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1. Introduction 

Over the last several years the Army Research Laboratory (ARL) has developed a 

software-defined radio (SDR) telemetry receiver. Research has been published on 

the receiver design,1 real-time decryption, and layered protocol.2 This technical 

note presents an additional capability, wired signal time-stamping. During field 

experiments, there are multiple components or external events that must be related 

to the telemetry data. By time-stamping triggers and indicators, all of the available 

data sources can be synchronized. 

This technical note first reviews the basic telemetry receiver design. Next, the 

software and hardware modifications to support wired signal time-stamping are 

described. Finally, experimental results from an example flight experiment are 

presented. With the addition of wired signal time-stamping, ARL’s SDR telemetry 

receiver has gained another valuable capability that will enable convenient and 

inexpensive testing independent of military range instrumentation. 

2. Software-Defined Radio (SDR) Telemetry Receiver Overview 

ARL’s SDR telemetry receiver is based on Ettus Research’s Universal Software 

Radio Peripheral (USRP) B200 SDR. This is a single board SDR, using Analog 

Devices’ RF IC that combines an RF front end, in-phase/quadrature (I/Q) 

demodulator, and analog-to-digital converters (ADCs) into a single IC that covers 

a range of 70 MHz to 6 GHz.3 There is an optional GPS disciplined oscillator 

(GPSDO) that can be installed on the B200 to enable global timing alignment to 

within 50 ns.4 Figure 1 shows the receiver architecture. Demodulation, bit 

synchronization, and frame synchronization modules were developed in Verilog 

and added to field-programmable gate array (FPGA) firmware. The decimating 

filters, which are normally required to reduce the data rate to speeds slow enough 

for the host computer to process, were able to be replaced by non-decimating filters 

due to the enhanced processing capabilities of the FPGA. A LabVIEW telemetry 

display program was designed for the host computer. A separate C++ program was 

written using the USRP hardware driver (UHD) to configure the USRP and route 

data to a user datagram protocol (UDP) port. The LabVIEW program reads the 

UDP port to access data from the USRP, performs frame synchronization, extracts 

the frame data, and displays the results. Frame synchronization is performed on the 

FPGA as well so that extra data, such as time and received signal strength indicator 

(RSSI) data can be added to the end of each frame. 
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Fig. 1 Telemetry receiver B200 block diagram 

3. Software Modifications 

3.1 Wired Input Ports 

In order to support wired input time-stamping, additional FPGA inputs were 

enabled on the B200. The USRP B2x0 series SDRs come in two varieties, the B210 

and the B200. The relevant difference between these versions is that the B210 has 

a larger Xilinx Spartan 6 XC6SLX150 FPGA, while the B200 has a smaller 

XC6SLX75 FPGA. This has two repercussions. First, Xilinx’s Integrated Synthesis 

Environment (ISE) free software edition does not support the larger XC6SLX150 

FPGA. This, together with the difficulty of ordering software at ARL, was one of 

the reasons that the B200 was chosen as the platform for the telemetry receiver. 

Second, the B210 supports more input/output (IO) ports than the B200. Thus, even 

though the B200 and B210 have the same printed circuit board (PCB) layout, the 

38-pin debug connector of the B210 is not officially supported on the B200. Some 

of the pins, however, do connect to valid IO pins on the B200’s FPGA. Table 1 

specifies eight IOs that were identified on the debug connector that could be 

enabled on the B200.5 

Table 1 Digital inputs enabled on the B200 

MICTOR pin
 
 FPGA pin B210 net name B200 net name 

5 A12 debug_clk(0) din(0) 

6 C12 debug_clk(1) din(1) 

23 F15 debug(23) din(2) 

24 D7 debug(7) din(3) 

31 C17 debug(19) din(4) 

32 B8 debug(3) din(5) 

37 A18 debug(16) din(6) 

38 D10 debug(0) din(7) 

 

These ports were added to the user constraint file (UCF) as 3.3-V inputs with pull-

up resistors. The pull-up resistors support open-drain signals that can only pull the 
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port voltage low. When the signal is active, the port is pulled low, when the signal 

is inactive, the pull-up resistor acts to pull the port voltage high. In most 

circumstances these resistors should not interfere with full push–pull type inputs, 

but they can be disabled or switched to pull-down resistors, by adjusting the UCF 

file and recompiling the FPGA image. 

3.2 Original Accumulator Design 

As mentioned previously, the FPGA attaches extra words to each frame before they 

are sent to the PC. Table 2 shows the original seven extra 16-bit telemetry words 

added to the end of every frame. 

Table 2 Extra telemetry words 

Index
 
 Name Shorthand Description 

1 RSSI [31:16] RSSI2 RSSI word 1 

2 RSSI [15:0] RSSI1 RSSI word 0 

3 TIME [63:48] TIME4 Timestamp word 3 

4 TIME [47:32] TIME3 Timestamp word 2 

5 TIME [31:16] TIME2 Timestamp word 1 

6 TIME [15:0] TIME1 Timestamp word 0 

7 AVE  AVE Average value of demodulated data 

 

Referring back to Fig. 1, after the signal is demodulated and the bits are identified 

through bit synchronization, the frames are identified through a frame 

synchronization module. This frame synchronization module outputs 16-bit words 

and a strobe signal to an accumulator module, which converts the 16-bit words into 

a 32-bit format for transmission to the PC. Additionally, the accumulator module 

adds extra words to the end of each frame. The original Verilog code for the 

accumulator module is included as decom_acc in Appendix A, which operates 

according to the state diagram in Fig. 2. The state diagram uses the shorthand names 

for the RSSI and TIME signals specified in Table , along with Din for data_in, 

D2 for data_out[31:16], and D1 for data_out[15:0]. The states are 

represented as circles, black text indicates the condition for state transition, and red 

text indicates a value change in a state, or during a state transition. The main caveat 

in the operation of decom_acc is that since there can be a total odd number of 

words per frame, and since the 16-bit input words are loaded into a 32-bit output 

register, a given input word will not always line up with the same 16 bits of the 

output register. In order to handle this problem, the state machine keeps track of the 

proper section of the output register to load, either D1 or D2. 
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Starting in state RST, the state machine automatically transitions to the LD1 state. 

When the input strobe ld_in is asserted, D2 is loaded with Din, and the state 

machine transitions to the WAIT1 state. A counter delays the state machine in 

WAIT1 for clk_div+1 clock cycles before transitioning to LD2, which is a 

sufficient period of time for ld_in to be deasserted. clk_div is set to the number 

of clock cycles per PCM bit. When ld_in is asserted again, D1 is set to Din and 

the strobe out signal, ld_out, is asserted, sending the full 32-bit data_out 

signal to the PC. ld_in also triggers a state transition to WAIT2, which serves a 

similar function to WAIT1. The state machine returns to LD1 from WAIT2 where 

the process is repeated. This process continues until a full frame of words has been 

processed. The assertion of lastw indicates that the current input word is the last 

word of the frame. If lastw is asserted in the LD1 state, the state machine 

transitions to RSSI10. If it is asserted in LD2, the state machine transitions to 

RSSI20. In both of these branches of the state machine, extra words are loaded into 

the output register for transmission to the PC. The branch starting with RSSI10 

loads D2, since D1 was just loaded, whereas the branch starting with RSSI20 loads 

D1, since D2 was just loaded. Each branch then continues, alternating between 

loading D1 and D2 before returning to the initial branch of the state machine. In 

state TIME2, data_out is fully loaded. Therefore, the state machine returns to 

WAIT2, which will transition to LD1 and begin by loading D2 once again. In state 

TIME22, D2 has been loaded but not D1. Therefore, the state machine returns to 

WAIT1 where it will transition to LD2 for D1 to be loaded. 
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Fig. 2 Original decom_acc state diagram 

3.3 Wired Input Time-Stamping 

In order to support wired inputs, an eighth extra 16-bit word, DIN, was added at the 

end of every frame. The eight wired inputs are represented by the lower byte, while 

the upper byte is unused. The DIN signal was routed from the top level of the design 

to the accumulator module. The original decom_acc code was modified and 

renamed decom_acc1 (see Appendix A). Figure 3 shows the modified state 

diagram. Now that there is an additional extra word, state TIME22 can fill the 

whole data_out register with D2 = AVE and D1 = DIN. TIME22 transitions to 

WAIT2, which will lead to LD1 where the beginning of the next frame will be 

loaded into D2. An additional state, TIME13 is added after TIME12, where D2 is 

loaded with DIN. TIME13 transitions to WAIT1, where the next word will be 

loaded into D1. 
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Fig. 3 decom_acc1 state diagram, modified to accommodate wired inputs 

3.4 Continuous Telemetry Output 

In its normal operating mode, the receiver is designed to output telemetry frames 

as they are received. When frames are not being detected, no data is output. This 

makes time-stamping wired signals unreliable while receiving telemetry data. Any 

dropped telemetry frames will also result in a loss of DIN data. In order to be used 

reliably, the receiver must be used in a simulator mode, where the SDR continually 

outputs simulated telemetry frames, irrespective of the received RF signal. It would 

be desirable, however, to receive a real RF telemetry stream while also time-

stamping wired input signals. In order to accomplish this, the accumulator was 
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further modified to output data even when telemetry frames were not detected in its 

normal operation mode. Figure 4 shows a block diagram of this version of the 

accumulator, decom_acc2. The ld_in signal was modified so that it is only 

asserted one clock cycle, and is used to load a first in, first out (FIFO) buffer with 

the incoming telemetry words. When there is a full frame of words available in the 

FIFO, they are unloaded and sent to the PC. When there are not enough words 

available, a dummy frame is output. In either case, the extra words, including DIN, 

are output with the frames. 

 

Fig. 4 decom_acc2 block diagram 

Figure 5 shows a state diagram of decom_acc2. The main words of the frame are 

handled in the MAKE_FRAME state, whose operation is briefly outlined in the 

diagram. Count registers cnt, bcnt, and wcnt are used to count cycles per bit, 

bits per word, and words per frame respectively. high_bits is used to determine 

if the current word is loaded into the lower or higher bits of the 32-bit output signal, 

and is inverted after each word. do_dummy determines if the current frame source 

is generated dummy frame data, or real telemetry data from the FIFO. The FIFO is 

of the “First-Word Fall-Through” variety, allowing the FIFO word to be available 

immediately. The rd signal is asserted every time the FIFO output is used, allowing 

the next FIFO word to be available when needed. fifo_cnt is the number of 

words in the FIFO. At the end of each frame, fifo_cnt is used to determine the 

value of do_dummy. If there are sufficient words in the FIFO, do_dummy is 

deasserted, otherwise do_dummy is asserted. The internal count registers are used 

now to determine transition to the extra word states instead of the external lastw 

signal. This transition occurs slightly before the end of a full frame, so that the total 

data rate is slightly higher than the telemetry data rate. This ensures that the FIFO 

does not overflow when the transmitter data rate is slightly higher than the 

receiver’s expected data rate due to a mismatch between transmitter and receiver 

clocks. Thus, even when telemetry data is consistently received, a dummy frame 

will be output occasionally. The states for the extra words have remained generally 

FIFO 

data_in 

ld_in 

State 
Machine 

fifo_dout 

rd 

data_out 

ld_out 

decom_acc2 

din 
ave_in 

rssi 
time_in 
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the same, only now high_bits determines if the extra words begin in the higher 

bits of data_out (RSSI20), or the lower bits of data_out (RSSI10). 

high_bits must also be set correctly when transitioning back to the 

MAKE_FRAME state. The dummy frame format is specified in Table 3. The third 

word the dummy frame is set as is the subframe ID (SFID), with the upper byte 

specified by a configurable dummy_SFID parameter and the lower byte set to zero. 

The second to last word is a 16-bit frame counter while the last word is a checksum 

placeholder set to 1. 

 

Fig. 5 decom_acc2 state diagram, modified for continuous output 
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Table 3 Dummy frames 

Word index
 
 Words 

0 SYNC [31:16] 

1 SYNC [15:0] 

2 {Dummy_SFID , x00} 

3 . . . NWORDS-3 Word index 

NWORDS-2 FCNT 

NWORDS-1 1 

3.5 Design Simulation 

Due to the long compile times of FPGA images, simulation is a key part of FPGA 

design. A test bench for SDR receiver modifications, dcc_chain_tb_din, is 

included in Appendix A. The test bench simulates at the digital down converter 

(DDC) level, which contains the accumulator. A full explanation of the DDC is 

outside of the scope of this report, although some aspect of the higher-level design 

will be explained briefly. Parameters of the B200 are stored in setting registers in 

the FPGA and are set using the USRP Hardware Driver (UHD). Typically, adding 

additional setting registers would require modification and recompilation of UHD. 

In order to avoid this, the timekeeper module was modified to allow for additional 

setting registers. When the 32-bit timekeeper register is loaded with x01234560, 

the next 32-bit load to the timekeeper, set_data[31:0], will be interpreted as 

a custom register load. set_data[31:28] and set_data[3:0] are ignored, 

set_data[27:22] is interpreted as a custom register index, and 

set_data[21:4] is the custom register data. The important parameters for the 

DDC simulation are listed in Table 4, and are loaded into custom setting registers 

at the beginning of the test bench using the method just described. By setting 

sim_pcm_en, the receiver generates simulated telemetry frames for transmission 

to the PC. For our purposes, these simulated frames can be used to take the place 

of frames received from the demodulator. Although similar, these simulated frames 

should not be confused with the dummy frames generated in the accumulator. 

Table 4 Simulation parameters 

Parameter Value Description 

sync1 xFE6B First synchronization word 

sync0 x2840 Second synchronization word 

clk_div 8 Clock cycles per bit 

nbits 16 Bits per word 

nwords 11 Number of words per frame - 1 

sim_pcm_en 1 Output simulated frames 

dummy_sfid xFF High byte of the third word of a dummy frame 
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Figure 6 shows a simulation of a dummy frame in decom_acc2. The state 

machine stays in the MAKE_FRAME state most of the time, which has a value of 

15. Words are loaded into the FIFO using ld_in. Observe fifo_cnt increasing 

as the FIFO fills. Since this is a dummy frame, no words are read from the FIFO. 

Instead, generated dummy words are loaded into data_out. high_bits 

alternates as words are loaded into the high or low bits of data_out, and ld_out 

is asserted as an output strobe. Note that for the PC to receive the data in big-endian 

format, each word is transmitted as little-endian. Also, the higher bits of 

data_out are received first, and the lower bits are received last. Thus, a data_out 

value of x6BFE4028 is received at the PC as xFE6B2840. 

 

Fig. 6 Simulation of a dummy frame in decom_acc2 

Figure 7 shows a close-up of the extra words at the end of the frame. Transitioning 

from MAKE_FRAME with high_bits = 1, the state machine enters RSSI20 (state 

= 7). The RSSI, TIME, AVE, and DIN registers are inserted into data_out, and 

strobed out with ld_out. The state machine returns to the MAKE_FRAME state 

with high_bits active, ready to load the next word into the higher bits of 

data_out. 
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Fig. 7 Simulation of a dummy frame in decom_acc2, close-up of extra words 

Figure 8 shows the simulation of a real frame in decom_acc2. fifo_cnt 

shows that there is more than a full frame of words in the FIFO, which causes 

do_dummy to become inactive. The FIFO is unloaded using the rd signal, and 

data_out is loaded with the FIFO output, fifo_dout. 

 

Fig. 8 Simulation of a real frame in decom_acc2 

3.6 High-Resolution Time-Stamping 

By attaching an extra DIN word to every frame, the maximum DIN sampling rate 

is the frame rate. When the SDR is used for both telemetry and to record wired 

inputs, the frame rate is determined by the telemetry requirements. For most 

applications, it is sufficient for the time resolution of the wire inputs to match the 

telemetry frame rate. In cases where a higher resolution is desired, the SDR can be 

used for the wired inputs alone, running in simulation mode at higher rates than the 

telemetry rate. For example, Table 5 shows typical and accelerated telemetry 
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parameters that determine the frame rate. By adjusting the typical parameters, the 

frame rate, and therefore the DIN sampling rate, was increased by roughly a factor 

of 3. This accelerated frame rate is about as fast as the PC telemetry software can 

run on a PC with a 2.4 GHz i7-2760QM CPU and 8 GB of RAM. If higher time 

resolution is needed, another time-stamping method must be employed. 

Table 5 Telemetry rate parameters 

Parameter Typical value Accelerated value 

NWORDS 48 24 

Bits per word 16 16 

Samples per bit 8 8 

Sampling clock 32 MHz 50 MHz 

Bit rate 4 Mbs 6.25 Mbs 

Frame rate 5.2 kHz 16.3 kHz 

 

One method to increase time-stamping resolution is to record the time at every DIN 

transition, save it to a FIFO, and empty the FIFO into extra telemetry words. This 

increases the time resolution to that of the system clock, but it would require the 

addition of multiple extra words to handle a fast transitioning signal. In order to 

retain the ability to record transitions at every frame, the previous time-stamping 

method in decom_acc2 was left in place, and this new method was added 

utilizing the dummy frames for time-stamp output instead of extra words at the end 

of the telemetry frames. Figure 9 shows a block diagram of the new 

implementation, decom_acc3. A DIN state machine saves a time-stamp into a 

new DIN FIFO every time the DIN signals change value. The DIN FIFO input data 

width is 128 bits. The first three 16-bit words are synchronization words: x0123, 

x4567, and x89AB. The next 16-bit word combines the previous and new values of 

the DIN byte. The final four words contain the 64-bit time-stamp. The FIFO’s 

output width is 16 bits. Whenever the DIN FIFO is not empty, data words in the 

dummy frame are replaced by words read out of the DIN FIFO. All words in the 

dummy frame are considered data words except for the first two synchronization 

words, the third SFID word, the second-to-last word used as a frame counter, and 

the last word used as a checksum placeholder. 
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Fig. 9 decom_acc3 block diagram 

Figure 10 shows a simulation of decom_acc3. When the value of DIN changes, 

the time-stamp information is saved in the DIN FIFO, which deasserts the empty 

flag. The time-stamp information is then read, 16 bits at a time, during a dummy 

frame and strobed out on data_out. Once all of the words are read from the DIN 

FIFO, the empty flag is reasserted.  

 

Fig. 10 Simulation of decom_acc3 

Example data was recorded comparing this new time-stamping method to the 

previous method of sampling DIN once per frame. The parameters used for this test 

are shown in Table 6. Note that the effective sampling rate of this new method is 

the rate of the sampling clock, 10,000 times faster than the frame rate. Figure 11 

shows a comparison between the low-resolution framed-based time-stamping and 

the high-resolution master clock-based time-stamping for the first wired input. The 

signals were extracted from a saved telemetry file using the MATLAB scripts 
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included in Appendix B. The signals align well, showing that the high-resolution 

data was decoded correctly. Figure 12 shows a close-up of the first transition in Fig. 

. The high-resolution signal captures signal bouncing that the low-resolution signal 

completely misses. 

Table 6 Telemetry parameters used to record the signals shown in Fig.  

Parameter Typical value 

NWORDS 48 

Bits per word 16 

Samples per bit 13 

Sampling clock 52 MHz 

Bit rate 4 Mbs 

Frame rate 5.2 kHz 

 

 

Fig. 11 Example test data showing the first wired input state using both low-resolution time-

stamps at the frame rate and high-resolution time-stamps at the master clock rate. The time 

axis is normalized to zero. 

 

Fig. 12 A close-up of Fig. 11. In this example, the high-resolution data captured bouncing 

that the low-resolution data completely missed. 
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3.7 Sub-Cycle Resolution Time-Stamping 

A method for achieving time resolution equal to the master clock rate was presented 

in the previous section. This method relies on the 64-bit TIME signal, which is 

implemented as a simple counter. This type of synchronous design is the standard 

digital logic design recommended for FPGA coding, simulation, and 

implementation tools. Asynchronous designs that rely on wire and logic delays 

frequently cause problems with these design tools, and often the FPGA designs 

themselves. Nevertheless, asynchronous structures can be used to obtain sub-cycle 

time interval measurements. One asynchronous method is the tapped delay line 

shown in Fig. 13. In this implementation, the input signal goes through a series of 

delays 𝜏, which are tapped as clock inputs into a series of flip-flops. The system 

clock is connected to the data inputs, allowing the clock to be sampled at the rising 

edge of the input signal at a rate of 1/𝜏. A comparison of the clock phase of the 

various delayed inputs can then be used to determine a fine sub-cycle time interval 

measurement. Normal counters can still be used to create a coarse time 

measurement. Although sub-cycle time-stamping has not been implemented on the 

SDR telemetry receiver, ARL has demonstrated a proof of concept design that 

could be incorporated into the SDR in the event that higher time resolution is 

required.6  

 

Fig. 13 Tapped delay line 

3.8 Telemetry GUI Setup for Wired Inputs  

It is often desirable to monitor wired input in real-time during experiments. The 

original signal setup parameters in the LabVIEW GUI shown in the block diagram 

in Fig. 1 is capable of displaying the wired inputs without any software 

modifications. Individual input channels can be monitored using the Mask and 
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Scale properties of the signal. For channel 𝑛, bit 𝑛 of the Mask is set to 1, and the 

Scale is set to 1/2𝑛. Figure 14 shows an example signal setting for a wired input 

D2, with 𝑛 = 2 referenced from zero. The Mask extracts each individual channel, 

while the Scale normalizes the value of each channel to 1. The word number is also 

referenced from zero, giving the eighth extra word an index of 55 for a 48-word 

frame. Figure 15 shows two of the GUI’s charts, where the top signals are properly 

normalized, while the bottom signals have not been normalized. 

 

Fig. 14 Signal setup in telemetry GUI 

 

 

Fig. 15 Example scaled wired inputs 

4. Hardware Modifications 

ARL’s SDR telemetry receiver utilizes Ettus Research’s USRP B200 electronic and 

mechanical hardware. To accommodate the time synchronization of multiple 

signals (up to eight channels) with respect to GPS time, several modifications to 

the mechanical hardware and additional electrical peripheries were required. 
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4.1 Electrical 

A custom printed circuit breakout-board (BoB) was designed to allow up to eight 

external signals to be input into the SDR. The SDR itself is a single, enclosed unit 

with a B200 USRP circuit board securely mounted inside. The BoB was required 

to fit inside the SDR enclosure and accommodate a broad range of DC voltage level. 

Ruggedness, ease-of-use, and versatility were also required. 

The BoB was designed to interface with the B200 using a Tyco Electronics 

MICTOR high-speed, fine pitch vertical connector that mated with the stock debug 

connector on the B200 circuit board. External signals were input to the BoB using 

standard BNC connectors with 50Ω impedance. BNC connectors were chosen 

because they are the most commonly used connectors at experimental facilities and 

would provide the most practical means to connect signal cables to the SDR. The 

enclosure was modified so that the BNC connectors on the BoB could be mounted 

on the sides of the SDR securing the BoB to both the enclosure and the B200 circuit 

board. The ruggedness of the unit was also increased by using edge-mounted BNC 

connectors and a board thickness of 0.1 inches. 

The B200 debug connector provides access to multiple IO pins on the Xilinx 

Spartan-6 FPGA inside the SDR. The maximum allowable DC voltage into these 

pins is 3 V. In order to limit the DC voltage of the external signals into the FPGA, 

an adjustable attenuation circuit was included on each signal line. The BoB was 

designed so that either a 0805 case size Susumu PAT series attenuator chip or a pi 

resistor attenuation circuit could be used to decrease the DC voltage level of any 

input signal to a maximum of 3.3 V, see Fig. 16.    

 

Fig. 16 The Susumu PAT series attenuator circuit (left) and the pi attenuation circuit (right) 

The required gain in dB is given by 

 

𝐺 = 20 log (
𝑉𝑖𝑛

𝑉𝑜𝑢𝑡
). (1) 

For example, in order to decrease 5 V to 3 V, a 4.43 dB attenuator is required. 
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High precision chip attenuators can typically be purchased in 1 dB steps. In this 

application, a Susumu PAT1220 high precision chip attenuator with 50Ω 

impedance and 4 dB attenuation was used to decrease the input voltage level from 

5 VDC to approximately 3.15 VDC. Another option is to use a three-resistor pi 

attenuator circuit to obtain the required attenuation. Figure 17 shows the pi 

attenuator consisting of one series resistor and two parallel shunt resistors to ground 

at the input and the output. 

 

 

Fig. 17 Pi attenuation circuit 

The resistor values are 

 

𝑅1 = 𝑅3 = Z (
𝐾 + 1

𝐾 − 1
) , (2) 

 

𝑅2 = Z (
𝐾2 − 1

2𝐾
), (3) 

where 𝐾 = 10(𝐺/20) and 𝑍 is the impedance. For example, a 4-dB attenuator with 

50Ω impedance would result in 𝑅1 = 𝑅3 ≈ 221Ω and 𝑅2 ≈ 24Ω. 

4.2 Mechanical 

The mechanical design process began with solid modeling of the mechanical and 

electrical components needed to meet the rigorous time accuracy specifications. A 

depiction of the original USRP B200 box and SDR mechanical model is seen in 

Fig. 18. Most mechanical component models were created from scratch using 

measurements of existing hardware since no commercial models were uncovered. 
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This became a good starting point for required modification and the design of new 

electrical and mechanical interfaces.  

Since up to eight channels could be evaluated using the existing USRP B200 design 

architecture, it was required to design a mechanical and electrical interface capable 

of routing proper signals to the SDR. BNC connectors are used as the input interface 

for the eight timing pulses. Two additional BNC connections act as PCM input and 

output, connected to the UART (J400) debug port. An additional PCB was designed 

to route electrical connections from the input BNC connectors to the SDR. This 

modified package including peripheral board and connectors is shown in Fig. 19. 

Details of the mechanical and electrical layout is included in Appendix C. 

 

Fig. 18 USRP B200—unmodified 

 

 

Fig. 19 USRP B200—modified 
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5. Experimental Results 

Multiple events were recorded for a particular experiment conducted in July 2019 

that required absolute time for sequencing and comparison. Although eight 

channels could be recorded, three channels were recorded and used for 

measurement and sequencing during the experiment using the SDR receiver. This 

experiment used the decom_acc1 accumulator design, with the SDR configured 

to output simulated telemetry frames with the typical parameter values in Table 5. 

The data shown in Table 7 summarizes the experiment results and represents 

valuable information for later analysis of multiple sequenced events. The three 

IRIG times represent sequential times after a truck was released down a ramp. The 

first measurement indicates when the truck passed a position down the ramp by 

“breaking” continuity set to a known distance (10 ft) from the release height. The 

second measurement, Firing Pulse, represents a preprogrammed time that a relay 

switched a signal to send a firing pulse to the gun. The last measurement, Muzzle 

Exit, is the time that an IR threshold (flash) exceeded a set value to indicate the 

time the projectile exited the muzzle. Times are given in IRIG format (seconds from 

midnight, GMT). The local time was recorded and updated using the IRIG time at 

Truck Break. 

Table 7 Example time stamped data recorded in a field exercise 

 

Rnd # GTB # Date local IRIG IRIG IRIG

Truck Break Firing Pulse Muzzle Exit

1 BS3 7/19/2019 11:32:04 37924.47855 37925.47849 37925.47791

2 HMA1 7/19/2019 15:29:00 52140.43407 52141.43362 52141.45263

3 BS1 7/22/2019 12:12:46 40365.63909 40366.63884 40366.6613

4 HMA2 7/22/2019 14:51:35 49894.67532 49895.67487 49720.00063

5 BS2 7/24/2019 10:47:29 35249.48749 35250.48781 35196.05274

6 HMA5 7/24/2019 14:39:54 49193.88762 49194.88717 49194.91674

7 HMA4 7/24/2019 16:02:27 54147.24282 54148.24276 54148.27156

8 HMA3 7/24/2019 16:59:58 57598.24621 57599.24596 57599.27975

Time
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The average of the time from the Firing Pulse to the Muzzle Exit was approximately 

0.027 s, as would be expected for a typical initiation and interior ballistic event. 

However, three measurements of Muzzle Exit indicated a premature exit condition 

and therefore a false trigger. No premature exit conditions existed according to 

other diagnostics including high-speed video. These three values of exit were not 

used in calculating the average exit time. 

6. Conclusion 

Leveraging recent developments in SDR telemetry, ARL has added the capability 

to time-stamp wired signals. A commercial SDR was modified to measure up to 

eight channels of time events. Its rugged design and compact size make it suitable 

for both laboratory and field applications. It has already been successfully used in 

a field experiment, and will provide convenient and inexpensive time 

synchronization for future experiments independent of military range 

instrumentation. 
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Appendix A. Software-Defined Radio Field-Programmable Gate 
Array Verilog Code 
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This appendix includes the following Verilog files: 

1) decom_acc: the original accumulator code 

2) decom_acc1: the extra DIN word added 

3) decom_acc2: continuous output added 

4) dcc_chain_tb_din: the test bench 

5) decom_acc3: high-resolution time-stamping added 

 

//take 16 bit words, and load into 32 samples to output to PC 

//add on extra words at end of each frame 

module decom_acc( 

clk, 

reset, 

data_in, 

ld_in, 

data_out, 

ld_out, 

clk_div, 

rssi, 

lastw, 

time_in, 

ave_in 

); 

 

input clk; 

input reset; 

input [15:0] data_in; 

input ld_in; 

output [31:0] data_out; 

output ld_out; 

input [5:0] clk_div; 

input [31:0] rssi; 

input lastw; 

input [63:0] time_in; 

input [15:0] ave_in; 
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wire clk; 

wire [15:0] data_in; 

wire ld_in; 

wire reset; 

reg [31:0] data_out; 

reg ld_out; 

wire [5:0] clk_div; 

wire [31:0] rssi; 

reg [31:0] rssi_reg; 

wire lastw; 

wire [63:0] time_in; 

wire [15:0] ave_in; 

 

reg [15:0] ave_reg; 

reg [63:0] time_reg; 

reg from_LD1; 

 

integer cnt; 

 

parameter [3:0] 

  RST = 0, 

  LD1 = 1, 

  LD2 = 2, 

  WAIT1 = 3, 

  WAIT2 = 4, 

  DO_RSSI10 = 5, 

  DO_RSSI11 = 6, 

  DO_RSSI20 = 7, 

  DO_RSSI21 = 8, 

  DO_TIME10 = 9, 

  DO_TIME11 = 10, 

  DO_TIME12 = 11, 

  DO_TIME20 = 12, 

  DO_TIME21 = 13, 

  DO_TIME22 = 14; 
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reg [3:0] state; 

 

  always @(posedge clk) begin : P1 

 

    if((reset == 1'b 1)) begin 

      state <= RST; 

    end 

    else begin 

 

      case(state) 

      RST : begin 

   cnt <= 0; 

   data_out <= 0; 

   state <= LD1; 

   time_reg <=64'd0; 

   ave_reg <=16'd0; 

   from_LD1 <= 0; 

      end 

      LD1 : begin  //load one 16 bit word 

   rssi_reg<=rssi; 

   ld_out <= 1'b0; 

   if(ld_in == 1'b1) begin 

    //byte order switched so that correct order is received on PC 

    data_out[31:16] <= {data_in[7:0],data_in[15:8]}; 

    if (lastw == 1'b0) 

     state <= WAIT1; 

    else begin 

     time_reg<=time_in; 

     ave_reg<=ave_in; 

     state <= DO_RSSI10; 

    end 

   end 

      end 

      WAIT1 : begin  //wait for load signal to go low 

   if(cnt == clk_div) begin 
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    cnt <= 0; 

    state <= LD2; 

   end else begin 

    cnt <= cnt+1; 

   end 

      end 

      LD2 : begin 

   rssi_reg<=rssi;  //load next word, assert ld to load 32 bit value 

   if(ld_in == 1'b1) begin 

    data_out[15:0] <= {data_in[7:0],data_in[15:8]}; 

    ld_out <= 1'b1; 

    if (lastw == 1'b0) 

     state <= WAIT2; 

    else begin 

     time_reg<=time_in; 

     state <= DO_RSSI20; 

    end 

   end 

      end 

    

      WAIT2: begin  //just did load, wait to load 2cd slot 

   ld_out <= 1'b0; 

   if(cnt == clk_div) begin 

    cnt <= 0; 

    state <= LD1; 

   end else begin 

    cnt <= cnt+1; 

   end 

      end 

   

      DO_RSSI10: begin  //loaded 1st 16 bit value, do next with ld out 

   data_out[15:0] <= {rssi_reg[23:16],rssi_reg[31:24]}; 

   ld_out <= 1'b1; 

   state <= DO_RSSI11; 

      end 

      DO_RSSI11: begin //1st value, now do time, start with 2cd slot 
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   data_out[31:16] <= {rssi_reg[7:0],rssi_reg[15:8]}; 

   ld_out <= 1'b0; 

   state <= DO_TIME10; 

      end 

      DO_RSSI20: begin //This is 1st slot 

   data_out[31:16] <= {rssi_reg[23:16],rssi_reg[31:24]}; 

   ld_out <= 1'b0; 

   state <= DO_RSSI21; 

      end 

      DO_RSSI21: begin //2cd slot, now do time, start with 1st slot 

   data_out[15:0] <= {rssi_reg[7:0],rssi_reg[15:8]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME20; 

      end 

   

      DO_TIME10: begin  //now do next 2cd with ld out 

   data_out[15:0] <= {time_reg[55:48],time_reg[63:56]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME11; 

      end 

      DO_TIME11: begin //Do whole 32 bit value and ld out 

   data_out[31:16] <= {time_reg[39:32],time_reg[47:40]}; 

   data_out[15:0] <= {time_reg[23:16],time_reg[31:24]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME12; 

      end 

      DO_TIME12: begin  //32 bits, go back to words in 1st slot 

   data_out[31:16] <= {time_reg[7:0],time_reg[15:8]}; 

   data_out[15:0] <= {ave_reg[7:0],ave_reg[15:8]}; 

   ld_out <= 1'b1; 

   state <= WAIT2; 

      end 

   

  DO_TIME20: begin  //do next 2cd slot with ld out 

   data_out[31:16] <= {time_reg[55:48],time_reg[63:56]}; 

   data_out[15:0] <= {time_reg[39:32],time_reg[47:40]}; 
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   ld_out <= 1'b1; 

   state <= DO_TIME21; 

      end 

      DO_TIME21: begin //Do 32 bits and ld, go to TM words, 1st slot 

   data_out[31:16] <= {time_reg[23:16],time_reg[31:24]}; 

   data_out[15:0] <= {time_reg[7:0],time_reg[15:8]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME22; 

      end 

      DO_TIME22: begin  //This is 1st value, go to TM words in 2cd slot 

   data_out[31:16] <= {ave_reg[7:0],ave_reg[15:8]}; 

   ld_out <= 1'b0; 

   state <= WAIT1; 

      end 

   

      default : begin 

        state <= RST; 

      end 

      endcase 

    end 

  end 

endmodule 

 

 

//take 16 bit words, and load into 32 samples to output to PC 

//add on extra words at end of each frame, including din 

module decom_acc1( 

clk, 

reset, 

data_in, 

ld_in, 

data_out, 

ld_out, 

clk_div, 

rssi, 
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lastw, 

time_in, 

ave_in, 

din 

); 

 

input clk; 

input reset; 

input [15:0] data_in; 

input ld_in; 

output [31:0] data_out; 

output ld_out; 

input [5:0] clk_div; 

input [31:0] rssi; 

input lastw; 

input [63:0] time_in; 

input [15:0] ave_in; 

input [7:0] din; 

 

wire clk; 

wire [15:0] data_in; 

wire ld_in; 

wire reset; 

reg [31:0] data_out; 

reg ld_out; 

wire [5:0] clk_div; 

wire [31:0] rssi; 

reg [31:0] rssi_reg; 

wire lastw; 

wire [63:0] time_in; 

wire [15:0] ave_in; 

 

reg [15:0] ave_reg; 

reg [63:0] time_reg; 

reg from_LD1; 
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integer cnt; 

 

parameter [3:0] 

  RST = 0, 

  LD1 = 1, 

  LD2 = 2, 

  WAIT1 = 3, 

  WAIT2 = 4, 

  DO_RSSI10 = 5, 

  DO_RSSI11 = 6, 

  DO_RSSI20 = 7, 

  DO_RSSI21 = 8, 

  DO_TIME10 = 9, 

  DO_TIME11 = 10, 

  DO_TIME12 = 11, 

  DO_TIME20 = 12, 

  DO_TIME21 = 13, 

  DO_TIME22 = 14, 

  DO_TIME13 = 15; 

   

reg [3:0] state; 

 

  always @(posedge clk) begin : P1 

 

    if((reset == 1'b 1)) begin 

      state <= RST; 

    end 

    else begin 

 

      case(state) 

      RST : begin 

   cnt <= 0; 

        data_out <= 0; 

        state <= LD1; 

    time_reg <=64'd0; 

    ave_reg <=16'd0; 
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    from_LD1 <= 0; 

      end 

      LD1 : begin  //load one 16 bit word 

   rssi_reg<=rssi; 

   ld_out <= 1'b0; 

   if(ld_in == 1'b1) begin 

    data_out[31:16] <= {data_in[7:0],data_in[15:8]}; 

    if (lastw == 1'b0) 

     state <= WAIT1; 

    else begin 

     time_reg<=time_in; 

     ave_reg<=ave_in; 

     state <= DO_RSSI10; 

    end 

   end 

      end 

      WAIT1 : begin  //wait for load signal to go low 

   if(cnt == clk_div) begin 

    cnt <= 0; 

    state <= LD2; 

   end else begin 

    cnt <= cnt+1; 

   end 

      end 

      LD2 : begin 

   rssi_reg<=rssi;  // assert load out to load out 32 bit value 

   if(ld_in == 1'b1) begin 

    data_out[15:0] <= {data_in[7:0],data_in[15:8]}; 

    ld_out <= 1'b1; 

    if (lastw == 1'b0) 

     state <= WAIT2; 

    else begin 

     time_reg<=time_in; 

     state <= DO_RSSI20; 

    end 

   end 
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      end 

      WAIT2: begin 

   ld_out <= 1'b0; 

   if(cnt == clk_div) begin 

    cnt <= 0; 

    state <= LD1; 

   end else begin 

    cnt <= cnt+1; 

   end 

      end 

   

      DO_RSSI10: begin  // now do next 2cd with ld out 

   data_out[15:0] <= {rssi_reg[23:16],rssi_reg[31:24]}; 

   ld_out <= 1'b1; 

   state <= DO_RSSI11; 

      end 

      DO_RSSI11: begin // now do time, start with 2cd slot 

   data_out[31:16] <= {rssi_reg[7:0],rssi_reg[15:8]}; 

   ld_out <= 1'b0; 

   state <= DO_TIME10; 

      end 

      DO_RSSI20: begin //This is 1st slot 

   data_out[31:16] <= {rssi_reg[23:16],rssi_reg[31:24]}; 

   ld_out <= 1'b0; 

   state <= DO_RSSI21; 

      end 

      DO_RSSI21: begin // now do time, start with 1st slot 

   data_out[15:0] <= {rssi_reg[7:0],rssi_reg[15:8]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME20; 

      end 

   

      DO_TIME10: begin  // now do next 2cd with ld out 

   data_out[15:0] <= {time_reg[55:48],time_reg[63:56]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME11; 
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      end 

      DO_TIME11: begin //Do whole 32 bit value and ld out 

   data_out[31:16] <= {time_reg[39:32],time_reg[47:40]}; 

   data_out[15:0] <= {time_reg[23:16],time_reg[31:24]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME12; 

      end 

      DO_TIME12: begin  //32 bit value 

   data_out[31:16] <= {time_reg[7:0],time_reg[15:8]}; 

   data_out[15:0] <= {ave_reg[7:0],ave_reg[15:8]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME13; 

      end 

      DO_TIME13: begin  //This is 1st value, do back to words in 2cd slot 

   data_out[31:16] <= {din[7:0],8'b00000000}; 

   ld_out <= 1'b0; 

   state <= WAIT1; 

      end 

   

  DO_TIME20: begin  // now do next 2cd with ld out 

   data_out[31:16] <= {time_reg[55:48],time_reg[63:56]}; 

   data_out[15:0] <= {time_reg[39:32],time_reg[47:40]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME21; 

      end 

      DO_TIME21: begin //Do 32 bit value 

   data_out[31:16] <= {time_reg[23:16],time_reg[31:24]}; 

   data_out[15:0] <= {time_reg[7:0],time_reg[15:8]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME22; 

      end 

      DO_TIME22: begin  //32 bits, go back to words in 1st slot 

   data_out[31:16] <= {ave_reg[7:0],ave_reg[15:8]}; 

   data_out[15:0] <= {din[7:0],8'b00000000}; 

   ld_out <= 1'b1; 

   state <= WAIT2; 
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      end 

   

      default : begin 

        state <= RST; 

      end 

      endcase 

    end 

  end 

endmodule 

 

//take 16 bit words, and load into 32 samples to output to PC 

//add on extra words at end of each frame, including din 

//continuous data output 

module decom_acc2( 

clk, 

reset, 

data_in, 

ld_in, 

data_out, 

ld_out, 

clk_div, 

rssi, 

lastw, 

time_in, 

ave_in, 

din, 

nbits, 

nwords, 

sync, 

dummy_sfid 

); 

 

input clk; 

input reset; 

input [15:0] data_in; 
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input ld_in; 

output [31:0] data_out; 

output ld_out; 

input [5:0] clk_div; //clock cycles per bit 

input [31:0] rssi; 

input lastw; 

input [63:0] time_in; 

input [15:0] ave_in; 

input [7:0] din; 

input [4:0] nbits; //bits per word 

input [8:0] nwords; //words per frame - 1 

input [31:0] sync; 

input [7:0] dummy_sfid; 

 

wire clk; 

wire [15:0] data_in; 

wire ld_in; 

wire reset; 

reg [31:0] data_out; 

reg ld_out; 

wire [5:0] clk_div;  

wire [31:0] rssi; 

reg [31:0] rssi_reg; 

wire lastw; 

wire [63:0] time_in; 

wire [15:0] ave_in; 

wire [4:0] nbits; 

wire [8:0] nwords; 

wire [31:0] sync; 

wire [7:0] dummy_sfid; 

 

reg [15:0] ave_reg; 

reg [63:0] time_reg; 

reg from_LD1; 

reg high_bits; 

reg do_dummy; 
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reg [15:0] dummy; 

 

integer cnt; //cnt clk cycles for 1 bit 

integer bcnt; //cnt bits in a word 

integer wcnt; //cnt words in frame 

integer fcnt; //cnt frames 

 

parameter [4:0] 

  RST = 0, 

  LD1 = 1, 

  LD2 = 2, 

  WAIT1 = 3, 

  WAIT2 = 4, 

  DO_RSSI10 = 5, 

  DO_RSSI11 = 6, 

  DO_RSSI20 = 7, 

  DO_RSSI21 = 8, 

  DO_TIME10 = 9, 

  DO_TIME11 = 10, 

  DO_TIME12 = 11, 

  DO_TIME20 = 12, 

  DO_TIME21 = 13, 

  DO_TIME22 = 14, 

  MAKE_FRAME = 15, 

  DO_TIME13 = 16; 

   

   

  wire [7:0] fifo_cnt; 

  wire [15:0] fifo_dout; 

  reg rd; 

 

//incoming frame fifo   

ddc_output_fifo ddc_output_fifo1 

 (.clk(clk), .rst(reset), .din(data_in), .wr_en(ld_in), .rd_en(rd), 

 .dout(fifo_dout), .full(), .empty(), .data_count(fifo_cnt)); 
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reg [3:0] state; 

 

  always @(posedge clk) begin : P1 

 

    if((reset == 1'b 1)) begin 

      state <= RST; 

    end 

    else begin 

 

      case(state) 

      RST : begin 

   fcnt<=0; 

   do_dummy<=1; 

   cnt <= 0; 

   bcnt<=0; 

   wcnt<=0; 

   data_out <= 0; 

   state <= MAKE_FRAME; 

   time_reg <=64'd0; 

   ave_reg <=16'd0; 

   from_LD1 <= 0; 

   rssi_reg <=32'd0; 

   high_bits<=1; //first data load will be high bits 

      end 

       

       

      //cnt - counts clks; bcnt - counts bits; wcnt - counts words 

      //each increments when one below reaches max value 

      //dummy word set with wct - will change 1 cycle after wcnt changes 

      MAKE_FRAME : begin 

         //run clock counter 

   if(cnt == clk_div-1)  //clk_div is cycles per bit 

    cnt <= 0; 

   else  

    cnt <= cnt+1; 
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     //run bit counter 

   if (cnt  == clk_div-1) 

     if (bcnt == nbits-1) //nbits is bits per word 

     bcnt <= 0; 

     else 

     bcnt <= bcnt+1; 

          

   //run word counter 

   if (bcnt == nbits-1 && cnt  == clk_div-1) 

        if (wcnt == nwords)  //nwords is words per frame - 1 

            wcnt <= 0; 

        else 

            wcnt <= wcnt+1;            

                    

   case(wcnt) 

     0 : dummy<=sync[31:16];    

     1 : dummy<=sync[15:0]; 

     2 : dummy<={dummy_sfid,8'd0}; 

     (nwords-1) : dummy<=fcnt; 

     nwords : dummy<=1; 

     default :   dummy<=wcnt; 

   endcase 

                        

   //make frame counter 

   if (cnt == 0 && bcnt == 0 && wcnt == 0) 

     if (fcnt == 65535) 

       fcnt<=0; 

     else 

       if (do_dummy == 1) 

       fcnt<=fcnt+1; 

             

   //output data 

   if (cnt == 0 && bcnt == 1) begin 

     if (high_bits == 1) begin 

       if (do_dummy == 1) begin 
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       data_out[31:16]<={dummy[7:0],dummy[15:8]}; 

       ld_out <= 1'b0; 

       end else begin 

       data_out[31:16]<={fifo_dout[7:0],fifo_dout[15:8]}; 

       ld_out <= 1'b0; 

       rd<=1; 

       end            

     end else begin 

       if (do_dummy == 1) begin 

       data_out[15:0]<={dummy[7:0],dummy[15:8]}; 

       ld_out <= 1'b1; 

       end else begin 

       data_out[15:0]<={fifo_dout[7:0],fifo_dout[15:8]}; 

       ld_out <= 1'b1; 

       rd<=1; 

       end       

     end 

     high_bits<=~high_bits; 

   end else begin    

       ld_out <= 1'b0;   

       rd<=  1'b0;  

   end 

                   

   //state transition 

   //there will be at most 5 cycles to do extra words 

   //want full frame period to be slight less than full period 

   //so have some dummy frames even when getting data 

   //make sure the FIFO is kept empty 

   //state change at nbits-4 will slowly empty fifo 

   if ((cnt == clk_div-1) && (bcnt == nbits-4) && (wcnt == nwords) ) 

begin 

    time_reg<=time_in; 

    rssi_reg<=rssi; 

    ave_reg<=ave_in; 

     if (high_bits==1) //this means that just did low 

      state <= DO_RSSI20; 
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     else 

      state <= DO_RSSI10; 

   end 

     end 

   

      DO_RSSI10: begin  // now do next 2cd with ld out 

   data_out[15:0] <= {rssi_reg[23:16],rssi_reg[31:24]}; 

   ld_out <= 1'b1; 

   state <= DO_RSSI11; 

      end 

      DO_RSSI11: begin // now do time, start with 2cd slot 

   data_out[31:16] <= {rssi_reg[7:0],rssi_reg[15:8]}; 

   ld_out <= 1'b0; 

   state <= DO_TIME10;  

      end 

      DO_RSSI20: begin //This is 1st slot 

   data_out[31:16] <= {rssi_reg[23:16],rssi_reg[31:24]}; 

   ld_out <= 1'b0; 

   state <= DO_RSSI21;    

      end 

      DO_RSSI21: begin //now do time, start with 1st slot 

   data_out[15:0] <= {rssi_reg[7:0],rssi_reg[15:8]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME20;   

      end 

   

      DO_TIME10: begin  // now do next 2cd with ld out 

   data_out[15:0] <= {time_reg[55:48],time_reg[63:56]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME11; 

      end 

      DO_TIME11: begin //Do whole 32 bit value and ld out 

   data_out[31:16] <= {time_reg[39:32],time_reg[47:40]}; 

   data_out[15:0] <= {time_reg[23:16],time_reg[31:24]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME12; 
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      end 

      DO_TIME12: begin  //This is 1st value 

   data_out[31:16] <= {time_reg[7:0],time_reg[15:8]}; 

   data_out[15:0] <= {ave_reg[7:0],ave_reg[15:8]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME13;  

  

      end 

   

  DO_TIME13: begin  //This is 1st value, do back to words in 2cd slot 

   data_out[31:16] <= {din[7:0],8'b00000000}; 

   ld_out <= 1'b0; 

   state <= MAKE_FRAME; 

   high_bits<=0; 

  if (fifo_cnt > nwords) begin 

    do_dummy<=0; 

    cnt <= 0; 

    bcnt<=0; 

    wcnt<=0; 

   end else 

    do_dummy<=1;  

      end 

   

  DO_TIME20: begin  // now do next 2cd with ld out 

   data_out[31:16] <= {time_reg[55:48],time_reg[63:56]}; 

   data_out[15:0] <= {time_reg[39:32],time_reg[47:40]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME21;    

      end 

      DO_TIME21: begin  //Do 32 bit value and ld out 

   data_out[31:16] <= {time_reg[23:16],time_reg[31:24]}; 

   data_out[15:0] <= {time_reg[7:0],time_reg[15:8]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME22;   

      end 

      DO_TIME22: begin  //32 bit value, go back to MAKE_FRAME in 2cd slot 
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   data_out[31:16] <= {ave_reg[7:0],ave_reg[15:8]}; 

   data_out[15:0] <= {din[7:0],8'b00000000}; 

   ld_out <= 1'b1; 

         high_bits<=1;  

   state <= MAKE_FRAME; 

   if (fifo_cnt > nwords) begin 

     do_dummy<=0; 

     cnt <= 0; 

     bcnt<=0; 

     wcnt<=0; 

   end else 

     do_dummy<=1;    

      end 

   

      default : begin 

        state <= RST; 

      end 

      endcase 

    end 

  end 

 

endmodule 

 

 

//Testbench to test the DIN function and cont. output of the dcc 

`timescale 1ns / 1ps 

module dcc_chain_tb_din; 

 

localparam SR_RX_DSP    = 8'd144; 

localparam SR_TIME    = 8'd100; 

 

reg clk    = 0; 

reg reset  = 1; 

reg run = 0; 

wire strobe; 

reg [23:0] rx_fe_i, rx_fe_q,debug_reg; 
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integer i,i2; 

reg [1:0] pcm_in = 2'b00; 

wire [2:0] scale_rx,scale_rx2; 

wire [3:0] half_clk_div; 

wire [8:0] nwords; 

wire external_pcm_en,sim_pcm_en,randomized,use_filt_10; 

wire sync_select,swap_bytes,en_crc; 

wire [1:0] sync_size; 

wire [4:0] nbits; 

wire [7:0] dummy_sfid; 

wire [15:0] sync0,sync1; 

 

//Telemetry parameters: 

assign sync0 = 16'hfe6b; 

assign sync1 = 16'h2840; 

assign half_clk_div = 4'd4; 

assign nwords = 9'd11;  //nwords is really nwords-1, nwords=47 gives 48 

words 

assign external_pcm_en = 1'b0; 

assign sim_pcm_en = 1'b1; 

assign randomized = 1'b0; 

assign use_filt_10= 1'b0; 

assign sync_select = 1'b0; 

assign scale_rx = 3'd1; 

assign swap_bytes = 1'b0; 

assign scale_rx2 = 3'd1; 

assign en_crc = 1'b0; 

assign decrypt = 1'b0; 

assign sync_size = 2'd3; //3 = 32, 2=24 

assign nbits = 5'd16; 

assign dummy_sfid = 8'hFF; 

 

always #10 clk = ~clk; 

 

   initial 

     begin 
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 rx_fe_i <= 24'b001000000000000000000000; 

 rx_fe_q <= 24'b001000000000000000000000; 

 #1000 reset = 0; 

 @(posedge clk); 

 set_addr <= 8'd144; set_data <= 32'd8434349; set_stb <= 1; 

  @(posedge clk); // CORDIC 

 set_addr <= 8'd145; set_data <= 18'd19800; set_stb <= 1; 

  @(posedge clk); // Scale factor 

 set_addr <= 8'd146; set_data <= {1'b1, 1'b1, 1'b1, 1'b0, 6'd47}; 

 set_stb <= 1; 

  @(posedge clk); // {enable_hb1_real, enable_hb2_real, 

cic_decim_rate_real} 

 set_addr <= 8'd147; set_data <= 0; set_stb <= 1; 

  @(posedge clk); // Swap iq 

 set_addr <= 8'd148; set_data <= 0; set_stb <= 1; 

  @(posedge clk); // filter taps 

 set_addr <= 8'd186; set_data <= {1'b1, 1'b1, 4'd0, 4'd4}; 

  set_stb <= 1; @(posedge clk); // {enable_hb1, enable_hb2, 

interp_rate_duc} 

 set_addr <= 8'd128; set_data <= 32'hF001F002; set_stb <= 1; 

 @(posedge clk); 

  

 //Set config regs using timekeeper: 

 //4 upper blank, next 6 address, next 18 data, next 4 blank 

 

 //sync0 

 set_addr <= 8'd101; set_data <= 32'h01234560; 

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk); 

 set_addr <= 8'd101; set_data <= {4'd0,6'd0,2'b0,sync0,4'd0}; 

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk); 

 

 //sync1 

 set_addr <= 8'd101; set_data <= 32'h01234560; 

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk); 

 set_addr <= 8'd101; set_data <= {4'd0,6'd1,2'b0,sync1,4'd0}; 

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk); 
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 //config2 

 set_addr <= 8'd101; set_data <= 32'h01234560; 

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk); 

 set_addr <= 8'd101; set_data <= 

{4'd0,6'd2,sync_select,use_filt_10,randomized,sim_pcm_en,external_pcm_en,

nwords,half_clk_div,4'd0}; 

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk);  

 

 //config3 

 set_addr <= 8'd101; set_data <= 32'h01234560; 

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk); 

 set_addr <= 8'd101; set_data <= 

{4'd0,6'd3,7'd0,decrypt,en_crc,scale_rx2,swap_bytes,sync_size,scale_rx,4'

d0}; 

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk); 

 

 //set config4 last - triggers reset 

 set_addr <= 8'd101; set_data <= 32'h01234560; 

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk); 

 set_addr <= 8'd101; set_data <= 

{4'd0,6'd26,5'd0,dummy_sfid,nbits,4'd0}; 

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk);  

   

 repeat(10) @(posedge clk); 

 run <= 1'b1; 

 

 #4000000; 

 $finish; 

   end 

    

   reg [7:0]   set_addr; 

   reg [31:0]  set_data; 

   reg set_stb = 1'b0; 

   wire [7:0] ddc_debug; 

   wire [15:0] i_out, q_out; 

 wire fm_out; 

 wire [437:0] config_reg; 

 wire [31:0] debug; 
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 reg [63:0] time_reg; 

 reg [7:0]  din = 8'b10101111; 

  

   ddc_chain_iii5p7 #(.BASE(SR_RX_DSP), .DSPNO(0), .WIDTH(24)) ddc_chain 

     (.clk(clk), .rst(reset), .clr(1'b0), 

  .set_stb(set_stb),.set_addr(set_addr),.set_data(set_data), 

  .rx_fe_i(rx_fe_i),.rx_fe_q(rx_fe_q), 

   .sample({i_out,q_out}), .run(run), .strobe(strobe), 

  .ddc_debug(ddc_debug), 

   .debug(debug), .pcm_in(pcm_in), .config_reg(config_reg), 

  .time_in(time_reg), .din(din) ); 

   

 wire [63:0] vita_time; 

   timekeeper_with_subregs #(.BASE(SR_TIME)) timekeeper 

     (.clk(clk), .reset(reset), .pps(1'b0), 

    .set_stb(set_stb), .set_addr(set_addr), .set_data(set_data), 

    .vita_time(vita_time), .vita_time_lastpps(),  

  .config_reg(config_reg)); 

   

 always @(posedge clk) begin 

  if(reset) begin 

   time_reg<=64'h000A000B000C000D; 

  end else begin 

   time_reg<=time_reg+1; 

  end 

 end   

  

endmodule 

 

 

//take 16 bit words, and load into 32 samples to output to PC 

//add on extra words at end of each frame 

//output continuously 

//add high-resolution din data to dummy frames 

module decom_acc3( 

clk, 
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reset, 

data_in, 

ld_in, 

data_out, 

ld_out, 

clk_div, 

rssi, 

lastw, 

time_in, 

ave_in, 

din, 

nbits, 

nwords, 

sync, 

dummy_sfid 

); 

 

input clk; 

input reset; 

input [15:0] data_in; 

input ld_in; 

output [31:0] data_out; 

output ld_out; 

input [5:0] clk_div; //clock cycles per bit 

input [31:0] rssi; 

input lastw; 

input [63:0] time_in; 

input [15:0] ave_in; 

input [7:0] din; 

input [4:0] nbits; //bits per word 

input [8:0] nwords; //words per frame - 1 

input [31:0] sync; 

input [7:0] dummy_sfid; 

 

wire clk; 

wire [15:0] data_in; 
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wire ld_in; 

wire reset; 

reg [31:0] data_out; 

reg ld_out; 

wire [5:0] clk_div;  

wire [31:0] rssi; 

reg [31:0] rssi_reg; 

wire lastw; 

wire [63:0] time_in; 

wire [15:0] ave_in; 

wire [4:0] nbits; 

wire [8:0] nwords; 

wire [31:0] sync; 

wire [7:0] dummy_sfid; 

 

reg [15:0] ave_reg; 

reg [63:0] time_reg; 

reg [63:0] time_reg2; 

reg from_LD1; 

reg high_bits; 

reg do_dummy; 

 

reg [15:0] dummy; 

wire [9:0] nwords2; 

assign nwords2 = {2'd0,nwords}; 

 

integer cnt; //cnt clk cycles for 1 bit 

integer bcnt; //cnt bits in a word 

integer wcnt; //cnt words in frame 

integer fcnt; //cnt frames 

 

parameter [4:0] 

  RST = 0, 

  DO_RSSI10 = 5, 

  DO_RSSI11 = 6, 

  DO_RSSI20 = 7, 
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  DO_RSSI21 = 8, 

  DO_TIME10 = 9, 

  DO_TIME11 = 10, 

  DO_TIME12 = 11, 

  DO_TIME20 = 12, 

  DO_TIME21 = 13, 

  DO_TIME22 = 14, 

  MAKE_FRAME_ST = 15, 

  DO_TIME13 = 16, 

  RST2=0, 

  WAIT2=1; 

   

   

  wire [9:0] fifo_cnt; 

  wire [15:0] fifo_dout; 

  reg [127:0] data_in2; 

  wire [15:0] fifo_dout2; 

  reg rd,rd2,ld_in2; 

  wire full,empty; 

  reg [7:0] din2; 

 

   

ddc_output_fifo ddc_output_fifo1 

 (.clk(clk), .rst(reset), .din(data_in), .wr_en(ld_in), .rd_en(rd), 

 .dout(fifo_dout), .full(), .empty(), .data_count(fifo_cnt)); 

 

din_fifo ddc_output_fifo2 

 (.rst(reset), .wr_clk(clk), .rd_clk(clk), .din(data_in2), 

.wr_en(ld_in2), 

 .rd_en(rd2), .dout(fifo_dout2), .full(full), .empty(empty)); 

   

reg [3:0] state; 

reg [3:0] state2; 

 

  always @(posedge clk) begin : P1 
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    if((reset == 1'b 1)) begin 

      state <= RST; 

    end 

    else begin 

 

      case(state) 

      RST : begin 

   fcnt<=0; 

   do_dummy<=1; 

   cnt <= 0; 

   bcnt<=0; 

   wcnt<=0; 

   data_out <= 0; 

   state <= MAKE_FRAME_ST; 

   time_reg <=64'd0; 

   ave_reg <=16'd0; 

   from_LD1 <= 0; 

   rssi_reg <=32'd0; 

   high_bits<=1; //first data load will be high 

      end 

       

       

      //cnt - counts clks; bcnt - counts bits; wcnt - counts words 

      //each increments when one below reaches max value 

      //dummy is set with wct - will change 1 cycle after wcnt changes 

      MAKE_FRAME_ST : begin 

         //run clock counter 

   if(cnt == clk_div-1)  

    cnt <= 0; 

   else  

    cnt <= cnt+1; 

 

     //run bit counter 

   if (cnt  == clk_div-1) 

     if (bcnt == nbits-1) //nbits = 16 for word size of 16 bits 

     bcnt <= 0; 
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     else 

     bcnt <= bcnt+1; 

          

   //run word counter 

   if (bcnt == nbits-1 && cnt  == clk_div-1) 

        if (wcnt == nwords)  //nwords = 47 for frame size of 48 

            wcnt <= 0; 

        else 

            wcnt <= wcnt+1;            

                    

   case(wcnt) 

     0 : dummy<=sync[31:16];    

     1 : dummy<=sync[15:0]; 

     2 : dummy<={dummy_sfid,8'd0}; 

     (nwords-1) : dummy<=fcnt; 

     nwords : dummy<=1; 

     default : dummy<=wcnt;       

   endcase 

                        

   //make frame counter 

   if (cnt == 0 && bcnt == 0 && wcnt == 0) 

     if (fcnt == 65535) 

       fcnt<=0; 

     else 

       if (do_dummy == 1) 

       fcnt<=fcnt+1; 

             

   //output data 

   if (cnt == 0 && bcnt == 1) begin 

     if (high_bits == 1) begin 

       if (do_dummy == 1) begin 

       if (empty == 0 && wcnt > 2 && wcnt < (nwords-1)) begin   

       //if din fifo has words: 

        data_out[31:16]<=fifo_dout2; 

        rd2<=1; 

       end else 
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        data_out[31:16]<={dummy[7:0],dummy[15:8]}; 

       ld_out <= 1'b0; 

       end else begin 

       data_out[31:16]<={fifo_dout[7:0],fifo_dout[15:8]}; 

       ld_out <= 1'b0; 

       rd<=1; 

       end            

     end else begin 

       if (do_dummy == 1) begin 

       if (empty == 0 && wcnt > 2 && wcnt < (nwords-1)) begin 

       //if din fifo has words: 

        data_out[15:0]<=fifo_dout2; 

        rd2<=1; 

       end else 

        data_out[15:0]<={dummy[7:0],dummy[15:8]}; 

       ld_out <= 1'b1; 

       end else begin 

       data_out[15:0]<={fifo_dout[7:0],fifo_dout[15:8]}; 

       ld_out <= 1'b1; 

       rd<=1; 

       end       

     end 

     high_bits<=~high_bits; 

   end else begin    

       ld_out <= 1'b0;   

       rd<=  1'b0; 

       rd2<=1'b0; 

   end 

                   

   //state transition 

   //there will be at most 5 cycles to do extra words 

   //want full frame period to be slight less than full period 

   //so that will output a dummy frame every once in a while 

   //even when getting data 

   //make sure the FIFO is kept empty 

   //state change at nbits-4 will slowly empty fifo 
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   if ((cnt == clk_div-1) && (bcnt == nbits-4) && (wcnt == nwords) ) 

begin 

    time_reg<=time_in; 

    rssi_reg<=rssi; 

    ave_reg<=ave_in; 

     if (high_bits==1) //this means that just did low 

      state <= DO_RSSI20; 

     else 

      state <= DO_RSSI10; 

   end 

     end 

   

      DO_RSSI10: begin  // now do next 2cd with ld out 

   data_out[15:0] <= {rssi_reg[23:16],rssi_reg[31:24]}; 

   ld_out <= 1'b1; 

   state <= DO_RSSI11; 

      end 

      DO_RSSI11: begin // start with 2cd slot 

   data_out[31:16] <= {rssi_reg[7:0],rssi_reg[15:8]}; 

   ld_out <= 1'b0; 

   state <= DO_TIME10;  

      end 

      DO_RSSI20: begin //This is 1st slot 

   data_out[31:16] <= {rssi_reg[23:16],rssi_reg[31:24]}; 

   ld_out <= 1'b0; 

   state <= DO_RSSI21;    

      end 

      DO_RSSI21: begin // start with 1st slot 

   data_out[15:0] <= {rssi_reg[7:0],rssi_reg[15:8]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME20;   

      end 

   

      DO_TIME10: begin  // now do next 2cd with ld out 

   data_out[15:0] <= {time_reg[55:48],time_reg[63:56]}; 

   ld_out <= 1'b1; 
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   state <= DO_TIME11; 

      end 

      DO_TIME11: begin //Do whole 32 bit value and ld out 

   data_out[31:16] <= {time_reg[39:32],time_reg[47:40]}; 

   data_out[15:0] <= {time_reg[23:16],time_reg[31:24]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME12; 

      end 

      DO_TIME12: begin  //This is 1st value, do back to words in 2cd slot 

   data_out[31:16] <= {time_reg[7:0],time_reg[15:8]}; 

   data_out[15:0] <= {ave_reg[7:0],ave_reg[15:8]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME13;  

  

      end 

   

  DO_TIME13: begin  //This is 1st value, do back to words in 2cd slot 

   data_out[31:16] <= {din[7:0],8'b00000000}; 

   ld_out <= 1'b0; 

   state <= MAKE_FRAME_ST; 

   high_bits<=0; 

  if (fifo_cnt > nwords2) begin 

    do_dummy<=0; 

    cnt <= 0; 

    bcnt<=0; 

    wcnt<=0; 

   end else 

    do_dummy<=1;  

      end 

   

  DO_TIME20: begin  // now do next 2cd with ld out 

   data_out[31:16] <= {time_reg[55:48],time_reg[63:56]}; 

   data_out[15:0] <= {time_reg[39:32],time_reg[47:40]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME21;    

      end 



 

56 

      DO_TIME21: begin // go back to words, start with 1st slot 

   data_out[31:16] <= {time_reg[23:16],time_reg[31:24]}; 

   data_out[15:0] <= {time_reg[7:0],time_reg[15:8]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME22;   

      end 

      DO_TIME22: begin  //go back to words in 2cd slot 

   data_out[31:16] <= {ave_reg[7:0],ave_reg[15:8]}; 

   data_out[15:0] <= {din[7:0],8'b00000000}; 

   ld_out <= 1'b1; 

         high_bits<=1;  

   state <= MAKE_FRAME_ST; 

   if (fifo_cnt > nwords2) begin 

     do_dummy<=0; 

     cnt <= 0; 

     bcnt<=0; 

     wcnt<=0; 

   end else 

     do_dummy<=1;    

      end 

   

      default : begin 

        state <= RST; 

      end 

      endcase 

    end 

  end 

  

 //create delayed version of din 

 always @(posedge clk) begin 

 din2<=din; 

 end 

   

//DIN state machine: 

 always @(posedge clk) begin 

    if((reset == 1'b 1)) begin 
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      state2 <= RST2; 

    end 

    else begin 

      case(state2) 

   

      RST2 : begin 

   ld_in2<=0; 

   data_in2 <= 0; 

   state2 <= WAIT2; 

      end 

   

      WAIT2 : begin 

   //load din fifo when change in din 

   if (din2 != din) begin 

   

 data_in2<={16'h0123,16'h4567,16'h89AB,din2,din,time_in[55:48],time_in[

63:56],time_in[39:32],time_in[47:40],time_in[23:16],time_in[31:24],time_i

n[7:0],time_in[15:8]}; 

    ld_in2<=1; 

     end else 

    ld_in2<=0; 

      end 

   

  default : begin 

        state2 <= RST; 

      end 

      endcase 

    end 

  end 

endmodule 
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Appendix B. MATLAB Data Analysis Scripts 
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This appendix includes the following MATLAB files: 

1) decode_telemetry_din.m:  A script that sets example parameters, 

runs the decode_bin_file_function function, and plots results. 

2) decode_bin_file_function.m:  A function that takes a binary SDR 

receiver file, and extracts telemetry frames, including frame time-stamps, 

and high-resolution time-stamps included in dummy frames. 

 

 

%  decode_telemetry_din.m, an example telemetry decode script 

clear 

close all 

tic 

filename='test_din3.bin'; 

seconds_into_file=0; 

duration=inf; 

do_plot=1; 

 

data_rate=4e6; 

Fs=52e6; %SDR sampling clock freq 

time_zone=-5; %offset from UTC 

sync=[hex2dec('FE') hex2dec('6B') hex2dec('28') hex2dec('40')]'; 

% SYNC in bytes 

dummy_SFID=hex2dec('FF'); 

do_crc=0; 

WordsPerFrame=48; 

BitsPerWord=16; 

extra_words=8; %number of extra words SDR tacks onto end of 

frames 

[words,bytes,irig,synci,bytesf,din_irig, din_HR] = 

decode_bin_file_function(filename,WordsPerFrame,Fs,time_zone,extr

a_words,sync,seconds_into_file,duration,data_rate,dummy_SFID); 

[~,nframes]=size(words); 

 

din=false(8,length(irig)); 

times=zeros(8,1); 
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for i=1:8 

 din(i,:)=bitand(uint16(2^(i-

1)),words(WordsPerFrame+extra_words,:))>0; 

 index=find(diff(din(i,:)),1); 

 if ~isempty(index) 

  times(i)=irig(index); 

 else 

  times(i)=nan; 

 end 

end 

 

if do_plot 

 figure(1) 

 subplot(3,1,1) 

 plot(irig,words(WordsPerFrame-1,:)) 

 xlim([irig(1) irig(end)]) 

 title('Frame Count'); 

  

 subplot(3,1,2) 

 plot(irig,words(WordsPerFrame+extra_words,:)) 

 xlim([irig(1) irig(end)]) 

 title('Digital byte') 

  

 subplot(3,1,3) 

 plot(irig,irig) 

 xlim([irig(1) irig(end)]) 

 title('Irig Time') 

  

 figure(2) 

 for i=1:8 

  plot(irig, din(i,:)) 

  hold on 

 end 

 xlim([irig(1) irig(end)]) 
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 for i=1:8 

  legendtext{i}=sprintf('DIN%d',i-1); 

 end 

 title('DIN'); 

 legend(legendtext,'Location','NorthEastOutside') 

  

 figure(3) 

 din_bit1=bitget(din_HR,1); 

 plot(irig-irig(1), din(1,:)) 

 ylim([-0.1 1.1]) 

 %xlim([-0.0 3.5]) 

 hold on 

 plot(din_irig-irig(1), din_bit1,'--') 

 xlabel('Seconds') 

 ylabel('Bits') 

 legend('Low Res', 'High Res', 'Location', 'SouthWest') 

end 

 

times 

times_from_din0=times-times(1) 

tstart=irig(1) 

duration= irig(end)-irig(1) 

toc 

 

 

 

%% decode_bin_file_function.m, decodes SDR telemetry file 

%duration and seconds_into_file assumes no missing frames 

function [words,bytes,irig,synci,bytesf,din_irig, din_HR] = 

decode_bin_file_function(filename,WordsPerFrame,Fs,time_zone,extr

a_words,sync,seconds_into_file,duration,data_rate,dummy_SFID) 

 

%Read file 

fstart=seconds_into_file*(data_rate/16/WordsPerFrame);   %frames 

per sec * seconds = frame to start at 
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bstart= fstart*(WordsPerFrame+extra_words)*2; %byte to start at 

nframes=duration*(data_rate/16/WordsPerFrame); 

nbytes=nframes*(WordsPerFrame+extra_words)*2; 

fid = fopen(filename, 'r'); 

fseek(fid,round(bstart),'bof'); 

bytes = fread(fid,nbytes,'*uint8'); 

fclose(fid); 

 

%Find sync indexes 

synci=find((bytes(1:end-3)==sync(1)) & (bytes(2:end-2)==sync(2)) 

.. 

 & (bytes(3:end-1)==sync(3)) & (bytes(4:end)==sync(4))); 

synci=synci(1:end-1); 

 

% dec2hex(bytes(synci(6):synci(6)+10))   8 is real 

 

%Fill in words matrix 

nframes=length(synci); 

words=zeros((WordsPerFrame+extra_words)*2,nframes,'uint8'); 

if (synci(nframes)+(WordsPerFrame+extra_words)*2-1) > 

length(bytes) 

 synci=synci(1:end-1); 

 nframes=nframes-1; 

end 

for i=1:nframes 

 words(:,i)=bytes(synci(i):synci(i)+(WordsPerFrame+extra_words)*

2-1); 

end 

 

%Reshape as 16 bit words 

bytesf=words; 

words=typecast(words(:),'uint16')'; 

words=swapbytes(words); 

words=reshape(words,WordsPerFrame+extra_words,[]); 

bytesf=reshape(bytesf,(WordsPerFrame+extra_words)*2,[]); 
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%bytesf=bytesf(1:WordsPerFrame*2,:); 

 

%Create time signal 

time64 = (words((6+WordsPerFrame):-1:(3+WordsPerFrame),:)); 

time64 = time64(:); 

time64 = typecast(time64,'uint64'); 

time = double(time64)/Fs; 

 

% display real start time, then start time vector at 0 

% 0 is 1/1/70 00:00:00 from usrp 

sec_fract=sprintf('%0.12g',time(1)-floor(time(1))); 

start_time=datestr(time_zone/24+time(1)/(24*60*60)+datenum('1-

Jan-1970'),'mmmm dd, yyyy HH:MM:SS'); 

start_time=[start_time '.' sec_fract(3:end)]; 

irig=rem(time+time_zone*3600,24*3600)';  %seconds from start of 

day, local time 

%words=words(1:WordsPerFrame,:); %get rid of extra words 

 

%find high res din time-stamps 

dummy=bytesf(:,bytesf(5,:)==dummy_SFID); 

dummy2=dummy(7:WordsPerFrame*2-4,:); 

dummy2=dummy2(:); 

%Find sync indexes 

sync=[hex2dec('23') hex2dec('01') hex2dec('67') hex2dec('45')]'; 

% SYNC in bytes 

synci_din=find((dummy2(1:end-3)==sync(1)) & (dummy2(2:end-

2)==sync(2)) & (dummy2(3:end-1)==sync(3)) & 

(dummy2(4:end)==sync(4))); 

if isempty(synci_din) 

 din_irig=[]; 

 din_HR=[]; 

else 

 synci_din=synci_din(1:end-1); 

 din_words=zeros(16,length(synci_din),'uint8'); 

 for i=1:length(synci_din) 

  din_words(:,i)=dummy2(synci_din(i):synci_din(i)+15);
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 end 

 time64 = (din_words(16:-1:9,:)); 

 time64 = time64(:); 

 time64 = typecast(time64,'uint64'); 

 din_time = double(time64)/Fs; 

 sec_fract=sprintf('%0.12g',din_time(1)-floor(din_time(1))); 

 din_irig=rem(din_time+time_zone*3600,24*3600)';  %seconds from 

start of day, local time 

 din_irig = [din_irig-3/Fs; din_irig-2/Fs]; 

 din_irig=din_irig(:); 

  

 din_HR = din_words(8:-1:7,:); 

 din_HR=din_HR(:)'; 

end 

end 
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Appendix C. Mechanical and Electrical Design 
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This appendix includes electrical and mechanical design drawings and 

modifications needed to reproduce the modified software-defined radio (SDR).  
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List of Symbols, Abbreviations, and Acronyms 

ADC analog-to-digital converter 

AES advanced encryption standard 

ARL Army Research Laboratory 

BoB breakout-board 

CPU central processing unit 

DC direct current 

DDC digital down converter 

FIFO first in, first out buffer 

FM frequency modulation 

FPGA field-programmable gate array 

GMT Greenwich mean time 

GPS global positioning system 

GPSDO global positioning system disciplined oscillator 

GUI graphical user interface 

IC integrated circuit 

IO input/output 

I/Q in-phase/quadrature 

IR infrared 

ISE Integrated Synthesis Environment 

PC personal computer 

PCB printed circuit board 

PCM pulse code modulated 

RAM random access memory 

RF radio frequency 

RSSI received signal strength indicator 
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SDR software-defined radio 

SFID sub-frame identifier 

UCF user constraint file 

UDP user datagram protocol 

UHD Universal Software Radio Peripheral hardware driver 

USRP Universal Software Radio Peripheral 
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