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1. Introduction/Background 

Silicon carbide (SiC) is a wide-bandgap semiconductor used primarily for power 
and opto-electronic devices. During homoepitaxial growth of SiC, structural 
defects propagate from the substrate into the growing epitaxial layer. These defects 
affect the properties of the material, for example, they work as a recombination path 
for minority charge carriers.1,2 Locating and characterizing these defects are key to 
assessing the quality of the material and understanding the influence of the defects 
on device properties. Some of these linear structural defects intersect the surface of 
the epitaxial layer; these include basal plane dislocations (BPDs), threading screw 
dislocations (TSDs), threading edge dislocations (TEDs), and micropipes. TSDs, 
TEDs, and micropipes propagate along the c-axis. BPDs propagate perpendicular 
to the c-axis and intersect the surface due to the offcut (surface normal is not parallel 
to the c-axis) used to replicate the substrate polytype into the growing epitaxial 
layer. Due to the polymorphic nature of SiC, where different polytypes exist as 
different stacking sequences of Si-C bilayers, the formation energy of structural 
defects is very low.3 This report investigates the hexagonal polytype known as 
4H-SiC. When a different stacking sequence occurs as a planar defect in the 4H 
polytype, it is called a stacking fault (SF). Due to the offcut of the sample, the planar 
defects also intersect with the surface. A triangular defect (TD) can also be created 
from a particle (downfall) or a micropipe. These defects can be a polytype inclusion 
or a complex of SFs that is readily visible in the surface morphology.  

There exist several methods to locate structural defects in SiC, including etching in 
molten potassium hydroxide (KOH), X-ray topography, µ-photoluminescence, and 
electron-beam induced current (EBIC).4–6 Of these, the methods readily available 
for locating defects at the US Army Combat Capabilities Development Command 
Army Research Laboratory (ARL) at Adelphi, Maryland, are KOH etching and 
EBIC. KOH etching is a destructive method for locating and identifying defects, 
and EBIC requires some sample preparation.  

Cathodoluminescence (CL) is a process in which the sample is illuminated with a 
beam of electrons at one point. The sample reacts to this by emitting light at a 
certain wavelength and intensity. Albrecht et al.4 reported using CL imaging to 
nondestructively locate defects in gallium nitride (GaN) by observing the lower 
intensity of the band edge CL. CL in GaN is nondestructive, requires minimal setup, 
and is relatively fast. Similar to GaN, the structural defects in SIC may work as 
recombination paths for minority carriers and may exhibit a similar behavior.   

Maximenko et al.7 reported CL of SFs in SiC epilayers; however, the literature has 
not shown use of CL to locate linear defects, such as BPDs, TEDs, and TSDs, for 
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SiC. It is expected to be more difficult to locate defects in SiC compared to GaN 
due to the far lower density of defects (~103 vs. ~104–106 cm–3).8–9 The use of EBIC 
has been used to show the locations of line dislocations, such as TEDs and TSDs.2 
ARL currently has an scanning electron microscope (SEM) equipped with both 
EBIC and CL. If it is possible to identify defects using CL in SiC, the eventual goal 
is to then correlate the defects in CL and EBIC. 

This study investigates CL as an alternative method to locate and identify structural 
defects in 4H-SiC in a nondestructive manner, with minimal sample preparation, 
and performed with equipment readily available at ARL.  

This initial study was conducted over 10 weeks during the summer of 2019 under 
the Science and Engineering Apprenticeship Program. 

2. Experiment 

A sample from a 20-µm-thick epitaxial layer grown on an N+ 4H-SiC substrate 
with numerous triangular defects was chosen for this experiment to facilitate 
sample location alignment in images. Note that this sample had been irradiated with 
7.5-kGy, 2-MeV electrons. Microscope images were taken using a Leica DM2700 
microscope and large-area images were taken using Leica software multistep image 
stitching.  

CL images were taken using a CamScan SEM operating with a 20-keV accelerating 
voltage and a nominal 100-µA electron beam emission current with an attached 
Applied Beams (Beaverton, Oregon) CL system. The CL signal is gathered from a 
parabolic mirror, which is then either separated by wavelength using a diffraction 
grating for monochromatic measurements or reflected by a mirror for panchromatic 
measurements over a wavelength range of 190 to 850 nm. The photons are 
measured using a charge-coupled device (CCD) camera. CL images were taken 
near unique in-grown SFs to ensure that the area on the sample could be found 
again after defect etching, as demonstrated by a comparison of an as-grown and 
post-etch image shown in Fig. 1. After the etch condition was finalized, the imaged 
sample was etched at the optimal condition to reveal surface defects. Multiple 
optical images were taken of the sample at the same locations where the CL was 
previously taken. Then, the CL images were compared to the respective optical 
image of the etched sample.  
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Fig. 1 Comparison of the as-grown and etched sample of SiC demonstrating how the TDs 
were used for image alignment 

The KOH etching conditions were optimized for our experimental setup. Samples 
were etched in a nickel wire basket. Molten KOH was contained within a nickel 
crucible. Four different test samples, all from the same wafer, were etched at 
different temperatures and durations. The different samples were etched for 5 min 
at 450 °C, 10 min at 450 °C, 5 min at 500 °C, and 10 min at 500 °C (Fig. 2, left to 
right, respectively). After etching, samples cooled in air and were then rinsed in 
flowing deionized (DI) water. Each etch condition produced different sized etch 
pits, as seen in Fig. 2. For this experiment, it was determined that etching for 5 min 
at 500 °C was optimal because it clearly revealed the four main types of defects 
shown in Fig. 3, while also not over-etching the sample. These defects shown are 
consistent with those shown by Kimoto and Cooper.10 Over-etching can lose 
definition, making it difficult to differentiate between the types of defects.   

 



 

4 

 

Fig. 2 Microscope images after KOH etching for a) 5 min 450 °C, b) 10 min  
450 °C, c) 5 min 500 °C, and d) 10 min 500 °C 

 

 

Fig. 3 The 4° off-axis 4H-SiC epitaxial layer etched for 10 min at 500 °C. Examples of a 
TED, SD BPD, and TD are all seen in this micrograph. 
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3. Results/Discussion 

A total of eight regions near TDs were imaged in this study. Each sequence is shown 
in Figs. 4–10 and proceeds from left to right with an as-grown microscope image; 
the post-etch microscope image; the SEM image, which includes the area acquired 
with CL imaging; and then finally, the CL image itself. For TD1, TD2, and TD8, a 
small CL-imaged area overlays the SEM image. A red box is used to indicate the 
area acquired with the CL image.   

The CL, SEM, and corresponding pre- and post-etch optical images of the etched 
sample at the same location for each area clearly display the TDs. TDs that have 
been revealed by etching are shown in the CL image through an area of increased 
or decreased intensity relative to the background. All TDs imaged by the 
microscope in this investigation were discernable in the CL.  

In Fig. 4, the CL image for TD1 indicated by the yellow oval and labeled A is within 
the TD. The area, labeled B, is outside of the TD, but inside of a SF. The pre-etch 
CL has contrast in the areas that contain TEDs within the SF.  

 

 

Fig. 4 Comparison of the optical microscopy, post-etch optical microscopy, SEM imaging, 
and CL imaging, for the sample area denoted as TD1. The circled areas show contrast in the 
CL intensity within the SF where TEDs are located. 

The small-area CL image for TD2, shown in Fig. 5, centered at the point of the TD 
does not have any contrast differentiation and the etch pit microscope image 
corresponding to that area does not include any etch pits. The large-area CL image 
does contain some contrast in the area within the oval inside the SF, outside the TD. 
There is no contrast observed for the TEDs outside of the SF.    

TD1 
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Fig. 5 Comparison of the optical microscopy, post-etch optical microscopy, SEM imaging, 
and CL imaging for the sample area denoted as TD2. The circled area shows contrast in the 
CL intensity within the SF where TEDs are located. 

The CL images for TD3, TD4, and TD5, in Figs. 6 and 7, show the nucleating defect 
for the TD. However, there is no contrast for the numerous TEDs that are observed 
within the area on the etch pit microscope image. 

 

 

Fig. 6 Comparison of the optical microscopy, post-etch optical microscopy, SEM imaging, 
and CL imaging for the sample denoted as TD3 

 

  

TD2
  

TD3 
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Fig. 7 Comparisons of the optical microscopy, post-etch optical microscopy, SEM imaging, 
and CL imaging for the sample areas denoted as TD4 and TD5 

The CL image for TD6, in Fig. 8, was taken in area with a high density of in-grown 
SFs. There are also a large quantity of defects that are associated with the SFs that 
nucleated from the TD at the bottom of the image. These TEDs are apparent in the 
420- and 465-nm monochromatic CL images. 

The CL image for TD7, in Fig. 9, is also taken in an area with a TD and a high 
density of in-grown SFs.   

TD4 (Top) TD5 (Bottom) 
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Fig. 8 Comparison of the optical microscopy, post-etch optical microscopy, SEM imaging, 
and CL imaging for the area on the sample denoted as TD6 

 

 

Fig. 9 Comparison of the optical microscopy, post-etch optical microscopy, SEM imaging, 
and CL imaging for the area on the sample denoted as TD7 

TD6 

TD7 
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There are observations where the CL also indicates planar defects not revealed by 
defect etching. These cases are the same as the SFs in SiC imaged by Maximenko 
et al.7 Etching only reveals defects where they intersect with the surface, while CL 
can also reveal planar defects within the material. In the image for TD8, in Fig. 10, 
the CL clearly indicates a SF in the yellow oval location; however, the SF is not 
fully observed in the etched sample. This is because the SF is below the surface of 
the sample and, therefore, not visible in the etched sample. Note that the SF 
observed in the CL but not the optical microscope are also observed in the SEM 
image. The smaller circles in TD8 indicate the presence of BPDs. These BPDs 
demarcate the edges of partial dislocations, which coincide with the boundaries of 
in-grown SFs. CL imaging and SEM are methods to determine the location and size 
of in-grown SFs. In-grown SFs are also observed in TD1, TD2, TD6, and TD7. 

 

 

Fig. 10 Comparison of the optical microscopy, post-etch optical microscopy, SEM imaging, 
and CL imaging for the area on the sample denoted as TD8 

Two of the areas (TD6 and TD8) also include a comparison of the panchromatic 
CL image to monochromatic CL imaging at three peak wavelengths of 420, 465, 
and 530 nm. These wavelengths were chosen by finding peaks in a spectral plot 
taken within TD6. These wavelengths are all reported with discussion of the types 
of SFs in Maximenko et al.7 Different wavelengths of CL imaging can reveal 
multiple types of SFs. Different types of SFs emit different wavelengths of light, as 
seen in TD6 and TD8. This indicates there are multiple SFs in the same area existing 
on different planes. 

After the sample was etched, CL was again obtained for TD1, TD2, and TD7 to 
determine the likely wavelength band in the panchromatic CL from the in-grown 

 

TD8 
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SF. Monochromatic post-etch CL was performed on both TD1A and TD2B post-
etch indicating the emission centered at 505 nm for area A and 465 nm for area B 
was responsible for revealing contrast at areas containing TEDs. The 
monochromatic post-etch CL emission for TD2 is broad around 530 nm. The 
monochromatic post-etch CL emission for TD7 had peaks near 460 and 505 nm 
depending on the underlying SF. 

For this study, the highest-resolution CL was not selected because of the time 
needed to acquire the images. The resolution of the CL scans is likely not sufficient 
to observe some defects in the SEM scans. This was learned when an SEM image 
was acquired in the same location after a CL image was taken and the spot scans 
left a pattern in the sample (possibly due to charging or carbon deposition). This is 
seen in Fig. 11. Optimization of the SEM spot size and the resolution need to be 
performed to ensure all areas of the sample are imaged by the CL. The time issue 
limiting the resolution can be addressed by upgrading the detector from a CCD to 
a photo multiplier tube (PMT) detector. 

 

Fig. 11 The position of each spot can be observed in an SEM image taken of an area that 
had a CL image taken previously 

This initial work indicates that the wavelength range of the CL is important for 
observing the decreased intensity of the CL due to the presence of defects in SiC. 
As noted for the GaN, the band edge CL was imaged for determining the position 
of dislocations. This study focused on acquisition of panchromatic CL due to the 
weak band edge emission in this sample. In this study, dislocations were observed 
in areas with a brighter CL from in-grown SFs. The weak band edge CL in this SiC 
sample, coupled with the noise from the CCD, did not allow for imaging of defects 
in regions without SFs, if that is possible. 
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4. Conclusion 

A combination of the low density of defects in areas without SFs, incomplete 
coverage of the CL scans, and the low intensity of the band edge emission are 
potentially contributing factors as to why a decrease in intensity associated with 
observation of defects by CL was not obtained in this study. It is recommended that 
1) the CL collection procedures be refined to obtain CL from all areas of the sample, 
2) the CCD be replaced with a PMT, and 3) a sample with higher band edge CL be 
obtained to determine the feasibility of this method. 
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TD triangular defect 
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