
1

ASD(R&E) NCCP/FABRIC

2018-01-11

Introduction to Software Architecture
AFRL, ARL, CERDEC, SPAWAR
GTRI, IDA, LLNL, MIT-LL, SEI

2

Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be
construed as an official Government position, policy, or decision, unless designated by other documentation.
References herein to any specific commercial product, process, or service by trade name, trade mark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by Carnegie Mellon University or its Software Engineering Institute.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.
This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests for
permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.
Architecture Tradeoff Analysis Method® and ATAM® are registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.
DM18-0007

3

Agenda

• Motivation & Goals
• Context
• Quality Attributes
• Views
• Structures
• Styles
• Tactics

4

Is this a good architecture?

Courtesy Anthony J. Lattanze

5

Why do we do this?
• Ultimately we want to realize a system that meets

the requirements of the system.
• The goal of software architecture (a big-picture

approach) is to turn requirements into a design that
can be implemented.

• To be successful we need to
– Partition responsibilities into different elements
– Define relationships between elements
– Reason about a system’s properties
– Make reasoned decisions about the architecture
– Communicate all this to others
– Answer pragmatic questions about schedule and work

allocation

6

What do we want out of it?
• A series of diagrams, prose and models that describe

– The needs of the system as the architects understand them, placed
in the context of architecture

– The key decisions made during the process
• This includes decisions to NOT do something.

– The proposed architecture(s)
• Alternate architectures provide insight into decisions.

– Design decisions and rationale
• The best architects also explain why certain “obvious” solutions

aren’t chosen.
– Guidance for implementers

• This guidance usually comes from prototypes developed.

Essentially we produce a set of constraints with rationale
and guidance.

7

Formalisms

“Writing is nature’s way of letting you know how
sloppy your thinking is.” - Richard Guindon

8

Formalisms

“Writing is nature’s way of letting you know how
sloppy your thinking is.” - Richard Guindon

“Math is nature’s way of letting you know how
sloppy your writing is.”- Leslie Lamport

9

Formalisms

“Writing is nature’s way of letting you know how
sloppy your thinking is.” - Richard Guindon

“Math is nature’s way of letting you know how
sloppy your writing is.”- Leslie Lamport

“I didn’t have time to write a short letter, so I wrote
a long one instead.” - Mark Twain

10

Formalisms

“Writing is nature’s way of letting you know how
sloppy your thinking is.” - Richard Guindon

“Math is nature’s way of letting you know how
sloppy your writing is.”- Leslie Lamport

“I didn’t have time to write a short letter, so I wrote
a long one instead.” - Mark Twain

“Software is iterative refinement from ideas to the
ultimate formalism of code.” - Andrew

11

What it does and doesn’t do!

• Architecture does NOT guarantee anything.
• It promotes or inhibits the properties that we

considered or failed to consider during the
architecture process.
– The architecture will be consumed by other

architects, designers, developers, or deployers.
– The implementation may not adhere to the

architecture.

12

Architecture – Definitions
• Extensive list of definitions at

http://www.sei.cmu.edu/architecture/definitions.html
• “The structure of the components of a program/system,

their interrelationships, and principles and guidelines
governing their design and evolution over time.”
– Garlan, Perry. "Introduction to the Special Issue on Software

Architecture," IEEE Transactions on Software Engineering,
April 1995.

• “The software architecture of a system is the set of
structures needed to reason about the system, which
comprise software elements, relations among them, and
properties of both.”
– Clements, P., et al. Documenting Software Architectures: Views

and Beyond (2nd edition), Addison-Wesley, 2010.

http://www.sei.cmu.edu/architecture/definitions.html

13

Practitioner Definitions
• “All architecture is design but not all design is architecture.

Architecture represents the significant design decisions
that shape a system, where significant is measured by cost
of change.”
– Grady Booch

• “Software architecture is the set of decisions which, if
made incorrectly, may cause your project to be cancelled.”
– Eoin Woods

• “Decomposition of the problem in a way that allows your
development organization to efficiently solve it,
considering constraints like organizational structure, team
locations, individual skills, and existing assets.”
– John Klein

14

When do we do architecture?

https://insights.sei.cmu.edu/assets/content/F1 - Traditional V Model.jpg https://en.wikipedia.org/wiki/Rational_Unified_Process

• Requirements, architecture, modeling and design tasks start early.
• However, they require effort through the entirety of the project.
• We should expect and plan for changes!

V-Model RUP Model

15

One architect’s decisions become
another’s constraints.

from Malan & Bredemeyer, “Less is More with Minimalist Architecture”, IT Pro, Sept/Oct 2002, p. 48.

• The balance is between under and over specification.
• The balance varies based on the skills of the consumer.
• Any decision NOT made at one level is made at the lower one.
• Architecture and design hoist the decisions out of the developer’s hands.

Abstraction
Ladder

WHY

HOW

16

Architectural Drivers
• Key functional requirements: Not all functional

requirements impact the architecture.
– Requirements documents
– Use cases and scenarios
– Mission thread vignettes

• Business Constraints
– Examples: targeted markets, compliance, product lines, rollout

• Technical Constraints
– Examples: legacy code, platforms, languages, protocols

• Quality Attributes
– Non-functional requirements, “ilities”
– Most difficult to identify, quantify, and document
– Usually end up becoming the biggest challenge

17

Quality Attributes
• SEI Core Attributes:

– Availability
– Interoperability
– Modifiability
– Performance
– Security
– Testability
– Usability

• Other groups (ISO)
emphasize different lists.

• Six part scenario for
defining quality attribute
scenarios
– Stimulus
– Source of stimulus
– Environment
– Artifact stimulated
– Response
– Response measure

18

A human body
comprises multiple

structures.

a static view of
one human

structure

a dynamic view
of that structure

Architectural Structures – 1

• One body has many structures with different views of each.
• Software is too complex to grasp all at once.
• Different perspectives show different types of properties and support different types of

analysis.
• Even within one perspective, different diagrams (i.e., views) express difference details.
• Different stakeholders will prefer different views.

19

Architectural Structures - 2
Architectural structures for software systems can be divided
into three types:

• Module structures (Static) – consisting of elements that
are units of implementation called modules and the
relationships among them

• Component-and-Connector structures (Dynamic) –
consisting of runtime components (units of computation)
and the connectors (communication paths) between them

• Allocation structures (Physical) – consisting of software
elements and their relationships to elements in external
environments in which the software is created and
executed

20

Architectural Structures Summary

Architects must focus on whatever structures will
provide them with the most leverage in achieving
the desired quality attributes of a system.

Component-and-Connector

Client-Server

Concurrency

Process
Shared-Data

…

Module

Decomposition Class/Generalization

Uses

Layered

…

Allocation

Work Assignment

Deployment Implementation

…

21

Architectural Styles
• Architectural Styles and Patterns

– Common ways of solving problems
– Possess known gross properties
– Provide a vocabulary for communication
– Styles are usually modified and blended
– Styles are associated with a perspective

• Example Styles:
– Module Styles

• Layered, Uses, Generalization, Aspects, Data Model
– Component and Connector Styles

• Data Flow: Pipe and Filter, Batch Sequential
• Call-Return: Client Server, Peer to Peer, Service Oriented
• Event Based: Pub Sub
• Repository: Shared-Data Style

– Allocation Styles
• Deployment, Install, Work Assignment

22

Tactics
Each quality attribute
has tactics (guidelines)
that can be applied to
promote that attribute,
while potentially
inhibiting others.

Tactics can be combined
and blended and
generally consist of finer
details than a style or
pattern.

23

Examples
• Quality Attribute Workshop (QAW)

– “…provide a method for identifying a system's architecture-critical quality attributes…”
• Architecture Tradeoff Analysis Method (ATAM)

– “…is a method for evaluating software architectures relative to quality attribute goals.”
• Mission Thread Workshop (MTW)

– “…is a facilitated process that brings together SoS stakeholders to augment existing mission threads with quality
attribute considerations that will shape the SoS architecture and to identify SoS architectural challenges.”

• Architecture Analysis and Design Language (AADL)
– “… is an architecture description language standardized by SAE.”

• Attribute Driven Design (ADD)
– “…s a systematic step-by-step method for designing the software architecture of a software-intensive system.”

• Architecture Centric Design Method (ACDM)
– “…is a scaleable method for designing the architecture of a software intensive system with a product focus that

uses the architecture to complement organizational processes and implementation activities.”
• The Open Group Architecture Framework (ToGAF)

– “… is a framework for enterprise architecture that provides an approach for designing, planning, implementing, and
governing an enterprise information technology architecture.” – This is a process framework.

• DoD Architecture Framework (DoDAF)
– “…is an architecture framework for the United States Department of Defense (DoD) that provides visualization

infrastructure for specific stakeholders concerns through viewpoints organized by various views.” – This is a
documentation framework.

• And many more!

24

Some Resources
• Architectures for Software Systems – Carnegie

Mellon University course 17-655 offered as part of
Software Engineering Master’s degree programs

• Software Architecture in Practice (3rd Edition) - Len
Bass, Paul Clements, and Rick Kazman. 2012.
Addison-Wesley Professional.

• Documenting Software Architectures: Views and
Beyond (2nd ed.) - David Garlan, Felix Bachmann,
James Ivers, Judith Stafford, Len Bass, Paul
Clements, and Paulo Merson. 2010. Addison-
Wesley Professional.

• Architecting Software Intensive Systems: A
Practitioners Guide (1st ed.) - Anthony J. Lattanze.
2008. Auerbach Publications, Boston, MA, USA.

• And many more!

	ASD(R&E) NCCP/FABRIC���2018-01-11�Introduction to Software Architecture�AFRL, ARL, CERDEC, SPAWAR �GTRI, IDA, LLNL, MIT-LL, SEI
	Slide Number 2
	Agenda
	Is this a good architecture?
	Why do we do this?
	What do we want out of it?
	Formalisms
	Formalisms
	Formalisms
	Formalisms
	What it does and doesn’t do!
	Architecture – Definitions
	Practitioner Definitions
	When do we do architecture?
	One architect’s decisions become another’s constraints.
	Architectural Drivers
	Quality Attributes
	Architectural Structures – 1
	Architectural Structures - 2
	Architectural Structures Summary
	Architectural Styles
	Tactics
	Examples
	Some Resources

