

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY REV-03.18.2016.0

DISTRIBUTION STATEMENT A] APPROVED FOR PUBLIC RELEASE AND UNLIMITED DISTRIBUTION.

MEASURING AND COMPARING ROBUSTNESS OF
ML ALGORITHMS UNDER ADVERSARIAL ATTACK

August 2017

Introduction

A machine learning algorithm can be evaluated for robustness against any number of different types of

attacks. We consider attacks that seek to manipulate the training and/or testing data inputs to a ma-

chine learning algorithm. Specifically, we do not consider physical attacks on machines hosting the

algorithm.

A framework for measuring robustness

In order to understand robustness in quantifiable terms, we need a precise definition for “robustness.”

A given machine learning algorithm A uses samples X to predict outcomes Y as 𝑌 = A(X). A perfect

prediction 𝑌 = 𝑌 provides some utility to the user. As there may be many factors influencing our defi-

nition of “utility” (effectiveness, risk, accuracy, precision, reliability, some combination of these fac-

tors, etc.), we will not attempt to provide a specific definition here. We assume that the user defines a

utility function U dependent on the algorithm A and data X, represented as U(A, X). The dependency

on X will be described in the following section.

Adversaries may seek to manipulate the data so as to reduce the utility of the algorithm. If an adver-

sary uses a manipulation M to transform data X, then the predictions are 𝑌𝑀 = 𝐴(𝑀(𝑋)), such that

U(A, X) > U(A, M(X)), with occasional fortuitous exceptions.

The algorithm A is robust with respect to manipulation M to the extent that M does not decrease the

utility. We define the robustness of an algorithm with respect to input X and manipulation M as

𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠(𝐴, 𝑋, 𝑀): =
𝑈(𝐴,𝑀(𝑋))

𝑈(𝐴,𝑋)
 (1)

We suppose that 𝑈(𝐴, 𝑋) > 0 and that 𝑈(𝐴, 𝑀(𝑋)) typically ranges from 0 to 𝑈(𝐴, 𝑋). It is not diffi-

cult to imagine alternative formulations of robustness in terms of A, M, and X if these assumptions

fail.

Comparing robustness to adversarial attacks

Given some algorithm utility function U, suppose we have a list of algorithms 𝐴1, … , 𝐴𝑘 and a list of

manipulations 𝑀1, … , 𝑀𝑚. A complete comparison of the robustness of the algorithms with respect to

the manipulations requires performing 𝑘 × 𝑚 experiments pairing each of the k algorithms with each

of the m manipulations. Note that m is usually much greater than k.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

2 [DISTRIBUTION STATEMENT A] APPROVED FOR PUBLIC RELEASE AND UNLIMITED DISTRIBUTION.

It is reasonable to hypothesize that some classes of algorithms may be more vulnerable to particular

types of manipulations, while other algorithms are vulnerable in different ways. This structure gives

us a way to measure, document, and discuss these tradeoffs.

Since the robustness of each algorithm may vary across the manipulations, deciding which algorithm

is the “most robust” in general would require reducing each algorithm’s performance history to a sin-

gle summary statistic. For example, one could simply average the robustness of each algorithm across

its m manipulations. A weighted average might be preferable if the various manipulations are of vary-

ing importance or perceived likelihood of occurring in real life.

Active learning can be used to find new manipulations that minimize or maximize (depending on the

use case) the robustness of the set of algorithms.

Measuring tradeoffs between robustness and performance

The definition in Equation 1 allows us to approach this in terms of an arbitrary algorithm utility func-

tion U and manipulation M. Suppose q is the probability that M gets applied to an arbitrary future in-

put X. Then, taking the possibility of manipulation into account, the expected utility of an algorithm is

𝐸𝑀(𝑈(𝐴)) = 𝑞𝑈(𝐴, 𝑀(𝑋)) + (1 − 𝑞)𝑈(𝐴, 𝑋) (2)

Now suppose 𝐴′ = 𝐻(𝐴) is a “hardened” version of A that is intended to be less vulnerable to manipu-

lations of the future input data X. Typically there will be both a cost and a benefit related to that hard-

ening.

The cost applies when no manipulation occurs:

𝑐𝑜𝑠𝑡(𝐻) = 𝑈(𝐴, 𝑋) − 𝑈(𝐴′, 𝑋) (3)

The benefit applies when manipulation occurs:

𝑏𝑒𝑛𝑒𝑓𝑖𝑡(𝐻) = 𝑈(𝐴′, 𝑀(𝑋)) − 𝑈(𝐴, 𝑀(𝑋)) (4)

The expected net improvement in utility resulting from hardening 𝐴 is

𝑈(𝐴′) − 𝐸𝑀(𝑈(𝐴)) = 𝑞 (𝑈(𝐴′, 𝑀(𝑋)) − 𝑈(𝐴, 𝑀(𝑋))) + (1– 𝑞)(𝑈(𝐴, 𝑋) − 𝑈(𝐴′, 𝑋))

= 𝑞 ∗ 𝑏𝑒𝑛𝑒𝑓𝑖𝑡(𝑋) − (1 − 𝜋)𝑐𝑜𝑠𝑡(𝐻)
 (5)

This expected net improvement is positive if an only if

𝑏𝑒𝑛𝑒𝑓𝑖𝑡(𝐻) >
1−𝑞

𝑞
𝑐𝑜𝑠𝑡(𝐻) (6)

Notice that the right-hand side → 0 as 𝑞 → 1. It follows that a hardening with great cost and small

benefit can be worthwhile overall if the probability of manipulation is high.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

3 [DISTRIBUTION STATEMENT A] APPROVED FOR PUBLIC RELEASE AND UNLIMITED DISTRIBUTION.

This basic analysis makes it easy to see that assessing the tradeoffs between robustness and perfor-

mance is no simple matter. Depending on the application,

 the probability q may be unknown, requiring a user to illustrate or integrate the cost-benefit anal-

ysis across a range of probabilities

 there could be any number of potential manipulations, requiring generalization of the analysis

above

Characterizing and Constructing Adversarial Inputs

Understanding how to characterize input requires an understanding of modern adversarial AI tech-

niques. The following sections outline adversarial AI capabilities and techniques for characterizing in-

puts.

Adversarial AI

Attacking a ML/AI system involves finding specific inputs where the algorithm “misbehaves,” provid-

ing unexpected (or “lower utility” output) for a given input. The majority of ML/AI today relies on

statistical assumptions about the nature of the data; it should be drawn from a given distribution, it

should not violate some constraints, it should be differentiable along some specific set of parameters.

Broadly speaking, attacks attempt to find violations of these assumptions. One very public example of

this type of attack involved a Microsoft chat bot, Tay. This bot was driven by an algorithm which used

user input to build a language dictionary. Unfortunately, the algorithm architects did not envision that

the algorithm would be polluted with a high volume of “bad” data; namely, text with strong racist

tendencies. As such, that input was overly expressed in the training data and thus dominated the output,

leading to some highly offensive algorithmically generated tweets [1].

Attacks can happen both during the training and testing phases. Training attacks aim to manipulate the

nature of the data used to train the classifier, whether through overrepresenting particular types of data,

modifying labels, or other techniques. The attack against the Microsoft chatbot represents this type of

attack. Testing phase attacks exploit algorithm decision boundaries not well defined by training datasets.

A recent widely-reported research paper described how self-driving cars were made to interpret stop

signs as speed limit signs using sticky notes [2]. Note that the recent popularity of active learning tech-

niques, where a trained model is continuously improved over time through the addition of new data,

blurs the lines between these two attacks.

Historically, ML/AI attacks were generated through brute force or insights into the nature of the training

phase. Using tools conceptually similar to fuzz testing utilities, attackers would generate input that they

deemed likely to generate erroneous output and exploit their findings. These techniques have matured

significantly over the past few years. Modern adversarial AI techniques involve generating new AI al-

gorithms with the specific goal of finding miscategorizations in the target ML/AI implementations [2,3].

https://www.theguardian.com/technology/2016/mar/24/tay-microsofts-ai-chatbot-gets-a-crash-course-in-racism-from-twitter

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

4 [DISTRIBUTION STATEMENT A] APPROVED FOR PUBLIC RELEASE AND UNLIMITED DISTRIBUTION.

These attacks generally work as follows. Given a black-box classifier algorithm A, where the attacker

can query the model for any input X but has no other information about the model, we want to find

perturbations to X resulting in a model misclassification. A can be a regression, SVM, decision tree,

neural network, or almost any other statistical model, and there are no restrictions on data type. This

input should follow three guidelines: (1) be as small as possible, (2) require as few queries to the model

as possible, and (3) be as undetectable as possible. The attacker will generally train a secondary model

to create adversarial data that meets these criteria using a variety of published techniques (e.g., [3-5]).

One specific technique involves examining “gradients”—the extent to which an image changes across

a wide range of features—and finding classification boundaries with very large gradients. This implies

that a tiny change in the image can significantly impact classification, which is a likely sign of an area

of weakness.

Input characterization

Given the attacker goals of influencing algorithm A with minimal changes to input A, characterization

of changes will depend directly on the extent to which X is modified. While this is defined in abstract

in the previous section, practical definitions often rely on well-understood distance functions on which

an optimization algorithm can operate, such as the L1 and L2 norm. Given the large parameter space

typically used in modern algorithms, X may have very high dimensionality.

Additionally, the input is defined by the nature of the attack, as hinted in the previous section. Whether

the attack occurs during training or testing, the number of queries used to successfully identify an ex-

ploit, whether a fuzzer-style technique or an adversarial AI was used to generate the exploit, the com-

plexity of the adversarial model… all of these factors influence both the effectiveness of the model and

the complexity in its execution, and as such should be considered when determining the risk posed by a

given potential attack.

Other ML/AI attacks

Note that this does not involved poor coding, vulnerabilities in the supporting architecture, hardware

attacks, or the like. These techniques find specific weaknesses in the algorithm as implemented. All

ML/AI algorithms are susceptible to a wide variety of standard computing vulnerabilities, ranging from

buffer overflows to denial of service attacks on critical servers. These are not considered here.

There exists another type of attack with ML/AI algorithms relating to information leakage. Carefully

constructed queries to an ML/AI algorithm can potentially reveal information about the training set used

to construct the model, which may contain confidential or otherwise restricted information. While this

type of attack can be highly damaging and does reveal shortcomings in the design of the ML/AI archi-

tecture, it does not affect the efficacy of the ML/AI model, and as such is not being considered here.

Theoretical Basis for the Construction of Training and Execution Attacks

“Adversarial examples are hard to defend against because it is difficult to construct a theoretical

model of the adversarial example crafting process. Adversarial examples are solutions to an optimiza-

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

5 [DISTRIBUTION STATEMENT A] APPROVED FOR PUBLIC RELEASE AND UNLIMITED DISTRIBUTION.

tion problem that is non-linear and non-convex for many ML models, including neural networks. Be-

cause we don’t have good theoretical tools for describing the solutions to these complicated optimiza-

tion problems, it is very hard to make any kind of theoretical argument that a defense will rule out a

set of adversarial examples.” (https://blog.openai.com/adversarial-example-research/)

In light of the above quote, there are a number of theoretical and practical approaches to creating ad-

versarial examples. As described in the previous section, the prototypical adversarial example is an

input plus a minor perturbation, such that the consequence is seemingly indistinguishable from the

original input, but the output of the ML is markedly different than the original. One highly-cited pub-

lished techniques is the fast gradient sign method [3]. This technique demonstrates that neural net-

works mimic linear behavior locally. In the paper, linear models are demonstrated to be particularly

susceptible to adversarial inputs. It is then easy to quickly construct a new adversarial example A’ us-

ing some input X via A’ = X + (ε * sign(▽xJ(θ, X, y)), where J(θ, X, y) represents the cost function of

the model and ▽x represents the gradient. This is of particular interest because (1) it is demonstrated

that an adversary can quickly and cheaply generate a vast amount of adversarial examples, which is

statistically likely to succeed, and (2) that the linear nature of the individual components of neural net-

works which makes them simple to analyze and construct introduce an inherent weakness on a local

level. Other techniques, such as adversarial saliency maps, have also been described in the literature as

possible vectors of attack.

One of the most simple and straightforward attacks on ML during training time is the addition or sub-

stitution of mislabeled training data to the training set. The validity of the training set is often taken

for granted, especially for a very large set, where a false addition or substitution can easily go unno-

ticed. There are some investigations of the robustness of SVMs to “label contamination”:

 Huang Xiao, et al. “Support vector machines under adversarial label contamination” Neurocom-

puting, Volume 160, 21 July 2015, Pages 53-62)

 Battista Bigio, et al. “Support Vector Machines Under Adversarial Label Noise” JMLR: Work-

shop and Conference Proceedings 20 (2011) 97–112

Contact Information

Eliezer Kanal

Software Engineering Institute

4500 Fifth Avenue, Pittsburgh, PA 15213-2612

Phone: 412-268-5204

Email: ekanal@sei.cmu.edu

Web: www.sei.cmu.edu | www.cert.org

Copyright 2017 Carnegie Mellon University. All Rights Reserved.

https://blog.openai.com/adversarial-example-research/
http://www.sei.cmu.edu/
http://www.cert.org/

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

6 [DISTRIBUTION STATEMENT A] APPROVED FOR PUBLIC RELEASE AND UNLIMITED DISTRIBUTION.

This material is based upon work funded and supported by the Department of Defense under Contract No.

FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a feder-

ally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be con-

strued as an official Government position, policy, or decision, unless designated by other documentation.

This report was prepared for the SEI Administrative Agent AFLCMC/AZS 5 Eglin Street Hanscom AFB, MA 01731-

2100

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE

MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO

WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT

NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR

RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE

ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR

COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal

use is granted, provided the copyright and “No Warranty” statements are included with all reproductions and deriv-

ative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written

or electronic form without requesting formal permission. Permission is required for any other external and/or com-

mercial use. Requests for permission should be directed to the Software Engineering Institute at permis-

sion@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon Univer-

sity.

DM17-0850

