

US Army Corps of Engineers_® Engineer Research and Development Center

Laboratory Characterization of Alkali-Silica Reaction Susceptibility of Aggregates for Charleroi Lock and Dam, Monongahela River Project

Monica A. Ramsey

December 2019

The U.S. Army Engineer Research and Development Center (ERDC) solves the nation's toughest engineering and environmental challenges. ERDC develops innovative solutions in civil and military engineering, geospatial sciences, water resources, and environmental sciences for the Army, the Department of Defense, civilian agencies, and our nation's public good. Find out more at <u>www.erdc.usace.army.mil</u>.

To search for other technical reports published by ERDC, visit the ERDC online library at <u>http://acwc.sdp.sirsi.net/client/default</u>.

Laboratory Characterization of Alkali-Silica Reaction Susceptibility of Aggregates for Charleroi Lock and Dam, Monongahela River Project

Monica A. Ramsey

Geotechnical and Structures Laboratory U.S. Army Engineer Research and Development Center 3909 Halls Ferry Road Vicksburg, MS 39180-6199

Final report

Approved for public release; distribution is unlimited.

 Prepared for U.S. Army Corps of Engineers Pittsburgh District Pittsburgh, PA 15222
 Under MIPR W81ET491842462, Lower Monongahela River Navigation System Feasibility Study

Abstract

The purpose of this study was to identify potential alkali-aggregate reactivity of local aggregates provided by the Pittsburgh District according to ASTM C1260 and to investigate the effectiveness of a combination of cementitious materials and aggregates from provided mixture designs in suppressing alkali-silica reactivity (ASR) induced expansions according to the ASTM C1567. Three ASTM C1260 tests were performed for each aggregate (Hanson, Georgetown, and Shelly). A total of 48 ASTM C1567 tests were performed from the combination of the four mix designs, four fly ash sources, and three aggregate sources. The limiting criteria for the proposed materials and mix designs was expansions less than 0.08% at 30 days of testing in accordance to the Unified Facilities Guide Specification (UFGS) Division 03 Concrete Section 03 30 00.50. Based on this specification, the tested aggregates are considered potentially reactive with 30-day mortar bar expansions of 0.1970% for Hanson, 0.1683% for Georgetown, and 0.1623% for Shelly. However, all 48 combinations of the ASTM C1567 tests passed the limiting criteria with 30-day expansions less than 0.08%. These results indicate that the constituent project materials in the proposed mix designs can effectively mitigate ASR.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. All product names and trademarks cited are the property of their respective owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

Contents

Abs	stract			iii
Fig	ures a	and Table	es	v
Pre	face.			vi
1	Intro	duction		1
	1.1	Backgr	ound	1
	1.2	Probler	m statement	1
	1.3	Objecti	ive and scope	2
2	Mate	erials		3
3	Ехре	rimenta	l Program	4
л	Docu	lte and l	Discussion	0
4				o
	4.1	ASTINIC	01260	8
	4.2	ASTINIC	1567	
		4.2.1	Mix 1	
		4.2.2	NIIX 5	
		4.2.3 4.2.4	Mix 10	
5	Sumi	mary and	d Conclusions	
Api	oendix	x A: Mat	erial Reports	
A				
Ap	pendix	K D: WOr	KSNEEDS FOR ASTIVI CLZOU	41
Арј	pendix	c C: Wor l	ksheets for ASTM C1567	45
Uni	it Con	version	Factors	94
Rej	port D	ocumen	itation Page	

Figures and Tables

Figures

Figure 1. Mortar bar expansions of Hanson, Georgetown, and Shelly aggregates	
in ASTM C1260	9
Figure 2. Mortar bar expansions versus time for Mix 1	12
Figure 3. Mortar bar expansions versus time for Mix 5	14
Figure 4. Mortar bar expansions versus time for Mix 7	16
Figure 5. Mortar bar expansions versus time for Mix 10	18

Tables

Table 1. Summary of mix designs, aggregate sources, and fly ash sources used in combination for ASR testing.	2
Table 2. Summary of materials used in ASR testing	3
Table 3. Concrete mixture proportions for Charleroi L&D	5
Table 4. Aggregate gradation for testing by ASTM C1260/C1567	6
Table 5. Batch proportions used to prepare mortar bars for ASTM C1567	6
Table 6. Average length change percent of all project aggregates in ASTM C1260	8
Table 7. Results of all ASTM C1567 tests at 30 days	10
Table 8. Average length change of mortar bars made from Mix 1 materials	11
Table 9. Average length change of mortar bars made from Mix 5 materials	13
Table 10. Average length change of mortar bars made from Mix 7 materials	15
Table 11. Average length change of mortar bars made from Mix 10 materials	17

Preface

This study was conducted by U.S. Army Engineer Research and Development Center (ERDC) for the Corps of Engineers Pittsburgh District in Pittsburgh, PA, for Charleroi Lock Reconstruction project under MIPR W81ET491842462. The Pittsburgh District technical manager was Mr. Glenn W. Bush Jr.

The work was performed by the Concrete and Materials Branch (GMC) of the Engineering Systems and Materials Division (GM), U.S. Army Engineer Research and Development Center, Geotechnical and Structures Laboratory (ERDC-GSL). At the time of publication, Mr. Christopher M. Moore was GMC Chief; Mr. Justin S. Strickler was GM Chief; and Mr. R. Nicholas Boone was the Technical Director for Force Projection and Maneuver Support. The Deputy Director of ERDC GSL was Mr. Charles W. Ertle II, and the Director was Mr. Bartley P. Durst.

COL Teresa A. Schlosser was the Commander of ERDC, and Dr. David W. Pittman was the Director.

1 Introduction

1.1 Background

The baseline design for the Charleroi Locks originated in 1991 from the Lower Monongahela River Navigation System Feasibility Study. The feasibility study evaluated the ability of Locks and Dams 2, 3, and 4 of the Monongahela River Navigation System to serve navigation interests through the year 2050. The conclusion of the study was to implement a "2 for 3" replacement known as "The Lower Mon Project."

The Lower Mon Project consists of replacement of the fixed-crest dam at Locks and Dam 2 with a gated dam to be renamed the Braddock Locks and Dam, construction of twin 84-ft by 720-ft locks at Locks and Dam 4 to be renamed the Charleroi Locks and Dam, removal of Locks and Dam 3 at Elizabeth, navigation dredging, and relocation of adversely impacted public facilities. The combination of these features will allow for one navigation pool between Braddock Locks and Dam and the Charleroi Locks and Dam, i.e., a 30.3-mile pool.

The Charleroi Lock reconstruction began in 2002 with site development and has continued as funding has become available for separate contracts for the construction of the river wall, upper and lower guide walls, emptying basin, middle wall monoliths M22-M27, and river chamber completion. The project uses government-designed concrete mixes developed in 2005 by the U.S. Army Engineer Research Development Center (ERDC) in Vicksburg, MS, and produced at the left bank batch plant, a government-owned, contractor-operated batch plant located across the river from the lock chambers.

1.2 Problem statement

Alkali-silica reaction (ASR) is a chemical reaction between alkali hydroxides in concrete and active minerals in aggregates that can cause serious expansion and cracking in concrete. The premature distress can result in loss in serviceability in structures such as locks and dams. It is generally recognized that the use of a sufficient quantity of a suitable supplementary cementitious materials (SCM) is one of the more efficient preventative measures for controlling expansion. Standard test methods to evaluate the ASR susceptibility of aggregates and potential methods to mitigate ASR were performed by ERDC in 2005. However, the material quality tests were outdated, and some original source suppliers of fly ash were no longer available. To ensure all local materials met the quality requirements of the Lower Mon Project specifications, the Pittsburgh District re-commissioned the materials testing for validation.

1.3 Objective and scope

The principal objective of the testing was to determine the potential reactivity of three aggregates and the effectiveness in suppressing ASR-induced expansion using a combination of SCMs in mixture designs provided by the District. Such materials include class F fly ash, silica fume, and ground-granulated blast furnace slag. Testing was performed in accordance to ASTM C1260, Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method), and ASTM C1567, Standard Test Method for Determining the Potential Alkali-Silica Reactivity of Combinations of Cementitious Materials and Aggregate (Accelerated Mortar-Bar Method). A total of 48 tests were performed using the combination of mix designs, aggregates, and fly ash sources summarized in Table 1. The purpose was to ensure that the mixture design adequately mitigated expansions due to ASR in all possible combinations.

Mix Design	Aggregate Source	Fly Ash Source
Mix 1	Hanson CA	Sammis
Mix 5	Georgetown FA	Ft. Martin
Mix 7	Shelly FA	Longview
Mix 10		Brandon Shores

Table 1. Summary of mix designs, aggregate sources, and fly ash sources used in combination for ASR testing.

2 Materials

The materials listed in Table 2 were provided by the USACE-Pittsburgh District for testing described in this report. ERDC tested all materials in accordance to the ASTM requirement reference in the table for validation prior to ASR testing. Results are provided in Appendix A.

Material	Manufacturer	Location	CMB #	Testing Validation	
Type II(MH) Cement	Armstrong	Cabot, PA	150063	ASTM C150	
	Headwaters Resources, Ft. Martin		150064		
	Headwaters Resources, W. H. Sammis	Stratton, OH	150065	ASTM C618	
	Separation Technologies, Longview	Maidsville, WV	180005	ASTM 0018	
	Separation Technologies, Brandon Shores	Curtis Bay, MD	180018		
Slag Cement, Grade 100	Argos-Essroc- Lehigh	Middlebranch, OH	150066	ASTM C989	
Limestone Powder	Graymont	Bellefonte, PA	150067	ASTM D242	
Silica Fume	Elkem Materials	Pittsburgh, PA	150068	ASTM C1240	
Coarse Aggregate	Hanson	Connellsville, PA	150070	ASTM C40 ASTM C88	
Fine Aggregate	Georgetown	Georgetown, PA	150069	ASTM C117 ASTM C127/128	
	Shelly	Reedsville, OH	160004	ASTM C131 ASTM C136	
AEA-92 Admixture			150073		
RET 75 Admixture			150074	4	
WR Admixture	Euclid	Cleveland, OH	150075	ASTM C494	
AW Admixture			150076		
HRWR Admixture37			150077		

Table 2. Summary of materials used in ASR testing.

3 Experimental Program

Expansion-based measurements of ASR damage are by far the most common test methods used to assess the ASR susceptibility of aggregates. The potential reactivity of the three project aggregates (Hanson, Georgetown, and Shelly) was determined according to the ASTM C1260, Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method).

In a similar test, the efficiency of suppressing ASR-induced expansion using a combination of SCM's was determined according to the ASTM C1567, Standard Test Method for Determining the Potential Alkali-Silica Reactivity of Combinations of Cementitious Materials and Aggregate (Accelerated Mortar-Bar Method). The combination of SCMs was based on the composition of the four concrete mixture proportions, i.e., Mix 1, 5, 7, and 10, provided in Table 3 as outlined in the Charleroi project specifications.

The ASTM C1567 test method was developed for a single aggregate source in mortar of standard proportions and currently does not have a method for testing a combination of fine and coarse aggregates as specified in the actual concrete mixture design. To overcome the fixed concrete mixture designs, all three aggregate source materials were tested independently with each fly ash source. A total of 48 tests were performed from the combination of the four mix designs (Mix 1, 5, 7, and 10), four fly ash sources (Sammis, Fort Martin, Longview, and Brandon Shores), and three aggregate sources (Hanson, Georgetown, and Shelly).

	Mix 1	Mix 5	Mix 7	Mix 10			
Material	Batch Quantities (lb/yd³)						
Cement (lb/yd)	167	191	253	495			
Class F Fly Ash (lb/yd)	158	75	139	165			
Slag Cement (lb/yd)	367	87	69	0			
Silica Fume (Ib/yd)	29	0	0	0			
Limestone Powder (lb/yd)	155	0	0	0			
³ / ₄ in. Coarse Aggregate (lb/yd)	1,323	739	1,129	1,720			
1 ½ in. Coarse Aggregate (lb/yd)	0	747	935	0			
3 in. Coarse Aggregate (lb/yd)	0	1,000	0	0			
Fine Aggregate (lb/yd)	1,409	958	1,141	1,239			
Potable Water (lb/yd)	303	183	213	258			
Air Entraining Admixture (AEA) (fl oz/yd)	0	8	16	7			
Water Reducing Admixture (WRA) (fl oz/yd)	0	0	0	0			
High Range Water Reducing Admixture (HRWRA) (fl oz/yd)	138.1	0	0	12			
Retarding Admixture (RET) (fl oz/yd)	30.1	7	7	7			
Anti-Washout Admixture (AWA) (oz/yd)	97.2	0	0	0			

Table 3. Concrete mixture proportions for Charleroi L&D.

Material quantities were proportioned to yield four 1-in. by 1-in. by 11.25-in. mortar specimens, which is one more than the minimum required. Each batch consisted of 587 g of cement or cementitious materials and 1,350 g of aggregate processed to the gradations shown in Table 4. All mortars were prepared with the water-to-cementitious materials ratio maintained at 0.47 by mass. Actual ASTM C1567 batch proportions scaled from the concrete mix designs previously discussed are detailed in Table 5. Due to prolonged setting time, all retarder was removed from the mixture proportion, and test specimens were moist cured 48 hr (opposed to the standard 24-hr moist cure) before demolding.

Retained on Sieve	Mass %
No. 8	10
No. 16	25
No. 30	25
No. 50	25
No. 100	15

Table 4. Aggregate gradation for testing by ASTM C1260/C1567.

Table 5. Batch proportions used to prepare mortar bars for ASTM C1567.

	Mix 1	Mix 5	Mix 7	Mix 10				
Material		Mass (g)						
Type II(MH) Cement	136	318	322	440				
Class F Fly Ash	129	125	177	0				
Slag Cement	299	144	88	147				
Silica Fume	23	0	0	0				
Limestone Powder	126	0	0	0				
Admixture	Volume (mL)							
Air Entraining Admixture (AEA)	0	0.87	1.33	0.41				
Water Reducing Admixture (WRA)	0	0	0	0.70				
High Range Water Reducing Admixture (HRWRA)	5.68	0	0	0				
Retarding Admixture (RET)	0	0	0	0				
Anti-Washout Admixture (AWA)	5.16	0	0	0				

The mortar mixes were prepared in 4 min in accordance with ASTM C305 using a 71-L capacity Hobart planetary mixer with a clearance of 5.1 mm between the lower end of the paddle and the bottom of the bowl. First, the water was added to the bowl, then each admixture was added into the water using a pipette accurate to 1.0 μ m. The liquids were then mixed on

low until homogeneous. Then, the blended dry cementitious materials were introduced and mixed for 30 sec on low. Next, the test aggregate was slowly added and mixed for 30 sec. The mixer was then changed to medium speed and mixed an additional 30 sec. The mixer was stopped, then the mixture was scraped with a spatula for 15 sec, taking care to mix the bottom of the mortar. This was then allowed to sit for 90 sec with the cover in place. Finally, the cover was removed, and the mortar was mixed for 60 sec at medium speed. All molds were filled by compacting the mixture with a tamper within 2 min and 15 sec after completion of the mixing. The mortar test specimens were stored in a 23°C moist cabinet for 48 hr before demolding and making the initial length measurements.

The test specimens were then immersed in sealed plastic containers filled with tap water maintained in a water bath at 80°C for 24 hr. The zerolength measurement was then taken, and the specimens were transferred in containers filled with a 1-N NaOH solution at 80°C maintained in a water bath at 80°C to accelerate expansion. Expansion measurements were made using a length comparator accurate to 1.0 μ m at 3, 5, 7, 14, 21, 28, and 30 days, which is more than twice as long as the standard test duration. The average length change of the four bars is expressed as a percentage of the original effective length.

The measurements at 21, 28, and 30 days are a modification to the ASTM procedure requested by the Pittsburgh District. This modification is to ensure potential aggregate expansion is measured, as some local aggregates have historically been slow to react within the standard 14-day testing time frame.

4 Results and Discussion

All mixing and testing presented in this study closely followed the procedures specified in ASTM C1260 and ASTM C1567. The pass/fail limiting criteria for the tests conducted in this report are based on the specifications given in the Unified Facilities Guide Specification (UFGS) Division 03 Concrete Section 03 30 00.50 aggregate quality requirement limiting criteria for ASR reactivity. The UFGS states that "final approval of the concrete constituents will be based on the requirements for each individual constituent and that the final proportioned concrete for each mix design meets the reactivity requirement of measured expansion less than 0.08 percent at 32 days after casting (30 days of testing) in accordance with ASTM C1567.

The following summary of results are based on the average expansions of a minimum of three mortar bars per mixture. Detailed test data worksheets of all ASTM C1260 and ASTM C1567 are provided in Appendices B and C, respectively.

4.1 ASTM C1260

Results of the ASTM C1260 for the three test aggregates (Hanson, Shelly, and Georgetown) tested are provided in Table 6 and illustrated in Figure 1. The length change percent is an average of four mortar bars.

	Aggregate Source				
Age, Days	Hanson	Georgetown	Shelly		
0	0	0	0		
3	0.0385	0.0175	0.0053		
5	0.0670	0.0485	0.0343		
7	0.1123	0.0770	0.0697		
14	0.1658	0.1505	0.1420		
21	0.1808	0.1663	0.1490		
28	0.1935	0.1665	0.1603		
30	0.1970	0.1683	0.1623		

Table 6. Average length change percent of all project aggregates in ASTM C1260.

Figure 1. Mortar bar expansions of Hanson, Georgetown, and Shelly aggregates in ASTM C1260.

Based on the project limiting criteria, i.e., expansions less than 0.08% at 30 days, all aggregates are considered potentially reactive with final 30day mortar bar expansions of 0.1970% for Hanson, 0.1683% for Georgetown, and 0.1623% for Shelly aggregates.

4.2 ASTM C1567

Results of the ASTM C1567 test are presented in Table 7. The length change percent given is an average of four mortar bars. The average expansion at 30 days of all 48 different test mixtures fell below the 0.08% limiting criteria.

It is notable to mention that although still passing, the Hanson source aggregate resulted in higher expansions compared to the Shelly and Georgetown source aggregates. This compares with the ASTM C1260 results of the Hanson aggregate producing the highest expansions. This is possibly explained by the Hanson source being a coarse aggregate and the Shelly and Georgetown sources being fine aggregates. More preparations were required for the coarse aggregate to meet the graduation requirements, and the crushing of the material could affect the expansion.

Mixture ID	Aggregate Source	Fly Ash Source	Average % Expansion		
		Sammis	0.0183		
	Hanson	Ft. Martin	0.0198		
		Longview	0.0200		
		Brandon Shores	0.0185		
		Sammis	0.0075		
Mix 1	Coordotown	Ft. Martin	0.0075		
	Georgetown	Longview	0.0093		
		Brandon Shores	0.0090		
		Sammis	0.0090		
	Sholly	Ft. Martin	0.0093		
	Sheny	Longview	0.0073		
		Brandon Shores	0.0075		
		Sammis	0.0443		
	Hanson	Ft. Martin	0.0470		
		Longview	0.0595		
		Brandon Shores	0.0440		
		Sammis	0.0185		
Mix 5	Coordotown	Ft. Martin	0.0170		
IVIIX S	Georgetown	Longview	0.0188		
		Brandon Shores	0.0198		
		Sammis	0.0160		
	Sholly	Ft. Martin	0.0183 0.0198 0.0200 0.0185 0.0075 0.0093 0.0090 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0075 0.0093 0.0093 0.0073 0.0075 0.00443 0.0170 0.0185 0.0170 0.0188 0.0198 0.0198 0.0198 0.0198 0.0147 0.0208 0.0193 0.0333 0.0333 0.0333 0.0333 0.0337 0.0130 0.0130 0.0168 0.0213 0.0130 0.0123 0.0200 0.0593 0.0123 0.0130 0.0130 0.0135 0		
	Longview 0.0208				
		Brandon Shores	0.0193		
		Sammis	0.0333		
	Hanson	Ft. Martin	0.0333		
		Longview	0.0350		
		Brandon Shores	0.0337		
		Sammis	0.0130		
Mix 7	Georgetown	Ft. Martin	0.0168		
	Georgetown	Longview	0.0213		
		Brandon Shores	0.0195		
		Sammis	0.0130		
	Shelly	Ft. Martin	0.0160		
	Onchy	Longview	0.0223		
		Brandon Shores	0.0200		
		Sammis	0.0638		
	Hanson	Ft. Martin	0.0593		
		Longview	0.0728		
		Brandon Shores	0.0593		
		Sammis	0.0123		
Mix 10	Georgetown	Ft. Martin	0.0130		
	Georgetown	Longview	0.0188		
		Brandon Shores	0.0148		
		Sammis	0.0135		
	Shelly	Ft. Martin	0.0138		
	Oneny	Longview	0.0167		
		Brandon Shores	0.0150		

Table 7. Results of all ASTM C1567 tests at 30 days	ble 7. Results of all ASTM C1567 te	sts at 30 davs.
---	-------------------------------------	-----------------

4.2.1 Mix 1

The average length change data are shown in Table 8 for all 12 combinations of materials using Mix 1. Figure 2 compares the three aggregates tested against the four fly ash sources for the Mix 1 design. The Hanson aggregate is clearly the most reactive aggregate in Mix 1 regardless of the fly ash used. The graphs illustrate similar expansions in both the Shelly and Georgetown aggregates. The largest expansion at 30 days was 0.02% from the Hanson aggregate and Longview fly ash combination. The smallest expansion at 30 days, i.e., 0.0073%, was from the Shelly aggregate and Longview fly ash combination. All 12 combinations of Mix 1 meet the project requirement of expansions less than 0.08% at 30 days.

	Sammis Fly Ash		Ft. I	Ft. Martin Fly Ash		Longview Fly Ash			Brandon Shores Fly Ash			
Days	*H	*G	*S	*H	*G	*S	*H	*G	*S	*H	*G	*S
0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
5	0.0053	0.0020	0.0017	0.0060	0.0008	0.0028	0.0047	0.0023	0.0013	0.0038	0.0023	0.0013
7	0.0060	0.0038	0.0040	0.0110	0.0025	0.0035	0.0073	0.0040	0.0023	0.0090	0.0040	0.0040
14	0.0100	0.0048	0.0057	0.0118	0.0040	0.0055	0.0107	0.0060	0.0043	0.0118	0.0063	0.0055
21	0.0157	0.0050	0.0073	0.0143	0.0060	0.0070	0.0170	0.0073	0.0047	-	-	-
28	0.0167	0.0075	0.0083	0.0180	0.0070	0.0085	0.0183	0.0083	0.0063	0.0160	0.0088	0.0075
30	0.0183	0.0075	0.0090	0.0198	0.0075	0.0093	0.0200	0.0093	0.0073	0.0185	0.0090	0.0075

Table 8. Average length change of mortar bars made from Mix 1 materials.

*Notes:

H- Hanson Aggregate G- Georgetown Aggregate S-Shelly Aggregate

Figure 2. Mortar bar expansions versus time for Mix 1.

c) Brandon Shores Fly Ash.

4.2.2 Mix 5

The average length change data are shown in Table 9 for all 12 combinations of materials using the Mix 5 design. Figure 3 compares the three aggregates tested against the four fly ash sources. Similar to the trends in Mix 1, the Hanson aggregate is the most reactive aggregate in Mix 5 regardless of the fly ash used. The highest 30-day length change was 0.0595% from a combination of the Longview fly ash and Hanson aggregate. The lowest 30-day length change was 0.0147% from a combination of Fort Martin fly ash source and Shelly sand.

	Sammis Fly Ash		Ft. Martin Fly Ash		Longview Fly Ash			Brandon Shores Fly Ash				
Days	*H	*G	*S	*H	*G	*S	*H	*G	*S	*H	*G	*S
0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	-	0.0000	-	-	-	-	0.0043	0013	0.0038	0.0027	0.0043	0.0018
5	0.0038	0.0050	0.0040	0.0030	0.0030	0.0063	-	-	-	0.0057	0.0070	0.0080
7	0.0080	0.0053	0.0065	0.0073	0.0053	0.0080	0.0123	0.0008	0.0035	0.0117	0.0078	0.0070
14	0.0173	0.0085	0.0090	0.0158	0.0067	0.0100	0.0170	0.0035	0.0025	0.0330	0.0125	0.0120
21	0.0278	0.0123	0.0113	0.0268	0.0093	0.0100	0.0358	0.0123	0.0105	-	-	-
28	0.0420	0.0175	0.0138	0.0465	0.0150	0.0137	0.0595	0.0173	0.0178	0.0427	0.0178	0.0170
30	0.0443	0.0185	0.016	0.0470	0.0170	0.0147	0.0595	0.0188	0.0208	0.0440	0.0198	0.0193

Table 9. Average length change of mortar bars made from Mix 5 materials.

*Notes:

H - Hanson Aggregate

G - Georgetown Aggregate

S - Shelly Aggregate

Figure 3. Mortar bar expansions versus time for Mix 5.

c) Brandon Shores Fly Ash.

d) Longview Fly Ash.

4.2.3 Mix 7

The average length change data are shown in Table 10 for all 12 combinations of materials using the Mix 7 design. Figure 4 compares the three aggregates tested against the four fly ash sources. Once again, the Hanson aggregate is the most reactive aggregate in Mix 7 regardless of the fly ash used. The highest 30-day length change was 0.0350% from a combination of the Longview fly ash and Hanson aggregate. The lowest 30-day length change was 0.0130% in two sources, i.e., the Georgetown aggregate and Sammis fly ash combination and the Shelly aggregate and Sammis fly ash combination.

	Sammis Fly Ash			Ft.I	Martin Fly	rtin Fly Ash Longview Fly Ash			Ash	Brandon Shores Fly Ash		
Days	*H	*G	*S	*H	*G	*S	*H	*G	*S	*H	*G	*S
0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	0.0043	0.0035	0.0033	0.0015	0.0025	0.0023	0.0013	0.0033	0.0035	0.0027	0.0013	0.0005
5	0.0108	0.0050	0.0073	0.0083	0.0075	0.0053	-	-	-	0.0057	0.0043	0.0048
7	0.0145	0.0075	0.0093	0.0150	0.0095	0.0088	0.0037	0.0033	0.0050	0.0100	0.0045	0.0085
14	0.0235	0.0098	0.0107	0.0213	0.0128	0.0103	0.0137	0.0047	0.0063	0.0190	0.0098	0.0135
21	-	-	-	-	-	-	-	0.0100	0.0165	-	-	-
28	0.0313	0.0115	0.0120	0.0298	0.0148	0.0133	0.0380	0.0170	0.0188	0.0327	0.0173	0.0183
30	0.0333	0.0130	0.0130	0.0333	0.0168	0.0160	0.0350	0.0213	0.0223	0.0337	0.0195	0.0200

Table 10. Average length change of mortar bars made from Mix 7 materials.

*Notes:

H - Hanson Aggregate

G - Georgetown Aggregate

S - Shelly Aggregate

Figure 4. Mortar bar expansions versus time for Mix 7.

c) Brandon Shores Fly Ash.

d) Longview Fly Ash.

4.2.4 Mix 10

The average length change data are shown in Table 11 for all 12 combinations of materials using the Mix 10 design. Figure 5 compares the three aggregates tested against the four fly ash sources. The Hanson aggregate is the most reactive aggregate in Mix 10 regardless of the fly ash used, which is consistent with the other three mix designs. The highest 30day length change was 0.0728% from a combination of the Longview fly ash and Hanson aggregate. The lowest 30-day length change was 0.0123% from a combination of the Georgetown aggregate and Sammis fly ash source.

	Sammis Fly Ash			Ft	Martin Fly	Ash	Longview Fly Ash			Brandon Shores Fly Ash		
Days	*H	*G	*S	*H	*G	*S	*H	*G	*S	*H	*G	*S
0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	-	0.0047	-	-	-	-	0.0060	0.0003	0.0007	0.0028	0.0025	0.0010
5	0.0120	0.0037	0.0003	0.0097	0.0043	0.0025	-	-	-	0.0053	0.0028	0.0023
7	0.0138	0.0067	0.0033	0.0123	0.0053	0.0062	0.0113	0.0013	0.0033	0.0133	0.0033	0.0030
14	0.0300	0.0100	0.0088	0.0267	0.0088	0.0070	0.0290	0.0045	0.0043	0.0273	0.0070	0.0093
21	0.0540	0.0147	0.0105	0.0397	0.0088	0.0105	0.0408	0.0098	0.0070	-	-	-
28	0.0605	0.0147	0.0123	0.0563	0.0100	0.0120	0.0665	0.0165	0.0130	0.0565	0.0135	0.0143
30	0.0638	0.0163	0.0135	0.0593	0.0130	0.0138	0.0728	0.0188	0.0167	0.0593	0.0148	0.0150

*Notes:

H - Hanson Aggregate

G - Georgetown Aggregate

S - Shelly Aggregate

Figure 5. Mortar bar expansions versus time for Mix 10.

d) Longview Fly Ash.

5 Summary and Conclusions

This testing investigated the potential ASR reactivity of 3 aggregate sources in accordance to ASTM C1260 and the efficacy to mitigate expansion due to potential ASR using a combination of cementitious materials and aggregates in accordance to ASTM C1567. A total of 48 different mixtures were produced from a combination of four fly ash sources (Sammis, Fort Martin, Longview, and Brandon Shores), three aggregate sources (Shelly, Hanson, and Georgetown), and four mix designs (Mix 1, 5, 7, and 10). The following conclusions are made based on the results presented herein.

- All project aggregate sources (Hanson, Georgetown, and Shelly) are considered alkali-silica reactive based on the limiting criteria of the project specification, i.e., expansions less than 0.08% at 30 days, when tested in accordance to the ASTM C1260.
- The Hanson coarse aggregate source resulted in the highest 30-day expansion of 0.1970%, whereas the Georgetown and Shelly fine aggregate sources produced similar expansions of 0.1683% and 0.1623%, respectively.
- All 48 combinations of materials and mixture designs resulted in 30day expansions less 0.08% when tested in accordance to the ASTM C1567. These results indicate that the constituent project materials in the proposed mix designs can effectively mitigate ASR.
- The Hanson aggregate/Longview fly ash combination resulted in the largest expansions of all four mix design groups. Final 30-day expansions with this aggregate/fly ash combination were 0.02% in Mix 1, 0.0595% in Mix 5, 0.035% in Mix 7, and 0.0728% in Mix 10.
- The Georgetown aggregate/Sammis fly ash combination resulted in the lowest expansions in Mix 1, Mix 7, and Mix 10. Final 30-day expansions with this aggregate/fly ash combination were 0.0073% in Mix 1, 0.013% in Mix 7, and 0.0123% in Mix 10. The highest lowest expansion in Mix 5 was 0.0147% from the Shelly aggregate/Fort Martin fly ash combination.
- Higher expansions in the Hanson coarse aggregate compared with the Shelly and Georgetown fine aggregates is possibly due to the additional crushing involved in the coarse aggregate source to the gradation sizes required for both the ASTM C1260 and ASTM C1567 testing.

Appendix A: Material Reports

A.1 Cementitious materials

	Report on Test Specifica	tion: ASTM C150, Sta	ndard Specificati	on for Portland Cement		
[ww]	Performing Organiz	zation:	Sport	soring Orgnaization:		
	US Army Engineer Research and Dev	elonment Center	US Arr	my Corps of Engineers		
للتقلي	Geotechnical and Structures Laborato	nv	Pittsburgh Di	strict Lower Mon Area Office		
US Army Corps of Engineers BUILDING STRONG.	3909 Halls Ferry Road Vicksburg, MS	39180-6199	1811 Schoonma	ker Ave Monesson, PA 15062		
Material Description:	Type II (MH) Cement	35 100-0135	In the one of the	Nel AV c., monoscon, r A 10002		
Manufacturer	Armetrong					
	Cabat DA					
CMR Sorial #	150063					
Project	Charleroi Lock and Dam Monongat	ala River Reconstructiv	on Project			
110,000	Chanelor Lock and Dammonongan		JITTOJEG	ASTM C150 Specifimite:		
Ch	emical Analysis	Test Res	ults	Type II (MH)		
	SiO ₂ , %	20.48	3	-		
	Al ₂ O ₃ , %	4.59		6.0% max		
	Fe ₂ O ₃ , %	6.3		^A 6.0% max		
	CaO, %	62.7		-		
	MgO, %	1.24		6.0% max		
	SO ₃ , %	2		3.0% max		
	Na2O, %	0.13		-		
	K2O, %	0.66		-		
Equivalent /	Alkalies-total as Na2O, %	0.56		^B 0.60% max		
	TiO2, %	0.32		-		
Lo	ss on ignition, %	0.45		3.0% max		
Trical	lcium silicate (C ₃ S)	54		-		
Dical	cium silicate (C ₂ S)	18		-		
Tricalc	ium aluminate (C ₃ A)	2		8.0% max		
Tetracalciv	um aluminoferrite (C ₃ AF)	19		-		
Sum	n of C ₃ S +4.75C ₃ A	63.5		100		
Ph	iys ical Analys is	Test Res	ults	ASTM C150 Spec Limits; Type II (MH)		
Air cont	tent, %; ASTM C 185	7.9		12% (max)		
Surface area, m²/kç	(air permeability); ASTM C 204	329		260 m²/kg (min)		
Autoclave ex	xpansion, %; ASTM C 151	0.02		0.80% max		
Initial set, n	nin. (Vicat); ASTM C 191	155		45 (min)		
Final set, m	nin. (Vicat); ASTM C 191	290		375 (max)		
Compressive strer	ngth, 3-day, (psi), ASTM C 109	1525	j	^B 1020 psi (min)		
Compressive strer	ngth, 7-day, (psi); ASTM C 109	1920)	^B 1740 psi (min)		
Compressive stren	igth, 28-day, (psi), ASTM C 109	4175	j	^C 3190 psi (min)		
Heat of Hydration , 3	-days, max, (kJ/kg); ASTM C 1702	185		^c 255 kJ/kg (max)		
Heat of Hydration, 7	-days, max, (kJ/kg); ASTM C 1702	240		-		
Heat of Hydration, 28	3-days, max, (kJ/kg); ASTM C 1702	330		-		
False set (final	penetration), %; ASTM C 451	80		50% (min)		
Remarks:						
^A Does not apply when	n heat of hydration limit in table 4 is	specified				
D	10 P					

^BLimit in table 2 for low-alkali cement

^C Required only when optional heat of hydration in Table 4 is specified

^D As specified in table 4 optional physical requirements

Tested by: MAR

Reviewed by: ABC

Information in this report shall not be used in advertising or sales promotion to indicate endorsement of this product by the U.S. Government.

	Report on Test Specification:	ASTM C 618,	Standard Specific	ation for Coal Fly Ash				
W w W	Performing Orgnaization:		Sponsor	ing Orgnaization:				
11011	US Army Engineer Research and Development Cente	r	US Army Corps of E	Engineers				
	Geotechnical and Structures Laboratory (CEERD-GM	C)	Pittsburgh District, Lower Mon Area Office					
US Army Corps of Engineers BUILDING STRONG.	3909 Halls Ferry Road Vicksburg, MS 39180-6199		1811 Schoonmaker Ave., Monesson, PA 1508					
Material Description:	Class F FlyAsh							
Manufacturer:	Ft Martin Plant from Headwater Reasources							
Location:	Maidsville, WV							
CMB Serial #:	150064							
Project Charleroi Lock and Dam Monongahela River Reconstruction Project								
	Chemical Analysis	Test	Results	Spec Limits; Class F				
	SiO ₂ ,%	5	2.6	-				
	Al ₂ O ₃ , %	2	2.5	-				
	Fe ₂ O ₃ , %	1	3.5	-				
	Sum, %	8	8.6	70.0% min				
	Na2O,%	2	2.49	-				
	K20, %		2	-				
		1.1	-					
	MgO, %	(0.9	-				
	SO₃, %	(0.3	5.0% max				
	Loss on ignition, %		3.1	6.0% max				
	Moisture Content, %	0	.13	3.0% max				
	Physical Analysis	Test	Results	Spec Limits; Class F				
Strength A	Activity Index,(%) 7-day, ASTM C311		64	75% min				
Strength A	ctivity Index, (%) 28-day, ASTM C311		65	75% min				
Water Requ	irement, % control, ASTM C 311, C109	1	00	105% max				
S	specific Gravity, ASTM C188	2	.52	5% max				
Autodave	Soundness, %, ASTM C311, C151	0.	.001	0.8% max				
Fineness	s, % Retained on #325; ASTM C311	23	3.85	34% max				
Supplem	entary Optional Physical Analysis	Test	Results	Spec Limits; Class F				
Increase of drying sl	hrinkage of mortar bars at 28 days, ASTM C618	0.	.001	-				
Uniformity Red	quirement, amount of Vinsol, ASTM C618	(0.2	-				
Remarks:								
¹ Amstrong Type II (MH) project cement used for reference cement		Tested	by: MAR				
			Review	ved by: ABC				
Information in this re	port shall not be used in advertising or sales promotion t	o indicate endorse	ment of this product b	v the U.S. Government				

	Report on Test Specification:	ASTM C 618,	Standard Specifica	ation for Coal Fly Ash				
Www.W	Performing Orgnaization:		Sponsori	ng Orgnaization:				
11001	US Army Engineer Research and Development Center	r	US Army Corps of Er	ngineers				
	Geotechnical and Structures Laboratory (CEERD-GM	C)	Pittsburgh District, Lower Mon Area Office					
BUILDING STRONG,	3909 Halls Ferry Road Vicksburg, MS 39180-6199	1811 Schoonmaker Ave., Monesson, PA 1506						
Material Description:	Class F Fly Ash							
Manufacturer:	W.H. Sammis Plant, Headwaters Reasources							
Location:	Stratton, OH							
CMB Serial #:	150065							
Project: Charleroi Lock and Dam Monongahela River Reconstruction Project								
	Chemical Analysis	Test	Results	Spec Limits; Class F				
	SiO ₂ , %	4	42	-				
	Al ₂ O ₃ , %	2	0.2	-				
	Fe ₂ O ₃ , %	2	4.2	-				
	Sum, %	8	8.6	70.0% min				
	Na20,%	2	87	-				
	K2O, %	2	05	-				
	CaO, %		0	-				
	MgO, %	(0.9	-				
	SO3, %	(0.6	5.0% max				
	Loss on ignition, %	2	.99	6.0% max				
	Moisture Content, %	0	.11	3.0% max				
	Physical Analysis	Test	Results	Spec Limits; Class F				
Strength A	Activity Index,(%) 7-day, ASTM C311		71	75% min				
Strength A	ctivity Index, (%) 28-day, ASTM C311		72	75% min				
Water Requ	irement, % control, ASTM C 311, C109	1	00	105% max				
S	Specific Gravity, ASTM C188	2	2.6	5% max				
Autodave	e Soundness, %, ASTM C311, C151	0.	.001	0.8% max				
Fineness	s, % Retained on #325; ASTM C311	25	5.92	34% max				
Supplem	entary Optional Physical Analysis	Test	Results	Spec Limits; Class F				
Increase of drying sl	hrinkage of mortar bars at 28 days, ASTM C618	0	.05	-				
Uniformity Red	quirement, amount of Vinsol, ASTM C618	(0.2	-				
Remarks:								
1Armstrong	Type II (MH) project cement used for reference ce	ment	Tested	by: MAR				
			Review	edby: ABC				
Information in this re	port shall not be used in advertising or sales promotion t	to indicate endorse	ment of this product by	the U.S. Government				

	Report on Test Specification:	ASTM C 618,	Standard Specific	cation for Coal Fly Ash					
ΥwΥ	Performing Orgnaization:		Sponiso	ring Orgnaization:					
11011	US Army Engineer Research and Development C	en ter	US Army Corps of	Engineers					
	Geotechnical and Structures Laboratory (CEERD-	GMC)	Pittsburgh District,	Lower Mon Area Office					
US Army Corps of Engineers BUILDING STRONG.	3909 Halls Ferry Road Vicksburg, MS 39180-6199		1811 Schoonmake	ar Ave., Monesson, PA 15062					
Material Description:	Class FFlv Ash								
Manufacturer:	Longview								
Location:	Maidsville WV								
CMR Serial #:	CMB Serial #: 180005								
Droject:	Project: Charleroi Lock and Dam Monongahela River Reconstruction Project								
Project.	onano di cook and barrinondinganeta rivo r		ojeu	A STM C 649					
	Chemical Analysis	Test Results		Spec Limits; Class F					
	SiO ₂ , %	50	0.81	-					
	Al ₂ O ₃ , %	21	1.75	-					
	Fe ₂ O ₃ , %	18	5.64						
	Sum, %	8	8.2	70.0% min					
	Na2O, %	0	.62	-					
	K2O, %	2	.36						
	CaO, %	3	.37	-					
	MgO, %	1	.07						
	SO3, %	0	.92	5.0% max					
	Loss on ignition, %	1	1.9	6.0% max					
	Moisture Content, %	0	.13	3.0% max					
				ASTM C618					
	Physical Analysis	Test	Results	Spec Limits; Class F					
	Initial Test		-						
Compressive stre	ngth, (psi) 7-day, ¹ Reference ASTM C311	24	410	-					
Compressive streng	gth, (psi) 28-day, Reference, ASTM C311	3	820						
Compressive strengt	h, (psi) 7-day, Fly Ash/Cement, ASTM C311	10	840						
Compressive strength	n, (psi) 28-day, Fly Ash/Cement, ASTM C311	2	980						
Strength Ad	tivity Index,(%) 7-day, ASTM C311	68		75% min					
Strength Acti	vity Index. (%) 28-day. ASTM C311		78	75% min					
	Second Test		-						
Compressive stre	noth (osi) 7-day, ¹ Reference ASTM C311	2	520						
Compressive strend	oth. (psi) 28-day, "Reference, ASTM C311	4(080	-					
Compressive strengt	th (psi) 7-day. Fly Ash/Cement. ASTM C311	10	890						
Compressive strength	n. (psi) 28-day, Fly Ash/Cement, ASTM C311	3	190						
Strength Act	tivity Index. (%) 7-day. ASTM C311		87	75% min					
Strength Acti	wity Index (%) 28-dev ASTM C311		78	75% min					
Water Require	ement % control ASTMC 311 C109		99	105% max					
So	ecific Gravity, ASTM C 188	2	34	5% max					
Autoclave S	Soundness % ASTM C311 C151	-0	103	0.8% max					
Finances	% Retained on #325: ASTM C311	3	8.6	34% may					
(Re-Test) Einen	ess % Reteined on #225: ASTM C211	2	2.5	34% max					
(ive-rest) rinei	ess, wittetailled off#525, A5 fill C5 ff		0.0	A STM CC19					
Supplemen	ntary Optional Physical Analysis	Test	Results	Spec Limits; Class F					
Increase of drying shri	nkage of mortar bars at 28 days, ASTM C618	0	.01	-					
Uniformity Requ	irement, amount of Vinsol, ASTM C618	0.1	16 g	-					
Remarks:									
¹ Arms trong Type II (MH	I) project cement us ed for reference cement								
			Tes teo	i by: SLC					
			Review	wed by: MAR					
Information in this repo	rt shall not be used in advertising or sales promotion	n to indicate endors	sem ent of this produc	ct by the U.S. Government.					

	Report on Test Specification:	ASTM C 618, 9	Standard Specif	ication for Coal Fly Ash					
W W	Performing Orgnaization:		Spons	oring Orgnaization:					
11011	US Army Engineer Research and Development Center		US Army Corps of	Engineers					
	Geotechnical and Structures Laboratory (CEERD-GMC)	Pittsburgh Distric	t, Lower Mon Area Office					
US Anny Corps of Engineers BUILDING STRONG.	3909 Halls Ferry Road Vicksburg, MS 39180-6199		1811 Schoon maker Ave., Monesson, PA 15062						
Material Description:	Class F Fly Ash								
Manufacturen	Brandon Shores								
Location:	Curtis Bay, MD								
CMB Serial #:	: 180018								
Project	Project Charleroi Lock and Dam Monongahela River Reconstruction Project								
	Chemical Analysis	Test R	esults	Spec Limits; Class F					
	SiO ₂ , %	45	.95	-					
	Al ₂ O ₃ , %	22	42	-					
	Fe ₂ O ₃ , %	21	49	-					
	Sum, %	89	.86	70.0% min					
	Na20, %	0.4	45	-					
	K20,%	1.0	85	-					
	CaO, %	2.64		-					
	MgO, %	0.1	79	-					
	SO ₃ , %	0.6	82	5.0% max					
	Loss on ignition, %	2	2	6.0% max					
	Moisture Content, %	0.	.3	3.0% max					
	Physical Analysis	Test R	esults	Spec Limits; Class F					
		47	00						
Compressive s	trength, (psi) 7-day, *Reference ASTM C311	17	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-					
Compressive s Compressive str	trength, (psi) 7-day, ¹ Reference ASTM C311 ength, (psi) 28-day, ¹ Reference, ASTM C311	31	30	-					
Compressive s Compressive str	trength, (psi) 7-day, ¹ Reference ASTM C311 rength, (psi) 28-day, ¹ Reference, ASTM C311	31	30	-					
Compressive s Compressive str Compressive stre	trength, (psi) 7-day, ³ Reference ASTM C311 rength, (psi) 28-day, ³ Reference, ASTM C311 ngth, (psi) 7-day, Fly Ash/Cement, ASTM C311	31	20	-					
Compressive st Compressive str Compressive stre Compressive strer	trength, (psi) 7-day, ³ Reference ASTM C311 rength, (psi) 28-day, ³ Reference, ASTM C311 ngth, (psi) 7-day, Fly Ash/Cement, ASTM C311 1gth, (psi) 28-day, Fly Ash/Cement, ASTM C311	23	20 00	- - - -					
Compressive st Compressive str Compressive stre Compressive strer	trength, (psi) 7-day, ³ Reference ASTM C311 rength, (psi) 28-day, ³ Reference, ASTM C311 ngth, (psi) 7-day, Fly Ash/Cement, ASTM C311 ngth, (psi) 28-day, Fly Ash/Cement, ASTM C311	23 41	80 30 20 00	- - - - -					
Compressive st Compressive stre Compressive stre Compressive strer Strength	trength, (psi) 7-day, ¹ Reference ASTM C311 rength, (psi) 28-day, ¹ Reference, ASTM C311 ngth, (psi) 7-day, Fly Ash/Cement, ASTM C311 ngth, (psi) 28-day, Fly Ash/Cement, ASTM C311 Activity Index,(%) 7-day, ASTM C311	23 23 41 7	80 30 20 00 7	- - - - 75% m in					
Compressive st Compressive stre Compressive stre Compressive strer Strength Strength	trength, (psi) 7-day, ¹ Reference ASTM C311 rength, (psi) 28-day, ¹ Reference, ASTM C311 ngth, (psi) 7-day, Fly Ash/Cement, ASTM C311 1gth, (psi) 28-day, Fly Ash/Cement, ASTM C311 Activity Index, (%) 7-day, ASTM C311 Activity Index, (%) 28-day, ASTM C311	17 31 23 41 7 7	∞ 30 20 00 7 6	- - - - 75% m in 75% m in					
Compressive st Compressive stre Compressive stre Compressive strer Strength Strength Water Req	trength, (psi) 7-day, ¹ Reference ASTM C311 rength, (psi) 28-day, ¹ Reference, ASTM C311 ngth, (psi) 7-day, Fly Ash/Cement, ASTM C311 ngth, (psi) 28-day, Fly Ash/Cement, ASTM C311 Activity Index, (%) 7-day, ASTM C311 Activity Index, (%) 28-day, ASTM C311 uirement, % control, ASTM C 311, C109	17 31 23 41 7 7 9	00 20 00 7 6 8	- - - - 75% m in 75% m in 105% max					
Compressive st Compressive stre Compressive stre Compressive strer Strength Strength Water Req	trength, (psi) 7-day, ¹ Reference ASTM C311 rength, (psi) 28-day, ¹ Reference, ASTM C311 ngth, (psi) 7-day, Fly Ash/Cement, ASTM C311 1gth, (psi) 28-day, Fly Ash/Cement, ASTM C311 Activity Index, (%) 7-day, ASTM C311 Activity Index, (%) 28-day, ASTM C311 uirement, % control, ASTM C 311, C109 Specific Gravity, ASTM C188	17 31 23 41 7 7 9 9	00 30 20 00 7 6 8 8	- - - - 75% m in 75% m in 105% max 5% max					
Compressive st Compressive stre Compressive stre Compressive strer Strength Strength Water Req Autoclay	trength, (psi) 7-day, ¹ Reference ASTM C311 rength, (psi) 28-day, ¹ Reference, ASTM C311 ngth, (psi) 28-day, Fly Ash/Cement, ASTM C311 1gth, (psi) 28-day, Fly Ash/Cement, ASTM C311 Activity Index, (%) 7-day, ASTM C311 Activity Index, (%) 28-day, ASTM C311 uirement, % control, ASTM C 311, C109 Specific Gravity, ASTM C188 re Soundness, %, ASTM C311, C151	17 31 23 41 7 7 9 2 -0.	00 30 20 00 7 6 8 41 06	- - - - - 75% m in 75% m in 105% max 5% max 0.8% max					
Compressive st Compressive stre Compressive strer Compressive strer Strength Strength Water Req Autoclav Finenes	trength, (psi) 7-day, ¹ Reference ASTM C311 rength, (psi) 28-day, ¹ Reference, ASTM C311 ngth, (psi) 28-day, ¹ Reference, ASTM C311 1gth, (psi) 28-day, Fly Ash/Cement, ASTM C311 Activity Index, (%) 7-day, ASTM C311 Activity Index, (%) 7-day, ASTM C311 Activity Index, (%) 28-day, ASTM C311 uirement, % control, ASTM C 311, C109 Specific Gravity, ASTM C188 re Soundness, %, ASTM C311, C151 is, % Retained on #325; ASTM C311	17 31 23 41 7 7 9 2 -0. 19	aco 30 20 00 7 6 8 41 06 12	- - - - 75% m in 75% m in 105% max 5% max 0.8% max 0.8% max 34% max					
Compressive st Compressive stre Compressive strer Compressive strer Strength Strength Water Req Autoclav Finenee Suppler	trength, (psi) 7-day, ¹ Reference ASTM C311 rength, (psi) 28-day, ¹ Reference, ASTM C311 ngth, (psi) 28-day, ¹ Reference, ASTM C311 1gth, (psi) 28-day, Fly Ash/Cement, ASTM C311 Activity Index, (%) 7-day, ASTM C311 Activity Index, (%) 7-day, ASTM C311 Activity Index, (%) 28-day, ASTM C311 uirement, % control, ASTM C 311, C109 Specific Gravity, ASTM C188 re Soundness, %, ASTM C311, C151 is, % Retained on #325; ASTM C311 nentary Optional Physical Analysis	17 31 23 41 7 7 9 2 -0. 19 Test R	20 20 00 7 6 8 41 06 12 esults	- - - - - - - - - - - - - - - - - - -					
Compressive st Compressive stre Compressive strer Compressive strer Strength Strength Water Req Autoclav Finenee Suppler Increase of drying st	trength, (psi) 7-day, ¹ Reference ASTM C311 rength, (psi) 28-day, ¹ Reference, ASTM C311 ngth, (psi) 28-day, Fly Ash/Cement, ASTM C311 1gth, (psi) 28-day, Fly Ash/Cement, ASTM C311 Activity Index, (%) 7-day, ASTM C311 Exercised as a state of the st	17 31 23 41 7 7 7 9 2. -0. 19 Test R 0.	20 20 00 7 6 8 41 06 12 esults 01	- - - - - - - - - - - - - - - - - - -					
Compressive st Compressive stre Compressive stre Compressive strer Strength Strength Water Req Autoclav Finenes Suppler Increase of drying s	trength, (psi) 7-day, ¹ Reference ASTM C311 rength, (psi) 28-day, ¹ Reference, ASTM C311 ngth, (psi) 28-day, ¹ Reference, ASTM C311 1gth, (psi) 28-day, Fly Ash/Cement, ASTM C311 Activity Index, (%) 7-day, ASTM C311 Activity Index, (%) 28-day, ASTM C311 uirement, % control, ASTM C 311, C109 Specific Gravity, ASTM C188 re Soundness, %, ASTM C311, C151 ss, % Retained on #325; ASTM C311 nentary Optional Physical Analysis shrinkage of mortar bars at 28 days, ASTM C618 equirement, amount of Vinsol, ASTM C618	17 31 23 41 7 7 7 9 9 2. -0. -0. 19 Test R 0.0	20 20 20 00 7 6 8 41 06 12 esults 01 15	- - - - - - - - - - - - - - - - - - -					
Compressive st Compressive stre Compressive stre Compressive strer Strength Strength Water Req Autoclav Finenes Suppler Increase of drying s Uniformity Re Remarks:	trength, (psi) 7-day, ¹ Reference ASTM C311 rength, (psi) 28-day, ¹ Reference, ASTM C311 ngth, (psi) 28-day, ¹ Reference, ASTM C311 ngth, (psi) 7-day, Fly Ash/Cement, ASTM C311 Activity Index, (%) 7-day, ASTM C311 Activity Index, (%) 7-day, ASTM C311 Activity Index, (%) 28-day, ASTM C311 uirement, % control, ASTM C 311, C109 Specific Gravity, ASTM C188 re Soundness, %, ASTM C311, C151 ss, % Retained on #325; ASTM C311 nentary Optional Physical Analysis shrinkage of mortar bars at 28 days, ASTM C618 equirement, amount of Vinsol, ASTM C618	17 31 23 41 7 7 7 9 9 2 - 0. 19. Test R 0 0.	aco 30 20 00 7 6 8 41 06 12 esults 01 15	- - - - - - - - - - - - - - - - - -					
Compressive st Compressive stre Compressive stre Compressive strer Strength Strength Water Req Water Req Autoclav Finenes Suppler Increase of drying s Uniformity Re Remarks: Am strong Type II (N	trength, (psi) 7-day, ¹ Reference ASTM C311 rength, (psi) 28-day, ¹ Reference, ASTM C311 ingth, (psi) 7-day, Fly Ash/Cement, ASTM C311 ingth, (psi) 28-day, Fly Ash/Cement, ASTM C311 Activity Index, (%) 7-day, ASTM C311 Activity Index, (%) 7-day, ASTM C311 Activity Index, (%) 28-day, ASTM C311 uirement, % control, ASTM C 311, C109 Specific Gravity, ASTM C311, C109 Specific Gravity, ASTM C311, C109 Specific Gravity, ASTM C311, C151 ss, % Retained on #325; ASTM C311 nentary Optional Physical Analysis shrinkage of mortar bars at 28 days, ASTM C618 equirement, amount of Vinsol, ASTM C618 H) project cement used for reference cement	17 31 23 41 7 7 9 2 - 0. 19. Test R 0 0.	20 20 00 7 6 8 41 06 12 vesults 01 15 Teste	- - - - - - - - - - - - - - - - - - -					
Compressive st Compressive stre Compressive stre Compressive strer Strength Strength Water Req Water Req Autoclav Finenes Suppler Increase of drying s Uniformity Re Remarks: ³ Arm strong Type II (N	trength, (psi) 7-day, ³ Reference ASTM C311 rength, (psi) 28-day, ³ Reference, ASTM C311 ingth, (psi) 7-day, Fly Ash/Cement, ASTM C311 Activity Index, (%) 7-day, ASTM C311 Activity Index, (%) 7-day, ASTM C311 Activity Index, (%) 28-day, ASTM C311 uirement, % control, ASTM C 311, C109 Specific Gravity, ASTM C311, C109 Specific Gravity, ASTM C311, C151 ss, % Retained on #325; ASTM C311 nentary Optional Physical Analysis shrinkage of mortar bars at 28 days, ASTM C618 equirement, amount of Vinsol, ASTM C618 IH) project cement used for reference cement	17 31 23 41 7 7 9 2. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0	aco 30 20 00 7 6 8 41 06 .12 	- - - - - - - - - - - - - - - - - - -					
Compressive st Compressive stre Compressive stre Compressive stre Strength Strength Water Req Autoclav Finenee Suppler Increase of drying s Uniformity Re Remarks: ³ Am strong Type II (N	trength, (psi) 7-day, ¹ Reference ASTM C311 rength, (psi) 28-day, ¹ Reference, ASTM C311 ngth, (psi) 28-day, Fly Ash/Cement, ASTM C311 Activity Index, (%) 7-day, ASTM C311 Activity Index, (%) 7-day, ASTM C311 Activity Index, (%) 28-day, ASTM C311 uirement, % control, ASTM C 311, C109 Specific Gravity, ASTM C311, C151 as, % Retained on #325; ASTM C311 nentary Optional Physical Analysis shrinkage of mortar bars at 28 days, ASTM C618 equirement, amount of Vinsol, ASTM C618 IH) project cement used for reference cement	17 31 23 41 7 7 9 2 -0. 19 2 0. 0. 0.	ao 30 20 00 7 6 8 41 06 .12 esults 01 15 Teste Revie	- - - - - - - - - - - - - - - - - - -					
Compressive st Compressive stre Compressive stre Compressive strer Strength Strength Water Req Autoclav Finenee Suppler Increase of drying s Uniformity Re Remarks: ³ Am strong Type II (N	trength, (psi) 7-day, ¹ Reference ASTM C311 rength, (psi) 28-day, ¹ Reference, ASTM C311 ngth, (psi) 28-day, Fly Ash/Cement, ASTM C311 Activity Index, (%) 7-day, ASTM C311 Activity Index, (%) 7-day, ASTM C311 Activity Index, (%) 28-day, ASTM C311 uirement, % control, ASTM C 311, C109 Specific Gravity, ASTM C311, C151 as, % Retained on #325; ASTM C311 nentary Optional Physical Analysis shrinkage of mortar bars at 28 days, ASTM C618 equirement, amount of Vinsol, ASTM C618 IH) project cement used for reference cement	17 31 23 41 7 7 9 2. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0	ao 30 20 00 7 6 8 41 06 .12 esults 01 15 Teste Revie						

	Report on Test Specification	A STM C 989	, Standard Speci	fication for Slag Cement	
Ϋ́. w. Ϋ́	Performing Orgnaization:		Sponso	oring Orgnaization:	
111 111	US Army Engineer Research and Developm	ent Center	US Arm y C orps of	Engineers	
US Army Corps of Engineers	Geotechnical and Structures Laboratory (CE	ERD-GMC)	Pittsburgh District,	Lower Mon Area Office	
BOILDING STRONG,	3909 Halls Ferry Road Vicksburg, MS 39180	-6199	1811 Schoonmake	r Ave., Monesson, PA 15062	
Material Desci	ription: Slag Cement, Grade 100				
Manufactu	rer: Argos-Essroc				
Location	: Middlebranch, OH				
CMB Seria	l #: 150066				
Project:	Charleroi Lock and Dam Mon	ongahela River F	Reconstruction Pro	oject	
	Chemical Analysis	Test	Results	Spec Limits	
	Sulfide Sulfur, S %	2	.02	2.5% max	
S	Sulfate Sulfur, (as SO3) %	0	.04	4% max	
Alur	minum Oxide, (as Al2O3) %	10	0.15	-	
(Chloride Content of Slag	0	.05	-	
	Na2O, %	0	.27	-	
	K2O, %	0	.47	-	
Equiva	alent Alkalies-total as Na2O, %	0	.57		
	Physical Analysis	Test	Results	Spec Limits	
Compressive stren	Physical Analysis gth (psi) 7-day ¹ Reference ASTM C311	Test I	Results 880	Spec Limits -	
Compressive stren Compressive stren	Physical Analysis gth (psi) 7-day ¹ Reference ASTM C311 gth (psi) 28-day ¹ Reference, ASTM C311	Test I 11 31	Results 880 956	Spec Limits - -	
Compressive stren Compressive stren	Physical Analysis gth (psi) 7-day ¹ Reference ASTM C311 gth (psi) 28-day ¹ Reference, ASTM C311	Test I 11 31	Results 880 956	Spec Limits - -	
Compressive stren Compressive stren Compressive strer	Physical Analysis gth (psi) 7-day *Reference ASTM C311 gth (psi) 28-day *Reference, ASTM C311 ngth (psi) 7-day Slag/Cement, ASTM C31	Test I 1 3: 	Results 880 956 583	Spec Limits - - -	
Compressive stren Compressive stren Compressive strer Compressive stren	Physical Analysis gth (psi) 7-day ¹ Reference ASTM C311 gth (psi) 28-day ¹ Reference, ASTM C311 ngth (psi) 7-day Slag/Cement, ASTM C311 gth (psi) 28-day Slag/Cement, ASTM C31	Test I 1: 3: 1: 1: 3: 1: 3: 1: 3:	Results 880 956 583 802	Spec Limits	
Compressive stren Compressive stren Compressive stren Compressive stren	Physical Analysis gth (psi) 7-day ¹ Reference ASTM C311 gth (psi) 28-day ¹ Reference, ASTM C311 ngth (psi) 7-day Slag/Cement, ASTM C31 gth (psi) 28-day Slag/Cement, ASTM C31	Test I 1: 3: 1: 1: 3: 1: 3:	Results 880 956 583 802	Spec Limits	
Compressive stren Compressive stren Compressive strer Compressive stren Strength Ac	Physical Analysis gth (psi) 7-day *Reference ASTM C311 gth (psi) 28-day *Reference, ASTM C311 ngth (psi) 7-day Slag/Cement, ASTM C31* gth (psi) 28-day Slag/Cement, ASTM C31 tivity Index,(%) 7-day, ASTM C311	Test I 1: 3: 1 1 3: 1 3: 1 3: 1 3: 1 1 3: 1 1 3: 1 1 3: 1 1 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1	Results 880 956 583 802 88	Spec Limits 70% min	
Compressive stren Compressive stren Compressive strer Compressive stren Strength Acti	Physical Analysis gth (psi) 7-day *Reference ASTM C311 gth (psi) 28-day *Reference, ASTM C311 ngth (psi) 7-day Slag/Cement, ASTM C311 gth (psi) 28-day Slag/Cement, ASTM C311 tivity Index,(%) 7-day, ASTM C311 ivity Index, (%) 28-day, ASTM C311	Test I 1: 3: 1: 1: 3: 1: 3: 1: 3: 1: 3: 1: 3: 1: 3: 1: 3: 1: 3: 1: 3: 1: 1: 3: 1: 1: 3: 1: 1: 3: 1: 1: 3: 1: 1: 3: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1:	Results 880 956 583 802 88 96	Spec Limits 70% min 90% min	
Compressive stren Compressive stren Compressive stren Compressive stren Strength Act Strength Act Surface area,	Physical Analysis gth (psi) 7-day ¹ Reference ASTM C311 gth (psi) 28-day ¹ Reference, ASTM C311 ngth (psi) 7-day Slag/Cement, ASTM C311 gth (psi) 28-day Slag/Cement, ASTM C311 tivity Index,(%) 7-day, ASTM C311 ivity Index, (%) 28-day, ASTM C311 , m ² /kg (air permeability); ASTM C 204	Test I 1 3 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	Results 880 956 583 802 88 96 626	Spec Limits 70% min 90% min 260 m²/kg min	
Compressive stren Compressive stren Compressive strer Compressive stren Strength Act Strength Acti Surface area, Sp	Physical Analysis gth (psi) 7-day ¹ Reference ASTM C311 gth (psi) 28-day ¹ Reference, ASTM C311 ngth (psi) 7-day Slag/Cement, ASTM C311 gth (psi) 28-day Slag/Cement, ASTM C311 tivity Index, (%) 7-day, ASTM C311 ivity Index, (%) 28-day, ASTM C311 , m ² /kg (air permeability); ASTM C 204 pecific Gravity, ASTM C188	Test I 1 3 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	Results 880 956 583 802 88 96 526 .81	Spec Limits -	
Compressive stren Compressive stren Compressive strer Compressive stren Strength Act Strength Act Surface area, Sp Fineness,	Physical Analysis gth (psi) 7-day *Reference ASTM C311 gth (psi) 28-day *Reference, ASTM C311 ngth (psi) 7-day Slag/Cement, ASTM C311 gth (psi) 28-day Slag/Cement, ASTM C311 tivity Index,(%) 7-day, ASTM C311 ivity Index,(%) 28-day, ASTM C311 , m²/kg (air permeability); ASTM C 204 becific Gravity, ASTM C188 % Retained on #325; ASTM C311	Test I 1: 3: 1: 1: 3: 1: 3: 1: 3: 1: 3: 1: 3: 1: 3: 1: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5:	Results 880 956 956 956 956 9583 960 96	Spec Limits - - - - - 70% min 90% min 260 m²/kg min - 20% max	
Compressive stren Compressive stren Compressive stren Compressive stren Strength Act Strength Acti Surface area, Sp Fineness, Ai	Physical Analysis gth (psi) 7-day ¹ Reference ASTM C311 gth (psi) 28-day ¹ Reference, ASTM C311 ngth (psi) 7-day Slag/Cement, ASTM C311 gth (psi) 28-day Slag/Cement, ASTM C311 tivity Index, (%) 7-day, ASTM C311 ivity Index, (%) 28-day, ASTM C311 ivity Index, (%) ASTM C188 % Retained on #325; ASTM C311 ir content, %; ASTM C 185	Test I 1 3 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	Results 880 956 583 802 88 96 526	Spec Limits - - - - - 70% min 90% min 260 m²/kg min - 20% max 12% max	
Compressive stren Compressive stren Compressive strer Compressive stren Strength Act Strength Acti Surface area, Sp Fineness, Ai <u>Remarks:</u>	Physical Analysis gth (psi) 7-day *Reference ASTM C311 gth (psi) 28-day *Reference, ASTM C311 ngth (psi) 7-day Slag/Cement, ASTM C311 gth (psi) 28-day Slag/Cement, ASTM C311 tivity Index, (%) 7-day, ASTM C311 ivity Index, (%) 28-day, ASTM C311 , m²/kg (air permeability); ASTM C 204 becific Gravity, ASTM C188 % Retained on #325; ASTM C311 ir content, %; ASTM C 185	Test I 1 3 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	Results 880 956 583 802 88 96 526 81 2.8 4.2	Spec Limits - - - - 70% min 90% min 260 m²/kg min - 20% max 12% max	
Compressive stren Compressive stren Compressive strer Compressive stren Strength Act Strength Act Surface area, Sp Fineness, Ai Remarks:	Physical Analysis gth (psi) 7-day *Reference ASTM C311 gth (psi) 28-day *Reference, ASTM C311 ngth (psi) 7-day Slag/Cement, ASTM C311 gth (psi) 28-day Slag/Cement, ASTM C311 tivity Index, (%) 7-day, ASTM C311 ivity Index, (%) 7-day, ASTM C311 ivity Index, (%) 28-day, ASTM C311 m²/kg (air permeability); ASTM C 204 vecific Gravity, ASTM C188 % Retained on #325; ASTM C311 ir content, %; ASTM C 185 (MH) project cement used for reference of	Test I 1 3 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	Results 880 956 956 956 9583 802 96 96 96 96 96 96 96 926 98 96 926 93 96 926 93 96 93 96 93 96 93 96 93 96 93 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 95 95 95 96 95 95 96 95 96 95 96	Spec Limits - - - - 70% min 90% min 260 m²/kg min - 20% max 12% max	
Compressive stren Compressive stren Compressive stren Compressive stren Strength Act Strength Acti Surface area, Sp Fineness, Ai Remarks:	Physical Analysis gth (psi) 7-day ¹ Reference ASTM C311 gth (psi) 28-day ¹ Reference, ASTM C311 ngth (psi) 7-day Slag/Cement, ASTM C311 gth (psi) 28-day Slag/Cement, ASTM C311 itvity Index, (%) 7-day, ASTM C311 ivity Index, (%) 28-day, ASTM C311 ivity Index, (%) 28-day, ASTM C311 , m ² /kg (air permeability); ASTM C 204 pecific Gravity, ASTM C188 % Retained on #325; ASTM C311 ir content, %; ASTM C 185 (MH) project cement used for reference of	Test I 11 31 1 1 1 33 1 1 34 1 34 1 34 1 34 1	Results 880 956 956 956 9583 802 96 92 96 92 96 92 93 94 92 93 94 93 94 93 94	Spec Limits - - - - - 70% min 90% min 260 m²/kg min - 20% max 12% max wed by: MAR	
Compressive stren Compressive stren Compressive strer Compressive stren Strength Act Strength Acti Surface area, Sp Fineness, Ai <u>Remarks:</u>	Physical Analysis gth (psi) 7-day *Reference ASTM C311 gth (psi) 28-day *Reference, ASTM C311 ngth (psi) 7-day Slag/Cement, ASTM C311 gth (psi) 28-day Slag/Cement, ASTM C311 tivity Index, (%) 7-day, ASTM C311 ivity Index, (%) 28-day, ASTM C311 ivity Index, (%) 28-day, ASTM C311 , m²/kg (air permeability); ASTM C 204 becific Gravity, ASTM C188 % Retained on #325; ASTM C311 ir content, %; ASTM C 185 (MH) project cement used for reference of	Test I 1 3 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	Results Results <t< td=""><td>Spec Limits - - - - - 70% min 90% min 260 m²/kg min - 20% max 12% max eed by: MAR ewed by: ABC</td></t<>	Spec Limits - - - - - 70% min 90% min 260 m²/kg min - 20% max 12% max eed by: MAR ewed by: ABC	

	Report on Test Specification:	ASTM C1240, Silic	a Fume Used in Cem	entitious Mixtures
WwW	Performing Orgnaization:		Sponsoring	Orgnaization:
10,000	US Army Engineer Research and Development Center		US Army Corps of Engi	neers
	Geotechnical and Structures Laboratory (CEERD-GMC)		Pittsburgh District, Low	er Mon Area Office
US Army Corps of Engineers BUILDING STRONG,	3909 Halls Ferry Road Vicksburg, MS 39180-8199		1811 Schoon maker Ave	., Monesson, PA 15062
Material Description:	Microsilica Grade 970 D			
Manufacturer:	Elkem Materials Inc.			
Location:	Pittsburgh, PA			
CMB Serial #:	150066			
Project:	Charleroi Lock and Dam Monongahela River Recons	truction Project		
	Chemical Analysis	Test Re	sults	ASTM C1240 Spec. Limits
	SiO ₂ , %	95.1	8	85%, min.
	Al ₂ O ₃ , %	0.24	ł	
	Fe ₂ O ₃ , %	0.52	2	
	Sum, %	95.9	2	
	Na2O, %	0.3		-
	K2O, %	0.49)	
	MgO, %	0.25	j	
	SO3, %	0.01		-
	Loss on ignition, %	2.61		6%, max
	Moisture %	0.61		3%, max
		T (D		A ST M C1240
	Physical Analysis	Test Re	suits	Spec. Limits
Control Mixture ¹ :	Compressive strength, (psi) 7-day, ASTM C 311	1990)	
Test Mixture ² : C	compressive strength, (psi) 7-day, ASTM C 311	3280)	
Strength	Activity Index,(%) 7-day, ASTM C311	165		105%, min
Wate	r Requirement, ASTM C 311,C 109	5		100-115%
	Specific Gravity, ASTM C188	2.32	2	-
Supp	limentary Optional Physical Tests	Test Re	sults	ASTM C1240 Spec. Limits
Uniformity R	equirement, amount of Vinsol, ASTM C618	0.04	9	
Effectiveness in Co	ntrolling ASR at 14 days, ASTMC618, C311, C441	95%	6	80%, min.
Remarks:				
1,2 Armstrong Type II (MH) project cement used for reference cement			
³ Following the standa	rd ASTM C 1240 method, 2 mL of HRWRA required w	vith test mixture to pro	duce flow limits using	242 mL of water
			Tested by:	MAR
			Reviewed	by: ABC
Information in th	is report shall not be used in advertising or sales promotion	to indicate endorsemen	t of this product by the U	S. Government.

A.2 Aggregate materials

Summary of Aggregate Tests Report									
	Mater	ial Description:	3/4-inch limest	one aggregate		Performing	Geotechn	ical and St	ructures Lab
		Source:	Hanson Aggreg	pates	C	Tested by: R. Hardy			als Branch
		CMB Log in #	150070		R	eviewed by:	J. Burroughs/M. Ramsey		
	Sponsoring	g Organization:	USACE Pittsburgh District, Lower Mon Area Office				e. Banougnorm. Hamooy		
		Project:	Charleroi Lock	and Dam Mono	ngahela Rive	r Reconstru	ction Proje	ect	
			ASTM C	136: Sieve Ana	alysis:				
Sieve Size	Run Mass Ret d	1 % Pot	Cumulativ	e Percent	Rur Mass Rot d	12 % Pot	Cumulativ	Percent Race	Avg % Passing
3 in	0.0	0.00%	0.00%	100.00%	0.0	0.00%	0.00%	100.00%	100%
2 1/2 in	0.0	0.00%	0.00%	100.00%	0.0	0.00%	0.00%	100.00%	100%
2 in	0.0	0.00%	0.00%	100.00%	0.0	0.00%	0.00%	100.00%	100%
1 1/2 in	0.0	0.00%	0.00%	100.00%	0.0	0.00%	0.00%	100.00%	100%
1 in	0.0	0.00%	0.00%	100.00%	0.0	0.00%	0.00%	100.00%	100%
3/4 in 1/2 in	265.1	3.21%	3.21%	96.79%	255.1	3.07%	3.07%	96.93%	97%
3/8 in	2306.2	27.89%	94.54%	43.30%	2544.6	30.64%	92 15%	40.49%	17%
No. 4	1017.2	12.30%	96.85%	3.15%	1076.2	12.96%	95.10%	4.90%	4%
No. 8	177.5	2.15%	98.99%	1.01%	285.8	3.44%	98.55%	1.45%	1%
Pan	83.1	1.01%	100.00%		120.8	1.45%	100.00%		
Total	8267.8	100.00%			8305.3				
00.4	0407.7	Magg Aft -	ASTM C 11	7: Minus 75um	(No. 200)			0/ 1	0.70%
OD Mass, g	9427.7	iviass Aπ,g ΔC	9359.2 TM C 127: Bull	Specific Gravit	v & Absorpti	on:		% LOSS:	0.73%
		Ac	UII	Copecific Glavi	, a nosuipli	UT.	Run 1	Run 2	Ava
		SSD I	Mass in Air. a				3142.6	3529.7	
		<u>SSD</u> M	<u>ass in Water, g</u>				1965.1	2207.5	
		Displa	aced Water, g				1177.5	1322.2	
		Wa	ter Temp C				22.7	22.7	
	Rel	ative Density (B	Sulk Specific Gra	avity)(SSD)			2.669	2.670	2.67
		Oven	Dry Mass, g				3123.4	3508.8	
Moisture Loss, g							0.61%	20.9	0.61%
		AST	A C 88 Magnesi	um Sulfate Sou	Indness (5 cy	(cles):	0.0170	0.0070	0.0170
	Gradation > 5%	OD Mass, g	Mass Aft, g	Mass Loss, g	% Loss	Wt'ed %			
2 1/2 in	0.00%	1.0	1.0	0.0	0.00	0.0%			
2 in	0.00%	1.0	1.0	0.0	0.00	0.0%			
1 1/2 in	0.00%	1.0	1.0	0.0	0.00	0.0%			
1 in 2/4 in	0.00%	1.0	1.0	0.0	0.00	0.0%			
1/2 in	53 44%	674.4	668.0	6.4	0.01	0.0%			
3/8 in	27.89%	1004.6	978.6	26.0	0.03	0.7%			
No. 4	12.30%	280.9	280.9	0.0	0.00	0.0%			
No. 8	2.15%	280.9	280.9	0.0	0.00	0.0%			
Total	98.99%		400 11-64 14/-1-			1.3%			1.3%
Zine Dremide (40	ASIMIC	123 Light Weig	ont Particles and	d Pieces in A	lggregate			
OD Mass id	.40 sp.gr. 3004.0	Ret Mass o	2959 7	Massioss o	ar. 44.3	% Loss:	1 47%		1.5%
, g	0004.0	AST	A C131 or C535	LA Abrasion R	esistance (50	00 rev)			
Grading:	В	OD Mass, g	5009.9	Ret Mass, g	3903.8	% Loss:	22.08%		22.1%
		A	STM C 142: CI	ay Lumps & Fri	able Particle	s:			
	Gradation >5%	OD Mass, g	Mass Aft, g	Mass Loss, g	% Loss	Wt'ed %			
2 1/2 in	0.00%	1.0	1.0	0.0	0.00	0.0%			
2 IN 1 1/2 in	0.00%	1.0	1.0	0.0	0.00	0.0%			
1 in	0.00%	1.0	1.0	0.0	0.00	0.0%			<u> </u>
3/4 in	3.21%	2037.7	2035.4	2.3	0.00	0.0%			
1/2 in	53.44%	2037.7	2035.4	2.3	0.00	0.1%			
3/8 in	27.89%	2001.1	1999.2	1.9	0.00	0.0%			
No. 4	12.30%	1007.0	1002.4	4.6	0.00	0.1%			
Iotal	96.85%			Elat or Elan est	d Particles :	0.1%			0.1%
3:1 Patio	Gradation > 10%	Prs Before	Flat Pce	Fland Pos	F&F Pce	% F F & F F	Wted %		
2 1/2 in	0.00%	100	0	0	0	0.00	0.0%		
2 in	0.00%	100	0	0	0	0.00	0.0%		
1 1/2 in	0.00%	100	0	0	0	0.00	0.0%		
1 in	0.00%	100	0	0	0	0.00	0.0%		
3/4 in	3.21%	100	0	0	0	0.00	0.0%		
1/2 in	53.44%	107	0	0	0	0.00	0.0%		
No 4	27.89%	120	0	0	0	0.00	0.0%		
Total	96.85%	102	0	0		0.00	0.0%		0.0%

Summary of Aggregate Tests Report											
	Material	Description:	Fine Aggregate	e	Performing		Geotechnical and Structures Lab				
		Source:	Georgetown Sa	and & Gravel	Organizaion:		Concrete and Materials Branch				
		Location:	Georgetown, P	'A	Tested by:		R. Hardy				
	C	MB Log in #:	150069 Reviewed by:				J. Burroughs/M. Ramsey				
Sponsoring Organization: USACE Pittsburgh District, Lower Mon Area Office											
Project: Charleroi Lock and Dam Monongahela River Reconstruction Project											
ASTM C 136 Sieve Analysis:											
Sieve Size	Run	1	Cumulativ	e Percent	Run 2		Cumulative Percent		Avg %		
	Mass Ret, g	% Ret.	Ret.	Pass	Mass Ret, g	% Ret.	Ret.	Pass	Passing		
3/8 in.	0.00	0.00%	0.00%	100.00%	0.00	0.00%	0.00%	100.00%	100%		
No. 4	10.60	2.19%	2.19%	97.81%	9.30	2.02%	2.02%	97.98%	98%		
No. 8	53.90	11.11%	13.30%	86.70%	55.00	11.94%	13.96%	86.04%	86%		
No. 16	63.00	12.99%	26.29%	73.71%	56.20	12.20%	26.17%	73.83%	74%		
No. 30	89.80	18.52%	44.80%	55.20%	85.90	18.65%	44.82%	55.18%	55%		
N0. 40	106.80	22.02%	66.82%	33.18%	102.70	22.30%	67.12%	32.88%	33%		
No. 50	95.30	19.65%	86.47%	13.53%	88.60	19.24%	86.36%	13.64%	14%		
No. 100	54.00	11.13%	97.61%	2.39%	51.30	11.14%	97.50%	2.50%	2%		
No. 200	10.40	2.14%	99.75%	0.25%	9.90	2.15%	99.65%	0.35%	0%		
Pan	1.20	0.25%	100.00%		1.60	0.35%	100.00%				
Iotal	485.00	100.00%	0 707		460.50		0.700		0.74		
FIN	ieness modulus	•	2.707	C 117 Minus 7	Euro (No. 200)		2.708		2.71		
	490.00	Maga Att	405		3um (No. 200)	0/ 1 0001	4.000/		A		
OD Mass, g	469.90	Mass Alt, g	460 7	Mass Loss, g	4.90	% Loss:	0.80%		Avg LUSS		
OD Mass, g	404.40	Mass Alt, y	400.7 ASTM C 127	Bulk Specific	Gravity & Absor	70 LUSS.	0.0078		0.978		
			71011110127			ption.	Run 1	Run 2	Ava		
		, c	SD Mass o				503.80	507.90	,g		
		Mass	Flask+Water	a			1261 80	1474 60			
Mass Flask+WaterHaterial g 1573 50 1738 30											
		Mass [Displaced Wate	r. a			192.10	194.20			
		W	/ater Temp C				22.7	22.7			
	Rela	ative Density	(Bulk Specific 0	Gravity)(SSD)			2.623	2.615	2.62		
		S	SD Mass, g				503.80	507.90			
		Ove	en Dry Mass, g				496.90	500.90			
Moisture Loss, g 690.00% 700.00%											
Absorption 1.39% 1.40%											
ASTM C 40 Organic Impurity Color Plate Number:											
			STM C 88 Mag	gnesium Sulfat	e Soundness (5	cycles):					
	Gradation > 5%	OD Mass, g	Mass Aft, g	% Loss	Wt'ed % Loss						
No. 4	2%	0.00	0.00								
No. 8	12%	100.40	88.40	12.0%	1.38%						
No. 16	13%	100.40	88.70	11.7%	1.47%						
No. 30	19%	100.60	87.80	12.7%	2.36%						
No. 50	19%	100.30	89.50	10.8%	2.09%						
No. 100	11%	100.00	92.10	7.9%	0.88%				0.001		
Iotal	I			Maight Darti I	8.18%		40		8.2%		
AS IN C 123 Light weight Particles and Pieces in Aggregate											
	40 sp.gr.	Maga Aft	474.00					9/ 1 22-1	1 00/		
Zipo Chlorida 2	4/7.1	iviass Aπ, g	471.20					% LOSS:	1.2%		
	.00 sp.gr. 471 2	Mass Aft a	465.40					% Loss:	1.2%		
ASTM C 142 Clay Lumps & Eriphia Participer											
OD Mass in	270 1	Mass Aft o	269 80		0.30			Loss %	0.11%		
, g		· · · · · · · · · · · · · · · · · · ·	=======	, g				_0000, 70			

			Summary o	of Aggregat	te Tests Rep	oort		-		
	Mater	rial Description:	Fine Aggregate		Porforming Organization:		Geotechnical and Structures Lab			
Source:			Shelly Materials		Feriorning Organizatori.		Concrete and Materials Branch			
Location:			Thornville, OH		Tested by:		R. Hardy			
		CMB Log in #:	160004 Reviewed by				J. Burroughs/M. Ramsey			
Sponsoring Organization: USACE Pittsburgh District, Lower Mon Area Office										
Project: Charleroi Lock and Dam Monongahela River Reconstruction Project										
ASTM C 136 Sieve Analysis:										
Sieve Size	Ru	in 1	Cumulative	e Percent	Run 2		Cumulative Percent		Avg %	
	Mass Ret, g	% Ret.	Ret.	Pass	Mass Ret, g	% Ret.	Ret.	Pass	Passing	
3/8 in.	0.00	0.00%	0.00%	100.00%	0.00	0.00%	0.00%	100.00%	100%	
No. 4	5.90	1.09%	1.09%	98.91%	6.10	1.11%	1.11%	98.89%	99%	
No. 8	55.60	10.27%	11.36%	88.64%	57.90	10.56%	11.67%	88.33%	88%	
No. 16	60.90	11.25%	22.61%	77.39%	59.10	10.78%	22.45%	77.55%	77%	
No. 30	112.50	20.78%	43.39%	56.61%	112.60	20.53%	42.98%	57.02%	57%	
N0. 40	146.50	27.06%	70.45%	29.55%	150.40	27.43%	70.40%	29.60%	30%	
No. 50	98.60	18.21%	88.66%	11.34%	98.30	17.92%	88.33%	11.67%	12%	
No. 100	52.10	9.62%	98.28%	1.72%	53.70	9.79%	98.12%	1.88%	2%	
No. 200	8.50	1.57%	99.85%	0.15%	8.80	1.60%	99.73%	0.27%	0%	
Pan	0.80	0.15%	100.00%		1.50	0.27%	100.00%			
Total	541.40	100.00%			548.40	100.00%				
Fi	neness Modulu	s:	2.654				2.647		2.65	
			ASIMO	2 117 Minus 75	5um (No. 200)					
OD Mass, g	544.40	Mass Aft, g	541.4	Mass Loss, g	3.00	% Loss:	0.55%		Avg Loss	
OD Mass, g	551.90	Mass Aft, g	548.4	Mass Loss, g	3.50	% Loss:	0.63%		0.6%	
			ASTM C 127: E	Bulk Specific C	Franty & Absor	otion:	D (
							Run 1	Run 2	Avg	
		55	SD Mass, g				508.60	505.10		
Mass Flask+Water, g 1263.50 1479.20										
Mass Flask+Water+Material, g 1576.30 1790.10										
		Mass Di	splaced water,	g			195.80	194.20		
	De	VVa	ater Temp C				21.8	21.8	2.00	
	Re		Dry Mass	anty)(SSD)			2.598	2.601	2.60	
		Over	i Dry Mass, g				499.90	496.60		
Mioisture Loss, g 8.70								1 71%	1 7%	
		ASTM	C 40 Organic Im	purity Color P	late Number:		1.7470	1.7170	2	
ASTM C 88 Ma	anesium Sulfat	e Soundness (5		New Soluti	on 1 299 sp. gr					
Gradatio	n > 5%	OD Mass d	Mass Aft o	% Loss	Wt'ed % Loss					
No 4	1%	02 mass, g	maee / m, g	11 1%	0.12%					
No. 8	10%	100.00	88,90	11.1%	1.16%					
No. 16	11%	100.00	86.80	13.2%	1.45%					
No. 30	21%	100.10	81.90	18.2%	3.76%					
Nos. 40 & 50	45%	100.10	90.70	9.4%	4.25%					
No. 100	10%									
Minus No. 100	2%									
Total	100%				10.62%				10.6%	
		AST	/I C 123 Light W	eight Particle	s and Pieces in	Aggregate	e			
Zinc Bromide 2	.40 sp.gr.									
OD Mass, g	531.5	Mass Aft, g	525.60					% Loss:	1.11%	
Zinc Chloride 2.00 sp.gr.										
OD Mass, g 535.3 Mass Aft, g 531.40 % Loss: 0.73%										
			ASTM C 142	Clay Lumps &	Friable Particl	es:				
OD Mass. a	156.2	Mass Aft, a	155.80	Loss, a	0.40			Loss. %	0.26%	
		R	eport on T pecification	est ns:	ASTM C1271 D546 and D4	and C1301 318 for phy	for chemic	cal propert	ies and ASTM	
----------------------------------	---------------------	--------------------------	----------------------------	---------------	---------------------------	--------------------------	----------------	---------------	-------------------	
1.000	1		Perf	orming Orgn	aization:		Sp	onsoring O	rgnaization:	
110	1	U.S Army E	ngineer Re	search and [Development C	enter	U.S. Army Co	orps of Engir	neers	
		Geotechnic	al and Stru	ctures Labor	atory (CEERD-0	GMC)	Pittsburgh D	istrict, Lowe	r Mon Area Office	
US Army Corps of BUILDING STR	Engineers ONG.	3909 Halls	Ferry Road			,	1811 School	nmaker Ave.	,	
		Vicksburg,	MS 39180-6	6199			Monesson, F	PA 15062		
Materia	Description:	Limestone	Powder							
N	lanufacturer:	Graymont	Limestone							
	Location:	Pleasant (Gap, PA							
	CMB Serial #:	150067	•							
	Project:	Charleroi L	ock and D	am Monong	ahela River Re	constructio	n Project			
	Chemica	al Analysis	6	Ŭ			Test Res	ults		
	SiC	D ₂ , %					0.95			
	Al ₂	⊃ ₃ , %					0.38			
	Fe ₂	O ₃ , %					0.15			
	Ca	0, %					54.18			
	Naź	20, %					0.04			
	K2	0, %					0.09			
	Mg	0, %					0.71			
	C	, %					0.17			
	Loss on ignit	tion (950°C), %				43.29			
	Calculated	Compound	<u>ds</u>							
	Ca as (CaCO ₃ , %					96.69			
	Mg as M	/IgCO ₃ , %					1.49			
	Calculated Ca	rbonates as	s CO ₂				43.29)		
	L.O.I. / C	O2 Balance	9				1			
<u>Calc</u>	ulated Compou	unds-Mg a	s Dolomite							
	Mg as Cal	Mg(CO ₃₎₂ , 9	%				3.26			
	Residual Ca	as CaCO3	, %				94.92			
	AS	6TM D 546	Sieve Anal	ysis of Mine	ral Filler for Bi	tuminous P	aving Mixtur	es:		
	Run	1	Cumulati	ve Percent	Run	2	Cumulativ	e Percent		
Sieve Size	Mass Retained, g	% Retained	% Retained	% Passing	Mass Retained, g	% Retained	% Retained	% Passing	Avg. % Passing	
No. 16	0.00	0.00%	0.00%	100.00%	0.00	0.00%	0.00%	100.00%	100.00%	
No. 30	0.52	0.51%	0.51%	99.49%	0.60	0.53%	0.53%	99.47%	99.48%	
No. 50	0.50	0.49%	1.00%	99.00%	0.58	0.51%	1.04%	98.96%	98.98%	
No. 100	1.93	1.89%	2.89%	97.11%	2.08	1.83%	2.87%	97.13%	97.12%	
No. 200	22.00	21.56%	24.45%	75.55%	24.16	21.25%	24.12%	75.88%	75.72%	
Minus No.200	77.09	75.55%	100.00%		86.28	75.88%	100.00%			
Original Sample	102.04	100.00%			113.70	100.00%				
Remarks: Limes	tone powder m	aterial is c	onsidered r	non-plastic S	Silty Sand (SM), Gray whe	en tested in a	accordance	to ASTM D4318	

A.3 Admixtures materials

The Euclid Chemical Company

AIR ENTRAINING AGENT FOR CONCRETE

EUCLID CHEMICAL

DESCRIPTION

EUCON AEA-92 is formulated for use as an air entraining admixture for concrete of all types and is manufactured under rigid control which assures uniform and precise performance. It should be added to the mix independently and not with other admixtures.

PRIMARY APPLICATIONS

- · Ready mix concrete
- Structural concrete
- Mass concrete
- · Paving concrete
- All exterior concrete

FEATURES/BENEFITS

- Provides a stable air void system with proper bubble size and spacing. This air void system protects concrete against damage caused by repeated freeze/thaw cycles
- · Concrete is made more resistant to de-icing salts, sulfate attack and corrosive water
- · Less mixing water can be used per yard (meter) of concrete and placeability is improved
- · Minimizes bleeding and segregation of the concrete

TECHNICAL INFORMATION

EUCON AEA-92 is an aqueous solution compound of synthetic organic chemicals. It is compatible with concrete mixes containing calcium chloride, water reducing admixtures, retarding admixtures, or high range water reducers.

PACKAGING

EUCON AEA-92 is packaged in bulk, 275 gal (1041 L) totes, 55 gal (208 L) drums and 5 gal (18.9 L) pails.

SHELF LIFE

2 years in original, unopened package.

SPECIFICATIONS/COMPLIANCES

EUCON AEA-92 meets or exceeds the requirements of the following specifications:

- Corps of Engineers Specification CRD C-13
- ASTM Specification C 260
- AASHTO Specification M 154
- · ANSI/NSF STD 61

19215 Redwood Road • Cleveland, OH 44110 800-321-7628 t • 216-531-9596 f

8#

AIR ENTRAINERS

DIRECTIONS FOR USE

EUCON AEA-92 is typically dosed at a rate of 0.1 to 4 oz per 100 lbs (6 to 260 mL per 100 kg) of total cementitious material to entrain 3% - 6% air content. The amount of EUCON AEA-92 will vary depending on type of cement, fineness of sand, temperature, design of the mix, other admixtures, etc. Concrete mixes must be tested regularly to confirm that proper air content is achieved. EUCON AEA 92 should be added directly to the sand to achieve maximum performance.

PRECAUTIONS/LIMITATIONS

- Protect EUCON AEA-92 from freezing.
- Consult your local Euclid Chemical representative for the proper dosage rate adjustments when using fly ash, slag or high range water reducers.
- Add to the mix independent of other admixtures.
- In all cases, consult the Safety Data Sheet before use.

Rev. 11.14

WARRANTY: The Euclid Chemical Company ("Euclid") solely and expressly warrants that its products shall be free from defects in materials and workmanship for one (1) year from the date of purchase. Unless authorized in witting by an officer of Euclid, no other representations or statements made by Euclid or its representatives, in writing or orally shall alter this warranty. EUCLID MARCE NO WARPANTIES, IMPLIED OR OTHERMISE, AS TO THE MERCHANTABILITY OR FITNESS FOR ORDINARY OR PARTICULAR PURPOSES OF ITS PRODUCTS AND EXCLUDES THE SAME. If any Euclid product fails to control with this warranty, Euclid will replace the product at no cost to Buyer Replacement of any product shall be the sole and exclusive remedy available and buyer shall have no claim for incidental or consequential damages. Any warranty, daim runs be made within one (1) year from the date of the claimed breach. Euclid products which fails to control to Buyer shall have and written or cal statements which in any way alter Euclid sinstallation information or instructions and lived this warranty. Found domental information or instructions and lived this warranty. Found domentarily of any calculated products which fails to control to Buyer and lived this warranty. Found domentarily claim must be calculated in fails to control to the statements which in any way alter Euclid sinstallation of Euclid products which fails to control to fails to control to fails to control to the statement and lived this warranty. Froduct damontariations of instructions in the product and information or instructions and lived the avarranty. Froduct damontariants of any groups and the statement with such installation information or instructions and lived this warranty. Froduct damontariants, if any, are done for illustrative purposes only and do not constitute a warranty or warranty alteration of any kind. Buyer shall be solely responsible for determining the suitability of Euclid's products for the Buyer's intended purposes.

EUCON RETARDER 75

CONCRETE WATER REDUCING SET CONTROLLING RETARDER

DESCRIPTION

EUCON RETARDER 75 is a synthetically produced liquid water-reducing and set retarding admixture for concrete. EUCON RETARDER 75 does not contain calcium chloride or other potential corroding materials, and may be used in the presence of aluminum or zinc metals. It is compatible with air-entraining agents, water reducers and calcium chloride, but they must be added separately to the mix.

PRIMARY APPLICATIONS

- · Prestressed concrete
- · Concrete requiring water reduction and set time control
- Architectural concrete
- · Hot weather concrete placement

FEATURES/BENEFITS

Plastic Concrete

- Retards setting characteristics
- Improves finishability
- Improves workability
- · Reduces water requirements
- Reduces segregation

TECHNICAL INFORMATION

Perfomance Data

The following test results were achieved using typical ASTM C 494 mix design requirements, 517 lb/yd³ (307 kg/m³) cement content and similar (± 0.5)% air content.

Hardened Concrete

Increases strengths

Reduces cracking

Non staining

· Reduces permeability

· Improves finished appearance

These results were obtained under laboratory conditions with materials and mix designs meeting the specifications of ASTM C 494. Changes in materials and mix designs can affect the dosage response of EUCON RETARDER 75.

33

EUCLID CHEMICAL

PACKAGING

EUCON RETARDER 75 is packaged in bulk, 275 gal (1041 L) totes, 55 gal (208 L) drums and 5 gal (18.9 L) pails.

SHELF LIFE

1 year in original, unopened container.

SPECIFICATIONS/COMPLIANCES

- ASTM C 494, Types B & D
- AASHTO M 194
- ANSI/NSF STD 61

DIRECTIONS FOR USE

EUCON RETARDER 75 is normally used at dosages of 2 to 5 oz per 100 lb (130 to 330 ml per 100 kg) of cementitious material, depending on the application. Higher dosages are acceptable with prior testing and confirmation of the desired performance with specific materials being used.

EUCON RETARDER 75 should be added to the initial batch water of the concrete mixture. Do not dispense onto dry cement.

PRECAUTIONS/LIMITATIONS

- Care should be taken to maintain EUCON RETARDER 75 above freezing; however, freezing and subsequent thawing will not harm the material if thoroughly agitated.
- · Add to mix independent of other admixtures.
- In all cases, consult the Safety Data Sheet before sue.

Rev. 6.17

WARRANTY: The Euclid Chemical Company ("Euclid") solely and expressly warrants that its products shall be free from defects in materials and workmanship for one (1) year from the date of purchase. Unless authorized in withing by an officer of Euclid, no other representations or statements made by Euclid or its representatives, in writing or orally, shall alter this warranty. EUCLID MAKES NO WARPANTES, IMPUED OR OTHERWISE, AS TO THE MERCHANTABILITY ORFITNESS FOR OPDINARY OR PARTICULAR PURPOSES OF ITS PRODUCTS AND EXCLUDES THE SAME. If any Euclid product fails to conform with this warranty, Euclid will replace the product at no cost to Buyer. Replacement of any product shall be the sole and exclusive remedy available and buyer shall have no claim for incidental or consequential damages. Any warranty claim runti or an instructions in its product iterature or on its packaging labels. Any installation of Euclid products which fails to conform with such installation information or instructions shall be vice softwarranty. Budid will reglace the purposes only and do not constitute a warranty alteration of any kind. Buyer shall have any written or coral statements which its warranty. Product for bother the Buyer's intended purposes.

EUCON WR

WATER REDUCING ADMIXTURE

DESCRIPTION

EUCON WR is an aqueous solution of refined lignosulfonate which is completely free of any added chloride ions. It is a water-reducing, normal-set admixture for concrete. It provides a more plastic and cohesive mix in the fresh concrete and better durability, reduced shrinkage and less permeability in the hardened concrete.

General use concrete

• Lightweight concrete

• Expansive concrete

PRIMARY APPLICATIONS

- Ready mixed concrete
- Prestressed concrete
- · Precast concrete

FEATURES/BENEFITS

- · Provides easier handling and finishing
- Increases strength
- · Provides increased durability
- · Reduces shrinkage and permeability

TECHNICAL INFORMATION

Perfomance Data

The following test results were achieved using typical ASTM C 494 mix design requirements, 517 lb/yd³ (307 kg/m³) cement content and similar (± 0.5)% air content.

These results were obtained under laboratory conditions with materials and mix designs meeting the specifications of ASTM C 494. Changes in materials and mix designs can affect the dosage response of EUCON WR.

WATER REDUCERS

800-321-7628 t · 216-531-9596 f

EUCLID CHEMICAL

19215 Redwood Road • Cleveland, OH 44110

PACKAGING

EUCON WR is packaged in bulk, 275 gal (1041 L) totes, 55 gal (208 L) drums and 5 gal (18.9 L) pails.

SHELF LIFE

1 year in original, unopened container.

SPECIFICATIONS/COMPLIANCES

EUCON WR meets or exceeds the requirements of:

- ASTM C 494, Type A, Type B and Type D
- AASHTO M 194

DIRECTIONS FOR USE

EUCON WR is typically used at dosages of 2 to 10 fl oz/cwt (130 to 650 mL/100 kg) of cementitious materials. Higher dosages are acceptable with prior testing and confirmation of the desired performance with specific materials being used.

EUCON WR admixture has been tested as per ASTM C494 at a Type A dosage of 4 fl oz/cwt (260mL/100 kg) of cementitious materials and at 8 fl oz/cwt (520 mL/100 kg) of cementious materials for Type B and D requirements.

Because of variations in job conditions and concrete materials, dosages other than the recommended amounts may be required. In such cases, contact your local Euclid sales representative.

EUCON WR should be added to the initial batch water of the concrete mixture. Do not dispense onto dry cement.

PRECAUTIONS/LIMITATIONS

- Care should be taken to maintain EUCON WR above freezing; however, freezing and subsequent thawing
 will not harm the material if thoroughly agitated.
- Add to mix independent of other admixtures.
- In all cases, consult the Safety Data Sheet before use.

Rev. 5.18

WARRANTY: The Euclid Chemical Company ("Euclid") solely and expressly warrants that its products shall be free from defects in materials and workmanship for one (1) year from the date of purchase. Unless authorized in writing by an officer of Euclid, no other representations or statements made by Euclid or its representatives, in writing or orally, shall alter this warranty. EUCLID MAKES NO WARRANTIES, IMPLIED OR OTHERWISE, AS TO THE MERCHANTABILITY ORFITNESS FOR OPDINARY OR PARTICULAR PURPOSES OF ITS FRODUCTS AND EXCLUDES THE SAME. If any Euclid product fails to conform with this warranty, Euclid will replace the product at no cost to Buyer. Replacement of any product shall be the sole and exclusive remedy available and buyer shall have no cost in Diver. Replacement of any product shall be the sole and exclusive remedy available and buyer shall have no cost in Diver. Replacement of any product shall be the sole and exclusive remedy available and buyer shall have no cost in Diver. Replacement of the claimed breach. Euclid products which fails to conform with such installation information or instructions in its product installation information or instructions in the product shall be conform with such and written or oral statements which in any way alter Euclid sinstallation information or instructions in its product installation information or installation information or instructions in the product shall will be warrantly. Product formations, if any, are done for illustrative purposes only and do not constitute a warrantly or warrantly writed subreading labels. Any installation of purpose solity of Euclid products for the Buyer's intended purposes.

EUCON AWA

ANTI-WASHOUT ADMIXTURE

DESCRIPTION

EUCON AWA is a ready to use liquid admixture designed to prevent the loss of cement and fine aggregate during the placement of underwater concrete. EUCON AWA is a blend of different powerful ingredients and colloidal agents that act primarily on the water preventing the cement paste from washing out during casting under water. EUCON AWA provides superior slump retention while greatly reducing the environmental impact due to cement wash out in below water applications.

PRIMARY APPLICATIONS

- Underwater bridge repair
- Dam repair below the waterline
- Underwater grouting and mortar application
- Damming underground rivers/lakes in mining operations
- Anti-segregation aid for use with lightweight and heavyweight aggregates
- · Reduction or elimination of concrete bleed water for use with fast track construction

FEATURES/BENEFITS

- Minimal environmental impact due to cement washout
- Eliminates the need for expensive de-watering during underwater construction
- · Greatly reduces or eliminates concrete bleed water
- Superior slump retention
- Does not effect water demand when slump is maintained
- · Easily metered with standard admixture dispensing equipment

TECHNICAL INFORMATION

Appearance

EUCON AWA is a medium viscosity, dark brown liquid which will not discolor concrete.

PACKAGING

EUCON AWA is packaged in 275 gal (1041 L) totes, 55 gal (208 L) drums and 5 gal (18.9 L) pails.

SHELF LIFE

6 months in original, unopened container.

SPECIFICATIONS/COMPLIANCES

• Meets ASTM C 494 Types S

19215 Redwood Road • Cleveland, OH 44110 800-321-7628 t • 216-531-9596 f

www.euclidchemical.com

EUCON AWA

SPECIALTY PRODUCTS

DIRECTIONS FOR USE

Underwater Applications

To reduce the washout of cement and fine aggregates when placing concrete underwater, 10 to 32 oz per 100 lb (0.65 to 2.1 L/100 kg) of cement is recommended. At a dosage rate of 25 oz per 100 lb (1.6 L/100 kg) of cement, set retardation may be 6 to 10 hours. In non air entrained concrete applications, the concrete should be batched and the slump adjusted either with water or HRWR prior to the addition of EUCON AWA.

Do not use water to adjust slump after EUCON AWA has been dispensed, instead, adjust slump through the use of a superplasticizer such as EUCON 37. Contact Euclid Chemical for a product recommendation.

If air entrainment is desired, the addition of the air entraining admixture should be done at the beginning of the batching sequence. EUCON AWA should be added before the HRWR to insure an adequate air void system.

For further recommendations on underwater concreting and underwater concrete mix designs, please consult the ACI 304, "Measuring, Mixing, Transporting and Placing Concrete".

PRECAUTIONS / LIMITATIONS

- · Do not allow material to freeze
- · Superplasticizers must be used to increase slump after the addition of EUCON AWA
- Significant set retardation may occur with the use of this product
- In all cases, consult the Safety Data Sheet before use.

Rev. 11.14

WARRANTY: The Euclid Chemical Company ("Euclid") solely and expressly warrants that its products shall be free from defects in materials and workmanship for one (1) year from the date of purchase. Unless authorized in writing by an officer of Euclid, no other representations or statements made by Euclid or its representatives, in writing or vraily, shall alter this warranty. EUCLID MARCS NO WARRANTES, IMPLED OP OTHERWISE, AS TO THE MERCHANTABILITY OF ITTNESS FOR OPIDNARTY OP RAPTICULAR PURPOSES OF ITS PRODUCTS THE SAME. If any Euclid product fails to conform with this warranty, Euclid at no cost to Buyer. Replacement of any product shall be the sole and exclusive remedy available and buyer shall have no claim for incidental or consequential damages. Any warranty, Euclid must be made within one (1) year from the date of the claimed breach. Euclid products which fails to conform with this warranty. Euclid at installation information or instructions and work warranty. Fuelduct dates to represent the claimed breach. Euclid products which fails to conform with this warranty. Fuelduct dates to demonstrations or instructions and work warranty. Product dates to product shall be the sole and exclusive remedy available and buyer shall have no claim for incidental or consequential damages. Any warranty daim must be made within one (1) year from the date of the claimed breach. Euclid products which fails to conform with such installation information or instructions and work and work this available and buyer shall be the sole and exclusive remedy available and buyer shall have no claim for instructions and and volut share any metric or or instructions and and volut sharemanty. Product demonstrations, if any, are done for illustrative purposes only and do not constitute a warranty or warranty and with due to solely responsible for determining the suitability of Euclid's products for the Buyer's intended purposes.

EUCON 37

HIGH RANGE WATER REDUCER - SUPERPLASTICIZER

DESCRIPTION

EUCON 37 is a high range water-reducing admixture. It may be added to the concrete at the job site or at the ready mix concrete plant. EUCON 37 is formulated to retain plastic consistancy for 30-60 minutes after dosing depending on the initial slumps, dosage rates, and ambient temperature. No chlorides are used in its formulation; consequently, it is recommended for prestressed concrete. It is also compatible with air-entraining agents, waterproofing agents, calcium chloride and many other admixtures; however, each material should be added to the concrete separately.

PRIMARY APPLICATIONS

- High performance concrete
- · General ready mix concrete
- · Heavily reinforced concrete

- · Flatwork and mass concrete
- · Minimum water content concrete
- · Low water/cement ratio concrete
- High slump, flowable concrete

FEATURES/BENEFITS

- · Produces low water content and low water/cement ratio concrete allowing higher strengths
- · Produces flowing concrete with better than normal strengths
- · Aids in concrete placement and reduces labor cost
- · When used in precast work with Type I cement will produce the high early strengths

TECHNICAL INFORMATION

Performance Data:

The following test results were achieved using typical ASTM C 494 mix design requirements, 517 lb/yd³ (307 kg/m³) cement content and similar (± 0.5)% air content. These results were obtained under laboratory conditions with materials and mix designs meeting the specifications of ASTM C 494. Changes in materials and mix designs can affect the dosage response of EUCON 37.

19215 Redwood Road • Cleveland, OH 44110 800-321-7628 t · 216-531-9596 f

PACKAGING

EUCON 37 is packaged in bulk, 275 gal (1041 L) totes, 55 gal (208 L) drums and 5 gal (18.9 L) pails.

SHELF LIFE

2 years in original, unopened package.

SPECIFICATIONS/COMPLIANCES

- Fully complies with the requirements of ASTM C 494, Types A & F admixtures.
- Fully complies with the requirements of AASHTO M 194.

DIRECTIONS FOR USE

EUCON 37 can be added to the initial batch water or directly on the freshly batched concrete and mixed for approximately 5 minutes or 70 revolutions. However, better results have been observed batching directly on the freshly batched concrete. It should not come into contact with dry cement or other admixtures until mixed thoroughly with the concrete batch.

EUCON 37 is typically used at dosages of 6 to 18 oz per 100 lbs (400 to 1170 mL per 100 kg) of cementitious material. Other dosages are acceptable with prior testing and confirmation of the desired performance with specific materials being used.

For any concrete application including Self-Consolidating Concrete (SCC), the dosage of EUCON 37 will vary depending on the mix design, local materials, and individual needs of the concrete producer. Trial mixes should be run to verify plastic and hardened performance with local materials. If the material gradations are not optimum for SCC, a viscosity modifier may be used to improve the quality of the mix. Please consult a local Euclid Chemical Sales Professional for trial mixtures and dosage recommendations. EUCON 37 is compatible with most admixtures including air-entraining agents, accelerators, most water-reducers, retarders, shrinkage reducers, corrosion inhibitors, viscosity modifiers, and microsilica; however, each material should be added to the concrete separately.

Figure 1:Recommended Dosage of Eucon 37 to achieve flowable concrete (7 - 9"/ 180-230 mm slump)

Initial Slump, inches (mm)	Dosage Range of Eucon 37, oz/cwt (mL/100 kg)
4 (100)	8 - 10 (520 - 650)
3 (75)	10 - 12 (650 - 780)
2 1/2 (65)	12 - 14 (780 - 910)
2 (50)	14 - 16 (910 - 1040)
1 1/2 (40)	16 - 18 (1040 - 1170)

Placement

Concrete treated with EUCON 37 may be placed in the same fashion as conventional concrete.

Formwork

Forms for walls or narrow sections must be watertight, strong and have good bracing. During the "flowing period", when the concrete is at a slump of 7" to 9" (180-230 mm), the concrete will exert a higher pressure at the base of the form than conventional concrete. Formwork for slabs is the same as for conventional concrete.

PRECAUTIONS / LIMITATIONS

- Care should be taken to maintain EUCON 37 above freezing; however, freezing and subsequent thawing will
 not harm the material if thoroughly agitated. Never agitate with air or an air lance.
- Keep concrete from freezing until a minimum strength of 1000 psi (7 MPa) is reached.
- In all cases, consult the Safety Data Sheet before use.

Rev. 2.15

WARRANTY: The Euclid Chemical Company ("Euclid") solely and expressly warrants that its products shall be free from defects in materials and workmanship for one (1) year from the date of purchase. Unless authorized in witting by an officer of Euclid, no other representations or statements made by Euclid or its representatives, in witting or orally shall alter this warranty. EUCLD MARCS NO WARRANTES, IMPLED OR OTHERWISE, AS TO THE MERCHANTABILITY OR FITNESS FOR OPDINARY OR PARTICULAR PURPOSES OF ITS PRODUCTS AND EXCLUDES THE SAME. If any Euclid product fails to conform with this warranty, Euclid will replace the product at no cost to Buyer. Replacement of any product shall be the sole and exclusive remedy available and buyer shall have no claim for incidental or consequential damages. Any warranty, daim must be made within one (1) year from the date of the claimed treach. Euclid product shall be the sole and exclusive remedy available and buyer shall have no claim for incidental or consequential damages. Any warranty, daim must be made within one (1) year from the date of the claimed treach. Euclid products with fails to conform with such installation information or instructions and work way alter Euclid is installation of indexing in product in the product shall be the sole and exclusive remedy available and information or or instructions and with due to the warranty. Product demonstrations or instructions and with all vice dimenstrations of enclid products with fails to conform with such installation information or instructions and with diversenty. Product demonstrations of enclid products with data the sole of expressible for determining the suitability of Euclid's products for the Buyer's intended purposes.

Appendix B: Worksheets for ASTM C1260

						-		_								
Mix:	Hanson Ag	Igregate w	/ Armstron	g Cement												
Potential /	Alkali Reacti	vity of Ag	gregates, A	STM C 12	260											
	Date			Specimen	1		Specimen	2		Specimen	3	ę	Specimen 4	4	Average	Standard
Mixture		Age [*]	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Expansion	Deviation
ID	D/M/Yr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	4/28/2015		-	1	-	-	-	-	-	-	-		1		-	-
Initial	4/30/2015		0.0057			0.0052			0.0031			0.0029				
zero read	5/1/2015	0	0.0103		0.0000	0.0097		0.0000	0.0078		0.0000	0.0072		0.0000	0.0000	0.000
	5/4/2015	3	0.0141	0.0038	0.0380	0.0137	0.0040	0.0400	0.0116	0.0038	0.0380	0.0110	0.0038	0.0380	0.0385	0.0010
	5/6/2015	5	0.0179	0.0076	0.0760	0.0169	0.0072	0.0720	0.0132	0.0054	0.0540	0.0138	0.0066	0.0660	0.0670	0.0096
	5/8/2015	7	0.0217	0.0114	0.1140	0.0209	0.0112	0.1120	0.0199	0.0121	0.1210	0.0174	0.0102	0.1020	0.1123	0.0078
	5/15/2015	14	0.0262	0.0159	0.1590	0.0262	0.0165	0.1650	0.0257	0.0179	0.1790	0.0232	0.0160	0.1600	0.1658	0.0092
	5/22/2015	21	0.0285	0.0182	0.1820	0.0275	0.0178	0.1780	0.0271	0.0193	0.1930	0.0242	0.0170	0.1700	0.1808	0.0096
	5/29/2015	28	0.0298	0.0195	0.1950	0.0290	0.0193	0.1930	0.0275	0.0197	0.1970	0.0261	0.0189	0.1890	0.1935	0.0034
	5/31/2015	30	0.0302	0.0199	0.1990	0.0290	0.0193	0.1930	0.0278	0.0200	0.2000	0.0268	0.0196	0.1960	0.1970	0.0032
	Note: All e	expansion v	alues use t	he zero rea	ading (72 hrs	s). Specime	en were cur	ed 48 hours	s before init	ial reading.	Age (day) r	epresents t	ime of mea	asurement a	after casting	

Mix:	Georgetow	n Aggrega	te w/ Arm	strong Ce	ment											
Potential /	Alkali React	ivity of Ag	gregates, A	ASTM C 12	260											
	Date			Specimen	1		Specimen	2		Specimen	3	5	Specimen 4	1	Average	Standar
Mixture		Age [*]	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Expansion	Deviatio
ID	D/M/Yr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	4/21/2015			19	-	-		-	-	-	.=.	-	-	-	-	-
Initial	4/23/2015		-0.0014			0.0005			-0.0032			0.0054				
zero read	4/24/2015	0	0.0057		0.0000	0.0076		0.0000	0.0039		0.0000	0.0122		0.0000	0.0000	0.000
	4/27/2015	3	0.0072	0.0015	0.0150	0.0094	0.0018	0.0180	0.0057	0.0018	0.0180	0.0141	0.0019	0.0190	0.0175	0.001
	4/29/2015	5	0.0100	0.0043	0.0430	0.0124	0.0048	0.0480	0.0093	0.0054	0.0540	0.0171	0.0049	0.0490	0.0485	0.004
	5/1/2015	7	0.0127	0.0070	0.0700	0.0151	0.0075	0.0750	0.0127	0.0088	0.0880	0.0197	0.0075	0.0750	0.0770	0.007
	5/8/2015	14	0.0206	0.0149	0.1490	0.0227	0.0151	0.1510	0.0194	0.0155	0.1550	0.0269	0.0147	0.1470	0.1505	0.003
	5/15/2015	21	0.0216	0.0159	0.1590	0.0248	0.0172	0.1720	0.0214	0.0175	0.1750	0.0281	0.0159	0.1590	0.1663	0.008
	5/22/2015	28	0.0217	0.0160	0.1600	0.0248	0.0172	0.1720	0.0214	0.0175	0.1750	0.0281	0.0159	0.1590	0.1665	0.008
	5/24/2015	30	0.0217	0.0160	0.1600	0.0250	0.0174	0.1740	0.0217	0.0178	0.1780	0.0283	0.0161	0.1610	0.1683	0.009
	Note: All e	expansion v	alues use t	he zero re	ading (72 hr	s). Specime	en were cur	red 48 hours	s before init	ial reading.	Age (day) r	epresents t	ime of mea	isurement a	fter casting] .

Mix:	Shelly Sand	d w/Arms	trong Cem	ent									
Potential	Alkali React	ivity of Ag	gregates, A	ASTM C 12	60								
	Date			Specimen '	1		Specimen	2		Specimen	3	Average	Standard
Mixture		Age	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Expansion	Deviation
ID	D/M/Yr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	11/18/2015		-	-	-	-	-	-	-	-	-	-	-
Initial	11/19/2015		0.0004			-0.1120			0.0029				
zero read	11/20/2015	0	0.0091		0.0000	-0.0024		0.0000	0.0118		0.0000	0.0000	0.0000
	11/23/2015	3	0.0092	0.0001	0.0010	-0.0017	0.0007	0.0070	0.0126	0.0008	0.0080	0.0053	0.0038
	11/25/2015	5	0.0121	0.0030	0.0300	0.0012	0.0036	0.0360	0.0155	0.0037	0.0370	0.0343	0.0038
	11/27/2015	7	0.0161	0.0070	0.0700	0.0042	0.0066	0.0660	0.0191	0.0073	0.0730	0.0697	0.0035
	12/4/2015	14	0.0233	0.0142	0.1420	0.0118	0.0142	0.1420	0.0260	0.0142	0.1420	0.1420	0.0000
	12/11/2015	21	0.0243	0.0152	0.1520	0.0129	0.0153	0.1530	0.0260	0.0142	0.1420	0.1490	0.0061
	12/18/2015	28	0.0250	0.0159	0.1590	0.0140	0.0164	0.1640	0.0276	0.0158	0.1580	0.1603	0.0032
	12/20/2015	30	0.0252	0.0161	0.1610	0.0140	0.0164	0.1640	0.0280	0.0162	0.1620	0.1623	0.0015
- N	lote: All expansion	STM C 12	es use the	zero readir trong Ce	ng (72 hrs). me ment wit	Specimen asurement	were cured after castir Sand Ch	48 hours b ng. arleroi Lo	efore initial	reading. A	ge (day) rep	presents tim	ne of
	018				Pro	oject							
	0.16												
	0.14												
	× 0.12												
	ຍິ ພິ 0.10											nen 1	
	ਤੁੱ ਜ਼ੁ 0.08 📥										Specim	nen 2	
	en 0.06 –		/								📥 Specin	nen 3	
	0.04	/									🗕 🛑 Thresh	hold	
	0.02												
	0.00 🜾		1				1						
	0		7		14		21		28				

Time, days

Appendix C: Worksheets for ASTM C1567

Mix:	Mix 1 w	/ith Ha	anson Ag	gregate ar	nd Sammis	Fly Ash								
Potential /	Alkali Re	eactiv	ity of Ag	gregates, <i>l</i>	ASTM C 15	67								
	Date				Specimen '	1		Specimen 2	2		Specimen	3	Average	Standard
Mixture			Age [*]	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Expansior	Deviation
ID	D/M/Y	ſr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	5/5/20	15		-	-	-	-	-	-	-	-	-	-	-
Initial	5/7/20	15		0.0031			0.0020			0.0058				
zero read	5/8/20	15	0	0.0076		0.0000	0.0066		0.0000	0.0097		0.0000	0.0000	0.0000
	5/13/20	015	5	0.0075	-0.0001	-0.0010	0.0074	0.0008	0.0080	0.0106	0.0009	0.0090	0.0053	0.0055
	5/15/20	015	7	0.0080	0.0004	0.0040	0.0073	0.0007	0.0070	0.0104	0.0007	0.0070	0.0060	0.0017
	5/22/20)15	14	0.0086	0.0010	0.0100	0.0078	0.0012	0.0120	0.0105	0.0008	0.0080	0.0100	0.0020
	5/29/20	015	21	0.0094	0.0018	0.0180	0.0084	0.0018	0.0180	0.0108	0.0011	0.0110	0.0157	0.0040
	6/5/20	15	28	0.0094	0.0018	0.0180	0.0085	0.0019	0.0190	0.0110	0.0013	0.0130	0.0167	0.0032
	6/7/20	15	30	0.0097	0.0021	0.0210	0.0087	0.0021	0.0210	0.0110	0.0013	0.0130	0.0183	0.0046
Note: All	expansio	on valı	ues use tł	ne zero rea	ding (72 hr:	s). Specime	n were cure after ca	ed 48 hours isting.	s before init	ial reading.	Age (day) i	represents	time of mea	surement
				ASTM C	1567 Arr	mstrong (Ch	Cement v arleroi L	with Han "Mix 1' ock and	ison Aggi ' Dam Pro	regate an ject	d Samm	is Fly As	h-	
		0.00												
		0.09												
		0.08												
		0.07												
		0.06												
	6,9	0.05												
	ang	0.05										→ S	pecimen 1	
	u	0.04										 s	pecimen 2	
	ngt	0.03											naciman 3	
	le l	0.02											pediter 5	
		0.01										— — T	hreshold	
		0.01							_					
		0.00												

14

Time, days

7

21

28

Ŀ

-0.01

0

46

Mix:	Mix 1 with	Hanson Ag	jgregate ar	nd Ft. Mart	tin Fly Ash											
Potential	Alkali React	ivity of Ag	gregates, A	ASTM C 15	567											
	Date			Specimen	1		Specimen	2		Specimen	3		Spec imen	4	Average	Standard
Mixture		Age [*]	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Expansion	Deviation
ID	D/M/Yr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	5/5/2015		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial	5/7/2015		0.0021			-0.0032			0.0069			0.0018				
zero read	5/8/2015	0	0.0066		0.0000	0.0017		0.0000	0.0118		0.0000	0.0053		0.0000	0.0000	0.000
	5/13/2015	5	0.0076	0.0010	0.0100	0.0019	0.0002	0.0020	0.0120	0.0002	0.0020	0.0063	0.0010	0.0100	0.0060	0.0046
	5/15/2015	7	0.0078	0.0012	0.0120	0.0027	0.0010	0.0100	0.0127	0.0009	0.0090	0.0066	0.0013	0.0130	0.0110	0.0018
	5/22/2015	14	0.0080	0.0014	0.0140	0.0026	0.0009	0.0090	0.0128	0.0010	0.0100	0.0067	0.0014	0.0140	0.0118	0.0026
	5/29/2015	21	0.0081	0.0015	0.0150	0.0030	0.0013	0.0130	0.0130	0.0012	0.0120	0.0070	0.0017	0.0170	0.0143	0.0022
	6/5/2015	28	0.0084	0.0018	0.0180	0.0032	0.0015	0.0150	0.0135	0.0017	0.0170	0.0075	0.0022	0.0220	0.0180	0.0029
	6/7/2015	30	0.0085	0.0019	0.0190	0.0034	0.0017	0.0170	0.0138	0.0020	0.0200	0.0076	0.0023	0.0230	0.0198	0.0025
	* Note: All e	expansion v	alues use t	he zero rea	ading (72 hr	s). Specime	en were cur	ed 48 hour	s before init	tial reading.	. Age (day)	represents	time of me	asurement	after castin	g.

											1					
MIX:	Mix 1 with H	lanson Sai	nd and Bran	don Shores	s Fly Ash											1
Potential	Alkali Reacti	ivity of Agg	regates, A S	STM C 1567												
				Specimen 1	1		Specimen 2	2		Specimen 3	3		Specimen 4	Ļ	Average	Standard
	Date	Age	Reading	Change	Expansion	Reading	Change	E xpan sion	Reading	Change	Expansion	Reading	Change	Expansion	Expansion	Deviation
	D/MYr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix 4/3/2018 -													-	-		
Initial 4/5/2018 -0.0109 -0.0079 -0.0043 -0.0051																
zero read	4/6/2018	0	-0.0048		0.0000	-0.0020		0.0000	0.0018		0.0000	0.0008		0.0000	0.0000	0.000
	4/11/2018	5	-0.0045	0.0003	0.0030	-0.0015	0.0005	0.0050	0.0022	0.0004	0.0040	0.0011	0.0003	0.0030	0.0038	0.0010
	4/13/2018	7	-0.0038	0.0010	0.0100	-0.0010	0.0010	0.0100	0.0027	0.0009	0.0090	0.0015	0.0007	0.0070	0.0090	0.0014
	4/20/2018	14	-0.0036	0.0012	0.0120	-0.0008	0.0012	0.0120	0.0029	0.0011	0.0110	0.0020	0.0012	0.0120	0.0118	0.000
	5/4/2018	28	-0.0033	0.0015	0.0150	-0.0005	0.0015	0.0150	0.0034	0.0016	0.0160	0.0026	0.0018	0.0180	0.0160	0.0014
	5/6/2018	30	-0.0029	0.0019	0.0190	-0.0001	0.0019	0.0190	0.0035	0.0017	0.0170	0.0027	0.0019	0.0190	0.0185	0.0010
Note: All	expansion val	lues use the	e zero readin	ig (72 hrs). S	Specimen we	ere cured 48	hours befor	e initial readii	ng.							

Mix:	Mix 1 with	Georgetow	vn Aggrega	ate and Sa	mmis Fly A	sh										
Potential	Alkali React	ivity of Ag	gregates, A	ASTM C 15	67											
	Date			Specimen	1		Specimen	2		Specimen	3		Specimen	4	Average	Standard
Mixture		Age*	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Expansion	Deviation
ID	D/M/Yr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	5/5/2015		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial	5/7/2015		-0.0002			-0.0057			-0.0071			-0.0016				
zero read	5/8/2015	0	0.0060		0.0000	0.0005		0.0000	-0.0010		0.0000	0.0047		0.0000	0.0000	0.0000
	5/13/2015	5	0.0064	0.0004	0.0040	0.0008	0.0003	0.0030	-0.0010	0.0000	0.0000	0.0048	0.0001	0.0010	0.0020	0.0018
	5/15/2015	7	0.0065	0.0005	0.0050	0.0010	0.0005	0.0050	-0.0006	0.0004	0.0040	0.0048	0.0001	0.0010	0.0038	0.0019
	5/22/2015	14	0.0066	0.0006	0.0060	0.0010	0.0005	0.0050	-0.0005	0.0005	0.0050	0.0050	0.0003	0.0030	0.0048	0.0013
	5/29/2015	21	0.0066	0.0006	0.0060	0.0010	0.0005	0.0050	-0.0005	0.0005	0.0050	0.0051	0.0004	0.0040	0.0050	8000.0
	6/5/2015	28	0.0066	0.0006	0.0060	0.0015	0.0010	0.0100	-0.0004	0.0006	0.0060	0.0055	0.0008	0.0080	0.0075	0.0019
	6/7/2015	30	0.0067	0.0007	0.0070	0.0014	0.0009	0.0090	-0.0004	0.0006	0.0060	0.0055	0.0008	0.0080	0.0075	0.0013
	Note: All e	expansion v	alues use t	he zero rea	ading (72 hr	s). Specime	en were cur	ed 48 hour	s before init	tial reading	Age (day)	represents	time of me	asurement	after castin	g.

Mix:	Mix 1 with	Georgetov	m Aggrega	ate and Ft.	Martin Flv	Ash										
Potential	Alkali React	ivity of Ag	gregates, A	A STM C 1	567											
	Date			Specimen	1		Specimen	2		Specimen	3		Specimen 4	4	Average	Standard
Mixture		Age*	Reading	Change	Expansion	Reading	Change	Expansior	Reading	Change	Expansion	Reading	Change	Expans ior	Expansion	Deviation
ID	D/M/Yr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	5/5/2015		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial	5/7/2015		-0.0160			0.0050			-0.0088			0.0016				
zero read	5/8/2015	0	-0.0102		0.0000	0.0105		0.0000	0.0020		0.0000	0.0080		0.0000	0.0000	0.0000
	5/13/2015	5	-0.0100	0.0002	0.0020	0.0106	0.0001	0.0010	0.0020	0.0000	0.0000	0.0080	0.0000	0.0000	0.0008	0.0010
	5/15/2015	7	-0.0099	0.0003	0.0030	0.0109	0.0004	0.0040	0.0022	0.0002	0.0020	0.0081	0.0001	0.0010	0.0025	0.0013
	5/22/2015	14	-0.0097	0.0005	0.0050	0.0110	0.0005	0.0050	0.0024	0.0004	0.0040	0.0082	0.0002	0.0020	0.0040	0.0014
	5/29/2015	21	-0.0096	0.0006	0.0060	0.0113	0.0008	0.0080	0.0025	0.0005	0.0050	0.0085	0.0005	0.0050	0.0060	0.0014
	6/5/2015	28	-0.0096	0.0006	0.0060	0.0114	0.0009	0.0090	0.0026	0.0006	0.0060	0.0086	0.0006	0.0060	0.0068	0.0015
	6/7/2015	30	-0.0096	0.0006	0.0060	0.0115	0.0010	0.0100	0.0028	0.0008	0.0080	0.0086	0.0006	0.0060	0.0075	0.0019
	* Note: All e	xpansion v	alues use t	he zero rea	ading (72 hr	s). Specime	en were cur	ed 48 hours	s before ini	ial reading.	Age (day)	represents	time of mea	asurement	after castin	j .

Mix ID:	Mix 1 with Geo	orgetown Sa	and and Lor	ngview Fly /	Ash								
Potential	Alkali Reactivit	y of Aggreg	ates, ASTM	C 1567									
				Specimen 1	1		Specimen 2	2		Specimen 3	3	Average	Standard
	Date	Age	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Expansion	Deviation
	D/M/Yr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix 11/14/2017												-	-
Mix 11/14/2017 - <t< td=""><td></td><td></td><td></td></t<>													
zero read	11/17/2017	0	-0.0025		0.0000	-0.0058		0.0000	-0.0015		0.0000	0.0000	0.0000
	11/22/2017	5	-0.0021	0.0004	0.0040	-0.0058	0.0000	0.0000	-0.0012	0.0003	0.0030	0.0023	0.0021
	11/24/2017	7	-0.0021	0.0004	0.0040	-0.0054	0.0004	0.0040	-0.0011	0.0004	0.0040	0.0040	0.0000
	12/1/2017	14	-0.0019	0.0006	0.0060	-0.0052	0.0006	0.0060	-0.0009	0.0006	0.0060	0.0060	0.0000
	12/8/2017	21	-0.0019	0.0006	0.0060	-0.0051	0.0007	0.0070	-0.0006	0.0009	0.0090	0.0073	0.0015
	12/15/2017	28	-0.0017	0.0008	0.0080	-0.0050	0.0008	0.0080	-0.0006	0.0009	0.0090	0.0083	0.0006
	12/17/2017	30	-0.0016	0.0009	0.0090	-0.0049	0.0009	0.0090	-0.0005	0.0010	0.0100	0.0093	0.0006
* Note: A	All expansion val	ues use the	zero reading	j (72 hrs). Sj	pecimen wer	e cured 48 h	ours before	initial reading	g.				

Mix:	Mix 1 with G	ieorgetown	n Sand and	Brandon S	hores Fly As	sh										
Potential	Alkali Reacti	vity of Agg	regates, A S	STM C 1567												
				Specimen '	1		Specimen 2	2		Specimen 3	3		Specimen 4	1	Average	Stan dard
	Date	Age	Reading	Change	Expansion	Reading	Change	E xpan sion	Reading	Change	Expansion	Reading	Change	Expansion	Expansion	Deviation
	D/MYr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix 4/3/2018 -													-	-	-	
Initial 4/5/2018 -0.0124 -0.0086 -0.0092 -0.0103																
zero read	4/6/2018	0	-0.0061		0.0000	-0.0016		0.0000	-0.0023		0.0000	-0.0032		0.0000	0.0000	0.0000
	4/11/2018	5	-0.0060	0.0001	0.0010	-0.0012	0.0004	0.0040	-0.0021	0.0002	0.0020	-0.0030	0.0002	0.0020	0.0023	0.0013
	4/13/2018	7	-0.0058	0.0003	0.0030	-0.0010	0.0006	0.0060	-0.0020	0.0003	0.0030	-0.0028	0.0004	0.0040	0.0040	0.0014
	4/20/2018	14	-0.0057	0.0004	0.0040	-0.0009	0.0007	0.0070	-0.0017	0.0006	0.0060	-0.0024	0.0008	0.0080	0.0063	0.0017
	5/4/2018	28	-0.0053	0.0008	0.0080	-0.0007	0.0009	0.0090	-0.0012	0.0011	0.0110	-0.0025	0.0007	0.0070	0.0088	0.0017
	5/6/2018	30	-0.0052	0.0009	0.0090	-0.0007	0.0009	0.0090	-0.0013	0.0010	0.0100	-0.0024	0.0008	0.0080	0.0090	0.0008
Note: All (expansion val	ues use the	e zero readin	ng (72 hrs). S	Specimen we	ere cured 48	hours befor	e initial readi	ng.							

Mix:	Mix 1 with S	helly Sand	l and Sam	mis Fly As	h								
Potential	Alkali Reacti	vity of Agg	regates, A	STM C 15	67								
	Date			Specimen	1		Specimen	2		Specimen	3	Average	Standard
Mixture		Age	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Expansion	Deviation
ID	D/M/Yr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	11/17/2015		-	-	-	-	-	-	-	-	-	-	-
Initial	11/19/2015		-0.0147			-0.0033			-0.0029				
zero read	11/20/2015	0	-0.0093		0.0000	0.0025		0.0000	0.0031		0.0000	0.0000	0.000
	11/25/2015	5	-0.0090	0.0003	0.0030	0.0026	0.0001	0.0010	0.0032	0.0001	0.0010	0.0017	0.0012
	11/27/2015	7	-0.0088	0.0005	0.0050	0.0029	0.0004	0.0040	0.0034	0.0003	0.0030	0.0040	0.0010
	12/4/2015	14	-0.0087	0.0006	0.0060	0.0030	0.0005	0.0050	0.0037	0.0006	0.0060	0.0057	0.000
	12/11/2015	21	-0.0085	0.0008	0.0080	0.0030	0.0005	0.0050	0.0040	0.0009	0.0090	0.0073	0.002
	12/18/2015	28	-0.0084	0.0009	0.0090	0.0032	0.0007	0.0070	0.0040	0.0009	0.0090	0.0083	0.0012
	12/20/2015	30	-0.0084	0.0009	0.0090	0.0032	0.0007	0.0070	0.0042	0.0011	0.0110	0.0090	0.0020
, v	lote: All expa	nsion value	es use the z	zero readin	g (72 hrs). \$	Specimen v	vere cured	48 hours be	efore initial	reading. Aq	ge (day) rep	presents tin	ne of

Mix:	Mix 1 with	Shelly San	nd and Ft. I	Martin Fly	Ash											
Potential	Alkali React	ivity of Ag	gregates,	ASTM C 1	567											
	Date			Specimen	1		Specimen	2		Specimen	3		Specimen	4	Average	Standard
Mixture		Age	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansior	Reading	Change	Expansion	Expansion	Deviation
ID	D/M/Yr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	11/17/2015		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial	11/19/2015		-0.0086			-0.0096			-0.0062			-0.0070				
zero read	11/20/2015	0	-0.0031		0.0000	-0.0036		0.0000	-0.0002		0.0000	-0.0005		0.0000	0.0000	0.0000
	11/25/2015	5	-0.0028	0.0003	0.0030	-0.0034	0.0002	0.0020	0.0002	0.0004	0.0040	-0.0003	0.0002	0.0020	0.0028	0.0010
	11/27/2015	7	-0.0029	0.0002	0.0020	-0.0034	0.0002	0.0020	0.0005	0.0007	0.0070	-0.0002	0.0003	0.0030	0.0035	0.0024
	12/4/2015	14	-0.0026	0.0005	0.0050	-0.0033	0.0003	0.0030	0.0007	0.0009	0.0090	0.0000	0.0005	0.0050	0.0055	0.0025
	12/11/2015	21	-0.0024	0.0007	0.0070	-0.0031	0.0005	0.0050	0.0008	0.0010	0.0100	0.0001	0.0006	0.0060	0.0070	0.0022
	12/18/2015	28	-0.0022	0.0009	0.0090	-0.0028	0.0008	0.0080	0.0008	0.0010	0.0100	0.0002	0.0007	0.0070	0.0085	0.0013
	12/20/2015	30	-0.0022	0.0009	0.0090	-0.0026	0.0010	0.0100	0.0008	0.0010	0.0100	0.0003	0.0008	0.0080	0.0093	0.0010
	Note: All ex	cpansion va	alues use th	ie zero rea	ding (72 hrs	s). Specime	n were cur	ed 48 hour	s before ini	tial reading	. Age (day)	represents	time of me	easurement	t after casti	ng.

Mix:	Mix 1 with S	helley Sand	l and Longv	iew Fly Ash									
Potential	Alkali Reactiv	ity of Aggro	egates, AST	M C 1567									
				Specimen 1			Specimen 2	2	1	Specimen 3	}	Average	Standard
	Date	Age	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Expansion	Deviation
	D/M/Yr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	11/14/2017		-	-	-	-	-	-	-	-	-	-	-
Initial	11/16/2017		-0.0103			-0.0122			-0.0054				
zero read	11/17/2017	0	-0.0031		0.0000	-0.0050		0.0000	0.0016		0.0000	0.0000	0.0000
	11/22/2017	5	-0.0030	0.0001	0.0010	-0.0048	0.0002	0.0020	0.0017	0.0001	0.0010	0.0013	0.0006
	11/24/2017	7	-0.0029	0.0002	0.0020	-0.0048	0.0002	0.0020	0.0019	0.0003	0.0030	0.0023	0.0006
	12/1/2017	14	-0.0028	0.0003	0.0030	-0.0044	0.0006	0.0060	0.0020	0.0004	0.0040	0.0043	0.0015
	12/8/2017	21	-0.0027	0.0004	0.0040	-0.0046	0.0004	0.0040	0.0022	0.0006	0.0060	0.0047	0.0012
	12/15/2017	28	-0.0027	0.0004	0.0040	-0.0044	0.0006	0.0060	0.0025	0.0009	0.0090	0.0063	0.0025
	12/17/2017	30	-0.0025	0.0006	0.0060	-0.0042	0.0008	0.0080	0.0024	0.0008	0.0080	0.0073	0.0012
Note: A	I expansion v	alues use th	ne zero readi	ng (72 hrs).	Specimen w	ere cured 48	hours befo	re initial read	ing.				

Mix:	Mix 1 with S	helley San	id and Bran	don Shores	Fly Ash											
Potential	Alkali Reacti	vity of Agg	regates, A S	STM C 1567												1
				Specimen '	1		Specimen 2	2		Specimen 3	3		Specimen 4	1	Average	Stan dard
	Date	Age	Reading	Change	Expansion	Reading	Change	E xpan sion	Reading	Change	Expansion	Reading	Change	Expan sion	Expansion	Deviation
	D/MYr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	4/3/2018		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial	4/5/2018		-0.0090			-0.0109			-0.0090			-0.0098				
zero read	4/6/2018	0	-0.0017		0.0000	-0.0036		0.0000	-0.0017		0.0000	-0.0023		0.0000	0.0000	0.0000
	4/11/2018	5	-0.0016	0.0001	0.0010	-0.0035	0.0001	0.0010	-0.0015	0.0002	0.0020	-0.0022	0.0001	0.0010	0.0013	0.0005
	4/13/2018	7	-0.0014	0.0003	0.0030	-0.0033	0.0003	0.0030	-0.0012	0.0005	0.0050	-0.0018	0.0005	0.0050	0.0040	0.0012
	4/20/2018	14	-0.0012	0.0005	0.0050	-0.0031	0.0005	0.0050	-0.0011	0.0006	0.0060	-0.0017	0.0006	0.0060	0.0055	0.0006
	5/4/2018	28	-0.0010	0.0007	0.0070	-0.0027	0.0009	0.0090	-0.0009	0.0008	0.0080	-0.0017	0.0006	0.0060	0.0075	0.0013
	5/6/2018	30	-0.0009	0.0008	0.0080	-0.0029	0.0007	0.0070	-0.0009	0.0008	0.0080	-0.0016	0.0007	0.0070	0.0075	0.0006
Note: All e	expansion val	ues use the	e zero readin	ig (72 hrs). S	Specimen we	ere cured 48	hours befor	e initial readi	ng.							

Mix:	Mix 1 with Har	nson Aggre	egate and	Longview	Fly Ash								
Potential	Alkali Reactivit	y of Aggre	gates, AST	M C 1567									
				Specimen	1		Specimen	2		Specimen	3	Average	Standard
	Date	Age	Reading	Change	Expansion	Reading	Change	Expansior	Reading	Change	Expansion	Expansion	Deviation
	D/M/Yr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	11/14/2017		-	-	-	-	-	-	-	-	-	-	-
Initial	11/16/2017		0.0024			-0.0135			-0.0037				
zero read	11/17/2017	0	0.0073		0.0000	-0.0078		0.0000	-0.0284		0.0000	0.0000	0.0000
	11/22/2017	5	0.0081	0.0008	0.0080	-0.0076	0.0002	0.0020	-0.0280	0.0004	0.0040	0.0047	0.0034
	11/24/2017	7	0.0085	0.0012	0.0120	-0.0074	0.0004	0.0040	-0.0278	0.0006	0.0060	0.0073	0.0050
	12/1/2017	14	0.0089	0.0016	0.0160	-0.0070	0.0008	0.0080	-0.0276	0.0008	0.0080	0.0107	0.0065
	12/8/2017	21	0.0095	0.0022	0.0220	-0.0068	0.0010	0.0100	-0.0265	0.0019	0.0190	0.0170	0.0099
	12/15/2017	28	0.0096	0.0023	0.0230	-0.0062	0.0016	0.0160	-0.0268	0.0016	0.0160	0.0183	0.0097
	12/17/2017	30	0.0097	0.0024	0.0240	-0.0060	0.0018	0.0180	-0.0266	0.0018	0.0180	0.0200	0.0104
1 Note: A	All expansion val	lues use th	e zero read	ing (72 hrs). Specimer	n were cure	d 48 hours	s before initi	al reading.				

Potential Alka Dat Mixture ID C Mix 5/	kaliReacti ate D/M/Yr 5/5/2015	ivity of Ag Age [*] (day)	gregates, A Reading	ASTM C 1 Specimen Change	567 1 Expansion		Specimen	2								<u> </u>
Date Mixture ID Mix 5/	ate D/M/Yr 5/5/2015	Age [*] (day)	Reading	Specimen Change	1 Expansion		Specimen	2		· · · · · · · · · · · · · · · · · · ·	0					a
Mixture ID ID ID ID	D/M/Yr 5/5/2015	Age [*] (day)	Reading	Change	Expansion			-		specimen	3		Specimen	4	Average	Standard
ID E Mix 5/	D/M/Yr 5/5/2015	(day)	D/M/Yr (day) (in.) (in.) (Expansion	Reading	Change	Expans ion	Reading	Change	E xpansior	E xpans ior	Deviatio
Mix 5/	5/5/2015		(111.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
			-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial 5/	5/7/2015		0.0023			0.0018			0.0059			-0.0236				
zero read 5/	5/8/2015	0	0.0086		0.0000	0.0070		0.0000	0.0110		0.0000	-0.0177		0.0000	0.0000	0.000
5/1	/13/2015	5	0.0085	-0.0001	-0.0010	0.0079	0.0009	0.0090	0.0117	0.0007	0.0070	-0.0177	0.0000	0.0000	0.0038	0.005
5/1	/15/2015	7	0.0090	0.0004	0.0040	0.0082	0.0012	0.0120	0.0122	0.0012	0.0120	-0.0173	0.0004	0.0040	0.0080	0.004
5/2	/22/2015	14	0.0098	0.0012	0.0120	0.0092	0.0022	0.0220	0.0130	0.0020	0.0200	-0.0162	0.0015	0.0150	0.0173	0.004
5/2	/29/2015	21	0.0115	0.0029	0.0290	0.0094	0.0024	0.0240	0.0140	0.0030	0.0300	-0.0149	0.0028	0.0280	0.0278	0.002
6/	6/5/2015	28	0.0122	0.0036	0.0360	0.0109	0.0039	0.0390	0.0160	0.0050	0.0500	-0.0134	0.0043	0.0430	0.0420	0.006
6/	6/7/2015	30	0.0125	0.0039	0.0390	0.0111	0.0041	0.0410	0.0162	0.0052	0.0520	-0.0132	0.0045	0.0450	0.0443	0.005
No	ote: All ex	kpansion va	alues use th	ie zero rea	iding (72 hr:	s). Specime	en were cur	ed 48 hour	s before init	ial reading	Age (day)	represents	time of me	asurement	after castin	ıg.

Mix:	Mix 5 with	Hanson Ag	igregate ai	nd Ft. Mar	tin Fly Ash											
Potential	Alkali React	tivity of Ag	gregates, l	ASTM C 1	567											
	Date			Specimen	1		Specimen	2		Specimen	3		Specimen -	4	Average	Standard
Mixture		Age*	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expans ion	Reading	Change	Expansior	E xpans ior	Deviation
ID	D/M/Yr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	4/28/2015		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial	4/30/2015		-0.0068			-0.0131			0.0313			-0.0166				
zero read	5/1/2015	0	-0.0008		0.0000	-0.0074		0.0000	0.0371		0.0000	-0.0108		0.0000	0.0000	0.0000
	5/6/2015	5	-0.0003	0.0005	0.0050	-0.0071	0.0003	0.0030	0.0373	0.0002	0.0020	-0.0106	0.0002	0.0020	0.0030	0.0014
	5/8/2015	7	0.0003	0.0011	0.0110	-0.0065	0.0009	0.0090	0.0376	0.0005	0.0050	-0.0104	0.0004	0.0040	0.0073	0.0033
	5/15/2015	14	0.0013	0.0021	0.0210	-0.0062	0.0012	0.0120	0.0387	0.0016	0.0160	-0.0094	0.0014	0.0140	0.0158	0.0039
	5/22/2015	21	0.0023	0.0031	0.0310	-0.0048	0.0026	0.0260	0.0397	0.0026	0.0260	-0.0084	0.0024	0.0240	0.0268	0.0030
	5/29/2015	28	0.0040	0.0048	0.0480	-0.0025	0.0049	0.0490	0.0415	0.0044	0.0440	-0.0063	0.0045	0.0450	0.0465	0.0024
	5/31/2015	30	0.0042	0.0050	0.0500	-0.0027	0.0047	0.0470	0.0417	0.0046	0.0460	-0.0063	0.0045	0.0450	0.0470	0.0022
	Note: All ex	xpansion va	alues use th	ne zero rea	ding (72 hrs	s). Specime	en were cur	ed 48 hour:	s before init	ial reading	. Age (day)	represents	time of me	asurement	after castin	ig.

Mix:	Mix 5 with H	lanson A	ggregate a	nd Longviev	w Fly Ash											
Potential	Alkali React	ivity of A	ggregates, <i>l</i>	ASTM C 156	7											
				Specimen 1			Specimen 2	2		Specimen 3	3		Specimen 4	ļ	Average	Standard
	Date	Age	Reading	Change	E xpan sion	Reading	Change	Expansion	Reading	Change	E xpan sion	Reading	Change	Expansion	Expansion	Deviation
	D/MYr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	11/28/2017		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial	11/30/2017		-0.0182			-0.0062			-0.0048			-0.0092				
zero read	12/1/2017	0	-0.0125		0.0000	-0.0006		0.0000	0.0009		0.0000	-0.0037		0.0000	0.0000	0.0000
	12/4/2017	3	-0.0121	0.0004	0.0040	-0.0003	0.0003	0.0030	0.0015	0.0006	0.0060	-0.0033	0.0004	0.0040	0.0043	0.0013
	12/8/2017	7	-0.0115	0.0010	0.0100	0.0010	0.0016	0.0160	0.0021	0.0012	0.0120	-0.0026	0.0011	0.0110	0.0123	0.0026
	12/15/2017	14	-0.0111	0.0014	0.0140	0.0013	0.0019	0.0190	0.0027	0.0018	0.0180	-0.0020	0.0017	0.0170	0.0170	0.0022
	12/22/2017	21	-0.0086	0.0039	0.0390	0.0030	0.0036	0.0360	0.0040	0.0031	0.0310	0.0000	0.0037	0.0370	0.0358	0.0034
	12/29/2017	28	-0.0067	0.0058	0.0580	0.0057	0.0063	0.0630	0.0064	0.0055	0.0550	0.0025	0.0062	0.0620	0.0595	0.0037
	12/31/2017	30	-0.0065	0.0060	0.0600	0.0054	0.0060	0.0600	0.0065	0.0056	0.0560	0.0025	0.0062	0.0620	0.0595	0.0025
Note: All	expansion va	lues use t	the zero read	ding (72 hrs)	. Specimen	were cured 4	8 hours bef	ore initial rea	ding.							

Mix:	Mix 5 with I	lanson A	ggregate a	nd Brandon	Shores Fly	Ash							
Potential	Alkali React	ivity of A	gg regates, <i>l</i>	ASTM C 156	67								
				Specimen 1	1		Specimen 2	2		Specimen 3	3	Average	Standard
	Date	Age	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	E xpan sion	Expansion	Deviation
	D/MYr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	3/20/2018		-	-	-	-	-	-	-	-	-	-	-
Initial	3/22/2018		-0.0066			-0.0038			-0.0043				
zero read	3/23/2018	0	0.0003		0.0000	0.0025		0.0000	0.0010		0.0000	0.0000	0.000
	3/26/2018	3	0.0005	0.0002	0.0020	0.0028	0.0003	0.0030	0.0013	0.0003	0.0030	0.0027	0.000
	3/28/2018	5	0.0010	0.0007	0.0070	0.0030	0.0005	0.0050	0.0015	0.0005	0.0050	0.0057	0.001
	3/30/2018	7	0.0014	0.0011	0.0110	0.0033	0.0008	0.0080	0.0026	0.0016	0.0160	0.0117	0.004
	4/6/2018	14	0.0038	0.0035	0.0350	0.0055	0.0030	0.0300	0.0044	0.0034	0.0340	0.0330	0.0026
	4/20/2018	28	0.0048	0.0045	0.0450	0.0065	0.0040	0.0400	0.0053	0.0043	0.0430	0.0427	0.002
	4/23/2018	30	0.0050	0.0047	0.0470	0.0066	0.0041	0.0410	0.0054	0.0044	0.0440	0.0440	0.0030
		Note	: All expans	ion values u	ise the zero i	reading (72 l	nrs). Specim	en were cure	ed 48 hours I	before initial	reading.		

61

Mix:	Mix 5 with	Georgetow	vn Aggrega	ate and Sa	mmis Fly A	\sh										
Potential	Alkali React	ivity of Ag	gregates,	ASTM C 1	567											
	Date			Specimen	1		Specimen	2		Specimen	3		Specimen	4	Average	Standard
Mixture		Age [*]	Reading	Change	Expansior	Reading	Change	Expansior	Reading	Change	Expans ion	Reading	Change	Expansion	E xpans ior	Deviation
ID	D/M/Yr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	4/21/2015		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial	4/23/2015		0.0002			-0.0012			0.0009			0.0049				
zero read	4/24/2015	0	0.0070		0.0000	0.0054		0.0000	0.0078		0.0000	0.0118		0.0000	0.0000	0.0000
	4/27/2015	3	0.0070	0.0000	0.0000	0.0053	-0.0001	-0.0010	0.0079	0.0001	0.0010	0.0118	0.0000	0.0000	0.0000	0.0008
	4/29/2015	5	0.0076	0.0006	0.0060	0.0059	0.0005	0.0050	0.0085	0.0007	0.0070	0.0120	0.0002	0.0020	0.0050	0.0022
	5/1/2015	7	0.0077	0.0007	0.0070	0.0058	0.0004	0.0040	0.0084	0.0006	0.0060	0.0122	0.0004	0.0040	0.0053	0.0015
	5/8/2015	14	0.0079	0.0009	0.0090	0.0062	0.0008	0.0080	0.0087	0.0009	0.0090	0.0126	0.0008	0.0080	0.0085	0.0006
	5/15/2015	21	0.0085	0.0015	0.0150	0.0065	0.0011	0.0110	0.0089	0.0011	0.0110	0.0130	0.0012	0.0120	0.0123	0.0019
	5/22/2015	28	0.0088	0.0018	0.0180	0.0071	0.0017	0.0170	0.0096	0.0018	0.0180	0.0135	0.0017	0.0170	0.0175	0.0006
	5/24/2015	30	0.0089	0.0019	0.0190	0.0072	0.0018	0.0180	0.0097	0.0019	0.0190	0.0136	0.0018	0.0180	0.0185	0.0006
	Note: All ex	xpansion va	alues use th	ne zero rea	ding (72 hr	s). Specime	n were cur	red 48 hour	s before ini	tial reading	. Age (day)	represents	time of me	asurement	after castin	ıg.

62

Mix:	Mix 5 with	Georgetow	/n Aggrega	ate and Ft.	Martin Fly	Ash							
Potential	Alkali React	ivity of Ag	gregates, A	ASTM C 15	67								
	Date			Specimen	1		Specimen	2		Specimen	3	Average	Standard
Mixture		Age [*]	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Expansior	Deviation
ID	D/M/Yr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	4/28/2015		-	-	-	-	-	-	-	-	-	-	-
Initial	4/30/2015		-0.0026			0.0025			-0.0022				
zero read	5/1/2015	0	0.0042		0.0000	0.0043		0.0000	0.0042		0.0000	0.0000	0.0000
	5/6/2015	5	0.0044	0.0002	0.0020	0.0045	0.0002	0.0020	0.0047	0.0005	0.0050	0.0030	0.0017
	5/8/2015	7	0.0048	0.0006	0.0060	0.0046	0.0003	0.0030	0.0049	0.0007	0.0070	0.0053	0.0021
	5/15/2015	14	0.0052	0.0010	0.0100	0.0047	0.0004	0.0040	0.0048	0.0006	0.0060	0.0067	0.0031
	5/22/2015	21	0.0055	0.0013	0.0130	0.0049	0.0006	0.0060	0.0051	0.0009	0.0090	0.0093	0.0035
	5/29/2015	28	0.0058	0.0016	0.0160	0.0054	0.0011	0.0110	0.0060	0.0018	0.0180	0.0150	0.0036
	5/31/2015	30	0.0060	0.0018	0.0180	0.0057	0.0014	0.0140	0.0061	0.0019	0.0190	0.0170	0.0026
. N	Note: All exp	ansion valu	es use the	zero readir	ng (72 hrs). me	Specimen asurement	were cured after castir	48 hours b Ig.	efore initial	reading. A	ge (day) rep	presents tim	ne of

Mix:	Mix 5 with G	ieorgetow	n Sand and	Longview F	ly Ash											
Potential	Alkali Reacti	vity of Agg	regates, A S	STM C 1567												
				Specimen 1	1		Specimen 2	2		Specimen 3	3		Specimen 4	4	Average	Stan dard
	Date	Age	Reading	Change	Expansion	Reading	Change	E xpan sion	Reading	Change	Expansion	Reading	Change	Expansion	Expansion	Deviation
	D/MYr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	11/28/2017		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial	11/30/2017		-0.0122			-0.0057			-0.0100			-0.0088				
zero read	12/1/2017	0	-0.0051		0.0000	0.0012		0.0000	-0.0028		0.0000	-0.0019		0.0000	0.0000	0.0000
	12/4/2017	3	-0.0050	0.0001	0.0010	0.0008	-0.0004	-0.0040	-0.0028	0.0000	0.0000	-0.0021	-0.0002	-0.0020	-0.0013	0.0022
	12/8/2017	7	-0.0049	0.0002	0.0020	0.0015	0.0003	0.0030	-0.0025	0.0003	0.0030	-0.0024	-0.0005	-0.0050	0.0008	0.0039
	12/15/2017	14	-0.0049	0.0002	0.0020	0.0016	0.0004	0.0040	-0.0024	0.0004	0.0040	-0.0015	0.0004	0.0040	0.0035	0.0010
	12/22/2017	21	-0.0040	0.0011	0.0110	0.0026	0.0014	0.0140	-0.0019	0.0009	0.0090	-0.0004	0.0015	0.0150	0.0123	0.0028
	12/29/2017	28	-0.0034	0.0017	0.0170	0.0031	0.0019	0.0190	-0.0015	0.0013	0.0130	0.0001	0.0020	0.0200	0.0173	0.0031
	12/31/2017	30	-0.0032	0.0019	0.0190	0.0033	0.0021	0.0210	-0.0015	0.0013	0.0130	0.0003	0.0022	0.0220	0.0188	0.0040
Note: All	expansion val	ues use the	e zero readin	ng (72 hrs). S	Specimen we	re cured 48	hours befor	e initial readii	ng.							

Mix:	Mix 5 with G	eorgetow	n Sand and	Brandon S	hores Fly As	sh										
Potential	Alkali Reacti	vity of Agg	regates, A S	STM C 1567												
			Specimen 1			Specimen 2			Specimen 3			Specimen 4			Average	Standard
	Date	Age	Reading	Change	Expansion	Reading	Change	E xpan sion	Reading	Change	Expansion	Reading	Change	Expan sion	Expansion	Deviation
	D/MYr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	3/20/2018		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial	3/22/2018		-0.0151			0.0019			-0.0103			-0.0134				
zero read	3/23/2018	0	-0.0085		0.0000	0.0089		0.0000	-0.0039		0.0000	-0.0066		0.0000	0.0000	0.000
	3/26/2018	3	-0.0081	0.0004	0.0040	0.0094	0.0005	0.0050	-0.0034	0.0005	0.0050	-0.0063	0.0003	0.0030	0.0043	0.001
	3/28/2018	5	-0.0078	0.0007	0.0070	0.0095	0.0006	0.0060	-0.0031	0.0008	0.0080	-0.0059	0.0007	0.0070	0.0070	0.000
	3/30/2018	7	-0.0075	0.0010	0.0100	0.0094	0.0005	0.0050	-0.0030	0.0009	0.0090	-0.0059	0.0007	0.0070	0.0078	0.002
	4/6/2018	14	-0.0075	0.0010	0.0100	0.0099	0.0010	0.0100	-0.0025	0.0014	0.0140	-0.0050	0.0016	0.0160	0.0125	0.003
	4/20/2018	28	-0.0068	0.0017	0.0170	0.0105	0.0016	0.0160	-0.0020	0.0019	0.0190	-0.0047	0.0019	0.0190	0.0178	0.001
	4/23/2018	30	-0.0066	0.0019	0.0190	0.0108	0.0019	0.0190	-0.0019	0.0020	0.0200	-0.0045	0.0021	0.0210	0.0198	0.001
Note: All e	Note: All expansion values use the zero reading (72 hrs). Specimen were cured 48 hours before initial reading.															

Mix:	Mix 5 with	Shelly San	d and Sam	nmis Fly A	sh											
Potential	Alkali React	ivity of Ag	gregates,	ASTMC 15	567											
	Date			Specimen	1		Specimen	2		Specimen	3		Specimen	4	Average	Standard
Mixture		Age	Reading	Change	Expansion	Reading	Change	Expans ior	Reading	Change	Expansion	Reading	Change	Expansior	Expansion	Deviation
ID	D/M/Yr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	11/17/2015		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial	11/19/2015		-0.0050			-0.0016			-0.0078			-0.0063				
zero read	11/20/2015	0	0.0019		0.0000	0.0051		0.0000	-0.0013		0.0000	-0.0007		0.0000	0.0000	0.000
	11/25/2015	5	0.0022	0.0003	0.0030	0.0056	0.0005	0.0050	-0.0008	0.0005	0.0050	-0.0004	0.0003	0.0030	0.0040	0.0012
	11/27/2015	7	0.0022	0.0003	0.0030	0.0060	0.0009	0.0090	-0.0006	0.0007	0.0070	0.0000	0.0007	0.0070	0.0065	0.0025
	12/4/2015	14	0.0029	0.0010	0.0100	0.0063	0.0012	0.0120	-0.0003	0.0010	0.0100	-0.0003	0.0004	0.0040	0.0090	0.0035
	12/11/2015	21	0.0030	0.0011	0.0110	0.0065	0.0014	0.0140	-0.0003	0.0010	0.0100	0.0003	0.0010	0.0100	0.0113	0.0019
	12/18/2015	28	0.0032	0.0013	0.0130	0.0066	0.0015	0.0150	0.0004	0.0017	0.0170	0.0003	0.0010	0.0100	0.0138	0.0030
	12/20/2015	30	0.0036	0.0017	0.0170	0.0068	0.0017	0.0170	0.0006	0.0019	0.0190	0.0004	0.0011	0.0110	0.0160	0.0035
	Note: All ex	kpan sion va	alues use th	ne zero rea	ding (72 hr	s). Specime	en were cur	ed 48 hour	s before init	tial reading.	Age (day)	represents	time of me	asurement	after castir	IQ.

Mix:	Mix 5 with Sh	elley Aggr	egate and	Ft. Martin	Fly Ash								
Potential	Alkali Reactivi	ty of Aggre	egates, AS	TM C 1567									
	Date			Specimen	1		Specimen	2		Specimen	3	Average	Standard
Mixture		Age	Reading	Change	Expansior	Reading	Change	Expansior	Reading	Change	Expansion	Expansior	Deviation
ID	D/MYr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	11/17/2015		-	-	-	-	-	-	-	-	-	-	-
Initial	11/19/2015		-0.0011			-0.0138			-0.0116				
zero read	11/20/2015	0	0.0042		0.0000	-0.0071		0.0000	-0.0048		0.0000	0.0000	0.000
	11/25/2015	5	0.0052	0.0010	0.0100	-0.0067	0.0004	0.0040	-0.0043	0.0005	0.0050	0.0063	0.0032
	11/27/2015	7	0.0052	0.0010	0.0100	-0.0065	0.0006	0.0060	-0.0040	0.0008	0.0080	0.0080	0.0020
	12/4/2015	14	0.0055	0.0013	0.0130	-0.0062	0.0009	0.0090	-0.0040	0.0008	0.0080	0.0100	0.0026
	12/11/2015	21	0.0055	0.0013	0.0130	-0.0062	0.0009	0.0090	-0.0040	0.0008	0.0080	0.0100	0.0026
	12/18/2015	28	0.0060	0.0018	0.0180	-0.0060	0.0011	0.0110	-0.0036	0.0012	0.0120	0.0137	0.0038
	12/20/2015	30	0.0060	0.0018	0.0180	-0.0058	0.0013	0.0130	-0.0035	0.0013	0.0130	0.0147	0.0029
Note: A	l expansion valu	ies use the	zero readi	ng (72 hrs)	. Specimen	were cureo after cas	d 48 hours ting.	before initia	al reading. /	Age (day) r	epresents t	ime of mea	surement

Mix:	Mix 5 with S	helley San	d and Bran	don Shores	Fly Ash											
Potential /	Alkali Reactiv	ity of Agg	regates, A S	TM C 1567												
				Specimen 1			Specimen 2	2		Specimen 3	3		Specimen 4	ł	Average	Standard
	Date	Age	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Expansion	Deviation
	D/M/Yr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	3/20/2018		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial	3/22/2018		-0.0026			-0.0013			-0.0117			-0.0045				
zero read	3/23/2018	0	0.0040		0.0000	0.0054		0.0000	-0.0050		0.0000	0.0020		0.0000	0.0000	0.0000
	3/26/2018	3	0.0042	0.0002	0.0020	0.0055	0.0001	0.0010	-0.0048	0.0002	0.0020	0.0022	0.0002	0.0020	0.0018	0.0005
	3/28/2018	5	0.0047	0.0007	0.0070	0.0063	0.0009	0.0090	-0.0043	0.0007	0.0070	0.0029	0.0009	0.0090	0.0080	0.0012
	3/30/2018	7	0.0045	0.0005	0.0050	0.0061	0.0007	0.0070	-0.0043	0.0007	0.0070	0.0029	0.0009	0.0090	0.0070	0.0016
	4/6/2018	14	0.0052	0.0012	0.0120	0.0065	0.0011	0.0110	-0.0040	0.0010	0.0100	0.0035	0.0015	0.0150	0.0120	0.0022
	4/20/2018	28	0.0057	0.0017	0.0170	0.0070	0.0016	0.0160	-0.0035	0.0015	0.0150	0.0040	0.0020	0.0200	0.0170	0.0022
	4/23/2018	31	0.0059	0.0019	0.0190	0.0072	0.0018	0.0180	-0.0031	0.0019	0.0190	0.0041	0.0021	0.0210	0.0193	0.0013
Note: All e	expansion valu	ues use the	e zero readin	g (72 hrs). S	pecimen we	re cured 48	hours before	e initial readin	ig.							

—																
Mix:	Mix 5 with S	helley San	d and Long	view Fly As	h											1
Potential	Alkali Reactiv	ity of Agg	regates, AS	TM C 1567												
				Specimen 1			Specimen 2	2		Specimen 3	3		Specimen 4	1	Average	Stand ard
	Date	Age	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Expansion	Deviation
	D/MYr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	11/28/2017		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial	11/30/2017		-0.0081			-0.0355			-0.0106			-0.0123				
zero read	12/1/2017	0	-0.0012		0.0000	-0.0286		0.0000	-0.0038		0.0000	-0.0058		0.0000	0.0000	0.0000
	12/4/2017	3	-0.0008	0.0004	0.0040	-0.0283	0.0003	0.0030	-0.0033	0.0005	0.0050	-0.0055	0.0003	0.0030	0.0038	0.0010
	12/8/2017	7	-0.0011	0.0001	0.0010	-0.0283	0.0003	0.0030	-0.0035	0.0003	0.0030	-0.0051	0.0007	0.0070	0.0035	0.0025
	12/15/2017	14	-0.0013	-0.0001	-0.0010	-0.0283	0.0003	0.0030	-0.0034	0.0004	0.0040	-0.0054	0.0004	0.0040	0.0025	0.0024
	12/22/2017	21	0.0001	0.0013	0.0130	-0.0277	0.0009	0.0090	-0.0029	0.0009	0.0090	-0.0047	0.0011	0.0110	0.0105	0.0019
	12/29/2017	28	0.0007	0.0019	0.0190	-0.0270	0.0016	0.0160	-0.0020	0.0018	0.0180	-0.0040	0.0018	0.0180	0.0178	0.0013
	12/31/2017	30	0.0008	0.0020	0.0200	-0.0267	0.0019	0.0190	-0.0018	0.0020	0.0200	-0.0034	0.0024	0.0240	0.0208	0.0022
Note: All	expansion valu	ues use the	e zero readin	g (72 hrs). S	Specimen we	re cured 48	hours before	e initial readir	ng.							

-																
Mix:	Mix 7 with H	anson Agg) regate and	Sammis FI	y Ash											
Potential /	Alkali Reactiv	ity of Agg	regates, A S	TM C 1567												
				Specimen 1			Specimen 2	2		Specimen 3	3		Specimen 4	ļ	Average	Standard
	Date	Age	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Expansion	Deviation
	D/M/Yr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	4/24/2018		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial	4/26/2018		-0.0008			-0.0078			-0.0073			-0.0104				
zero read	4/27/2018	0	0.0065		0.0000	-0.0009		0.0000	-0.0006		0.0000	-0.0038		0.0000	0.0000	0.0000
	4/30/2018	3	0.0066	0.0001	0.0010	0.0001	0.0010	0.0100	-0.0002	0.0004	0.0040	-0.0036	0.0002	0.0020	0.0043	0.0040
	5/2/2018	5	0.0069	0.0004	0.0040	0.0005	0.0014	0.0140	0.0010	0.0016	0.0160	-0.0029	0.0009	0.0090	0.0108	0.0054
	5/4/2018	7	0.0070	0.0005	0.0050	0.0010	0.0019	0.0190	0.0015	0.0021	0.0210	-0.0025	0.0013	0.0130	0.0145	0.0072
	5/11/2018	14	0.0083	0.0018	0.0180	0.0020	0.0029	0.0290	0.0017	0.0023	0.0230	-0.0014	0.0024	0.0240	0.0235	0.0045
	5/25/2018	28	0.0094	0.0029	0.0290	0.0026	0.0035	0.0350	0.0027	0.0033	0.0330	-0.0010	0.0028	0.0280	0.0313	0.0033
	5/28/2018	31	0.0096	0.0031	0.0310	0.0027	0.0036	0.0360	0.0029	0.0035	0.0350	-0.0007	0.0031	0.0310	0.0333	0.0026
Note: All e	expansion valu	ues use the	e zero readin	g (72 hrs). S	pecimen we	re cured 48	hours before	e initial readir	ig.							

														-		
Mix:	Mix 7 with H	anson Agg	gregate and	Ft. Martin F	ly Ash											
Potential A	Alkali Reactiv	ity of Agg	regates, AS	TM C 1567												
				Specimen 1			Specimen 2	2		Specimen 3	3		Specimen 4	1	Average	Stand ard
	Date	Age	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Expansion	Deviation
	D/MYr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	5/1/2018		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial	5/3/2018		-0.0080			-0.0015			0.0089			0.0008				
zero read	5/4/2018	0	-0.0015		0.0000	0.0055		0.0000	0.0163		0.0000	0.0077		0.0000	0.0000	0.0000
	5/7/2018	3	-0.0013	0.0002	0.0020	0.0056	0.0001	0.0010	0.0165	0.0002	0.0020	0.0078	0.0001	0.0010	0.0015	0.0006
	5/9/2018	5	-0.0002	0.0013	0.0130	0.0063	0.0008	0.0080	0.0169	0.0006	0.0060	0.0083	0.0006	0.0060	0.0083	0.0033
	5/11/2018	7	0.0005	0.0020	0.0200	0.0070	0.0015	0.0150	0.0175	0.0012	0.0120	0.0090	0.0013	0.0130	0.0150	0.0036
	5/18/2018	14	0.0012	0.0027	0.0270	0.0075	0.0020	0.0200	0.0180	0.0017	0.0170	0.0098	0.0021	0.0210	0.0213	0.0042
	6/1/2018	28	0.0022	0.0037	0.0370	0.0084	0.0029	0.0290	0.0185	0.0022	0.0220	0.0108	0.0031	0.0310	0.0298	0.0062
	6/4/2018	30	0.0023	0.0038	0.0380	0.0088	0.0033	0.0330	0.0190	0.0027	0.0270	0.0112	0.0035	0.0350	0.0333	0.0046
Note: All e	expansion valu	ues use the	e zero readin	g (72 hrs). S	Specimen we	re cured 48 l	hours before	e initial readir	ng.							

Mix [.]	Mix 7 with Har	son Aggre	ate and L	ongview Fly	/ Ash								
Potential	Alkali Reactivit	y of Aggre	gates, ASTN	A C 1567	- ASI								
				Specimen 1			Specimen 2	2		Specimen 3	}	Average	Standard
	Date	Age	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Expansion	Deviation
	D/M/Yr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	11/28/2017		-	-	-	-	-	-	-	-	-	-	-
Initial	11/30/2017		-0.0075			-0.0412			-0.0102				
zero read	12/1/2017	0	-0.0013		0.0000	-0.0352		0.0000	-0.0040		0.0000	0.0000	0.0000
	12/4/2017	3	-0.0011	0.0002	0.0020	-0.0352	0.0000	0.0000	-0.0038	0.0002	0.0020	0.0013	0.0012
	12/8/2017	7	-0.0008	0.0005	0.0050	-0.0351	0.0001	0.0010	-0.0035	0.0005	0.0050	0.0037	0.0023
	12/15/2017	14	0.0001	0.0014	0.0140	-0.0340	0.0012	0.0120	-0.0025	0.0015	0.0150	0.0137	0.0015
	12/22/2017	21	0.0019	0.0032	0.0320	-0.0324	0.0028	0.0280	-0.0015	0.0025	0.0250	0.0283	0.0035
	12/29/2017	28	0.0024	0.0037	0.0370	-0.0316	0.0036	0.0360	0.0001	0.0041	0.0410	0.0380	0.0026
	12/31/2017	30	0.0024	0.0037	0.0370	-0.0320	0.0032	0.0320	-0.0004	0.0036	0.0360	0.0350	0.0026
Note: A	All expansion val	ues use the	e zero readin	ig (72 hrs). S	Specimen we	re cured 48	hours before	e initial readii	ng.				

Mix:	Mix 7 with H	anson and	l Brandon S	hores Fly A	sh								
Potential	Alkali Reactiv	ity of Agg	regates, AS	TM C 1567									
				Specimen 1			Specimen 2	2		Specimen 3	3	Average	Standard
	Date	Age	Reading	Change	Expansion	Reading	Change	Expan sion	Reading	Change	Expansion	Expansion	Deviation
	D/MYr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	3/20/2018		-	-	-	-	-	-	-	-	-	-	-
Initial	3/22/2018		-0.0038			0.0273			0.0112				
zero read	3/23/2018	0	0.0036		0.0000	0.0330		0.0000	0.0169		0.0000	0.0000	0.0000
	3/26/2018	3	0.0039	0.0003	0.0030	0.0332	0.0002	0.0020	0.0172	0.0003	0.0030	0.0027	0.0006
	3/28/2018	5	0.0041	0.0005	0.0050	0.0335	0.0005	0.0050	0.0176	0.0007	0.0070	0.0057	0.0012
	3/30/2018	7	0.0042	0.0006	0.0060	0.0341	0.0011	0.0110	0.0182	0.0013	0.0130	0.0100	0.0036
	4/6/2018	14	0.0053	0.0017	0.0170	0.0350	0.0020	0.0200	0.0189	0.0020	0.0200	0.0190	0.0017
	4/20/2018	28	0.0070	0.0034	0.0340	0.0362	0.0032	0.0320	0.0201	0.0032	0.0320	0.0327	0.0012
	4/23/2018	30	0.0071	0.0035	0.0350	0.0363	0.0033	0.0330	0.0202	0.0033	0.0330	0.0337	0.0012
Note: All e	expansion val	ues use the	e zero readin	g (72 hrs). S	Specimen we	re cured 48	nours before	e initial readir	ng.				

Mixe	Mix 7 with C	oo m oto wa	and Same	aie Ely Ach										1	1	
IVILX.	WIX / WIUI O	eorgetowi	i aliu salili	IIS FIY ASI												
Potential	Alkali Reacti	vity of Agg	regates, A S	STM C 1567												
				Specimen '	1		Specimen 2	2		Specimen 3	3		Specimen 4	1	Average	Standard
	Date	Age	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Expansion	Deviation
	D/M/Yr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	4/24/2018		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial	4/26/2018		-0.0062			-0.0039			-0.0095			-0.0095				
zero read	4/27/2018	0	0.0007		0.0000	0.0028		0.0000	-0.0026		0.0000	-0.0032		0.0000	0.0000	0.0000
	4/30/2018	3	0.0009	0.0002	0.0020	0.0031	0.0003	0.0030	-0.0023	0.0003	0.0030	-0.0026	0.0006	0.0060	0.0035	0.0017
	5/2/2018	5	0.0010	0.0003	0.0030	0.0032	0.0004	0.0040	-0.0021	0.0005	0.0050	-0.0024	0.0008	0.0080	0.0050	0.0022
	5/4/2018	7	0.0014	0.0007	0.0070	0.0036	0.0008	0.0080	-0.0020	0.0006	0.0060	-0.0023	0.0009	0.0090	0.0075	0.0013
	5/11/2018	14	0.0016	0.0009	0.0090	0.0037	0.0009	0.0090	-0.0016	0.0010	0.0100	-0.0021	0.0011	0.0110	0.0098	0.0010
	5/25/2018	28	0.0018	0.0011	0.0110	0.0039	0.0011	0.0110	-0.0012	0.0014	0.0140	-0.0022	0.0010	0.0100	0.0115	0.0017
	5/28/2018	30	0.0020	0.0013	0.0130	0.0040	0.0012	0.0120	-0.0011	0.0015	0.0150	-0.0020	0.0012	0.0120	0.0130	0.0014
Note: All e	expansion val	ues use the	e zero readin	ig (72 hrs). S	Specimen we	re cured 48	hours before	e initial readir	ng.							

Mix:	Mix 7 with G	eorgetown	n and Ft. Ma	artin Fly Ash	1											
Potential	Alkali Reactiv	vity of Agg	regates, A S	STM C 1567												
				Specimen '	1		Specimen 2	2		Specimen 3	3		Specimen 4	ļ.	Average	Standard
	Date	Age	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Expansion	Deviation
	D/M/Yr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	5/1/2018		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial	5/3/2018		-0.0128			-0.0039			0.0017			-0.0099				
zero read	5/4/2018	0	-0.0059		0.0000	0.0029		0.0000	0.0090		0.0000	-0.0030		0.0000	0.0000	0.000
	5/7/2018	3	-0.0055	0.0004	0.0040	0.0032	0.0003	0.0030	0.0092	0.0002	0.0020	-0.0029	0.0001	0.0010	0.0025	0.0013
	5/9/2018	5	-0.0050	0.0009	0.0090	0.0037	0.0008	0.0080	0.0097	0.0007	0.0070	-0.0024	0.0006	0.0060	0.0075	0.0013
	5/11/2018	7	-0.0049	0.0010	0.0100	0.0040	0.0011	0.0110	0.0099	0.0009	0.0090	-0.0022	0.0008	0.0080	0.0095	0.0013
	5/18/2018	14	-0.0048	0.0011	0.0110	0.0044	0.0015	0.0150	0.0100	0.0010	0.0100	-0.0015	0.0015	0.0150	0.0128	0.0026
	6/1/2018	28	-0.0046	0.0013	0.0130	0.0047	0.0018	0.0180	0.0101	0.0011	0.0110	-0.0013	0.0017	0.0170	0.0148	0.0033
	6/4/2018	31	-0.0041	0.0018	0.0180	0.0047	0.0018	0.0180	0.0103	0.0013	0.0130	-0.0012	0.0018	0.0180	0.0168	0.002
Note: All (expansion valu	ues use the	e zero readin	ig (72 hrs). S	Specimen we	re cured 48	hours before	e initial readir	ng.							

Mix:	Mix 7 with G	Georgetow	n Sand and	Longview	Fly Ash								
Potential	Alkali Reacti	vity of Agg	pregates, AS	STM C 1567									
				Specimen 1	1		Specimen 2	2		Specimen 3	3	Average	Standard
	Date	Age	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Expansion	Deviation
	D/M/Yr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	11/28/2017		-	-	-	-	-	-	-	-	-	-	-
Initial	11/30/2017		-0.0079			-0.0124			-0.0120				
zero read	12/1/2017	0	-0.0010		0.0000	-0.0056		0.0000	-0.0052		0.0000	0.0000	0.0000
	12/4/2017	3	-0.0009	0.0001	0.0010	-0.0055	0.0001	0.0010	-0.0050	0.0002	0.0020	0.0013	0.0006
	12/8/2017	7	-0.0008	0.0002	0.0020	-0.0052	0.0004	0.0040	-0.0048	0.0004	0.0040	0.0033	0.0012
	12/15/2017	14	-0.0007	0.0003	0.0030	-0.0053	0.0003	0.0030	-0.0044	0.0008	0.0080	0.0047	0.0029
	12/22/2017	21	-0.0004	0.0006	0.0060	-0.0044	0.0012	0.0120	-0.0040	0.0012	0.0120	0.0100	0.0035
	12/29/2017	28	0.0002	0.0012	0.0120	-0.0039	0.0017	0.0170	-0.0030	0.0022	0.0220	0.0170	0.0050
	12/31/2017	30	0.0006	0.0016	0.0160	-0.0035	0.0021	0.0210	-0.0025	0.0027	0.0270	0.0213	0.0055
[*] Note: A	All expansion v	values use	the zero rea	ding (72 hrs). Specimen	were cured 4	18 hours bef	fore initial rea	ading.				

Mix:	Mix 7 with G	eorgetown	n and Brand	on Shores	Fly Ash											1
Potential	Alkali Reactiv	ity of Agg	regates, A S	STM C 1567												
				Specimen '	1		Specimen 2	2		Specimen 3	3		Specimen 4	1	Average	Standard
	Date	Age	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Expansion	Deviation
	D/M/Yr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	3/20/2018		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial	3/22/2018		0.0007			-0.0063			-0.0039			0.0032				
zero read	3/23/2018	0	0.0071		0.0000	0.0000		0.0000	0.0021		0.0000	0.0091		0.0000	0.0000	0.0000
	3/26/2018	3	0.0071	0.0000	0.0000	0.0002	0.0002	0.0020	0.0023	0.0002	0.0020	0.0092	0.0001	0.0010	0.0013	0.0010
	3/28/2018	5	0.0073	0.0002	0.0020	0.0006	0.0006	0.0060	0.0025	0.0004	0.0040	0.0096	0.0005	0.0050	0.0043	0.0017
	3/30/2018	7	0.0075	0.0004	0.0040	0.0006	0.0006	0.0060	0.0026	0.0005	0.0050	0.0094	0.0003	0.0030	0.0045	0.0013
	4/6/2018	14	0.0080	0.0009	0.0090	0.0011	0.0011	0.0110	0.0031	0.0010	0.0100	0.0100	0.0009	0.0090	0.0098	0.0010
	4/20/2018	28	0.0090	0.0019	0.0190	0.0018	0.0018	0.0180	0.0039	0.0018	0.0180	0.0105	0.0014	0.0140	0.0173	0.0022
	4/23/2018	31	0.0092	0.0021	0.0210	0.0021	0.0021	0.0210	0.0040	0.0019	0.0190	0.0108	0.0017	0.0170	0.0195	0.0019
Note: All e	expansion valu	ues use the	e zero readin	g (72 hrs). S	Specimen we	re cured 48	hours before	e initial readir	ng.							

Mix:	Mix 7 with S	helley San	d and Samr	nis Fly Ash									
Potential	Alkali Reactiv	vity of Agg	regates, AS	TM C 1567									
				Specimen 1			Specimen 2	2		Specimen 3	3	Average	Standard
	Date	Age	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Expansion	Deviation
	D/MYr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	4/24/2018		-	-	-	-	-	-	-	-	-	-	-
Initial	4/26/2018		-0.0053			-0.0034			-0.0104				
zero read	4/27/2018	0	0.0015		0.0000	0.0033		0.0000	-0.0040		0.0000	0.0000	0.0000
	4/30/2018	3	0.0018	0.0003	0.0030	0.0039	0.0006	0.0060	-0.0039	0.0001	0.0010	0.0033	0.0025
	5/2/2018	5	0.0023	0.0008	0.0080	0.0040	0.0007	0.0070	-0.0033	0.0007	0.0070	0.0073	0.0006
	5/4/2018	7	0.0024	0.0009	0.0090	0.0041	0.0008	0.0080	-0.0029	0.0011	0.0110	0.0093	0.0015
	5/11/2018	14	0.0025	0.0010	0.0100	0.0042	0.0009	0.0090	-0.0027	0.0013	0.0130	0.0107	0.0021
	5/25/2018	28	0.0026	0.0011	0.0110	0.0043	0.0010	0.0100	-0.0025	0.0015	0.0150	0.0120	0.0026
	5/28/2018	31	0.0028	0.0013	0.0130	0.0045	0.0012	0.0120	-0.0026	0.0014	0.0140	0.0130	0.0010
Note: All e	expansion val	ues use the	e zero readin	g (72 hrs). S	Specimen we	re cured 48 l	hours before	e initial readir	ng.				

· · · · · ·																
Mix:	Mix 7 with S	helley San	id and Ft. Ma	artin Fly As	h											
Potential /	Alkali Reactiv	ity of Agg	regates, A S	TM C 1567												
				Specimen 1	1		Specimen 2	2		Specimen 3	3		Specimen 4	ţ	Average	Standard
	Date	Age	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Expansion	Deviation
	D/WYr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	5/1/2018		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial	5/3/2018		-0.0106			-0.0106			-0.0096			-0.0052				
zero read	5/4/2018	0	-0.0033		0.0000	-0.0037		0.0000	-0.0026		0.0000	0.0021		0.0000	0.0000	0.0000
	5/7/2018	3	-0.0030	0.0003	0.0030	-0.0034	0.0003	0.0030	-0.0023	0.0003	0.0030	0.0021	0.0000	0.0000	0.0023	0.0015
	5/9/2018	5	-0.0027	0.0006	0.0060	-0.0030	0.0007	0.0070	-0.0022	0.0004	0.0040	0.0025	0.0004	0.0040	0.0053	0.0015
	5/11/2018	7	-0.0023	0.0010	0.0100	-0.0023	0.0014	0.0140	-0.0020	0.0006	0.0060	0.0026	0.0005	0.0050	0.0088	0.0041
	5/18/2018	14	-0.0022	0.0011	0.0110	-0.0024	0.0013	0.0130	-0.0018	0.0008	0.0080	0.0030	0.0009	0.0090	0.0103	0.0022
	6/1/2018	28	-0.0018	0.0015	0.0150	-0.0018	0.0019	0.0190	-0.0019	0.0007	0.0070	0.0033	0.0012	0.0120	0.0133	0.0051
	6/4/2018	31	-0.0013	0.0020	0.0200	-0.0019	0.0018	0.0180	-0.0015	0.0011	0.0110	0.0036	0.0015	0.0150	0.0160	0.0039
Note: All e	xpansion valu	ues use the	e zero readin	g (72 hrs). S	Specimen we	re cured 48	hours before	e initial readir	ng.							

Mix:	Mix 7 with S	helley San	d and Long	view Fly As	h											
Potential	Alkali Reactiv	vity of Agg	regates, AS	TM C 1567												
				Specimen 1	1		Specimen 2	2		Specimen 3	3		Specimen 4	Ļ	Average	Stand ard
	Date	Age	Reading	Change	Expansion	Reading	Change	Expan sion	Reading	Change	Expansion	Reading	Change	Expansion	Expansion	Deviation
	D/MYr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	11/28/2017		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial	11/30/2017		-0.0105			-0.0033			-0.0193			-0.0202				
zero read	12/1/2017	0	-0.0040		0.0000	0.0033		0.0000	-0.0132		0.0000	-0.0137		0.0000	0.0000	0.0000
	12/4/2017	3	-0.0035	0.0005	0.0050	0.0035	0.0002	0.0020	-0.0128	0.0004	0.0040	-0.0134	0.0003	0.0030	0.0035	0.0013
	12/8/2017	7	-0.0034	0.0006	0.0060	0.0037	0.0004	0.0040	-0.0126	0.0006	0.0060	-0.0133	0.0004	0.0040	0.0050	0.0012
	12/15/2017	14	-0.0035	0.0005	0.0050	0.0039	0.0006	0.0060	-0.0124	0.0008	0.0080	-0.0131	0.0006	0.0060	0.0063	0.0013
	12/22/2017	21	-0.0026	0.0014	0.0140	0.0052	0.0019	0.0190	-0.0114	0.0018	0.0180	-0.0122	0.0015	0.0150	0.0165	0.0024
	12/29/2017	28	-0.0020	0.0020	0.0200	0.0053	0.0020	0.0200	-0.0113	0.0019	0.0190	-0.0121	0.0016	0.0160	0.0188	0.0019
	12/31/2017	30	-0.0017	0.0023	0.0230	0.0057	0.0024	0.0240	-0.0112	0.0020	0.0200	-0.0115	0.0022	0.0220	0.0223	0.0017
Note: All	expansion valu	ues use the	e zero readin	g (72 hrs). S	Specimen we	re cured 48	hours before	e initial readii	ng.							

MIX:	Mix 7 with S	helley San	d and Bran	don Shores	Fly Ash											
Potential	Alkali Reactiv	vity of Agg	regates, A S	6TM C 1567												
				Specimen 1	1		Specimen 2	2		Specimen 3	3		Specimen 4	ţ	Average	Standard
	Date	Age	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Expansion	Deviation
	D/M/Yr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	3/20/2018		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial	3/22/2018		-0.0075			-0.0013			-0.0095			-0.0094				
zero read	3/23/2018	0	-0.0017		0.0000	0.0047		0.0000	-0.0030		0.0000	-0.0028		0.0000	0.0000	0.0000
	3/26/2018	3	-0.0015	0.0002	0.0020	0.0047	0.0000	0.0000	-0.0027	0.0003	0.0030	-0.0031	-0.0003	-0.0030	0.0005	0.0026
	3/28/2018	5	-0.0010	0.0007	0.0070	0.0052	0.0005	0.0050	-0.0025	0.0005	0.0050	-0.0026	0.0002	0.0020	0.0048	0.0021
	3/30/2018	7	-0.0007	0.0010	0.0100	0.0053	0.0006	0.0060	-0.0017	0.0008	0.0080	-0.0018	0.0010	0.0100	0.0085	0.0019
	4/6/2018	14	-0.0003	0.0014	0.0140	0.0060	0.0013	0.0130	-0.0016	0.0014	0.0140	-0.0015	0.0013	0.0130	0.0135	0.0006
	4/20/2018	28	0.0001	0.0018	0.0180	0.0065	0.0018	0.0180	-0.0010	0.0020	0.0200	-0.0011	0.0017	0.0170	0.0183	0.0013
	4/23/2018	31	0.0003	0.0020	0.0200	0.0067	0.0020	0.0200	-0.0009	0.0021	0.0210	-0.0009	0.0019	0.0190	0.0200	0.0008
Note: All	expansion val	ues use the	e zero readin	ig (72 hrs). S	Specimen we	re cured 48	hours before	e initial readir	ng.							

Mix:	Mix 10 with H	anson Agg	regate and	l Sammis	Fly Ash											
Potential	Alkali Reactivi	ty of Aggre	egates, AS	TM C 1567												
	Date			Specimen	1		Specimen	2		Specimen	3		Specimen	4	Average	Standard
Mixture		Age	Reading	Change	Expansior	Reading	Change	Expansior	Reading	Change	Expansion	Reading	Change	Expansion	E xpansior	Deviation
ID	D/M/Yr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	10/11/2016		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial	10/13/2016		-0.0070			-0.0058			-0.0029			0.0032				
zero read	10/14/2016	0	-0.0004		0.0000	0.0010		0.0000	0.0038		0.0000	0.0101			0.0000	0.0000
	10/19/2016	5	0.0010	0.0014	0.0140	0.0022	0.0012	0.0120	0.0051	0.0013	0.0130	0.0110	0.0009	0.0090	0.0120	0.0022
	10/21/2016	7	0.0013	0.0017	0.0170	0.0024	0.0014	0.0140	0.0052	0.0014	0.0140	0.0111	0.0010	0.0100	0.0138	0.0029
	10/28/2016	14	0.0023	0.0027	0.0270	0.0046	0.0036	0.0360	0.0066	0.0028	0.0280	0.0130	0.0029	0.0290	0.0300	0.0041
	11/4/2016	21	0.0053	0.0057	0.0570	0.0064	0.0054	0.0540	0.0090	0.0052	0.0520	0.0154	0.0053	0.0530	0.0540	0.0022
	11/11/2016	28	0.0060	0.0064	0.0640	0.0068	0.0058	0.0580	0.0100	0.0062	0.0620	0.0159	0.0058	0.0580	0.0605	0.0030
	11/13/2016	30	0.0061	0.0065	0.0650	0.0070	0.0060	0.0600	0.0102	0.0064	0.0640	0.0167	0.0066	0.0660	0.0638	0.0026
	* Note: All ex	pansion val	lues use th	e zero read	ling (72 hrs). Specime	n were cure	ed 48 hours	before initi	al reading.	Age (day) re	presents tir	me of meas	urement af	ter casting.	

Mix:	Mix 10 with H	anson Agg	pregate and	l Ft. Marti	n Fly Ash								
Potential	Alkali Reactivi	ty of Aggre	egates, AS	TM C 1567									
	Date			Specimen	1		Specimen	2		Specimen	3	Average	Standard
Mixture		Age	Reading	Change	E xpansior	Reading	Change	Expansior	Reading	Change	Expansior	Expansion	Deviation
ID	D/M/Yr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	10/11/2016		-	-	-	-	-	-	-	-	-	-	-
Initial	10/13/2016		-0.0048			-0.0011			-0.0050				
zero read	10/14/2016	0	0.0020		0.0000	0.0057		0.0000	0.0019		0.0000	0.0000	0.0000
	10/19/2016	5	0.0029	0.0009	0.0090	0.0067	0.0010	0.0100	0.0029	0.0010	0.0100	0.0097	0.0006
	10/21/2016	7	0.0033	0.0013	0.0130	0.0068	0.0011	0.0110	0.0032	0.0013	0.0130	0.0123	0.0012
	10/28/2016	14	0.0048	0.0028	0.0280	0.0082	0.0025	0.0250	0.0046	0.0027	0.0270	0.0267	0.0015
	11/4/2016	21	0.0061	0.0041	0.0410	0.0094	0.0037	0.0370	0.0060	0.0041	0.0410	0.0397	0.0023
	11/11/2016	28	0.0080	0.0060	0.0600	0.0110	0.0053	0.0530	0.0075	0.0056	0.0560	0.0563	0.0035
	11/13/2016	30	0.0081	0.0061	0.0610	0.0114	0.0057	0.0570	0.0079	0.0060	0.0600	0.0593	0.0021
* Note: /	All expansion va	alues use th	ne zero rea	ding (72 hr	s). Specime	en were cur ca:	ed 48 hour sting.	s before ini	tial reading.	Age (day)) represents	time of measu	rement after

														-		
Mix:	Mix 10 with I	Hanson an	id Longview	/FlyAsh												
Potential	Alkali Reactiv	ity of Agg	regates, A S	TM C 1567												
				Specimen 1	1		Specimen 2	2		Specimen 3	3		Specimen 4	Ļ	Average	Standard
	Date	Age	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Expansion	Deviation
	D/M/Yr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	12/5/2017		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial	12/7/2017		-0.0056			-0.0089			-0.0087			-0.0061				
zero read	12/8/2017	0	0.0012		0.0000	-0.0017		0.0000	-0.0015		0.0000	0.0013		0.0000	0.0000	0.0000
	12/11/2017	3	0.0019	0.0007	0.0070	-0.0011	0.0006	0.0060	-0.0010	0.0005	0.0050	0.0019	0.0006	0.0060	0.0060	0.0008
	12/15/2017	7	0.0023	0.0011	0.0110	-0.0004	0.0013	0.0130	-0.0004	0.0011	0.0110	0.0023	0.0010	0.0100	0.0113	0.0013
	12/22/2017	14	0.0037	0.0025	0.0250	0.0011	0.0028	0.0280	0.0017	0.0032	0.0320	0.0044	0.0031	0.0310	0.0290	0.0032
	12/29/2017	21	0.0054	0.0042	0.0420	0.0020	0.0037	0.0370	0.0024	0.0039	0.0390	0.0058	0.0045	0.0450	0.0408	0.0035
	1/5/2018	28	0.0078	0.0066	0.0660	0.0046	0.0063	0.0630	0.0054	0.0069	0.0690	0.0081	0.0068	0.0680	0.0665	0.0026
	1/8/2018	30	0.0084	0.0072	0.0720	0.0054	0.0071	0.0710	0.0061	0.0076	0.0760	0.0085	0.0072	0.0720	0.0728	0.0022
* Note: A	I expansion v	alues use	the zero rea	ding (72 hrs). Specimen	were cured 4	48 hours bef	ore initial rea	ding.							

<u> </u>																
Mix:	Mix 10 with	Hansen an	d Brandon	Shores Fly	Ash											
Potential	Alkali Reactiv	ity of Agg	regates, AS	TM C 1567												
				Specimen 1	1		Specimen 2	2		Specimen 3	3		Specimen 4	4	Average	Stand ard
	Date	Age	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Expansion	Deviation
	D/MYr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	3/13/2018		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial	3/15/2018		-0.0044			-0.0091			-0.0018			-0.0021				
zero read	3/16/2018	0	0.0024		0.0000	-0.0043		0.0000	0.0050		0.0000	0.0047		0.0000	0.0000	0.0000
	3/19/2018	3	0.0025	0.0001	0.0010	-0.0035	0.0008	0.0080	0.0052	0.0002	0.0020	0.0047	0.0000	0.0000	0.0028	0.0036
	3/21/2018	5	0.0028	0.0004	0.0040	-0.0033	0.0010	0.0100	0.0056	0.0006	0.0060	0.0048	0.0001	0.0010	0.0053	0.0038
	3/23/2018	7	0.0040	0.0016	0.0160	-0.0030	0.0013	0.0130	0.0066	0.0016	0.0160	0.0055	0.0008	0.0080	0.0133	0.0038
	3/30/2018	14	0.0046	0.0022	0.0220	-0.0012	0.0031	0.0310	0.0083	0.0033	0.0330	0.0070	0.0023	0.0230	0.0273	0.0056
	4/13/2018	28	0.0079	0.0055	0.0550	0.0015	0.0058	0.0580	0.0107	0.0057	0.0570	0.0103	0.0056	0.0560	0.0565	0.0013
	4/15/2018	30	0.0082	0.0058	0.0580	0.0018	0.0061	0.0610	0.0110	0.0060	0.0600	0.0105	0.0058	0.0580	0.0593	0.0015
* Note: A	II expansion v	alues use	the zero rea	ding (72 hrs). Specimen	were cured 4	18 hours bef	iore initial rea	iding.							

Mix:	Mix 10 with G	eorgetown	and Samr	nis Fly Asl	1								
Potential	Alkali Reactivi	ty of Aggre	egates, AS	TM C 1567									
	Date			Specimen	1		Specimen	2		Specimen	3	Average	Standard
Mixture		Age	Reading	Change	Expans ion	Reading	Change	Expansion	Reading	Change	Expansion	Expansion	Deviation
ID	D/M/Yr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	10/11/2016		-	-	-	-	-	-	-	-	-	-	-
Initial	10/13/2016		-0.0053			-0.0013			-0.0067				
zero read	10/14/2016	0	0.0012		0.0000	0.0052		0.0000	-0.0003		0.0000	0.0000	0.0000
	10/17/2016	3	0.0015	0.0003	0.0030	0.0057	0.0005	0.0050	0.0003	0.0006	0.0060	0.0047	0.0015
	10/19/2016	5	0.0015	0.0003	0.0030	0.0056	0.0004	0.0040	0.0001	0.0004	0.0040	0.0037	0.0006
	10/21/2016	7	0.0022	0.0010	0.0100	0.0056	0.0004	0.0040	0.0003	0.0006	0.0060	0.0067	0.0031
	10/28/2016	14	0.0029	0.0017	0.0170	0.0057	0.0005	0.0050	0.0005	0.0008	0.0080	0.0100	0.0062
	11/4/2016	21	0.0030	0.0018	0.0180	0.0066	0.0014	0.0140	0.0009	0.0012	0.0120	0.0147	0.0031
	11/11/2016	28	0.0030	0.0018	0.0180	0.0065	0.0013	0.0130	0.0010	0.0013	0.0130	0.0147	0.0029
	11/13/2016	30	0.0031	0.0019	0.0190	0.0067	0.0015	0.0150	0.0012	0.0015	0.0150	0.0163	0.0023
[*] Note:	All expansion	values use	the zero re	ading (72 l	nrs). Specime	en were cur cas	ed 48 hour sting.	s before initia	l reading. A	ge (day) rei	presents time	of measuren	nent after

/lix:	Mix 10 with G	eorgetown	and Ft.Ma	rtin Fly As	h											
otential	Alkali Reactivit	y of Aggre	gates, AS	TM C 1567												
	Date			Specimen '	1		Specimen	2		Specimen	3		Specimen 4	4	Average	Standard
Mixture		Age	Reading	Change	Expansion	Reading	Change	Expansior	Reading	Change	Expansion	Reading	Change	Expansion	Expansion	Deviation
ID	D/M/Yr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	10/11/2016		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial	10/13/2016		-0.0067			-0.0108			-0.0107			-0.0130				
zero read	10/14/2016	0	0.0005		0.0000	-0.0035		0.0000	-0.0033		0.0000	-0.0056		0.0000	0.0000	0.0000
	10/19/2016	5	0.0009	0.0004	0.0040	-0.0031	0.0004	0.0040	-0.0028	0.0005	0.0050	-0.0052	0.0004	0.0040	0.0043	0.0005
	10/21/2016	1	0.0010	0.0005	0.0050	-0.0029	0.0006	0.0060	-0.0028	0.0005	0.0050	-0.0051	0.0005	0.0050	0.0053	0.0005
	10/28/2016	14	0.0012	0.0007	0.0070	-0.0024	0.0011	0.0110	-0.0022	0.0011	0.0110	-0.0050	0.0006	0.0060	0.0088	0.0026
	11/4/2016	21	0.0015	0.0010	0.0100	-0.0022	0.0013	0.0130	-0.0027	0.0006	0.0060	-0.0050	0.0006	0.0060	0.0088	0.0034
	11/13/2016	20	0.0018	0.0011	0.0110	-0.0026	0.0009	0.0090	-0.0024	0.0009	0.0090	-0.0045	0.0011	0.0110	0.0100	0.0012
	* Noto: All ovr	Ju Juna de la composición de la composición Composición de la composición de la comp	0.0010	0.0015	0.0130	Spacimon	0.0011	d 49 hours	-0.0021			-0.0040	0.0010	0.0100	0.0130	0.0022
	0.09 0.08 0.07 % 0.06 % 0.05 0.05 0.04 0.04 0.03 0.02 0.01 0.00 0			1567 Arn			14 Time, da	nd Dam	Project		ly Ash- "I			→ Spe → Spe → Spe → Spe → Thr	cimen 1 cimen 2 cimen 3 cimen 4 eshold	

Mix:	Mix 10 with	Georgetov	wn Sand and	l Longview	Fly Ash											
Potential	Alkali Reacti	vity of Agg	regates, A S	STM C 1567												
				Specimen '	1		Specimen 2	2		Specimen 3	3		Specimen 4	Ļ	Average	Standard
	Date	Age	Reading	Change	Expansion	Reading	Change	E xpan sion	Reading	Change	Expansion	Reading	Change	Expan sion	Expansion	Deviation
	D/MYr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	12/5/2017		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial	12/7/2017		-0.0047			0.0013			-0.0054			-0.0187				
zero read	12/8/2017	0	0.0035		0.0000	0.0095		0.0000	0.0029		0.0000	-0.0105		0.0000	0.0000	0.0000
	12/11/2017	3	0.0036	0.0001	0.0010	0.0096	0.0001	0.0010	0.0029	0.0000	0.0000	-0.0106	-0.0001	-0.0010	0.0003	0.0010
	12/15/2017	7	0.0035	0.0000	0.0000	0.0094	-0.0001	-0.0010	0.0030	0.0001	0.0010	-0.0100	0.0005	0.0050	0.0013	0.0026
	12/22/2017	14	0.0040	0.0005	0.0050	0.0098	0.0003	0.0030	0.0032	0.0003	0.0030	-0.0098	0.0007	0.0070	0.0045	0.0019
	12/29/2017	21	0.0044	0.0009	0.0090	0.0106	0.0011	0.0110	0.0037	0.0008	0.0080	-0.0094	0.0011	0.0110	0.0098	0.0015
	1/5/2018	28	0.0053	0.0018	0.0180	0.0114	0.0019	0.0190	0.0041	0.0012	0.0120	-0.0088	0.0017	0.0170	0.0165	0.0031
	1/8/2018	31	0.0055	0.0020	0.0200	0.0116	0.0021	0.0210	0.0043	0.0014	0.0140	-0.0085	0.0020	0.0200	0.0188	0.0032
Note: All (expansion val	ues use the	e zero readin	ig (72 hrs). S	Specimen we	re cured 48	hours befor	e initial readi	ng.							

Mix:	Mix 10 with	Georgetov	wn Sand and	dBrandon	Shores Fly A	sh										
Potential	Alkali Reacti	vity of Agg	regates, A S	STM C 1567												
				Specimen '	l		Specimen 2	2		Specimen 3	3		Specimen 4	4	Average	Standard
	Date	Age	Reading	Change	Expansion	Reading	Change	E xpan sion	Reading	Change	Expansion	Reading	Change	Expansion	Expansion	Deviation
	D/MYr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	3/13/2018		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial	3/15/2018		-0.0018													
zero read	3/16/2018	0	0.0050		0.0000	0.0024		0.0000	0.0033		0.0000	0.0080		0.0000	0.0000	0.0000
	3/19/2018	3	0.0052	0.0002	0.0020	0.0030	0.0006	0.0060	0.0034	0.0001	0.0010	0.0081	0.0001	0.0010	0.0025	0.0024
	3/21/2018	5	0.0053	0.0003	0.0030	0.0030	0.0006	0.0060	0.0034	0.0001	0.0010	0.0081	0.0001	0.0010	0.0028	0.0024
	3/23/2018	7	0.0055	0.0005	0.0050	0.0030	0.0006	0.0060	0.0035	0.0002	0.0020	0.0080	0.0000	0.0000	0.0033	0.0028
	3/30/2018	14	0.0060	0.0010	0.0100	0.0035	0.0011	0.0110	0.0035	0.0002	0.0020	0.0085	0.0005	0.0050	0.0070	0.0042
	4/13/2018	28	0.0063	0.0013	0.0130	0.0041	0.0017	0.0170	0.0046	0.0013	0.0130	0.0091	0.0011	0.0110	0.0135	0.0025
	4/15/2018	30	0.0065	0.0015	0.0150	0.0042	0.0018	0.0180	0.0047	0.0014	0.0140	0.0092	0.0012	0.0120	0.0148	0.0025
Note: All	expansion val	lues use the	e zero readin	ng (72 hrs). S	Specimen we	ere cured 48	hours befor	e initial readi	ng.							

Mix:	Mix 10 with Shelly Sand and Sammis Fly Ash															
Potential	Potential Alkali Reactivity of Aggregates, ASTM C 1567															
	Date			Specimen	1		Specimen	2		Specimen	3		Specimen	4	Average	Standard
Mixture		Age	Reading	Change	Expansior	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Expansion	Deviation
ID	D/M/Yr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	10/11/2016		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial	10/13/2016		-0.0060			-0.0048			-0.0083			-0.0099				
zero read	10/14/2016	0	0.0005		0.0000	0.0018		0.0000	-0.0016		0.0000	-0.0033		0.0000	0.0000	0.0000
	10/19/2016	5	0.0006	0.0001	0.0010	0.0018	0.0000	0.0000	-0.0018	-0.0002	-0.0020	-0.0031	0.0002	0.0020	0.0003	0.0017
	10/21/2016	7	0.0009	0.0004	0.0040	0.0022	0.0004	0.0040	-0.0014	0.0002	0.0020	-0.0030	0.0003	0.0030	0.0033	0.0010
	10/28/2016	14	0.0018	0.0013	0.0130	0.0026	0.0008	0.0080	-0.0009	0.0007	0.0070	-0.0026	0.0007	0.0070	0.0088	0.0029
	11/4/2016	21	0.0014	0.0009	0.0090	0.0030	0.0012	0.0120	-0.0006	0.0010	0.0100	-0.0022	0.0011	0.0110	0.0105	0.0013
	11/11/2016	28	0.0015	0.0010	0.0100	0.0031	0.0013	0.0130	-0.0004	0.0012	0.0120	-0.0019	0.0014	0.0140	0.0123	0.0017
	11/13/2016	30	0.0017	0.0012	0.0120	0.0033	0.0015	0.0150	-0.0003	0.0013	0.0130	-0.0019	0.0014	0.0140	0.0135	0.0013
	'Note: Allex	pansion val	lues use the	e zero read	ing (72 hrs). Specimer	n were cure	ed 48 hours	before initi	al reading.	Age (day) r	epresents	time of mea	asurement	after castin	g.

Mix:	Mix 10 with	Shelly San	nd and Ft. I	Martin Fly	Ash											
Potential	Potential Alkali Reactivity of Aggregates, ASTM C 1567															
	Date			Specimen	1		Specimen	2		Specimen	3		Specimen	4	Average	Standard
Mixture		Age	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansior	Expansion	Deviation
ID	D/M/Yr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	10/11/2016		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial	10/13/2016		-0.0156			-0.0021			-0.0174			-0.0065				
zero read	10/14/2016	0	-0.0093		0.0000	0.0041		0.0000	-0.0112		0.0000	-0.0003		0.0000	0.0000	0.0000
	10/19/2016	5	-0.0090	0.0003	0.0030	0.0044	0.0003	0.0030	-0.0110	0.0002	0.0020	-0.0001	0.0002	0.0020	0.0025	0.0006
	10/21/2016	7	-0.0088	0.0005	0.0050	0.0048	0.0007	0.0070	-0.0106	0.0006	0.0060	0.0004	0.0007	0.0070	0.0062	0.0010
	10/28/2016	14	-0.0089	0.0004	0.0040	0.0049	0.0008	0.0080	-0.0105	0.0007	0.0070	0.0006	0.0009	0.0090	0.0070	0.0022
	11/4/2016	21	-0.0078	0.0015	0.0150	0.0050	0.0009	0.0090	-0.0104	0.0008	0.0080	0.0007	0.0010	0.0100	0.0105	0.0031
	11/11/2016	28	-0.0079	0.0014	0.0140	0.0056	0.0015	0.0150	-0.0104	0.0008	0.0080	0.0008	0.0011	0.0110	0.0120	0.0032
	11/13/2016	30	-0.0081	0.0012	0.0120	0.0060	0.0019	0.0190	-0.0100	0.0012	0.0120	0.0009	0.0012	0.0120	0.0138	0.0035
	Note: All ex	pansion va	lues use th	e zero read	ding (72 hrs). Specime	n were cure	ed 48 hours	before initi	al reading.	Age (day)	represents	time of me	asurement	after castir	ig.

					_											
Mix: Mix 10 with Shelly Sand and Longview Fly Ash																
Potential Alkali Reactivity of Aggregates, ASTM C 1567																
				Specimen 1			Specimen 2	2	Specimen 3			Average	Standard			
	Date	Age	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Expansion	Deviation			
	D/M/Yr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)			
Mix	12/5/2017		-	-	-	-	-	-	-	-	-	-	-			
Initial	12/7/2017		-0.0013			-0.0047			-0.0017							
zero read	12/8/2017	0	0.0069		0.0000	0.0032		0.0000	0.0098		0.0000	0.0000	0.0000			
	12/11/2017	3	0.0069	0.0000	0.0000	0.0033	0.0001	0.0010	0.0099	0.0001	0.0010	0.0007	0.0006			
	12/15/2017	7	0.0070	0.0001	0.0010	0.0038	0.0006	0.0060	0.0101	0.0003	0.0030	0.0033	0.0025			
	12/22/2017	14	0.0073	0.0004	0.0040	0.0039	0.0007	0.0070	0.0100	0.0002	0.0020	0.0043	0.0025			
	12/29/2017	21	0.0075	0.0006	0.0060	0.0040	0.0008	0.0080	0.0105	0.0007	0.0070	0.0070	0.0010			
	1/5/2018	28	0.0082	0.0013	0.0130	0.0046	0.0014	0.0140	0.0110	0.0012	0.0120	0.0130	0.0010			
	1/8/2018	31	0.0085	0.0016	0.0160	0.0049	0.0017	0.0170	0.0115	0.0017	0.0170	0.0167	0.0006			
		î Note	: All expans	sion values u	use the zero	* Note: All expansion values use the zero reading (72 hrs). Specimen were cured 48 hours before initial reading.										

Mix:	Mix 10 with	Shelley Sa	and and Bra	ndon Shore	s Fly Ash								
Potential Alkali Reactivity of Aggregates, ASTM C 1567													
				Specimen 1			Specimen 2	2	Specimen 3			Average	Standard
	Date	Age	Reading	Change	Expansion	Reading	Change	Expansion	Reading	Change	Expansion	Expansion	Deviation
	D/MYr	(day)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(in.)	(in.)	(%)	(%)	(%)
Mix	3/13/2018		-	-	-	-	-	-	-	-	-	-	-
Initial	3/15/2018		0.0111			0.0057			0.0036				
zero read	3/16/2018	0	0.0185		0.0000	-0.0020		0.0000	-0.0039		0.0000	0.0000	0.000
	3/19/2018	3	0.0186	0.0001	0.0010	-0.0020	0.0000	0.0000	-0.0037	0.0002	0.0020	0.0010	0.001
	3/21/2018	5	0.0187	0.0002	0.0020	-0.0019	0.0001	0.0010	-0.0035	0.0004	0.0040	0.0023	0.001
	3/23/2018	7	0.0187	0.0002	0.0020	-0.0018	0.0002	0.0020	-0.0034	0.0005	0.0050	0.0030	0.001
	3/30/2018	14	0.0192	0.0007	0.0070	-0.0010	0.0010	0.0100	-0.0028	0.0011	0.0110	0.0093	0.002
	4/13/2018	28	0.0199	0.0014	0.0140	-0.0005	0.0015	0.0150	-0.0025	0.0014	0.0140	0.0143	0.000
	4/15/2018	30	0.0200	0.0015	0.0150	-0.0005	0.0015	0.0150	-0.0024	0.0015	0.0150	0.0150	0.000
		Note:	All expansi	on values us	se the zero re	eading (72 h	rs). Specime	en were cure	d 48 hours b	efore initial i	reading.		

Unit Conversion Factors

Multiply	Ву	To Obtain
cubic feet	0.02831685	cubic meters
cubic yards	0.7645549	cubic meters
degrees (angle)	0.01745329	radians
degrees Fahrenheit	(F-32)/1.8	degrees Celsius
feet	0.3048	meters
gallons (US liquid)	3.785412 E-03	cubic meters
inches	0.0254	meters
mils	0.0254	millimeters
ounces (US fluid)	2.957353 E-05	cubic meters
pounds (force)	4.448222	newtons
pounds (force) per square inch	6.894757	kilopascals
pounds (mass)	0.45359237	kilograms
pounds (mass) per cubic foot	16.01846	kilograms per cubic meter
quarts (US liquid)	9.463529 E-04	cubic meters
square inches	6.4516 E-04	square meters
tons (force)	8,896.443	newtons
tons (2,000 pounds, mass)	907.1847	kilograms
tons (2,000 pounds, mass) per square foot	9,764.856	kilograms per square meter
yards	0.9144	meters

RI	EPORT DOCU		Form Approved							
Public reporting burden for this the data needed, and completin reducing this burden to Departm 22202-4302. Respondents sho	collection of information is estima g and reviewing this collection of ent of Defense, Washington Hear uld be aware that notwithstanding	ted to average 1 hour per respons information. Send comments reg lquarters Services, Directorate for any other provision of law, no per	e, including the time for rev arding this burden estimate Information Operations and son shall be subject to any	viewing instructions, s or any other aspec Reports (0704-0188 penalty for failing to	earching existing data sources, gathering and maintaining of this collection of information, including suggestions for , 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA comply with a collection of information if it does not display					
a currently valid OMB control nu 1. REPORT DATE (DD- December 2019	Imber. PLEASE DO NOT RETUI MM-YYYY) 2. R I I	RN YOUR FORM TO THE ABOVE EPORT TYPE Final	ADDRESS.	3.	DATES COVERED (From - To)					
4. TITLE AND SUBTITL	.E			5a	CONTRACT NUMBER					
Laboratory Char Aggregates for C	acterization of Alkal Tharleroi Lock and D	i-Silica Reaction Sus am, Monongahela R	sceptibility of iver Project	5b	5b. GRANT NUMBER					
			5c	PROGRAM ELEMENT NUMBER						
6. AUTHOR(S)			5d	. PROJECT NUMBER						
Monica A. Rams	ey			5e	. TASK NUMBER					
				5f.	WORK UNIT NUMBER					
7. PERFORMING ORG	ANIZATION NAME(S) A	ND ADDRESS(ES)		8.	PERFORMING ORGANIZATION REPORT NUMBER					
Geotechnical and Stru U.S. Army Engineer 3909 Halls Ferry Roa Vicksburg, MS 3918	uctures Laboratory Research and Develop d 0-6199	ment Center			ERDC/GSL TR-19-52					
9. SPONSORING / MOI	NITORING AGENCY NA	ME(S) AND ADDRESS(E	S)	10	. SPONSOR/MONITOR'S ACRONYM(S)					
U.S. Army Corps of I	Engineers Pittsburgh I	District								
Pittsburgh, PA 1522	2			11	11. SPONSOR/MONITOR'S REPORT NUMBER(S)					
12. DISTRIBUTION / AV Approved for public :	VAILABILITY STATEME release; distribution is	NT unlimited.								
13. SUPPLEMENTARY	NOTES									
Lower Monongahela	River Navigation Sys	em Feasibility Study (under MIPR W81	ET491842462)					
14. ABSTRACT		4		1	a la la de Pircherel Disciss					
The purpose of this study was to identify potential alkali-aggregate reactivity of local aggregates provided by the Pittsburgh District according to ASTM C1260 and to investigate the effectiveness of a combination of cementitious materials and aggregates from provided mixture designs in suppressing alkali-silica reactivity (ASR) induced expansions according to the ASTM C1567. Three ASTM C1260 tests were performed for each aggregate (Hanson, Georgetown, and Shelly). A total of 48 ASTM C1567 tests were performed from the combination of the four mix designs, four fly ash sources, and three aggregate sources. The limiting criteria for the proposed materials and mix designs was expansions less than 0.08% at 30 days of testing in accordance to the Unified Facilities Guide Specification (UFGS) Division 03 Concrete Section 03 30 00.50. Based on this specification, the tested aggregates are considered potentially reactive with 30-day mortar bar expansions of 0.1970% for Hanson, 0.1683% for Georgetown, and 0.1623% for Shelly. However, all 48 combinations of the ASTM C1567 tests passed the limiting criteria with 30-day expansions less than 0.08%. These results indicate that the constituent project materials in the proposed mix designs can effectively mitigate ASR.										
Alkali-silica reaction	(ASR)	Aggregate								
Mortar bar		Supplementary cem	entious material (SCM)						
Concrete Hydraulic structures		Alkali-aggregate rea Aggregates (Buildin Charleroi (Pa)	actions ng materials)—Te	sting						
16. SECURITY CLASSI	FICATION OF:		17. LIMITATION	18. NUMBER	19a. NAME OF RESPONSIBLE PERSON					
a. REPORT	b. ABSTRACT	c. THIS PAGE	SI ABUINAUI		19b. TELEPHONE NUMBER (include					
Unclassified	Unclassified	Unclassified	SAR	103	area code)					