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Abstract 

Assessing rapid changes in snow storage during spring is critical for pre-
dicting river flooding along the Red River in the north-central United 
States. While passive microwave retrievals of snow water equivalent 
(SWE) over the Red River water basin are generally accurate, they are less 
certain during the spring due to snowmelt events. These degrade the SWE 
retrieval algorithms by introducing liquid water into the snowpack. To in-
crease confidence in daily SWE estimates over the Red River basin, we use 
the concept of a SWE depletion curve to relate basin mean SWE to snow-
covered area (SCA) as determined by the MODIS cloud-gap-filled daily 
SCA product. We use this concept to derive an empirical relationship be-
tween SWE and SCA over the Red River basin from 11 years of satellite ob-
servations (2007–2018). This relationship relies on the climatologically 
accurate passive microwave SWE product to mitigate acute inaccuracies in 
daily SWE retrievals caused by data gaps and complicated snowpack prop-
erties. In a comparison of SWE derived from the empirical SCA relation-
ship to SWE estimated from the Snow Data Assimilation product, we find 
substantial quantitative improvement over the passive microwave SWE 
product during the spring melt season. 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Ci-
tation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 

1.1 Background 

Annual snowpacks are fundamental in the northern hemisphere midlati-
tudes and mountain regions. They influence critical decisions regarding 
water resource management, flood control strategies, infrastructure devel-
opment, and outdoor recreation and tourism. However, because snow has 
high spatial variability and often occurs in sparsely populated regions, 
monitoring snow has proven historically challenging. The advent of 
weather and defense satellites in the mid-twentieth century has greatly in-
creased global snow-monitoring capabilities. In particular, beginning in the 
1960s, satellites have proven effective at differentiating snow-covered and 
snow-free areas (e.g., Matson 1991). More recently, highly advanced polar-
orbiting satellites such as the Moderate Resolution Imaging Spectroradi-
ometer (MODIS) and the Visible Infrared Imaging Radiometer Suite 
(VIIRS), launched in 2002 and 2011, respectively, have provided high-fidel-
ity daily global snow-cover area (SCA) measurements at a greater than 1 km 
spatial resolution (e.g., MODIS: Hall et al. 2002; VIIRS: Key et al. 2013).   

While satellites have proven highly effective at identifying snow cover, 
they are much less effective at measuring the amount of snow on the 
ground (i.e., the snow water equivalent [SWE]). Satellites that measure 
terrestrial microwave radiation (e.g., frequencies lower than 89 GHz) are 
sensitive to SWE. However, these observations are subject to large uncer-
tainties due primarily to the complicated radiative properties of snow and 
to snow’s interaction with the underlying terrain and overhead forest vege-
tation (e.g., Foster et al. 2005). The relatively high spatial variability of 
SWE as compared to the coarse 25 × 25 km pixel size of most operational 
satellite-derived SWE products adds additional uncertainty.  

Chang et al. (1982) described the first algorithm used to estimate SWE on 
a global scale using passive microwave (PM) satellite observations. It relies 
on an empirical formula applied to the brightness temperature difference 
between two onboard PM channels. Since Chang et al. (1982), numerous 
products providing gridded quantitative estimates of SWE based on PM 
satellite observations have been developed, each with their respective 
strengths and weaknesses (e.g., GlobSnow: Luojus et al. 2010, Takala et al. 
2011; AMSR-E and AMSR2: Kelly 2009). These products are all largely 
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based on the original Chang et al. (1982) algorithm but vary in their re-
spective details. Importantly, these products do not always agree with each 
other and can differ by up to a factor of two for a given region, depending 
on snow quality and time of year (Mudryk et al. 2015; Cho et al. 2017). In 
particular, these data sets are highly uncertain during snowmelt due to the 
presence of liquid water in the snowpack (e.g., Ulaby et al. 1986; Kopczyn-
ski et al. 2008; Takala et al. 2011). 

Other global and regional estimates of SWE are generated by merging dif-
ferent satellite observations, in situ measurements, numerical weather-
prediction data, and static terrain data sets using data-assimilation tech-
niques (e.g., The Global Land Data Assimilation System [GLDAS]: Rodell 
et al. 2004; SNODAS: Barrett 2003). However, these data are also subject 
to significant uncertainty. 

1.2 Objectives 

In this study, we aim to improve watershed-average SWE estimates by 
combining PM SWE observations with satellite-observed SCA. Specifically, 
we demonstrate that leveraging climatological relationships between PM 
SWE estimates developed using the Special Sensor Microwave/Imager 
(SSM/I) and Special Sensor Microwave Imager/Sounder (SSMIS) satellite 
sensors (Armstrong et al. 2016) and MODIS temporally averaged SCA (Mor-
riss et al. 2016) improves daily-average SWE estimates during snowmelt.   

1.3 Approach 

We determine the relationship between SWE and SCA by broadly follow-
ing the concept of the widely used “SWE depletion curve” (SDC) (Ander-
son 1973; Rango and Martinec 1982; Luce et al. 1999; Luce and Tarboton 
2004). Typically, SDCs are used in conjunction with distributed energy-
balance models to reconstruct SWE for a specific watershed. However, the 
specific methods used to determine SDCs vary according to the application 
and desired outcome. For example, physically based statistical representa-
tions are often used for SDCs on the pixel scale (Luce and Tarboton 2004) 
while others use tuned empirical relationships to estimate SDCs over spe-
cific watersheds (e.g., Luce et al. 1999). 

SDCs are particularly accurate in mountainous regions where, during the 
melt season, basin total SWE is strongly controlled by the static terrain 
such that SCA is an accurate predictor of total SWE (e.g., Kolberg and 
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Gottschalk 2010). Less well known is how successfully these curves per-
form in regions with minimal terrain variability where snow cover and 
amount are much more strongly controlled by synoptic weather variability.   

This study focuses on the Red River Basin (RRB) in the north-central 
United States (Figure 1). This region is characterized by generally flat ter-
rain and sparse vegetation. It is also highly prone to springtime flooding 
due to rapid snowmelt and river ice jams (e.g., Stadnyk et al. 2016; 
Berghuijs et al. 2016). Climate change may be exacerbating these flooding 
events by increasing temperature and precipitation over the region (e.g., 
Melesse 2004; Hirsch and Ryberg 2012; Liu et al. 2017). Passive micro-
wave SWE algorithms generally perform well in this region because of its 
mild terrain and sparse vegetation (Vuyovich et al. 2014; Cho et al. 2017). 
However, their performance is degraded during the spring when liquid 
water infiltrates the snowpack and impacts the microwave emission (e.g., 
Hallikainen et al. 1986).  

Figure 1.  Map of the continental United States with the inset showing the region 
surrounding the Red River Basin. Shading shows terrain elevation. 

 

Therefore, section 2 presents the data and methodology, section 3 demon-
strates improved capabilities, and section 4 presents conclusions and rec-
ommendations for future research and operational capabilities. 
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2 Data and Methods 

2.1 MODIS cloud-gap-filled snow-covered area 

The MODIS daily SCA product is gridded at a 500 m × 500 m resolution 
and uses the normalized difference snow index (NDSI) (Salomonson and 
Appel 2004) to map snow cover. MODIS data is projected onto a sinusoi-
dal tile system that divides the globe into 460 separate tiles (Hall et al. 
2002). One complicating aspect of the MODIS NDSI is that it is ineffective 
over cloudy pixels. This adds significant uncertainty when the RRB is par-
tially snow covered.   

In this analysis, we use a temporally filtered, “cloud-gap-filled” snow-cover 
product as an alternative to simply masking out cloudy pixels (Hall et al. 
2010; Morriss et al. 2016). In this product, any MODIS pixel classified as 
cloudy for a given retrieval is filled with the most recently observed SCA 
value for the pixel. This product may introduce some bias into the analysis, 
particularly if the region is under prolonged cloud cover; however, this 
method substantially improves the daily SCA product and allows for a 
smoother transition during the melt season (Morriss et al. 2016). 

2.2 NSIDC snow water equivalent 

The National Snow and Ice Data Center (NSIDC) produces PM SWE data 
based on the algorithm developed by Armstrong and Brodzik (1995) and 
Brodzik (2014) (referred to as NSIDC for the remainder of this report) 
(M. Brodzik, NSIDC, pers. comm., March 2019). The NSIDC SWE data is 
gridded at a much coarser 25 km × 25 km resolution on the Northern 
Equal-Area Scalable Earth (EASE) grid. This product retrieves SWE using 
an empirical relationship similar to the Chang et al. (1982) algorithm but 
recalibrated for the SSM/I and SSMIS satellite sensors. Because of size 
limitations in swath width over the midlatitudes, this product has periodic 
gaps in spatial coverage. These gaps affect the RRB approximately every 5 
days. In this analysis, any day that has more than 20% of the basin af-
fected by these gaps is discarded.   
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2.3 Snow-depletion-curve derivation 

In this subsection, we describe the derivation of the SDC used in this re-
port. Here, a SWE depletion curve (SDC) is an empirically derived rela-
tionship between the NSIDC SWE (𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) and MODIS SCA, spatially 
averaged over the RRB during the melt season.  

The melt season is defined as the period of time between the day of maxi-
mum basin average SWE (𝑡𝑡𝑁𝑁𝑆𝑆𝑆𝑆max ) and the day when SWE is totally de-
pleted (𝑡𝑡𝑁𝑁𝑆𝑆𝑆𝑆=0). SWE estimated from an SDC is defined as 

𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁(𝑆𝑆𝑆𝑆𝑆𝑆), 

where SCA is in percent, 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 is the SWE estimated from the SDC, and 
𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁  is the empirically derived function. To account for the high interan-
nual variability of SWE in the RRB (basin-mean maximum SWE can vary 
by over 100 mm annually), SWE is normalized by the annual basin-mean 
maximum SWE (𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚) following methods described in the literature 
(e.g., Luce et al. 1999): 

𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁∗ = 𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁∗ (𝑆𝑆𝑆𝑆𝑆𝑆), 

where 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁∗ = 𝑆𝑆𝑆𝑆𝑆𝑆/𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁∗  is derived from normalized SWE 
values. To derive 𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁∗ , MODIS SCA and NSIDC SWE data are compiled for 
the 11-year period spanning water years 2008 through 2018. 

The concept of an SDC is illustrated by plotting the RRB average 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁∗  
against RRB average SCA for water year 2014 (Figure 2). Figure 2 shows 
that the seasonal coevolution of SWE and SCA follows a similar pattern as 
previous literature has identified (e.g., Luce and Tarboton 2004; Magand 
et al. 2014). In particular, there is a characteristic hysteresis whereby the 
basin-mean SCA saturates at low 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁∗  during the accumulation sea-
son (November–December), indicating that the entire basin is covered 
with shallow snow. SWE then accumulates throughout the midwinter 
(January–March) while SCA remains relatively unchanged. During the 
melt season (March–May), 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁∗  and SCA decrease in tandem, indica-
tive of a snow extent decreasing as the snow melts.   
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Figure 2.  SDC illustration. SCA scattered against W*. Colors indicate 
date. The polynomial-fitted SDC is shown as a dashed line. 

 

From Figure 2, one can infer that the SDC is best suited to the melt season 
when there is a clear relationship between basin-mean SCA and SWE. This 
is the relationship that determines the SDC. Our study generalizes this rela-
tionship by first restricting the SWE and SCA data sets to the melt season: 

 𝑡𝑡 𝑁𝑁𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
< 𝑡𝑡 <  𝑡𝑡𝑁𝑁𝑆𝑆𝑆𝑆=0. 

Second, a simple third-order polynomial-fitting procedure is used to relate 
basin-mean 𝑆𝑆𝑆𝑆𝑆𝑆∗  and SCA: 

𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁∗ (𝑆𝑆𝑆𝑆𝑆𝑆) = 𝑎𝑎𝑆𝑆𝑆𝑆𝑆𝑆3 + 𝑏𝑏𝑆𝑆𝑆𝑆𝑆𝑆2 + 𝑐𝑐𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑑𝑑, 

where a,b,c,d are fitted coefficients. In this work, a,b,c,d are computed 
separately for each melt season in the 11-year data set (e.g., Figure 2). 
Third, a single SDC is computed by averaging the coefficients from each 
individual year, referred to as climatological a,b,c,d (Table 1). Figure 3 il-
lustrates the SDCs for each year in addition to the average SDC. 

Table 1.  Coefficients for f*SDC(SCA), representing an average of coefficients 
from 2007 to 2018. 

a b c d 
−2.51 × 10−6 3.45 × 10−4 −5.15 × 10−5 0.0170 
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Figure 3.  Mean SDC (thick black line). Each dashed line corresponds to the SDC for an 
individual year. Point colors indicate the day of the melt season with cool colors indicating the 
beginning of snowmelt. SCA percent is the average over the RRB, and SWE* is the normalized 

SWE (SWE/SWEmax). 

 

The coefficients in Table 1 are derived by averaging over the entire clima-
tology and are provided for reference. It is important to note that the coef-
ficients used in the SDC evaluation are slightly different due to the evalua-
tion methodology described in the following subsection. 

2.4 Snow Data Assimilation System evaluation data set 

Evaluating the SDC is complicated by there being no ground truth SWE 
observations that accurately characterize SWE over the entire RRB. For 
example, there are no consistent daily in situ SWE observations within the 
RRB that span the 2007–2018 period. Additionally, available snow-depth 
observations from cooperative observation networks are biased towards 
higher population-density centers and are not reported daily.   

Because of the dearth of high-quality ground truth data in the region, we 
chose to use the National Operational Hydrologic Remote Sensing Center 
(NOHRSC) Snow Data Assimilation System (SNODAS) product as our 
evaluation data set (Barnett 2003; National Operational Hydrologic Re-
mote Sensing Center 2004). The aim of SNODAS is to provide a physically 
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consistent product that assimilates data from satellites, aircraft measure-
ments, and in situ observations into a spatially distributed energy-balance 
model forced with downscaled numerical weather-prediction data. It has a 
spatial resolution of 1 km2 and a daily temporal resolution. While this data 
set is a blended model/observation data set and not an actual observed 
snow state, it is likely the best estimate of SWE for 2007–2018 over the 
RRB due to the lack of accurate snow measurements in the region. How-
ever, it is important to consider that, since SNODAS is not an observation, 
it is subject to uncertainty associated with sparse observations, errors in 
NWP forcing, and unresolved model processes (e.g., Clow et al. 2012). 
Conveniently, because SNODAS is a gridded product, it is mappable to the 
same geographic constraints applied to the NSIDC SWE and MODIS SCA 
products, thereby eliminating the need to account for “unobserved” re-
gions within the RRB in the evaluation. 

Importantly, while the data assimilated into SNODAS does not include PM 
SWE observations, it does include satellite-derived SCA from MODIS. This 
assimilation creates a potential for bias in the following analysis, since the 
SDC is derived from MODIS SCA measurements. However, the MODIS 
SCA assimilation is not a traditional assimilation technique. Rather, the 
assimilation involves creating a binary “snow” versus “snow-free” mask 
from MODIS SCA that is used only to remove snow from SNODAS over 
pixels classified as snow free in MODIS and does not otherwise impact the 
SWE. Furthermore, the assimilation is performed manually using a cloud-
masked product, further limiting the impact of these observations on the 
SNODAS SWE (Carrie Olheiser, National Oceanic and Atmospheric Ad-
ministration, pers. comm., 2019). Finally, because of the other in situ SWE 
and snow-depth observations assimilated into SNODAS within the RRB, 
the impact of snow cover on SNODAS SWE is limited. Therefore, while we 
acknowledge the potential for limited bias, we expect it is small and that it 
does not strongly impact the conclusions of this work. 

2.5 Red River Basin data masking 

Prior to the derivation and evaluation of the SDC, the sinusoidal MODIS 
data, the EASE grid NSIDC data, and the SNODAS SWE data are interpo-
lated to cylindrical latitude and longitude grids with comparable spatial 
resolutions for each product. Each data set is then subset to cover the RRB 
by masking all data points outside of the RRB as outlined by the U.S. Geo-
logical Survey North Dakota Water Science Center (Ryberg et al. 2016). 
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Figure 4 presents examples of each of the previously discussed products 
with the applied RRB. 

Figure 4.  Comparison of NSIDC SWE (left), SNODAS SWE (center), and MODIS cloud-gap-filled 
SCA (right) from 10 March 2014.  

 

2.6 Evaluation methodology 

The SDC evaluation is performed as follows: For each year in the data set, 
the climatological SDC is used to compute 𝑆𝑆𝑆𝑆𝑆𝑆∗  during the melt season. 
To ensure independence between 𝑆𝑆𝑆𝑆𝑆𝑆∗  from the climatological SDC for 
each year, the climatological SDC is computed using all years except the 
evaluation year. For example, when evaluating 𝑆𝑆𝑆𝑆𝑆𝑆∗  for water year 2014, 
data from water year 2014 is not included in the derivation of the climato-
logical SDC. Note that this method results in fitted “climatological” coeffi-
cients that are slightly different for each analysis year. Once 𝑆𝑆𝑆𝑆𝑆𝑆∗  is de-
termined for each day within the melt season, it is multiplied by the 
𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 to compute a time series of basin-mean SWE during the 
melt season (𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁). 

Once 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 is computed, 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆𝑁𝑁 is restricted to the melt season as  
determined by NSIDC (𝑡𝑡 > 𝑡𝑡 𝑁𝑁𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

) for each year and averaged over  
the RRB. The resultant melt-season time series of 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆𝑁𝑁, 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁,  
and 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 are aggregated over the 11-year data set and quantitatively 
assessed using root-mean-square error (RMSE), absolute percent bias, 
and least-squares linear regression. Bias is computed as follows: 

𝑏𝑏𝑏𝑏𝑎𝑎𝑏𝑏 =
|∑𝑆𝑆𝑆𝑆𝑆𝑆1 − 𝑆𝑆𝑆𝑆𝑆𝑆2|

𝑆𝑆𝑆𝑆𝑆𝑆2
𝑥𝑥100. 

Improvement is defined as decreases in RMSE and bias, coincident with 
increase in r2 when comparing 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆𝑁𝑁 to 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 versus 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. 
Qualitative assessments of individual water years are also performed to 
demonstrate structural improvements in basin-mean SWE time series. 
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2.7 SDC climatological size requirements 

We expand on the above methodology to determine how many years of 
SCA data are required to derive an SDC that generates more-accurate re-
sults than the stand-alone NSIDC SWE product. This analysis is per-
formed by varying the number of years incorporated into the climatologi-
cal SDC derivation and is described by the following steps: (1) A new “cli-
matological” SDC is calculated 11 times, each one with a different number 
of years (n, ranging 1–11) incorporated in its derivation: 

𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁∗ (𝑆𝑆𝑆𝑆𝑆𝑆)𝑛𝑛 =
∑ 𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁∗ (𝑆𝑆𝑆𝑆𝑆𝑆)𝑚𝑚𝑛𝑛
𝑚𝑚=1

𝑛𝑛
, 

where x represents a specific year in the data set. (2) Each of the 11 SDCs is 
used in place of the “climatological” SDC to compute 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 over all 
11 years in the data set, following the previously described methodology. 
For instance, if n = 2, the SDC is derived from only 2 years of SCA data. 
This 2-year SDC is then used to estimate SWE for the entire 11-year pe-
riod. (3) The statistical analysis described in the previous section compar-
ing 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 to 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆𝑁𝑁 is repeated for each SDC.   

Importantly, steps 1–3 are repeated 500 times while randomizing the 
specific years incorporated into each SDC derivation. The quantitative 
assessment is performed using the mean RMSE, r2, and bias over the 
500 samples determined through randomization. The randomization 
and repetition of steps 1–3 ensure that the results are not based on a par-
ticular year in the data set but rather are indicative of climatological data 
set size requirements. 

2.8 SDC spatial patterns 

To assess subbasin-scale improvement in SWE estimates using the SDC 
method (i.e., where within the basin the SDC yields the greatest improve-
ment), the SDC is used to estimate SWE at each NSIDC pixel within the 
RRB. These pixel 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 values are then evaluated against SNODAS and 
compared against the NSIDC as described in section 2.6. 

To perform this analysis, the daily MODIS SCA and SNODAS SWE data 
are first resampled to the NSIDC resolution by computing an average of all 
the MODIS and SNODAS pixels contained within each NSIDC pixel, 
thereby providing spatially consistent time-series data for all three data 
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sets on the NSIDC SWE grid. The climatological RRB-averaged SDC (i.e., 
the Table 1 coefficients) is then used to compute 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁∗  at each NSIDC 
pixel from the pixel-mean SCA. Importantly, while the basin-mean SDC 
coefficients are used to compute 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁∗ , when computing 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 from 
𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁∗  at each pixel, the pixel 𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 is used. Finally, pixel improve-
ment is quantified using RMSE, bias, and r2 following the methods from 
section 2.6.  
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3 Results 

3.1 Qualitative assessment of SWESDC 

Figure 5 presents time series comparing 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆𝑁𝑁 to the 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 and 
𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 for each water year in the analysis. For nearly every water year, 
the SDC-derived SWE shows substantial improvement in basin-mean 
SWE over 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. For example, in water years 2011, 2014, 2017, and 
2018, 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 shows persistence in the basin-mean SWE that closely 
matches 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆𝑁𝑁 well after 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 indicated no snow in the RRB. A 
brief analysis of surface weather maps for these years (Weather Prediction 
Center 2006) indicates that in each case the premature loss of SWE seen 
in the 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 product occurred during the approximate onset of above-
freezing surface air temperatures within the basin and is therefore likely 
associated with melting snow. Additionally, in water year 2014, 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 
was able to capture a late season snow event that occurred during the melt 
season but that was not detected in the 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 product. There is also ev-
idence in Figure 5 that the SDC method reduces spurious detection of 
SWE from poor satellite retrievals. This is apparent in the time series of 
water year 2009. In this time series, there is a spurious detection of snow 
in 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 that occurs during late April through mid-May. The time se-
ries of 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆𝑁𝑁 do not reproduce this feature. Finally, in all 
panels, 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 shows a reduction in the daily noise evident in the 
𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 time series associated with data gaps and poor retrievals. This 
analysis suggests that the SDC can improve basin-mean SWE estimates 
detecting snowpack persistence during active melting periods, reducing 
false alarms and eliminating daily noise in the NSIDC product. 
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Figure 5.  Time series showing SWESDC, SWENSIDC, and SWESNODAS from the date of max SWE to 
31 May for each of the 11 water years in the data set. 
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3.2 Bulk quantitative analysis 

We quantify 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 improvements by performing a bulk statistical analy-
sis on all of the data over all years, following the methodology described in 
section 2. To assess improvement, we compute statistics to compare 
𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 each to 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆𝑁𝑁. 

This analysis indicates that 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 shows statistical improvement over 
𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 against 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆𝑁𝑁 by all metrics. The RMSE is reduced by over 
a factor of two from 30.01 mm to 14.75 mm, and r2 increased from 0.50 to 
0.89. Finally, the absolute percent bias is reduced from 15% to 5%. These 
bulk improvements are illustrated by comparing scatter plots of 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 
and 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 against 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆𝑁𝑁 (Figure 6). While both 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 and 
𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 generally show a one-to-one relationship against 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆𝑁𝑁, 
this figure emphasizes the improvement gained from the SDC by showing 
a reduced spread in the data (e.g., for 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆𝑁𝑁 ≈ 100, 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ranges 
from 0 to 140, whereas 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 is between 90 and 130) and a near elimi-
nation of false alarms and missed detections (i.e., points falling along the 
x- and y-axes). 

Interestingly, the spread between 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆𝑁𝑁 remains rela-
tively high for intermediate values of SWE, suggesting that the climatolog-
ical SDC has greater uncertainty during the height of the melt season. Fur-
ther investigation of the time series in Figure 5 indicates this increased 
spread is largely due to apparent poor SDC performance in 2008 and 
2009. This apparent poor performance can be partially linked to the 
𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚,𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆𝑁𝑁 in 2008 and 2009 being substantially 
different from one another, and thus the performance of the SDC was pro-
portional to this difference. Estimating 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 following 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 
=𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁∗ (𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚,𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆𝑁𝑁) instead of 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 =𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁∗ (𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) 
largely eliminates the intermediate range spread; however, it is difficult to 
draw more general conclusions in this instance since 𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 and 
𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚,𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆𝑁𝑁 were in close agreement in most years. 
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Figure 6.  Scatter-plot comparison of SWENSIDC vs. SWESNODAS (bottom) and 
SWESDC vs. SWESNODAS (top). The black dashed lines show the one-to-one 

relationship in each figure. 

 

3.3 SDC climatological size requirements analysis 

Expanding on the statistical analysis in section 3.2, we explored the num-
ber of years required in the SDC derivation data set to gain improvement 
over NSIDC according to the methods outlined in section 2.7. 



ERDC/CRREL TR-19-25 16 

 

Figure 7 plots RMSE, percent bias, and r2 as a function of climatology size. 
As expected, these metrics improve as more years are added to the data 
set. While RMSE shows nearly linear improvement, improvements in bias 
and r2 accelerate once the data set spans 8 years. In comparing the results 
shown in Figure 7 to the RMSE, percent bias, and r2 between the baseline 
𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑆𝑆𝑁𝑁𝑆𝑆𝑁𝑁, one concludes that at least 10 years are required 
in the climatology that determines 𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁∗ (𝑆𝑆𝑆𝑆𝑆𝑆) before 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 outperforms 
𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 as determined by the statistical metrics (section 2.6). It is likely 
that including more years in the data set will lead to slightly more accurate 
results, but it is unclear from this analysis what the maximum potential 
improvement is. 

Figure 7.  RMSE (top), percent bias (middle), and r2 (bottom) as a function of 
years in the SDC data set.  

 



ERDC/CRREL TR-19-25 17 

 

3.4 Subbasin statistical analysis 

Finally, to gain insight into the subbasin-scale properties of the SDC, the 
analysis (section 2) is performed for each NSIDC 25 km2 SWE pixel sepa-
rately within the RRB. RMSE, bias, and r2 are then plotted geographically, 
illuminating spatial patterns in 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 performance (Fig-
ure 8). 

Figure 8.  SWENSIDC vs. SWESNODAS (left) and SWESDC vs. SWESNODAS (right). In all figures, 
warm colors indicate more accurate results than cool colors. 

 

In general, the RMSE is lowest over the west-central part of the RRB re-
gion with higher RMSE in the northeast part of the domain where the re-
gion is forested. The SDC generally reduces the RMSE broadly over the re-
gion. There is substantial improvement in the southern part of the RRB 
where snowmelt will most likely have the strongest impact on the PM SWE 
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retrieval. Percent bias shows a similar pattern with a general decrease in 
bias throughout the bulk of the region with the largest gains in the south-
ern part of the basin. The SDC systematically improves r2 over the entire 
RRB. This is almost certainly due to a reduction of false and missed SWE 
detections inherent in the 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 product that have an outsized impact 
on the least-squares methodology used to calculate r2. However, r2 im-
provement over the south-central RRB is coincident with the RMSE and 
bias improvements and is further indication that the SDC can mitigate 
suspect 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 values due to snowmelt. 

In some locations, the SDC actually degrades the SWE estimates as com-
pared to the baseline 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 product. For example, 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 has a higher 
RMSE and bias over the western extensions of the RRB through North Da-
kota. While it is difficult to ascertain the exact causes for this apparent 
degradation, we speculate that these extensions are sufficiently small and 
geographically distinct as compared to the overall RRB such that the ba-
sin-mean SDC used to relate SCA to SWE is not wholly representative of 
these geographic appendages. This implies that the SDC discussed in this 
study is specific to the RRB region and would likely fail to represent SWE 
accurately elsewhere.   
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4 Conclusions 

The results presented in this study illustrate that combining the climato-
logically accurate NSIDC snow water equivalent (SWE) product with the 
more reliable and higher-resolution MODIS snow-covered area (SCA) 
product can substantially improve daily SWE estimates averaged over the 
Red River Basin (RRB) in the north-central United States. Critically, we 
demonstrated that a climatologically derived snow depletion curve (SDC) 
can consistently correct single-day or seasonal errors in the NSIDC SWE 
product during the melt season.   

Furthermore, we showed that the 11-year climatology used in this study 
was sufficient to provide substantial improvement over the NSIDC product 
alone when compared to SNODAS. This suggests that this product, with 
the coefficients presented in Table 1, can be used as a standalone daily 
SWE estimate during the critical melt season and provide a more accurate 
SWE estimate during days in which the NSIDC SWE product is suspect. 
Importantly, this can be used to identify rapid melt events (i.e., rapid 
losses of SWE over the RRB) that may have otherwise been missed in 
NSIDC due to liquid water in the snowpack and prevent false detection of 
rapid melt events.  

Finally, this algorithm, in combination with other developmental algo-
rithms based on PM observations, could potentially aid forecasters in 
identifying melting snowpacks by monitoring discrepancies between the 
SDC-estimated SWE and the NSIDC SWE throughout the spring months. 
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