
1July 26, 2017

© 2017 Carnegie Mellon University [Distribution Statement A] Approved for public release and unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

© 2017 Carnegie Mellon University
[Distribution Statement A] Approved for public release
and unlimited distribution.

SEI CPS Projects
Presenter: Dionisio de Niz

2July 26, 2017

© 2017 Carnegie Mellon University [Distribution Statement A] Approved for public release and unlimited distribution.

Copyright 2017 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-
15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally
funded research and development center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed
as an official Government position, policy, or decision, unless designated by other documentation.
References herein to any specific commercial product, process, or service by trade name, trade mark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring
by Carnegie Mellon University or its Software Engineering Institute.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.
This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic
form without requesting formal permission. Permission is required for any other use. Requests for permission
should be directed to the Software Engineering Institute at permission@sei.cmu.edu.
Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
DM17-0812

3July 26, 2017

© 2017 Carnegie Mellon University [Distribution Statement A] Approved for public release and unlimited distribution.

YOLO reboots on Drone
• Snapshot at fully booted state
• Reboots and returns to saved snapshot.

Reboots at frequent intervals (1 sec).
• Tested on physical drone in controlled flight

Implementations – Drone

4July 26, 2017

© 2017 Carnegie Mellon University [Distribution Statement A] Approved for public release and unlimited distribution.

Drone Flight Simulation Environment
• Simulates flight physical process
• Allows extreme experiments w/o physical loss

Initial simulation of reboots in extreme maneuvers
• Frequent reboots
• Stable in gentle manual flight
• Extreme maneuvers can lead to crash
• To be performed:

- Evaluating fidelity of simulation to physical reality (drone)

Experimentation

5July 26, 2017

© 2017 Carnegie Mellon University [Distribution Statement A] Approved for public release and unlimited distribution.

Reboot only part of the system
• Process
• Checkpoint & Rollback

- Checkpoint: save clean state to protected space
- Rollback: erase corrupted state and replace with saved state

Prototype
• Linux kernel module
• Saves checkpoint (memory backup) in kernel space

- Including processor state (Instruction Pointers, CPU registers)
- Cannot be modified from user code (if user code compromised)

• Rollback
- Copies back saved kernel copy into process memory
- Restores previous processor state (Instruction Pointer, CPU registers)

Micro-Reboots

6July 26, 2017

© 2017 Carnegie Mellon University [Distribution Statement A] Approved for public release and unlimited distribution.

Recoverable CPS physical process state
• Acquired through sensor readings (e.g. position, velocity)
• Recoverable through sensor readings

Non-Recoverable State
• Mission state (next waypoint)

Micro-reboots
• Rebooted part out of sync with non-rebooted

- Drone: rebooted part must read time at checkpoint time

Recoverable / Non-Recoverable State (1)

7July 26, 2017

© 2017 Carnegie Mellon University [Distribution Statement A] Approved for public release and unlimited distribution.

Persistent state
• Preserved across rollbacks

- Time at checkpoint
- Mission state: next waypoint

Persistent state protection
• Identify / implement Trusted Computer Base (TCB)

- Tamper-proof hardware
- Kernel space
- Hypervisor

Place in TCB
• Saved state
• Rollback code

Recoverable / Non-Recoverable State (2)

8July 26, 2017

© 2017 Carnegie Mellon University [Distribution Statement A] Approved for public release and unlimited distribution.

Drone Architecture

9July 26, 2017

© 2017 Carnegie Mellon University [Distribution Statement A] Approved for public release and unlimited distribution.

Attack Surface
• Code, Data, Stack of Drone Controller

Sample Attack Vector
• IP Connection: Can inject data and break into drone controller

Attack Lifetime
• Period of incubation (e.g. zero-day attack)

- Reboot before incubation ends

Attacker Capabilities
• Observation : communication, variables, sensor, actuation
• Modification: communication, controller memory

Threat Model

10July 26, 2017

© 2017 Carnegie Mellon University [Distribution Statement A] Approved for public release and unlimited distribution.

Logic
• TCB correctness

- XMHF / UberSpark
- ZSRMV

Timing
• Can recover state fast enough (enough inertia)
• Reboot + rollback action finish on time

- Modified deadline
- New scheduling model

Control
• Reboot frequency does not destabilize system
• Recovered + Save state leads to stable behavior

Verifying Resilient System

11July 26, 2017

© 2017 Carnegie Mellon University [Distribution Statement A] Approved for public release and unlimited distribution.

Constraining Behavior (satisfies Φ) with Enforcers
• Verifiable Constrained Behavior
• Verifiable Enforcer Implementation

Multiple Enforcers Φ1,Φ2:
• Identify Conflicts
• Resolution of Conflicts

Certifiable Distributed Runtime Assurance

𝚽𝚽𝟏𝟏:s>D

𝚽𝚽𝟐𝟐

12July 26, 2017

© 2017 Carnegie Mellon University [Distribution Statement A] Approved for public release and unlimited distribution.

State of the system: values of variables
• State variables: 𝑉𝑉𝑆𝑆
• Action variables: 𝑉𝑉Σ
• Variable values from domain: 𝐷𝐷
• System state: state variable: s:𝑉𝑉𝑆𝑆 ↦ 𝐷𝐷 ∈ 𝑆𝑆
• Actions: action variables valuations: 𝛼𝛼:𝑉𝑉Σ ↦ 𝐷𝐷
• Behavior: state transitions given actuation every period 𝑃𝑃: 𝑅𝑅𝑃𝑃(𝛼𝛼) ⊆ 𝑆𝑆 × 𝑆𝑆

- Next state given action: 𝑅𝑅𝑃𝑃 𝛼𝛼, 𝑠𝑠 = {𝑠𝑠′| 𝑠𝑠, 𝑠𝑠′ ∈ 𝑅𝑅𝑃𝑃(𝛼𝛼)}
• Property to verify subset of all possible states: 𝜙𝜙 ⊆ 𝑆𝑆
• Enforceable state: 𝐶𝐶𝜙𝜙 ⊆ 𝜙𝜙 ∧ 𝐶𝐶𝜙𝜙 = 𝑠𝑠 ∃𝛼𝛼 ∈ Σ: RP 𝛼𝛼, 𝑠𝑠 ∈ 𝐶𝐶𝜙𝜙}
• Safe actuation : 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠 = 𝛼𝛼 𝑅𝑅𝑃𝑃 𝛼𝛼, 𝑠𝑠 ∈ 𝐶𝐶𝜙𝜙}

Formal Periodic Model: Representing Time-Aware Logic

13July 26, 2017

© 2017 Carnegie Mellon University [Distribution Statement A] Approved for public release and unlimited distribution.

Enforcer

𝑆𝑆

𝜙𝜙
𝐶𝐶𝜙𝜙

𝑆𝑆1

𝑆𝑆2

𝑆𝑆3

𝑆𝑆4𝛼𝛼1 = 𝐸𝐸 𝑠𝑠1,𝛼𝛼1

𝛼𝛼4 = E 𝑠𝑠2,𝛼𝛼2 ¬∃ 𝛼𝛼| 𝛼𝛼 = E(s3,𝛼𝛼′)

𝛼𝛼4

𝑆𝑆5

14July 26, 2017

© 2017 Carnegie Mellon University [Distribution Statement A] Approved for public release and unlimited distribution.

Example

Quadrotors 𝑄𝑄1,𝑄𝑄2
State Variables: 𝑉𝑉𝑆𝑆 = {𝑥𝑥,𝑦𝑦,𝜃𝜃,𝑑𝑑}
Action 𝑉𝑉Σ = {𝜃𝜃𝛼𝛼} : move in direction 𝜃𝜃𝛼𝛼
𝑍𝑍: Virtual Fence Zone
𝐶𝐶𝜙𝜙1 = 𝑥𝑥,𝑦𝑦,𝜃𝜃,𝑑𝑑 𝑥𝑥 + 𝛿𝛿𝐵𝐵1,𝑦𝑦 + 𝛿𝛿𝐵𝐵1 ∈ 𝑍𝑍 ∧ 𝑥𝑥 − 𝛿𝛿𝐵𝐵1,𝑦𝑦 − 𝛿𝛿𝐵𝐵1 ∈ 𝑍𝑍}

• 𝛿𝛿𝐵𝐵1: braking distance
𝐶𝐶𝜙𝜙2 = 𝑥𝑥,𝑦𝑦,𝜃𝜃,𝑑𝑑 𝑑𝑑 + 𝛿𝛿𝐵𝐵2 ≥ 𝐷𝐷}

• 𝛿𝛿𝐵𝐵2: largest reduction in d once separation enforcement applied

15July 26, 2017

© 2017 Carnegie Mellon University [Distribution Statement A] Approved for public release and unlimited distribution.

Example: Utility Enforcers

Angle Operations: 𝜃𝜃 ⊖ 𝜃𝜃′: min angular distance 𝜃𝜃 to 𝜃𝜃′,𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜: opposite angle to 𝜃𝜃
Fence enforcer: 𝑈𝑈1 𝑥𝑥,𝑦𝑦,𝜃𝜃,𝑑𝑑,𝜃𝜃𝛼𝛼 = 𝑈𝑈1 + 𝑈𝑈2 + 𝑈𝑈3 + 𝑈𝑈4 where:

• 𝑈𝑈𝑖𝑖 = 75 − 𝜃𝜃𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖 ⊖ 𝜃𝜃𝛼𝛼 if 𝑏𝑏𝑖𝑖 0 otherwise with:
- 𝑏𝑏1 ≡ 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦 ≤ 𝛿𝛿𝑃𝑃𝐵𝐵1, b2 ≡ 𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑖𝑖𝑚𝑚 ≤ 𝛿𝛿𝑃𝑃𝐵𝐵1,𝑏𝑏3 ≡ 𝑦𝑦 − 𝑦𝑦𝑚𝑚𝑖𝑖𝑚𝑚 ≤ 𝛿𝛿𝑃𝑃𝐵𝐵1,𝑏𝑏4 ≡ 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥 ≤ 𝛿𝛿𝑃𝑃𝐵𝐵1
- 𝜃𝜃𝑚𝑚𝑖𝑖𝑚𝑚1 = 0,𝜃𝜃𝑚𝑚𝑖𝑖𝑚𝑚2 = 270,𝜃𝜃𝑚𝑚𝑖𝑖𝑚𝑚3 = 180,𝜃𝜃𝑚𝑚𝑖𝑖𝑚𝑚4 = 90

Separation enforcer: 𝑈𝑈2 𝑥𝑥,𝑦𝑦,𝜃𝜃,𝑑𝑑,𝜃𝜃𝛼𝛼 = 75 − 𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜 ⊖ 𝜃𝜃𝛼𝛼 if 𝑏𝑏𝑠𝑠𝑠𝑠𝑜𝑜 0 otherwise

16July 26, 2017

© 2017 Carnegie Mellon University [Distribution Statement A] Approved for public release and unlimited distribution.

Primer: Fixed-Priority Scheduling + Rate Monotonic

Scheduler

Icons credit: http://www.doublejdesign.co.uk

High Priority

Med. Priority

Low Priority

𝛼𝛼 𝛼𝛼 𝛼𝛼

𝛼𝛼

𝛼𝛼

𝑠𝑠 𝑠𝑠 𝑠𝑠

𝑠𝑠

𝑠𝑠

Preempted by higher
priority task

Does not run until higher
priority tasks finish

Preempted by higher
priority task

http://www.doublejdesign.co.uk/

17July 26, 2017

© 2017 Carnegie Mellon University [Distribution Statement A] Approved for public release and unlimited distribution.

Overload -> old sensed data + late actuation

Scheduler

Icons credit: http://www.doublejdesign.co.uk

High Priority

Med. Priority

Low Priority

𝛼𝛼 𝛼𝛼

𝛼𝛼

𝛼𝛼

𝑠𝑠 𝑠𝑠

𝑠𝑠

𝑠𝑠

Old sensing, late
actuation

Old sensing, late
actuation

late actuation

Missed deadlinesMissed deadlinesMissed deadlines

overload

http://www.doublejdesign.co.uk/

18July 26, 2017

© 2017 Carnegie Mellon University [Distribution Statement A] Approved for public release and unlimited distribution.

Solution step 2: safe actuation on timing enforcement

Scheduler

Icons credit: http://www.doublejdesign.co.uk

Only executed in given
periodic time budget

Only executed in given
periodic time budget

Only executed in given
periodic time budget

Only executed in given
periodic time budget

𝑠𝑠 𝛼𝛼 𝛼𝛼𝑠𝑠 𝑠𝑠 𝛼𝛼 Decide if calculated 𝛼𝛼
used too old 𝑠𝑠 or not

Prevented from
delaying other tasks if

overload

𝛼𝛼∗

𝛼𝛼
𝛼𝛼

𝛼𝛼

Calculate a default safe fast
actuation executed “just
before” timing budget

expires: kernel informs task

http://www.doublejdesign.co.uk/

	SEI CPS Projects
	Slide Number 2
	Implementations – Drone
	Experimentation
	Micro-Reboots
	Recoverable / Non-Recoverable State (1)
	Recoverable / Non-Recoverable State (2)
	Drone Architecture
	Threat Model
	Verifying Resilient System
	Certifiable Distributed Runtime Assurance
	Formal Periodic Model: Representing Time-Aware Logic
	Enforcer
	Example
	Example: Utility Enforcers
	Primer: Fixed-Priority Scheduling + Rate Monotonic
	Overload -> old sensed data + late actuation
	Solution step 2: safe actuation on timing enforcement

