

 ARL-TN-0987 ● JAN 2020

Wired Signal Time-Stamping with a Software-
Defined Radio Telemetry Receiver

by Michael L Don, Thomas G Brown, and Edward F Bukowski

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the

Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official

endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TN-0987 ● JAN 2020

Wired Signal Time-Stamping with a Software-
Defined Radio Telemetry Receiver

Michael L Don, Thomas G Brown, and Edward F Bukowski
Weapons and Materials Research Directorate, CCDC Army Research Laboratory

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the

data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the

burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently

valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

January 2020

2. REPORT TYPE

Technical Note

3. DATES COVERED (From - To)

May–July 2019

4. TITLE AND SUBTITLE

Wired Signal Time-Stamping with a Software-Defined Radio Telemetry

Receiver

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Michael L Don, Thomas G Brown, and Edward F Bukowski

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

CCDC Army Research Laboratory

ATTN: FCDD-RLW-LF

Aberdeen Proving Ground, MD 21005

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TN-0987

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

ORCID ID(s): Michael Don, 0000-0002-8021-9066

14. ABSTRACT

Over the last several years the Army Research Laboratory (ARL) has developed a software-defined radio (SDR) telemetry

receiver. Research has been published on the receiver design, real-time decryption, and layered protocol. This technical note

presents an additional capability, wired signal time-stamping. During field experiments, there are multiple components or

external events that must be related to the telemetry data. By time-stamping triggers and indicators, all of the available data

sources can be synchronized. After detailing the time-stamping design, results of a successful field experiment are presented.

With the addition of wired signal time-stamping, ARL’s SDR telemetry receiver has gained another valuable capability that

will allow convenient and inexpensive testing independent of military range instrumentation.

15. SUBJECT TERMS

software-defined radio, telemetry, time-stamping, range instrumentation, flight testing

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

83

19a. NAME OF RESPONSIBLE PERSON

Michael L Don
a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(410) 306-0775
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures v

List of Tables vi

1. Introduction 1

2. Software-Defined Radio (SDR) Telemetry Receiver Overview 1

3. Software Modifications 2

3.1 Wired Input Ports 2

3.2 Original Accumulator Design 3

3.3 Wired Input Time-Stamping 5

3.4 Continuous Telemetry Output 6

3.5 Design Simulation 9

3.6 High-Resolution Time-Stamping 11

3.7 Sub-Cycle Resolution Time-Stamping 15

3.8 Telemetry GUI Setup for Wired Inputs 15

4. Hardware Modifications 16

4.1 Electrical 17

4.2 Mechanical 18

5. Experimental Results 20

6. Conclusion 21

7. References 22

Appendix A. Software-Defined Radio Field-Programmable Gate Array
Verilog Code 23

Appendix B. MATLAB Data Analysis Scripts 58

iv

Appendix C. Mechanical and Electrical Design 65

List of Symbols, Abbreviations, and Acronyms 73

Distribution List 75

v

List of Figures

Fig. 1 Telemetry receiver B200 block diagram... 2

Fig. 2 Original decom_acc state diagram .. 5

Fig. 3 decom_acc1 state diagram, modified to accommodate wired
inputs ... 6

Fig. 4 decom_acc2 block diagram... 7

Fig. 5 decom_acc2 state diagram, modified for continuous output 8

Fig. 6 Simulation of a dummy frame in decom_acc2 10

Fig. 7 Simulation of a dummy frame in decom_acc2, close-up of extra
words ... 11

Fig. 8 Simulation of a real frame in decom_acc2 11

Fig. 9 decom_acc3 block diagram... 13

Fig. 10 Simulation of decom_acc3 .. 13

Fig. 11 Example test data showing the first wired input state using both low-
resolution time-stamps at the frame rate and high-resolution time-
stamps at the master clock rate. The time axis is normalized to
zero. ... 14

Fig. 12 A close-up of Fig. 11. In this example, the high-resolution data
captured bouncing that the low-resolution data completely missed ... 14

Fig. 13 Tapped delay line .. 15

Fig. 14 Signal setup in telemetry GUI... 16

Fig. 15 Example scaled wired inputs .. 16

Fig. 16 The Susumu PAT series attenuator circuit (left) and the pi attenuation
circuit (right) ... 17

Fig. 17 Pi attenuation circuit ... 18

Fig. 18 USRP B200—unmodified .. 19

Fig. 19 USRP B200—modified .. 19

vi

List of Tables

Table 1 Digital inputs enabled on the B200 ... 2

Table 2 Extra telemetry words ... 3

Table 3 Dummy frames.. 9

Table 4 Simulation parameters .. 9

Table 5 Telemetry rate parameters... 12

Table 6 Telemetry parameters used to record the signals shown in Fig. 11 14

Table 7 Example time stamped data recorded in a field exercise 20

1

1. Introduction

Over the last several years the Army Research Laboratory (ARL) has developed a

software-defined radio (SDR) telemetry receiver. Research has been published on

the receiver design,1 real-time decryption, and layered protocol.2 This technical

note presents an additional capability, wired signal time-stamping. During field

experiments, there are multiple components or external events that must be related

to the telemetry data. By time-stamping triggers and indicators, all of the available

data sources can be synchronized.

This technical note first reviews the basic telemetry receiver design. Next, the

software and hardware modifications to support wired signal time-stamping are

described. Finally, experimental results from an example flight experiment are

presented. With the addition of wired signal time-stamping, ARL’s SDR telemetry

receiver has gained another valuable capability that will enable convenient and

inexpensive testing independent of military range instrumentation.

2. Software-Defined Radio (SDR) Telemetry Receiver Overview

ARL’s SDR telemetry receiver is based on Ettus Research’s Universal Software

Radio Peripheral (USRP) B200 SDR. This is a single board SDR, using Analog

Devices’ RF IC that combines an RF front end, in-phase/quadrature (I/Q)

demodulator, and analog-to-digital converters (ADCs) into a single IC that covers

a range of 70 MHz to 6 GHz.3 There is an optional GPS disciplined oscillator

(GPSDO) that can be installed on the B200 to enable global timing alignment to

within 50 ns.4 Figure 1 shows the receiver architecture. Demodulation, bit

synchronization, and frame synchronization modules were developed in Verilog

and added to field-programmable gate array (FPGA) firmware. The decimating

filters, which are normally required to reduce the data rate to speeds slow enough

for the host computer to process, were able to be replaced by non-decimating filters

due to the enhanced processing capabilities of the FPGA. A LabVIEW telemetry

display program was designed for the host computer. A separate C++ program was

written using the USRP hardware driver (UHD) to configure the USRP and route

data to a user datagram protocol (UDP) port. The LabVIEW program reads the

UDP port to access data from the USRP, performs frame synchronization, extracts

the frame data, and displays the results. Frame synchronization is performed on the

FPGA as well so that extra data, such as time and received signal strength indicator

(RSSI) data can be added to the end of each frame.

2

Fig. 1 Telemetry receiver B200 block diagram

3. Software Modifications

3.1 Wired Input Ports

In order to support wired input time-stamping, additional FPGA inputs were

enabled on the B200. The USRP B2x0 series SDRs come in two varieties, the B210

and the B200. The relevant difference between these versions is that the B210 has

a larger Xilinx Spartan 6 XC6SLX150 FPGA, while the B200 has a smaller

XC6SLX75 FPGA. This has two repercussions. First, Xilinx’s Integrated Synthesis

Environment (ISE) free software edition does not support the larger XC6SLX150

FPGA. This, together with the difficulty of ordering software at ARL, was one of

the reasons that the B200 was chosen as the platform for the telemetry receiver.

Second, the B210 supports more input/output (IO) ports than the B200. Thus, even

though the B200 and B210 have the same printed circuit board (PCB) layout, the

38-pin debug connector of the B210 is not officially supported on the B200. Some

of the pins, however, do connect to valid IO pins on the B200’s FPGA. Table 1

specifies eight IOs that were identified on the debug connector that could be

enabled on the B200.5

Table 1 Digital inputs enabled on the B200

MICTOR pin

 FPGA pin B210 net name B200 net name

5 A12 debug_clk(0) din(0)

6 C12 debug_clk(1) din(1)

23 F15 debug(23) din(2)

24 D7 debug(7) din(3)

31 C17 debug(19) din(4)

32 B8 debug(3) din(5)

37 A18 debug(16) din(6)

38 D10 debug(0) din(7)

These ports were added to the user constraint file (UCF) as 3.3-V inputs with pull-

up resistors. The pull-up resistors support open-drain signals that can only pull the

3

port voltage low. When the signal is active, the port is pulled low, when the signal

is inactive, the pull-up resistor acts to pull the port voltage high. In most

circumstances these resistors should not interfere with full push–pull type inputs,

but they can be disabled or switched to pull-down resistors, by adjusting the UCF

file and recompiling the FPGA image.

3.2 Original Accumulator Design

As mentioned previously, the FPGA attaches extra words to each frame before they

are sent to the PC. Table 2 shows the original seven extra 16-bit telemetry words

added to the end of every frame.

Table 2 Extra telemetry words

Index

 Name Shorthand Description

1 RSSI [31:16] RSSI2 RSSI word 1

2 RSSI [15:0] RSSI1 RSSI word 0

3 TIME [63:48] TIME4 Timestamp word 3

4 TIME [47:32] TIME3 Timestamp word 2

5 TIME [31:16] TIME2 Timestamp word 1

6 TIME [15:0] TIME1 Timestamp word 0

7 AVE AVE Average value of demodulated data

Referring back to Fig. 1, after the signal is demodulated and the bits are identified

through bit synchronization, the frames are identified through a frame

synchronization module. This frame synchronization module outputs 16-bit words

and a strobe signal to an accumulator module, which converts the 16-bit words into

a 32-bit format for transmission to the PC. Additionally, the accumulator module

adds extra words to the end of each frame. The original Verilog code for the

accumulator module is included as decom_acc in Appendix A, which operates

according to the state diagram in Fig. 2. The state diagram uses the shorthand names

for the RSSI and TIME signals specified in Table , along with Din for data_in,

D2 for data_out[31:16], and D1 for data_out[15:0]. The states are

represented as circles, black text indicates the condition for state transition, and red

text indicates a value change in a state, or during a state transition. The main caveat

in the operation of decom_acc is that since there can be a total odd number of

words per frame, and since the 16-bit input words are loaded into a 32-bit output

register, a given input word will not always line up with the same 16 bits of the

output register. In order to handle this problem, the state machine keeps track of the

proper section of the output register to load, either D1 or D2.

4

Starting in state RST, the state machine automatically transitions to the LD1 state.

When the input strobe ld_in is asserted, D2 is loaded with Din, and the state

machine transitions to the WAIT1 state. A counter delays the state machine in

WAIT1 for clk_div+1 clock cycles before transitioning to LD2, which is a

sufficient period of time for ld_in to be deasserted. clk_div is set to the number

of clock cycles per PCM bit. When ld_in is asserted again, D1 is set to Din and

the strobe out signal, ld_out, is asserted, sending the full 32-bit data_out

signal to the PC. ld_in also triggers a state transition to WAIT2, which serves a

similar function to WAIT1. The state machine returns to LD1 from WAIT2 where

the process is repeated. This process continues until a full frame of words has been

processed. The assertion of lastw indicates that the current input word is the last

word of the frame. If lastw is asserted in the LD1 state, the state machine

transitions to RSSI10. If it is asserted in LD2, the state machine transitions to

RSSI20. In both of these branches of the state machine, extra words are loaded into

the output register for transmission to the PC. The branch starting with RSSI10

loads D2, since D1 was just loaded, whereas the branch starting with RSSI20 loads

D1, since D2 was just loaded. Each branch then continues, alternating between

loading D1 and D2 before returning to the initial branch of the state machine. In

state TIME2, data_out is fully loaded. Therefore, the state machine returns to

WAIT2, which will transition to LD1 and begin by loading D2 once again. In state

TIME22, D2 has been loaded but not D1. Therefore, the state machine returns to

WAIT1 where it will transition to LD2 for D1 to be loaded.

5

Fig. 2 Original decom_acc state diagram

3.3 Wired Input Time-Stamping

In order to support wired inputs, an eighth extra 16-bit word, DIN, was added at the

end of every frame. The eight wired inputs are represented by the lower byte, while

the upper byte is unused. The DIN signal was routed from the top level of the design

to the accumulator module. The original decom_acc code was modified and

renamed decom_acc1 (see Appendix A). Figure 3 shows the modified state

diagram. Now that there is an additional extra word, state TIME22 can fill the

whole data_out register with D2 = AVE and D1 = DIN. TIME22 transitions to

WAIT2, which will lead to LD1 where the beginning of the next frame will be

loaded into D2. An additional state, TIME13 is added after TIME12, where D2 is

loaded with DIN. TIME13 transitions to WAIT1, where the next word will be

loaded into D1.

6

Fig. 3 decom_acc1 state diagram, modified to accommodate wired inputs

3.4 Continuous Telemetry Output

In its normal operating mode, the receiver is designed to output telemetry frames

as they are received. When frames are not being detected, no data is output. This

makes time-stamping wired signals unreliable while receiving telemetry data. Any

dropped telemetry frames will also result in a loss of DIN data. In order to be used

reliably, the receiver must be used in a simulator mode, where the SDR continually

outputs simulated telemetry frames, irrespective of the received RF signal. It would

be desirable, however, to receive a real RF telemetry stream while also time-

stamping wired input signals. In order to accomplish this, the accumulator was

7

further modified to output data even when telemetry frames were not detected in its

normal operation mode. Figure 4 shows a block diagram of this version of the

accumulator, decom_acc2. The ld_in signal was modified so that it is only

asserted one clock cycle, and is used to load a first in, first out (FIFO) buffer with

the incoming telemetry words. When there is a full frame of words available in the

FIFO, they are unloaded and sent to the PC. When there are not enough words

available, a dummy frame is output. In either case, the extra words, including DIN,

are output with the frames.

Fig. 4 decom_acc2 block diagram

Figure 5 shows a state diagram of decom_acc2. The main words of the frame are

handled in the MAKE_FRAME state, whose operation is briefly outlined in the

diagram. Count registers cnt, bcnt, and wcnt are used to count cycles per bit,

bits per word, and words per frame respectively. high_bits is used to determine

if the current word is loaded into the lower or higher bits of the 32-bit output signal,

and is inverted after each word. do_dummy determines if the current frame source

is generated dummy frame data, or real telemetry data from the FIFO. The FIFO is

of the “First-Word Fall-Through” variety, allowing the FIFO word to be available

immediately. The rd signal is asserted every time the FIFO output is used, allowing

the next FIFO word to be available when needed. fifo_cnt is the number of

words in the FIFO. At the end of each frame, fifo_cnt is used to determine the

value of do_dummy. If there are sufficient words in the FIFO, do_dummy is

deasserted, otherwise do_dummy is asserted. The internal count registers are used

now to determine transition to the extra word states instead of the external lastw

signal. This transition occurs slightly before the end of a full frame, so that the total

data rate is slightly higher than the telemetry data rate. This ensures that the FIFO

does not overflow when the transmitter data rate is slightly higher than the

receiver’s expected data rate due to a mismatch between transmitter and receiver

clocks. Thus, even when telemetry data is consistently received, a dummy frame

will be output occasionally. The states for the extra words have remained generally

FIFO

data_in

ld_in

State
Machine

fifo_dout

rd

data_out

ld_out

decom_acc2

din
ave_in

rssi
time_in

8

the same, only now high_bits determines if the extra words begin in the higher

bits of data_out (RSSI20), or the lower bits of data_out (RSSI10).

high_bits must also be set correctly when transitioning back to the

MAKE_FRAME state. The dummy frame format is specified in Table 3. The third

word the dummy frame is set as is the subframe ID (SFID), with the upper byte

specified by a configurable dummy_SFID parameter and the lower byte set to zero.

The second to last word is a 16-bit frame counter while the last word is a checksum

placeholder set to 1.

Fig. 5 decom_acc2 state diagram, modified for continuous output

9

Table 3 Dummy frames

Word index

 Words

0 SYNC [31:16]

1 SYNC [15:0]

2 {Dummy_SFID , x00}

3 . . . NWORDS-3 Word index

NWORDS-2 FCNT

NWORDS-1 1

3.5 Design Simulation

Due to the long compile times of FPGA images, simulation is a key part of FPGA

design. A test bench for SDR receiver modifications, dcc_chain_tb_din, is

included in Appendix A. The test bench simulates at the digital down converter

(DDC) level, which contains the accumulator. A full explanation of the DDC is

outside of the scope of this report, although some aspect of the higher-level design

will be explained briefly. Parameters of the B200 are stored in setting registers in

the FPGA and are set using the USRP Hardware Driver (UHD). Typically, adding

additional setting registers would require modification and recompilation of UHD.

In order to avoid this, the timekeeper module was modified to allow for additional

setting registers. When the 32-bit timekeeper register is loaded with x01234560,

the next 32-bit load to the timekeeper, set_data[31:0], will be interpreted as

a custom register load. set_data[31:28] and set_data[3:0] are ignored,

set_data[27:22] is interpreted as a custom register index, and

set_data[21:4] is the custom register data. The important parameters for the

DDC simulation are listed in Table 4, and are loaded into custom setting registers

at the beginning of the test bench using the method just described. By setting

sim_pcm_en, the receiver generates simulated telemetry frames for transmission

to the PC. For our purposes, these simulated frames can be used to take the place

of frames received from the demodulator. Although similar, these simulated frames

should not be confused with the dummy frames generated in the accumulator.

Table 4 Simulation parameters

Parameter Value Description

sync1 xFE6B First synchronization word

sync0 x2840 Second synchronization word

clk_div 8 Clock cycles per bit

nbits 16 Bits per word

nwords 11 Number of words per frame - 1

sim_pcm_en 1 Output simulated frames

dummy_sfid xFF High byte of the third word of a dummy frame

10

Figure 6 shows a simulation of a dummy frame in decom_acc2. The state

machine stays in the MAKE_FRAME state most of the time, which has a value of

15. Words are loaded into the FIFO using ld_in. Observe fifo_cnt increasing

as the FIFO fills. Since this is a dummy frame, no words are read from the FIFO.

Instead, generated dummy words are loaded into data_out. high_bits

alternates as words are loaded into the high or low bits of data_out, and ld_out

is asserted as an output strobe. Note that for the PC to receive the data in big-endian

format, each word is transmitted as little-endian. Also, the higher bits of

data_out are received first, and the lower bits are received last. Thus, a data_out

value of x6BFE4028 is received at the PC as xFE6B2840.

Fig. 6 Simulation of a dummy frame in decom_acc2

Figure 7 shows a close-up of the extra words at the end of the frame. Transitioning

from MAKE_FRAME with high_bits = 1, the state machine enters RSSI20 (state

= 7). The RSSI, TIME, AVE, and DIN registers are inserted into data_out, and

strobed out with ld_out. The state machine returns to the MAKE_FRAME state

with high_bits active, ready to load the next word into the higher bits of

data_out.

11

Fig. 7 Simulation of a dummy frame in decom_acc2, close-up of extra words

Figure 8 shows the simulation of a real frame in decom_acc2. fifo_cnt

shows that there is more than a full frame of words in the FIFO, which causes

do_dummy to become inactive. The FIFO is unloaded using the rd signal, and

data_out is loaded with the FIFO output, fifo_dout.

Fig. 8 Simulation of a real frame in decom_acc2

3.6 High-Resolution Time-Stamping

By attaching an extra DIN word to every frame, the maximum DIN sampling rate

is the frame rate. When the SDR is used for both telemetry and to record wired

inputs, the frame rate is determined by the telemetry requirements. For most

applications, it is sufficient for the time resolution of the wire inputs to match the

telemetry frame rate. In cases where a higher resolution is desired, the SDR can be

used for the wired inputs alone, running in simulation mode at higher rates than the

telemetry rate. For example, Table 5 shows typical and accelerated telemetry

12

parameters that determine the frame rate. By adjusting the typical parameters, the

frame rate, and therefore the DIN sampling rate, was increased by roughly a factor

of 3. This accelerated frame rate is about as fast as the PC telemetry software can

run on a PC with a 2.4 GHz i7-2760QM CPU and 8 GB of RAM. If higher time

resolution is needed, another time-stamping method must be employed.

Table 5 Telemetry rate parameters

Parameter Typical value Accelerated value

NWORDS 48 24

Bits per word 16 16

Samples per bit 8 8

Sampling clock 32 MHz 50 MHz

Bit rate 4 Mbs 6.25 Mbs

Frame rate 5.2 kHz 16.3 kHz

One method to increase time-stamping resolution is to record the time at every DIN

transition, save it to a FIFO, and empty the FIFO into extra telemetry words. This

increases the time resolution to that of the system clock, but it would require the

addition of multiple extra words to handle a fast transitioning signal. In order to

retain the ability to record transitions at every frame, the previous time-stamping

method in decom_acc2 was left in place, and this new method was added

utilizing the dummy frames for time-stamp output instead of extra words at the end

of the telemetry frames. Figure 9 shows a block diagram of the new

implementation, decom_acc3. A DIN state machine saves a time-stamp into a

new DIN FIFO every time the DIN signals change value. The DIN FIFO input data

width is 128 bits. The first three 16-bit words are synchronization words: x0123,

x4567, and x89AB. The next 16-bit word combines the previous and new values of

the DIN byte. The final four words contain the 64-bit time-stamp. The FIFO’s

output width is 16 bits. Whenever the DIN FIFO is not empty, data words in the

dummy frame are replaced by words read out of the DIN FIFO. All words in the

dummy frame are considered data words except for the first two synchronization

words, the third SFID word, the second-to-last word used as a frame counter, and

the last word used as a checksum placeholder.

13

Fig. 9 decom_acc3 block diagram

Figure 10 shows a simulation of decom_acc3. When the value of DIN changes,

the time-stamp information is saved in the DIN FIFO, which deasserts the empty

flag. The time-stamp information is then read, 16 bits at a time, during a dummy

frame and strobed out on data_out. Once all of the words are read from the DIN

FIFO, the empty flag is reasserted.

Fig. 10 Simulation of decom_acc3

Example data was recorded comparing this new time-stamping method to the

previous method of sampling DIN once per frame. The parameters used for this test

are shown in Table 6. Note that the effective sampling rate of this new method is

the rate of the sampling clock, 10,000 times faster than the frame rate. Figure 11

shows a comparison between the low-resolution framed-based time-stamping and

the high-resolution master clock-based time-stamping for the first wired input. The

signals were extracted from a saved telemetry file using the MATLAB scripts

14

included in Appendix B. The signals align well, showing that the high-resolution

data was decoded correctly. Figure 12 shows a close-up of the first transition in Fig.

. The high-resolution signal captures signal bouncing that the low-resolution signal

completely misses.

Table 6 Telemetry parameters used to record the signals shown in Fig.

Parameter Typical value

NWORDS 48

Bits per word 16

Samples per bit 13

Sampling clock 52 MHz

Bit rate 4 Mbs

Frame rate 5.2 kHz

Fig. 11 Example test data showing the first wired input state using both low-resolution time-

stamps at the frame rate and high-resolution time-stamps at the master clock rate. The time

axis is normalized to zero.

Fig. 12 A close-up of Fig. 11. In this example, the high-resolution data captured bouncing

that the low-resolution data completely missed.

15

3.7 Sub-Cycle Resolution Time-Stamping

A method for achieving time resolution equal to the master clock rate was presented

in the previous section. This method relies on the 64-bit TIME signal, which is

implemented as a simple counter. This type of synchronous design is the standard

digital logic design recommended for FPGA coding, simulation, and

implementation tools. Asynchronous designs that rely on wire and logic delays

frequently cause problems with these design tools, and often the FPGA designs

themselves. Nevertheless, asynchronous structures can be used to obtain sub-cycle

time interval measurements. One asynchronous method is the tapped delay line

shown in Fig. 13. In this implementation, the input signal goes through a series of

delays 𝜏, which are tapped as clock inputs into a series of flip-flops. The system

clock is connected to the data inputs, allowing the clock to be sampled at the rising

edge of the input signal at a rate of 1/𝜏. A comparison of the clock phase of the

various delayed inputs can then be used to determine a fine sub-cycle time interval

measurement. Normal counters can still be used to create a coarse time

measurement. Although sub-cycle time-stamping has not been implemented on the

SDR telemetry receiver, ARL has demonstrated a proof of concept design that

could be incorporated into the SDR in the event that higher time resolution is

required.6

Fig. 13 Tapped delay line

3.8 Telemetry GUI Setup for Wired Inputs

It is often desirable to monitor wired input in real-time during experiments. The

original signal setup parameters in the LabVIEW GUI shown in the block diagram

in Fig. 1 is capable of displaying the wired inputs without any software

modifications. Individual input channels can be monitored using the Mask and

16

Scale properties of the signal. For channel 𝑛, bit 𝑛 of the Mask is set to 1, and the

Scale is set to 1/2𝑛. Figure 14 shows an example signal setting for a wired input

D2, with 𝑛 = 2 referenced from zero. The Mask extracts each individual channel,

while the Scale normalizes the value of each channel to 1. The word number is also

referenced from zero, giving the eighth extra word an index of 55 for a 48-word

frame. Figure 15 shows two of the GUI’s charts, where the top signals are properly

normalized, while the bottom signals have not been normalized.

Fig. 14 Signal setup in telemetry GUI

Fig. 15 Example scaled wired inputs

4. Hardware Modifications

ARL’s SDR telemetry receiver utilizes Ettus Research’s USRP B200 electronic and

mechanical hardware. To accommodate the time synchronization of multiple

signals (up to eight channels) with respect to GPS time, several modifications to

the mechanical hardware and additional electrical peripheries were required.

17

4.1 Electrical

A custom printed circuit breakout-board (BoB) was designed to allow up to eight

external signals to be input into the SDR. The SDR itself is a single, enclosed unit

with a B200 USRP circuit board securely mounted inside. The BoB was required

to fit inside the SDR enclosure and accommodate a broad range of DC voltage level.

Ruggedness, ease-of-use, and versatility were also required.

The BoB was designed to interface with the B200 using a Tyco Electronics

MICTOR high-speed, fine pitch vertical connector that mated with the stock debug

connector on the B200 circuit board. External signals were input to the BoB using

standard BNC connectors with 50Ω impedance. BNC connectors were chosen

because they are the most commonly used connectors at experimental facilities and

would provide the most practical means to connect signal cables to the SDR. The

enclosure was modified so that the BNC connectors on the BoB could be mounted

on the sides of the SDR securing the BoB to both the enclosure and the B200 circuit

board. The ruggedness of the unit was also increased by using edge-mounted BNC

connectors and a board thickness of 0.1 inches.

The B200 debug connector provides access to multiple IO pins on the Xilinx

Spartan-6 FPGA inside the SDR. The maximum allowable DC voltage into these

pins is 3 V. In order to limit the DC voltage of the external signals into the FPGA,

an adjustable attenuation circuit was included on each signal line. The BoB was

designed so that either a 0805 case size Susumu PAT series attenuator chip or a pi

resistor attenuation circuit could be used to decrease the DC voltage level of any

input signal to a maximum of 3.3 V, see Fig. 16.

Fig. 16 The Susumu PAT series attenuator circuit (left) and the pi attenuation circuit (right)

The required gain in dB is given by

𝐺 = 20 log (
𝑉𝑖𝑛

𝑉𝑜𝑢𝑡
). (1)

For example, in order to decrease 5 V to 3 V, a 4.43 dB attenuator is required.

18

High precision chip attenuators can typically be purchased in 1 dB steps. In this

application, a Susumu PAT1220 high precision chip attenuator with 50Ω

impedance and 4 dB attenuation was used to decrease the input voltage level from

5 VDC to approximately 3.15 VDC. Another option is to use a three-resistor pi

attenuator circuit to obtain the required attenuation. Figure 17 shows the pi

attenuator consisting of one series resistor and two parallel shunt resistors to ground

at the input and the output.

Fig. 17 Pi attenuation circuit

The resistor values are

𝑅1 = 𝑅3 = Z (
𝐾 + 1

𝐾 − 1
) , (2)

𝑅2 = Z (
𝐾2 − 1

2𝐾
), (3)

where 𝐾 = 10(𝐺/20) and 𝑍 is the impedance. For example, a 4-dB attenuator with

50Ω impedance would result in 𝑅1 = 𝑅3 ≈ 221Ω and 𝑅2 ≈ 24Ω.

4.2 Mechanical

The mechanical design process began with solid modeling of the mechanical and

electrical components needed to meet the rigorous time accuracy specifications. A

depiction of the original USRP B200 box and SDR mechanical model is seen in

Fig. 18. Most mechanical component models were created from scratch using

measurements of existing hardware since no commercial models were uncovered.

19

This became a good starting point for required modification and the design of new

electrical and mechanical interfaces.

Since up to eight channels could be evaluated using the existing USRP B200 design

architecture, it was required to design a mechanical and electrical interface capable

of routing proper signals to the SDR. BNC connectors are used as the input interface

for the eight timing pulses. Two additional BNC connections act as PCM input and

output, connected to the UART (J400) debug port. An additional PCB was designed

to route electrical connections from the input BNC connectors to the SDR. This

modified package including peripheral board and connectors is shown in Fig. 19.

Details of the mechanical and electrical layout is included in Appendix C.

Fig. 18 USRP B200—unmodified

Fig. 19 USRP B200—modified

20

5. Experimental Results

Multiple events were recorded for a particular experiment conducted in July 2019

that required absolute time for sequencing and comparison. Although eight

channels could be recorded, three channels were recorded and used for

measurement and sequencing during the experiment using the SDR receiver. This

experiment used the decom_acc1 accumulator design, with the SDR configured

to output simulated telemetry frames with the typical parameter values in Table 5.

The data shown in Table 7 summarizes the experiment results and represents

valuable information for later analysis of multiple sequenced events. The three

IRIG times represent sequential times after a truck was released down a ramp. The

first measurement indicates when the truck passed a position down the ramp by

“breaking” continuity set to a known distance (10 ft) from the release height. The

second measurement, Firing Pulse, represents a preprogrammed time that a relay

switched a signal to send a firing pulse to the gun. The last measurement, Muzzle

Exit, is the time that an IR threshold (flash) exceeded a set value to indicate the

time the projectile exited the muzzle. Times are given in IRIG format (seconds from

midnight, GMT). The local time was recorded and updated using the IRIG time at

Truck Break.

Table 7 Example time stamped data recorded in a field exercise

Rnd # GTB # Date local IRIG IRIG IRIG

Truck Break Firing Pulse Muzzle Exit

1 BS3 7/19/2019 11:32:04 37924.47855 37925.47849 37925.47791

2 HMA1 7/19/2019 15:29:00 52140.43407 52141.43362 52141.45263

3 BS1 7/22/2019 12:12:46 40365.63909 40366.63884 40366.6613

4 HMA2 7/22/2019 14:51:35 49894.67532 49895.67487 49720.00063

5 BS2 7/24/2019 10:47:29 35249.48749 35250.48781 35196.05274

6 HMA5 7/24/2019 14:39:54 49193.88762 49194.88717 49194.91674

7 HMA4 7/24/2019 16:02:27 54147.24282 54148.24276 54148.27156

8 HMA3 7/24/2019 16:59:58 57598.24621 57599.24596 57599.27975

Time

21

The average of the time from the Firing Pulse to the Muzzle Exit was approximately

0.027 s, as would be expected for a typical initiation and interior ballistic event.

However, three measurements of Muzzle Exit indicated a premature exit condition

and therefore a false trigger. No premature exit conditions existed according to

other diagnostics including high-speed video. These three values of exit were not

used in calculating the average exit time.

6. Conclusion

Leveraging recent developments in SDR telemetry, ARL has added the capability

to time-stamp wired signals. A commercial SDR was modified to measure up to

eight channels of time events. Its rugged design and compact size make it suitable

for both laboratory and field applications. It has already been successfully used in

a field experiment, and will provide convenient and inexpensive time

synchronization for future experiments independent of military range

instrumentation.

22

7. References

1. Don ML. A low-cost software-defined telemetry receiver. International

Foundation for Telemetering; 2015.

2. Don M, Ilg M. Advances in a low-cost software-defined telemetry system.

International Foundation for Telemetering; 2017.

3. Software defined radio-solutions from ADI [accessed 5 September 2019].

https://www.analog.com/media/en/news-marketing-collateral/solutions-

bulletins-brochures/Software-Defined-Radio-Solutions-From-ADI.pdf.

4. B200-B210 specification sheet [accessed 5 September 2019].

https://www.ettus.com/wp-content/uploads/2019/01/b200-b210_spec_sheet.pdf.

5. Spartan-6 FPGA packaging and pinouts - product specification (UG385)

[accessed 5 September 2019].

 https://www.xilinx.com/support/documentation/user_guides/ug385.pdf.

6. Don M. Multichannel time-interval measurement with a field programmable

gate array (FPGA) device. Aberdeen Proving Ground (MD): Army Research

Laboratory (US); 2018. Report No.: ARL-TR-8602.

23

Appendix A. Software-Defined Radio Field-Programmable Gate
Array Verilog Code

24

This appendix includes the following Verilog files:

1) decom_acc: the original accumulator code

2) decom_acc1: the extra DIN word added

3) decom_acc2: continuous output added

4) dcc_chain_tb_din: the test bench

5) decom_acc3: high-resolution time-stamping added

//take 16 bit words, and load into 32 samples to output to PC

//add on extra words at end of each frame

module decom_acc(

clk,

reset,

data_in,

ld_in,

data_out,

ld_out,

clk_div,

rssi,

lastw,

time_in,

ave_in

);

input clk;

input reset;

input [15:0] data_in;

input ld_in;

output [31:0] data_out;

output ld_out;

input [5:0] clk_div;

input [31:0] rssi;

input lastw;

input [63:0] time_in;

input [15:0] ave_in;

25

wire clk;

wire [15:0] data_in;

wire ld_in;

wire reset;

reg [31:0] data_out;

reg ld_out;

wire [5:0] clk_div;

wire [31:0] rssi;

reg [31:0] rssi_reg;

wire lastw;

wire [63:0] time_in;

wire [15:0] ave_in;

reg [15:0] ave_reg;

reg [63:0] time_reg;

reg from_LD1;

integer cnt;

parameter [3:0]

 RST = 0,

 LD1 = 1,

 LD2 = 2,

 WAIT1 = 3,

 WAIT2 = 4,

 DO_RSSI10 = 5,

 DO_RSSI11 = 6,

 DO_RSSI20 = 7,

 DO_RSSI21 = 8,

 DO_TIME10 = 9,

 DO_TIME11 = 10,

 DO_TIME12 = 11,

 DO_TIME20 = 12,

 DO_TIME21 = 13,

 DO_TIME22 = 14;

26

reg [3:0] state;

 always @(posedge clk) begin : P1

 if((reset == 1'b 1)) begin

 state <= RST;

 end

 else begin

 case(state)

 RST : begin

 cnt <= 0;

 data_out <= 0;

 state <= LD1;

 time_reg <=64'd0;

 ave_reg <=16'd0;

 from_LD1 <= 0;

 end

 LD1 : begin //load one 16 bit word

 rssi_reg<=rssi;

 ld_out <= 1'b0;

 if(ld_in == 1'b1) begin

 //byte order switched so that correct order is received on PC

 data_out[31:16] <= {data_in[7:0],data_in[15:8]};

 if (lastw == 1'b0)

 state <= WAIT1;

 else begin

 time_reg<=time_in;

 ave_reg<=ave_in;

 state <= DO_RSSI10;

 end

 end

 end

 WAIT1 : begin //wait for load signal to go low

 if(cnt == clk_div) begin

27

 cnt <= 0;

 state <= LD2;

 end else begin

 cnt <= cnt+1;

 end

 end

 LD2 : begin

 rssi_reg<=rssi; //load next word, assert ld to load 32 bit value

 if(ld_in == 1'b1) begin

 data_out[15:0] <= {data_in[7:0],data_in[15:8]};

 ld_out <= 1'b1;

 if (lastw == 1'b0)

 state <= WAIT2;

 else begin

 time_reg<=time_in;

 state <= DO_RSSI20;

 end

 end

 end

 WAIT2: begin //just did load, wait to load 2cd slot

 ld_out <= 1'b0;

 if(cnt == clk_div) begin

 cnt <= 0;

 state <= LD1;

 end else begin

 cnt <= cnt+1;

 end

 end

 DO_RSSI10: begin //loaded 1st 16 bit value, do next with ld out

 data_out[15:0] <= {rssi_reg[23:16],rssi_reg[31:24]};

 ld_out <= 1'b1;

 state <= DO_RSSI11;

 end

 DO_RSSI11: begin //1st value, now do time, start with 2cd slot

28

 data_out[31:16] <= {rssi_reg[7:0],rssi_reg[15:8]};

 ld_out <= 1'b0;

 state <= DO_TIME10;

 end

 DO_RSSI20: begin //This is 1st slot

 data_out[31:16] <= {rssi_reg[23:16],rssi_reg[31:24]};

 ld_out <= 1'b0;

 state <= DO_RSSI21;

 end

 DO_RSSI21: begin //2cd slot, now do time, start with 1st slot

 data_out[15:0] <= {rssi_reg[7:0],rssi_reg[15:8]};

 ld_out <= 1'b1;

 state <= DO_TIME20;

 end

 DO_TIME10: begin //now do next 2cd with ld out

 data_out[15:0] <= {time_reg[55:48],time_reg[63:56]};

 ld_out <= 1'b1;

 state <= DO_TIME11;

 end

 DO_TIME11: begin //Do whole 32 bit value and ld out

 data_out[31:16] <= {time_reg[39:32],time_reg[47:40]};

 data_out[15:0] <= {time_reg[23:16],time_reg[31:24]};

 ld_out <= 1'b1;

 state <= DO_TIME12;

 end

 DO_TIME12: begin //32 bits, go back to words in 1st slot

 data_out[31:16] <= {time_reg[7:0],time_reg[15:8]};

 data_out[15:0] <= {ave_reg[7:0],ave_reg[15:8]};

 ld_out <= 1'b1;

 state <= WAIT2;

 end

 DO_TIME20: begin //do next 2cd slot with ld out

 data_out[31:16] <= {time_reg[55:48],time_reg[63:56]};

 data_out[15:0] <= {time_reg[39:32],time_reg[47:40]};

29

 ld_out <= 1'b1;

 state <= DO_TIME21;

 end

 DO_TIME21: begin //Do 32 bits and ld, go to TM words, 1st slot

 data_out[31:16] <= {time_reg[23:16],time_reg[31:24]};

 data_out[15:0] <= {time_reg[7:0],time_reg[15:8]};

 ld_out <= 1'b1;

 state <= DO_TIME22;

 end

 DO_TIME22: begin //This is 1st value, go to TM words in 2cd slot

 data_out[31:16] <= {ave_reg[7:0],ave_reg[15:8]};

 ld_out <= 1'b0;

 state <= WAIT1;

 end

 default : begin

 state <= RST;

 end

 endcase

 end

 end

endmodule

//take 16 bit words, and load into 32 samples to output to PC

//add on extra words at end of each frame, including din

module decom_acc1(

clk,

reset,

data_in,

ld_in,

data_out,

ld_out,

clk_div,

rssi,

30

lastw,

time_in,

ave_in,

din

);

input clk;

input reset;

input [15:0] data_in;

input ld_in;

output [31:0] data_out;

output ld_out;

input [5:0] clk_div;

input [31:0] rssi;

input lastw;

input [63:0] time_in;

input [15:0] ave_in;

input [7:0] din;

wire clk;

wire [15:0] data_in;

wire ld_in;

wire reset;

reg [31:0] data_out;

reg ld_out;

wire [5:0] clk_div;

wire [31:0] rssi;

reg [31:0] rssi_reg;

wire lastw;

wire [63:0] time_in;

wire [15:0] ave_in;

reg [15:0] ave_reg;

reg [63:0] time_reg;

reg from_LD1;

31

integer cnt;

parameter [3:0]

 RST = 0,

 LD1 = 1,

 LD2 = 2,

 WAIT1 = 3,

 WAIT2 = 4,

 DO_RSSI10 = 5,

 DO_RSSI11 = 6,

 DO_RSSI20 = 7,

 DO_RSSI21 = 8,

 DO_TIME10 = 9,

 DO_TIME11 = 10,

 DO_TIME12 = 11,

 DO_TIME20 = 12,

 DO_TIME21 = 13,

 DO_TIME22 = 14,

 DO_TIME13 = 15;

reg [3:0] state;

 always @(posedge clk) begin : P1

 if((reset == 1'b 1)) begin

 state <= RST;

 end

 else begin

 case(state)

 RST : begin

 cnt <= 0;

 data_out <= 0;

 state <= LD1;

 time_reg <=64'd0;

 ave_reg <=16'd0;

32

 from_LD1 <= 0;

 end

 LD1 : begin //load one 16 bit word

 rssi_reg<=rssi;

 ld_out <= 1'b0;

 if(ld_in == 1'b1) begin

 data_out[31:16] <= {data_in[7:0],data_in[15:8]};

 if (lastw == 1'b0)

 state <= WAIT1;

 else begin

 time_reg<=time_in;

 ave_reg<=ave_in;

 state <= DO_RSSI10;

 end

 end

 end

 WAIT1 : begin //wait for load signal to go low

 if(cnt == clk_div) begin

 cnt <= 0;

 state <= LD2;

 end else begin

 cnt <= cnt+1;

 end

 end

 LD2 : begin

 rssi_reg<=rssi; // assert load out to load out 32 bit value

 if(ld_in == 1'b1) begin

 data_out[15:0] <= {data_in[7:0],data_in[15:8]};

 ld_out <= 1'b1;

 if (lastw == 1'b0)

 state <= WAIT2;

 else begin

 time_reg<=time_in;

 state <= DO_RSSI20;

 end

 end

33

 end

 WAIT2: begin

 ld_out <= 1'b0;

 if(cnt == clk_div) begin

 cnt <= 0;

 state <= LD1;

 end else begin

 cnt <= cnt+1;

 end

 end

 DO_RSSI10: begin // now do next 2cd with ld out

 data_out[15:0] <= {rssi_reg[23:16],rssi_reg[31:24]};

 ld_out <= 1'b1;

 state <= DO_RSSI11;

 end

 DO_RSSI11: begin // now do time, start with 2cd slot

 data_out[31:16] <= {rssi_reg[7:0],rssi_reg[15:8]};

 ld_out <= 1'b0;

 state <= DO_TIME10;

 end

 DO_RSSI20: begin //This is 1st slot

 data_out[31:16] <= {rssi_reg[23:16],rssi_reg[31:24]};

 ld_out <= 1'b0;

 state <= DO_RSSI21;

 end

 DO_RSSI21: begin // now do time, start with 1st slot

 data_out[15:0] <= {rssi_reg[7:0],rssi_reg[15:8]};

 ld_out <= 1'b1;

 state <= DO_TIME20;

 end

 DO_TIME10: begin // now do next 2cd with ld out

 data_out[15:0] <= {time_reg[55:48],time_reg[63:56]};

 ld_out <= 1'b1;

 state <= DO_TIME11;

34

 end

 DO_TIME11: begin //Do whole 32 bit value and ld out

 data_out[31:16] <= {time_reg[39:32],time_reg[47:40]};

 data_out[15:0] <= {time_reg[23:16],time_reg[31:24]};

 ld_out <= 1'b1;

 state <= DO_TIME12;

 end

 DO_TIME12: begin //32 bit value

 data_out[31:16] <= {time_reg[7:0],time_reg[15:8]};

 data_out[15:0] <= {ave_reg[7:0],ave_reg[15:8]};

 ld_out <= 1'b1;

 state <= DO_TIME13;

 end

 DO_TIME13: begin //This is 1st value, do back to words in 2cd slot

 data_out[31:16] <= {din[7:0],8'b00000000};

 ld_out <= 1'b0;

 state <= WAIT1;

 end

 DO_TIME20: begin // now do next 2cd with ld out

 data_out[31:16] <= {time_reg[55:48],time_reg[63:56]};

 data_out[15:0] <= {time_reg[39:32],time_reg[47:40]};

 ld_out <= 1'b1;

 state <= DO_TIME21;

 end

 DO_TIME21: begin //Do 32 bit value

 data_out[31:16] <= {time_reg[23:16],time_reg[31:24]};

 data_out[15:0] <= {time_reg[7:0],time_reg[15:8]};

 ld_out <= 1'b1;

 state <= DO_TIME22;

 end

 DO_TIME22: begin //32 bits, go back to words in 1st slot

 data_out[31:16] <= {ave_reg[7:0],ave_reg[15:8]};

 data_out[15:0] <= {din[7:0],8'b00000000};

 ld_out <= 1'b1;

 state <= WAIT2;

35

 end

 default : begin

 state <= RST;

 end

 endcase

 end

 end

endmodule

//take 16 bit words, and load into 32 samples to output to PC

//add on extra words at end of each frame, including din

//continuous data output

module decom_acc2(

clk,

reset,

data_in,

ld_in,

data_out,

ld_out,

clk_div,

rssi,

lastw,

time_in,

ave_in,

din,

nbits,

nwords,

sync,

dummy_sfid

);

input clk;

input reset;

input [15:0] data_in;

36

input ld_in;

output [31:0] data_out;

output ld_out;

input [5:0] clk_div; //clock cycles per bit

input [31:0] rssi;

input lastw;

input [63:0] time_in;

input [15:0] ave_in;

input [7:0] din;

input [4:0] nbits; //bits per word

input [8:0] nwords; //words per frame - 1

input [31:0] sync;

input [7:0] dummy_sfid;

wire clk;

wire [15:0] data_in;

wire ld_in;

wire reset;

reg [31:0] data_out;

reg ld_out;

wire [5:0] clk_div;

wire [31:0] rssi;

reg [31:0] rssi_reg;

wire lastw;

wire [63:0] time_in;

wire [15:0] ave_in;

wire [4:0] nbits;

wire [8:0] nwords;

wire [31:0] sync;

wire [7:0] dummy_sfid;

reg [15:0] ave_reg;

reg [63:0] time_reg;

reg from_LD1;

reg high_bits;

reg do_dummy;

37

reg [15:0] dummy;

integer cnt; //cnt clk cycles for 1 bit

integer bcnt; //cnt bits in a word

integer wcnt; //cnt words in frame

integer fcnt; //cnt frames

parameter [4:0]

 RST = 0,

 LD1 = 1,

 LD2 = 2,

 WAIT1 = 3,

 WAIT2 = 4,

 DO_RSSI10 = 5,

 DO_RSSI11 = 6,

 DO_RSSI20 = 7,

 DO_RSSI21 = 8,

 DO_TIME10 = 9,

 DO_TIME11 = 10,

 DO_TIME12 = 11,

 DO_TIME20 = 12,

 DO_TIME21 = 13,

 DO_TIME22 = 14,

 MAKE_FRAME = 15,

 DO_TIME13 = 16;

 wire [7:0] fifo_cnt;

 wire [15:0] fifo_dout;

 reg rd;

//incoming frame fifo

ddc_output_fifo ddc_output_fifo1

 (.clk(clk), .rst(reset), .din(data_in), .wr_en(ld_in), .rd_en(rd),

 .dout(fifo_dout), .full(), .empty(), .data_count(fifo_cnt));

38

reg [3:0] state;

 always @(posedge clk) begin : P1

 if((reset == 1'b 1)) begin

 state <= RST;

 end

 else begin

 case(state)

 RST : begin

 fcnt<=0;

 do_dummy<=1;

 cnt <= 0;

 bcnt<=0;

 wcnt<=0;

 data_out <= 0;

 state <= MAKE_FRAME;

 time_reg <=64'd0;

 ave_reg <=16'd0;

 from_LD1 <= 0;

 rssi_reg <=32'd0;

 high_bits<=1; //first data load will be high bits

 end

 //cnt - counts clks; bcnt - counts bits; wcnt - counts words

 //each increments when one below reaches max value

 //dummy word set with wct - will change 1 cycle after wcnt changes

 MAKE_FRAME : begin

 //run clock counter

 if(cnt == clk_div-1) //clk_div is cycles per bit

 cnt <= 0;

 else

 cnt <= cnt+1;

39

 //run bit counter

 if (cnt == clk_div-1)

 if (bcnt == nbits-1) //nbits is bits per word

 bcnt <= 0;

 else

 bcnt <= bcnt+1;

 //run word counter

 if (bcnt == nbits-1 && cnt == clk_div-1)

 if (wcnt == nwords) //nwords is words per frame - 1

 wcnt <= 0;

 else

 wcnt <= wcnt+1;

 case(wcnt)

 0 : dummy<=sync[31:16];

 1 : dummy<=sync[15:0];

 2 : dummy<={dummy_sfid,8'd0};

 (nwords-1) : dummy<=fcnt;

 nwords : dummy<=1;

 default : dummy<=wcnt;

 endcase

 //make frame counter

 if (cnt == 0 && bcnt == 0 && wcnt == 0)

 if (fcnt == 65535)

 fcnt<=0;

 else

 if (do_dummy == 1)

 fcnt<=fcnt+1;

 //output data

 if (cnt == 0 && bcnt == 1) begin

 if (high_bits == 1) begin

 if (do_dummy == 1) begin

40

 data_out[31:16]<={dummy[7:0],dummy[15:8]};

 ld_out <= 1'b0;

 end else begin

 data_out[31:16]<={fifo_dout[7:0],fifo_dout[15:8]};

 ld_out <= 1'b0;

 rd<=1;

 end

 end else begin

 if (do_dummy == 1) begin

 data_out[15:0]<={dummy[7:0],dummy[15:8]};

 ld_out <= 1'b1;

 end else begin

 data_out[15:0]<={fifo_dout[7:0],fifo_dout[15:8]};

 ld_out <= 1'b1;

 rd<=1;

 end

 end

 high_bits<=~high_bits;

 end else begin

 ld_out <= 1'b0;

 rd<= 1'b0;

 end

 //state transition

 //there will be at most 5 cycles to do extra words

 //want full frame period to be slight less than full period

 //so have some dummy frames even when getting data

 //make sure the FIFO is kept empty

 //state change at nbits-4 will slowly empty fifo

 if ((cnt == clk_div-1) && (bcnt == nbits-4) && (wcnt == nwords))

begin

 time_reg<=time_in;

 rssi_reg<=rssi;

 ave_reg<=ave_in;

 if (high_bits==1) //this means that just did low

 state <= DO_RSSI20;

41

 else

 state <= DO_RSSI10;

 end

 end

 DO_RSSI10: begin // now do next 2cd with ld out

 data_out[15:0] <= {rssi_reg[23:16],rssi_reg[31:24]};

 ld_out <= 1'b1;

 state <= DO_RSSI11;

 end

 DO_RSSI11: begin // now do time, start with 2cd slot

 data_out[31:16] <= {rssi_reg[7:0],rssi_reg[15:8]};

 ld_out <= 1'b0;

 state <= DO_TIME10;

 end

 DO_RSSI20: begin //This is 1st slot

 data_out[31:16] <= {rssi_reg[23:16],rssi_reg[31:24]};

 ld_out <= 1'b0;

 state <= DO_RSSI21;

 end

 DO_RSSI21: begin //now do time, start with 1st slot

 data_out[15:0] <= {rssi_reg[7:0],rssi_reg[15:8]};

 ld_out <= 1'b1;

 state <= DO_TIME20;

 end

 DO_TIME10: begin // now do next 2cd with ld out

 data_out[15:0] <= {time_reg[55:48],time_reg[63:56]};

 ld_out <= 1'b1;

 state <= DO_TIME11;

 end

 DO_TIME11: begin //Do whole 32 bit value and ld out

 data_out[31:16] <= {time_reg[39:32],time_reg[47:40]};

 data_out[15:0] <= {time_reg[23:16],time_reg[31:24]};

 ld_out <= 1'b1;

 state <= DO_TIME12;

42

 end

 DO_TIME12: begin //This is 1st value

 data_out[31:16] <= {time_reg[7:0],time_reg[15:8]};

 data_out[15:0] <= {ave_reg[7:0],ave_reg[15:8]};

 ld_out <= 1'b1;

 state <= DO_TIME13;

 end

 DO_TIME13: begin //This is 1st value, do back to words in 2cd slot

 data_out[31:16] <= {din[7:0],8'b00000000};

 ld_out <= 1'b0;

 state <= MAKE_FRAME;

 high_bits<=0;

 if (fifo_cnt > nwords) begin

 do_dummy<=0;

 cnt <= 0;

 bcnt<=0;

 wcnt<=0;

 end else

 do_dummy<=1;

 end

 DO_TIME20: begin // now do next 2cd with ld out

 data_out[31:16] <= {time_reg[55:48],time_reg[63:56]};

 data_out[15:0] <= {time_reg[39:32],time_reg[47:40]};

 ld_out <= 1'b1;

 state <= DO_TIME21;

 end

 DO_TIME21: begin //Do 32 bit value and ld out

 data_out[31:16] <= {time_reg[23:16],time_reg[31:24]};

 data_out[15:0] <= {time_reg[7:0],time_reg[15:8]};

 ld_out <= 1'b1;

 state <= DO_TIME22;

 end

 DO_TIME22: begin //32 bit value, go back to MAKE_FRAME in 2cd slot

43

 data_out[31:16] <= {ave_reg[7:0],ave_reg[15:8]};

 data_out[15:0] <= {din[7:0],8'b00000000};

 ld_out <= 1'b1;

 high_bits<=1;

 state <= MAKE_FRAME;

 if (fifo_cnt > nwords) begin

 do_dummy<=0;

 cnt <= 0;

 bcnt<=0;

 wcnt<=0;

 end else

 do_dummy<=1;

 end

 default : begin

 state <= RST;

 end

 endcase

 end

 end

endmodule

//Testbench to test the DIN function and cont. output of the dcc

`timescale 1ns / 1ps

module dcc_chain_tb_din;

localparam SR_RX_DSP = 8'd144;

localparam SR_TIME = 8'd100;

reg clk = 0;

reg reset = 1;

reg run = 0;

wire strobe;

reg [23:0] rx_fe_i, rx_fe_q,debug_reg;

44

integer i,i2;

reg [1:0] pcm_in = 2'b00;

wire [2:0] scale_rx,scale_rx2;

wire [3:0] half_clk_div;

wire [8:0] nwords;

wire external_pcm_en,sim_pcm_en,randomized,use_filt_10;

wire sync_select,swap_bytes,en_crc;

wire [1:0] sync_size;

wire [4:0] nbits;

wire [7:0] dummy_sfid;

wire [15:0] sync0,sync1;

//Telemetry parameters:

assign sync0 = 16'hfe6b;

assign sync1 = 16'h2840;

assign half_clk_div = 4'd4;

assign nwords = 9'd11; //nwords is really nwords-1, nwords=47 gives 48

words

assign external_pcm_en = 1'b0;

assign sim_pcm_en = 1'b1;

assign randomized = 1'b0;

assign use_filt_10= 1'b0;

assign sync_select = 1'b0;

assign scale_rx = 3'd1;

assign swap_bytes = 1'b0;

assign scale_rx2 = 3'd1;

assign en_crc = 1'b0;

assign decrypt = 1'b0;

assign sync_size = 2'd3; //3 = 32, 2=24

assign nbits = 5'd16;

assign dummy_sfid = 8'hFF;

always #10 clk = ~clk;

 initial

 begin

45

 rx_fe_i <= 24'b001000000000000000000000;

 rx_fe_q <= 24'b001000000000000000000000;

 #1000 reset = 0;

 @(posedge clk);

 set_addr <= 8'd144; set_data <= 32'd8434349; set_stb <= 1;

 @(posedge clk); // CORDIC

 set_addr <= 8'd145; set_data <= 18'd19800; set_stb <= 1;

 @(posedge clk); // Scale factor

 set_addr <= 8'd146; set_data <= {1'b1, 1'b1, 1'b1, 1'b0, 6'd47};

 set_stb <= 1;

 @(posedge clk); // {enable_hb1_real, enable_hb2_real,

cic_decim_rate_real}

 set_addr <= 8'd147; set_data <= 0; set_stb <= 1;

 @(posedge clk); // Swap iq

 set_addr <= 8'd148; set_data <= 0; set_stb <= 1;

 @(posedge clk); // filter taps

 set_addr <= 8'd186; set_data <= {1'b1, 1'b1, 4'd0, 4'd4};

 set_stb <= 1; @(posedge clk); // {enable_hb1, enable_hb2,

interp_rate_duc}

 set_addr <= 8'd128; set_data <= 32'hF001F002; set_stb <= 1;

 @(posedge clk);

 //Set config regs using timekeeper:

 //4 upper blank, next 6 address, next 18 data, next 4 blank

 //sync0

 set_addr <= 8'd101; set_data <= 32'h01234560;

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk);

 set_addr <= 8'd101; set_data <= {4'd0,6'd0,2'b0,sync0,4'd0};

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk);

 //sync1

 set_addr <= 8'd101; set_data <= 32'h01234560;

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk);

 set_addr <= 8'd101; set_data <= {4'd0,6'd1,2'b0,sync1,4'd0};

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk);

46

 //config2

 set_addr <= 8'd101; set_data <= 32'h01234560;

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk);

 set_addr <= 8'd101; set_data <=

{4'd0,6'd2,sync_select,use_filt_10,randomized,sim_pcm_en,external_pcm_en,

nwords,half_clk_div,4'd0};

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk);

 //config3

 set_addr <= 8'd101; set_data <= 32'h01234560;

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk);

 set_addr <= 8'd101; set_data <=

{4'd0,6'd3,7'd0,decrypt,en_crc,scale_rx2,swap_bytes,sync_size,scale_rx,4'

d0};

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk);

 //set config4 last - triggers reset

 set_addr <= 8'd101; set_data <= 32'h01234560;

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk);

 set_addr <= 8'd101; set_data <=

{4'd0,6'd26,5'd0,dummy_sfid,nbits,4'd0};

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk);

 repeat(10) @(posedge clk);

 run <= 1'b1;

 #4000000;

 $finish;

 end

 reg [7:0] set_addr;

 reg [31:0] set_data;

 reg set_stb = 1'b0;

 wire [7:0] ddc_debug;

 wire [15:0] i_out, q_out;

 wire fm_out;

 wire [437:0] config_reg;

 wire [31:0] debug;

47

 reg [63:0] time_reg;

 reg [7:0] din = 8'b10101111;

 ddc_chain_iii5p7 #(.BASE(SR_RX_DSP), .DSPNO(0), .WIDTH(24)) ddc_chain

 (.clk(clk), .rst(reset), .clr(1'b0),

 .set_stb(set_stb),.set_addr(set_addr),.set_data(set_data),

 .rx_fe_i(rx_fe_i),.rx_fe_q(rx_fe_q),

 .sample({i_out,q_out}), .run(run), .strobe(strobe),

 .ddc_debug(ddc_debug),

 .debug(debug), .pcm_in(pcm_in), .config_reg(config_reg),

 .time_in(time_reg), .din(din));

 wire [63:0] vita_time;

 timekeeper_with_subregs #(.BASE(SR_TIME)) timekeeper

 (.clk(clk), .reset(reset), .pps(1'b0),

 .set_stb(set_stb), .set_addr(set_addr), .set_data(set_data),

 .vita_time(vita_time), .vita_time_lastpps(),

 .config_reg(config_reg));

 always @(posedge clk) begin

 if(reset) begin

 time_reg<=64'h000A000B000C000D;

 end else begin

 time_reg<=time_reg+1;

 end

 end

endmodule

//take 16 bit words, and load into 32 samples to output to PC

//add on extra words at end of each frame

//output continuously

//add high-resolution din data to dummy frames

module decom_acc3(

clk,

48

reset,

data_in,

ld_in,

data_out,

ld_out,

clk_div,

rssi,

lastw,

time_in,

ave_in,

din,

nbits,

nwords,

sync,

dummy_sfid

);

input clk;

input reset;

input [15:0] data_in;

input ld_in;

output [31:0] data_out;

output ld_out;

input [5:0] clk_div; //clock cycles per bit

input [31:0] rssi;

input lastw;

input [63:0] time_in;

input [15:0] ave_in;

input [7:0] din;

input [4:0] nbits; //bits per word

input [8:0] nwords; //words per frame - 1

input [31:0] sync;

input [7:0] dummy_sfid;

wire clk;

wire [15:0] data_in;

49

wire ld_in;

wire reset;

reg [31:0] data_out;

reg ld_out;

wire [5:0] clk_div;

wire [31:0] rssi;

reg [31:0] rssi_reg;

wire lastw;

wire [63:0] time_in;

wire [15:0] ave_in;

wire [4:0] nbits;

wire [8:0] nwords;

wire [31:0] sync;

wire [7:0] dummy_sfid;

reg [15:0] ave_reg;

reg [63:0] time_reg;

reg [63:0] time_reg2;

reg from_LD1;

reg high_bits;

reg do_dummy;

reg [15:0] dummy;

wire [9:0] nwords2;

assign nwords2 = {2'd0,nwords};

integer cnt; //cnt clk cycles for 1 bit

integer bcnt; //cnt bits in a word

integer wcnt; //cnt words in frame

integer fcnt; //cnt frames

parameter [4:0]

 RST = 0,

 DO_RSSI10 = 5,

 DO_RSSI11 = 6,

 DO_RSSI20 = 7,

50

 DO_RSSI21 = 8,

 DO_TIME10 = 9,

 DO_TIME11 = 10,

 DO_TIME12 = 11,

 DO_TIME20 = 12,

 DO_TIME21 = 13,

 DO_TIME22 = 14,

 MAKE_FRAME_ST = 15,

 DO_TIME13 = 16,

 RST2=0,

 WAIT2=1;

 wire [9:0] fifo_cnt;

 wire [15:0] fifo_dout;

 reg [127:0] data_in2;

 wire [15:0] fifo_dout2;

 reg rd,rd2,ld_in2;

 wire full,empty;

 reg [7:0] din2;

ddc_output_fifo ddc_output_fifo1

 (.clk(clk), .rst(reset), .din(data_in), .wr_en(ld_in), .rd_en(rd),

 .dout(fifo_dout), .full(), .empty(), .data_count(fifo_cnt));

din_fifo ddc_output_fifo2

 (.rst(reset), .wr_clk(clk), .rd_clk(clk), .din(data_in2),

.wr_en(ld_in2),

 .rd_en(rd2), .dout(fifo_dout2), .full(full), .empty(empty));

reg [3:0] state;

reg [3:0] state2;

 always @(posedge clk) begin : P1

51

 if((reset == 1'b 1)) begin

 state <= RST;

 end

 else begin

 case(state)

 RST : begin

 fcnt<=0;

 do_dummy<=1;

 cnt <= 0;

 bcnt<=0;

 wcnt<=0;

 data_out <= 0;

 state <= MAKE_FRAME_ST;

 time_reg <=64'd0;

 ave_reg <=16'd0;

 from_LD1 <= 0;

 rssi_reg <=32'd0;

 high_bits<=1; //first data load will be high

 end

 //cnt - counts clks; bcnt - counts bits; wcnt - counts words

 //each increments when one below reaches max value

 //dummy is set with wct - will change 1 cycle after wcnt changes

 MAKE_FRAME_ST : begin

 //run clock counter

 if(cnt == clk_div-1)

 cnt <= 0;

 else

 cnt <= cnt+1;

 //run bit counter

 if (cnt == clk_div-1)

 if (bcnt == nbits-1) //nbits = 16 for word size of 16 bits

 bcnt <= 0;

52

 else

 bcnt <= bcnt+1;

 //run word counter

 if (bcnt == nbits-1 && cnt == clk_div-1)

 if (wcnt == nwords) //nwords = 47 for frame size of 48

 wcnt <= 0;

 else

 wcnt <= wcnt+1;

 case(wcnt)

 0 : dummy<=sync[31:16];

 1 : dummy<=sync[15:0];

 2 : dummy<={dummy_sfid,8'd0};

 (nwords-1) : dummy<=fcnt;

 nwords : dummy<=1;

 default : dummy<=wcnt;

 endcase

 //make frame counter

 if (cnt == 0 && bcnt == 0 && wcnt == 0)

 if (fcnt == 65535)

 fcnt<=0;

 else

 if (do_dummy == 1)

 fcnt<=fcnt+1;

 //output data

 if (cnt == 0 && bcnt == 1) begin

 if (high_bits == 1) begin

 if (do_dummy == 1) begin

 if (empty == 0 && wcnt > 2 && wcnt < (nwords-1)) begin

 //if din fifo has words:

 data_out[31:16]<=fifo_dout2;

 rd2<=1;

 end else

53

 data_out[31:16]<={dummy[7:0],dummy[15:8]};

 ld_out <= 1'b0;

 end else begin

 data_out[31:16]<={fifo_dout[7:0],fifo_dout[15:8]};

 ld_out <= 1'b0;

 rd<=1;

 end

 end else begin

 if (do_dummy == 1) begin

 if (empty == 0 && wcnt > 2 && wcnt < (nwords-1)) begin

 //if din fifo has words:

 data_out[15:0]<=fifo_dout2;

 rd2<=1;

 end else

 data_out[15:0]<={dummy[7:0],dummy[15:8]};

 ld_out <= 1'b1;

 end else begin

 data_out[15:0]<={fifo_dout[7:0],fifo_dout[15:8]};

 ld_out <= 1'b1;

 rd<=1;

 end

 end

 high_bits<=~high_bits;

 end else begin

 ld_out <= 1'b0;

 rd<= 1'b0;

 rd2<=1'b0;

 end

 //state transition

 //there will be at most 5 cycles to do extra words

 //want full frame period to be slight less than full period

 //so that will output a dummy frame every once in a while

 //even when getting data

 //make sure the FIFO is kept empty

 //state change at nbits-4 will slowly empty fifo

54

 if ((cnt == clk_div-1) && (bcnt == nbits-4) && (wcnt == nwords))

begin

 time_reg<=time_in;

 rssi_reg<=rssi;

 ave_reg<=ave_in;

 if (high_bits==1) //this means that just did low

 state <= DO_RSSI20;

 else

 state <= DO_RSSI10;

 end

 end

 DO_RSSI10: begin // now do next 2cd with ld out

 data_out[15:0] <= {rssi_reg[23:16],rssi_reg[31:24]};

 ld_out <= 1'b1;

 state <= DO_RSSI11;

 end

 DO_RSSI11: begin // start with 2cd slot

 data_out[31:16] <= {rssi_reg[7:0],rssi_reg[15:8]};

 ld_out <= 1'b0;

 state <= DO_TIME10;

 end

 DO_RSSI20: begin //This is 1st slot

 data_out[31:16] <= {rssi_reg[23:16],rssi_reg[31:24]};

 ld_out <= 1'b0;

 state <= DO_RSSI21;

 end

 DO_RSSI21: begin // start with 1st slot

 data_out[15:0] <= {rssi_reg[7:0],rssi_reg[15:8]};

 ld_out <= 1'b1;

 state <= DO_TIME20;

 end

 DO_TIME10: begin // now do next 2cd with ld out

 data_out[15:0] <= {time_reg[55:48],time_reg[63:56]};

 ld_out <= 1'b1;

55

 state <= DO_TIME11;

 end

 DO_TIME11: begin //Do whole 32 bit value and ld out

 data_out[31:16] <= {time_reg[39:32],time_reg[47:40]};

 data_out[15:0] <= {time_reg[23:16],time_reg[31:24]};

 ld_out <= 1'b1;

 state <= DO_TIME12;

 end

 DO_TIME12: begin //This is 1st value, do back to words in 2cd slot

 data_out[31:16] <= {time_reg[7:0],time_reg[15:8]};

 data_out[15:0] <= {ave_reg[7:0],ave_reg[15:8]};

 ld_out <= 1'b1;

 state <= DO_TIME13;

 end

 DO_TIME13: begin //This is 1st value, do back to words in 2cd slot

 data_out[31:16] <= {din[7:0],8'b00000000};

 ld_out <= 1'b0;

 state <= MAKE_FRAME_ST;

 high_bits<=0;

 if (fifo_cnt > nwords2) begin

 do_dummy<=0;

 cnt <= 0;

 bcnt<=0;

 wcnt<=0;

 end else

 do_dummy<=1;

 end

 DO_TIME20: begin // now do next 2cd with ld out

 data_out[31:16] <= {time_reg[55:48],time_reg[63:56]};

 data_out[15:0] <= {time_reg[39:32],time_reg[47:40]};

 ld_out <= 1'b1;

 state <= DO_TIME21;

 end

56

 DO_TIME21: begin // go back to words, start with 1st slot

 data_out[31:16] <= {time_reg[23:16],time_reg[31:24]};

 data_out[15:0] <= {time_reg[7:0],time_reg[15:8]};

 ld_out <= 1'b1;

 state <= DO_TIME22;

 end

 DO_TIME22: begin //go back to words in 2cd slot

 data_out[31:16] <= {ave_reg[7:0],ave_reg[15:8]};

 data_out[15:0] <= {din[7:0],8'b00000000};

 ld_out <= 1'b1;

 high_bits<=1;

 state <= MAKE_FRAME_ST;

 if (fifo_cnt > nwords2) begin

 do_dummy<=0;

 cnt <= 0;

 bcnt<=0;

 wcnt<=0;

 end else

 do_dummy<=1;

 end

 default : begin

 state <= RST;

 end

 endcase

 end

 end

 //create delayed version of din

 always @(posedge clk) begin

 din2<=din;

 end

//DIN state machine:

 always @(posedge clk) begin

 if((reset == 1'b 1)) begin

57

 state2 <= RST2;

 end

 else begin

 case(state2)

 RST2 : begin

 ld_in2<=0;

 data_in2 <= 0;

 state2 <= WAIT2;

 end

 WAIT2 : begin

 //load din fifo when change in din

 if (din2 != din) begin

 data_in2<={16'h0123,16'h4567,16'h89AB,din2,din,time_in[55:48],time_in[

63:56],time_in[39:32],time_in[47:40],time_in[23:16],time_in[31:24],time_i

n[7:0],time_in[15:8]};

 ld_in2<=1;

 end else

 ld_in2<=0;

 end

 default : begin

 state2 <= RST;

 end

 endcase

 end

 end

endmodule

58

Appendix B. MATLAB Data Analysis Scripts

59

This appendix includes the following MATLAB files:

1) decode_telemetry_din.m: A script that sets example parameters,

runs the decode_bin_file_function function, and plots results.

2) decode_bin_file_function.m: A function that takes a binary SDR

receiver file, and extracts telemetry frames, including frame time-stamps,

and high-resolution time-stamps included in dummy frames.

% decode_telemetry_din.m, an example telemetry decode script

clear

close all

tic

filename='test_din3.bin';

seconds_into_file=0;

duration=inf;

do_plot=1;

data_rate=4e6;

Fs=52e6; %SDR sampling clock freq

time_zone=-5; %offset from UTC

sync=[hex2dec('FE') hex2dec('6B') hex2dec('28') hex2dec('40')]';

% SYNC in bytes

dummy_SFID=hex2dec('FF');

do_crc=0;

WordsPerFrame=48;

BitsPerWord=16;

extra_words=8; %number of extra words SDR tacks onto end of

frames

[words,bytes,irig,synci,bytesf,din_irig, din_HR] =

decode_bin_file_function(filename,WordsPerFrame,Fs,time_zone,extr

a_words,sync,seconds_into_file,duration,data_rate,dummy_SFID);

[~,nframes]=size(words);

din=false(8,length(irig));

times=zeros(8,1);

60

for i=1:8

 din(i,:)=bitand(uint16(2^(i-

1)),words(WordsPerFrame+extra_words,:))>0;

 index=find(diff(din(i,:)),1);

 if ~isempty(index)

 times(i)=irig(index);

 else

 times(i)=nan;

 end

end

if do_plot

 figure(1)

 subplot(3,1,1)

 plot(irig,words(WordsPerFrame-1,:))

 xlim([irig(1) irig(end)])

 title('Frame Count');

 subplot(3,1,2)

 plot(irig,words(WordsPerFrame+extra_words,:))

 xlim([irig(1) irig(end)])

 title('Digital byte')

 subplot(3,1,3)

 plot(irig,irig)

 xlim([irig(1) irig(end)])

 title('Irig Time')

 figure(2)

 for i=1:8

 plot(irig, din(i,:))

 hold on

 end

 xlim([irig(1) irig(end)])

61

 for i=1:8

 legendtext{i}=sprintf('DIN%d',i-1);

 end

 title('DIN');

 legend(legendtext,'Location','NorthEastOutside')

 figure(3)

 din_bit1=bitget(din_HR,1);

 plot(irig-irig(1), din(1,:))

 ylim([-0.1 1.1])

 %xlim([-0.0 3.5])

 hold on

 plot(din_irig-irig(1), din_bit1,'--')

 xlabel('Seconds')

 ylabel('Bits')

 legend('Low Res', 'High Res', 'Location', 'SouthWest')

end

times

times_from_din0=times-times(1)

tstart=irig(1)

duration= irig(end)-irig(1)

toc

%% decode_bin_file_function.m, decodes SDR telemetry file

%duration and seconds_into_file assumes no missing frames

function [words,bytes,irig,synci,bytesf,din_irig, din_HR] =

decode_bin_file_function(filename,WordsPerFrame,Fs,time_zone,extr

a_words,sync,seconds_into_file,duration,data_rate,dummy_SFID)

%Read file

fstart=seconds_into_file*(data_rate/16/WordsPerFrame); %frames

per sec * seconds = frame to start at

62

bstart= fstart*(WordsPerFrame+extra_words)*2; %byte to start at

nframes=duration*(data_rate/16/WordsPerFrame);

nbytes=nframes*(WordsPerFrame+extra_words)*2;

fid = fopen(filename, 'r');

fseek(fid,round(bstart),'bof');

bytes = fread(fid,nbytes,'*uint8');

fclose(fid);

%Find sync indexes

synci=find((bytes(1:end-3)==sync(1)) & (bytes(2:end-2)==sync(2))

..

 & (bytes(3:end-1)==sync(3)) & (bytes(4:end)==sync(4)));

synci=synci(1:end-1);

% dec2hex(bytes(synci(6):synci(6)+10)) 8 is real

%Fill in words matrix

nframes=length(synci);

words=zeros((WordsPerFrame+extra_words)*2,nframes,'uint8');

if (synci(nframes)+(WordsPerFrame+extra_words)*2-1) >

length(bytes)

 synci=synci(1:end-1);

 nframes=nframes-1;

end

for i=1:nframes

 words(:,i)=bytes(synci(i):synci(i)+(WordsPerFrame+extra_words)*

2-1);

end

%Reshape as 16 bit words

bytesf=words;

words=typecast(words(:),'uint16')';

words=swapbytes(words);

words=reshape(words,WordsPerFrame+extra_words,[]);

bytesf=reshape(bytesf,(WordsPerFrame+extra_words)*2,[]);

63

%bytesf=bytesf(1:WordsPerFrame*2,:);

%Create time signal

time64 = (words((6+WordsPerFrame):-1:(3+WordsPerFrame),:));

time64 = time64(:);

time64 = typecast(time64,'uint64');

time = double(time64)/Fs;

% display real start time, then start time vector at 0

% 0 is 1/1/70 00:00:00 from usrp

sec_fract=sprintf('%0.12g',time(1)-floor(time(1)));

start_time=datestr(time_zone/24+time(1)/(24*60*60)+datenum('1-

Jan-1970'),'mmmm dd, yyyy HH:MM:SS');

start_time=[start_time '.' sec_fract(3:end)];

irig=rem(time+time_zone*3600,24*3600)'; %seconds from start of

day, local time

%words=words(1:WordsPerFrame,:); %get rid of extra words

%find high res din time-stamps

dummy=bytesf(:,bytesf(5,:)==dummy_SFID);

dummy2=dummy(7:WordsPerFrame*2-4,:);

dummy2=dummy2(:);

%Find sync indexes

sync=[hex2dec('23') hex2dec('01') hex2dec('67') hex2dec('45')]';

% SYNC in bytes

synci_din=find((dummy2(1:end-3)==sync(1)) & (dummy2(2:end-

2)==sync(2)) & (dummy2(3:end-1)==sync(3)) &

(dummy2(4:end)==sync(4)));

if isempty(synci_din)

 din_irig=[];

 din_HR=[];

else

 synci_din=synci_din(1:end-1);

 din_words=zeros(16,length(synci_din),'uint8');

 for i=1:length(synci_din)

 din_words(:,i)=dummy2(synci_din(i):synci_din(i)+15);

64

 end

 time64 = (din_words(16:-1:9,:));

 time64 = time64(:);

 time64 = typecast(time64,'uint64');

 din_time = double(time64)/Fs;

 sec_fract=sprintf('%0.12g',din_time(1)-floor(din_time(1)));

 din_irig=rem(din_time+time_zone*3600,24*3600)'; %seconds from

start of day, local time

 din_irig = [din_irig-3/Fs; din_irig-2/Fs];

 din_irig=din_irig(:);

 din_HR = din_words(8:-1:7,:);

 din_HR=din_HR(:)';

end

end

65

Appendix C. Mechanical and Electrical Design

66

This appendix includes electrical and mechanical design drawings and

modifications needed to reproduce the modified software-defined radio (SDR).

67

68

69

70

71

72

73

List of Symbols, Abbreviations, and Acronyms

ADC analog-to-digital converter

AES advanced encryption standard

ARL Army Research Laboratory

BoB breakout-board

CPU central processing unit

DC direct current

DDC digital down converter

FIFO first in, first out buffer

FM frequency modulation

FPGA field-programmable gate array

GMT Greenwich mean time

GPS global positioning system

GPSDO global positioning system disciplined oscillator

GUI graphical user interface

IC integrated circuit

IO input/output

I/Q in-phase/quadrature

IR infrared

ISE Integrated Synthesis Environment

PC personal computer

PCB printed circuit board

PCM pulse code modulated

RAM random access memory

RF radio frequency

RSSI received signal strength indicator

74

SDR software-defined radio

SFID sub-frame identifier

UCF user constraint file

UDP user datagram protocol

UHD Universal Software Radio Peripheral hardware driver

USRP Universal Software Radio Peripheral

75

 1 DEFENSE TECHNICAL

 (PDF) INFORMATION CTR

 DTIC OCA

 1 CCDC ARL

 (PDF) FCDD RLD CL

 TECH LIB

 23 CCDC ARL

 (PDF) FCDD RLW LF

B ALLIK

B J ACKER

T G BROWN

S BUGGS

E BUKOWSKI

J COLLINS

J CONDON

B DAVIS

M DON

D EVERSON

R HALL

J HALLAMEYER

M HAMAOUI

T HARKINS

M ILG

B KLINE

J MALEY

C MILLER

B NELSON

D PETRICK

K PUGH

N SCHOMER

B TOPPER

