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Abstract 

 

The phenomena known as secondary electron emission was discovered over a 

century ago. Yet, it remains very difficult to model accurately due to the limited availability 

of reliable experimental data. With the growing use of computer simulations in hardware 

development, the need for accurate models has increased. This research focused on 

determining what factors may be causing measurement discrepancies and methods for 

increasing the accuracy of measurements. It was found that several assumptions are 

commonly invoked when these measurements are performed that may not always be 

consistent with reality. The violation of these assumptions leads to measurement bias that 

is contingent upon the apparatus and the voltages used during the measurement. This 

research showed that secondary electron yield measurements are sensitive to changes in 

the apparatus geometry, the current level, and the electron gun settings. New techniques, 

hardware, and models were developed in order facilitate greater measurement repeatability 

and accuracy.   
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THE CHALLENGES OF LOW-ENERGY SECONDARY ELECTRON EMISSION 

MEASUREMENT 

 

I. Introduction 

In 1902, German physicists L. Austin and H. Starke discovered the phenomenon 

known as secondary electron emission (SEE) [1]. They revealed that when a material is 

bombarded with high-energy electrons the material can become positively charged 

indicating that, in addition to reflecting the high-energy electrons, other electrons leave the 

material. Since this discovery, the phenomenon has proven beneficial in some cases while 

a nuisance in others. From the earliest attempts to characterize SEE and even today, 

measurements made of the same elements performed by different labs or even the same lab 

display discrepancies. 

In 2005, Lin and Joy examined over 80 years of published secondary electron yield 

(SEY) data from over a hundred authors and stated 

“An examination of this data is discouraging, because it is evident that even for 

common elements (such as aluminum or gold) for which there are often a dozen or more 

independent sets of data available, the level of agreement is rarely better than 25% and 

often shows relative divergences of 100% or more. The result of this situation is that 

anyone seeking yield data to explain an observation or to validate a model can usually find 

multiple values spanning a large enough range to support or disprove any assertion.” [2]. 

 

SEY is the ratio of the average number of electrons leaving a material (commonly called 

secondary electrons) to the average number of electrons impacting the material (commonly 

called primary electrons) and is a critical parameter when characterizing the SEE of a 

material. Figure 1 demonstrates the large variation in SEY values for aluminum at different 

primary electron energies based on the data compiled by Joy [3].  
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Figure 1: SEY versus primary electron energy for aluminum (derived from [3]). 

  

More recently, Sattler found that SEY measurements performed on the same material using 

two different experimental apparatuses showed significant differences as shown in Figure 

2 [4]. The discrepancies that are seen in SEE data and the scarcity of the data available 

make it difficult to accurately and completely model SEE. 

 
Figure 2: Plot of SEY data measured by Sattler for electroplated gold using two different 

apparatuses [4]. 
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1.1 Research Goal 

The ability to accurately model SEE is critical to the measurement of other physical 

phenomena, the development of technology, and the safe operation of spaceborne radio 

frequency (RF) systems. During the measurement of the photoelectric effect, thermionic 

emission, field emission, and other experiments involving free electrons, SEE is present 

and affects the results of the measurement. Normally, neglecting SEE effects will bias the 

measurement. To achieve a higher degree of accuracy requires that either the effects of 

SEE on the measurement are determined and subtracted out or the experimental apparatus 

is designed such as to reduce the impact of SEE on the measurement. The design of these 

apparatuses and other technologies which rely on mitigating SEE are enabled by accurate 

SEE modelling. 

 Recently, the phenomenon of SEE has experienced increased scrutiny due to its 

connection with multipactor. Multipactor is a cyclical process of electron multiplication 

through SEE in an alternating electromagnetic field. This phenomenon takes place in a 

vacuum where collisions with gas molecules are minimized. The occurrence of multipactor 

within an RF system can reduce the performance of the system and cause damage. In the 

space environment, damage to an RF system can render a satellite useless due to it being 

unable to transmit data resulting in a large financial loss to a space program. Furthermore, 

the failure of a defense satellite reduces the capability of our government to provide 

national security. For these reasons, the Aerospace Corporation has written the 
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Standard/Handbook for Multipactor Breakdown Prevention in Spacecraft Components 

which provide guidance for the test of RF components for use in space [5].  

 This guidance establishes a process to verify that an RF component or system will not 

experience multipactor breakdown when operating at or below maximum power [5]. In 

order to ensure that breakdown will not occur, the power at which multipactor occurs is 

first determined through analysis or testing, and then a safety margin is subtracted from 

this power to determine the maximum allowed power within the component. Simulation is 

considered a valid analysis method for determining the power at which breakdown occurs 

for devices with defined geometries [5]. This excludes devices that vary in geometry due 

to unit-to-unit production variations or the incorporation of tuning elements such as tuning 

screws. Simulation requires that SEE is modeled, and the accuracy of the SEE model is 

imperative in ensuring that the simulation yields accurate results. Currently, the guidance 

indicates that a bounding, worst-case SEY shall be used in simulation due to the variations 

in surface conditions that can occur over the life of a component. However, the guidance 

does not provide any indications on how to model the angular and energy distribution of 

the secondary electrons. Scott Rice and John Verboncoeur have shown that multipactor is 

extremely sensitive to the energy distribution of the secondary electrons [6]. Thus, it is 

necessary to accurately model both the SEY, energy distribution, and presumably the 

angular distribution (though the sensitivity of multipactor to the angular distribution is 

currently unknown) in order to yield accurate simulation results.  

 In conclusion, accurate models of SEE are required for the measurement of other 

physical phenomena, the development of more capable technology, and the safety of 

spaceborne RF systems. However, our ability to develop accurate models is hampered by 
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the discrepancies and limited availability of measured SEE data. The goal of this research 

is to identify the cause of the measurement discrepancies and provide guidance on methods 

for improving measurement accuracy.   

1.2 Research Objectives 

Since multipactor may occur when the SEY exceeds unity, it crucial to be able 

accurately measure and model SEY at energies near and below the energy where the SEY 

first exceeds unity, which is known as first crossover energy. Measurements of the SEY at 

these low energies have been referred to as low-energy SEY (LE-SEY) measurements [7]. 

These measurements come with many challenges due to factors such as the contact 

potential difference (CPD) between electrodes and the thermal spreading of the primary 

electron energy. As a result, these measurements are often criticized and debated. This 

research focuses on LE-SEY measurement due to its relevance to multipactor. 

In order to the achieve the goal of this research, the following research objectives 

were established. 

1) Determine factors which may lead to measurement discrepancies by performing 

a review of literature pertaining to the measurements of SEE. These factors will 

exclude discrepancies due to differences in sample composition. 

2) Develop an experimental system capable of performing large numbers of 

measurements autonomously in order to establish repeatability of 

measurements and facilitate testing under numerous test conditions. 

3) Develop a simulation model of the experimental system to facilitate analysis of 

experimental test results. 
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4) Preform measurements at different primary currents and compare results to 

determine how changes in current may affect SEY measurements. 

5) Determine how the spacing between the electron gun and sample may affect SEY 

measurements. 

6) Determine how the first crossover of the SEY curve is altered by changing the 

potential of the electron gun optics. 

7) Determine how the electron gun’s optics can be adjusted in order to reduce SEY 

measurement errors. 

8) Preform SEY measurements on a magnetized sample to determine if the 

magnetic type I contrast effect can be used to reduce secondary emission from 

the vacuum chamber walls during SEY measurements. 

These objectives with the exception of objectives 2 and 3 were chosen to answer 

specific research questions which are self-evident in the objectives and will not be restated. 

The accomplishment of these objectives will provide insight into the dependence of SEY 

measurements on changes in the configuration of the experimental apparatus and provide 

the knowledge needed to establish guidance for improving measurement accuracy. 

1.3 Chapter Outline 

This dissertation is divided into five chapters. The purpose of the first chapter was 

to briefly introduce SEE and multipactor and to establish the goal, motivation, and 

objectives for this research. The second chapter describes SEE and multipactor in greater 

detail and provides insight into the factors which cause measurement discrepancies. The 

third chapter describes the approach used in this research to fulfill the research objectives 
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and the development of the experimental system and simulation model. In the fourth 

chapter, the results from simulations and experimental measurements are analyzed. The 

fifth chapter provides guidance based on the conclusions draw from the previous chapters 

and recommendations for future research.  

1.4 Summary 

This chapter introduced the topics of SEE and multipactor and briefly described the 

difficulties involved in modeling SEE due the discrepancies and scarcity associated with 

measured SEE data. The importance of accurate SEE models in the development of 

technology and the safety of spaceborne RF systems was emphasized, and the goal of 

identifying the cause of the measurement discrepancies and providing guidance on methods 

for improving measurement accuracy was established. Eight objectives involving both 

experimentation and simulation were identified for reaching this goal. Lastly, an outline of 

the dissertation chapters was provided. 
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II. Literature Review 

This chapter provides a review of literature regarding SEE and multipactor. The 

first section provides a historical overview of the important discoveries, challenges, and 

inventions surrounding SEE and multipactor. The second, third, and fourth sections 

describe the different types of SEE measurement, the apparatuses involved, and the models 

used to simulate each aspect of SEE. The fifth section describes current commercial, 

multipactor software and the SEE models implemented in each. In addition, the multipactor 

software developed by the Air Force Office of Scientific Research (AFOSR) and the Air 

Force Research Laboratory (AFRL) is briefly discussed. The final section discusses the 

ongoing challenges to accurate SEE measurements. 

2.1 Historical Overview 

The following sections discuss the important findings and activities surrounding 

SEE and multipactor research followed by a brief summary. 

2.1.1 SEE Discovery 

German physicists L. Austin and H. Starke are recognized for the discovery of the 

phenomenon known as secondary electron emission [1]. Their research began as a study of 

the relationship between the number of reflected electrons and the primary electrons’ 

incidence angle. However, during the course of their research, they discovered SEE along 

with several key relationships. Firstly, they observed that an isolated, metal reflector 

became positively charged when bombarded by high-energy electrons. This indicated to 

them that in addition to the usual electron reflection other negatively charged particles were 

released. Secondly, they believed that the emission of “negativer Elektricität” (translated 
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negative electricity) was a result of the emission of negatively charged particles whose 

velocities were of the same order of magnitude as the incident electrons. However, the 

scientific community now knows that these charged particles can have velocities 

distributed across several orders of magnitude depending on the incident velocity of the 

primary electron. Thirdly, they found that the emission decreased as the speed of the 

incident electron increased. Based on data obtained following their discovery, this is not 

completely true: the emission first increases as the speed of the primary electron increases 

before decreasing. Fourthly, they found that emission increases when the target surface is 

polished, which is consistent with data collected since their discovery. Fifthly, they 

concluded that emission increases as the density of the reflector increases. This conclusion 

however does not agree with data collected since their discovery, and it was determined 

that a correlation between emission and work function could just as easily be observed [8]. 

Efforts to correlate emission to other physical characteristics of materials have continued, 

but the results thus far have been inconclusive [2].  Lastly, they discovered that the 

emission increased with incidence angle, which is consistent with data collected since their 

discovery. They published these finding in 1902; and many of these findings remain 

relevant to this day. Throughout history, this phenomenon has also been called secondary 

emission and secondary electron radiation. 

2.1.2 Classification of Secondaries 

Shortly after the discovery of secondary electron emission, German physicist P. 

Lenard made the distinction between what he called “secondary electron radiation” and 

“Rückdiffusion” (translated re-diffusion) according to Bruining [9]. Lenard’s “secondary 
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electron radiation” are the electrons excited by the primary electrons (PE) and ejected from 

the material. They are now commonly called true secondary electrons (TSE). Lenard’s 

“Ruckdiffusion” are the primary electrons which are backscattered from the material. This 

group is further divided into inelastically backscatter primary (IBP) and elastically 

backscatter primary (EBP). Figure 3 identifies the types of electrons involved in secondary 

electron emission. For clarity, the term “secondaries” when used in this text refers to all 

types of secondary electrons ejected from the target material. Throughout history, this term 

has been used inconsistently: sometimes referring true secondary electrons and other times 

referring to all emitted electrons. Lenard made this distinction because he found that there 

is a “slow” group of secondaries that have an approximately constant energy (~10 eV) 

regardless of the primary electron energy [9]. This “slow” group is commonly associated 

with TSE. Figure 4 shows a typical energy distribution for secondaries and identifies the 

relative position of each secondary electron type. Auger electrons will be discussed in a 

later section. 

 
Figure 3: Diagram identifying types of secondaries generated during SEE. 
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Figure 4: Secondary electron energy distribution with secondary electron types identified. 

N(E) is the distribution of secondary electrons with respect to energy and is normally 

shown in ambiguous units. 

 

2.1.3 First Device to Harness SEE 

In August of 1915, Albert W. Hull patented the dynatron while working for the 

General Electric Research Laboratory (Figure 5) [10]. This was the first device to make 

use of SEE. The dynatron is a vacuum tube device that functions as a negative resistance 

when appropriately biased [11]. It can be used in amplifier and oscillator circuits [11, 12]. 

In 1922, Hull referred to the electrode that emitted secondaries as the dynode. This term is 

still used today to describe electrodes that perform electron multiplication through 

secondary electron emission. 
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Figure 5: The dynatron [11]. 

2.1.4 Auger Electrons 

In 1923, Austrian physicist Lise Meitner discovered Auger electrons though French 

physicist Pierre-Victor Auger is credited with the discovery [13]. When an inner shell 

electron of an atom is removed by a primary electron or photon, an outer shell electron 

emits energy and falls to fill the vacancy in the inner shell (Figure 6). The emitted energy 

can either escape the atom as a photon or be transferred to another electron which is then 

ejected from the atom. The ejected electron is known as an Auger electron.  

 
Figure 6: Schematic of Auger electron emission process [14]. 
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Auger electrons are emitted with specific energies that are associated with the quantized 

energy levels of the atom and normally appear at a slightly higher energy than the TSE in 

the energy distribution (Figure 4). They constitute an extremely small portion of the 

secondary electron population (less than 1 in 104) [15]. Consequently, they are not 

considered in the simulation of multipactor, vacuum tube devices, and many other 

simulations involving secondary electrons. 

2.1.5 Electron Diffraction 

In 1924, Louis de Broglie, based on the findings of Planck, Einstein, and Bohr, 

suggested that particles could act as waves having a wavelength associated with their 

momentum [16]. This relationship predicted that crystals when bombarded by electrons 

would exhibit diffraction following the Bragg diffraction condition, which had previously 

been applied to X-ray diffraction. In 1927, Davisson and Germer in the US and Thomson 

in Britain independently observed the electron diffraction pattern experimentally [16]. The 

diffraction pattern appears in the angular distribution associated with the EBPs. One way 

to observe the diffraction pattern is to use two electrically biased grids to filter out slower 

secondary electrons using a retarding potential (Figure 7). The remaining electrons are 

accelerated into a fluorescent screen for visual observation. Since a majority of the 

materials used in the construction of RF and vacuum tube devices are not crystalline and 

EBPs constitutes a small percentage of the secondaries, electron diffraction is commonly 

ignored in the simulation of these devices. 
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Figure 7: Diagram of low-energy electron diffraction (LEED) apparatus.  

2.1.6 Vacuum Tube Distortion 

In the late 1920’s as vacuum tube electronics progressed, the phenomenon of SEE 

produced undesirable behavior in the tetrode [17]. During this time, Bernard Tellegen 

began researching ways to reduce SEE from the anode of the tetrode [17]. Methods such 

as coating the anode with carbon and cutting ridges into the anode reduced the emission 

but did not completely suppress irregularities in the tetrode’s behavior [18]. By December 

of 1926, Tellegen solved the problem by placing an additional grid between the anode and 

the screen grid (Figure 8) [19]. The additional grid is called the suppressor grid. It is 

negatively biased with respect to the anode in order to force the slow-moving secondary 

electrons back into the anode. Since a large portion of secondaries are moving slowly, the 
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suppressor grid largely eliminated the undesirable behavior in the tetrode. The tetrode with 

the suppressor grid became known as the pentode. 

 
Figure 8: Diagram of Pentode [19]. 2—control grid; 3—screen grid; 4—suppressor grid;  

5—anode; 6—cathode   

2.1.7 Multipactor Discovery 

In 1924, French physicist Camille Gutton is believed to be the first person that 

experienced the multipactor phenomenon during his research of low pressure glow 

discharge at high frequency; however, Gutton attributed the phenomenon to ions and failed 

to identify electrons and secondary electron emission as the underlying cause [20, 21, 22]. 

He along with his son, Henri Gutton, continued to study the glow discharge phenomena at 

high frequency but failed to make a connection between secondary electron emission and 

the observed phenomena [22, 23, 24].  

The discovery of multipactor was not accidental: it was predicted, and a device was 

designed to make use of the phenomenon. In the early 1930’s, Philo T. Farnsworth built a 

device to amplify weak electrical signals through the multiplication of electrons via SEE 

in an alternating electric field [25]. He referred to the device as a multipactor tube (Figure 

9) [26, 27, 28]. These tubes did not find any lasting application; and, by the 1940’s, the 

name was transferred from the tubes to the phenomenon on which they are based [28]. 
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Figure 9: Farnsworth’s Multipactor Tube [75]. 

 

 Multipactor is a process of electron multipaction in an alternating electromagnetic field 

due to SEE. The multipactor phenomenon takes place within a vacuum where collisions 

with gas molecules are minimized. Common examples of multipactor include single-

surface and two-surface multipactor. Single-surface multipactor commonly takes place at 

waveguide pressure windows. A free electron can appear near the dielectric window due 

to numerous emission processes (e.g. high energy space particles, photoelectric effect, field 

emission, etc.) (Figure 10a). The electromagnetic field, propagating towards the right in 

Figure 10, forces the electron into the dielectric. If the energy of the impacting electron is 

sufficient to generate more than one secondary electron, multiple electrons will be emitted 

from the dielectric surface leaving behind positive charge (Figure 10b). The emitted 

electrons are accelerated by the electromagnetic field and collide again with the dielectric 

window generating additional free electrons (Figure 10c). This process continues with 
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additional free electrons being generated during each impact. The dielectric window is 

heated during this process and may experience a catastrophic failure. 

 
Figure 10: Single-surface Multipactor. 

 

Two-surface multipactor is phenomenon exploited by Farnsworth’s multipactor 

tubes. An alternating electric field between two parallel plates causes a free electron to be 

accelerated into one of the plates (Figure 11a). If the energy of the electron is sufficient to 

generate more than one secondary electron, multiple electrons will be emitted from the 

plate. The emitted electrons are then accelerated by the electric field and collide with the 

opposite plate (Figure 11b). This second collision multiplies the number of free electrons 

(Figure 11c). The electron multiplication process happens synchronously with the electric 

field leading to a buildup of electrons between the two places. The repeated impact of 

electrons with the plates heats the surface of the plates producing several possible effects: 

surface conditioning, emission of x-ray photons, damage to the plates, and outgassing of 

trapped gases. The outgassing of trapped gases is especially detrimental. The collision of 

electrons with gas molecules ionizes the gas molecules creating plasma. The plasma 
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absorbs much of the RF energy leading to further heating and energy loss. If left 

unattended, the component may experience a catastrophic failure. Furthermore, harmful x-

ray radiation may be emitted during multipactor causing damage to surrounding electronics 

and living organisms [28].  

 
Figure 11: Two-surface Multipactor. 

2.1.8 Multipactor Semi-empirical Modeling 

During the 1930’s, researchers began to propose theories for multipactor [20]. In 

order to make analytic solutions tractable, researchers made assumptions without having 

any physical basis and focused on simple geometries, such as parallel plates and single 

dielectric surfaces [20]. Some of these assumptions were: 

1) the secondary electrons are emitted at a velocity of zero, a velocity that is 

proportion to a constant k times the primary electron velocity (the constant-k 

theory), or a velocity, v, that is constant (monoenergetic) regardless of the primary 

electron velocity (the constant-v theory) [20, 29] 

2) the emitted velocity of the secondary electrons is normal to the surface [30] 
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3) electric field between the plates is uniform [30] 

4) space charge effects are negligible [30] 

5) magnetic field effects are negligible [30] 

 Based on the physics of SEE, the first two assumptions are incorrect. Nevertheless, by 

making these assumptions researchers were able to develop semi-empirical equations 

which they could fit to experimental data. These models were useful for constructing 

multipactor susceptibility curves for use by engineers but did not aid in understanding the 

underlying processes involved in multipactor [20]. 

 Figure 12 shows the baseline multipactor threshold curve found in the 

Standard/Handbook for Multipactor Breakdown Prevention in Spacecraft Components. 

This curve was produced using Hatch and Williams susceptibility curves which are based 

on a parallel plate geometry. The peak RF voltage is the voltage at which multipactor 

breakdown occurs. The gap is the distance between the parallel plates, and the frequency 

is the frequency associated with the electromagnetic field. In order to avoid multipactor 

breakdown, a component should be operated in the region below the bold, black curve. 

Though these curves are based on a parallel plate geometry, they are routinely used to 

determine the multipactor breakdown threshold of non-parallel plate geometries. 

When applied to non-parallel plate geometries, over-conservatism may exist [5]. 

This is due to the fact that the parallel plate assumption does not include electron loss 

mechanisms. When analysis is performed on realistic RF components, the opposing cavity 

walls are considered to be infinite parallel plates (Figure 13a). Since the features on the 

walls are not infinitely wide, electrons can escape from the sides of the features (Figure 

13b-c). Due to this loss mechanism, the actual multipactor breakdown threshold may be 
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much higher than that predicted using susceptibility curves [5]. The accuracy of these 

models decreases when the opposing walls are not parallel and when the gap is large 

compared to the feature size [5]. Due to the limited applicability of the semi-empirical 

models, much of the design for multipactor-free systems was done through trial and error 

[31]. It would not be until the development of multipactor computer simulations that the 

breakdown thresholds of complex geometries could be more accurately predicted. 

 
Figure 12: Baseline multipactor breakdown threshold [5]. 

 

 
Figure 13: Electron loss mechanism. The features labelled “plates” are consider infinite 

parallel plates in the analysis using susceptibility curves. 
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2.1.9 Multipactor Simulation 

To the author’s knowledge, the earliest known multipactor computer simulation 

was developed by Stanford University in 1973 [20, 32, 33]. Using the simulation, the 

researchers were able to track numerous initial electrons and multiple generations of 

secondary electrons in two dimensions (Figure 14). From the simulation, the researchers 

discovered a non-resonant multipactor process as opposed to the then well-known resonant 

multipactor process [32]. In this simulation, the fields within the cavity were first 

calculated, and then initial electrons were introduced into the cavity. The simulation 

calculated the trajectories of individual electrons though numerical integration until the 

electrons impacted the walls. A Monte Carlo algorithm based on experimental SEE data 

was then performed to determine the number of secondaries and their associated energies 

[32]. 

This simulation was a significant step forward in multipactor research. SEE data 

was finally integrated into multipactor analysis, and more complex geometries could now 

be analyzed. The unfortunate disadvantage associated with this type of simulation is that 

each electron must be tracked. During multipactor, the number of free electrons can grow 

to more than a trillion within 50 to 300 RF cycles requiring excessive computer resources 

for tracking all the electrons [34, 35]. The need to simulate large numbers of particles was 

addressed by particle-in-cell simulations. 

According to Kishek et al., particle-in-cell (PIC) simulations began to be applied 

to multipactor in the 1990’s [20]. Prior to being applied to multipactor, PIC simulations 

had been applied to plasma research [36]. PIC simulations are applied to the plasma and 

multipactor phenomena due to the excessive computational requirement associated with 
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tracking individual particles. In order to reduce the number of particles being tracked, 

individual particles are grouped together into “superparticles” (also called macroparticles) 

which are then tracked [36]. 

 
Figure 14: Typical computer plot of electron trajectories produced by the multipactor 

simulation program developed at Stanford University [32]. 

 

 There are numerous PIC algorithms currently available; attempting to discuss each in 

detail would be futile. Generally, the algorithms follow the cycle of arithmetic operations 

shown in Figure 15 [36, 37, 38]. In Figure 15, the index i references quantities associated 

with a superparticle, and the indices j, k, and l reference the nodes of a 3-D spatial grid. For 

each time step, Δt, the algorithm performs four operations. First, based on the location of 

the superparticle in the user-defined spatial grid, the associated charge distribution of the 

superparticle, and the velocity distribution of the superparticle, a current and charge density 
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is assigned to either the nearest grid point or eight grid points surrounding the superparticle 

[36, 37]. 

 
Figure 15: General flow of operations in PIC algorithms. 

 

Due to the periodicity of the spatial grid, Maxwell’s equation can then be solved 

using a Fast Fourier Transform (FFT) which yields the electric and magnetic field 

components at each spatial node [36]. Since the superparticles are not located at the nodes, 

a weighting scheme is used to determine the electric and magnetic field at the location of 

the superparticle and the resultant Lorenz force on the superparticle [37]. The new position 

and velocity of each of the superparticles is finally determined using either Newton’s 

second law of motion or the relativistic equations of motion [36]. Additional operations are 

required to simulate SEE and the ionization events which occur in plasma. 

2.1.10 SEE Measurement Difficulties 

Despite the success seen in the development of vacuum tube devices, scientists 

struggled to make accurate measurements of SEE that were consistent across the scientific 
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community. The methods and equipment used in the measurement of SEE has gone 

through several important changes since the discovery of SEE. In 1938, Warnecke pointed 

out the variability of SEY caused by varying the duration and temperature of heat 

treatments [39]. Figure 16 demonstrates the sensitivity of the SEY of aluminum to heat 

treatments. A decade later, McKay indicated that probably the most important development 

since the discovery of secondary emission was the creation of “…extensive degassing 

treatment and careful high vacuum techniques” [8]. Around 1948, the electron gun became 

the predominated device for making SEY measurements [8]. Previously, the triode was 

also used in SEY measurements. According to McKay, the results obtained using an 

electron gun were more easily interpreted than the triode method [8], and Bruining wrote 

that the triode method was less accurate [40]. Despite the improvements that were made in 

the measurement of SEE, in 1951 Pomerantz and Marshall wrote,  

“The disagreement among the results of different experiments is such as to preclude 

many crucial comparisons which could cast light upon the nature of the mechanisms 

involved in the process of secondary emission” [41].  

 

Since the 1950’s, vacuum technology has continued to improve, and two additional 

technologies were developed that have allowed scientists to make improved measurements. 

The first technology was modern surface analytical instruments. In the 1960’s, these 

instruments became widely available and allowed scientists to characterize the chemical 

composition of their samples [42]. This knowledge gave scientists a better understanding 

of the factors that were affecting SEE and the ability to identify when contaminants had 

formed on their samples. The second technology was the cleanroom. In 1962, Willis 

Whitfield invented the cleanroom which allowed scientists to prepare samples with fewer 



 

25 

 

contaminants [43]. Together, these technologies have helped scientists reduce sample 

contamination and identify when sample contamination has occurred. 

 
Figure 16: Secondary electron yield for aluminum following heat treatments [39]. Curve 

1—24 hours after end of pumping. Curve 125—after 1.5 h of 440° C heating and 240 h 

after curve 1. Curve 128—after 1 h of 400° C heating following curve 125. Curve 130—

after 2.5 h of 470° C heating following curve 128. Curve 146—after 1.5 h of 570° C 

following curve 130. Curve F—data from Farnsworth. Curve C—data from Copeland. 

 

Nevertheless, inconsistencies in SEE measurements continued to occur. In 1981, a 

group of researchers performed Auger electron spectroscopy (AES) measurements on 

copper and gold using 28 different instruments [44]. These measurements are of the 

secondary electron energy distribution. This distribution contains peaks which are 

associated with Auger electrons and can be used to identify the elemental composition of 

a surface. Their results showed significant inconsistencies in both Auger electron energies 

and intensities. They concluded that a measurement standard was necessary to eliminate 

the inconsistencies. In 1991, the International Organization for Standardization formed 
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Technical Committee 201 which is responsible for AES measurement standards [45]. 

These standards provide a means for greater consistency among AES measurements; 

however, it is unknown to what extent these standards have been successful. Unlike AES 

measurements, SEY measurements and angular distribution measurements do not have a 

standard or committee responsible for standardization. 

Even with technological advances, discrepancies with SEE measurements are still 

witnessed. An identical sample can yield two different results when measured by two 

different labs or even the same lab. These discrepancies appear as measurement biases 

rather than random measurement errors. Thus, averaging of the results does not guarantee 

that the true value of the SEE characteristic, such as SEY, will be obtained. The cause of 

these discrepancies and how to deal with them is at the center of this research.  

2.1.11 Summary of History 

The research areas of SEE and multipactor began as two separate fields of study. 

SEE was discovered in 1902. Physicist studied SEE with the objective of understanding 

the underlying mechanisms of SEE. Some of their important findings were the discovery 

of Auger electrons and electron diffraction. Meanwhile, engineers were designing vacuum 

tube devices that either relied on SEE for operation or required the mitigation of SEE. 

Multipactor research began in the 1930’s with Farnsworth’s invention of the multipactor 

tube. Researchers studying multipactor worked to perfect semi-empirical models which 

made unrealistic assumptions concerning SEE and focused on simple geometries in order 

to make analytic predictions of multipactor thresholds feasible. In the early 1970’s, 

multipactor research began to implement the models obtained from SEE research in 
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computer-based multipactor simulations [20, 32, 33]. It is at this time that multipactor 

research began to really benefit from SEE research. Multipactor simulations produced 

more accurate results in predicting multipactor breakdown thresholds for complex 

geometries than the previous semi-empirical models [5]. With the implementation of PIC 

algorithms in the 90’s, multipactor simulations could handle problems involving a large 

number of electrons [20]. Despite the advances in multipactor simulation, the underlying 

SEE models still contain unsubstantiated assumptions which lead to variability in 

simulation results. The struggle to produce more accurate SEE empirical models have been 

hampered by the difficulties associated with SEE measurements. The techniques and 

technology involved in these measurements have seen many advances over the past 

century; however, discrepancies in SEE measurements are still witnessed today. Figure 17 

provides a brief timeline of important events in the history of SEE and multipactor research.  

2.2 Secondary Electron Yield 

The measurement of SEY is the simplest conceptionally of all the types of SEE 

measurement. The SEY is defined as  

SEY = σ = 𝛿 =
isec

ipri
 

(1) 

where σ and δ are the characters normally associated with SEY. The primary current, ipri, 

is the current associated with the electrons that impact a sample. The secondary electron 

current, isec, is the current associated with the electrons emitted from a sample. These 

currents are normally measured using long integration times due to noise. Noise is 

generated by the random fluctuation in the emission of electrons from the cathode of the 

electron gun, known as shot effect, and by the SEE process [8, 15, 46].  
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Figure 17: Timeline of SEE and multipactor events. *The multipactor tube was 

developed sometime in the early 1930’s. 
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In addition to long integration times, digital filtering may also be used to further reduce 

noise. SEE measurements are often performed in ultrahigh vacuum (UHV) chambers in 

order to prevent the collision of electrons with gas molecules and reduce the number of 

absorbed molecules on the test sample. 

2.2.1 Measurement Techniques 

 Figure 18 shows a diagram of a SEY measurement apparatus. This apparatus can take 

on numerous shapes and sizes, and some may not allow measurements of all the currents 

shown. In Figure 18, ic is current measured through the collector, and is is the current 

measured through the sample. The primary electron current, ipri, can be estimated by 

placing a Faraday cup at the opening of the electron gun. Alternatively, several researchers 

have estimated ipri by positively biasing the sample in order to attract most of the secondary 

electrons back to the sample [47, 48, 49, 50]. This estimated current for ipri will be 

designated ipe in this research. Note that the conventional current standard is not used; 

rather, current is in the direction of electron flow in order make the discussion of SEE more 

intuitive. This convention will be used throughout this research. With the measurement of 

these three currents, the SEY can be estimated in four ways as shown in Table 1. Each of 

the equations can be derived using Kirchhoff’s current law (KCL). The first three of these 

equations allow the estimation of SEY with two measured currents. To the author’s 

knowledge, estimation using the fourth equation has never been attempted, and the 

equation is only shown here for completeness. 
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Figure 18: Diagram of SEY measurement apparatus. 

 

Table 1: Equations for estimating SEY 

Measured Currents Equation 

ic and ipe σest.1 =
ic

ipe
 

is and ipe σest.2 =
ipe − is

ipe
= 1 −

is

ipe
 

ic and is σest.3 =
ic

ic + is
 

ic, it, and ipe σest.4 =
ipe − is

ic + is
 

 

2.2.2 Application of Potential Bias 

The secondary electrons generated by the collision of primary electrons with the 

sample surface go on to collide with the collector, electron gun, and other objects in the 
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chamber producing additional secondaries. Hachenberg and Brauer called these secondary 

electrons “tertiary electrons” [51]. Tertiary electrons will be used throughout this research 

when describing electrons that are neither the primary electrons nor the secondary electrons 

generated by the incidence of primary electrons. The tertiary electrons must be controlled 

in order to prevent measurement errors. There are three biasing techniques which are used 

to control the tertiary electrons. 

The first technique is to create a static electric field surrounding the sample. This is 

typically done by negatively biasing the target because the collector in many cases is the 

wall of the chamber which is directly connected to earth ground for many chamber designs. 

The barrel of the electron gun is typically electrically connected to the chamber, so it is 

also held at ground potential. Figure 19 illustrates the direction of the electric field within 

the chamber. This electric field causes many of the tertiary electrons to be pulled back 

towards the collector preventing them from returning to the target. This is due to the fact 

that most secondary electrons are emitted with lower energies than the incident electrons.  

The disadvantage with this technique is that the electric field is greatest between 

the end of the gun barrel and sample causing primary electron beam defocusing. This 

defocusing may cause slow primary electrons to miss the sample completely as illustrated 

in Figure 20. For all the equations shown in Table 1, the estimates for SEY will approach 

unity as the number of primary electrons missing the target increases. In this century, with 

the renewed interest in SEY measurements, repeat occurrences of the SEY approaching 

unity as the primary electron energy approaches zero have been reported in literature [4, 

52, 53]. These reports are likely artifacts of the measurements. Andronov emphasized that 

previous SEY experiments made by several researchers had not shown this tendency 
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towards unity [52]. Furthermore, early theories indicated that the SEY would approach 5% 

or less, and H. A. Fowler and H. E. Farnsworth also provided evidence that the SEY tends 

toward 5% or less as the primary electrons’ energy approaches zero using primary electron 

energies as low as 0.2 eV [54]. As the primary electron energy is decreased, it becomes 

increasing difficult to determine the number of primary electrons impacting the sample due 

to beam defocusing [55]. Careful attention must be exercised in order to perform accurate 

measurements with low-energy primary electrons. The beam defocusing caused by biasing 

the sample should be avoided by reducing the sample bias.   

 
Figure 19: Illustration of the direction of the electric field for a biased target. 
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Figure 20: Illustration of primary electrons being deflected by a negatively biased sample. 

 

 In the second technique, the collector is positively biased with respect to the sample in 

order to retain the tertiary electrons at the collector. This technique is also subject to beam 

defocusing at low primary electron energies, which may require reducing the collector bias 

at low primary electron energies [56]. It requires a more complex apparatus than first 

technique due the addition of the collector. 

The third technique is to have zero electric field surrounding the target while 

creating an electric field between a grid and collector (Figure 21). This technique is 

reminiscent of the suppression grid used in the pentode discussed in Section 2.1.6. The 

electric field between the collector and grid forces most of the tertiary electrons generated 

on the collector back into the collector. This configuration can also be used to measure the 

secondary electron energy distribution. The disadvantages with this configuration are the 
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complexity involved in its construction and that any tertiary electrons emitted on the side 

of the grid facing the sample can return to the sample uninhibited because no electric field 

exists in that region. In 1959, Hachenberg and Brauer provided a diagram of an apparatus 

using the same technique to return secondary electrons to the collector (Figure 22) [51]. To 

the author’s knowledge, the use of grids is encountered far less often in the measurement 

of SEY than in the measurement of secondary electron energy distribution, such as in a 

LEED/Auger spectrometer or 4-grid retarding field analyzer [57]. 

 

 
Figure 21: Illustration of the direction of the electric field between collector and grid.  
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Figure 22: Diagram SEY measurement device provided by Hachenberg and Brauer in 

1959 [51]. 

 

 Pertinent to the discussion of biasing is the topic of CPD. It is also called Volta potential 

and was discovered by Alessandro Volta in 1797 [58]. When two metals with differing 

work functions are electrically connected, a CPD will exist if the metals have differing 

work functions. As illustrated in Figure 23, the Fermi level for the electron gun, EF(gun), is 

higher than the Fermi level for the target, EF(target), before an electrical connection is made 

between them. When an electrical connection is made, the Fermi levels must become equal 

in order for thermal equilibrium to be achieved. Because the work function for the gun, 

Φgun, differs from the work function for the target, Φtarget, a CPD, Vcpd, will exist between 

the gun and the target. Thus, an electrical field exist between the gun and the target which 

is capable of deflecting electrons. 
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Figure 23: Illustration of CPD between electron gun and target. Orange curves are 

exaggerated electron deflections caused by the retarding field of the CPD. 

 

CPD affects all types of SEE measurement [51, 52, 54, 59, 60]. Since CPD is 

usually a couple volts at most, the trajectories of slow electrons are impacted the most [58]. 

Thus, the effects caused by CPD become especially apparent when attempting to make 

measurements using primary electrons with low energies [52, 54]. Since the work function 

of materials changes with surface contamination, the CPD within the measurement 

apparatus may change over time requiring careful recalibration [54]. Furthermore, the work 

function may vary for different patches on the surface of a polycrystalline surface given 

rise to the “patch effect” [54, 55, 61]. This effect causes the primary electrons to be 

deflected or reflected as they approach within microns of the surface and further 

complicates low-energy measurements [54, 55]. 

2.2.3 The Universal Curve 

When the SEY is plotted with respect to primary energy, the trend shown in Figure 

24 is observed. For the discussion of this section, only primary electrons impacting the 
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surface at normal incidence will be considered. The yield curve tends toward zero as the 

primary electron’s energy, Ep, decreases to zero [52, 53, 54]. The yield first reaches unity 

at E1, which is commonly called the first crossover energy. The yield then increases to the 

maximum yield, σmax, at Emax. Continuing to increase Ep decreases the yield, and the yield 

again reaches unity at the second crossover energy, E2. 

 
Figure 24: Typical plot of the SEY versus primary electron energy. 

 

In 1950, Baroody was the first to identify that when σ/σmax is plotted versus Ep/Emax 

for a large number of materials the data appears to follow the same curve (Figure 25) [62, 

63]. This curve has been called the universal curve. When considering only one material, 

it is called a reduced yield curve [62]. 



 

38 

 

 
Figure 25: Baroody’s original plot of σ/σmax versus Ep/Emax (labelled Wo/(Wo)MAX.) [63]. 

The line drawn on the graph is based on Baroody’s semi-empirical model. 

 

In general, the reduced yield curves of metals follow the universal curve allowing 

their SEY characteristics to be specified using only σmax and Emax. However, the SEY 

curves for insulators show a strong divergence away from the universal curve at energies 

greater than Emax [19]. 

2.2.4 Material Dependency 

Due to the large variations appearing in SEY measurements, it is difficult to draw 

any in-depth conclusions about the relationship between SEY and other material properties. 

In general, it appears that materials consisting of single elements exhibit a lower yield than 

those made of compounds [41, 51]. Additionally, insulators typically produce a far greater 

yield than conductive materials, but they are subject to surface charging effects [8, 9, 64]. 

For primary energies below E1, the insulator becomes negatively charged until the 

primary electrons are unable to reach the target due to the repulsion created by the electric 

field. For primary energies between E1 and E2, the surface becomes positively charged, and 

the primary electrons receive additional acceleration when approaching the target. Positive 
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charging continues until the primary electrons reach the energy of E2. For primary energies 

above E2, the surface becomes increasing negatively charged until the surface is charged 

such that the primary electrons are decelerated to an energy E2. For primary energies 

around E2, the surface will oscillate between positive and negative charging. Due to this 

charging effect, the SEY of insulators is measured with short pulses of primary electrons 

[8, 9, 51, 64]. The insulator may also be heated between pulses in order to aid in the 

migration of electrons through the insulator [51]. More recently, Cazaux summarized the 

following methods of handling this charging: mobilizing the electrons through UV 

radiation, heating the material to increase electron diffusivity, limiting the number of gun 

pulses per SEE measurement, and compensating for positive surface charging with a low 

energy electron flood gun [65, 66]. 

2.2.5 Temperature Effects 

For clean metal surfaces, temperature has a negligible effect on the SEY provided 

the metal does not experience a phase transformation [9, 41, 62]. Metals with surface 

contaminants, such as absorbed gases, however may experience SEY variations due to 

changes in the gas density with temperature [8, 67]. In metals, the number of secondaries 

produced is limited by the interaction of secondaries with conduction-band electrons [62, 

68]. Increasing the temperature of a metal increases the thermal energy of conduction-band 

electrons; however, it has a negligible effect on the yield due to the energy of the 

secondaries being much larger than the thermal energy [9].  

The SEY of insulators is generally temperature dependent [9, 8]. Absorption of 

secondaries in insulators is primarily due to electron-phonon and electron-impurity 
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interactions due to the lack of conduction-band electrons [68]. The secondaries experience 

much less energy loss from these interactions leading to a much higher SEY for insulators 

[68]. These interactions are not believed to change significantly with temperature, and the 

temperature dependency of SEY is most likely due to changes in the conductivity of the 

insulator which affects charging [8, 9]. Bunney wrote that there are indications of an 

inverse relationship between temperature and SEY in insulators though McKay wrote that 

some insulators are temperature independent [8, 67]. 

2.2.6 Surface Effects 

Since the discovery of SEE, it has been known that surface roughness has a 

significant effect on the SEY [1]. Rough surfaces have a lower SEY than smooth surfaces. 

McKay wrote, 

“This is qualitatively explained by postulating that a rough surface can be likened 

to a series of holes or wells. A secondary electron, produced at the bottom of such a well, 

may be trapped by the sides of the well and hence will not be emitted from the surface” [8]. 

 

Porous materials also have a lower SEY than nonporous materials. Bruining et al. 

compared the porous material to a surface rich in labyrinths from which it was “…almost 

impossible for secondaries to escape” [69].  

If the material is a single crystal, the different faces of the material have been shown 

to produce small differences in SEY [51].  Thus, when measurements are made on single 

crystals, the crystal face involved in the interaction must be recorded. For polycrystalline 

materials, differences in the SEY across the surface of the material may appear negligible 

if the primary electron beam strikes multiple crystals during each measurement. Jonker 

made a similar remark about the angular distribution of secondary electrons from a 
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polycrystalline material: he stated that the effects on the angular distribution would be 

negligible provided that the primary electrons struck a large number of crystals [70].  

Surface contaminants may either increase or decrease the SEY. Prolonged 

bombardment of primary electrons tends to produce surface carbon contaminants which 

lowers the SEY and is known as the “conditioning effect” [71]. On the other hand, 

oxidation can cause the SEY to increase or decrease. A monatomic layer of oxygen will 

form an “electrical double layer” which will increase the work function and reduce the 

yield [8]. However, if a thick layer of oxide forms on the surface, the yield will be greatly 

altered and likely increase [8].  

2.2.7 Angle of Incidence Effects 

For polycrystalline and amorphous materials which are nonporous and have smooth 

surfaces, increasing the incidence angle with respect to normal incidence increases both 

σmax and Emax [8, 41]. TSE are generated closer to the surface when the incidence angle is 

increased, which increases the probability of the TSE escaping the surface rather than being 

absorbed [8, 72]. Porous materials, such as soot, however have shown much less 

dependence on incidence angle [62, 72]. Dekker presumed that the reduction in dependence 

was due to “…the possibility of interception of emitted electrons” [62]. However, Bruining 

indicated that for the rough, porous surface of soot the incidence angle is not well defined 

[72]. The data measured and plotted by Bruining is shown in Figure 26.  

For single crystals, the dependence of SEY on incidence angle is not well 

understood. As shown in Figure 27, minima and maxima exist when plotting SEY with 

respect to incidence angle. The angular position of these maxima does not depend on the 
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energy of the primary electrons, which would be expected if the variation in SEY was due 

to diffraction [73].   

 

 
Figure 26: SEY as a function of the accelerating voltage of the primary electrons for 

different incidence angles [72]. The “S” and “R” next to each curve indicates a smooth 

nickel surface and rough, porous carbon surface respectively. 
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Figure 27: SEY versus incidence angle for different primary electron energies [73]. The 

curve containing open circles corresponds to data obtained for MgO, and the curve 

containing solid circles corresponds to data obtained for LiF. 
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2.2.8 Effects of Primary Current Level 

McKay indicates that many investigators under widely differing conditions of 

primary current have found that SEY is independent of the primary current [8]. Bunney 

also indicated that theoretical analysis confirms that the SEY is independent of the primary 

current [67]. However, the measurement of SEY at low primary electron energies is known 

to be affected as current increases due to the buildup of space charge within the apparatus 

[7, 8, 51]. Since many of the secondary electrons have relatively low energies, an increase 

in space charge above the emitting surface may occur when the primary electron current is 

increased [74, 75]. This can reduce emission causing the measured SEY to be less than the 

actual SEY [75]. Furthermore, large currents may lead to surface heating which could cause 

changes in the surface composition leading to variations in the SEY. 

2.2.9 Models 

Physicists have developed many semi-empirical models in an attempt to 

characterize SEY: Baroody [63], Bruining [9], Dekker [62], Dionne [76], Lye and Dekker 

[77], Marshall [78], Salow [79], Wooldridge [80], and Dekker and van der Ziel [81]. This 

list is not comprehensive. Some of the models follow a classical approach while other 

follow a quantum mechanical approach. They predict the general behavior of SEY for 

materials though they often deviate from experimental data. In addition, most, if not all, 

require calibration using experimental SEY data [64]. The models are based on simplifying 

assumptions in order to make analytic solutions tractable; however, Devooght et al. wrote 

that the main problem with the early theories was the lack of justification for the 

assumptions [82].   
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Attempts have been made to correlate work function, density, and atomic shell 

filling to σmax. Though σmax has been shown to increase with work function, it is believed 

that this behavior is more likely due to underlining factors which vary with the work 

function [8, 41]. A correlation between density and σmax can just as easily be observed [8]. 

Sternglass made the discovery that σmax varies along each horizontal line of the periodic 

table from alkalis to multivalent metals [51, 83]. This indicates that SEE is dependent on 

bound atomic electrons in addition to electrons in the valence and conduction bands [83]. 

In 2005, Lin and Joy again found that SEY data for numerous materials seemed to correlate 

with atomic shell filling; however, they could not make a final conclusion because they 

needed additional experimental data to fill the gaps that existed in their available SEY data 

[2]. To the author’s knowledge, physicists have not reached a conclusion on the 

relationship between σmax and shell filling. 

As engineers began incorporating multipactor simulations into the development of 

RF components, models of SEY were necessary in the performance of these simulations. 

Vaughan recognized this need and developed a phenomenological model to determine the 

SEY based on the energy and incidence angle of the primary electrons [84, 85]. Vaughan’s 

model is applied in multipactor simulation programs, such as FEST3D®, ICEPIC, and 

CST® [37, 86, 87]. Vaughan’s model requires only four parameters to characterize a 

material: two factors related to the smoothness of the surface, σmax at normal incidence, 

and Emax at normal incidence [6, 84, 85]. Physicists and engineers continue make 

adjustments to Vaughan’s model in order to find better agreement with experimental data 

[6, 88]. 
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In 2002, Furman and Pivi developed a phenomenological, probabilistic model that 

is designed to be mathematically self-consistent [89]. In order to be self-consistent, the 

probabilistic model was designed such that: 

“(1) when averaging over an infinite number of secondary-electron events, the 

reconstructed δ and dδ/dE are guaranteed to agree with the corresponding input 

quantities; (2) the energy integral of dδ/dE is guaranteed to equal δ; (3) the energy of any 

given emitted electron is guaranteed not to exceed the primary energy; (4) the aggregate 

energy of the electrons emitted in any multielectron event is also guaranteed not to exceed 

the primary energy” [89]. 

 

δ is again the SEY, and dδ/dE is the one of several ways to represent the secondary electron 

energy spectrum. In addition to providing a model for SEY, this model also specifies the 

energy distribution of the secondaries [89]. In contrast, Vaughan’s model only specifies 

the SEY [84, 85]. However, this model generally requires 44 parameters, and there is not 

a unique set of parameters that define a specific material [6, 89].  

 The aforementioned models developed by Vaughan, Furman, and Pivi were developed 

for the simulation of devices that are orders of magnitude larger than the sub-nanoscale 

surface features which lead to variations in the SEY across a surface. The Furman and Pivi 

model is used more often by the particle accelerator community, while Vaughan’s model 

is used more often by the RF community [6]. Attempting to use models that capture the 

sub-nanoscale variations is not computationally feasible in the simulation of much larger 

devices; however, there is interest in modeling SEE at the sub-nanoscale level for electron 

probe microanalysis, electron microscopy, and electron spectroscopy, which is addressed 

with Monte Carlo (MC) electron trajectory simulation methods [90].  

 MC simulations began to be applied to charged particles in the 1950’s [91]. In these 

simulations, an electron’s trajectory through a material is determined based on the 
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probability of different events occurring (e.g. elastic collision, inelastic collisions, and 

ionization events) and the sampling of random numbers [91]. Plotting the simulated 

trajectories for many electrons provides an overall picture of the SEE interaction taking 

place within the material as shown in Figure 28. Though the results of MC simulations 

provide useful insight, they are not based on first principles and require calibration using 

experimental SEE measurements [2, 90, 92]. Due to inconsistencies that are observed in 

SEE measurements, it is difficult to determine which set of SEE data to use in calibration. 

David and Lin provided a method for identifying and correcting errors in measured SEY 

data using the universal yield curve [2]. However, even with these corrections, the accuracy 

of MC simulations remains limited by the accuracy and availability of measured SEE data. 

 

Figure 28: Simulated trajectories of 10,000 electrons for 20-keV primary electrons [4]. 
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2.2.10 Mitigation 

For many researchers today, much effort has been placed on developing materials 

with the goal of mitigating SEE. This mitigation can be achieved in several ways: applying 

a surface coating, performing a surface conditioning process, heating the surface while in 

a vacuum, sputter cleaning the surface, or surface roughening. To the author’s knowledge 

the first time that surface coatings were used to reduce SEE in order to enhance an 

electronic devices performance was the vacuum tube device known as the tetrode.  

During the development of the tetrode, SEE from the anode was identified as 

causing undesirable distortion in the tube’s I-V characteristic (Figure 29) [9, 18]. To reduce 

the anode’s SEE, a layer of porous carbon was applied to the anode. This reduced the 

distortion though the tetrode’s performance is still less ideal than the pentode [18]. 

However, when transmitting high power, high frequency signals, the tetrode with its coated 

anode has superior performance over the pentode [9]. This is just one example of the 

application of a surface coating to reduce SEE. 

A surface coating is an additional layer of material added to the surface of a bulk 

material. An example of this would be depositing a layer of lithium (σmax = 0.59) on copper 

(σmax = 1.53) so that the SEE properties of the surface are that of lithium which has a lower 

yield [2]. Provided the surface coating is thick enough, the surface will exhibit the SEE 

properties of the coating; otherwise, in the case of thin films, the surface exhibits neither 

the SEE properties of the bulk material or coating material and undesirable behavior such 

as the Malter effect may exist [9]. Porous coatings with conductivity will in general reduce 

SEE [8, 62]. On the other hand, porous coatings involving insulators, such as MgO, will 
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greatly enhance SEE above that of nonporous, insulative coatings due to electric field 

effects [62, 93]. 

 
Figure 29: Comparison of Tetrode I-V Characteristics [18]. 

 

 Surface “conditioning”, “cleanup”, or “scrubbing” is the process of intentionally 

inducing multipactor breakdown in a controlled manner in order to reduce SEE [94, 95, 

96]. In this process, the surface is repeatedly bombarded by electrons. Fundamentally, the 

process may be performed using a beam of electrons from an electron gun in a procedure 

called “electron conditioning” [97]. There are two popular theories as to why this process 

reduces SEE. The first theory is that prolonged exposure to electron bombardment drives 

absorbed gases out of the surface thereby decreasing SEE [94, 95]. The second theory is 

that the electron bombardment causes a gradual buildup of a carbon layer on the surface 

[71, 96, 98]. In some situations, either or both of the theories could be true. Nevertheless, 

conditioning does not always reduce the SEE of a surface. In the case of aluminum, it has 



 

50 

 

been shown to increase SEE by increasing oxide growth [97]. In short, the variations in 

SEE due to conditioning are caused by changes in the surface chemistry, and these changes 

may be observed by using surface analytic instruments [96, 97, 98]. 

A surface may also be heated to temperature near the melting pointing while in a 

vacuum in order to promote outgassing of absorbed contaminants. This process is known 

as heat treating the surface and was discussed in Section 2.1.10. Alternatively, the absorbed 

contaminants may be removed by sputter cleaning the surface with an inert gas. For 

example, Gonalez et al. showed that the SEY of silver, gold, and copper could be 

significantly reduced by sputter cleaning with argon (Figure 30) [99]. 

 
Figure 30: Comparison of the SEY of silver, gold, and copper before and after sputter 

cleaning with Ar+ ions [99]. 

 

Since the discovery of SEE, it was known that a rough surface has a lower SEY 

than a smooth surface. A rough surface can be produced in two ways. This first way is to 

remove material from the bulk material through cutting, sanding, etching, etc. The second 

way is to deposit a rough surface layer onto the bulk material’s surface. The deposited layer 

may or may not have a lower SEY than the bulk material. Either way of roughening the 

surface comes with the challenge of contamination which could cause the SEE to increase 

instead of decrease. 
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Vaughan wrote that surface treatments for the mitigation of SEE are likely to 

degrade over time. However, it is unknown which type of surface treatment he was 

referring to because he never specified [77]. Indeed, there are numerous ways in which a 

surface can be treated as previously discussed in this section. In addition, Kishek et al. 

referred to surface coatings and surface treatments separately and then repeated Vaughan’s 

supposition without providing any additional information [4]. It can be surmised that any 

surface will undergo changes over time and that the rate at which the changes occur will 

be dependent on both the material composition of the surface and environment to which it 

is exposed. Additionally, the SEE may either increase due to gas absorption or decrease 

over time due to the buildup of a carbon layer. Thus, it cannot be simply stated that surface 

treatments will degrade over time. The degradation of a surface treatment must be assessed 

on a case-by-case basis. 

The implementation of surfaces treated for SEE mitigation may increase losses 

within an RF device due to the increases in surface resistivity [100, 101]. Thus, surfaces 

designed for SEE mitigation must be tested to determine if the surface resistance is 

acceptable. Furthermore, the losses within a device can be decreased by only placing the 

possibly more resistive, low-SEE surfaces where needed.  The surfaces of the device must 

also be tested to ensure that harmful, localized heating does not occur in the location where 

a low-SEY surface has been implemented. 

2.3 Secondary Electron Energy Spectrum 

According to McKay, the secondary electron energy distribution, also called energy 

spectrum, is more difficult to experimentally measure and theoretically explain than SEY 



 

52 

 

[8]. The measurement of the spectrum requires the mitigation of spurious electromagnetic 

fields, Earth’s magnetic field, and space charge effects in addition to correcting for CPD 

[8, 51, 7].  Typically, when discussing the energy distribution, researchers will refer to 

plots such as that shown previously in Figure 4. However, Figure 31 provides a more 

accurate picture of the distribution curve and the changes which take place when the 

primary electron energy is altered. Figure 31 was generated using a retarding electric field 

which collects secondary electrons emitted in almost all directions from the sample surface. 

 
Figure 31: Secondary electron energy spectra for different primary energies [102]. 

  

The TSE are commonly designated as the secondary electrons with energies below 50 eV, 

while the IBP are designated as the secondary electrons with energies between 50 eV and 

the energy of the EBP, seen as a narrow peek at the right end of the spectrum. The 

discrimination between TSE and IBP is completely arbitrary [41, 62]. IBP can exist with 
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energies less than 50 eV. As the primary electron energy approaches zero, the peaks 

associated with TSE and IBP merge into a single peak, and the primary electrons have 

insufficient energy to create TSE [55]. The electrons which are emitted from the surface 

are backscattered primary electrons. Very little is known about the dependence of the 

secondary electron energy spectrum on material composition and surface condition. The 

following two sections will discuss the techniques for measuring the spectrum and 

modeling of the spectrum for simulation purposes. 

2.3.1 Measurement Techniques 

The measurement of the secondary electron energy spectrum is generally made in 

one of four ways: using a retarding electric field, using a deflecting electric field, using a 

transverse magnetic field, or using a longitude magnetic field. Each technique measures 

secondary electrons emitted at different angles from the surface and has advantages and 

disadvantages. This section discusses each technique and illustrates the apparatuses 

involved. A table summarizing these techniques is provided at the end of the section. For 

simplicity, the effects of CPD will not be included in this discussion.  

 Figure 32 provides a simplified illustration of the apparatus used to measure the 

secondary electron energy spectrum using a retarding electric field. H. E. Farnsworth used 

a similar apparatus without the suppression grid to measure the spectra of copper, iron, 

nickel, and silver in 1952 [59]. The suppression grid prevents most tertiary electrons 

emitted from the collector from returning to the target. The grid is biased to a lower 

potential than the target in order to repel secondary electrons from the grid and 

subsequently the collector. Ideally, the grid should be spherical in shape, and the target 
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should be relatively small so that the electric field between the grid and collector points 

radially outward [8]. Only secondaries with energies greater than -eVg , where e is the 

charge of an electron and Vg is the potential at the grid with respect to ground, will be able 

to reach the collector. Increasing Vg decreases icg monotonically as shown in Figure 33. By 

numerically differentiating -icg with respect to -eVg and scaling the ordinate as desired, the  

spectrum as previously shown in Figure 31 is obtained [8, 102, 103]. 

 
Figure 32: Device for measuring the secondary electron energy spectrum by means of a 

retarding electric field between target and grid. 
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Figure 33: Ratio of secondary to primary current versus retarding potential for nickel [59]. 
Curve 1 is for 6.2-eV primary electrons. Curve 2 is for 10.4-eV primary electrons. Curve 3 is for 18.6-eV 

primary electrons. Curve 4 is for 33.5-eV primary electrons. Curve 5 is for 50.0-eV primary electrons. Curve 

4A is for 33.5-eV primary electrons before the sample was heat treated. All other curves were measured after 

heat treatment. 

 

 The electric potential of other objects in the UHV chamber may prevent the electric 

field from pointing radially outward at all locations between the target and grid, and 

additional grids can be added to the chamber in order to reduce the distortion in the electric 

field. The innermost gird is held at ground potential in order to create a field-free region 

between the innermost grid and the target as shown in Figure 34. 
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Figure 34: Device for measuring the secondary electron energy spectrum by means of a 

retarding electric field between grids. 

 

There are a couple disadvantages with this technique. First, numerical 

differentiation amplifies any noise that may appear in the measured current data. Numerical 

differentiation can be avoided by applying a small sinusoidal potential to the retarding grid 

in order to measure the slope of the curves shown in Figure 33 [57]. However, this method 

requires either a third additional grid in order to avoid capacitive coupling between the 

collector and retarding grid or an external circuit which nulls the current produced by the 

capacitive coupling [57]. This method is commonly used in AES and requires a 

measurement apparatus of greater complexity than those using numerical differentiation 

only. Secondly, secondary electrons and tertiary electrons from the grids are forced back 

to the sample leading to a region of space charge in front of the sample. This space charge 
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region may slow down primary electrons as they approach the sample and secondary 

electrons leaving the sample. This effect may be mitigated by reducing the primary current. 

An advantage with this technique is that secondary electrons are collected from 

almost all emission angles simultaneously. This is important because it is not uncommon 

for simulations to use a single model to define the energy distribution for all the secondary 

electrons leaving a surface regardless of emission angle [89]. Thus, the data measured using 

this technique is more suited for these models. Another advantage with this technique is 

that a relatively large current is measured due to the secondary electrons being collected 

from almost all emission angles which allows this technique to have potentially the highest 

signal-to-noise ratio (SNR) of all the techniques. 

The next technique is to use a deflecting electric field as shown in Figure 35. In this 

method, the electrons leave the target and travel through a slit. The electrons then pass 

through an electric field and are deflected based on their energies [103]. The deflecting 

plates may also have a rounded geometry rather than being flat [104, 105]. Lower energy 

electrons will be deflected more than higher energy electrons leading to an angular 

separation of the electrons based on energy. The current associated with each energy can 

be measured by moving the opening of the collector or by altering the deflecting field.  

A disadvantage with this technique is that the energy spectrum is only associated 

with secondary electrons emitted at the specific angle that aligns with the slit near the 

target. Thus, this information cannot be applied to models which are describing the energy 

distribution of all the secondary electrons. Another disadvantage is that this technique 

measures relatively small currents leading to a lower SNR. Lastly, another disadvantage is 

that tertiary electrons generated on surfaces surrounding the target are free to return to the 
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target due to the lack of an electric field. However, this effect can be mitigated by using a 

suppression grid. 

An advantage with this technique is reduced space charge near the sample because 

secondary and tertiary electrons are not repelled back to the sample as with the previous 

technique. Another advantage is that this technique can be used to collect secondary 

electrons from almost all emission angles by rotating the energy analyzer. The exception 

being the solid angle occupied by the electron gun and primary electron beam. 

Additionally, numerical differentiation is not required making the energy spectrum less 

noisy than the retarding electric field method. Lastly, no restrictions are placed on the 

orientation of the electron gun as is the case when using a magnetic field to measure the 

energy spectrum.  

 
Figure 35: Simple model of device used to measure the secondary electron energy 

spectrum using a deflecting electric field [103]. 

 

Another technique for measuring the spectrum is to use a transverse magnetic field 

as shown in Figure 36. Like the previous technique, the electrons leave the target and travel 
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through a small opening into the energy analyzer. Only electrons with the appropriate 

velocity for a specific magnetic field intensity can pass through the analyzer and be 

collected within the cage [8, 103]. The magnetic field is adjusted in order to select the 

secondary electron velocity to be measured. In Figure 36, the magnetic field points into the 

page in order for the electrons to follow in the trajectory shown. It should be noted that the 

primary electrons must travel parallel to the magnetic field to avoid deflection [51]. Thus, 

the actual placement of the electron gun would be above or below the page for the 

instrument shown in Figure 36; however, this diagram, along with many other diagrams 

portraying this instrument, is limited by the constraints of two-dimensional drawings. 

 
Figure 36: Diagram of an instrument for measuring the secondary electron energy 

spectrum using a transverse magnetic field [9]. C—cathode. T—target. r—radius of 

analyzer. 

 

A disadvantage with this technique is that the energy spectrum is only associated 

with secondary electrons emitted at the specific angle that aligns with the opening of the 

energy analyzer. Lastly, another disadvantage is that the centerline of the electron gun’s 
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barrel must remain oriented normal to the plane in which the energy analyzer lies in order 

to avoid the deflection of the primary electrons by the magnetic field. This greatly limits 

the possible combinations of primary electron incidence angles and secondary electron 

collection angles. The advantages with this technique are that the possibility of a space 

charge built-up in front of the target is greatly reduced because secondary and tertiary 

electrons are not repelled back to the sample and numerical differentiation is not required 

in determining the energy distribution. 

 The technique of using a longitudinal magnetic field to measure the secondary electron 

energy distribution was developed by German physicist Rudolf Kollath [9, 105, 106]. The 

instrument developed by Kollath is shown in Figure 37. This instrument is designed around 

the principle that electrons emitted from a point source at the same energy and at the same 

angle to a homogeneous magnetic field will focus to an image point [9, 67]. The distance 

of the image point from the source is directly proportional to the velocity of the secondaries 

and inversely proportional to the magnetic field [9, 67]. The image point appears at the 

opening of the collector, and the energy of the secondaries which enter the collector is 

selected by adjusting the magnetic field.  

 A disadvantage with this technique is that the electrons are not collected from a single 

emission angle or almost all emission angles. This complicates efforts when trying to 

model the energy spectrum. In addition, the possible combinations of primary electron 

incidence angles and secondary electron collection angles are greatly limited due to the 

construction of the device and the use of a magnetic field. Another disadvantage is that the 

magnetic field guides many of the secondary electrons back into the electron gun leading 

to a possible space charge buildup within the electron gun. The advantages of this technique 
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are that numerical differentiation is not required and that relatively large currents are 

measured. Thus, the SNR using this technique is greater than that of the deflecting electric 

field and transverse magnetic field techniques [8, 103].  

 
Figure 37: Schematic of the instrument used by Kollath to measure the secondary electron 

energy spectrum using a longitudinal magnetic field [105]. GL—electron gun; T—target; K—Collector; 

P—primary electrons; ℬ—magnetic field. 
 

Table 2 summarizes the differences associated with each energy spectrum 

measurement technique. It is important to observe the differences in these measurement 

techniques when attempting to build SEE models. The technique used to acquire secondary 

electron energy spectrum may not always appear with the published measurement results 

requiring additional research to determine the technique used. Given the complex nature 

of the spectrum, it is much more difficult to model than the SEY. 

2.3.2 Models 

A Maxwellian distribution is often fit to the TSE portion of the energy spectrum 

although the distribution does not correspond directly to a Maxwellian distribution, and 

there is no physical connection between them [8, 51, 107]. In addition, Van der Ziel 
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indicated that energy spectrum of TSE could be approximated as a half-Maxwellian energy 

distribution with an equivalent temperature corresponding to a few electronvolts [108]. 

Furthermore, Scholtz et al. have shown that a Gaussian distribution provides a better fit to 

the TSE portion [102]. These distributions however are only valid for Ep > 20 eV. Below 

an Ep of 20 eV, the TSE and EBP portions of the energy spectrum begin to appreciably 

overlap. In 1966, Birdsall et al. indicated that curve fitting was the most reasonable way 

forward for defining the energy spectrum [46]. To the author’s knowledge, the Furman and 

Pivi model currently provides the best fit for the energy spectrum data [89]. However, 

ensuring that the model fits experimental data for multiple incidence angles and primary 

electron energies is difficult, and the Furman and Pivi model has been observed to deviate 

from experimental measurements as shown in Figure 38.  

Table 2: Comparison of Secondary Electron Energy Spectrum Measurement Techniques 

 

Retarding E-field Deflecting E-field Transverse Magnetic Longitudinal Magnetic

Possibility of 

Space Charge

Buildup 

High Low Low High

Numerical Diff. Yes, unless using small

sinusoidal potential

No No No

SNR High Low Low Medium

Measured 

Emission 

Angles

Almost all 

simultaneously

Single angle from 

target to analyzer 

opening

Single angle from 

target to analyzer

opening

Several angles 

simultaneously

Angular

Combinations 

of Incident and 

Collection 

Angles

Multiple incident

angles possible

Multiple incident 

and collection angles 

possible

Limited by 

requirement

for e-gun to be normal 

to the plane of the 

magnetic analyzer

Greatly limited by 

device construction

and e-gun placement

in magnetic field
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Figure 38: Comparison of a measured secondary electron energy distribution for copper 

to a fitted curve created using the Furman and Pivi model [109] . The primary electrons 

for this data were normally incident on the surface with a 30-eV energy. 

2.4 Angular Distribution of Secondaries 

The angular distribution is the most difficult aspect of SEE to measure due to the 

complexity of the instrument involved [110]. Prior to 1959, only Jonker had performed this 

type of measurement [51, 111]. The angular distribution is measured for specific energy 

groups, such as the secondary electrons with energies between 0 and 20 eV. Jonker 

performed his measurements using three groups which he called the slow secondary 

electrons, secondary electrons with moderate velocity, and rapid reflected electrons (Figure 

39). 

 
Figure 39: Jonker’s secondary electron energy groups [110]. I—slow secondary 

electrons; II—secondary electrons with moderate velocity; III—rapid reflected electrons. 
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 For the slow and moderate groups of secondaries emitted from a smooth, 

polycrystalline nickel target, Jonker found that the distributions followed roughly a cosine 

distribution (Figure 40). For all of his measurements, the trajectory of the primary electrons 

and the captured secondary electrons were in the same plane due to the mechanical 

constraints of his apparatus. Jonker was unable to measure the angular distribution within 

10 degrees of either side of the electron gun due to the obstruction caused by the electron 

gun. He interpolated the missing part of the distribution “…as well as possible” using a 

dashed line (Figure 40) [110]. To this day, the appearance of the missing 20 degrees of the 

angular distribution is only speculated. 

 
Figure 40: Angular distribution of the moderate (a) and slow (b) secondary electrons for a 

smooth, polycrystalline nickel target with normal incidence and different accelerating 

potentials [110].  

 

 The angular distribution for the rapid secondaries shows a pronounced deviation from 

the cosine distribution (Figure 41). These secondaries have a greater tendency to be emitted 

in a direction parallel to the primary electron beam incidence angle as shown in Figure 42. 
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Figure 41: Angular distribution of rapid secondary electrons for a smooth, polycrystalline 

nickel target with normal incidence and different accelerating potentials [110]. 

 

The angular distributions of the slow and moderate groups show little deviation from the 

cosine distribution for various incidence angles [110].  

 

 
Figure 42: Angular distribution of rapid secondary electrons for a smooth, polycrystalline 

nickel target with 30° (a) and 45° (b) incidence and different accelerating potentials [110]. 

 

It is important to note that Jonker measured the current density at numerous angles 

not the joint probability density function defining the angular distribution of the secondary 

electrons. For example, if we assume that the current density for a group of secondaries 

follows a cosine function, then the current density is 

𝐽(𝜃𝑠, 𝑟) =
𝑖𝑚

𝜋𝑟2
𝑐𝑜𝑠(𝜃𝑠)�̂� for 0 ≤ 𝜃𝑠 ≤ 𝜋 2⁄  𝑎𝑛𝑑 0 ≤ 𝜑𝑠 ≤ 2𝜋 

(2) 

𝐽(𝜃𝑠, 𝑟) = 0 otherwise (3) 
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so that when integrating 𝐽(𝜃𝑠, 𝑟) over a hemisphere above the target, the integral yields im, 

the total current associated with the secondaries of a specific energy group, as shown: 

∫ ∫  
𝑖𝑚

𝜋𝑟2
𝑐𝑜𝑠(𝜃𝑠)�̂�

𝜋 2⁄

0

2𝜋

0

∙ �̂�𝑟2𝑠𝑖𝑛𝜃𝑠𝑑𝜃𝑠𝑑𝜑𝑠 =
𝑖𝑚

𝜋
∫ ∫  𝑐𝑜𝑠(𝜃𝑠)𝑠𝑖𝑛𝜃𝑠𝑑𝜃𝑠𝑑𝜑𝑠

𝜋 2⁄

0

2𝜋

0

= 𝑖𝑚 

 
(4) 

𝜃𝑠 is the emission elevation angle with respect to the surface normal, 𝜑𝑠 is the azimuthal 

angle associated with the emission, and r is the radial distance from the location of 

emission. If we then assume that the joint probability density function also follows a cosine 

function, then the joint probability density function is 

𝑓𝜃𝑠,𝜑𝑠
(𝜃𝑠, 𝜑𝑠) = (1 2𝜋⁄ )𝑐𝑜𝑠𝜃𝑠  for 0 ≤ 𝜃𝑠 ≤ 𝜋 2⁄  𝑎𝑛𝑑 0 ≤ 𝜑𝑠 ≤ 2𝜋 (5) 

𝑓𝜃𝑠,𝜑𝑠
(𝜃𝑠, 𝜑𝑠) = 0 otherwise (6) 

so that integrating 𝑓𝜃𝑠,𝜑𝑠
(𝜃𝑠, 𝜑𝑠) yields 1, as shown: 

∫ ∫  (1 2𝜋⁄ )𝑐𝑜𝑠𝜃𝑠

𝜋 2⁄

0

2𝜋

0

𝑑𝜃𝑠𝑑𝜑𝑠 =
1

2𝜋
∫ ∫  𝑐𝑜𝑠𝜃𝑠

𝜋 2⁄

0

2𝜋

0

𝑑𝜃𝑠𝑑𝜑𝑠 =
1

2𝜋
(2𝜋) = 1 

 
(7) 

This is the probability that a secondary electron will be emitted at an elevation angle 

between 0 and π/2 and azimuth angle between 0 and 2π, which constitutes all angles in the 

hemisphere above the target surface. The problem arises when one attempts to determine 

the current associated with electrons leaving the target over a specific range of angles by 

performing the following integration using the joint probability density function as in the 

following equation: 

𝑖𝑚 ∫ ∫  (1 2𝜋⁄ )𝑐𝑜𝑠𝜃𝑠

𝜃𝑠.𝑚𝑎𝑥

𝜃𝑠.𝑚𝑖𝑛

𝜑𝑠.𝑚𝑎𝑥

𝜑𝑠.𝑚𝑖𝑛

𝑑𝜃𝑠𝑑𝜑𝑠 

 
(8) 
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This integration is not equivalent to the integration of current density over a specific range 

of angles, which is 

∫ ∫  
𝑖𝑚

𝜋𝑟2
𝑐𝑜𝑠(𝜃𝑠)�̂�

𝜃𝑠.𝑚𝑎𝑥

𝜃𝑠.𝑚𝑖𝑛

𝜑𝑠.𝑚𝑎𝑥

𝜑𝑠.𝑚𝑖𝑛

∙ �̂�𝑟2𝑠𝑖𝑛𝜃𝑠𝑑𝜃𝑠𝑑𝜑𝑠 

 
(9) 

These two integrations will yield differing results. In order to yield consistent results, the 

following joint probability density function must be used instead. 

𝑓𝜃𝑠,𝜑𝑠
(𝜃𝑠, 𝜑𝑠) = (1 𝜋⁄ )𝑐𝑜𝑠𝜃𝑠𝑠𝑖𝑛𝜃𝑠 = (1 2𝜋⁄ )𝑠𝑖𝑛2𝜃𝑠  

for 0 ≤ 𝜃𝑠 ≤ 𝜋 2⁄  𝑎𝑛𝑑 0 ≤ 𝜑𝑠 ≤ 2𝜋 

(10) 

 
𝑓𝜃𝑠,𝜑𝑠

(𝜃𝑠, 𝜑𝑠) = 0 otherwise 

 

 

(11) 

Figure 43 compares this probability density function to the previous. The 𝜑𝑠 dimension is 

not shown due to lack of any variation in 𝑓𝜃𝑠,𝜑𝑠
(𝜃𝑠, 𝜑𝑠) with respect to 𝜑𝑠. It is apparent 

that these two distributions are very different. In order for simulation models to be 

consistent with Jonker’s results, the probability density function describing the angular 

distribution must be consistent with Equations 10 and 11. To the author’s knowledge, this 

nuance is not emphasized in other literature. 

 
Figure 43: Comparison of joint probability density functions for the angular distribution of 

the secondary electrons. 
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2.4.1 Measurement Techniques 

The measurement of the angular distribution requires an apparatus in which the 

incidence of the primary electron beam can be set and the angle of the secondary electron 

collection varied. It is commonly measured using a retarding electric field or a deflecting 

electric field due to the constraints associated with using a magnetic field. There are two 

techniques for making measurements using a retarding electric field. 

The first technique is to remove secondary electrons below a specific velocity 

before they reach a collector. Jonker was the first to implement this technique using two 

concentric spheres (Figure 44) [112]. In order to perform this measurement accurately the 

retarding electric field must point radially outward. Jonker could not ensure that the electric 

field would be pointed radially outward in the region surrounding the target given the 

geometry of the target and electron gun, so he made this region a field-free region by 

placing the target, electron gun barrel, and inner sphere at the appropriate electric potential 

based on CPD considerations. He then surrounded the inner sphere by a concentric outer 

sphere which was negatively biased with respect to the inner sphere in order to retard 

secondary electrons leaving the inner sphere through the slit N in Figure 44. A few of the 

electrons would have sufficient energy to overcome the retarding field and enter an opening 

into the outer sphere that led to a collector. The collector was connected to an ammeter to 

allow measurement of the current entering the collector. The design and construction of 

Jonker’s apparatus is rather complex compared to other devices used for SEE measurement 

(Figure 45). To the author’s knowledge, Jonker was the only researcher to ever use this 

technique. 
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Figure 44: Schematic of Jonker’s apparatus for measuring the angular distribution [112]. 
A—inner sphere with slit N; B—outer sphere with slit W; G—electron gun; T—target; C—collector. 

 

 
Figure 45: Picture of Jonker’s apparatus for measuring the angular distribution [110]. 
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 The second technique is to allow secondary electrons to pass through a field-free region 

and enter an energy analyzer. An example of this is the apparatus developed by Burns 

(Figure 46). The secondary electrons would be emitted from the target and travel a straight 

path from the target through the field-free region into the opening of the “electron 

collector” [111]. Today, we refer to Burns’ “electron collector” as a retarding field analyzer 

(RFA) because a retarding electrostatic field is used to separate electrons based on kinetic 

energy [113].  

 
Figure 46: Schematic of Burns’ apparatus for measuring the angular distribution [111]. 

 

An energy analyzer using a deflecting electrostatic field, such as a cylindrical 

electrostatic analyzer, may be used instead of an RFA. However, this analyzer measures 

the current associated with the secondary electrons having a specific energy rather than 

within a specific energy range. Nevertheless, one may numerically integrate the currents 
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measured using a deflecting electrostatic field with respect to the secondary electron energy 

over the desired energy range to obtain the same result as the RFA. Likewise, the 

measurements of an RFA may be numerically differentiated to obtain the results obtained 

using a deflecting electrostatic field. 

2.4.2 Material Dependence 

Currently, the exact relationship between other material properties and the angular 

distribution is unknown. However, some general trends can be observed for the angular 

distributions of polycrystalline, crystalline, and porous materials. The angular distribution 

for a polycrystalline material was previously discussed at the beginning of this section. 

This angular distribution will now be compared to a porous material and then a crystalline 

material. 

Jonker measured the angular distribution of porous soot in order to better 

understand the SEE behavior of soot within a vacuum tube device [112]. He found that 

most of the secondary electrons from the slow, moderate, and rapid groups are always 

emitted in the direction of the electron gun (Figure 47). This is in stark contrast to the 

approximately cosine distribution observed for the slow and moderated groups of 

secondary electrons emitted from smooth polycrystalline nickel [110]. Furthermore, he 

observed that the shape of the angular distribution for each of the groups remains 

approximately the same and rotates as the incidence angle varies. This is also different 

from what was found for polycrystalline nickel, which did experience a appreciable change 

in the shape of the distribution for the rapid group as the incidence angle was varied. Lastly, 

the angular distribution of polycrystalline nickel showed an increase in the number of rapid 
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electrons at an angle near the specular reflection angle. For soot, this increase is not 

observed. Jonker compared his observations to moist grasslands illuminated by the sun 

where the greatest intensity of light is seen surrounding the shadow cast by the observer’s 

head [112]. 

 
Figure 47: Angular distribution measured by Jonker for porous soot for different 

accelerating potentials and incidence angles [112]. (a) Slow, (b) moderate, and (c) rapid groups of 

secondary electrons for 45° incidence; (d) slow group of secondary electrons for normal incidence. 

 

 The angular distribution for crystalline materials is far more complex than the 

previously mentioned distributions. The distribution contains maxima and minima 

superimposed on an approximately cosine distribution (Figure 48)  [111]. Burns stated that 

the angular distribution cannot to explained by the “…diffraction of internal secondaries 

either by Bragg planes in the crystal or by the surface lattice” and found the results to be 

consistent with quantum-mechanical collisions provided conservation of momentum is 

properly accounted for [111]. In order to model this angular distribution accurately for the 
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simulation of much larger scale devices, a much more complex model than the cosine 

distribution is necessary. It may be possible that periodic surface structures, such as groves, 

trenches, cones, or pores, will also exhibit a complex angular distribution; however, the 

author has been unable to ascertain any experimental evidence regarding this subject.  

 
Figure 48: Angular distribution of secondary electrons from [001] face of copper crystal 

with 250 eV primary beam at normal incidence [111]. (a) 0 to 10 eV secondaries; (b) 10 to 

20 eV secondaries; (c) 20 to 40 eV secondaries. 

 

2.4.3 Models 

Vaughan’s model does not provide an angular distribution, and the Furman and Pivi 

model uses a cosα θs probability density for the angular distribution, where α is a parameter 

determined by the simulation user and is normally set to 1 [84, 85, 89]. Based on the 

author’s observations, it is common to assume that the angular distribution follows a cosine 

probability density based on Jonker’s measurements for polycrystalline nickel or that all 
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secondary electrons are emitted normal to the surface. The angular distribution appears to 

be the most underdeveloped aspect of SEE modeling. 

 

2.5 Multipactor Simulation Software 

There are numerous software programs developed to simulate multipactor. Many 

of these programs are developed by universities and used for academic research [114, 115]. 

The most widely used commercial software for multipactor simulation are CST STUDIO 

SUITE®, FEST3D®, and Vsim®. The CST STUDIO SUITE® was developed by 

Computer Software Technology (CST®) and is part of SIMULIA which is brand owned 

by Dassault Systèmes® of France [87]. This software simulates multipactor by first solving 

for the EM fields within a RF component using the CST Microwave Studio® module of 

the CST STUDIO SUITE®. The EM field data are then imported into the CST PARTICLE 

STUDIO® module. This module contains the PIC algorithm used for the simulation of 

SEE and electron dynamics. For SEE modeling, this module uses one of the following: the 

Furman and Pivi model [89], Vaughan’s model [84, 85], or imported SEY data containing 

impact energies and corresponding SEY values [87].  

FEST3D®, which stands for Full-wave Electromagnetic Simulation Tool 3D, is 

produced by Aurora Software and Testing (AURORASAT™), S.L. of Spain [116]. 

FEST3D® contains a “high power” module which allows multipactor and corona 

breakdown level determination. In addition, FEST3D® also contains a stand-alone module 

called SPARK3D, which can also perform multipactor and corona breakdown analysis.  

SPARK3D can import EM field data from several electromagnetic simulation tools: 

FEST3D®, ANSYS® HFSS™, CST®, and FEKO [117]. Both modules use a “full 3D 
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electron tracker” as opposed to a PIC algorithm [116]. Both modules also use Vaughan’s 

model for SEE simulation or imported SEY data containing impact energies and 

corresponding SEY values with the additional option of including the number of elastically 

reflected primaries [118, 119, 117]. In September of 2016, CST® announced their 

acquisition of AURORASAT™ [120]. FEST3D® and SPARK3D are now offered as an 

option of the CST STUDIO SUITE® or as stand-alone programs [121]. 

 VSim® is a multiplatform, multiphysics software developed by the Tech-X® 

Corporation of Boulder, Colorado [122]. VSim® utilizes the VORPAL® computation 

engine in order to perform electromagnetic and particle simulations. VORPAL® uses a 

PIC model based on the PIC algorithms from Hockney and Eastwood [123] and Birdsall 

and Langdon [124, 125]. It has three methods of simulating SEE [126]. The first method 

implements the phenomenological model developed by Dionna [76]. The second method 

uses the Furman and Pivi probabilistic, phenomenological model [89], and the third method 

utilizes imported SEY data containing impact energies and corresponding SEY values. 

Tech-X® currently serves numerous laboratories and defense corporations, including the 

AFRL [122]. 

For the last 20 years, AFRL, with the support of the AFOSR, has used and 

developed a PIC code to aid in the development of high-power microwave devices [127]. 

The code is called Improved Concurrent Electromagnetic Particle-In-Cell (ICEPIC) and 

was initially developed by Richard Procassini from a particle code authored previously by 

Procassini and Bruce Cohen [128]. ICEPIC is developed for parallel processing across 

multiple CPUs [127, 129]. It does this by splitting the simulation domain into “rectangular 

prism spatial regions” and assigning each region to a CPU [130]. In addition, it implements 
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a more complicated PIC cycle than the conventional cycle shown in Figure 15 in order to 

keep each CPU busy (Figure 49). 

 
Figure 49: Flow of operations in the parallelized PIC loop used by ICEPIC [130]. 

 

In 2004, C. Fichtl et al. added a SEE capability to ICEPIC in order to simulate 

multipactor at waveguide pressure windows [131]. ICEPIC uses Vaughan’s model for SEE 

simulation [37, 38, 131]. In 2009 and 2013, ICEPIC was used by two students within the 

Air Force Institute of Technology (AFIT) physics department for the simulation of 

multipactor breakdown at a waveguide pressure window [37, 38]. Since the publications 

of these students, no additional reports regarding multipactor simulation using ICEPIC 

appear to have been published. 
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2.6 The Challenges to Accurate Measurement 

Based on the literature review, the measurements of SEE involve numerous 

assumptions which may or may not be consistent with reality in all situations, and it is 

difficult to determine when these assumptions have been violated. They are often made in 

SEE literature without directly stating that the assumptions have been made, and it is 

assumed that the reader understands all the underlying assumptions. When these 

underlying assumptions are violated, the results of the measurement become biased. 

Depending on the extent to which these assumptions are violated, a large number of 

inconsistent results may be observed in data collected by different researchers. For this 

discussion, the focus will be on SEY measurements; however, many of these assumptions 

are also applied to other types of SEE measurements. Each of the assumptions commonly 

made for SEY measurements will now be discussed along with their impact on the accuracy 

of the measurement. 

2.6.1 Assumption 1 

The first assumption is that the measured SEY at one location on a sample’s surface 

is applicable to the entire surface. However, the SEY commonly varies between locations 

on a surface. It is this property that allows the scanning electron microscope to operate. 

The variation of the SEY at each point along the surface gives rise to the contrast seen in 

the images produced by a scanning electron microscope (SEM). When experimenters 

attempt to measure the SEY for a surface, the results of the measurement are dependent on 

where the primary electron beam impacts the surface. For example, a researcher performs 

a SEY measurement with the primary electron beam focused at location 1 in Figure 50. In 
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this measurement, many of the secondary electrons emitted at the bottom of the pit will be 

absorbed by the surrounding walls of the pit leading to a SEY measurement that is lower 

than would be measured for a flat surface. If the researcher moves the primary electron 

beam to location 2, many of the secondary electrons generated within the peak will escape 

due to their close proximity to the surface on all sides of the peak. Thus, the researcher will 

measure a higher SEY than would be found for a flat surface. These two locations represent 

the extremes for an SEY measurement created by the geometry of the surface. Similar 

results would be measured if the locations were different in other ways, such as 

contaminated versus uncontaminated or differing crystal faces. In order to ensure that the 

measurements are applicable to the entire surface, measurements may be performed at 

several locations and averaged. In addition, the diameter of the primary electron beam may 

be increased to expose a larger region of the surface to electrons during each measurement. 

  
Figure 50: Illustration comparing secondary electron emission when a primary electron 

impacts in a pit versus on a peak. 
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2.6.2 Assumption 2 

 The second assumption is that the effects of CPD are negligible. If CPD is considered 

non-negligible, the SEY curve must be shifted based on the CPD between the cathode of 

the electron gun and the sample. This shift is normally a few eV at most since CPD is 

typically less than a couple volts. Thus, it is often considered negligible. However, when 

performing measurements for primary electron energies less than 1 eV, the CPD must be 

considered; otherwise, the accuracy of the experimental results is doubtful and subject to 

criticism [54]. The CPD must be periodically remeasured since the work functions of the 

cathode and sample may vary over time with changes in surface composition. 

The CPD can be determined using three different methods. In the first method, the 

work functions of the cathode and sample are first determined, and then the CPD is 

calculated using these work functions. The disadvantage with this approach is in the 

difficulty associated with determining the work functions. Additional equipment is 

required in the vacuum chamber in order to measure the work functions in situ. 

Furthermore, the electron gun may require modification to allow the work function of the 

cathode to be measured. Removing the sample and cathode from vacuum chamber to 

perform work function measurements increases the risk for contamination leading to 

inaccurate work function measurements, and performing the removal and reinstallation 

periodically is not feasible in most situations.  

In the second method, the CPD may be measured directly using the Kelvin probe 

method [54]. This approach requires the distance between any two electrodes for which the 

CPD is being measured to vary. A vibrating probe may be used to determine the CPD 

between the probe and sample and the CPD between the probe and cathode. The CPD 
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between the cathode and sample can then be calculated from CPDs measured using the 

probe. This method also requires additional equipment within the chamber and possibly a 

redesign of the electron gun. 

In the final method, the CPD is determined based on the cutoff of the primary 

electron beam when the sample is negatively biased with respect to the electron gun [54]. 

This method does not require any additional equipment within the chamber. However, the 

primary electron energy distribution must be known, and assumptions must be made 

regarding the SEY at low primary electron energies in order to use this method. Though 

the CPD between the cathode and sample is responsible for the shift of the SEY curve 

along the energy axis, CPDs also exist throughout the vacuum chamber and within the 

electron gun, which may impact the measured SEY. These CPDs alter the electric fields 

from those based solely on measured potentials, and ignoring them when performing 

simulations leads to incorrect calculations of the electron trajectories. 

2.6.3 Assumption 3  

 The third assumption is that each characteristic of the primary electrons can be 

defined with a single numerical value rather than a distribution. Thus, all the primary 

electrons are assumed to impact the sample surface at the desired incidence angle. In 

practice, this is impossible to achieve. At high primary electron energies, it is possible to 

have all the electrons strike the surface at nearly the same incidence angle. At low primary 

electron energies, however, it is difficult or nearly impossible to have the electrons strike 

the surface at the same angle, and the electrons strike the surface following a wide 
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distribution of incidence angles. This is due to the fact that the primary electrons are not 

emitted from the same location on the cathode and with the same momentum. 

Furthermore, the primary electrons are also assumed to strike the target with the 

same energy. However, the primary electrons are emitted from the cathode following a 

distribution of energies. Therefore, it is not possible to have all the primary electrons arrive 

at the sample with the same energy. The energy spread of the primary electrons may be 

reduced by sending the electrons through an energy analyzer before entering the focusing 

optics of the electron gun [54]. However, this comes at increased complexity and cost. 

Alternatively, the type and temperature of the cathode may be chosen to reduce the energy 

spread. The true SEY curve can only be determined by the deconvolution of the measured 

SEY curve with the energy distribution of the primary electrons [7]. The challenge however 

is accurately determining the energy distribution of the primary electrons. 

2.6.4 Assumption 4 

The fourth assumption is that space charge is negligible. As previously discussed, 

the SEY is a ratio that is independent of the primary electron current. Therefore, for any 

primary electron current used in a SEY measurement, the SEY must remain the same. This 

can only be achieved if no electrons interact with each other. When the electrons are 

moving quickly and the current density is small, electron interactions are minimized. 

However, when electrons are moving slowly and/or the current density increases, electron 

interactions increase and the measurement bias due to space charge may become significant 

[74, 75, 132]. For this reason, SEY measurements involving low energy primary electrons 

are most susceptible to space charge effects. Since the SEY is independent of current, the 
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ratio between any two currents measured in the vacuum chamber must be constant 

regardless of the primary electron current. The deviation of any ratio from a constant value 

is an indication of a space charge accumulation. This is predicated on the belief that 

differences in the energy distribution of electrons emitted from the cathode are negligible 

for different primary electron currents.  

2.6.5 Assumption 5 

The fifth assumption is that Earth’s magnetic field is negligible. The trajectories of 

the electrons are dependent on the properties of the magnetic field within the chamber; and, 

since this varies with geographic location, its effect on the accuracy of SEY measurements 

will also vary. As the energy of an electron decreases, the magnetic field has an increasing 

effect on the trajectory of the electron. Depending on the magnetic field, this may cause 

primary electrons to miss the sample, and secondary electrons to spiral back into the 

sample, which leads to measurement bias. To reduce the magnetic field within the chamber, 

the chamber may either be surrounded by a material with high permeability, such as mu-

metal, or Earth’s magnetic field may be negated by a second magnetic field produced by 

permanent magnets or electromagnets (e.g. Helmholtz coils). 

2.6.6 Assumption 6 

The sixth assumption is that the primary electron current can be accurately 

measured using a Faraday cup or by positively biasing the sample. This involves two 

underlying assumptions. The first being that all electrons leaving the electron gun can be 

captured by the Faraday cup or biased sample. The extent to which this can accomplished 

is dependent on the design of the cup or SEE properties of the sample in addition to the 
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applied bias. The second assumption is that the current measured by the Faraday cup or 

biased sample is equal to the primary electron current that will arrive at the sample. When 

the sample is negatively biased to prevent tertiary electrons from returning to the sample 

and the primary electrons have low energies, many of the electrons, which were captured 

by the Faraday cup or biased sample, may not reach the sample. This leads to an error in 

the determination of the primary electron current and consequently the SEY. 

2.6.7 Assumption 7 

The seventh assumption is that the measurement results are solely due to the SEE 

interaction taking place on the sample’s surface involving primary and secondary electrons 

and all other interactions occurring in the vacuum chamber are assumed negligible. These 

other interactions include SEE and photoemission taking place in locations other than the 

sample’s surface. The extent to which this assumption is valid is difficult to determine and 

is subject to the design of the experimental apparatus and the test conditions. Researchers 

have attempted to quantify the extent to which this assumption is valid and its effect on the 

accuracy of SEY measurements by comparing simulation and experimental results [56, 

133]. They found that the accuracy of their measurements degraded as the primary electron 

energy was reduced from ~4% at 1 keV to ~20% at 5 eV [56]. Unfortunately, very little 

research is available regarding the quantification of measurement accuracy in SEY 

measurements.  

2.7 Summary 

This chapter provided a historical review of SEE and multipactor and discussed many 

of the challenges involved with the measurement of SEE. In addition, the different types 
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of SEE measurement (i.e. SEY, energy distribution, and angular distribution) were 

discussed along with the models associated with each type of measurement. The 

underdevelopment of SEE models, especially in areas of energy distribution and angular 

distribution, was highlighted. An overview of multipactor simulation software was 

provided, and the SEE models used by each software was identified. Finally, based on the 

evidence available in the literature, it was determined that the discrepancies observed in 

SEE measurements can be attributed to the violations in the seven commonly made 

assumptions. This determination satisfies the first objective of this research.  Determining 

when these assumptions are violated and how to avoid violating these assumptions is the 

emphasis of this research. 
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III. Methodology 

As discussed at the end of Chapter II, the extent to which the assumptions are violated 

affects the accuracy of the SEE measurements. Determining the extent to which these 

assumptions are violated cannot be determined by experimentation alone given the nature 

of assumptions and requires an iterative process of experimentation, modeling and 

simulation, and theoretical refinement. This iterative process has been described by the 

Office of Nuclear Energy and is portrayed in Figure 51 [134]. 

 

Figure 51: Iterative process of experimentation, modeling and simulation, and theory in 

improving scientific understanding [134]. 

 

Originally, this research set out to fully implement this process. However, due to 

amount of time consumed in the development of the experimental system and problems 

with the simulation software, the scope of this research was reduced. Nevertheless, this 

process was implemented to a limited extent in this research. This research focused on SEY 

measurements due to hardware constraints and was divided into four tasks. The first task 

was to develop a measurement system capable of performing a large number of 
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measurements autonomously. This included verifying that the measurements performed by 

the system under the same conditions were repeatable. This task was necessary due to the 

time associated with the performance of SEY measurements and the large number of test 

conditions involved in this research. The following section describes this task in greater 

detail. The second task was the development of a simulation model of the experimental 

system to provide insight in physics taking place during experiment SEY measurements. 

Section 3.2 discusses how the simulation model was developed and calibrated based on 

experimental measurements. The third task was to perform measurements under numerous 

conditions to determine how these condition affect SEY measurements. Chapter IV 

analyzes the results of these measurements with the aid of the simulation model. The final 

task was to formulate guidance for improving SEE measurements based on conclusions 

drawn from the research. This guidance is provided in Chapter V along with 

recommendation for future research.  

3.1 Development of Experimental System 

Before a study of how measurement condition affect SEY measurements could be 

undertaken, it was first necessary to establish the repeatability of measurements and 

develop an autonomous system for performing large numbers of measurements under 

differing test conditions. Over the course of several months, the measurement system 

evolved as knowledge of the system increased and problems with the hardware were 

identified. This section provides a summary of how and why both the hardware and 

measurement method were updated to perform measurements with greater repeatability 

and with less human involvement. 
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3.1.1 Chamber Modification Cancelled 

In the originally proposed research, the UHV chamber was to be modified to 

contain a collector and suppression grid, which would allow measurements of the 

secondary electron energy distribution and for a field-free region around the target during 

SEY measurements. However, a solution for installing the collector and grid into the 

current UHV chamber was not achievable due to complexity created by the spherical shape 

of the chamber. Thus, this research was confined to SEY measurements, and the pursuit of 

a more capable SEE measurement system is delayed until a more suitable UHV chamber 

is procured.  

Figure 52 displays the configuration of the UHV chamber used in this research. In 

this figure, iF is the current measured by the Faraday cup circuit, and is is the current 

measured by the sample circuit. The Faraday cup is mounted on a swivel that allows it to 

rotate. The conventional current standard is not used in this diagram. Throughout this 

document, the Faraday cup is in the closed position when it is situated underneath the 

electron gun. It is in the open position when it is situated off to the side of the electron gun 

as shown in Figure 52.   
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Figure 52: Diagram of UHV chamber used in this research. 

3.1.2 Circuit Implementation 

Before experimentation began, the circuitry for the measurement system had to be 

fabricated. The originally proposed circuit, shown in Figure 53, required modification due 

to the low impedance of the voltmeter. This low impedance caused more current to flow 

through the ammeter which required the ammeter to operate in a higher current range and 

increased the associated noise. By moving the location of the voltmeter, as shown in Figure 

54, the ammeter was able to operate in a lower current range and with less noise. In addition 

to moving the location of the voltmeter in the circuit, two separate junction boxes were 

used which allowed more flexibility during testing. The Faraday cup and sample were 

separately connected to two circuits that are identical to that shown in Figure 54. 
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Figure 53:  Proposed configuration for voltage source and measurement equipment. 

 

 
Figure 54: Updated configuration for voltage source and measurement equipment. 

 

Potentiometers were used in order to prevent reverse currents, which may be created 

during SEE measurements, from damaging the power supply. Reverse currents cause the 

power supply to act as a power sink potentially damaging the power supply. Furthermore, 

if batteries are used, the reverse current will charge the batteries which could lead to 

leakage or explosion. The use of potentiometers in conjunction with increased power 
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supply voltages prevented reverse currents from entering the power supply. The junction 

box containing the precision potentiometer would later be replaced by a junction box 

containing a low-noise resistor, which will be discussed in a later section.  

 The cables used in the implementation of the circuit were each fabricated from the 

Keithley Model 4803 low noise cable kit and Keithley Model 237-ALG-2 low noise triax 

cables. These cables contain a graphite lubricant that reduces the electrical noise created 

by the triboelectric effect [135]. The triboelectric effect is induced by mechanical 

vibrations produced by the vacuum pumps of the UHV chamber. Keeping the cables short 

and away from parts of the system prone to vibration mitigated the noise in the system 

created by the triboelectric effect. 

 The ammeters in the circuit were Keithley Model 6514 electrometers, and the 

voltmeters were Agilent 34410A multimeters. During the early stages of research, the 

calibration certifications on the instruments had expired, and the measured results were 

only used to qualitatively characterize the system. The instruments were recalibrated before 

any data was collected for quantitative comparison. 

 In order to perform noise characterization and compare voltages and currents over time, 

the instruments were synchronized using an Agilent 33250A signal generator. Custom 

cables were fabricated in order to trigger the Keithley electrometers and Agilent 

multimeters, and a LabVIEW program was written to configure the instruments. The 

instruments stored measurements within their internal buffers rather than attempting to 

transmit the measured data over GPIB to the attached computer in real-time. This allowed 

measurements to be made at a faster rate albeit the measurements had to be downloaded 

after the measurements had concluded. Only the Keithley electrometers provided data with 
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timestamps. However, since the instruments are synchronized, it is safe to assume that the 

timestamps given by the Keithley electrometers can be applied to the voltage 

measurements made by the Agilent multimeters. More details regarding the configuration 

of the timing system can be found in Appendix A.  

3.1.3 Noise Mitigation 

  With the circuit implementation complete, the noise characteristics of the system were 

examined while the electron gun remained off. During the examination of the system, three 

noise contributing sources were identified. The first source of noise was the leakage 

resistance within the sample manipulator, which was first identified by Sattler [4]. The 

leakage resistance is modelled with the resistor, Rb, in Figure 55. 

 
Figure 55: Circuit model containing leakage resistance. 

 

Figure 55 does not follow the conventional current standard. In this figure, isample is the net 

current through the sample puck when the electron gun is on, and ib is the current through 

the leakage resistance. During characterization, it was observed that the leakage resistance 

continued to decrease as sample puck was rotated on the manipulator. This increased the 

amount of current flowing through the electrometer connected to the sample requiring it to 

operate in a higher current range and greatly increased the noise in the circuit. Based on 

correspondence with the manufacture of the sample manipulator, the decrease in leakage 
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resistance is caused by the dielectric ball bearings of the sample puck holder collecting 

metal from the outer and inner race of the bearing. This leads to a loss in resistance over 

time due to both the rotation of the sample and the jarring motion created by clipping in 

the sample puck into the sample puck holder. During measurements, the sample puck was 

immobile, and it was expected that the leakage resistance would remain constant. However, 

when a bias was applied to the sample, the leakage current appeared to slowly increase 

with time as shown in Figure 56. This increase in current may be due to an increase in the 

ball bearing temperature caused by ohmic heating leading to the generation of more charge 

carriers within the dielectric ball bearings. 

 
Figure 56: Current through bearings with the sample biased to 100 V. 

 

 The second noise source was caused by the electrostatic coupling between the system 

and operators working in the lab. Operators working in the lab were required to wear boot 

covers to prevent the spreading of contaminants into the cleanroom environment. However, 
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these boot covers contributed to a buildup of static electricity on the operator. The system 

was carefully grounded throughout and metal foils were place across all dielectric openings 

on the UHV chamber. All unused BNC feedthroughs into the chamber were connected to 

ground using BNC grounding plugs which prevented electrostatic coupling with objects 

outside the chamber and prevented the feedthroughs from building up a static charge due 

to their exposure to electrons within the chamber. However, this did not fully mitigate the 

coupling problem, and when an operator was moving in the vicinity of the equipment the 

current fluctuations shown in Figure 57 were induced. Thus, operators were required to 

wear a grounded wrist strap when operating near the system which eliminated the 

fluctuations. 

 
Figure 57: Fluctuations induced by an ungrounded operator. 

 

 The third noise source was associated with the temperature control system for the 

sample puck. The sample puck is designed to be heated via radiative heating by resistive 

coils situated beneath the sample puck. The temperature of the sample was monitored using 

a thermocouple that makes contact with the underside of the sample puck. The leads of the 

thermocouple were connected into the temperature control system. Ideally, the temperature 
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control system would measure the voltage difference across the leads while drawing 

negligible current. However, measurements revealed that this current was not negligible 

and would cause the electrometer to report different current values for different range 

settings as shown in Table 3. 

Table 3: Erroneous measurements caused by temperature control system. 

 

The problem was not observed when connecting the thermocouple into a battery powered 

Fluke multimeter. The manufacturer of the sample manipulator suggested that this problem 

was not observed with Fluke multimeter because the multimeter is completely isolated 

from ground because it is battery-powered. However, the electronics within the 

temperature control system are not completely isolated from ground which allows an 

interaction to occur between the electrometer and the temperature control system leading 

to the erroneous current measurements. In addition, the temperature control system uses a 

K Type thermocouple extension wire without ground shielding creating electrostatic 

coupling problems between the wire and operators working nearby. This problem cannot 

be corrected by wearing a ground strap due to the fact that a potential difference between 

the thermocouple wire and ground exists whenever the sample is electrically biased. Based 

on these finding, the temperature control system remained disconnected from the system 

throughout the rest of the research. Furthermore, it was assumed that the temperature 

Measured leakage current

when temperature control 

system is disconnected, nA

Measured leakage current

when temperature control 

system is connected, nA Measurement Range

35 2.8 200 nA

35 230 2 μA

35 30 20 μA

35 30 200 μA
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measured on the walls of the vacuum chamber were equal to the sample puck’s 

temperature. 

3.1.4 Integration Time and Sampling Period 

The multimeters and electrometers are designed to perform measurements using 

integrating analog-to-digital converters. In theory, these measurements are made by 

integrating the desired electrical signal over a selected integration time and dividing the 

result of the integration by the integration time (i.e. a time average). These measurements 

are repeated based on the selected sampling period as shown in Figure 58. The instruments 

are programmed for a specific integration time while the sampling period is controlled by 

the signal generator. The processing time varies with the current being measured. Thus, the 

sampling period had to be carefully considered because it is possible for the sampling 

period dictated by the signal generator to be too short for the instruments to complete 

processing before the next measurement begins.  When this happens, the instruments 

continue to make measurements, but the measurements become asynchronous.  

 
Figure 58: Diagram of sampling scheme. 
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 The electrometers allow integration times up to 10 power line cycles (PLC) while the 

multimeters allow integration times up to 100 PLC. Tests were performed at 0.2, 1, and 10 

PLC to determine the noise and sampling period associated with each integration time. The 

measurements remained synchronous for the following sampling periods: 100 ms for 0.2 

PLC, 500 ms for 1 PLC, and 1 s for 10 PLC. The sampling period can be increased from 

those listed; however, decreasing the sampling period below that listed may produce 

asynchronous measurements. The noise analysis results to be discussed in the following 

paragraphs were performed using the aforementioned sampling periods, and each data 

point was derived from a sample set of 2500 measurements, which is the maximum number 

of measurements the electrometer can store in its buffer. 

 Figure 59 shows the standard deviation associated with voltage measurements made 

using different integration times for several voltage biases. The voltage measurements for 

both the Faraday cup and sample circuits appear identical. Thus, the results for only the 

sample circuit are shown. The measurements made at 10 PLC provided the lowest standard 

deviation. The measurements made at the 0 V setpoint were performed by disconnecting 

the power supply from the circuit and shorting the connection to ground. This significantly 

reduced the noise for the 0.2 and 1 PLC integration times, which indicates that the power 

supply may be contributing significantly to the noise. Placing a shunt capacitor at the power 

supply output may reduce this noise. However, this will increase the settling time of the 

circuit and was not pursued in this research. 
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Figure 59: Standard Deviation of voltage measurements at several voltage setpoints. 

 

Figure 60 shows the standard deviation of current measurements made on the 

Faraday cup circuit for different integration times and voltage biases. The 10 PLC 

integration time again provided the lowest standard deviation, and the standard deviation 

was drastically reduced for 0.2 and 1 PLC at the 0 V setpoint. 

Figure 61 shows the mean and standard deviation of current measurements made 

on the sample circuit for different integration times and voltage biases. These data are from 

measurements made after the sample puck was redesigned and the feedthrough was 

replaced, which is discussed in a later section. At the 100V setpoint, the mean current 

measured by the electrometer connected to the sample puck was reduced by six orders of 

magnitude from the mean current previously measured with the ball bearing leakage in the 

circuit. Qualitatively, this data is similar to the results obtained before the replacement (i.e. 

The 10 PLC integration time always provided the least noise followed by 1 PLC then 0.2 
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PLC). The standard deviation was again drastically reduced for 0.2 and 1 PLC at the 0 V 

setpoint.  

 
Figure 60: Standard deviation of Faraday cup current measurements at several voltage 

setpoints. 

 

Using a longer integration time provides the least measurement noise, but it also 

reduces the rate at which measurements can be performed. With shorter integration times, 

it is possible to perform measurements at a faster rate and reduce the signal noise in post-

processing using a digital filter, such as a moving average. However, this requires a greater 

amount of data storage for the measurements and the additional step of digital filtering 

during data analysis. For the data shown in Chapter IV, all measurements were taken with 

an integration time of 10 PLC and a sampling period of one second in order to reduce data 

storage and processing requirements. 
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Figure 61: Mean and standard deviations of sample current measurements at several 

voltage setpoints.  

 

3.1.5 Electron Gun Characterization 

  The electron gun used in the system is a Kimball Physics ELG-2A. The SIMION® 

simulation model for the electron gun is shown in Figure 62. It uses a thermionic cathode 

as a source of free electrons. The cathode consists of a tantalum disc attached to a heating 

element. When a voltage is applied across the heating element, the disc is rapidly heated 

causing a quick increase in the free electron current produced by the cathode as shown in 

Figure 63. 
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Figure 62: ELG-2A simulation model. 

 

As the resistance of the heating element increases due to the increase in temperature, the 

power delivered to the cathode is reduced, and the output of the cathode begins to decline. 

Data collected over a 7-hour time period indicated that the current output would continue 

to monotonically decrease over time but the rate of decay sufficiently decreases after three 

hours such that measurements can made under the assumption that the cathode output is 

constant over a short time period. For all measurements performed using the electron gun, 

the cathode was allowed to heat for a minimum of 3 hours before beginning data collection. 

 It should be noted that the power supply for the electron gun has a feedback control 

system that is designed to measure and maintain a specific emission current from the 

electron gun. This system was never used in this research for several reasons. Firstly, the 

feedback control system cannot be used when the electron gun output is shut off between 

measurements using the electron gun’s grid. 
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Figure 63: Electron gun warmup period. 

 

Secondly, when the Faraday cup is swiveled under the opening of the gun barrel, 

secondary electrons are emitted from the Faraday cup back into the gun barrel. This leads 

to a drop in the measured emission current causing the feedback system to increase the 

voltage across the heating element. This scenario can also happen when secondary 

electrons are emitted from the sample back into the gun but to less extent because the 

secondary electrons created on the sample are not prohibited from spreading out into the 

chamber. Thirdly, the control system is stable to ±0.1% per hour of full scale (20μA) or 

±20 nA per hour [136]. Furthermore, the lowest possible current setting is 10 nA. For 

reasons not yet discussed, measurements were typically made at about 10 pA, which is well 

below the operational limits of the feedback control system. 
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3.1.6 Beam Deflection by Biased Faraday Cup 

While performing experiments to determine the primary electron beam spot size 

using a phosphor screen, it was observed that the electron beam was deflected towards the 

wire which connects the Faraday cup to the measurement circuit when the cup was 

positively biased. This wire is identified with a dashed, red line in Figure 64. The deflection 

increases for lower primary electron energies. In order to avoid this deflection for the low 

primary electron energies used in this research, the Faraday cup remained grounded for the 

data found in Chapter IV. 

 
Figure 64: Wire connected to Faraday cup. 

3.1.7 Leakage from the Faraday Cup 

When the Faraday cup is in the closed positions, electrons are still able to escape 

from the narrow opening between the Faraday cup and the electron gun, which may lead 

to a measurable sample current. With the Faraday cup grounded and in the closed position, 

the sample received an approximately 1.5 nA current from the escaping electrons when the 

sample was biased to +100 V and the current leaving the cathode was approximately 89 

nA. Increasing the positive bias of the Faraday cup decreases the number of electrons 
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escaping; however, it also causes the electrons to be deflected as they exit the end of the 

gun when the cup is in the open position as discussed in the previous section. In order to 

accurately measure the leakage resistance of the sample circuit, the Faraday cup must be 

either positively biased and in the closed position, or electrons must be prohibited from 

leaving the cathode by negatively biasing the grid. In addition, the only way to measure 

the leakage resistance of the Faraday cup circuit is to negatively bias the grid. Manually 

adjusting the grid potential is physically challenging when trying to also rotated the 

Faraday cup. Thus, for measurements made before the system was automated, the Faraday 

cup was positively biased, and the leakage current of the Faraday cup circuit was assumed 

negligible since it measures in the fA-range and the primary electron current used during 

these experiments was in the nA-range. 

3.1.8 Burst Noise Detected 

In early attempts to perform SEY measurements, the current from both the Faraday 

cup and sample were continuously measured and the Faraday cup was periodically rotated 

in front and away from the electron gun. Figure 65 shows the typical current signals from 

these measurements. The Faraday cup was positively biased in order to minimize the 

electrons escaping from the electron gun when the Faraday cup was in the closed position. 

During these measurements, unexpected transitions in the sample current started appearing 

during times when the Faraday cup was stationary as shown in Figure 66. As measurements 

continued, the current became increasing noisier and exhibited the characteristics of burst 

noise. The onset of this noise was quickened by increasing the sample bias. At the time of 

discovery, this noise was attributed to the leakage resistance associated with the dielectric 
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ball bearings. However, this noise was later also identified in the circuit connected to the 

Faraday cup indicating that this noise was not a result of the dielectric ball bearings as 

originally suspected. 

 

 
Figure 65: Current signals produced by periodically rotating the Faraday cup. 

 

This noise may be due to the dielectric breakdown of insulating materials in the chamber 

after exposure to electrons from the electron gun and secondary electrons from the sample. 

The burst noise would worsen as measurements continued requiring the measurements to 

be temporarily discontinued to allow the burst noise to decrease. During the measurement 
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pause, the sample bias was removed, and the Faraday cup remained in the closed position 

in order to confine electrons within the electron gun. After waiting about 30 minutes, the 

sample was again biased, and the measurements were continued. Burst noise was not 

observed following the 30-minute waiting period. Thus, this waiting period was sufficient 

for allowing the burst noise to dissipate given the conditions of the measurement. 

Measurements continued until the burst noise again became significant or the 

measurements concluded.  

 
Figure 66: Unexpected transition in sample current. 

 

3.1.9 Systematic Shift Observed in Measurements 

Early measurements were conducted to determine the effect of using different 

primary currents and sample biases on SEY measurements. These measurements were 
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performed by maintaining constant electron gun settings and varying the sample bias. The 

Faraday cup was manually rotated back and forth producing current signals like those 

shown in Figure 65. At each of the transitions shown in Figure 68, a calculation of the ratio 

between sample current and primary current was performed after the leakage current 

associated with the dielectric ball bearings was subtracted. These ratios should maintain a 

nearly constant value for each sample bias. A MATLAB script was created to perform 

these calculations in addition to determining and ignoring transitions due to burst noise. 

Kalman filtering was also implemented in this script to further reduce the measurement 

noise. Each dataset contained 10 transitions which allowed 10 ratios to be calculated for 

each sample bias.  

Figure 67 displays the results for measurements made at two different primary 

currents. The error bars shown on the figure represent three standard deviations. Normally, 

it is assumed that using a higher primary current will yield a lower standard deviation due 

to the increased SNR of the current signals. However, measurements made at several 

different sample biases proved this assumption incorrect and warranted a closer 

investigation of each calculated ratio.  

Measurements were then performed using 20 transitions per dataset in order to 

increase the number of calculated ratios for comparison. Figure 68 shows the ratios 

calculated for each of the transitions of six separate datasets. For these measurements, the 

sample was grounded, and the Faraday cup was biased at +5 V. The primary electron 

current was about 100 nA. Each dataset shows a systematic decrease in the calculated ratio 

between the first and last transition of the set. This shift is the cause of the increased 

standard deviation, and the rate at which this shift occurs increases with the primary 
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current. In addition, the ratio measured at the beginning of each set was higher than that of 

the previous set. It was thought that the shift might be an artifact created by the Kalman 

filter. The filter was disabled, but the shift was still observed. 

 
Figure 67: Ratio between sample current and primary current versus sample voltage. 

 

The smallest primary current that could be used while maintaining a low standard 

deviation was about 8 nA due to the noise created by the leakage resistance associated with 

the ball bearings, and measurements with an 8 nA primary current still showed signs of 

this shift. Originally, it was believed that this shift was solely due to the charging of 

dielectric materials within the chamber; and, in order to reduce this charging, additional 

experiments were performed with the time the Faraday cup remained in the open position 
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reduced. The primary electron current used in these measurements was 8 nA. The results 

of these test still showed signs of this shift though to less extent as shown in Figure 69. 

 
Figure 68: Ratios calculated from six separate datasets. 

 

The legend indicates the amount of time the Faraday cup spent in the open and closed 

positions between transitions. Attempts to eliminate this shift were unsuccessful at 8 nA, 

so it was determined that the system would need to operate with a lower primary current 

which required circumventing the leakage resistance associated with the bearings. 

3.1.10 Sample Puck Redesigned 

In order to overcome the leakage resistance presented by the ball bearings, the 

manufacturer of the sample manipulator suggested splitting the sample puck into two 
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halves and placing a dielectric layer between the two halves as shown in Figure 70. The 

thermocouple makes contact with the underside of the upper half.  

 
Figure 69: Ratios calculated for datasets containing 40 transitions.  

 

The sample current was rewired to travel through the thermocouple to the voltage source 

and measurement equipment. The halves are held together by dielectric screws. Gold was 

deposited on the heads of the screws via sputtering in order to prevent the heads of the 

screws from building up charge when exposed to electrons from the electron gun. Washers 

composed of 316 stainless steel (316SS) were used with the fasteners in order to facilitate 

the testing of samples with various thicknesses.  

The modified sample puck was created by the AFIT Model Fabrication Shop from 

316SS which is slightly magnetic. This alloy of stainless steel normally has a relative 
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permeability near unity though it may vary slightly depending on the exposer of the 

material to different manufacturing processes, such as welding and annealing [137]. 

 

 
Figure 70: Redesigned sample puck. 

 

The use of materials with relative permeabilities not equal to unity can lead to 

distortions in the magnetic field near the materials and is not ideal for SEE measurements. 

However, since the relative permeability of 316SS is near unity, the distortion effect is 

considered negligible for this research. Furthermore, slightly magnetic materials are used 

throughout the chamber: the electron gun is made from 316SS, and the chamber is made 

from a slightly magnetic stainless steel. The modified sample puck clips into the 

molybdenum sample puck holder. Due to the differing thermal expansion coefficients of 

molybdenum and 316SS, measurements using the modified sample puck are limited to 

room temperature in order to avoid damage to the sample manipulator. 
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3.1.11 Feedthrough Leakage Identified and Repaired 

With the sample puck replaced, electrical characterization was again performed 

while the electron gun remained off. A +100V bias was applied to the sample circuit in 

order to measure the leakage current for the new circuit. After days, the sample current 

failed to stabilize and displayed the behavior shown in Figure 71. The cause of this unstable 

current was traced to the thermocouple feedthrough. This feedthrough had developed an 

electrical short to ground that varied significantly when force was applied to the pins of the 

feedthrough. 

 
Figure 71: Variability of sample current due to feedthrough electrical short. 

 

The original feedthrough which used a standard Type K mini plug was replaced by 

a sturdier, Mil-Spec feedthrough. Over the duration of a week, a bakeout procedure was 



 

112 

 

performed with +100 V applied to the sample. It was found that applying resistive heater 

tapes in the area near the new feedthrough allowed the leakage current associated with the 

sample circuit to be further reduced (Figure 72). The application of heater tapes in this area 

may have driven more contaminants away from this region during bakeout leading to a 

reduction in the leakage current. With the exception of placing heater tapes near the 

feedthrough, the bakeout procedure followed that prescribed by Sattler [4]. 

 
Figure 72: Heater tapes extended towards the end of sample manipulator. 

3.1.12 Settling Time and Capacitive Coupling 

  When operating in the pA range, the sample and Faraday cup circuit require 

significantly more time for the currents to settle following bias changes than when 

operating in the nA range. Figure 73 shows both currents settling 60 minutes after the bias 

was switched from 0 V to +100 V. The time required for the current to settle increases as 

the difference between initial and final sample bias increases. For differences of 100 V or 

more, the system was given at least one hour to settle before measurements were 
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performed. For difference of 10 V or less, the system was given at least 15 minutes to settle 

before measurements were performed. 

 
Figure 73: Sample current, is, and Faraday cup current, iF, after +100V step input at time 

zero. 

 

These long settling times are attributed to two capacitances. The first capacitance 

is associated with the circuitry outside the chamber. In order to reduce this capacitance, the 

length of the cables between instruments was reduced by positioning the instruments as 

near to the chamber as possible and by fabricating shorter cables. The second capacitance 

is associated with the wiring within the chamber. Altering this wiring requires redesigning 

the sample manipulator and electron gun, which is both a costly and time-consuming 

endeavor. Due to research constraints, this endeavor was not pursued. Minimizing the 

settling time further requires converting the entire system to triax, which would reduce the 

effective capacitance of the circuitry [135]. 
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Though the sample circuit and Faraday cup circuit are not physically connected to 

one another, they are capacitively coupled with one another due to the close proximity of 

the Faraday cup and sample. This coupling can be observed when operation in the pA 

range. Figure 74 shows a transient in the sample current caused by a +100 V step input on 

the Faraday cup circuit at 12 seconds.  

 
Figure 74: Transient response in sample current caused by +100V step input on Faraday 

cup circuit. 

 

In addition, the Faraday cup is capacitively coupled to the optics within the electron 

gun. Because of this coupling, measurements must be delayed about 30 seconds after 

adjusting the potentials of the electron gun optics. Otherwise, the transient associated with 

the coupling will appear in the Faraday cup current measurements as shown in Figure 75. 
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Figure 75: Transient in Faraday cup current caused by adjusting electron gun potentials. 

3.1.13 System Automation 

After having performed many experiments manually, it became apparent that 

performing measurements was both time-consuming and labor intensive. Additionally, it 

was physically impossible to adjust multiple pieces of equipment simultaneously, and the 

rate at which measurements could be performed was limited by both the equipment and 

operator. In order to perform the many measurements that remained in this research, the 

system was automated to perform all the task associated with measurements: actuating the 

Faraday cup, recording chamber temperature and pressure, recording and updating the 

settings of the electron gun, configuring and retrieving data from the instruments, 

controlling the function generator, and storing information regarding the sample type and 

location within the chamber. A single laptop running LabVIEW was programmed to 
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communicate with all the lab equipment using USB, RS-232, and GPIB connections as 

discussed in Appendices A and B. A simple actuator to rotate the Faraday cup was 

improvised using a servo and a LabJack USB DAQ as shown in Figure 76.  

 
Figure 76: Actuator to rotate Faraday cup. 

 

The potentiometers, which were previously discussed, were replaced by the low 

noise resistors shown in Figure 77. Figure 77 also shows a simplified model for one of the 

resistors within the measurement circuit. Based on this model, it was calculated that the 

power supply will not experience a reverse current when operating at its lowest voltage 

setting (1 mV) if is or iF remains above -1 μA. If the bias is reversed on the power supply, 

is or iF must remain below +1 μA. The resistors have a power rating of 600 mW which 

limits the permissible bias voltage to between -244 and +244 V. The bias of the sample and 

Faraday cup can now be completely controlled by the power supplies allowing for further 

automation and simpler control. 
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Figure 77: Low noise resistors (left); circuit model (right). Circuit model follows the 

conventional current standard. 

3.1.14 Dose and Recovery Study 

After all hardware modifications to the system were completed, tests were again 

performed to determine if the systematic shift discussed previously could be eliminated. 

During measurements, the chamber was intermittently exposed to a specific amount or 

dose of electrons by controlling the amount of time electrons are allowed to flow into the 

chamber and the cathode’s current output. Previously, a majority of the electrons had been 

prohibited from entering the chamber by moving the positively biased Faraday cup to the 

closed position. With the automated system, the grid was biased to -50 V with respect to 

the cathode effectively prohibiting any electrons from leaving the cathode and entering the 

chamber, which will be referred to as the electron gun being off. When the bias was 

removed, electrons flowed freely from the cathode, which will be referred as the electron 

gun being on. Between doses, the chamber was allowed to recover from the previous dose.  

These tests were performed using a timed sequence of events that produced the 

current signals shown in Figure 78. First, measurements started with the cup in the closed 

position, and the grid biased to -50 V with respect to the cathode. Second, the grid bias was 

adjusted to 0 V with respect to the cathode while the cup remaining in the closed position. 
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Third, the cup was moved to the open position. Finally, the measurements were halted 

while simultaneously the grid was biased to -50 V and the cup was returned to the closed 

position. The sampling period was one second, and each dataset required six minutes to 

acquire. After downloading the buffered data from the instruments, the system would begin 

performing measurements for the next dataset until the desired number of datasets were 

created. These measurements were made with the Faraday cup grounded and sample biased 

to +200 V. The current leaving the electron gun was around 12.5 pA. For all the 

measurements discussed in this section, the bias of the electron gun’s 1st anode, focus, and 

cathode remained constant, and the deflectors were grounded. 

To analyze data from the current signals, a MATLAB script was developed to 

extract data from the specific regions shown in red in Figure 78. Because the measurements 

were precisely timed, data could be extracted from multiple datasets using the same sample 

numbers. These regions were chosen to avoid transients in the current signals and ensure 

that the system had stabilized. The mean of each region of extracted data was then 

calculated and compared across multiple datasets as shown in Figure 79. Each dataset was 

acquired consecutively with dataset 1 being the first acquired and dataset 100 being the 

last. After the 46th dataset, five of the means began exhibiting large variations, which may 

be an indication of the burst noise behavior which was previously discussed.  For each 

dataset, the ratio between is for the cup in the open position and iF for the cup in the closed 

position was calculated after subtracting the appropriate leakage currents from is and iF. 

The ratio associated with each dataset is shown in Figure 80. Theoretically, this ratio should 

be a constant value. However, these ratios show a decrease by over 15% between datasets 

1 and 20. The decreasing behavior is not repeatable, and the reason for this decrease is 
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unknown. Since these measurements were performed following the bakeout of the 

chamber, the decrease may be caused by electrons being redeposited on the exposed 

dielectric materials within the chamber causing a shift in the electrostatic field. 

 
Figure 78: Current signals is and iF generated using initial timing sequence. 

 

Following the decrease, the ratio appears to stabilize and does not show signs of the 

previously discussed, systematic shift. After the 46th dataset, the ratios appear noisier than 

the ratios prior. For the datasets between 20 and 100, the mean of the ratios is 184.92% and 

the standard deviation is 0.46%. 



 

120 

 

 
Figure 79: The mean of the extracted regions of is and iF in Figure 78 for 100 datasets. 

 

For these datasets, the electron gun was on for five minutes during each 6-minute 

dataset. The experiment was again performed using 6-minute datasets. However, the 

electron gun was on for 1.5 minutes of each dataset while the current was increased to 106 

pA. Figure 81 shows the ratios between is for the cup in the open position and iF for the cup 

in the closed position after subtracting the appropriate leakage currents from is and iF. The 

mean of these ratios is 180.15%, and the standard deviation is 0.27%. Note that this mean 

is less than the aforementioned mean of 184.92% by more than 17 times the standard 
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deviation. This represents a statistically significant variation to the ratio which was 

expected to be constant. This variation is an indication of possible space charge 

accumulation as discussed in Section 2.6.4. In order to ensure space charge effects are 

mitigated, the current emitted from the cathode must be minimized. This behavior is 

discussed in greater detail in Chapter IV. 

 
Figure 80: Comparison of ratios between is for the cup in the open position and iF for the 

cup in the closed position. 

 

The 6 minutes required to create each dataset was time prohibitive given the large 

number of measurements remaining to be performed in this research, so several 

experiments were performed in order to find a configuration that would reduce this time. 

The current leaving the electron gun was also reduced to approximately 12.8 pA to limit 

space charge effects. It was found that the datasets could be shortened to 2 minutes while 
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yielding a standard deviation comparable with the first datasets discussed. The ratios for 

400, 2-minute datasets are shown in Figure 82 along with a histogram of the ratios. The 

mean of these ratios is 186.21%, and the standard deviation is 0.43% which the slightly 

smaller than 0.46% standard deviation of the first datasets. 

 
Figure 81: Ratios for 6-minute datasets acquired using ~106pA gun current with the gun 

on for 1.5 minutes in each dataset. 

  

The timing sequence for the 2-minute datasets was altered from the initial timing 

sequence as shown in Figure 83. This timing sequence minimizes the dose of electrons the 

chamber receives in each dataset while allowing the system enough time to stabilize 

between each transient. For each dataset, the gun remains on for 36 seconds. Data was 

extracted from the regions marked in red in Figure 83. Measurements of the leakage 

currents are measured at the beginning and end of each dataset rather than only at the 
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beginning of a dataset. If the leakage current monotonically increases or decreases during 

a dataset, averaging the leakage current using data points at the beginning and end of the 

dataset provides a more accurate mean for the leakage current. 

 
Figure 82: Ratios for 2-minute datasets acquired for a +200V sample bias. 

 

 Monotonic increases or decreases may be caused by not allowing enough time for the 

system to settle after changes in the sample or Faraday cup bias and as a result of exposing 

the chamber to electrons. Note that the first few samples of each dataset were ignored 

because they exhibited the transient behavior as shown in Figure 84. This transient 

behavior at the beginning of a dataset appeared often in the data collected throughout this 

research and was intentionally ignored when extracting data for calculation of the mean 

leakage currents. This behavior is a nuance associated with the measurement system. 

For the previously discussed measurements, the sample was biased to +200 V. In 

order to determine if the timing sequence would yield a similar standard deviation for the 
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ratios when the sample was negatively biased, the measurements were again performed 

using the same timing sequence and electron gun settings with the sample biased to -195 

V. 

 
Figure 83: Current signals is and iF generated using updated timing sequence. 

 

When the sample is negatively biased, electrons are less confined to the sample 

than when the sample is positively biased. This allows more electrons to spread out into 

the chamber increasing the exposure of the chamber to electrons. The ratios for 500, 2-

minute datasets are shown in Figure 85 along with a histogram of the ratios. The mean of 

these ratios is 1.47%, and the standard deviation is 0.46% which is nearly the same as the 

standard deviation measured when the sample was positively biased to +200 V.  

The results of the 2-minute datasets for the sample biased to +200 V and -195 V 

did not show signs of the systematic shift discussed in Section 3.1.9, and the unexpected 
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transitions associated with burst noise were not observed in the sample or Faraday cup 

currents.  Therefore, it was assumed that the 2-minute long timing sequence would also 

perform well for other electron gun settings and sample biases, and the timing sequence 

shown in Figure 83 was adopted for all the measurements discussed in Chapter IV, 

excepted where explicitly stated otherwise. 

 
Figure 84: Plot of the average Faraday cup current, iF, of 374 datasets which shows the 

transient that appears during first 3 to 4 samples of every dataset. 

 

As a final note, measurements were also performed with the sample biased to -195 

V using the same timing scheme shown in Figure 83. However, the final phase of the timing 

scheme, when the grid is biased to -50 V and the cup is in the closed position, was extended 

by 3 minutes. This increased the recovery time between doses by three minutes. The system 
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was configured to perform measurements for 500 datasets; however, an error originating 

in the test equipment halted the measurements at the 374th dataset. 

 

 
Figure 85: Ratios for 2-minute datasets acquired for a -195V sample bias. 

 

 

The system was configured to perform measurements for 500 datasets; however, an error 

originating in the test equipment halted the measurements at the 374th dataset. The ratios 

from these datasets are shown in Figure 86. The mean of these ratios is 1.52%, and the 

standard deviation is 0.21%. This result indicates that it may be possible to further decrease 

the standard deviation of the ratios by increasing the recovery time albeit at the expense of 

longer acquisition times. 
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Figure 86: Ratios for 6-minute datasets acquired for a -195V sample bias. 

 

3.1.15 Additional Data Collected During Each Dataset 

The previous section focused on the currents which are measured by the system. 

However, 11 additional parameters are also measured during each dataset. These 

parameters were considered the inputs to an experiment. Whereas, the measured currents 

were considered the outputs of an experiment. The graph shown in Figure 87 contains these 

additional parameters and is representative of the graphs typically used for troubleshooting 

purposes during data analysis.  

Seven of the parameters are associated with the electron gun: energy, source 

potential, grid potential, 1st anode potential, focus potential, emission current, and source 

current. As shown in Figure 88, the energy is the accelerating potential, VEE, of the electron 
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gun multiplied by the charge of an electron. The source potential, VES, is the voltage across 

the heater for the cathode while the source current is the current through the heater. 

  

 
Figure 87: Graph containing plots of 11 additional parameters measured during each 

dataset. 
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For this research, the pulser and capacitive pulsing options are not used. The 1st anode 

potential, VFA, and focus potential, VFO, are measured with respect to the cathode. 

However, the grid is negatively biased with respect to the cathode by the grid potential, 

VVG.  

 
Figure 88: ELG-2A electron gun block diagram [136]. 

 

The emission current is the net electron current leaving the cathode, grid, 1st anode, and 

focus. This current is not useful when measurements are performed in the pA range and 

routinely registers a leakage current even when the cathode is not heated. According to the 

manufacturer of the electron gun, the expected error associated with these measurements 

is ±1 for the least significant digit recorded. These errors are listed in Table 4. 
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The temperature of the vacuum chamber is measured using a K Type thermocouple 

taped to the outside of the vacuum chamber. A National Instruments™ temperature input 

device (USB-TC01) is used to measure the voltage produced by the thermocouple and 

communicate the temperature to the laptop over USB. The manual for the temperature 

input device indicates that the error associated with temperature measurements is 

approximately ±1.1 °C when the device is operating at room temperature and 

approximately ±2.5 °C over the full operating temperature range [138]. This device 

routinely measured a higher temperature than the room temperature measured by other 

thermometers. 

 Table 4: Error associated with e-gun parameters. 

Measured parameter Associated error 

VEE (for low energy range) ±0.01 V 

VEE (for high energy range) ±0.1 V 

VVG ±0.01 V 

VFA ±0.1 V 

VFO ±0.1 V 

VES ±0.001 V 

Source Current ±0.001 A 

Emission Current ±0.01 μA 
 

The pressure of the load lock chamber and main chamber are measured using a Kurt 

J. Lesker® IG6600 dual ionization gauge controller and two G100F ion gauges. The 

pressures are measured in Torr and are recorded in scientific notation with two significant 

digits. The error associated with these measurements is not listed and is assumed to be ±1 

for the least significant digit recorded [139]. 

The aforementioned parameters are measured once per dataset after the electron 

gun stabilizes following being turned on by adjusting the grid potential. The mean sample 
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voltage and mean Faraday cup voltage however are calculated from voltage measurements 

taken over the same period as the current measurements and synchronized with the current 

measurements. The voltage measurements occasionally show transient behavior in the first 

few samples of each dataset. Like the current measurements, this is a nuance of the 

measurement system, and these samples are ignored when calculating the mean voltage. 

Appendix C provides details on the file formats used to store the measured data. 

3.1.16 Complete Circuit Model 

Based on the electrical characteristics of the measurement circuit and the results of 

the dose and recovery study, the circuit model shown in Figure 89 was created to capture 

all the transient effects that had been observed in experimentation and provide an additional 

explanation for the systematic shift discussed previously. 

 
Figure 89: Model of complete electrical circuit. The conventional current standard is not 

followed. 
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iFaraday is the current through the Faraday cup, and isample is the current through the sample 

puck. Rb is the leakage resistance of the dielectric ball bearings. Cs2b represents the 

capacitive coupling between upper and lower halves of the modified sample puck. Cs2F 

represents the capacitive coupling between the sample puck and Faraday cup. CF2o 

represents the capacitive coupling between the Faraday cup and electron gun optics. CF.T1 

and RF.T1 are respectively the capacitance and resistance of the transmission lines between 

the voltmeter in the Faraday cup circuit and Faraday cup. Cs.T1 and Rs.T1 are respectively 

the capacitance and resistance of the transmission lines between the voltmeter in the sample 

circuit and sample puck. CF.T1, RF.T1, Cs.T1, and Rs.T1 are used to model the long settling 

time of the circuit, which was discussed in a previous section. iF and is are the currents 

measured by the electrometers in the Faraday cup and sample circuits, respectively. RF.T2 

and Rs.T2 are the resistances of the transmission lines between the power supplies and 

voltmeters in the Faraday cup and sample circuits, respectively. VF.P and Vs.P are the 

voltages of the power supplies in the Faraday cup and sample circuit, respectively. VF and 

Vs are the voltages measured by the voltmeters with respect to ground, and RF.v and Rs.v 

are the input impedances of the voltmeters. VFaraday and Vsample are the voltages of the 

Faraday cup and sample puck with respect to ground. 

In Figure 89, VF.burd and Vs.burd are the input voltage burdens of the electrometers. 

The voltage burden varies depending on the range the electrometer is operating in and the 

amount of current flowing through the electrometer [140]. When operating in the 20-pA, 

2-nA, 20-nA, 2μA, and 20μA ranges, the burden is within ±20 μV. When operating in the 

200-pA, 200-nA, and 200-μA ranges, the burden is within ±100 μV. Throughout this 
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document, Vs and VF are considered the sample voltage and Faraday cup voltage 

respectively since they differ by less than 100 μV in most cases. 

 In the figure, is.leak and iF.leak are the leakage currents that were measured and subtracted 

before calculating the ratios in Section 3.1.14. They have been referred to as leakage 

currents. However, in addition to leakage currents, these currents are also the result of the 

input bias current of the electrometers, which is discussed in the electrometer instruction 

manual and low level measurements handbook [135, 140]. The specifications for the 

electrometers indicate that the magnitude of the input bias current is less than 3 fA when 

operating at room temperature. 

 The capacitors CF.T1 and Cs.T1 are not only responsible for long setting times but are 

also likely responsible for the systematic shift discussed previously. The currents iF and is 

are dependent on the charged state of these capacitors in addition the currents iFaraday and 

isample. When iFaraday and isample equal zero and the circuit has stabilized, Vsample ≈ Vs, and 

VFaraday ≈ VF. When iFaraday and isample are nonzero and the circuit has stabilized, Vsample ≈ Vs 

- is Rs.T1, and VFaraday ≈ VF – iF RF.T1. Increasing iFaraday and isample increases the voltage 

different between the two stable states. This also causes a larger difference in the amount 

of charge stored in the capacitors between the two states. The systematic shift was likely 

due to these capacitors charging and discharging as iFaraday and isample were repeatedly 

altered with each transition of the Faraday cup. By reducing the currents iFaraday and isample 

and using small doses with long recovery times, the voltages across the capacitors remain 

near VFaraday ≈ VF and Vsample ≈ Vs across multiple datasets leading to a reduction in the 

amount of shift observed in the data. 
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 In addition to Vsample and VFaraday varying when the currents iFaraday and isample are altered, 

Vs and VF also vary. Figure 90 shows Vs varying as the current is is intermittently disrupted 

by moving the Faraday cup between the opened and closed position. For this experiment, 

the sample power supply was disconnected, and the circuit was grounded. This is 

equivalent to setting Vs.P to zero in the circuit above. The measured current, is, varied 

between 0 nA for the cup in the closed position and -26 nA for the cup in the open position. 

This figure demonstrates that the resistance of the transmission lines can produce 

measurable voltage drops across the transmission lines when current is flowing. This 

resistance is often considered negligible in literature; however, given the low noise 

associated with the equipment, the voltage drops across the transmission lines can produce 

an appreciable effect on measurements when is and iF are greater than 1 nA. 

 
Figure 90: Fluctuations in Vs due to voltage drop across Rs.T2. 
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3.2 Development of Simulation Model 

In the initially purposed research, all simulations were to be performed using the 

VSim® software by the Tech-X corporation. However, due to computational hardware 

limitations and research constraints, simulations were instead performed using the 

SIMION® simulator by Scientific Instrument Services, Inc. Unlike VSim®, SIMION® 

does not provide a model for secondary electron emission nor the capability to simulate a 

heavily space charged environment [141]. This limited the scope of this research while still 

providing valuable insight into the trajectories of the primary electron during SEE 

experiments. The following two sections will discuss the progress and problems faced 

during modelling using both VSim® and SIMION®. The later sections describe how this 

model was calibrated based on experimental measurements. 

3.2.1 VSim® 

VSim® has the capability to create 3D CAD models using its VSimComposer 

interface or import existing 3D models using geometry files, such as STL files. For this 

research, a 3D model of the electron gun and sample puck were created using 

VSimComposer due to author’s familiarity with VSimComposer and ease with which the 

geometry could be altered between simulations. Parts of the electron gun, such as the 

optics, are created by combining basic geometries (e.g. cylinders, spheres, and cones) using 

Boolean operations. The first problem faced during the construction of the model was that 

the parts created using Boolean operations would split back into basic geometries upon 

closing and reopening the simulation files. In the first attempt to create a model of the 

electron gun, the names that were automatically assigned to the basic geometries, constants, 
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and parameters were not overwritten. However, it was observed that these names would be 

altered when closing and reopening the simulation files, and this may have caused the 

splitting problem. In the second attempt to create a model of the electron gun, the 

automatically assigned names were manually overwritten. This appeared to fix the splitting 

issue. However, it was later observed that the sample puck would split apart when 

attempting to move its location by adjusting a numerical constant that defines its location 

along the z-axis of the simulation space. In order to reassemble the sample puck, the 

corrupted sample puck geometry had to be first deleted. Then, the simulation had to be 

closed and then reopened, which updated the location of all the geometries which made up 

the sample puck. Finally, the sample puck was recreated by combining the geometries.  

The final model created in VSim® is shown in Figure 91. This research focused on 

the electron beam’s interaction with the sample, so the Faraday cup was only modeled in 

the open position. The Faraday cup is connected to a wire that contains a coiled section as 

previously shown in Figure 64. However, in the VSim® model, this wire is approximated 

using a straight wire due to the complexity associated with creating the coiled section. 

Furthermore, the exact dimensions of the coiled section are unknown, and it could not be 

measured while in the UHV chamber. The model contains dielectric materials. However, 

these had to be removed when using the electrostatic field solver. In addition to the 

dielectrics identified in Figure 91, additional dielectrics are present within the electron gun. 

These dielectrics were included in the simulation to absorb any electrons that made contact 

with the dielectrics removing them from the simulation. The internal features of the 

Faraday cup were not included in the model because they have a negligible effect on the 
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electrostatic field in the region through which the electron beam travels when the cup is in 

the open position. 

 
Figure 91: Final VSim® model of electron gun and sample puck. 

 

The location of the sample puck with respect end of the gun barrel was measured 

using a laser level, painter’s tape, and a Vernier caliper as shown in Figure 92. The surface 

of the sample puck which faces the electron gun is 45.37 mm from the end of the gun barrel 

when the sample manipulator’s Y-axis micrometer is set to zero. The maximum error 

associated with this measurement is estimated to be ± 1 mm, which was approximately the 

width of the laser beam. Increasing the Y-axis micrometer brings the sample puck closer 

to the electron gun. 
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Figure 92: Measurement of sample puck location. 

 

With the model completed, the electrostatic field within and around the electron 

gun was solved using electrostatic field solver of VSim® for a set of electrode potentials 

that had been used during experimentation. Figure 93 shows the resulting electric field 

potential. 

 
Figure 93: Colormap of electric field potential generated using VSim®. Units are in volts. 
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A second problem however arose when attempting to import the electrostatic field into a 

simulation which caused the simulation to abort. Upon solving the electrostatic fields, 

VSim® creates an HDF file containing the electric field intensity at each grid point. This 

HDF file can be imported into a particle simulation, and the force on each particle is then 

calculated using this field. After spending several weeks on this problem, the software 

developer indicated that the problem arises when VSim® attempts to extrapolate the 

electrostatic field to the surface of a part. This extrapolation is performed across a few grid 

cells. If the part occupies less space than these grid cells, an error will occur, and the 

simulation will abort. In order to fix this problem, the part which occupies less space than 

these grid cells must be removed, or the size of the grid cells decreased. It was found that 

nearly all of the parts making up the model had to be removed in order for the simulator to 

successfully operate. Since electrons may interact with all of the parts in the simulation, it 

is not feasible to remove any of the parts. Therefore, the only option is to decrease the size 

of the grid cells. Unfortunately, decreasing the grid size requires more than the 64 GB of 

RAM currently available on the desktop licensed to run VSim®. Due to budget and time 

constraints, the RAM on this desktop could not be increased during this research. 

Additionally, there was the risk that the VSim® simulation might continue to fail even after 

the grid cells were decreased resulting in further loss of research time. Thus, the research 

effort shifted to developing a SIMION® model since SIMION® was readily available and 

Sattler was previously successful in using the software to perform simulations of the 

electron gun used in this research [4]. 
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3.2.2 SIMION® 

Shortly after the problem with importing electrostatic fields in VSim® was 

discovered, a large effort was undertaken to both learn how to use SIMION® and create a 

new model of the electron gun and sample puck. The manufacturer had previously provided 

Sattler with a 2D cylindrical model of the electron gun [4]. A cross-sectional view of the 

original model is shown in 3D in Figure 94. 

The original model was overly simplified and unable to predict many of the 

experimental observations.  

 
Figure 94: Original SIMION® model provided by manufacturer. 

 

Firstly, the sample puck does not appear in this model, so it is not possible to account for 

the nonzero electric field between the electron gun and sample puck. Secondly, Earth’s 

magnetic field, though small, does become significant at low primary electron energies and 

is not accounted for in this model. Thirdly, experimental observations proved that biasing 

the Faraday cup has a significant effect on the trajectories of electrons as they leave the 

electron gun. Since the Faraday cup does not appear in the model, the effect of the cup on 

electron trajectories cannot be predicted. Finally, this model assumes all the electrons leave 

the cathode within the same plane and with the same velocity vector as shown in Figure 
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95. This model is inappropriate when considering the asymmetries in the magnetic and 

electric fields. Earth’s magnetic is not cylindrically symmetric about the axis of the electron 

gun, and electric field is not cylindrically symmetric because the electron gun with attached 

Faraday cup and sample puck are not cylindrically symmetric. Furthermore, given the low 

primary electron energies involved in this research, the assumption that all the electrons 

leave the cathode in the same direction with same velocity will lead to significant errors in 

the prediction of the trajectories and energy distribution of the primary electrons. 

 

Figure 95: Original emission distribution of electrons from the circular cathode. The 

electron trajectories are shown as blue lines oriented normal to cathode surface. 

 

In order to partially account for the shortcomings of the original model, this model 

was first updated to include the sample puck and gun barrel as shown in Figure 96. This 

provided the means to calculate the electrostatic field between the gun and sample puck. 
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Next, Earth’s magnetic field was added to the simulation by creating an empty basic 

potential array (PA) of magnetic type along with a user program in the SIMION® 

workbench. This procedure followed the instructions provided in the online SIMION® 

2019 supplemental documentation [142]. Though this 2D cylindrical model provided 

valuable SIMION® experience, it was later discovered that a more accurate 3D SIMION® 

model could be easily created using the model previously developed in VSim®.  

 
Figure 96: Cross-sectional view of updated electron gun model with a purple disk acting 

as the sample puck. 

 

Whenever a part is assigned a material in VSim®, VSim® creates a STL file for 

the part within the same directory as the simulation files. The STL files for each part can 

be imported into SIMION® by using the SIMION SL™ Tools and individually numbering 

the STL files as described in the online SL Tools tutorial [143]. This allowed the model 

which was developed in VSim® to be easily converted into a SIMION® model. SIMION® 

uses a basic PA to define the geometry of each electrode making up the model [141]. These 

electrodes are numbered based on the number appended to the end of the STL filename. 

Simulating the sample puck at different distance from the electron gun required separate 
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basic PAs. These PAs were created for the sample puck at several distances from the 

electron gun by generating separate STL files for the sample puck at different distance 

using VSim®. Earth’s magnetic field was again added to the simulation using an empty 

basic PA of magnetic type following the instructions provided in the SIMION® 2019 

supplemental documentation [142]. The PAs are able to account for the effects of the 

sample puck, Faraday cup, and Earth’s magnetic field. Dielectric materials were not 

included in this model because of their negligible effect on the electric field in the region 

the primary electron beam traverses.  

3.2.3 Calibration of Magnetic Field 

The magnetic field in the SIMION® model is homogeneous vector field which is 

defined in cartesian coordinates based on the reference frame of the magnetic PA. In order 

to properly assign the appropriate vector components to the magnetic field, the magnetic 

field within the vacuum chamber had to first estimated. Ideally, the magnetic field within 

chamber should be measured directly; however, the experimental system does not provide 

the capability to do so. Instead, the magnetic field was measured external to the chamber, 

and it was assumed that there is a negligible difference between the magnetic field internal 

and external to the chamber.  

For comparison, the magnetic field was both calculated using the World Magnetic 

Model (WMM) and measured using a magnetometer. The magnetic field was calculated 

by first determining the location of the experimental system using Google Earth and then 

entering the location information in the online magnetic field calculator provided by the 

National Oceanic and Atmospheric Administration [144]. The calculated magnetic field 
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information is shown in Table 5. Measurements of the magnetic field in the area 

surrounding the chamber varied greatly due to presence of ferrous materials. In order to 

avoid distortions in Earth’s magnetic field, measurements were performed near the vacuum 

chamber and a few feet away from any ferrous materials, and the results are shown in Table 

5.  

Table 5: Measured and calculated magnetic field at experimental system location. 

 North Component West Component Vertical Component 

Calculated 20.1794 μT 2.2125 μT -48.2119 μT (downward) 

Measured 28.0522 μT 5.10211 μT -34.6884 μT (downward) 

 

The measured results agree reasonably well with the WMM. Since Earth’s 

magnetic field is distorted within the lab due to the presence of ferrous materials, the results 

obtained by measurement were considered more accurate because the WMM is unable to 

account for these distortions. Therefore, the measured results were entered as the magnetic 

field components of the model after the appropriate translation into reference frame of the 

magnetic PA. The effect of this magnetic field on the electron trajectories is significant for 

low energy primary electrons as shown in Figure 97 and is discussed in greater detail in 

Chapter IV.  
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Figure 97: Comparison of low-energy primary electron trajectories (shown in black) with 

the magnetic field disable (a) and enabled (b). 

3.2.4 Calibration of Thermionic Emission Distribution 

The one of the most challenging tasks in the creation of the simulation model was 

the calibration of the thermionic emission energy distribution. Normally, the energy 

distribution can be calculated if both the work function and temperature of the cathode are 

known [145, 146]. The electron gun has a tantalum cathode, and work function for tantalum 

is 4.22 eV [146, 147]. However, the experimental system does not have a means to measure 

the temperature of the cathode directly. A second approach is to determine the current 

density of the electrons leaving the cathode and use this density to solve for the temperature 

using the work function of the cathode [145, 146]. Unfortunately, the experimental system 

is unable to measure the current leaving the cathode and is only able to measure the current 

leaving the electron gun. These currents differ because many of the electrons emitted by 

the cathode are absorbed within the electron gun. Thus, a new method for calibrating the 

energy distribution was required. 
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The energy distribution can be estimated in a similar fashion to using a retarding 

electric field to determine the energy distribution of the secondary electrons, which was 

discussed in Section 2.3.1. In this case, a negative bias is applied to the sample to retard 

the primary electrons from reaching the sample. This method is complicated by the fact 

that the sample may reflect some of the primary electrons rather than absorbing all the 

electrons. Furthermore, this approach assumes that the energy distribution of electrons 

emitted from the cathode only shifts in energy while the shape of the distribution curve 

remains constant as the electrons pass from the cathode to the sample. Based on simulation 

results, this assumptions in approximately valid and discussed more detail in Section 4.4. 

The fundamentals of this estimation procedure are best explain using the energy 

band diagram shown in Figure 98. An electron is emitted from the cathode after first 

overcoming the work function of tantalum, ΦTa, with a kinetic energy, Ec.  It is then 

accelerated by the accelerating potential, VEE, of the electron gun (see Section 3.1.15). The 

total kinetic energy gained during this acceleration is also dependent on the work function, 

Φ316SS, of the opening of the 316SS electron gun barrel. The gun barrel is held at ground 

potential. After passing through the opening, the electron is slowed by the retarding electric 

field created by biasing the sample by Vsample (see Section 3.1.16). The sample for this 

measurement is the 316SS sample puck that was discussed previously, and the work 

function of the gold-plated fasteners is ignored in this analysis. The electrons arrive at the 

sample with the kinetic energy, Ep. 
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Figure 98: Energy band diagram of experiment setup for measuring the energy distribution 

of the electrons emitted from the cathode. e is the charge of an electron. 

 

 In order for electrons to reach the sample, their Ec must exceed Φ316SS – ΦTa – eVEE – 

eVsample. Since these energies are distributed, the number of electrons capable of reaching 

the sample is reduced as Vsample becomes more negatively bias. This distribution has 

sometimes been approximated using a Gaussian distribution [7]. However, it better 

approximated with chi-squared distribution, which has the same form as a Maxwell-

Boltzmann or Maxwellian energy distribution [146]. For this research, the energy 

distribution will be defined using the chi-squared distribution as defined in the following 

equation. 

𝑓(Ec) =
1

α
√

EC

2𝜋α
𝑒−

Ec
2α 

 
(12) 
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The scaling factor, α, is used to adjust the distribution based on experimental 

measurements. This corresponds to the Maxwell-Boltzmann energy distribution with kT 

replaced by 2α [16]. The Figure 99 shows the form of the of the distribution. The maximum 

of this distribution is located at Ec = α. 

 
Figure 99: Chi-squared distribution for approximating the thermionic emission energy 

distribution. 

 

 Figure 100 shows the current through the sample, isample, as the accelerating potential, 

VEE, was increased. For these measurements, the Vsample maintained at -1.14 V. The low 

sample bias was chosen to reduce the effects of the asymmetric electric field created by the 

Faraday, which is discussed in a later section. An alternative approach to this measurement 

is to maintain the accelerating potential and increase the sample bias; however, this requires 

more time to perform since altering the sample bias requires waiting for the sample circuit 

to settle as discussed in Section 3.1.12. The focus potential, VFO, was adjusted to maximize 

isample at VEE = 1.10 V. The 1st anode potential, VFA, was 10.0 V. The source potential, 

which dictates the temperature of the cathode, was 710 mV. A 10th order polynomial was 

fit to the data, and the derivative of the polynomial was used to locate the point where the 

isample is increasing most rapidly marked by dashed lines in Figure 100. 
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Figure 100: Sample current measured while varying the accelerating potential and 

maintaining a -1.14V sample bias. The dashed lines mark the location of maximum slope. 

  

The isample is equal to the primary current, ipri, minus the secondary electron current, isec. 

Thus, the slope is dependent on both ipri and isec as defined by the following equation. 

slope =
𝑑isample

𝑑(VEE + Vsample)
=

𝑑ipri

𝑑(VEE + Vsample)
−

𝑑isec

𝑑(VEE + Vsample)
 

 

(13) 

 Since more electrons are able to make it to the sample as VEE + Vsample increases, the 

derivative of ipri is equal to or greater than zero. The secondary electron current however 

may increase or decrease as VEE − Vsample increases [54]. In order to make this 

approximation possible, it is assumed that the derivative of isec is equal zero at the point 

where the slope is maximum. Ideally, the primary electron beam would enter a device 

containing a suppression grid instead of being incident on the sample puck so that isec is 

truly negligible compared to ipri. Based on this assumption,  
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𝑚𝑎𝑥 (
𝑑isample

𝑑(VEE + Vsample)
) ≈ 𝑚𝑎𝑥 (

𝑑ipri

𝑑(VEE + Vsample)
) 

 

(14) 

The VEE − Vsample is then related to α by 

α = −𝑒(VEE + Vsample)
@𝑚𝑎𝑥 𝑠𝑙𝑜𝑝𝑒

− Δ𝛷 (15) 

where Δ𝛷 = 𝛷Ta − 𝛷316 and e is the charge of an electron. Since the energy distribution 

in equation 12 is a probability density function, its associated cumulative distribution 

function, F(Ec) is related to the ipri by 

ipri = Ip × [1 − 𝐹(−𝑒(VEE + Vsample) − Δ𝛷)] (16) 

where Ip is the total current leaving the electron gun, which is 6.5 pA. This current was 

measured by positively biasing the sample to +200 V while keep the electron gun setting 

the same. In Figure 101, the primary current using equation 16 is plotted against the 

measured sample current for different values of  Δ𝛷. The red curve indicates that the 

sample current is more than the primary current, which violates the law of charge 

conservation. The green curve indicates that a rather large number of backscattered primary 

electrons with the SEY approaching 95% when the accelerating potential plus sample 

voltage is -1.11 V, which is much larger than any of the measurements made by Fowler 

and Farnsworth [54]. The blue curve indicates that the number of backscattered primary 

electrons decreases towards zero as the primary electron energy is decreased, which is 

consistent with a polycrystalline metal that has not undergone a thermal anneal while in 

vacuum [54]. The sample puck is made from polycrystalline metal and was not thermal 

annealed to remove surface impurities due to atmospheric exposure. Thus, the blue curve 

appears to be the most reasonable fit. 
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Figure 101: Comparison of ipri given by equation 16 to isample for Δ𝛷 = 0.20 eV, 0.23 eV, 

and 0.26 eV. 

 

For an α = 0.0563 eV, the full width at half maximum (FWHM) of f(Ec) is 0.202 

eV. Since 2α=kT, where k is the Boltzmann constant, the temperature of the cathode is 

approximately 1307 K.  The current density, J, from the cathode can then be calculated 

using the Richardson-Dushman equation [146]. 

J =
55 × 104A

m2K2
13072 exp (−

4.22𝑒V

(
8.617 × 10−5𝑒V

K ) 1307K
) = 2.97 × 10−11 A m2⁄  

 
(17) 

The cathode is a disk with a radius between 0.400 mm and 0.424 mm. Thus, the calculated 

current leaving the cathode is between 25.0 pA and 28.2 pA. Since this current is greater 
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than the total current leaving the electron gun, the result is valid and indicates a reasonable 

efficiency in transporting the electrons through the electron gun.  

Cimino et al. measured a 0.85-eV FWHM for the same electron gun with a tantalum 

cathode [7]. However, they were preforming measurements with a thousand times greater 

primary electron current than that involved in this research. To produce higher currents 

requires increasing the cathode’s temperature causing thermal broadening of the energy 

distribution. In addition, they used a different method of measuring the FWHM which did 

not account for backscatter primary electrons. At the 3123-K melting point of tantalum, the 

FWHM is only 0.483 eV for the Maxwell-Boltzmann energy distribution, and the current 

leaving the calculated cathode is between 417 mA and 471 mA which is much greater than 

the low nA primary current used during their measurements and the maximum rated current 

of the electron gun (10 μA). Alternatively, Thong stated that the FWHM is approximately 

2.45kT; however, the FWHM does not exceed 0.659 eV below the melting point of 

tantalum [146]. The manufacturer of the electron gun calculated a 0.3-eV FWHM within 

the rated current range of the electron gun (1nA to 10 μA) [136]. Therefore, it is unlikely 

that their measured FWHM is correct. Since the primary currents used in this research are 

well below the rated current range, it is reasonable to infer that the FWHM will be less than 

the 0.3-eV FWHM calculated by the manufacturer lending greater credence to the 

approximation performed in this research. 

The approximated energy distribution is shown in Figure 102. A set of one million 

random energy values were generated in accordance with this distribution using the custom 

MATLAB script found in Appendix D. 
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Figure 102: Estimated energy distribution of electrons emitted from the cathode. The 

distribution function f(Ec) is overlaid on the histogram of the randomly generated 

energies. 

 

The data generated by MATLAB for the emitted electrons was imported into 

SIMION® using the procedure outline in Appendix D. The simulated electrons are emitted 

uniformly across the surface of the cathode. Their angular distribution follows Lambert’s 

cosine law in accordance with Thong [146]. The distribution of elevation angles is shown 

in Figure 103. 
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Figure 103: Histogram of randomly generated elevation angles following Lambert’s cosine 

law. 

 

Based on this approximation, the work function of 316SS is then 𝛷316 = 𝛷Ta −

Δ𝛷=3.99 eV. However, Cieślik et al. have reported that the work function for 316SS is 4.6 

eV [148]. If their value is correct, then more electrons must be emitted with higher kinetic 

energies than that predicted here. The deviation from their reported value may be due to 

contaminants on the surface. However, being unable to measure the work function by other 

means, this cannot be confirmed. This work function is applied when setting the potentials 

of the electrodes in the SIMION® model. Since the electrodes are composed of 316SS, the 

work function is applied to all of the electrodes with the exception of the cathode, where a 

work function of 4.22 eV is applied. 
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3.3 Summary 

In this chapter, the iterative process of experimentation, modeling and simulation, 

and theoretical refinement was introduced as a necessary approach to determining when 

and to what extent the assumptions listed in Chapter II are violated. In order to implement 

this process, an experimental system was developed to autonomously perform a large 

number of SEE experiments under varying conditions. During this development, several 

important discoveries were made that enabled better repeatability in experiments. The first 

discovery was the rather lengthy time required for the cathode output to stabilize. Allowing 

the cathode to remain on for at least three hours prior to measurements reduces the 

repeatability problems caused by a drifting primary electron current. The second discovery 

was the unexpected transitions or discontinuities in the sample and Faraday cup currents. 

These transitions were the precursors to burst noise which severely degraded the 

repeatability of measurements. This noise may have been caused by the dielectric 

breakdown of the insulators within the chamber after exposure to electrons from the 

electron gun and secondary electrons from the sample. These transitions and the burst noise 

were eliminated by reducing the current output of the cathode and minimizing the duration 

over which the chamber was exposed to electrons during each measurement. The third 

discovery was the large settling time associated with varying the sample and Faraday cup 

voltage. The results showed that altering these voltages by 100 V required a settling time 

of one hour before measurements are performed in the pA range. The fourth discovery was 

the capacitive coupling between the electron gun optics and the Faraday cup. When the 

potentials of the optics are varied between measurements, the system should be allowed 30 

seconds to stabilize before beginning measurements to avoid the transient behavior 
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associated with the coupling. Since other researchers commonly use similar systems to the 

one developed in this chapter, the discoveries made in the development of this system may 

be applied to systems used by others in the research community. 

The implementation of the iterative process also required the development of a 

simulation model. Problems regarding the VSim® software ultimately led to the use of 

SIMION® in this research. SIMION® lacks the capabilities of VSim® which limited the 

scope of this research. Though not the focus of this research, it was necessary to develop a 

new model for thermionic emission in order to complete the simulation model. This model 

was calibrated using a new method which was developed in this chapter. It also provides a 

new means of estimating the work function of the sample. The calibrated model was 

validated by comparison with the results obtained by other researchers and the 

manufacturer of the electron gun. Using the Richardson-Dushman equation, the cathode 

temperature estimated from this model provided an emission current prediction that was 

reasonably consistent with experimental measurements. With the development of the 

experimental system and simulation model complete, the second and third objectives of 

this research were fulfilled, and the focus shifted toward performing measurements and 

analyzing experimental data. 
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IV. Results and Analysis 

In Chapter II, a list of common assumptions made during SEY measurements were given. 

Violations of these assumptions may lead to variations in the measured SEY for different 

test conditions. In order to better understand when these assumptions are violated and the 

effect of these violations on measurements, several tested were devised in which specific 

parameters of the tests were varied. The results of these tests are summarized in Sections 

4.1 through 4.4. In Section 4.5, a magnetized sample is investigated to determine if placing 

magnets on the vacuum chamber walls will suppress tertiary electrons during SEY 

measurements. For the results of this chapter, the estimated SEY can be obtained by 

substituting the Faraday cup current, iFaraday, for ipe and the sample current, isample, for is in 

the second equation listed in Table 1 of Section 2.2.1 as shown below. 

σest.2 = 1 −
is

ip
= 1 −

isample

iFaraday
 

 
(18) 

In this chapter, isample and iFaraday will be looked at individually; and, in some cases, the ratio 

of isample to iFaraday will be discussed. 

4.1 Comparison of Measurements at Different Primary Currents 

As discussed in Section 2.6.4, the ratio between any two currents measured within 

the chamber should remain constant since SEY is independent of current. To test the 

validity of this assertion, measurements were performed with several emission currents 

while the potentials listed in Table 6 remained constant. 

Table 6: Potentials used in tests performed using different emission currents. 

VG, V VFO, V VFA, V Vs, V VF, μV 

0.00 429.95±0.05 125.0 -194.910±0.002 -0.1±0.3 
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The accelerating potential was varied between 193.1 and 213.0 V. The spacing between 

the end of the electron gun and sample puck was 45.37 mm. The emission current was 

varied by adjusting the source potential, VES. The chamber pressure for these 

measurements was between 3.1x10-9 and 3.4x10-9 Torr. The ratio between the sample 

current, isample, in the open position and the Faraday cup current, iFaraday, in the closed 

position is plotted in Figure 104. 

 
Figure 104: Ratio of the sample current in the open position to the Faraday cup current in 

the closed position for different source potentials and zero grid potential. The maximum 

sample current is listed as ipeak. 

 

The results in Figure 104 indicate that the ratio is not constant and increases with increasing 

cathode temperature. This deviation from a constant ratio may be due to space charge, a 

variation in energy distribution of the electrons emitted from the cathode as the cathode 
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temperature is varied, or a nonlinearity in the current measurements made by the 

electrometers. Unfortunately, to better determine cause of this deviation, a simulation 

model capable of modeling space charge effects must be used, and SIMION® is not 

capable of performing this modelling. These results show that under certain conditions the 

ratio between two currents may not remain constant, and the estimated SEY may also vary 

based on equation 18. Thus, when preforming comparative tests not regarding changes in 

emission current, care must be exercised to ensure the emission current is consistent 

between the tests.  

 The grid potential, VG, provides another means of adjusting the emission current. 

Increasing VG decreases the emission current. It also decreases the diameter of electron 

beam entering the 1st anode as shown Figure 105, which may lead to a smaller spot size on 

the sample.  

 
Figure 105: Electron trajectories from cathode into 1st Anode with no grid potential applied 

(a) and with grid potential applied (b). Electron trajectories are shown in black. The 

electrons are moving in the downward direction. 

 

Unfortunately, the electron trajectories predicted by SIMION® are questionable when a 

grid bias is applied due the increased likelihood of space charge in front of the cathode 



 

160 

 

since SIMION® was not designed to model a heavily space charged environment [141]. 

For this reason, the grid potential is zero throughout all the tests in the sections that follow. 

Using the grid potential to reduce the primary current alters the ratio between the 

sample current, isample, in the open position and the Faraday cup current, iFaraday, in the closed 

position between currents as shown in Figure 106. The potentials for the results shown in 

this figure were the same as those listed in Table 6 with the exception of the grid potential. 

The red curve in this graph is from the same data as the red curve in Figure 104. The 

chamber pressure during these tests was between 3.2x10-9 and 3.5x10-9 Torr, and the 

spacing between the end of the electron gun and sample puck was 45.37 mm. The blue 

curve shows a ratio greater than the red curve and any of the curves shown previously in 

Figure 104. These results indicate that altering the grid potential may also cause SEY 

measurements to vary.  

 
Figure 106: Ratio of the sample current in the open position to the Faraday cup current in 

the closed position for a biased and unbiased grid. The maximum sample current is listed 

as ipeak. 
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Increasing the grid bias also leads to a smaller beam diameter entering the Faraday 

cup. Since the Faraday cup was not biased for these tests due to beam deflection (see 

Section 3.1.6), the Faraday cup is primarily dependent on its geometry to prevent secondary 

electrons from leaving the Faraday cup. In the Faraday cup, electrons from the electron gun 

enter a hollow cylinder which is blocked on one end. A narrow beam of electrons will 

produce more secondary electrons towards the center of the blocked end. Since secondary 

electrons are generally emitted following a cosine angular distribution, more secondary 

electrons are likely to escape from the Faraday cup when the beam is narrower which 

reduces the amount of current measured by the Faraday cup. Thus, the amount of current 

measured by the Faraday cup depends not only on the amount of current entering the cup 

but also on the characteristics of the beam, such as the energy and diameter. These 

characteristics change based on the optical setting of the electron gun. This may lead to 

large variations in the current measured by the Faraday cup as the optical setting vary as 

shown in Figure 107. This figure was created from the data discussed previously in this 

section with a source potential equal to 751 mV and following the setting shown in Table 

6.  It is unlikely that less electrons are entering the cup as the accelerating potential is 

increased. Therefore, it is likely that more secondary electrons are escaping the Faraday 

cup as the accelerating potential is increased. This behavior is important to mitigate by 

positively biasing the Faraday cup if attempting to determine the primary electron current 

using the Faraday cup. Furthermore, when performing comparative tests not regarding 

changes in the potentials of the electron gun optics, the potentials of the optics must remain 

consistent between tests in order for comparisons to be reasonable. 
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Figure 107: Plot of Faraday cup current in the closed position versus accelerating potential 

for the potentials specified in Table 6 and a 751-mV source potential. 

 

 Reducing the emission current of the cathode reduces the likelihood of space charge 

effects and the thermal broadening of the thermionic emission energy distribution. 

However, measurements become increasing noisy for currents below 140 fA as shown in 

Figure 108. Averaging may be used to reduce this noise and allow operation down to about 

20 fA. Measurements below 20 fA are not practical due to the noise associated with the 

current measurements as discussed in Section 3.1.4. The blue curve measured with a 643-

mV source voltage was measured by extending the duration in which the electron gun is 

on (i.e. no grid bias) from that shown in Figure 83 of Section 3.1.14. This allowed 

averaging of the currents when the gun is on over more samples. The duration of each 

dataset remained 2 minutes. 
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Figure 108: Ratio of the sample current in the open position to the Faraday cup current in 

the closed position for different source potentials and zero grid potential. The maximum 

sample current is listed as ipeak. 

 

 In conclusion, the results of this section indicate that SEY measurements are sensitive 

to the current involved in the measurement and the optical setting of the electron gun. Thus, 

when performing SEY measurements on different samples for comparison, both the current 

and optical settings must remain consistent between measurements in order for the 

comparison to be reasonable. To the author’s knowledge, this is a common practice 

observed by researchers throughout the scientific community. Though this does allow 

qualitative comparison, it does not guarantee that the measurements are of the true SEY. 

4.2 Electron Gun to Sample Spacing 

In addition to the potentials and currents chosen when performing measurements, 

the geometries within the chamber may also affect the outcome of a SEY measurement. To 
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determine the sensitivity of measurements to changes in geometry, measurements were 

performed for different spacings between the end of the electron gun and the sample puck. 

For all the measurements, the potentials listed in Table 7 were maintained. The source 

potential was near the source potential used to calibrate the SIMION® model, which was 

710 mV. The accelerating potential was varied between 193.1 and 213.0 V. The chamber 

pressure for these measurements was between 3.1x10-9 and 3.3x10-9 Torr. Figure 109 

indicates that electrons reach the sample at lower energies when the spacing is increased. 

Table 7: Potentials used in measurements with different spacings. 

VES, V VG, V VFO, V VFA, V Vs, V VF, μV 

709 mV 0.00 429.95±0.05  125.0 -194.909±0.0025 0.79±0.24 

 

 
Figure 109: Sample current measured for the open position for different spacings between 

the end of the electron gun and the sample puck. The sample bias was -195 V. 

 

 This behavior is counterintuitive since one would expect that more electrons would 

reach the sample as the spacing is decreased. The SIMION® model developed in Chapter 

III indicates that this behavior is due to deflection caused by the asymmetric electric field 
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between the sample and Faraday cup.  Figure 110 demonstrates this deflection for a spacing 

of 45.37 mm. At the accelerating potential of 195 V, the electron beam does not intercept 

the sample as indicated by the large number of electron trajectories leaving the sample 

moving upward and to the right in the Figure 110(a). Though the electrons do have 

sufficient energy to reach the sample when exiting the electron gun, they fail to do so 

because of the asymmetric electric field between the sample and Faraday cup.  

 
Figure 110: Electron trajectories (shown in black) for a spacing of 45.37 mm. The 

accelerating potentials were 195V (a) and 200V (b). All other potentials were set in 

accordance with Table 7. 

 

For this spacing, the simulation model indicates that electrons will start interacting with 

the sample between an accelerating potential of 197 and 198 V. Measurements however 

indicate that this interaction begins at 195 V. The disagreement between the simulation and 

experimental results may be due to inaccuracies in the model or electron-electron 

interactions, which SIMION® is not designed to simulate. 
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 As the spacing between the electron gun and sample is reduced, the asymmetric field 

is enhanced increasing the deflection as shown in Figure 111 for a spacing of 20.52 mm. 

For this spacing, the simulation model indicates that electrons will start intercepting the 

sample between an accelerating potential of 205 and 206 V. However, the experiment 

results indicate that electrons begin arriving at the sample at an accelerating potential of 

203 V.  

  

 
Figure 111: Electron trajectories (shown in black) for a spacing of 45.37 mm. The 

accelerating potentials were 202V (a) and 210V (b). All other potentials were set in 

accordance with Table 7. 

 

 If the electron beam is broadened as show in Figure 112, electrons are able to arrive at 

the sample at a lower accelerating potential as indicated by the plot of the sample current 

in Figure 113. The simulation model predicted that electrons would begin interacting with 

the sample when the accelerating potential was between 194 and 195 V, and measurements 

indicate that interactions began at an accelerating potential of 194 V.  
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Figure 112: Electron trajectories (shown in black) for a spacing of 45.37 mm. The 

accelerating potentials were 195 V (a) and 204 V (b). All other potentials were set in 

accordance with Table 8. 

 
Figure 113: Sample current measured for the open position for a spacing of 45.37 mm 

and optimized for maximum sample current at an accelerating potential of 195 V. Plot 

corresponds with potentials listed in Table 8. 

 

The potentials corresponding to this test are shown in Table 8. The chamber 

pressure for test was between 3.2x10-9 and 3.4x10-9 Torr, and the spacing was 45.37 mm. 
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The test was performed by adjusting the focus potential until highest sample current was 

measured for an accelerating potential of 195 V; however, this sample current is small 

compared to the current leaving the electron gun, which is around 6.5 pA. 

Table 8: Potentials used to maximize sample current for VEE = 195 V and Vs = -195 V. 

VES, V VG, V VFO, V VFA, V Vs, V VF, μV 

711 mV 0.00 1560.0 10.0 -195.016±0.001 0.0 ±0.2 

 

 The sample bias for the aforementioned test was -195 V. This high negative potential 

prevents many electrons from reaching the sample even when the electrons have sufficient 

energy to reach the sample due to the deflection caused by the asymmetric electric field 

between the Faraday cup and sample. When attempting make SEY measurements with 

primary electron energies below 12 eV, a large negative sample bias will lead to incorrect 

assessment of the primary current. In addition, the primary electrons will not be normally 

incident on the sample. Furthermore, using these measurements to estimate the thermionic 

emission energy distribution and the work function of the sample as described in Section 

3.2.4 will lead to significant errors in the model. In order to perform this estimation, the 

sample bias must be reduced as much as possible to avoid the deflection of the primary 

electron while still being negatively biased enough to prevent electrons from reaching the 

sample when the accelerating potential is zero. 

 By reducing the negative bias of the sample, more electrons are able to reach the sample 

at lower primary electron energy as shown in Figure 114. These measurements were 

conducted using the potentials listed in Table 9. The chamber pressure for these 

measurements was between 3.3x10-9 and 3.7x10-9 Torr. The measurements were performed 

with a spacing of 25.37 mm and 45.37 mm. 
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Figure 114: Sample current measured for the open position for different spacings between 

the end of the electron gun and the sample puck. The sample bias was -1.1 V. 

 

Table 9: Potentials used to maximize sample current for VEE = 1.1 V and Vs = -1.1 V. 

VES, V VG, V VFO, V VFA, V Vs, V VF, μV 

711 mV 0.00 147.0 10.0 -1.0902±0.0002 (blue curve) 

-1.1205±0.0003 (red curve) 

-0.1 ±0.3 

 

The sample bias was slightly different between measurements due to the challenge 

associated with precisely adjusting the power supply which has a readout resolution of 0.1 

V. The maximum sample current measured when the spacing was 25.37 mm was about 

0.47 pA more than when the spacing was 45.37 mm. This difference is caused by the 

electron beam spreading out more and missing the sample when the spacing is larger as 

shown in Figure 115.  
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Figure 115: Electron trajectories (shown in black) for a spacing of 25.37 mm (a) and 45.37 

mm (b). The accelerating potentials was 1.1 V. All other potentials were set in accordance 

with Table 9. 

 

 In conclusion, the primary electron beam is significantly affected by the spacing 

between the electron gun and sample at low primary electron energies. This effect is 

minimized by reducing the sample bias as much as possible. The sample bias may be 

increased as the primary electron energy is increased in order to prevent tertiary electrons 

from returning to the sample. At low primary electron energies, the primary electron beam 

is asymmetrically misshapen, and this cannot be corrected without grounding the sample 

or removing the Faraday cup from the electron gun. 

4.3 Dependency of First Crossover on E-gun Optics 

The first crossover, which was discussed in Section 2.2.3, is an important feature 

of the SEY curve. The measurement of the primary electron energy at the crossover does 

not require measuring or assessing the primary current. Instead, it requires only 
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determining the energy at which the sample current reverses directions. This measurement 

is sensitive to the optical settings of the electron gun as shown in Figure 116. These 

measurements were performed at different 1st anode potentials. The potentials for these 

measurements are shown in Table 10. The chamber pressure was between 3.4x10-9 and 

3.6x10-9 Torr during these tests, and the spacing was 45.37 mm. A linear fit was used to 

estimate the location were the sample current reverses directions. The energy at the first 

crossover was determined by adding the accelerating potential to the sample bias. A plot 

of the first crossover energies for different 1st anode potentials is show in Figure 117. 

 
Figure 116: Sample current measured around the 1st crossover for different 1st anode 

potentials. 

 

Table 10: Potentials used in measurements of first crossover energy. 

VES, V VG, V VFO, V Vs, V VF, μV 

711 mV 0.00 500.0 -20.0112±0.0005  -0.1 ±0.3 
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Figure 117: First crossover energy versus 1st anode potential. Data corresponds to 

potentials listed in Table 10. 

 

 The results shown in Figure 117 indicates that measurements of the first crossover 

energy are sensitive to the settings of the electron gun optics. These results are due to 

changes in shape of the primary electron beam as shown in Figure 118 for different 1st 

anode potentials. The sensitivity of these measurements to the shape of the primary electron 

beam highlights the need for a metric for comparing the quality of different primary 

electron beams and developing techniques to optimize the quality of the electron beam, 

which is the focus of the following section. 



 

173 

 

 
Figure 118: Electron trajectories (shown in black) for 1st anode potential of 10 V (a) and 

40 V (b). The accelerating potentials was 51 V. All other potentials were set in 

accordance with Table 10. The spacing was 45.37 mm. 

4.4 Scanned Focus Measurements 

In Chapter II, the assumption that all electrons arrive at the same incidence angle 

was identified in Assumption 3. The extent to which this assumption is violated is central 

to determining the quality of the primary electron. In addition, the primary electron should 

land within the area normally occupied by a sample mounted on the sample puck. Based 

on these two factors, the following beam quality factor (BQF) equation was developed. 

BQF =
100

N
∑ 𝐻(rw − ri(n))

N

n=1

(1 − |θi(n) − θd| 90⁄ ) 
 
(18) 

 

where N is the number of primary electrons interacting with the sample puck based on a 

SIMION® simulation with a million electrons emitted from the cathode. H is the Heaviside 

function, and rw is radius occupied by a sample measured from the center of the sample 

puck. The value of rw varies with the sample being tested; however, it should be less than 
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10 mm to avoid having the electrons interact with the fasteners of the sample puck. Each 

individual electron will intercept the sample puck at a distance ri(n) from center of the 

sample puck. The desired incidence angle in degrees is θd, and the incidence angle in 

degrees associated with each electron impacting the sample puck is θi(n). Each electron 

may add a maximum value of one to the summation. If the electron lands outside rw, zero 

is added to the summation for that electron. If the electron lands within rw, it receives value 

based on the difference between its incidence angle and the desired incidence angle. If all 

the electrons hit the sample puck at the desired incidence angle and within rw, then the BQF 

will be 100%. Otherwise, the BQF will be less than 100%. Equation 18 provides a simple 

metric for comparing beam quality and may be used in an optimization routine to determine 

the optimum electron gun settings and sample bias for any primary electron energy. 

As an example of this equation being used, consider the electron trajectories shown 

in Figure 119.  

 
Figure 119: Electron trajectories (shown in black) for a spacing of 45.37 mm and the 

potentials listed in Table 11. 
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Table 11: Potentials used in simulation corresponding to Figure 119. 

VEE, V VG, V VFO, V VFA, V Vs, V VF, μV 

5 0 210.1 10 -5 0 

 

The potentials for this simulation are listed in Table 11. The electrons are deflected from 

the center of the sample puck by the electric field between the sample puck and Faraday 

cup. Each of the electrons that is “flown” through the simulation space will terminate when 

colliding with an obstacle or reaching the boundaries of the simulation space, which the 

developers of SIMION® refer to as a “splat” [141]. SIMION® was configured to record 

the location, elevation angle, and energy during each “splat” to a text file. This text was 

then imported into MATLAB for analysis (see Appendix E).  

Figure 120 shows the 3D histogram based on the number of electrons impacting at 

each location on the sample puck.  

 
Figure 120: Histogram of x.y-coordinates for primary electrons of example. 
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The black circle designates the edge of the sample puck, and the red circle designates 10 

mm from the center of the sample puck. A large number of electrons interact with one of 

the fasteners causing a large number of counts to appear near the point x = 0 mm, y = 12.6 

mm. 

The angular distribution of the incidence angles is shown in Figure 121. Normal 

incidence is indicated by an incidence angle of 90°. The electrons do not hit the sample 

puck normally which agrees with Figure 119. 

 
Figure 121: Angular distribution of primary electrons of example. 

 

The energy distribution of the primary electrons is shown in Figure 122. The 

cathode emission energy distribution developed in Section 3.2.4 is overlaid on this 

distribution. The cathode emission energy distribution was shifted in energy based on the 

accelerating potential, sample bias, and work functions of the cathode and sample puck. 

The shape of the energy distribution of the primary electrons is approximately the same as 

the cathode emission energy distribution. It was assumed when calibrating the thermionic 
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emission model in Section 3.2.4 that these would have the same shape, and Figure 122 

lends validity to this assumption. 

 

 
Figure 122: Energy distribution of primary electrons of example. 

 

 The BQF for this electron beam is 20.8%, which indicates that measurements 

performed using this beam largely violate Assumption 3. This example highlights the 

importance of including the sample puck and Faraday cup in the model. Without them, the 

simulation would yield a much higher BQF since the electrons would not be deflected by 

the asymmetric electric field between sample puck and Faraday cup. Thus, assessments 

made regarding the primary electron beam without including them are inaccurate, 

especially at low primary electron energies. 

 In addition to performing simulations to determine the optimum electron gun settings, 

the dependence of SEY on incidence angle may be utilized to optimize the primary beam 

experimentally for normal incidence. For amorphous and polycrystalline material, the SEY 

increases as the incidence angle decreases from 90° as discussed in Section 2.2.7. Thus, 
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the sample current is maximized when electrons are normally incident on the surface. The 

optimal electron gun settings are found by adjusting the optics of the electron gun until the 

sample current is maximized. 

 Implementing this technique comes with two challenges. The first challenge is specific 

to the ELG-2A electron gun. Adjustments to the 1st anode and grid potentials effect the 

primary electron current in addition the shape of the primary electron beam. Increasing the 

1st anode potential increases the number of electrons pulled from the cathode and through 

the pre-focus beam stop aperture identified in Figure 123, and increasing the grid potential 

reduces the number of electrons entering the 1st anode. For this technique to be used, the 

primary current must remain constant. Therefore, the potentials of the 1st anode and grid 

must not be altered when using this technique, and only the focus potential may be varied 

in order to optimize the beam for each accelerating potential. 

 
Figure 123: Diagram identifying location of pre-focus beam stop aperture. Electron 

trajectories are shown in black. 
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The second challenge is that the sample current may appear to maximize for more than one 

focus potential. In this case, the simulation model must be used in conjunction with 

experimental results to determine the optimum electron gun settings. 

 The technique is implemented in practice by sweeping the focus potential, VFO, for 

each accelerating potential, VEE. Initially, this process may require a large amount of time 

if there is no a priori knowledge regarding the range of focus potentials the optimal value 

lies within. The results from performing this technique are shown in Figure 124. The results 

correspond to primary electron impact energies between 21 and 31 eV. 

 
Figure 124: Surface plot of the sample current, isample, versus accelerating potentials, VEE, 

and focus potentials, VFO. The sample bias was -30 V for these measurements. The other 

potentials involved in these measurements are listed in Table 12. 
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The plot is made up of 1056 measurements at different accelerating and focus potentials. 

The potentials listed in Table 12 were held constant during these measurements. The 

chamber pressure was between 2.5x10-9 and 5.8x10-9 Torr. During these measurements 

which lasted 45 hours and 51 minutes, the temperature measured on the chamber increased 

from 28°C to 33°C which led to the large range of chamber pressures observed in the data 

but does not appear to have negatively impacted the measurement. The cause of this large 

rise in temperature is unknown. The sample current, isample, reverses directions in these 

measurements indicating that these measurements are near the first crossover energy. This 

data is also shown in the form of a contour plot in Figure 125. 

 
Figure 125: Contour plot of the sample current, isample, versus accelerating potentials, VEE, 

and focus potentials, VFO. The sample bias was -30 V for these measurements. Five 

locations are identified for further analysis. 
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Each accelerating potential appears to have maxima and minima near the same focus 

potentials. The maxima and minima identified in Figure 125 for an accelerating potential 

of 51 V will now be investigated individually. 

Table 12: Potentials used in measurements involve primary electron energies between 21 

and 31 eV. 

VES, V VG, V VFA, V Vs, V VF, μV 

711 mV 0.00 10.0 -30.018±0.004 -0.3±0.3 

 

 At location 1, the focus potential is 980.9 V, and the beam diverges near the opening 

of the electron gun as shown in Figure 126.  

 
Figure 126: Electron trajectories (left) and histogram of incident locations on the sample 

surface (right) for location 1. 

 

Despite this divergence, a large number of electrons land within the radius rw as shown in 

the histogram. The angular distribution is spread between 52.5° and 90°. The BQF is 

68.5%. 

 



 

182 

 

 
Figure 127: Angular distribution of primary electrons for location 1. 

 

At location 2, the focus potential is 680 V, and the beam exhibits spreading after 

passing the Faraday cup as shown in Figure 128.  

 
Figure 128: Electron trajectories (left) and histogram of incident locations on the sample 

surface (right) for location 2. 
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A large number of the electrons land within the radius rw. The angular distribution is also 

much narrower than the previous location as shown in Figure 129. The BQF is 89.5%. 

 

 
Figure 129: Angular distribution of primary electrons for location 2. 

 

At location 3, the beam begins to diverge near the focus optic and appears to have 

fewer electrons in the center than on the perimeter of the beam as shown in Figure 130. 

The angular distribution is spread between 70° and 90°, the BQF is 82.2 %. 

 
Figure 130: Electron trajectories (left) and histogram of incident locations on the sample 

surface (right) for location 3. 
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Figure 131: Angular distribution of primary electrons for location 3. 

 

At location 4, the focus potential is 250.1 V, and the beam begins to diverge at the location 

of the focus optic as shown in Figure 132. A large number of the electron interact with the 

fasteners of the sample as indicated by the peaks in the histogram. 

 
Figure 132: Electron trajectories (left) and histogram of incident locations on the sample 

surface (right) for location 4. 
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The angular distribution is spread between 58° and 90° as shown in Figure 133. Despite 

this location being a local maximum, the BQF is only 48.4%, and sample current is likely 

greater due to the interaction of the electrons with the fasteners. 

 

 
Figure 133: Angular distribution of primary electrons for location 4. 

 

 At location 5, the spot size on the sample puck is the smallest as indicated in Figure 

134. The angular distribution is also the narrowest spanning approximately 8°. However, 

the BQF is 87.1% which is lower than that obtained for location 2. This location has a 

lower BQF because its angular distribution is centered around 78.5°. Whereas, the 

distribution for location 2 is centered around 81°, which is closer to the desired incidence 

angle of 90°. Since the angular distribution of location 5 deviates further from normal 

incidence, more secondary electrons will be emitted from the sample compared to location 

2 decreasing the sample current.  

 In summary, the maximum sample current does correspond with the maximum BQF 

for the locations discussed. It was also shown that the sample current may have other 

maxima due to the interaction of the electrons with the fasteners and these maxima do not 

correspond to a high BQF.  Furthermore, the results also indicate that the minimum spot 
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size does not guarantee the maximum BQF, and that the BQF is a better metric than spot 

size in determining the extent to which Assumption 3 is violated. 

 
Figure 134: Electron trajectories (left) and histogram of incident locations on the sample 

surface (right) for location 5. 

 

 
Figure 135: Angular distribution of primary electrons for location 5. 

 At lower primary electron energies, the shape of the curve for sample current versus 

accelerating potential and focus is similar to Figure 124 as shown in Figure 136, and the 

sample current may be used to determine the optical settings which produce the maximum 
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BQF. Figure 136 is made up of 506 measurements with the accelerating potential and 

sample bias decreased from those used in the aforementioned measurements. The 

measurements correspond to primary electron impact energies between 10 and 20 eV. The 

potentials listed in Table 13 were held constant during these measurements. The chamber 

pressure was between 2.3x10-9 and 3.4x10-9 Torr. 

 
Figure 136: Surface plot of the sample current, isample, versus accelerating potentials, VEE, 

and focus potentials, VFO. The sample bias was -10 V for these measurements. The other 

potentials involved in these measurements are listed in Table 13. 

 

Table 13: Potentials used in measurements involve primary electron energies between 10 

and 20 eV. 

VES, V VG, V VFA, V Vs, V VF, μV 

711 mV 0.00 10.0 -9.99235±0.00025 -0.15±0.25 
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At even lower primary electron energies, the maxima and minima for a given 

accelerating potential become less distinguishable as shown in Figure 137. At an 

accelerating potential of 5 V, the maximum occurs at a focus potential of 201.1 V, which 

is identified in Figure 137. The simulated example at the beginning of this section was 

based on the potentials associated with this maximum. Though the sample current is 

highest at this point, the BQF is only 20.8%. Using the sample current to determine the 

optimal electron gun settings is more difficult at low energy since the maxima and minima 

for a given accelerating potential are more difficult to locate. 

 
Figure 137: Surface plot of the sample current, isample, versus accelerating potentials, VEE, 

and focus potentials, VFO. The sample bias was -5 V for these measurements. The other 

potentials involved in these measurements are listed in Table 15. 
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Table 14: Potentials used in measurements involve primary electron energies between 0 

and 9 eV. 

VES, V VG, V VFA, V Vs, V VF, μV 

710 mV 0.00 10.0 -5.017±0.0002 -0.25±0.25 

 

4.5 Magnetic Type I Contrast Sample 

In the previous section, the maximum BQF listed is 89.5% for an acceleration 

potential of 51 V and a sample bias of -30 V. The BQF is degraded from 100% by the 

deflection due to the asymmetric field caused by biasing the sample. In order to prevent 

this deflection, the sample bias must be removed. However, in the experimental system, 

the sample was negatively biased in order to prevent tertiary electrons from reaching the 

sample. Thus, another method is needed to suppress the tertiary electrons without having 

to negatively bias the sample. 

Magnetic materials are known to alter the trajectories of secondary electrons 

creating a contrast in SEM images known as a magnetic contrast type I [149, 150]. Yuan 

et al. indicated that with strong magnetic fields the secondary electrons could be confined 

to the sample [150]. In order to determine, if this effect could be used to prevent tertiary 

electrons from leaving the walls of the chamber, neodymium magnets were attached in a 

checkerboard pattern of north and south polarities to the back of a 316SS disk as shown in 

Figure 138. The magnets were alternated in polarity to provide cancellation of the magnetic 

field far from the magnets in order to prevent disturbing the primary electron beam. It is 

easier for the secondary electrons to leave the sample along the magnetic field lines which 

extend further above the sample as shown in Figure 139. This leads to brighter pixels in 

SEM image above the center of the magnets as shown in Figure 140. The region of the disk 
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containing magnets underneath appears darker in SEM images than the region without as 

shown in Figure 141, which indicates fewer secondary electrons are escaping this 

magnetized region of the disk.      

 
Figure 138: Checkboard pattern of magnets attached to the back of a 316SS disk. 

 
Figure 139: Cross-sectional drawing of magnetic field lines for magnetized 316SS disk. 

The blue arrows indicated the locations where secondary electrons can more easily escape 

from the surface of the disk. 
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Figure 140: SEM image of the top 316SS disk with magnets underneath. The orange 

dashed lines correspond to the edges of the magnets. 

 

 
Figure 141: SEM image comparing magnetized and non-magnetized region of the 316SS 

disk. 

 

 This disk was first tested with primary electrons of low energy. The potentials used in 

this test are shown in Table 15. The chamber pressure was between 3.8x10-9 and 4.0x10-9 

Torr. At an accelerating potential of 0 V, electrons were still able to reach the magnetized 
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disk when the sample was biased to -10 V. In the previous results for the sample puck, 

electrons were unable to reach the sample when the accelerating potential was 0 V and the 

sample bias was decreased to less than -1.1 V.  

Table 15: Potentials for testing magnetized sample at low primary electron energies. 

VES, V VG, V VFA, V Vs, V VF, μV 

710 mV 0.00 10.0 -9.9725 ±0.0003 -0.25±0.35 

 

 
Figure 142: Sample current for magnetized sample at low primary electron energies. 

 

This difference may be a result of two possibilities. The first is that the thermionic energy 

distribution contains electrons with more energy than was previously estimated (i.e. the 

energy distribution shown in Figure 102 should span over 10 eV). However, this is very 

unlikely since the simulation results agree well with the experimental data previously 

presented and the cathode would exceed the melting point of tantalum in order to produce 

a detectible number of electrons with more than 10 eV of kinetic energy. The second is that 

the electron-electron interactions (i.e. space charge effects) allow some of the electrons to 
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overcome the energy barrier posed by the negatively biased sample. The magnetic field 

acts like funnels which channel electrons down towards the center of each magnet 

increasing the likelihood of these interactions occurring. It is more likely that this 

possibility is true, but it cannot be varied with SIMION® due the its limitations regarding 

space charge.  

The primary electron beam is distorted by the magnetic field surrounding the disk 

making it difficult to determine how the primary electrons are interacting with the sample. 

In order to determine if the disk was successful at retaining the secondary electrons, the 

disk was tested at several focus potentials for each accelerating potential. The disk was 

biased to -10 V in order to reduce the number of tertiary electrons reaching the disk from 

the chamber walls. Since negatively biasing the sample reduces the ability of the magnetic 

field to retain secondary electrons, the bias on the disk was not decreased from -10 V. The 

potentials used in this test are shown in Table 16. The chamber pressure was between 

3.2x10-9 and 3.6x10-9 Torr. 

Table 16: Potentials used in testing magnetized sample while varying the accelerating and 

focus potentials. 

VES, V VG, V VFA, V Vs, V VF, μV 

711 mV 0.00 10.0 -9.9874 ±0.0004 -0.2±0.2 

 

The results of these test are shown in Figure 143. When the focus potential, VFO, equals 

100 V, the sample current remains positive. Previously, the sample current for sample puck 

alone became negative when VEE + Vss exceeded approximately 30 V.  This indicates that 

secondary electrons are being retained at the disk by the magnetic field preventing the 

sample current from reversing directions. Thus, the SEY remains less than one. However, 

the sample current remained small (<1.5 pA) compared to the primary electron current 
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which was approximately 6.5 pA based on previous measurements. The current may be 

small due to the current limiting effect of space charge or the deflections of primary 

electrons away from the disk by the magnetic field. This reduction in current indicates that 

the magnetized sample may not function well when used as an electron absorber. 

 
Figure 143: Surface plot of the sample current, isample, versus accelerating potentials, VEE, 

plus sample bias, Vs, and focus potentials, VFO from measurements involving magnetized 

sample. The other potentials involved in these measurements are listed in Table 16. 

 

When the focus potential is increased from 100 V, the sample current is able to 

reverse directions. This reversal may be caused by primary electrons interacting with the 

regions of the disk which are not magnetized or the unsuccessful retention of secondary 

electrons. In order to determine that the magnetized sample is successful at retaining a 

majority of the secondary electrons under all conditions, the magnetic checkboard must be 

extended to encompass the entire back of the disk. This was not accomplished due to the 

time constraints of this research. In summary, this research indicates that it may be possible 

to reduce secondary electron emission using a checkboard pattern of magnets under a 
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conductive surface; however, additional testing is necessary to confirm that secondary 

electron emission will be reduced for all test conditions. 

4.6 Summary 

In this chapter, several discoveries were made that may enable greater accuracy and 

repeatability in SEY measurements. First, it was discovered that measurements of SEY are 

sensitive to the primary electron current involved in the measurements. This does not 

indicate that the SEY is current dependent, which would be in opposition to the belief 

currently held by the scientific community. Rather, it indicates that other factors, such as 

space charge or variations in the energy distribution of the primary electrons, may cause 

the measurements of the SEY appear current dependent. Second, it was discovered the 

shape of the primary electron beam is more sensitive to the spacing between the sample 

and electron gun when the negative bias of the sample is large. Thus, it is important to 

reduce this bias as much as possible to prevent the distortion of the primary electron beam. 

Third, it was found the first crossover is sensitive to the electron gun settings, and it varied 

by over 6 eV for the tests performed in this chapter. This sensitivity highlighted the need 

for a new metric for defining the quality of the primary electron beam hence the BQF 

metric was developed. Fourth, it was discovered that the BQF is a better metric for 

determining beam quality than spot size since the BQF takes into consideration the 

incidence angle of the primary electrons. Fifth, it was found that a relationship exists 

between the maximum sample current and the BQF. This relationship may be used to fine-

tune the primary electron beam experimentally. Sixth, it was discovered that under certain 

conditions the magnetic type I contrast may be used to reduce the SEY to less than one, 
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which warrants further investigation to determine if secondary electron emission can be 

reduced for all conditions. Lastly, it was found that the magnetized sample appears to limit 

the primary electron current reaching the sample which reduces its usefulness as an electron 

absorber. 
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V. Conclusions and Recommendations 

This chapter summarizes the finding of this research and provides guidance for 

improving the accuracy of SEE measurements. Section 5.1 answers the research questions 

identified in the objectives of Chapter I. Section 5.2 provides guidance for improving the 

accuracy of measurements based on this research. Section 5.3 provide a roadmap of the 

continuing research effort. Section 5.4 lists the key contributions of this research. 

5.1 Answers to Research Questions 

In Chapter I, eight objectives for this research were specified. Six of those 

objectives were directed towards answering the following questions. 

1) What are the factors, excluding sample composition, which may lead to 

measurement discrepancies? 

 

In Chapter II, it was determined that seven assumptions are commonly made during 

SEY measurement as well as other types of SEE measurement. These assumptions 

are 

1. The measured SEY at one location on a sample’s surface is applicable to 

the entire surface. 

2. The effects of contact potential difference are negligible. 

3. The primary electrons impact the sample surface at the desired incidence 

angle and energy. 

4. Space charge is negligible. 

5. Earth’s magnetic field is negligible. 

6. The primary electron current can be accurately measured using a Faraday 

cup or by positively biasing the sample. 

7. The measurement results are solely due to the SEE interaction taking 

place on the sample’s surface involving primary and secondary electrons 

and all other interactions occurring in the vacuum chamber are negligible. 

 

The violation of these assumptions is the factor that will lead to measurement 

discrepancies. Therefore, it is important to either minimize these violations or 
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assume some of the assumptions listed are non-negligible and appropriately 

correct for them in the measurements. 

 

2)  How are SEY measurements affected by the use of different primary electron 

currents? 

 

In Chapter IV, it was shown that differences in the primary electron current altered 

the ratio between the sample current and Faraday cup current, which leads to an 

SEY estimate that varies with the primary current. This result does not indicate that 

the SEY is current dependent. Instead, it indicates that measurements of SEY may 

be current dependent due to factors such as space charge, the energy distribution of 

the primary electrons, and nonlinearities in the measurement system. Furthermore, 

it indicates that assumptions 3 and 4 may have been violated. 

 

3) How does the spacing between the electron gun and sample effect SEY 

measurements? 

 

In Chapter IV, it was discovered that the primary electron energy associated with 

the electrons beginning to interact with the sample is sensitive to the spacing 

between the electron gun and sample when a large negative bias (-195 V) is applied 

to sample. It was determined that this sensitivity is due to the deflections of 

electrons by the asymmetric electric field between the sample and Faraday cup. 

These results indicated severe violations of Assumption 3. Reducing the sample 

bias decreases the deflection. However, the deflection cannot be eliminated entirely 

without properly biasing the sample to eliminate the electric field between the 

sample and Faraday cup based on their CPD or removing the Faraday cup from the 

end of the electron gun. 
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4)  How is the first crossover of the SEY curve altered by changing the potential of 

the electron gun optics? 

 

Though in principle the primary electron energy associated with the first crossover 

is easy to measure, the results shown in Chapter IV indicate that this energy is 

sensitive to the electron gun’s optical settings. For the settings which were tested, 

this energy varied by more than 6 eV. This variation was due to changes in the 

shape of the primary electron beam, which led to violations of Assumption 3. 

5) How can the electron gun’s optics be adjusted in order to reduce SEY 

measurement errors? 

 

In order to reduce SEY measurement errors, the electron gun’s optics must be 

adjusted to minimize the violation of Assumption 3. A new metric, called BQF, 

was developed in Chapter IV which provides a quantitative means of determining 

how well the primary electron beam satisfies Assumption 3. The optimal electron 

gun settings may be found by calculating the BQF for different electron gun settings 

using the simulation model. The settings which produce the highest BQF best 

satisfy Assumption 3. In addition, measurements of the sample current may be used 

to determine the optimal electron gun settings for measurements performed at 

normal incidence as described in Chapter IV. This method requires varying the 

focus potential of the electron gun until the sample current is maximized for a given 

1st anode, grid, and accelerating potential. 

 

6) Can the magnetic type I contrast effect be used to reduce secondary emission 

from the vacuum chamber walls during SEY measurements? 
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The results shown in Chapter IV indicate that it may be possible to reduce 

secondary electron emission using the magnetic type I contrast effect. 

Unfortunately, the results of the measurements performed on the magnetized 316SS 

disk did not confirm that the SEY would remain below one for all focus potentials 

of the electron gun, and it is unknown if the electron beam may have been 

interacting with the unmagnetized portion of the disk. Additional testing is 

necessary to confirm that secondary electron emission is indeed reduced for all 

variations in the primary electron beam. The magnetic field appears to limit the 

primary electron current reaching the surface of the disk. This diminishes its 

usefulness as an electron absorber. Ideally, the vacuum chamber walls will absorb 

all the secondary electrons from sample during SEY measurements. Thus, the 

current limiting effect of the magnetic type I contrast may prohibit its use in 

reducing secondary electron emission from the vacuum chamber walls. 

5.2 Guidance for Improving Measurement Accuracy 

Throughout this research, the challenges associated with performing SEE 

measurements have become increasing apparent, especially in the case of low energy SEY 

measurements. The highest accuracy is obtained by satisfying all the assumptions listed in 

the previous section. However, this is impossible to achieve in practice. In most cases, the 

first assumption can be readily satisfied by increasing the diameter of the primary electron 

beam. However, if the sample has large features, measurements should be performed at 

several locations and averaged. This is accomplished by translating the sample rather than 
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scanning the electron beam since scanning the electron beam leads to a variation in the 

incidence angle. 

Since materials often have different work functions, Assumption 2 cannot be 

satisfied in many cases. For low energy measurements, this assumption should be avoided 

since the CPD may be of the same order of magnitude as the primary electron energies. 

The CPD must be determined in situ because exposure to the atmosphere will alter the 

surface chemistry of the sample leading to a change in the sample’s work function. The 

method developed in Section 3.2.4 may be used in estimating the work function of the 

sample. However, measurements of the work function using the Kelvin probe method or 

the photoelectric effect will provide addition additional information that will aid in better 

determining the work functions that should be applied to each electrode within the 

measurement system. Since the electric field within the system is determined based on both 

the measured potential and work function of each electrode, the simulation model will 

provide the most accurate results when both are incorporated into the model. 

Much of this research focused on satisfying the incidence angle aspect of 

Assumption 3. The methods developed in this research involving the BQF may be used in 

determining the electron gun settings that best satisfy the incidence angle requirement. As 

observed in the results section of this research, an asymmetric electric field should be 

avoided due the deflecting effect this has on the primary electrons. This requires either 

eliminating the electric field entirely between the electrodes that are causing the asymmetry 

or redesigning the measurement system without these electrodes. Assumption 3 also 

requires that all the primary electrons arrive at the sample with the same energy. In practice, 

this is impossible. The cathode temperature may be decreased to reduce thermal spreading 
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(see Section 3.2.4). However, this also reduces the currents being measured which leads to 

a lower SNR. Alternatively, a different cathode may be selected, or an energy analyzer may 

be used to filter out electrons that do not have the desired energy. In any case, the primary 

electrons can never be made to arrive at the sample with precisely the same energy. 

Nevertheless, the energy distribution for the primary electrons may be determined and then 

deconvolved with the measured SEY curve to yield the true SEY curve [7]. 

Assumption 4 becomes increasing challenging as the primary electron energy is 

reduced since electrons are traveling more slowly and have more opportunities to interact 

with each other. Space charge effects are mitigated by reducing the currents involved in 

measurement. However, reducing the current also creates additional challenges caused by 

the reduction in the SNR. To fully examine this problem will require the aid of simulation 

models which are capable of simulating electron-electron interactions. In general, scenarios 

that confine electrons to a small volume should be avoided whenever possible when 

performing measurements. 

Assumption 5 may be satisfied by shielding the vacuum chamber from external 

magnetic fields using a material with high permeability, such as mu-metal, or by negating 

the magnetic field with a second magnetic field. One of the challenges observed in this 

research is determining the magnetic field within the vacuum chamber and near the electron 

gun. Assuming that the magnetic field within the chamber is same as the magnetic field 

outside the chamber is prone to error since the chamber is composed of materials that are 

slightly magnetic. Placing a magnetometer within the chamber and near the electron gun is 

the best way to determine if Assumption 5 is satisfied. If Assumption 5 is not satisfied, the 
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incidence angle of the primary electron beam may be shifted from the desired incidence 

angle as the primary electron’s energy is decreased.     

Satisfying Assumption 6 presents two challenges. The first challenge is capturing 

all of the electrons leaving the electron gun in order measure the current associated with 

the primary electron beam. By increasing the positive bias of the sample or Faraday cup, 

progressively more electrons are captured and the measured current increases as indicated 

by Figure 144. The positive bias may be increased to the limits of the measurement 

apparatus and still not capture all of the electrons leaving the electron gun.  

 
Figure 144: Ratio of the sample current in the open position to the Faraday cup current in 

the closed position versus sample bias. This figure is an adaptation of Figure 67. The 

Faraday cup bias and electron gun settings were held constant for these measurements. 

 

The largest permissible positive bias should be used in order to measure this current, and 

the geometry of the Faraday cup also helps to capture more of these electrons providing a 
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more accurate measurement of this current. However, this current is not the primary 

electron current that reaches the sample surface since not of all electrons which leave the 

electron gun may reach the sample surface. The second challenge is determining the 

primary current based on the current leaving the electron gun. For higher primary electron 

energies (>10 eV), most of the electrons leaving the electron gun can be directed into the 

sample. Thus, the primary current and current leaving the electron gun are approximately 

equal. For lower energies (<10 eV), directing the electrons into the sample becomes more 

challenging due to beam defocusing and possibly space charge effects. In this case, 

simulation models in addition to measurements should be used to assess the primary 

current.   

 Proving that Assumption 7 has been satisfied or the extent to which it has been violated 

is more difficult compared to the other assumptions. Given the nature of this assumption, 

it is not directly measurable. Thus, it requires the iterative process discussed in the 

beginning of Chapter III. Unfortunately, literature regarding this topic is scarce. This 

research originally set out to investigate this topic in greater detail but was prohibited due 

to software problems and time constraints. Based on literature, the biggest challenge to 

overcome in order to satisfy this assumption is suppressing tertiary electrons while 

simultaneously avoiding defocusing of the primary electron beam [56].   

 In addition to attempting to satisfy the assumptions, these measurements are considered 

low-level measurements requiring additional considerations to perform accurately and with 

low noise. The discussion regarding the development of the experiment system used in this 

research provides insight into these considerations when developing an experimental 

system to measure SEE. Perhaps, the most critical factor learned from the developed of the 
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system was the timing of measurements in order to avoiding transients, which allowed 

measurements of currents in the fA range. 

5.3 Roadmap of Future Research 

This research was a first step in trying to improve the accuracy of SEE 

measurements with a focus on SEY measurements. The following steps listed below are 

the planned future research. 

1) Replacement of Faraday cup with a horn-shaped collector 

Due primarily to the asymmetric electric field created by the Faraday cup, the cup 

will be replaced by a horn-shaped collector as shown in Figure 145 and Figure 

146. The updated design will provide the following benefits: 

a)  No asymmetric electric field to cause primary electron beam deflection 

b) Faster measurements since measurements do not involve the step of 

moving the Faraday cup and waiting for the associated transient to settle 

c) No repetitious movement of mechanical parts during measurements 

which could eventually lead to a mechanical failure 

d) Greater accuracy in determining thermionic emission distribution since 

secondary emission from the sample can be suppressed by negatively 

biasing the collector during measurements of the distribution 

e) Higher BQF due to less beam defocusing with the removal of the negative 

sample bias 

f) Simplification of the simulation model to 2D since the apparatus is 

approximately cylindrically symmetric when the Faraday cup is removed 
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Figure 145: Horn-shaped collector mounted at end of electron gun. 

 

 
Figure 146:Cross-sectional view of electron gun with horn-shaped collector. 

 

2) Development of a feedback control system to mitigate the magnetic field 

near the electron gun 

 This system will be implemented with a magnetometer within the chamber on the 

electron gun. Electromagnetics will be mounted outside the chamber to provide a 
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counteracting magnetic field. This will alleviation the effect the magnetic field 

has on the primary and secondary electrons.  

 

3) Extend simulation model to include secondary electron emission and space 

charge effects using VSim 

In order to determine the validity of assumption 7, a simulation model capable of 

modelling both SEE and space charge is required. VSim has the necessary 

capabilities. However, a computer with more RAM than the one used in this 

research, which had 64 GB, is required. An additional software package, called 

Charge Particle Optics (CPO), will also be investigated for its suitability in 

performing these simulations [151]. 

 

4) Develop a sensor for measuring the work function of the sample in situ 

 The ability to measure the work function of a sample will aid in determining the 

thermionic emission energy distribution and provide a means of validating the 

method which was develop in Section 3.2.4. 

 

5) Provide access to measured data for use by outside organizations 

 Once the accuracy of the experimental system has been determined, then the 

measurements produced by the system will be made readily available to outside 

organizations for use in modelling and simulation and scientific research. Since 

the system is and will continue to be automated, large amount of data can be 

easily generated for use by others throughout the scientific and engineering 

communities.  
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5.4 Key Contributions 

This research effort produced several key contributions which will benefit both the 

ongoing effort at AFIT and those performing experimental research regarding secondary 

electron emission. 

5.4.1 Automated experimental system 

` In addition to the hardware modifications and the repairs performed during this 

research, the system was automated to perform a countless number of tests under varying 

test conditions based on a tab-delimited text file. This significantly reduces the number of 

research hours that would be spent otherwise manually controlling the system. With the 

modifications to the hardware and programming, the system is capable of performing 

measurements in the fA range. The system is beneficial to the continuing research at AFIT, 

and others performing SEE measurements outside AFIT may find the information 

regarding the development of this system useful.  

5.4.2 High-fidelity simulation model 

The development of a high-fidelity model of the experimental apparatus is critical 

to the ongoing study of SEE at AFIT. This model has already proven its value in this 

research in providing predictions for the primary electron trajectories and explaining 

experimental data. The model will continue to be added to and used in future research.  
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5.4.3 Thermionic emission energy distribution model 

A new model of the thermionic emission energy distribution was developed that 

allowed calibration without knowledge of the cathode’s temperature. This model also 

provides a means of estimating the work function of the sample being tested and  is critical 

in predicting the trajectories of the primary electrons at low energy. It may be used in the 

deconvolution of the measured SEY curve to obtain the true SEY curve. This model will 

continue to be tested in ongoing research following the replacement of the Faraday cup 

with a horn-shaped collector.   

5.4.4 New metric for characterizing primary electron beam 

Previous research at AFIT based the quality of the primary electron beam on the 

spot size created at the sample [4]. The electron beam was considered the best for SEY 

measurement when the spot size was minimized. However, Assumption 1 indicates that a 

larger spot size may actually be better in provide an average SEY for the entire surface. 

Furthermore, the SEY is dependent on the incidence angle, and the spot size does not take 

this factor into account. A new metric, called the BQF, was developed in order to quantify 

how well the primary electron beam achieved the desired incidence angle and landed within 

the desired sample area. 

5.4.5 Discovery of relationship between BQF and sample current 

During this research, it was discovered that a relationship exists between the BQF 

and the measured sample current. The relationship may be used in order to determine the 

optimal electron gun settings when measurements are performed at normal incidence. 
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Since the sample current is maximized when the primary electrons are normally incident 

on the sample surface, the optimal electron gun settings may be found by adjusting the 

optics of the electron gun until the sample current is maximized. This method may be used 

in addition to the predictions by the simulation model to fine-tune the primarily electron 

beam and correct for deficiencies in the model. 
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Appendix A. Communication and Timing Connections 

 

 The experimental system is controlled by a single laptop running LabVIEW as shown 

in Figure 147. The waveform generator provides the timing source for the electrometers 

and digital multimeters (DMMs). The electrometers are maintained in the “Trigger Layer” 

during measurements to provide the quickest response to the timing signal [140]. 

 
Figure 147: Communication and Timing Connections. 

Appendix B. Measurement Procedures  
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The following procedure provides the steps involved in setting up the experimental 

system to perform measurements. It is assumed that the chamber has already been pumped 

down to less than 1.0x10-8 Torr and the sample has been properly positioned. 

1. Energize electron gun cathode to begin three-hour warmup period. 

a. Turn on the electron gun power supply using the green rocker switch. 

b.Turn on the high voltage supply using the red rocker switch. 

c. Set the grid potential to 50 V to prevent electrons from leaving the cathode. 

d.Set the source potential to the desired value. 

e. Start three-hour warm up period. 

2. Turn on meters, power supplies, and signal generator. 

3. After allowing one hour for the meters to warmup, perform input bias current and offset 

voltage calibration on the Keithley electrometers following the procedure listed on page 

2-17 of the Model 6514 System Electrometer Instruction Manual. This will require 

disconnecting the electrometers from the rest of the measurement circuit. 

4. Reconnect electrometers to the measurement circuit. 

5. Set electrometers to measure current. 

6. Set the power supplies to the appropriate voltage. Depending on the voltage, it may 

require over an hour for the circuit to settle after applying a new voltage to the circuit. 

7. Set the electrometers to 10 PLCs and the smallest current range possible depending on 

the expected amount of current to be measured. Do not use auto range. You will be 

performing a zero correct for this range in a later step. 

8. Create a tab-delimited text file containing the desired electron gun settings for each 

measurement following the format shown in Figure 148. Figure 149 shows an example 
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MATLAB script for creating this text file. There is not a limit on the number of rows 

contained within the text file. The experimental system will perform measurements 

starting from the top row and conclude with the last row. This step may be 

accomplished at any time prior to measurements. 

 
Figure 148: Identification of columns in tab-delimited text file for configuring electron 

gun. 

 

 
Figure 149: Example MATLAB script for generating tab-delimited text file for configuring 

electron gun. 

 

9. Configure laptop 

a. Connect laptop to external power. 
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b.Connect all USB cables to the appropriate locations identified on the laptop. 

c. Power up laptop and login to “jsattler” account. 

10. Create a folder for measured data. 

11. Open “File_Driven_Measurment.vi” on desktop. 

12. Enter the file path to the text file containing the desired electron gun settings as shown 

in Figure 150. 

 
Figure 150: Box on LabVIEW front panel for specifying the file path of text file containing 

electron gun settings. 

 

13. Enter the file path for the input and output files produced during measurements as 

shown in Figure 151. Each measurement will produce an input and output file, and the 

files will be automatically indexed starting from one. 

 
Figure 151: Boxes on LabVIEW front panel for specifying the file path of the input and 

output files. 

 

14. Enter information regarding the sample being tested and the sample’s location in the 

chamber as shown in Figure 152. This data will be stored in each input file. 
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Figure 152: Boxes on LabVIEW front panel containing information regarding sample 

type and location within chamber. 

 

15. Ensure that the front panel is set to the values shown in the following figures. The front 

panel should default to the correct settings. 

 
Figure 153: Settings on LabVIEW front panel for servo, electron gun, pressure gauge, and 

function generator (a.k.a. signal generator) configuration. 
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Figure 154: Settings on LabVIEW front panel for configuration of Keithley electrometers 

and Agilent DMMs. 
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Figure 155: More settings on LabVIEW front panel for configuration of Agilent DMMs. 

 

16. Ensure that the electrometers do not display FAST, MED, SLOW, REL, or FILT. 

17. Enable zero check on the electrometers and perform a zero correct. 

18. Disable zero check on the electrometers. 

19. After the three-hour warmup time has been fulfilled, click the run icon on LabVIEW 

to begin measurements. LabVIEW’s front panel will display data from the most recent 
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dataset acquired. If the data does not appear correct, measurements can be stopped 

using the stop button under the loop index. It may require that the system cycles through 

another measurement before stopping. It is a good idea to make sure that the input and 

output files are being properly stored in the desired folder and the data within the files 

appear correct before leaving the system to perform a large number of measurements 

autonomously. 

  



 

219 

 

Appendix C. File Formats and Data Analysis Scripts  

 

Measurements are stored in an input and output file. The input file stores 

information regarding the measurement conditions, and the output file stores the currents 

measured by the Keithley electrometers and voltages measured by the Agilent DMMs. The 

format for the input file is shown in Figure 156.  

 
Figure 156: Input file format. 



 

220 

 

For more information regarding the electron gun related parameters, consult section 4.4.2 

of the ELG-2/EGPS-1022 Electron Gun and Power Supply System manual. 

 The format for the output file is shown in Figure 157. Each column is associated with 

a variable or parameter. 

 
Figure 157: Output file format. 

Before data is extracted from the input and output files. The plots of the currents is 

and iF for multiple datasets should be created using the following MATLAB script. This 

script is used to determine the appropriate locations to extract samples from when using 

the Multiple Dataset Analysis script. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Title: Overlap Datasets 

% Author: Matthew Vincie 

% Organization: Air Force Institute of Technology 

% Date: 27 Oct 2019 

% Description: This script is used to plot the current signals from   

%              multiple datasets on top of one another. Markers are used to 

%              identify the locations where data will be extracted using 

%              the Multiple_Dataset_Analysis script. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%% Clear 

close all; 

clear 

clc 

%% Setup 

Number_Files=1056; %Number of files to read 

%% Plot Sample Current from Multiple Datasets 

figure('units','normalized','outerposition',[0 0 1 1]) 

for i=1:Number_Files 

filename = sprintf('output_%d.txt',i);     

D = dlmread(filename); 

plot(-D(:,3)*10^12)%,'.black'); 

ylabel('i_s, pA'); 

xlabel('Sample Number'); 
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hold on 

end 

  

% The following code places markers on the plots to identify the beginning 

and 

% end of the regions where data will be extracted from. 

dline=linspace(-3,3,10); 

plot(6*ones(10,1),dline,'k-.')%Plot vertical line through sample number 6 

plot(41*ones(10,1),dline,'k-.')%Plot vertical line through sample number 41 

plot(63*ones(10,1),dline,'k-.')%Plot vertical line through sample number 63 

plot(64*ones(10,1),dline,'k-.')%Plot vertical line through sample number 64 

plot(74*ones(10,1),dline,'k-.')%Plot vertical line through sample number 74 

plot(76*ones(10,1),dline,'k-.')%Plot vertical line through sample number 76 

plot(84*ones(10,1),dline,'k-.')%Plot vertical line through sample number 84 

  

  

%% Plot Faraday Cup Current from Multiple Datasets 

figure('units','normalized','outerposition',[0 0 1 1]) 

for i=1:Number_Files 

filename = sprintf('output_%d.txt',i);     

D = dlmread(filename); 

plot(-D(:,1)*10^12)%,'.black'); 

ylabel('i_F, pA'); 

xlabel('Sample Number'); 

hold on 

end 

axis([0,120,-1,7]) 

  

% The following code places markers on the plots to identify the beginning 

and 

% end of the regions where data will be extracted from. 

dline=linspace(-10,10,10); 

plot(6*ones(10,1),dline,'k-.')%Plot vertical line through sample number 6 

plot(41*ones(10,1),dline,'k-.')%Plot vertical line through sample number 41 

plot(63*ones(10,1),dline,'k-.')%Plot vertical line through sample number 63 

plot(64*ones(10,1),dline,'k-.')%Plot vertical line through sample number 64 

plot(74*ones(10,1),dline,'k-.')%Plot vertical line through sample number 74 

plot(76*ones(10,1),dline,'k-.')%Plot vertical line through sample number 76 

plot(84*ones(10,1),dline,'k-.')%Plot vertical line through sample number 84 

 

 

The following MATLAB script is an example of a MATLAB script used to extract data 

from each dataset and produce a variety of plots including surface and contour plots. The 

“Read Output File and Extract Data” and “Read Input File” sections of the script were 

routinely used to extract data from datasets regardless of the type of measurements being 

performed and the plots being created. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Title: Multiple Dataset Analysis 

% Author: Matthew Vincie 
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% Organization: Air Force Institute of Technology 

% Date: 27 Oct 2019 

% Description: This script is used is extract and display data from 

%              multiple datasets. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%% Clear 

close all; 

clear 

clc 

%% Setup 

Number_Files=1056;% Number of files to read 

%% Extract Data From Multiple Datasets  

for i=1:Number_Files 

%% Read Output File and Extract Data 

filename = sprintf('output_%d.txt',i);     

DO = dlmread(filename); 

MEAN_Sample_Leakage_fA(i)=mean(-DO([6:41,84:120],3)*10^15); 

MEAN_Faraday_Leakage_fA(i)=mean(-DO([6:41,84:120],1)*10^15); 

MEAN_Sample_CLOSED_fA(i)=mean(-DO(63:64,3)*10^15); 

MEAN_Faraday_CLOSED_pA(i)=mean(-DO(63:64,1)*10^12); 

MEAN_Sample_OPEN_pA(i)=mean(-DO(74:76,3)*10^12); 

MEAN_Faraday_OPEN_fA(i)=mean(-DO(74:76,1)*10^15); 

  

MEAN_Sample_Voltage(i)=mean(DO(4:120,6)); 

STD_Sample_Voltage(i)=std(DO(4:120,6)); 

  

MEAN_Faraday_Voltage(i)=mean(DO(4:120,5)); 

STD_Faraday_Voltage(i)=std(DO(4:120,5)); 

%% Read Input File 

filename = sprintf('input_%d.txt',i); 

fname = fopen(filename); 

myline = fgetl(fname); 

mygoindex = 1; 

mygiindex = 1; 

while ischar(myline) 

    %myline = "go: #,####" 

    if uint8(myline)==9 

        % Do Nothing - Blank line 

    elseif length(myline)==0 

    else 

        % Do something 

        if myline(1:2) == 'go' 

            mycommas=strfind(myline,','); 

            go(mygoindex,i) = 

str2double(myline(mycommas(1)+1:length(myline))); 

            mygoindex = mygoindex+1; 

        elseif myline(1:2) == 'gi' 

            mycommas=strfind(myline,','); 

            gi(mygiindex,i) = 

str2double(myline(mycommas(1)+1:length(myline))); 

            mygiindex = mygiindex+1; 

        elseif myline(1:4) == 'Temp' 

            Temp(i) = str2double(myline(6:length(myline))); 

        elseif myline(1:2) == 'V2' 

            Pressure(i) = str2double(myline(4:6))*10^(-

str2double(myline(8:9))); 

        end 

    end 

    myline = fgetl(fname); 

end 
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fclose(fname); 

end 

%% Plot Input Factors 

figure 

subplot(3,4,1) 

plot(gi(6,:)/100,'o') 

ylabel('Energy, eV') 

xlabel('Measurement Number') 

subplot(3,4,2) 

plot(gi(2,:),'o') 

ylabel('Source Potential, mV') 

xlabel('Measurement Number') 

subplot(3,4,3) 

plot(gi(3,:)/100,'o') 

ylabel('Grid Potential, V') 

xlabel('Measurement Number') 

subplot(3,4,4) 

plot(gi(4,:)/10,'o') 

ylabel('1st Anode Potential, V') 

xlabel('Measurement Number') 

subplot(3,4,5) 

plot(gi(5,:)/10,'o') 

ylabel('Focus Potential, V') 

xlabel('Measurement Number') 

subplot(3,4,6) 

plot(gi(7,:)/100,'o') 

ylabel('Emission Current, \muA') 

xlabel('Measurement Number') 

subplot(3,4,7) 

plot(gi(8,:)/1000,'o') 

ylabel('Source Current, A') 

xlabel('Measurement Number') 

subplot(3,4,8) 

plot(Temp,'o') 

ylabel('Temperature, \circC') 

xlabel('Measurement Number') 

subplot(3,4,9) 

plot(Pressure*1e9,'o') 

ylabel('Pressure, 10^-^9 Torr') 

xlabel('Measurement Number') 

subplot(3,4,10) 

plot(MEAN_Sample_Voltage,'o') 

ylabel('Mean Sample Voltage, V') 

xlabel('Measurement Number') 

subplot(3,4,11) 

plot(MEAN_Faraday_Voltage*1e6,'o') 

ylabel('Mean Faraday Voltage, \muV') 

xlabel('Measurement Number') 

%% Plot sample current versus accelerating potential 

figure 

plot(gi(6,:)/100,MEAN_Sample_OPEN_pA-MEAN_Sample_Leakage_fA/1e3,'o') 

ylabel('i_s_a_m_p_l_e, pA') 

xlabel('Accelerating Potential, V') 

grid 

%% Contour plot of sample current versus focus potential and accelerating 

% potential 

X=vec2mat(gi(6,:)/100,96)'; 

Y=vec2mat(gi(5,:)/10,96)'; 

Z=vec2mat(MEAN_Sample_OPEN_pA-MEAN_Sample_Leakage_fA/1e3,96)'; 

figure 

contourf(X,Y,Z,40) 
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colormap jet 

c = colorbar; 

c.Label.String = 'i_s_a_m_p_l_e, pA'; 

xlabel('V_E_E, V') 

ylabel('V_F_O, V') 

%% Surf plot of sample current versus focus potential and accelerating 

%  potential 

figure 

surf(X,Y,Z) 

colormap jet 

xlabel('V_E_E, V') 

ylabel('V_F_O, V') 

zlabel('i_s_a_m_p_l_e, pA')  

%% Plot maximum current for a given accelerating potential 

z=zeros(1,size(MEAN_Sample_OPEN_pA,2)); 

i_max=zeros(1,11); 

energy=zeros(1,11); 

for i=0:10 

    maximum=max(MEAN_Sample_OPEN_pA(96*i+1:96*(i+1))); 

    i_max(i+1)=maximum; 

    energy(i+1)=gi(6,96*i+1)/100+MEAN_Sample_Voltage(96*i+1); 

    z(96*i+1:96*(i+1))=(MEAN_Sample_OPEN_pA(96*i+1:96*(i+1))-... 

        MEAN_Sample_Leakage_fA(96*i+1:96*(i+1))/1e3)/maximum; 

end 

figure 

plot(energy,i_max,'k') 

ylabel('i_s_a_m_p_l_e, pA')  

xlabel('Accelerating Potential, V') 
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Appendix D. Simulating Thermionic Emission  

 

Thermionic emission is simulated in SIMION® by appropriately defining the initial 

conditions of each electron. These initial conditions can be defined for each electron using 

a .ion file or for a group of electrons using a .fly or .fly2 file. Defining the initial conditions 

using a .ion file allows the user to create custom distributions for the electrons. The custom 

distributions used in this research required the use of a .ion file. This file was generated 

through a two-step process. First, the following MATLAB script was used to generate the 

initial conditions for electrons following the distributions outlined in Section 3.2.4. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Title: Thermionic Emission Distribution 

% Author: Matthew Vincie 

% Organization: Air Force Institute of Technology 

% Date: 27 Oct 2019 

% Description: This script is used is generate the initial conditions of  

%              the electrons used by SIMION(R).  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear 

close all 

format long 

%% Setup 

alpha=0.056332160160160;% Alpha of associated with energy distribution 

inv_alpha=1/alpha;% Inverse of Alpha 

Duration=4e-4; % Duration of emission (s) 

Q_e=1.60217662e-19; % Charge of an electron (C) 

NUM=1e2; % Number of electrons to generate 

R_mm=0.425; % Radius of cathode 

y=-5.1; % y coordinate of starting position in simulation space 

x_c=19; % x coordinate of cathode center in simulation space 

z_c=19; % z coordinate of cathode center in simulation space 

m_e=0.00054857990946; % Mass of an electron in amu 

q_e=-1; % Charge of an electron in e 

CWF=1; % Charge Weighting Factor 

COLOR=0; % Color using by SIMION to display the particles trajectory 0=black 

%% Create Uniform Distribution for Time of Birth 

TOB=Duration*rand(NUM,1)*1e6; % Time of Birth (microsecond) 

%% Generate theta direction angles following Lambert's cosine law and plot 

%  results 

X=rand(NUM,1); 

theta_rad=0.5*acos(1-2*X);% Random theta distribution in radians 

%% Generate uniformly distributed azimuth direction angles 

azimuth=360*rand(NUM,1); 

%% Generate  energy distribution 

X=randn(NUM,3); 

Y=X(:,1).^2+X(:,2).^2+X(:,3).^2; 

energy=Y/inv_alpha; 

%% Generate Starting Positions using a circular uniform distribution 

%  See https://stackoverflow.com/questions/5837572/generate-a-random-point- 

%  within-a-circle-uniformly 
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r_0=R_mm*sqrt(rand(NUM,1)); 

theta_0=2*pi*rand(NUM,1); 

x=x_c+r_0.*cos(theta_0); 

z=z_c+r_0.*sin(theta_0); 

%% Convert theta_rad into SIMION coordinate frame 

elevation=theta_rad-pi/2; 

elevation=elevation*180/pi; 

%% Generate temp.txt file with initial conditions 

M=[TOB,m_e*ones(NUM,1),q_e*ones(NUM,1),x,y*ones(NUM,1),z,azimuth,elevation,..

. 

    energy,CWF*ones(NUM,1),COLOR*ones(NUM,1)]; 

dlmwrite('temp.txt',M,'delimiter',',','newline','pc') 

 

 Next, the file “temp.txt” was opened, and “;0” was added above the first line in the file. 

The file was then saved in the simulation program directory along with the potential arrays 

with the .txt file extension replaced by .ion. 
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Appendix E. Script for Analyzing Data Produced by SIMION  

 

SIMION® is configured to record the location, elevation angle, and kinetic energy 

associated with a “splat” (i.e. final position of an electron within the simulation space). 

This information is stored in text file, which can be imported into MATLAB for analysis. 

The following MATLAB script was used in this research to analyze the simulation data. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Title: Analysis of SIMION(R) Output File 

% Author: Matthew Vincie 

% Organization: Air Force Institute of Technology 

% Date: 27 Oct 2019 

% Description: This script is used to analyze the location, energy, and  

%              elevation angle of the electrons at their final position 

%              within the SIMION(R) simulation space.  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear 

close all 

%% Setup 

Sample_Bias=-30;% Sample Bias (V) 

Energy=51;% Accelerating Potential (V) 

theta_d=90;% Desired Incidence Angle (deg) 

position_bins=200;% Number of bins used in 2D histogram of positions 

DATA=dlmread('E21F50.txt','\t',1,0);% Import simulation output 

work_radius=10;% Radius of working area in mm 

sample_radius= 19; % Radius of sample puck in mm 

sample_uppermost= -86; % Uppermost point of sample puck in workbench (mm) 

hits=0;% Initialization: number of electrons intercepting the sample puck 

BQF_sum=0;% Initialization: Beam Quality Factor Summation 

%% Analysis of Simulation Data 

NUM=size(DATA,1); 

for i=1:NUM 

    if ((DATA(i,2)-19)^2+(DATA(i,4)-19)^2)<sample_radius^2 && DATA(i,3)<sample_uppermost 

        hits=hits+1;% Add one to the number of electrons intercepting the sample puck 

        x(hits)=DATA(i,2)-19;% Record x location of hit with respect to sample puck center 

        y(hits)=DATA(i,4)-19;% Record y location of hit with respect to sample puck center 

        angle(hits)=-DATA(i,5);% Record elevation angle of hit 

        energy(hits)=DATA(i,6);% Record energy of hit 

        BQF_sum=BQF_sum+(1-abs(-DATA(i,5)-theta_d)/90)*... 

            heaviside(work_radius^2-(DATA(i,2)-19)^2-(DATA(i,4)-19)^2); 

    end 

end 

BQF=100*BQF_sum/hits% Calculate Beam Quality Factor 

%% Histogram of Primary Electron Energies 

alpha=0.056332160160160;% Alpha of associated with thermionic emission energy distribution 

Work_Function_delta=0.23;% Work function difference (cathode - sample) 

offset=Work_Function_delta+Energy+Sample_Bias; 

histogram(energy,'Normalization','pdf') 

hold on  

E=linspace(0,1,1000); 

Y=(1/alpha)*sqrt(E/(2*pi*alpha)).*exp(-E/(2*alpha));% Thermionic Energy Distribution 

E=E+offset;% Offset distribution for sample bias, accelerating potential, and work function 

difference 

plot(E,Y,'r','LineWidth',2) 

legend('Histogram of Primary Electron Energies','Shifted Thermionic Emission Energy Distribution') 

xlabel('Kinetic Energy, eV') 

ylabel('Ambiguous Units') 

%% Histogram of Incident Elevation Angles 

figure 

histogram(angle,'Normalization','pdf') 

ylabel('f(\theta_i)') 

xlabel('\theta_i, deg') 

axis tight 

%% 2D Histogram of Incident Positions on Sample Puck 

figure 

histogram2(x,y,position_bins,'FaceColor','flat') 

colormap jet 
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hold on 

y_c=sqrt(sample_radius^2-x_c.^2); 

plot(x_c,y_c,'k') 

y_c=-sqrt(sample_radius^2-x_c.^2); 

plot(x_c,y_c,'k') 

x_c=linspace(-work_radius,work_radius,100); 

y_c=sqrt(work_radius^2-x_c.^2); 

plot(x_c,y_c,'r') 

y_c=-sqrt(work_radius^2-x_c.^2); 

plot(x_c,y_c,'r') 

xlabel('x, mm') 

ylabel('y, mm') 

zlabel('Counts') 
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