

the conversion factor.

Use syntax to separate metric prefix and unit name

• 1 [k’g], 12 [m’s], 640 [Ki’byte]

Only with base units

• If ms is defines as derived (ms = s/1000) the

1 [k’ms] should not be valid

88
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 88

Unit Expressions 1

Avoid units names such as KBytesps (as we have in AADL 2)

Allow expressions for derived units

• [k’g * m / s^2]

Unit expressions are written in []

• speed == 12 [m/s]

Simple unit may be written with or without []

• latency == 10 m’s or latency == 10[m’s]

Allow only multiplication, division, and exponentiation

Defining a derived unit type

• type ForceU = unit (N = [k’g * m / s^2])

89
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 89

Unit Expressions - 2

Convert between numbers and quantities

• val x = 1 x is an integer

val y = (x + 1)[s] y is an integer with a unit: 2s

val z = y in [ms] z is an integer: 1000

Calculation with units

• 10 N / 2.5 k’g == 4.0 [m / s^2]

90
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 90

Unit Definitions and Usage

Derived units with unit expressions

• type MassU: unit (g)

• type SpeedU: unit (LengthU / TimeU)

• type ForceU: unit (N = k’g * m / s^2, …)

Type declarations with units

• type SpeedT: real [SpeedU]

• type ForceT: real [ForceU]

• type OtherSpeedT: real [LengthU / TimeU]

Property definition

• property speedUnit: Speed

• speedUnit => [m/s]

• property force: ForceT

• speed => 2.5 [k’g * m / s^2]

91
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 91

Backup

Old slides

92
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 92

Data Subcomponents

Interface + data type

Generic component + data type as property

93
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 93

Type System Usage

Port types

• P1: in port Temperature;

Data components

• DataObject: data Personel_Record;

- Subtype substitution/match (Type_Extension)

Properties

• Property definitions reference types

Data Annex

• Characterization via properties vs. partial specification

• Data personel_record { Data_Representation => Struct; };

• Personel_Record: type record () { Source_Name =>
PersonnelRecord;};

• Personel_Record: refined to type record (first: string; last : string;);

94
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 94

Representation of Transferred Data

Example

• BodyTemperature: type integer [30..50 C] units TemperatureUnits;

• P1: out port BodyTemperature;

Is unit included in transferred data or is a unit assumed?

Non-zero reference point for transferred value

Transfer representation may be different from in memory representation

Alternatives:

• Protocol specification

- As virtual bus

- Mapping into bit representation (see 429 protocol example in SAVI

demo)

• Assumed unit as property on port

95
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 95

Representation of Types

Example

• BodyTemperature: type integer [30..50 C] units

TemperatureUnits;

• P1: out port BodyTemperature;

Digital representation

• Base_Type property in Data_Model

• Associated with type or with port

Physical representation

• Dynamic behavior

• Specified as part of type or specific to each use site

- Associated with feature

96
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 96

AADL V3
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

AADLv3
Part 2 – Static Semantics

Jerome Hugues

97
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 97

About Part 2 semantics

Goal is to present the static structure of an AADL model

Architecture modeling through containments, connections and
bindings

Component categories description

New component category: virtual memory

Textual description + legality rules + default interpretation of
legality rules

Rule of thumb: any AADL tool must support these rules: they are
the core of the AST analysis and name resolution mechanisms

98
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 98

Part 2 organization

For each component category

• Design intent: purpose of this component category, interaction

with other categories

• Legality rules: allowed features categories, subclauses, etc.

• Semantics: text-based interpretation of the legality rules only

No section on properties -> moved to P4 for clarity

If list of properties per category required, could be provided as

appendix to the document to facilitate cross-referencing

99
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 99

Component category

4 categories

Software: thread, thread group, process, data,

subprogram, subprogram group;

Execution platform: memory, virtual memory, processor,

virtual processor, bus, virtual bus, device

Generic: abstract

Composite: system

Change from v2:

Suppression of call sequences (use subcomponents instead)

Introduction of virtual memory

Update to match AADLv3 new concepts for features, bindings

100
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 100

On model completeness

Must be clear on the requirements on model completeness, and

prevent overspecification

e.g. in v2, 13.3 (5) “All software components for a process must be

bound to memory components that are all accessible from every

processor to which any thread contained in the process is bound. “

For code generation, this brings no value for some RTOS (e.g.

RTEMS, FreeRTOS), but is required for others (e.g. ARINC653)

Model completeness is a per-objective issue

Objective: what is my objective when modeling? What type of

credits to I want to gain from this modeling activity?

101
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 101

On component categories

Question: should we split Execution Platforms (virtual

bus/processor) from Hardware elements?

• Rationale: VB/VP/VM control executions of software, using

resources provided by hardware elements, required by software

elements.

• They act as a resource broker

• Virtual Bus: communication protocols, message arbitration

• Virtual Processor: scheduling policy

• Virtual Memory: ? Security e.g. red/write/execute

102
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 102

Memory vs Virtual Memory (June 16)

• Separation of physical and logical concerns

• Binding of logical to physical

• Memory

• Storage with binding points

• Need for representing different section of memory addresses: binding
points have properties to indicate base address and range (size)

• Memory binding point on devices can model device registers without
requiring memory subcomponents.

• Virtual memory roles

• Represent logical addresses that are mapped to addresses in different
components in the platform

• Logical resource with capacity/budget

• Logical containment regions or segments of address space

• Memory as system (platform) subcomponents

• Subcomponents as binding points

• Memory system architecture with connectivity via bus

• Platform with memory and processor

103
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 103

Virtual Memory component category

Question: what is the static semantics of virtual memory ?

• Define the logical view of memory, a process perspective ?

• Binding VM to device/system to capture flash storage?

Or is data/process sufficient to achieve the same goal?

• Data being structured memory, process being protected memory

Most of the semantics of VM seems driven by properties

• Stack/BSS/Heap/Code memory only ?

• Read/write/execute ?

Use cases:

• Binding Virtual Memory to Memory (Hardware) as a deployment

• Binding Process/Thread/Data/Subprogram to VM ?

• VM inside VM ?

104
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 104

Virtual memory and composition

Ultimately:

• A process (e.g. software partition) is bound to both VM and VP

• VP is then bound to a processor, VM to a memory

• And finally processor and memory are connected

Otherwise, architecture is inconsistent

But if some of these bindings are not done, model is “just”

incomplete w.r.t. some verification objectives

105
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 105

Role split between virtual processor and
processor (June 16)

Virtual Processor :- OS + scheduler configuration, security policies,

health monitoring, contribution to fault propagation, etc.

Processor :- physical CPU (chip, core, etc.), contributes to fault

propagation, ?

For code generation purpose, having only a virtual processor

makes sense: you target an OS, the actual physical CPU is

irrelevant, and deployment to this physical one depend on the

deployment strategy

For safety analysis, one may want to have threads (functions) and

processors. Virtual processors may or may not be required

depending on its contribution to errors propagation/containment.

106
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 106

Definition of Virtual Processor

AADLv2.2 6.2 (1)

“A virtual processor represents a logical resource that is capable of scheduling and

executing threads and other virtual processors bound to them. Virtual processors can be

declared as a subcomponent of a processor or another virtual processor, i.e., they are

implicitly bound to the processor or virtual processor they are contained in. Virtual

processors can also be declared separately, that is as a subcomponent of a system

component, and explicitly bound to a processor or virtual processor. “

107
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 107

Processor, device as systems

System are composite elements.

Processors and devices are also systems when we open the box.

Refining a processor (black box) into system (white box) violates

type system (no type promotion), natural modeling step that must

be supported

Using Implemented_As does not work: no feature connection,

breaks mode or fault propagation

108
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 108

Processor, device as systems

Proposal to extend the definition of processor

AADLv2.2 6.1 (1)

“A processor is an abstraction of hardware and software that is responsible for scheduling

and executing threads and virtual processors that are bound to it. A processor also may

execute driver software that is declared as part of devices that can be accessed from that

processor. Processors may contain memories and may access memories and devices via

buses.”

AADLv3

“A processor is a hardware system that is responsible for providing access to resources it

controls to threads and virtual processors. A processor may control and give access to

subcomponents: internal processing cores, memory elements (e.g. cache, flash storage) or

internal devices.”

Containment clarifies propagation of faults, mode changes, etc

(loss of processor -> loss of all subcomponents, loss of

subcomponents degrade processor capability), preserves

modularity and type system

109
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 109

Processor, device as systems

Similarly, for devices

AADLv2.2 6,6 (1)

“A device component represents dedicated hardware within the system, entities in the

external environment, or entities that interface with the external environment. [..] Devices

may internally have a processor, memory and software that can be modeled in a separate

system declaration and associated with the device through the Implemented_As property.”

AADLv3

“A device component represents dedicated hardware within the system, entities in the

external environment, or entities that interface with the external environment. [..] Devices

may internally have a processor, memory and software modeled as subcomponents”

Rationale similar to processor: use containment to ease failure

analysis, preserve types, etc.

110
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 110

Virtual bus/bus

No major change for the moment

Wait for security discussion to see if improvements are needed

e.g. composition of protocols (cyphering, authentication)

Patterns to capture execution of protocol code ?

• Attach an entrypoint on the bus to capture the code to run ? ..

but not sufficient if producer?/consumer uses different APIs

• Use subprogram access so that a VB can requires subprograms

provided by a VP (OS/library) ?

111
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 111

About data types

(Pending text on types system)

112
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 112

About call sequences

Change highlight: suppression of call sequence

Rationale: CS breaks symmetry in components hierarchy

Directly reuse rules for subcomponents

Subprogram instances reside in attached process memory space

A Method of Implementation may decide to duplicate this

subprogram (inlining) or have one instance per process

-- AADLv2

thread implementation P.Impl

calls

Mycalls: { S : subprogram Spg; };

connections

parameter S.I -> I;

end P.Impl

-- AADLv3

thread implementation P.Impl

subcomponents

S : subprogram Spg;

connections

parameter S.I -> I;

end P.Impl

113
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 113

General updates

Other updates (in progress)

Features category to be reflected (pending completion of P1)

Link with types (e.g. parameter)

Access to data

Subprograms as accessors to data component types as in v2

114
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 114

AADL V3
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

AADlv3
Part 3 – Dynamic semantics

Jerome Hugues

115
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 115

AADLv3 table of contents

Part 3: Dynamic semantics

Default semantics of component category and features

They provide high-level rules for processing an AADL model

and interpret its behavior

This behavior is later refined on a per-property basis in P4

Rule of thumb: an AADL tool must support these rules in the

case they process the AADL model for one verification

objective

116
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 116

Status update June 2019

Document split from AADLv2.2 document

Must revisit the definition of the hybrid automata

For the moment,

• informal states combined with RTS call (abort, await_dispatch,

etc.)

• No clear rules for composing automata, it is implicit that

automata at one level “controls” subcomponents

• How to clarify this part?

117
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 117

Thread automata

Most complex one

• RTS calls emerge from

thread, control other

automata

• *but* ?Enabled and

dispatch ‘implemented’ by

(virtual) processor

scheduler

• State when thread blocked

on resources as part of

“performing thread

computation” ?

118
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 118

Automata

Process on top of OS

abstraction.

Initialization of OS vs.

initialization of process (user

code)

119
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 119

Automata

Start up of associated

devices? Hidden in

corresponding driver thread?

Bus initial handshaking?

How far do we want to go?

120
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 120

Automata

121
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 121

AADL V3
© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

AADlv3

Part 4 – MoC

122
AADL V3 Roadmap

June 2019

© 2019 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 122

AADLv3 table of contents

Part 4 : Property sets & MoC configurations

Rationale: a MoC is a particular usage of properties e.g.

Synchronous profile, mono core, multi core, etc. Goal is to

document most common ones

Define relevant subsets, starting with AADLv2 property sets

Use configuration sets to compose them. Ideally, should be

orthogonal

