AD_____

Award Number: W81XWH-18-1-0386

TITLE: Optimization of Autophagy Inhibition as a Clinical Target for Brain Tumors

PRINCIPAL INVESTIGATOR: Dr. Jean Mulcahy Levy

CONTRACTING ORGANIZATION: University of Colorado

Aurora, CO 80045-2570

REPORT DATE: August 2019

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command

Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

The example before the source of the source is a source of the source is a source of the so	REPORT DOCUMENTATION PAGE					Form Approved OMB No. 0704-0188	
International of a constrainty of the coloration of the members. Name and the members of the coloration of	Public reporting burden for this collection of information is estimated to average 1 hour per response, including the				wing instructions, sear	ching existing data sources, gathering and maintaining the	
Unit Office Organization PLATED ADDR 1 2. REPORT TYPE 1. Adg 2019 Attribute 2013 Attribute 1. Adg 2018 - 31. Jul 2019 Attribute 2013 Attribute 1. Adg 2018 - 31. Jul 2019 Attribute 2013 Attribute 5. GATES COVERED Optimization of Autophagy Inhibition as a Clinical Target for Brain Tumors 5. GARNT NUMBER 6. AUTHOR(S) 5. PROGRAM ELEMENT NUMBER 9. AUTOR(S) 5. PROGRAM ELEMENT NUMBER 9. AUTOR(S) 5. PROGRAM ELEMENT NUMBER 9. AUTOR(S) 5. PROGRAM ELEMENT NUMBER 9. NORK NUT NUMBER 5. ATSK NUMBER 9. NORAN LELEMENT NUMBER 5. ATSK NUMBER 9. NORAN LELEMENT NUMBER 5. ATSK NUMBER 9. NORAN LELEMENT NUMBER 5. ATSK NUMBER 9. SPONSORING ORGANIZATION NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 10. SPONSOR/MG / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 11. SPONSOR/MG / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 11. SPONSOR/MONITOR'S ACRONYM(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT </td <td colspan="7">data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing</td>	data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing						
1. REPORT DATE 2. REPORT TYPE 3. DATES CONFED Auguat 2019 1. Aug 2018 - 31 Jul 2019 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Optimization of Autophagy Inhibition as a Clinical Target for Brain Tumors Sb. GRANT NUMBER 6. AUTHOR(S) Sb. GRANT NUMBER 1. aug 2018 - 31 Jul 2019 Sb. GRANT NUMBER 9. DEGRAM ELEMENT NUMBER Sb. GRANT NUMBER 9. CONTRACT NUMBER Sc. PROGRAM ELEMENT NUMBER 9. CONTRACT NUMBER Sc. PROGRAM ELEMENT NUMBER 9. CONTRACT NUMBER Sc. GRANT NUMBER 9. CONTRACT NUMBER Sc. READ NUMBER 9. CONTRACT NUMBER Sc. GRANT NUMBER 9. CONTRACT Sc. READ NUMBER 9. SPONSORING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION REPORT 9. SPONSORING / MONTTORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 10. SPONSOR/MONTORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 11. SPONSOR/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES State and the stage oautophagy inhibition improves response to targeted BRAF					or failing to comply wit	th a collection of information if it does not display a currently	
4. TTILE AND SUBTTLE 5a. CONTRACT NUMBER Optimization of Autophagy Inhibition as a Clinical Target for Brain Tumors 5b. GRANT NUMBER 6. AUTHOR(S) 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5c. PROGRAM ELEMENT NUMBER 9. and Mulcahy ; Levy FMail: Jean.MulcahyLevy@ucdenver.edu 5c. PROGRAM ELEMENT NUMBER 9. and Mulcahy ; Levy FMail: Jean.MulcahyLevy@ucdenver.edu 5c. TASK NUMBER 9. and Mulcahy ; Levy FMail: Jean.MulcahyLevy@ucdenver.edu 5c. TASK NUMBER 9. and Substruct 5c. TASK NUMBER 9. and Substruct 5c. TASK NUMBER 9. and Substruct 5c. TASK NUMBER 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 10. S. Army Medical Research and Materiel Command 11. SPONSOR/MONITOR'S ACRONYM(S) 11. SUPPLEMENTARY NOTES 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 13. SUPPLEMENTARY NOTES 13. SUPPLEMENTARY NOTES 14. ABSTRACT Autophagy is a multi-stage process. Drugs targeting both early (initiation) and late (fusion) stages of this process are available. 14. ABSTRACT Autophagy is a multi-stage process. Drugs targeting both early (initiation) on the BRAF inhibitor of autophagy dependent. CNS tumors. BRAF-insensitive and resistart AM38 and MA794 cell isage of autophagy targeted may inhibitin improve	1. REPORT DATE	1	2. REPORT TYPE				
Optimization of Autophagy Inhibition as a Clinical Target for Brain Tumors 50: GRANT NUMBER 6: AUTHOR(S) 50: PROGRAM ELEMENT NUMBER 6: AUTHOR(S) 50: FROGRAM ELEMENT NUMBER 9: Can Mulcahy ; Levy E-Mail: Jean.MulcahyLevy@ucdenver.edu 50: FROGRAM ELEMENT NUMBER 7: PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 5: WORK UNIT NUMBER 9: University of Colorado 5: WORK UNIT NUMBER 9: Denver, 13001 E 17 th Place, Pail Aleg 50; WILZ, 9: SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10: SPONSOR/MONITOR'S ACRONYM(S) 12: SARY Medical Research and Materiel Command 11: SPONSOR/MONITOR'S ACRONYM(S) 12: DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13: SUPPLEMENTARY NOTES 11: SPONSOR/MONITOR'S are available. 14: ABSTRACT Autophagy is a multi-stage process. Drugs targeting both early (initiation) and late (fusion) stages of this process are available. The specific stage of autophagy targeted may influence cancer treatment outcomes. CNS tumors with the B/AF (Inhibitors (B/AF)). 14: ABSTRACT Autophagy dependent, and late stage autophagy dependent CNS tumors. BRAF: Sensitive and resistant AM38 and MAF794 cell inserver evaluated for response to pharmacologic and genetic inhibition of ULX1 and VPS34. two crucial subunits of the synergistow MH BRAF. Instibitor (B/AF).			Annual			5	
By rain Tumors WeixWH-18-1-9386 6. AUTHOR(S) 5c. PROGRAM ELEMENT NUMBER Jean Mukaaby ; Levy E-Mail: Jean.MukaabyLevy@ucdenver.edu 5d. PROJECT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION RAME(S) AND ADDRESS(ES) University of Colorado 8. PERFORMING ORGANIZATION RAME(S) AND ADDRESS(ES) Building 500, WI126, Aurora, CO 80045-2370 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 12. SArmy Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 10. SPONSOR/MONITOR'S ACRONYM(S) 13. SUPPLEMENTARY NOTES 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 14. ABSTRACT Autophagy is a multi-stage process. Drugs targeting both early (initiation) and late (fusion) stages of this process are available. The specific stage of autophagy targeted may influence cancer treatment outcomes. CNS tumors (BRAF). We investigated early stage inhibition for autophagy dependent CNS tumors. BRAFI-sensitive and resistant AM33 and MAF794 cell lines were evaluated for response to pharmacologic and genetic inhibition of ULK1 and VPS34, two crucial subunits of the autophagy dependent, and late stage autophagy were monitored by wester blot and flow cytoard and onfirmed stage inhibition or autophagy genement CNS tumors. BRAFI-sensitive and resistant AM33 and MAF794 cell lines were evaluated. Tumor cells exhibited reduced autophagic flaw with pharmacologic and genetic inhibition of ULK1 and VPS34, are potentility viable clinical tof the autophagy d	4. TITLE AND SUBTITLE				5a.		
By rain Tumors WeixWH-18-1-9386 6. AUTHOR(S) 5c. PROGRAM ELEMENT NUMBER Jean Mukaaby ; Levy E-Mail: Jean.MukaabyLevy@ucdenver.edu 5d. PROJECT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION RAME(S) AND ADDRESS(ES) University of Colorado 8. PERFORMING ORGANIZATION RAME(S) AND ADDRESS(ES) Building 500, WI126, Aurora, CO 80045-2370 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 12. SArmy Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 10. SPONSOR/MONITOR'S ACRONYM(S) 13. SUPPLEMENTARY NOTES 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 14. ABSTRACT Autophagy is a multi-stage process. Drugs targeting both early (initiation) and late (fusion) stages of this process are available. The specific stage of autophagy targeted may influence cancer treatment outcomes. CNS tumors (BRAF). We investigated early stage inhibition for autophagy dependent CNS tumors. BRAFI-sensitive and resistant AM33 and MAF794 cell lines were evaluated for response to pharmacologic and genetic inhibition of ULK1 and VPS34, two crucial subunits of the autophagy dependent, and late stage autophagy were monitored by wester blot and flow cytoard and onfirmed stage inhibition or autophagy genement CNS tumors. BRAFI-sensitive and resistant AM33 and MAF794 cell lines were evaluated. Tumor cells exhibited reduced autophagic flaw with pharmacologic and genetic inhibition of ULK1 and VPS34, are potentility viable clinical tof the autophagy d					- 54		
Brain Tumors 5. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Jean Mulcahy ; Levy E-Mail: Jean.MulcahyLevy@uedenver.edu 5d. PROJECT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT University of Colorado 5f. WORK UNIT NUMBER Denver, 13001 E 17th Place, 80045-2570 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORIMONITOR'S ACRONYM(S) U.S. Army Medical Research and Materiel Command 11. SPONSOR/MONITOR'S ACRONYM(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Autophagy is a multi-stage process. Drugs targeting both early (initiation) and late (fusion) stages of this process are available. The specific stage of autophagy targeted may influence cancer treatment outcomes. CNS tumors with the <i>BRAFP^{GOCC}</i> mulation are autophagy dependent. CNS tumors RAFF1. We investigated early stage inhibition for autophagy dependent CNS tumors. RAFF1 antibition of IRAFF1. We investigated early stage inhibition for autophagy dependent CNS tumors are reaterned medical resistant AM38 and MAF734 cell lines were evaluated for response to phage yeare monitored by western blot and flow cytometry. Short and long-term assays were evaluated. Tumor cells exhibited reduced autophagic flux with pharmacologic and genetic inhibition of ULK1 and VPS34. two crucial subunits of the autophagy inhibition improved response to pharmacologic and genetic inhibition or earouphage. Genetic i	Optimization of Autophagy Inhibition as a			Clinical Target			
AUTHOR(s) Jean Mulcahy ; Levy E-Mail: Jean.MulcahyLevy@ucdenver.edu Set PROJECT NUMBER Set ONCOMPARIANCE SET ON	Brain Tumors						
Idean Mulcahy ; Levy E-Mail: Jean.MulcahyLevy@ucdenver.edu Idean Mulcahy ; Levy E-Mail: Jean.MulcahyLevy@ucdenver.edu Jean Mulcahy ; Levy E-Mail: Jean.MulcahyLevy@ucdenver.edu Idean Mulcahy ; Levy E-Mail: Jean.MulcahyLevy@ucdenver.edu 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Idean Mulcahy ; Levy E-Mail: Jean.MulcahyLevy@ucdenver.edu 9. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Idean Mulcahy ; Levy E-Mail: Jean.MulcahyLevy@ucdenver.edu 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Idean SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Medical Research and Materiel Command The SPONSORIMONITOR'S ACRONYM(S) 10. SPONSORIMONITOR'S ACRONYM(S) Idean SPONSORIMONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT MUMBER(S) Approved for Public Release; Distribution Unlimited Idean Mulcahy / Marca and Participan / Mulcahy / Marca and Participan / Mulcah / Mulcahy / Marca and Participan / Mulcah / Mulc							
5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Colorado Denver, 13001 E 17 th Place, Building 500, WIL26, Aurora, CO 80045-2570 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 10. SPONSOR/MONITOR'S ACRONYM(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Autophagy dependent, and late stage autophagy inhibition improves response to targeted BRAF inhibitors (BRAF). We investigated early stage inhibition for autophagy dependent CNS tumors. BRAFi-sensitive and resistant AM38 and MAF794 cell lines were evaluated for response to pharmacologic and genetic inhibition of ULX1 and VPS34. Were cucial subunits of the autophagy initiation complexes. Changes in autophagy were monitored by western blot and flow cytometry. Short and long-term assays were availated. Thmore such targets. Changes in autophagy specific effect. Pharmacologic and genetic inhibition of ULX1 and VPS34. are potentially viable in dose dependent manner for both targets. Cenetic inhibition of VPS34. Pharmacologic and genetic inhibition of ULX1 and VPS34. are potentially viable inhibition are alophagy inhibition of ULX1 and VPS34. are potentially viable in a dose dependent manner for both targets. Genetic inhibition reduced cell surivvia in a dose dependent manner for both targets. Genetic inhibit	6. AUTHOR(S)				5d.	PROJECT NUMBER	
5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Colorado Denver, 13001 E 17 th Place, Building 500, WIL26, Aurora, CO 80045-2570 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 10. SPONSOR/MONITOR'S ACRONYM(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Autophagy dependent, and late stage autophagy inhibition improves response to targeted BRAF inhibitors (BRAF). We investigated early stage inhibition for autophagy dependent CNS tumors. BRAFi-sensitive and resistant AM38 and MAF794 cell lines were evaluated for response to pharmacologic and genetic inhibition of ULX1 and VPS34. Were cucial subunits of the autophagy initiation complexes. Changes in autophagy were monitored by western blot and flow cytometry. Short and long-term assays were availated. Thmore such targets. Changes in autophagy specific effect. Pharmacologic and genetic inhibition of ULX1 and VPS34. are potentially viable in dose dependent manner for both targets. Cenetic inhibition of VPS34. Pharmacologic and genetic inhibition of ULX1 and VPS34. are potentially viable inhibition are alophagy inhibition of ULX1 and VPS34. are potentially viable in a dose dependent manner for both targets. Genetic inhibition reduced cell surivvia in a dose dependent manner for both targets. Genetic inhibit	Jean Mulcahy : Levy F	E-Mail: Jean.Mulc	ahvLevv@ucdenver.e	edu			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT University of Colorado Penver, 13001 E 17th Place, Building 500, W1126, NUMBER Aurora, CO 80045-2570 10. SPONSORIMG / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) U.S. Army Medical Research and Materiel Command 11. SPONSOR/MONITOR'S ACRONYM(S) Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR'S REPORT 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Autophagy is a multi-stage process. Drugs targeting both early (initiation) and late (fusion) stages of this process are available. The specific stage of autophagy targeted may influence cancer treatment outcomes. CNS turnors with the <i>BRAF</i> ^{JK000E} mutation are autophagy dependent, and late stage autophagy inhibition improves response to targeted BRAF inhibitors (BRAF). We investigated early stage inhibition for autophagy were monitored by western blot and flow cytometry. Short and long-term assays were evaluated. Tumor cells exhibited reduced autophagic fue with pharmacologic and genetic inhibition of ULK1 and VPS34, two crucial subunits of the autophagy initiation complexes. Changes in autophagy specific effect. Pharmacologic and genetic inhibition for VPS34. Pharmacologic inhibition reduced cell survival in a dose dependent maner for both targets. Genetic inhibition fred used aconfirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition of UL	, <u> </u>			uu	5e.	TASK NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT University of Colorado Performing ORGANIZATION REPORT Denver, 13001 E 17 th Place, Building 500, W1126, Building 500, W1126, Intervention Aurora, CO 80045-2570 Intervention 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Intervention U.S. Army Medical Research and Materiel Command Intervention Fort Detrick, Maryland 21702-5012 Intervention 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES Intervention 14. ABSTRACT Autophagy is a multi-stage process. Drugs targeting both early (initiation) and late (fusion) stages of this process are available. The specific stage of autophagy targeted may influence cancer treatment outcomes. CNS turnors with the <i>BRAF</i> ^{i/600E} mutation are autophagy dependent. CNS turnors. BRAF: sensitive and resistant AM38 and MAF794 cell lines were evaluated for response to pharmacologic and genetic inhibition of ULK1 and VPS34, two crucial subunits of the autophagy initiation complexes. Changes in autophagy were monitored by western blot and flow cytometry. Short and long-term assays were evaluated. Tumor cells exhibited reduced autophagic flow with pharmacologic and genetic inhibition of ULK1 and 70×34, two crucial subunits of the autophagy initiation complexes. Changes in autophagy specific effect. Pharmacologic and genetic inhibition of ULK1 and 70×34, two crucial subun							
University of Colorado NUMBER University of Colorado Denver, 13001 E 17 th Place, Building 500, W1126, Aurora, CO 80045-2570 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) U.S. Army Medical Research and Materiel Command 11. SPONSOR/MONITOR'S REPORT Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR'S REPORT 12. DISTRIBUTION / AVAILABILITY STATEMENT NUMBER(S) Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Autophagy is a multi-stage process. Drugs targeting both early (initiation) and late (fusion) stages of this process are available. The specific stage of autophagy targeted may influence cancer treatment outcomes. CNS tumors with the <i>BRAF</i> ^{VMODE} mutation are autophagy dependent. CNS tumors. BRAF: sensitive and resistant AM38 and MAF794 cell lines were evaluated for response to pharmacologic and genetic inhibition of ULK1 and VPS34, two crucial subunits of the autophagy initiation complexes. Changes in autophagy were monitored by western blot and flow cytometry. Short and long-term assays were evaluated. Tumo cells exhibited reduced autophagic fusition of ULK1 and VPS34, two crucial subunits of the autophagy initiation cells exhibited reduced autophagy are potentic inhibition of ULK1 and VPS34, we crucial subunits of the autophagy intermed it was an autophagy specific effect. Pharmacologic and genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect.					5f.	WORK UNIT NUMBER	
University of Colorado NUMBER University of Colorado Denver, 13001 E 17 th Place, Building 500, W1126, Aurora, CO 80045-2570 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) U.S. Army Medical Research and Materiel Command 11. SPONSOR/MONITOR'S REPORT Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR'S REPORT 12. DISTRIBUTION / AVAILABILITY STATEMENT NUMBER(S) Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Autophagy is a multi-stage process. Drugs targeting both early (initiation) and late (fusion) stages of this process are available. The specific stage of autophagy targeted may influence cancer treatment outcomes. CNS tumors with the <i>BRAF</i> ^{VMODE} mutation are autophagy dependent. CNS tumors. BRAF: sensitive and resistant AM38 and MAF794 cell lines were evaluated for response to pharmacologic and genetic inhibition of ULK1 and VPS34, two crucial subunits of the autophagy initiation complexes. Changes in autophagy were monitored by western blot and flow cytometry. Short and long-term assays were evaluated. Tumo cells exhibited reduced autophagic fusition of ULK1 and VPS34, two crucial subunits of the autophagy initiation cells exhibited reduced autophagy are potentic inhibition of ULK1 and VPS34, we crucial subunits of the autophagy intermed it was an autophagy specific effect. Pharmacologic and genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect.							
Denver, 13001 E 17 th Place, Building 500, W1126, Aurora, CO 80045-2570 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Autophagy is a multi-stage process. Drugs targeting both early (initiation) and late (fusion) stages of this process are available. The specific stage of autophagy targeted may influence cancer treatment outcomes. CNS tumors with the <i>BRAF</i> ^{V000E} mutation are autophagy dependent, and late stage autophagy dependent CNS tumors. BRAFi-sensitive and resistant AM38 and MAF794 cell lines were evaluated for response to pharmacologic and genetic inhibition of ULK1 and VPS34, two crucial subunits of the autophagy initiation complexes. Changes in autophagy were monitored by western blot and flow cytometry. Short and long- term assays were evaluated. Tumor cells exhibited reduced autophagi fluw with pharmacologic and genetic inhibition of ULK1 or VPS34. Pharmacologic inhibition reduced cell survival in a dose dependent manner for both targets. Genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition veales also synergistic with BRAFi, irrespective of RAFi sensitivity. Inhibition of ULK1 and VPS34 are potentially viable clinical targets in autophagy dependent CNS tumors. Further evaluation is needed to determine if early and late stage autophagy inhibition are equally efficaciou	7. PERFORMING ORGAN	NIZATION NAME(5)	AND ADDRESS(ES)		-		
Building 500, W1126, Aurora, CO 80045-2570 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Autophagy is a multi-stage process. Drugs targeting both early (initiation) and late (fusion) stages of this process are available. The specific stage of autophagy targeted may influence cancer treatment outcomes. CNS tumors with the <i>BRAF</i> ^{FWODE} mutation are autophagy dependent, and late stage autophagy inhibition improves response to targeted BRAF inhibitors (BRAFi). We investigated early stage inhibition for autophagy dependent CNS tumors. BRAFi-sensitive and resistant AM38 and MAF794 cell lines were evaluated for response to pharmacologic and genetic inhibition of ULK1 and VPS34, two crucial subunits of the autophagy initiation complexes. Changes in autophagy were monitored by western blot and flow cytometry. Short and long- term assays were evaluated. Tumor cells exhibited reduced autophagic flux with pharmacologic and genetic inhibition of ULK1 or VPS34. Pharmacologic inhibition reduced cell survival in a dose dependent manner for both targets. Genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition in were also synergistic with BRAFi, irrespective of RAFi sensitivity. Inhibition of ULK1 and VPS34 are potentially viable clinical targets in autophagy dependent CNS tumors. Further evaluation is needed to determine if early and late stage autophagy inhibition are equally efficacious to determine t	University of Co	olorado					
Aurora, CO 80045-2570 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Autophagy is a multi-stage process. Drugs targeting both early (initiation) and late (fusion) stages of this process are available. The specific stage of autophagy targeted may influence cancer treatment outcomes. CNS tumors with the BRAF ^{Ve00E} mutation are autophagy dependent, and late stage autophagy dependent CNS tumors. BRAFi-sensitive and resistant AM38 and MAF794 cell lines were evaluated for response to pharmacologic and genetic inhibition of ULK1 and VPS34, two crucial subunits of the autophagy initiation complexes. Changes in autophagy were monitored by western blot and flow cytometry. Short and long- term assays were evaluated. Tumor cells exhibited reduced autophagic flux with pharmacologic and genetic inhibition of ULK1 or VPS34. Pharmacologic inhibition reduced cell survival in a dose dependent manner for both targets. Genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition were also synergistic with BRAFi, irrespective of RAFi sensitivity. Inhibition of ULK1 and VPS34 are potentially viable clinical targets in autophagy dependent CNS tumors. Further evaluation is needed to determine if early and late stage autophagy inhibition are equally efficacious to determine the optimal clinical target for patients.	Denver, 13001 E	17 th Place,					
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) U.S. Army Medical Research and Materiel Command 11. SPONSOR/MONITOR'S REPORT Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 11. SPONSOR/MONITOR'S REPORT Approved for Public Release; Distribution Unlimited 11. SPONSOR/MONITOR'S REPORT 13. SUPPLEMENTARY NOTES 11. SPONSOR/MONITOR'S ace and a state of the state of							
U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Autophagy is a multi-stage process. Drugs targeting both early (initiation) and late (fusion) stages of this process are available. The specific stage of autophagy targeted may influence cancer treatment outcomes. CNS tumors with the <i>BRAF</i> ^{V000E} mutation are autophagy dependent, and late stage autophagy inhibition improves response to targeted BRAF inhibitors (BRAFi). We investigated early stage inhibition for autophagy dependent CNS tumors. BRAFi-sensitive and resistant AM38 and MAF794 cell lines were evaluated for response to pharmacologic and genetic inhibition of ULK1 and VPS34, two crucial subunits of the autophagy initiation complexes. Changes in autophagy were monitored by western blot and flow cytometry. Short and long- term assays were evaluated. Tumor cells exhibited reduced autophagic flux with pharmacologic and genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition are equally efficacious to determine the optimal clinical target for patients. 15. SUBJECT TERMS	Aurora, CO 8004	45-2570					
U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Autophagy is a multi-stage process. Drugs targeting both early (initiation) and late (fusion) stages of this process are available. The specific stage of autophagy targeted may influence cancer treatment outcomes. CNS tumors with the <i>BRAF</i> ^{V000E} mutation are autophagy dependent, and late stage autophagy inhibition improves response to targeted BRAF inhibitors (BRAFi). We investigated early stage inhibition for autophagy dependent CNS tumors. BRAFi-sensitive and resistant AM38 and MAF794 cell lines were evaluated for response to pharmacologic and genetic inhibition of ULK1 and VPS34, two crucial subunits of the autophagy initiation complexes. Changes in autophagy were monitored by western blot and flow cytometry. Short and long- term assays were evaluated. Tumor cells exhibited reduced autophagic flux with pharmacologic and genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition are equally efficacious to determine the optimal clinical target for patients. 15. SUBJECT TERMS							
Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Autophagy is a multi-stage process. Drugs targeting both early (initiation) and late (fusion) stages of this process are available. The specific stage of autophagy targeted may influence cancer treatment outcomes. CNS tumors with the <i>BRAF</i> ^{V600E} mutation are autophagy dependent, and late stage autophagy dependent CNS tumors. BRAFi-sensitive and resistant AM38 and MAF794 cell lines were evaluated for response to pharmacologic and genetic inhibition of ULK1 and VPS34, two crucial subunits of the autophagy initiation complexes. Changes in autophagy were monitored by western blot and flow cytometry. Short and long- term assays were evaluated. Tumor cells exhibited reduced autophagic flux with pharmacologic and genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition were also synergistic with BRAFi, irrespective of RAFi sensitivity. Inhibition of ULK1 and VPS34 are potentially viable clinical targets in autophagy dependent CNS tumors. Further evaluation is needed to determine if early and late stage autophagy inhibition are equally efficacious to determine the optimal clinical target for patients. 15. SUBJECT TERMS	9. SPONSORING / MONI	TORING AGENCY N	IAME(S) AND ADDRES	S(ES)	10.	SPONSOR/MONITOR'S ACRONYM(S)	
Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Autophagy is a multi-stage process. Drugs targeting both early (initiation) and late (fusion) stages of this process are available. The specific stage of autophagy targeted may influence cancer treatment outcomes. CNS tumors with the <i>BRAF</i> ^{V600E} mutation are autophagy dependent, and late stage autophagy dependent CNS tumors. BRAFi-sensitive and resistant AM38 and MAF794 cell lines were evaluated for response to pharmacologic and genetic inhibition of ULK1 and VPS34, two crucial subunits of the autophagy initiation complexes. Changes in autophagy were monitored by western blot and flow cytometry. Short and long- term assays were evaluated. Tumor cells exhibited reduced autophagic flux with pharmacologic and genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition were also synergistic with BRAFi, irrespective of RAFi sensitivity. Inhibition of ULK1 and VPS34 are potentially viable clinical targets in autophagy dependent CNS tumors. Further evaluation is needed to determine if early and late stage autophagy inhibition are equally efficacious to determine the optimal clinical target for patients. 15. SUBJECT TERMS			tanial Canana and				
12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Autophagy is a multi-stage process. Drugs targeting both early (initiation) and late (fusion) stages of this process are available. The specific stage of autophagy targeted may influence cancer treatment outcomes. CNS tumors with the BRAF ^{Ve00E} mutation are autophagy dependent, and late stage autophagy inhibition improves response to targeted BRAF inhibitors (BRAFi). We investigated early stage inhibition for autophagy dependent CNS tumors. BRAFi-sensitive and resistant AM38 and MAF794 cell lines were evaluated for response to pharmacologic and genetic inhibition of ULK1 and VPS34, two crucial subunits of the autophagy initiation complexes. Changes in autophagy were monitored by western blot and flow cytometry. Short and long- term assays were evaluated. Tumor cells exhibited reduced autophagic flux with pharmacologic and genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition were also synergistic with BRAFi, irrespective of RAFi sensitivity. Inhibition of ULK1 and VPS34 are potentially viable clinical targets in autophagy dependent CNS tumors. Further evaluation is needed to determine if early and late stage autophagy inhibition are equally efficacious to determine the optimal clinical target for patients. 15. SUBJECT TERMS	•		teriel Command			SPONSOD/MONITOD'S DEDODT	
 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Autophagy is a multi-stage process. Drugs targeting both early (initiation) and late (fusion) stages of this process are available. The specific stage of autophagy targeted may influence cancer treatment outcomes. CNS tumors with the <i>BRAF</i>^{V600E} mutation are autophagy dependent, and late stage autophagy inhibition improves response to targeted BRAF inhibitors (BRAFi). We investigated early stage inhibition for autophagy dependent CNS tumors. BRAFi-sensitive and resistant AM38 and MAF794 cell lines were evaluated for response to pharmacologic and genetic inhibition of ULK1 and VPS34, two crucial subunits of the autophagy initiation complexes. Changes in autophagy were monitored by western blot and flow cytometry. Short and long- term assays were evaluated. Tumor cells exhibited reduced autophagic flux with pharmacologic and genetic inhibition or ULK1 or VPS34. Pharmacologic inhibition reduced cell survival in a dose dependent manner for both targets. Genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition were also synergistic with BRAFi, irrespective of RAFi sensitivity. Inhibition of ULK1 and VPS34 are potentially viable clinical targets in autophagy dependent CNS tumors. Further evaluation is needed to determine if early and late stage autophagy inhibition are equally efficacious to determine the optimal clinical target for patients. 15. SUBJECT TERMS 	Fort Detrick, Marylan	id 21702-5012			11.		
Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Autophagy is a multi-stage process. Drugs targeting both early (initiation) and late (fusion) stages of this process are available. The specific stage of autophagy targeted may influence cancer treatment outcomes. CNS tumors with the <i>BRAF^{V600E}</i> mutation are autophagy dependent, and late stage autophagy inhibition improves response to targeted BRAF inhibitors (BRAFi). We investigated early stage inhibition for autophagy dependent CNS tumors. BRAFi-sensitive and resistant AM38 and MAF794 cell lines were evaluated for response to pharmacologic and genetic inhibition of ULK1 and VPS34, two crucial subunits of the autophagy initiation complexes. Changes in autophagy were monitored by western blot and flow cytometry. Short and long- term assays were evaluated. Tumor cells exhibited reduced autophagic flux with pharmacologic and genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition synergistic with BRAFi, irrespective of RAFi sensitivity. Inhibition of ULK1 and VPS34 are potentially viable clinical targets in autophagy dependent CNS tumors. Further evaluation is needed to determine if early and late stage autophagy inhibition are equally efficacious to determine the optimal clinical target for patients.						NOMBER(3)	
Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Autophagy is a multi-stage process. Drugs targeting both early (initiation) and late (fusion) stages of this process are available. The specific stage of autophagy targeted may influence cancer treatment outcomes. CNS tumors with the <i>BRAF^{V600E}</i> mutation are autophagy dependent, and late stage autophagy inhibition improves response to targeted BRAF inhibitors (BRAFi). We investigated early stage inhibition for autophagy dependent CNS tumors. BRAFi-sensitive and resistant AM38 and MAF794 cell lines were evaluated for response to pharmacologic and genetic inhibition of ULK1 and VPS34, two crucial subunits of the autophagy initiation complexes. Changes in autophagy were monitored by western blot and flow cytometry. Short and long- term assays were evaluated. Tumor cells exhibited reduced autophagic flux with pharmacologic and genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition synergistic with BRAFi, irrespective of RAFi sensitivity. Inhibition of ULK1 and VPS34 are potentially viable clinical targets in autophagy dependent CNS tumors. Further evaluation is needed to determine if early and late stage autophagy inhibition are equally efficacious to determine the optimal clinical target for patients.	12. DISTRIBUTION / AVA	ALABILITY STATEN	MENT				
 13. SUPPLEMENTARY NOTES 14. ABSTRACT Autophagy is a multi-stage process. Drugs targeting both early (initiation) and late (fusion) stages of this process are available. The specific stage of autophagy targeted may influence cancer treatment outcomes. CNS tumors with the <i>BRAF</i>^{V600E} mutation are autophagy dependent, and late stage autophagy inhibition improves response to targeted BRAF inhibitors (BRAFi). We investigated early stage inhibition for autophagy dependent CNS tumors. BRAFi-sensitive and resistant AM38 and MAF794 cell lines were evaluated for response to pharmacologic and genetic inhibition of ULK1 and VPS34, two crucial subunits of the autophagy initiation complexes. Changes in autophagy were monitored by western blot and flow cytometry. Short and long-term assays were evaluated. Tumor cells exhibited reduced autophagic flux with pharmacologic and genetic inhibition of VLK1 or VPS34. Pharmacologic inhibition reduced cell survival in a dose dependent manner for both targets. Genetic inhibition reduced cell survival in a dose dependent manner for both targets. Genetic inhibition reduced cell survival in a dose dependent manner for both targets. Genetic inhibition reduced cell survival in a dose dependent manner for both targets. Genetic inhibition reduced cell survival in a dose dependent manner for both targets. Genetic inhibition reduced cell survival in a dose dependent manner for both targets in autophagy dependent CNS tumors. Further evaluation is needed to determine if early and late stage autophagy inhibition are equally efficacious to determine the optimal clinical target for patients. 15. SUBJECT TERMS							
 14. ABSTRACT Autophagy is a multi-stage process. Drugs targeting both early (initiation) and late (fusion) stages of this process are available. The specific stage of autophagy targeted may influence cancer treatment outcomes. CNS tumors with the <i>BRAF^{V600E}</i> mutation are autophagy dependent, and late stage autophagy inhibition improves response to targeted BRAF inhibitors (BRAFi). We investigated early stage inhibition for autophagy dependent CNS tumors. BRAFi-sensitive and resistant AM38 and MAF794 cell lines were evaluated for response to pharmacologic and genetic inhibition of ULK1 and VPS34, two crucial subunits of the autophagy initiation complexes. Changes in autophagy were monitored by western blot and flow cytometry. Short and long-term assays were evaluated. Tumor cells exhibited reduced autophagic flux with pharmacologic and genetic inhibition of ULK1 or VPS34. Pharmacologic inhibition reduced cell survival in a dose dependent manner for both targets. Genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition were also synergistic with BRAFi, irrespective of RAFi sensitivity. Inhibition of ULK1 and VPS34 are potentially viable clinical targets in autophagy dependent CNS tumors. Further evaluation is needed to determine if early and late stage autophagy inhibition are equally efficacious to determine the optimal clinical target for patients. 	Approved for Public I	Release; Distribu	ution Unlimited				
 14. ABSTRACT Autophagy is a multi-stage process. Drugs targeting both early (initiation) and late (fusion) stages of this process are available. The specific stage of autophagy targeted may influence cancer treatment outcomes. CNS tumors with the <i>BRAF^{V600E}</i> mutation are autophagy dependent, and late stage autophagy inhibition improves response to targeted BRAF inhibitors (BRAFi). We investigated early stage inhibition for autophagy dependent CNS tumors. BRAFi-sensitive and resistant AM38 and MAF794 cell lines were evaluated for response to pharmacologic and genetic inhibition of ULK1 and VPS34, two crucial subunits of the autophagy initiation complexes. Changes in autophagy were monitored by western blot and flow cytometry. Short and long-term assays were evaluated. Tumor cells exhibited reduced autophagic flux with pharmacologic and genetic inhibition of ULK1 or VPS34. Pharmacologic inhibition reduced cell survival in a dose dependent manner for both targets. Genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition were also synergistic with BRAFi, irrespective of RAFi sensitivity. Inhibition of ULK1 and VPS34 are potentially viable clinical targets in autophagy dependent CNS tumors. Further evaluation is needed to determine if early and late stage autophagy inhibition are equally efficacious to determine the optimal clinical target for patients. 							
 14. ABSTRACT Autophagy is a multi-stage process. Drugs targeting both early (initiation) and late (fusion) stages of this process are available. The specific stage of autophagy targeted may influence cancer treatment outcomes. CNS tumors with the <i>BRAF^{V600E}</i> mutation are autophagy dependent, and late stage autophagy inhibition improves response to targeted BRAF inhibitors (BRAFi). We investigated early stage inhibition for autophagy dependent CNS tumors. BRAFi-sensitive and resistant AM38 and MAF794 cell lines were evaluated for response to pharmacologic and genetic inhibition of ULK1 and VPS34, two crucial subunits of the autophagy initiation complexes. Changes in autophagy were monitored by western blot and flow cytometry. Short and long-term assays were evaluated. Tumor cells exhibited reduced autophagic flux with pharmacologic and genetic inhibition of ULK1 or VPS34. Pharmacologic inhibition reduced cell survival in a dose dependent manner for both targets. Genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition were also synergistic with BRAFi, irrespective of RAFi sensitivity. Inhibition of ULK1 and VPS34 are potentially viable clinical targets in autophagy dependent CNS tumors. Further evaluation is needed to determine if early and late stage autophagy inhibition are equally efficacious to determine the optimal clinical target for patients. 							
Autophagy is a multi-stage process. Drugs targeting both early (initiation) and late (fusion) stages of this process are available. The specific stage of autophagy targeted may influence cancer treatment outcomes. CNS tumors with the <i>BRAF</i> ^{V600E} mutation are autophagy dependent, and late stage autophagy inhibition improves response to targeted BRAF inhibitors (BRAFi). We investigated early stage inhibition for autophagy dependent CNS tumors. BRAFi-sensitive and resistant AM38 and MAF794 cell lines were evaluated for response to pharmacologic and genetic inhibition of ULK1 and VPS34, two crucial subunits of the autophagy initiation complexes. Changes in autophagy were monitored by western blot and flow cytometry. Short and long- term assays were evaluated. Tumor cells exhibited reduced autophagic flux with pharmacologic and genetic inhibition or VPS34. Pharmacologic inhibition reduced cell survival in a dose dependent manner for both targets. Genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition were also synergistic with BRAFi, irrespective of RAFi sensitivity. Inhibition of ULK1 and VPS34 are potentially viable clinical targets in autophagy dependent CNS tumors. Further evaluation is needed to determine if early and late stage autophagy inhibition are equally efficacious to determine the optimal clinical target for patients. 15. SUBJECT TERMS	13. SUPPLEMENTARY N	IOTES					
Autophagy is a multi-stage process. Drugs targeting both early (initiation) and late (fusion) stages of this process are available. The specific stage of autophagy targeted may influence cancer treatment outcomes. CNS tumors with the <i>BRAF</i> ^{V600E} mutation are autophagy dependent, and late stage autophagy inhibition improves response to targeted BRAF inhibitors (BRAFi). We investigated early stage inhibition for autophagy dependent CNS tumors. BRAFi-sensitive and resistant AM38 and MAF794 cell lines were evaluated for response to pharmacologic and genetic inhibition of ULK1 and VPS34, two crucial subunits of the autophagy initiation complexes. Changes in autophagy were monitored by western blot and flow cytometry. Short and long- term assays were evaluated. Tumor cells exhibited reduced autophagic flux with pharmacologic and genetic inhibition or VPS34. Pharmacologic inhibition reduced cell survival in a dose dependent manner for both targets. Genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition were also synergistic with BRAFi, irrespective of RAFi sensitivity. Inhibition of ULK1 and VPS34 are potentially viable clinical targets in autophagy dependent CNS tumors. Further evaluation is needed to determine if early and late stage autophagy inhibition are equally efficacious to determine the optimal clinical target for patients. 15. SUBJECT TERMS							
Autophagy is a multi-stage process. Drugs targeting both early (initiation) and late (fusion) stages of this process are available. The specific stage of autophagy targeted may influence cancer treatment outcomes. CNS tumors with the <i>BRAF</i> ^{V600E} mutation are autophagy dependent, and late stage autophagy inhibition improves response to targeted BRAF inhibitors (BRAFi). We investigated early stage inhibition for autophagy dependent CNS tumors. BRAFi-sensitive and resistant AM38 and MAF794 cell lines were evaluated for response to pharmacologic and genetic inhibition of ULK1 and VPS34, two crucial subunits of the autophagy initiation complexes. Changes in autophagy were monitored by western blot and flow cytometry. Short and long- term assays were evaluated. Tumor cells exhibited reduced autophagic flux with pharmacologic and genetic inhibition or VPS34. Pharmacologic inhibition reduced cell survival in a dose dependent manner for both targets. Genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition were also synergistic with BRAFi, irrespective of RAFi sensitivity. Inhibition of ULK1 and VPS34 are potentially viable clinical targets in autophagy dependent CNS tumors. Further evaluation is needed to determine if early and late stage autophagy inhibition are equally efficacious to determine the optimal clinical target for patients. 15. SUBJECT TERMS							
The specific stage of autophagy targeted may influence cancer treatment outcomes. CNS tumors with the <i>BRAF^{V600E}</i> mutation are autophagy dependent, and late stage autophagy inhibition improves response to targeted BRAF inhibitors (BRAFi). We investigated early stage inhibition for autophagy dependent CNS tumors. BRAFi-sensitive and resistant AM38 and MAF794 cell lines were evaluated for response to pharmacologic and genetic inhibition of ULK1 and VPS34, two crucial subunits of the autophagy initiation complexes. Changes in autophagy were monitored by western blot and flow cytometry. Short and long-term assays were evaluated. Tumor cells exhibited reduced autophagic flux with pharmacologic and genetic inhibition of ULK1 or VPS34. Pharmacologic inhibition reduced cell survival in a dose dependent manner for both targets. Genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition were also synergistic with BRAFi, irrespective of RAFi sensitivity. Inhibition of ULK1 and VPS34 are potentially viable clinical targets in autophagy dependent CNS tumors. Further evaluation is needed to determine if early and late stage autophagy inhibition are equally efficacious to determine the optimal clinical target for patients.							
are autophagy dependent, and late stage autophagy inhibition improves response to targeted BRAF inhibitors (BRAFi). We investigated early stage inhibition for autophagy dependent CNS tumors. BRAFi-sensitive and resistant AM38 and MAF794 cell lines were evaluated for response to pharmacologic and genetic inhibition of ULK1 and VPS34, two crucial subunits of the autophagy initiation complexes. Changes in autophagy were monitored by western blot and flow cytometry. Short and long-term assays were evaluated. Tumor cells exhibited reduced autophagic flux with pharmacologic and genetic inhibition of ULK1 or VPS34. Pharmacologic inhibition reduced cell survival in a dose dependent manner for both targets. Genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition were also synergistic with BRAFi, irrespective of RAFi sensitivity. Inhibition of ULK1 and VPS34 are potentially viable clinical targets in autophagy dependent CNS tumors. Further evaluation is needed to determine if early and late stage autophagy inhibition are equally efficacious to determine the optimal clinical target for patients.		• •	5 5 5	,	· · /	e .	
investigated early stage inhibition for autophagy dependent CNS tumors. BRAFi-sensitive and resistant AM38 and MAF794 cell lines were evaluated for response to pharmacologic and genetic inhibition of ULK1 and VPS34, two crucial subunits of the autophagy initiation complexes. Changes in autophagy were monitored by western blot and flow cytometry. Short and long-term assays were evaluated. Tumor cells exhibited reduced autophagic flux with pharmacologic and genetic inhibition of ULK1 or VPS34. Pharmacologic inhibition reduced cell survival in a dose dependent manner for both targets. Genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition were also synergistic with BRAFi, irrespective of RAFi sensitivity. Inhibition of ULK1 and VPS34 are potentially viable clinical targets in autophagy dependent CNS tumors. Further evaluation is needed to determine if early and late stage autophagy inhibition are equally efficacious to determine the optimal clinical target for patients.							
cell lines were evaluated for response to pharmacologic and genetic inhibition of ULK1 and VPS34, two crucial subunits of the autophagy initiation complexes. Changes in autophagy were monitored by western blot and flow cytometry. Short and long-term assays were evaluated. Tumor cells exhibited reduced autophagic flux with pharmacologic and genetic inhibition of ULK1 or VPS34. Pharmacologic inhibition reduced cell survival in a dose dependent manner for both targets. Genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition were also synergistic with BRAFi, irrespective of RAFi sensitivity. Inhibition of ULK1 and VPS34 are potentially viable clinical targets in autophagy dependent CNS tumors. Further evaluation is needed to determine if early and late stage autophagy inhibition are equally efficacious to determine the optimal clinical target for patients.							
autophagy initiation complexes. Changes in autophagy were monitored by western blot and flow cytometry. Short and long- term assays were evaluated. Tumor cells exhibited reduced autophagic flux with pharmacologic and genetic inhibition of ULK1 or VPS34. Pharmacologic inhibition reduced cell survival in a dose dependent manner for both targets. Genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition were also synergistic with BRAFi, irrespective of RAFi sensitivity. Inhibition of ULK1 and VPS34 are potentially viable clinical targets in autophagy dependent CNS tumors. Further evaluation is needed to determine if early and late stage autophagy inhibition are equally efficacious to determine the optimal clinical target for patients. 15. SUBJECT TERMS							
term assays were evaluated. Tumor cells exhibited reduced autophagic flux with pharmacologic and genetic inhibition of ULK1 or VPS34. Pharmacologic inhibition reduced cell survival in a dose dependent manner for both targets. Genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition were also synergistic with BRAFi, irrespective of RAFi sensitivity. Inhibition of ULK1 and VPS34 are potentially viable clinical targets in autophagy dependent CNS tumors. Further evaluation is needed to determine if early and late stage autophagy inhibition are equally efficacious to determine the optimal clinical target for patients.							
or VPS34. Pharmacologic inhibition reduced cell survival in a dose dependent manner for both targets. Genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition were also synergistic with BRAFi, irrespective of RAFi sensitivity. Inhibition of ULK1 and VPS34 are potentially viable clinical targets in autophagy dependent CNS tumors. Further evaluation is needed to determine if early and late stage autophagy inhibition are equally efficacious to determine the optimal clinical target for patients.							
reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition were also synergistic with BRAFi, irrespective of RAFi sensitivity. Inhibition of ULK1 and VPS34 are potentially viable clinical targets in autophagy dependent CNS tumors. Further evaluation is needed to determine if early and late stage autophagy inhibition are equally efficacious to determine the optimal clinical target for patients. 15. SUBJECT TERMS							
synergistic with BRAFi, irrespective of RAFi sensitivity. Inhibition of ULK1 and VPS34 are potentially viable clinical targets in autophagy dependent CNS tumors. Further evaluation is needed to determine if early and late stage autophagy inhibition are equally efficacious to determine the optimal clinical target for patients. 15. SUBJECT TERMS							
autophagy dependent CNS tumors. Further evaluation is needed to determine if early and late stage autophagy inhibition are equally efficacious to determine the optimal clinical target for patients. 15. SUBJECT TERMS							
equally efficacious to determine the optimal clinical target for patients. 15. SUBJECT TERMS							
15. SUBJECT TERMS							
16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON	16. SECURITY CLASSIFI	ICATION OF:		17. LIMITATION	18. NUMBER	19a. NAME OF RESPONSIBLE PERSON	
OF ABSTRACT OF PAGES USAMRMC				OF ABSTRACT	OF PAGES	USAMRMC	
a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area	a. REPORT b	. ABSTRACT	c. THIS PAGE				
Unclassified ^{code)}	Linelaes (Co.d.	Line along a 10 stat	Line also in 10 mil	Unclassified		coae)	
Unclassified Unclassified Unclassified Standard Form 298 (Rev. 8-98)	Unclassified	Unclassified	Unclassified			Standard Form 298 (Rev. 8-98)	

Table of Contents

Page

1. Introduction	2
2. Keywords	2
3. Accomplishments	2-5
4. Impact	5-6
5. Changes/Problems	6
6. Products	6
7. Participants & Other Collaborating Organizations	6-7
8. Special Reporting Requirements	n/a
9. Appendices	n/a

Introduction:

Autophagy is a multi-stage process. Drugs targeting both early (initiation) and late (fusion) stages of this process are available. The specific stage of autophagy targeted may influence cancer treatment outcomes. CNS tumors with the $BRAF^{V600E}$ mutation are autophagy dependent, and late stage autophagy inhibition improves response to targeted BRAF inhibitors (BRAFi). We investigated early stage inhibition for autophagy dependent CNS tumors. BRAFi-sensitive and resistant AM38 and MAF794 cell lines were evaluated for response to pharmacologic and genetic inhibition of ULK1 and VPS34, two crucial subunits of the autophagy initiation complexes. Changes in autophagy were monitored by western blot and flow cytometry. Short and long-term assays were evaluated. Tumor cells exhibited reduced autophagic flux with pharmacologic and genetic inhibition of ULK1 or VPS34. Pharmacologic inhibition reduced cell survival in a dose dependent manner for both targets. Genetic inhibition reduced cell survival and confirmed it was an autophagy specific effect. Pharmacologic and genetic inhibition were also synergistic with BRAFi, irrespective of RAFi sensitivity. Inhibition of ULK1 and VPS34 are potentially viable clinical targets in autophagy dependent CNS tumors. Further evaluation is needed to determine if early and late stage autophagy inhibition are equally efficacious to determine the optimal clinical target for patients.

Keywords:

Autophagy BRAF Brain tumor Pediatric Resistance

Accomplishments:

The major aims of this project were: (1) Determine the optimal target for autophagy inhibition in BRAF mutated CNS tumors. (2) Determine if the V600E mutation is required for autophagy dependence in CNS tumor cells, or if any cause of dysregulated RAS/RAF/MEK pathway is sufficient to identify autophagy dependence. (3) Determine the mechanism by which autophagy inhibition overcomes multiple BRAF inhibitor resistance mechanisms in CNS tumors.

The major goals of the project as outlined in the SOW and accomplishments are as follows:

Specific Aim 1: Determine the optimal target for autophagy inhibition in BRAF mutated CNS tumors.

Major Task 1: Evaluate genetic inhibition of VPS34 and ULK1 for autophagy inhibition in BRAF^{V600E} mutated CNS Tumor cells.

We have successfully completed the genetic evaluation of inhibition of these targets in MAF794 and AM38 cells. Flow data analysis and survival analysis are below and portrayed in figure form for an upcoming manuscript submission.

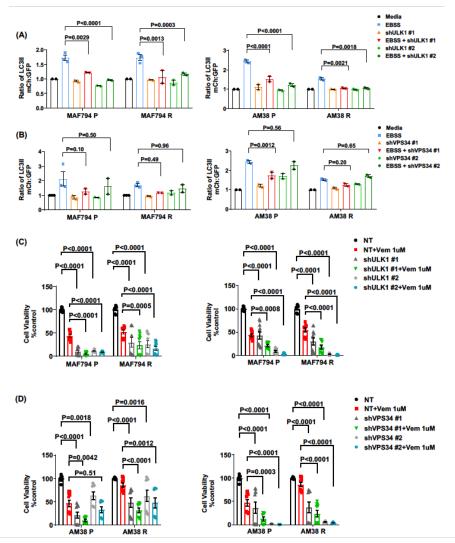
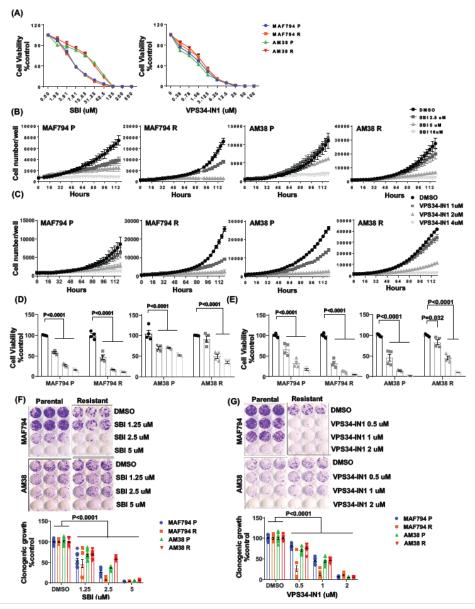



Figure 1. Genetic early stage autophagy inhibition improves sensitivity towards BRAFi. (A-B) Quantifications of basal and induced autophagy in MAF794 and AM38 parental and resistant cells following autophagy inhibition through RNAi against ULK1 (A) or VPS34 (B) compared to non-targeting (NT) RNAi. Autophagic flux was determined as previously described. (C-D) Percent cell viability demonstrating the effectiveness of autophagy inhibition through RNAi against ULK1 (C) or VPS34 (D) compared to NT RNAi in the presence or absence of BRAFi. Percent cell viability was measured by CellTiter Glo assay following 5-day exposure to vemurafenib with or without RNAi against ULK1 or VPS34. Dunnett's multiple comparisons; mean \pm s.e.m (n=2). *p<0.05.

Major Task 2: Evaluate pharmacologic inhibition of VPS34 and ULK1 for autophagy inhibition in BRAF^{V600E} mutated CNS Tumor cells.

We have also successfully completed the pharmacologic evaluation of inhibition of these targets in MAF794 and AM38 cells. Flow data analysis and survival analysis are below and portrayed in figure form for a manuscript submission.

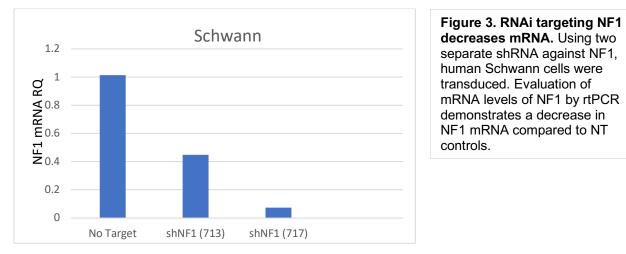


Figure 2. Parental and resistant BRAF^{V600E} brain tumor cell lines demonstrate sensitivity toward early stage autophagy inhibition. (A) Effect of SBI or VPS34-IN1 on short-term viability in MAF794 and AM38 parental (P) and resistant (R) cells treated with increasing doses of SBI or VPS34-IN1 for 5 days. Viability was determined using the CellTiter Glo assay. (B-C) Growth curves of MAF794 and AM38 P and R cells following SBI (B) or VPS34-IN1 (C) treatment. Cell number per well was obtained overtime using Incucyte Zoom (Essen Bioscience). (D-E) Percent cell viability compared to DMSO control measured by CellTiter Glo assay following a 5-day treatment of SBI (D) or VPS34-IN1 (E). (F-G) Representative long-term clonogenic assays and quantified collated data of cells treated with SBI (F) or VPS34-IN1 (G) as indicated. Dunnett's multiple comparisons; mean ± s.e.m, n=2. *p<0.05.

Specific Aim 2: Determine if the V600E mutation is required for autophagy dependence in CNS tumor cells, or if any cause of dysregulated RAS/RAF/MEK pathway is sufficient to identify autophagy dependent CNS tumor cells.

Major Task 1: Development of MAPK pathway driven tumors

We had a goal of producing most NF1 driven tumors utilizing human Schwann cells with RNAi of NF1 and the establishment of FGFR driven tumor cells. We have successfully produced the NF1 model (rtPCR data below) and are in the process of completing the FGFR-TACC1 and FGFR-TACC3 cells.

Major Task 2: Evaluate the efficacy of autophagy inhibition in MAPK pathway driven tumor models.

Due to the early termination of this award, these tasks are not yet completed.

Specific Aim 3: Determine the mechanism by which autophagy inhibition overcomes multiple BRAF inhibitor resistance mechanisms in CNS tumors.

Due to the early termination of this award, these tasks are not yet completed.

Opportunities for training and professional development:

I maintain a regular co-lab meeting of autophagy focused research labs including that of Dr. Andrew Thorburn. My lab also participates in a weekly meeting of the Pediatric Neuro-oncology Research Program. We present regularly at these meetings as well as participate in the discussion of other lab presentations. These meeting also incorporate journal club reviews of new research related to both autophagy and separately the pediatric neuro-oncology reserch fields.

How were the results disseminated to communities of interest:

Since the beginning of this award, my lab has participated in the Children's Hospital Colorado Pediatric Research Winter Poster Session. We have also prepared a manuscript of the initial data found with AM38 and MAF794 cells for submission and publication. See attached appendices for full draft of article.

Plan for the next reporting period:

Nothing to report (final report).

Impact:

What was the impact on the development of the principal discipline(s) of the project?

We have evaluated the potential of early stage autophagy inhibitors in the treatment of autophagy dependent CNS tumor cells. The work completed over the DOD award period is the natural progression of my previously funded DoD Mentored award. Specifically, I found that inhibition of initiation (early) stages of autophagy are able to successfully improve response of both parental and resistant cell lines to BRAF inhibition. Work to complete the proposed studies continue with the additional support of the NIH: National Institute of Neurological Disorders and Stroke. This new R01 award necessitated the early termination of this funding, but also validates the importance of this work and ensures that the studies proposed here will continue to completion. We have also been able to make contact with Sprint Biosciences to further advance these studies with a new VPS34 inhibitor that has improved potential for in vivo effectiveness and future direct clinical use.

What was the impact on other disciplines? Nothing to report.

What was the impact on technology transfer? Nothing to report.

What was the impact on society beyond science and technology? Nothing to report.

Change/Problems? Nothing to report.

Products: Nothing to report

Publications, conference papers, and presentations

Conference poster presentations reported above.

Manuscript in process for submission/publication included in appendices.

Participants & Other Collaborating Organizations What individuals have worked on the project?

Name:	Jean M. Mulcahy Levy
Project Role:	PI
Nearest person month worked:	0.86
Contribution to Project:	Dr. Mulcahy Levy oversaw all aspects of this project in addition to performing experiments.
Funding Support:	New R01 funding award necessitating early termination of this award per guidelines.

Name: Project Role: Nearest person month worked:	Shadi Zahedi Professional Research Assistant 12
Contribution to Project:	Ms. Zahedi was primarily in charge of performing experiments.
Funding Support:	New R01 funding award necessitating early termination of this award per guidelines.

Since the last reporting period the PI of this project was awarded an NIH/NINDS (1R01NS107313-01A1). The DOD award was relinquished prior to the start of the R01award per granting requirements.

What other organizations were involved as partners? Nothing to report.

Special reporting requirements: None Appendices: None