

 ARL‐TR‐8876 ● DEC 2019

An Introduction to Computational Ghost
Imaging with Example Code

by Michael Don

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL‐TR‐8876 ● DEC 2019

An Introduction to Computational Ghost
Imaging with Example Code

Michael Don
Weapons and Materials Research Directorate, CCDC Army Research Laboratory

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD‐MM‐YYYY)

December 2019

2. REPORT TYPE

Technical Report

3. DATES COVERED (From ‐ To)

December 2018–January 2019
4. TITLE AND SUBTITLE

An Introduction to Computational Ghost Imaging with Example Code

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Michael Don

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

CCDC Army Research Laboratory
ATTN: FCDD-RLW-LF
Aberdeen Proving Ground, MD 21005

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-8876

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

ORCID ID: Michael Don, 0000-0002-8021-9066

14. ABSTRACT

Ghost imaging (GI) is a novel technique where an object is indirectly imaged using a bucket detector to collect light reflected
from or transmitted through an object. This is particularly useful in harsh environments where traditional imaging will fail.
This report introduces and compares a number of GI techniques, including traditional GI, computational GI and its variants,
structured illumination, and denoising. In addition, compressive sensing reconstruction is presented and compared with GI.
Example MATLAB code is provided to reproduce many of the report’s simulations.

15. SUBJECT TERMS

ghost imaging, compressive sensing, single-pixel imaging, computational imaging, denoising

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

52

19a. NAME OF RESPONSIBLE PERSON

Michael Don
a. REPORT

Unclassified

b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

410-306-0775
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

1. Introduction 1

2. Traditional Ghost Imaging 1

3. Computational Ghost Imaging 4

4. Structured Illumination 12

5. Denoising 21

6. Compressive Sensing 22

7. Conclusion 30

8. References 31

Appendix. Example MATLAB Code 34

List of Symbols, Abbreviations, and Acronyms 44

Distribution List 45

iv

List of Figures

Fig. 1 Traditional ghost imaging ... 2

Fig. 2 32 × 32 test image ... 3

Fig. 3 Example recovered images using GI over a range of sampling ratios .. 4

Fig. 4 GI PSNR vs. sampling ratio .. 4

Fig. 5 CGI setup .. 4

Fig. 6 Comparison of CGI and TGI for various noise ratios ࣄ: top row is CGI
and bottom row is TGI .. 6

Fig. 7 Comparison of CGI and TGI over a range of noise ratios 6 ࣄ

Fig. 8 Diagram of DGI .. 7

Fig. 9 Execution time of GI reconstruction algorithms vs. sampling ratio 8

Fig. 10 Comparison of CGI, DGI, NGI, and PINV for several sampling ratios 9

Fig. 11 Comparison of CGI, DGI, NGI, and PINV with scaled illumination for
several sampling ratios .. 10

Fig. 12 Summary of the nonscaled and scaled simulation results for the
simulations in Figs. 10 and 11 ... 11

Fig. 13 Performance comparison using scaled illumination including the new
DPINV and NPINV algorithms .. 12

Fig. 14 Example DCT illumination patterns ... 13

Fig. 15 Example image, the DCT of the image, and a high-contrast
visualization of the DCT. The lower frequencies of the DCT occur in
the upper left and generally have the largest amplitudes. 13

Fig. 16 Comparison of the image pixel magnitudes in the standard basis, the
DCT coefficient magnitudes, and the WHT coefficient magnitudes .. 14

Fig. 17 Zig-zag method used to order DCT coefficients for JPEG compression
... 14

Fig. 18 Comparison of CGI, DGI, and PINV using DCT illumination for
several sampling ratios .. 15

Fig. 19 Example Hadamard illumination patterns .. 16

Fig. 20 Comparison of CGI, DGI, NGI, and PINV using Hadamard
illumination for several sampling ratios ... 17

Fig. 21 Example noiselet illumination patterns ... 18

Fig. 22 Comparison of CGI, DGI, NGI, and PINV using noiselet illumination
for several sampling ratios .. 19

Fig. 23 A performance summary comparing DCT, noiselet, Hadamard, and
binary illumination using CGI, DGI, NGI, and PINV image recovery
... 20

v

Fig. 24 Performance summary comparing CGI, DGI, NGI, and PINV image
recovery algorithms for DCT, noiselet, Hadamard, and binary
illumination ... 20

Fig. 25 Performance gain of denoising an image recovered through CGI over a
range of sampling ratios .. 22

Fig. 26 Examples of denoising CGI images for 3 sampling ratios 22

Fig. 27 Comparison of CGI with noiselet and Hadamard illumination, and CS
using a DCT basis and TV minimization .. 24

Fig. 28 Example images comparing CGI with noiselet and Hadamard
illumination, and CS using a DCT basis and TV minimization 24

Fig. 29 Execution time of the CS algorithm using the DCT basis 25

Fig. 30 Comparison of GI and CS using the image sparse in the standard basis
shown in Fig. 31 .. 26

Fig. 31 Example images comparing GI with CS using a sparse image in the
standard basis .. 27

Fig. 32 Comparison between GI and CS using the image sparse in the DCT
basis shown in Fig. 33 ... 28

Fig. 33 Example high-contrast images comparing GI with CS using a sparse
image in the DCT basis ... 29

 	

1

1. Introduction

Ghost imaging (GI) is a novel imaging technique where an object is imaged using
two light sources: an object beam that illuminates the object and is measured by a
bucket detector, and a reference beam measured by a high-resolution focal point
array (FPA).1 The light collected by the bucket detector interacts with the object
but has no resolution. The reference beam is detected by a high-resolution imager,
but does not interact with the object. Although neither measurements can image the
object alone, a ghost image of the object can be created by combining the
measurements. GI is applicable to imaging objects in harsh environments where
typical imaging techniques will fail.

Initial work on GI was posited to use quantum entanglement between the photons
of the object and reference beams.2,3 Later work demonstrated GI without quantum
entanglement and without even a reference beam.4,5 This technique is called
computational GI (CGI). It is beyond the scope of this report to explore the role of
quantum entanglement in GI, hence only classical optical effects are considered.

Several papers offer a review of GI,6–9 but many of them focus on the issue of
quantum entanglement, and are either too detailed for a basic introduction or too
simple, focusing on the history of GI without addressing GI algorithms. In addition,
the author is not aware of any GI papers accompanied by open-source software to
allow for reproducible results. This report seeks to fill this gap, presenting and
comparing several GI techniques and providing example MATLAB code.
Traditional GI (TGI) is explained, modeled, and simulated. Basic CGI is introduced
and compared with TGI. Building on basic CGI, several CGI variants are presented,
and their performance is compared. GI with structured and pseudo-random
illumination is evaluated. The enhancement of GI by denoising is demonstrated.
Finally, compressive sensing (CS) image reconstruction is presented and compared
to GI reconstruction.

2. Traditional Ghost Imaging

Figure 1 shows a diagram of TGI.1 A light source transmits an intensity pattern
modeled as matrix ࡵ ∈ Թ௡ൈ௡. The light is split, part detected by a ݊ ൈ ݊ FPA as
values ࡵ෨ ∈ Թ௡ൈ௡ and part transmitted through a partially transparent object modeled
as transparency matrix ࢀ ∈ Թ௡ൈ௡. GI can also be performed using light reflected
from opaque objects. A single-pixel bucket detector sums the light transmitted
through the object, producing a scalar measurement	ݏ. This basic diagram ignores
lenses that some implementations may require. It is assumed that there is some
environmental factor that prevents direct imaging with the FPA but allows the

2

bucket detector to collect the object’s light. The measurement process is repeated
to produce ܯ measurements, each using different illumination patterns. The light
might be a random, uncontrolled source, such as a pseudothermal source, or it may
be a controlled spatial light modulator (SLM).

Fig. 1 Traditional ghost imaging

An image of the object, ࡻ ∈ Թ௡ൈ௡, is recovered by calculating the correlation
between ࡵ෨ and ݏ as

ࡻ ൌ 〈൫ࡵ෨ െ ݏ൯ሺ〈෨ࡵ〉 െ ሻ〉, (1)〈ݏ〉

where 〈∙〉 denotes an average value. More explicitly, using ݅ as the measurement
index,

ࡻ ൌ

1
ܯ
෍ቀ൫ࡵ෨௜ െ ௜ݏ൯ሺ〈෨ࡵ〉 െ ሻቁ〈ݏ〉

ெ

௜ୀଵ

, (2)

with

〈෨ࡵ〉 ൌ

1
݊
෍ࡵ෨௜

௡

௜ୀଵ

 (3)

and

〈ݏ〉 ൌ

1
݊
෍ݏ௜

௡

௜ୀଵ

. (4)

In a compact notation, the measurement process can be modeled as

 ࢙ ൌ (5) ,࢞࡭

where ࡭ ∈ Թெൈே is the measurement matrix with rows

௜ࢇ ൌ vec൫ࡵ෨௜൯
୘
, (6)

3

࢞ ∈ Թேൈଵ is the vecorized object

 ࢞ ൌ vecሺࢀሻ, (7)

and ࢙ ∈ Թெൈଵ is the measurement vector

 ࢙ ൌ ሺݏଵ, ,ଶݏ … , ெሻ୘, (8)ݏ

where ܰ ൌ ݊ଶ and vecሺ∙ሻ is an operator that vectorizes a matrix into a single
column. This simple model excludes any path loss, optical effects, or noise;
therefore, ࡵ෨ represents the true modeled object illumination. Using this
measurement matrix notation, Eq. 1 can be rewritten as

 ෥࢞ ൌ ൫࡭ െ vec൫〈ࡵ෨〉൯૚୘൯
୘
ሺ࢟ െ ሻ, (9)〈ݏ〉

with ෥࢞ ൌ vecሺࡻሻ. The vec൫〈ࡵ෨〉൯૚୘ term performs mean centering, subtracting

vec൫〈ࡵ෨〉൯
୘
 from every row of ࡭, where ૚ ∈ Թேൈଵ is a vectors of ones.

Using the 32 × 32 test image in Fig. 2, GI measurements were simulated using
Eq. 5, with a random binary ࡵ (i.e., the elements of ࡵ were drawn from a Bernoulli
random variable with equal probabilities of 0 and 1). The simulation was noiseless,
with ࡵ෨ ൌ and no noise added to the measurement vector ࢙. Figures 3 and 4 show ࡵ
the results of TGI recovery using Eq. 9 for a range of sampling ratios. The sampling
ratio in percent is defined as 100ܯ/ܰ. Both the original and recovered images
were normalized so their values were in the interval ሾ0,1ሿ before calculating the
peak signal to noise ratio (PSNR). The rightmost image in Fig. 3 shows the
recovered image using a sampling ratio of 2,000%. Although recognizable, the
image quality of TGI is still poor after using a large amount of measurements.

Fig. 2 32 × 32 test image

4

Fig. 3 Example recovered images using GI over a range of sampling ratios

Fig. 4 GI PSNR vs. sampling ratio

3. Computational Ghost Imaging

In TGI, the measured value of ࡵ෨ is used to recover an image of the object. In CGI,
instead of measuring ࡵ෨, it is assumed that ࡵ෨ ൌ This is only possible when using 4.ࡵ
an SLM where ࡵ can be predetermined. This allows us to dispense with the FPA,
leading to the simplified CGI experiment setup in Fig. 5. In the previous TGI
simulation it was also assumed that ࡵ෨ ൌ therefore, a CGI simulation without ;ࡵ
noise will have the same results as those shown in Figs. 3 and 4. To adequately
compare TGI and CGI, a more-sophisticated measurement model is needed.

Fig. 5 CGI setup

P
S

N
R

 (
dB

)

Light
Source (ࡵ)

Object (ࢀ)
Bucket Detector (ݏ)

5

In the discussion on TGI, the source illumination ࡵ has already been distinguished
from the measured illumination ࡵ෨. The desired ideal illumination pattern ࡵ is now
distinguished from the actual illumination ࡵ .′ࡵ′ is modeled with a linear scale factor
and Gaussian noise ࡵࣇ′ ∈ Թ

௡ൈ௡	as

ᇱࡵ 	ൌ ሺܾ݅ ൅ ܿሻࡵ ൅ ᇲ (10)ࡵࣇ

and used in place of ࡵ෨ in the construction of the measurement matrix in Eq. 6.
Optical effects such as the point spread function and attenuation are ignored. ࡵ෨ is
derived from ࡵ′ with additive noise ࡵࣇ෨ ∈ Թ

௡ൈ௡

෨ࡵ 	ൌ ᇱࡵ ൅ ෨. (11)ࡵࣇ

Measurement noise ࢙ࣇ ∈ Թெൈଵ is added to Eq. 5 giving

 ࢙ ൌ ࢞࡭ ൅ (12) .࢙ࣇ

Since TGI directly measures ࡵ෨, the scaling and noise of ࡵ′ can be accounted for in
GI image reconstruction. In CGI, ࡵ෨ is not measured. Therefore, the bias and noise
of ࡵ′ become extra system noise, degrading reconstruction performance.

Figures 6 and 7 show a comparison of TGI and CGI for various noise levels using
a fixed sampling ratio of 2,000% and a random binary illumination pattern. The
noise levels were determined using a noise ratio:

ߢ ൌ
௦ߪ ൅ ூᇲߪ
ூሚߪ

, (13)

where ߪ௦, ߪூᇲ, and ߪூሚ are the standard deviations of ࡵࣇ ,࢙ࣇ′, and ࡵࣇ෨ respectively. No
scale factor was used for this simulation (i.e., ܾ ൌ ܿ ൌ 0). The values of ߪ௦ and ߪூᇲ
were kept equal, as was the total value of ߪ௦ ൅ ூᇲߪ ൅ ூሚߪ ൌ 1.1. When ߢ is small,
the measured illumination noise ࡵࣇ෨ dominates, creating a substantial difference
between the actual object illumination ࡵ′ and the measured illumination ࡵ෨. Since
TGI relies on ࡵ෨ for image reconstruction, we expect that in this case TGI would
perform poorly. On the other hand, CGI relies on the ideal illumination ࡵ for
reconstruction. Since ࡵࣇ′ is small, ࡵ is close to ࡵ′, leading to high-quality CGI
images. When ߢ is large, ࡵࣇ෨ is small and ࡵࣇ′ is large, leading to the opposite result
where TGI outperforms CGI. In many practical applications, we expect that ࡵࣇ෨ is
relatively small and that TGI will perform better than CGI. The advantage of CGI
is that it operates without the FPA, simplifying the measurement process.

6

Fig. 6 Comparison of CGI and TGI for various noise ratios ࣄ: top row is CGI and bottom
row is TGI

Fig. 7 Comparison of CGI and TGI over a range of noise ratios ࣄ

There are a number of variations of GI image recovery. Some are applicable to
traditional GI as well as CGI, but the remainder of this report will focus exclusively
on CGI. Figure 8 shows a variant of CGI called differential GI (DGI).10 Like CGI,
the ideal illumination ࡵ is used for reconstruction, but a reference bucket detector

P
S

N
R

 (
dB

)

7

is employed to measure the total power of the light source. Using the form of
Eq. 1, DGI reconstruction is given by

ࡻ ൌ 〈ሺࡵ െ ሻ〈ࡵ〉 ቆݏ െ

〈ݏ〉
〈ݎ〉

 ቇ〉. (14)ݎ

Alternatively, in the form of Eq. 9, DGI reconstruction is given by

෥࢞ ൌ ሺ࡭ െ vecሺ〈ࡵ〉ሻ૚୘ሻ୘ ቆ࢟ െ

〈ݏ〉
〈ݎ〉

࢘ቇ, (15)

where

 ࢘ ൌ ሺݎଵ, ,ଶݎ … , ெሻ୘. (16)ݎ

Fig. 8 Diagram of DGI

Another CGI variant is normalized GI (NGI).11 NGI also makes use of a reference
bucket measurement and is calculated as

ࡻ ൌ 〈ሺࡵ െ ሻ〈ࡵ〉 ቆ

ݏ
ݎ
െ
〈ݏ〉
〈ݎ〉
ቇ〉, (17)

or in matrix form as

෥࢞ ൌ ሺ࡭ െ vecሺ〈ࡵ〉ሻ૚୘ሻ୘ ቆ࢟⊙/࢘ െ
〈ݏ〉
〈ݎ〉
ቇ, (18)

where ⊙/ denotes an element-wise division.

Examining the measurement model in Eq. 5, yet another reconstruction method
presents itself. Given that GI can be modeled as a linear set of equations, given ࢙
and ࡭, a vectorized estimation of the image ෥࢞ can be calculated by

 ෥࢞ ൌ ା࢙, (19)࡭

Light
Source (ࡵ)

Object (ࢀ)

Splitter

Bucket Detector (ݏ)

Reference
Detector (ݎ)

8

where ࡭ା is the pseudo-inverse (PINV) of 12.࡭

Figure 9 shows simulation results comparing CGI, DGI, NGI, and the PINV method
for a range of sampling ratios. Once again ࡵ is binary, and no noise sources were
added to the simulation. DGI and NGI perform roughly the same but are both much
better than CGI, with a 6-dB improvement for a sampling ratio of 1,500%. PINV is
the best performer, especially at higher sampling ratios. Since the system is
modeled by Eq. 5, there is perfect reconstruction when the sampling ratio reaches
100% and the PINV becomes a true inverse. Although in this case PINV performs
better than the other reconstruction algorithms, it has a much longer execution time.
Figure 9 shows the execution time the various GI reconstruction algorithms versus
the sampling ratio, which is related to the size of ࡭. The algorithms were performed
using MATLAB on a PC with an Intel Core i7-2760QM CPU running at 2.4 GHz
and 8 GB of RAM. All the other algorithms take virtually no time compared with
the much slower PINV method. In addition, the other algorithms can run as the
measurements are acquired, while PINV can only be applied at the end of the
measurement process.

Fig. 9 Execution time of GI reconstruction algorithms vs. sampling ratio

Although it was already demonstrated that DGI performs better than CGI, the true
advantages of DGI and NGI can be seen when ࡵ෨ and ࡵ′ do not equal ࡵ. Figures 10
and 11 are the same, except that the scale factors in Eq. 10 have been used in Fig.
11 to distort ࡵ෨ and ࡵ′ without any other additive noise; specifically, ܿ ൌ െ0.2 and
ܾ ൌ The performance of DGI and NGI, using the extra reference .ܯ/0.2
measurement, is comparable to the nonscaling case. CGI and PINV, which do not
make use of the reference measurement, perform poorly when the illumination is
distorted. Figure 12 summarizes the results of the nonscaled and scaled simulation
in Figs. 10 and 11.

E
xe

cu
tio

n
T

im
e

(s
)

9

Fig. 10 Comparison of CGI, DGI, NGI, and PINV for several sampling ratios

10

Fig. 11 Comparison of CGI, DGI, NGI, and PINV with scaled illumination for several
sampling ratios

11

Fig. 12 Summary of the nonscaled and scaled simulation results for the simulations in
Figs. 10 and 11

To improve performance in the case of distorted illumination, the reference
measurement can be added the PINV. Differential PINV (DPINV) is formed by
using the PINV in Eq. 15 to give

෥࢞ ൌ ା࡭ ቆ࢟ െ

〈ݏ〉
〈ݎ〉

࢘ቇ. (20)

Similarly, a normalized PINV (NPINV) is formed from Eq. 18 as

෥࢞ ൌ ା࡭ ቆ࢟⊙/࢘ െ

〈ݏ〉
〈ݎ〉
ቇ. (21)

Figure 13 shows the performance of DPINV and NPINV compared with the other
GI variants for the scaled illumination case. The extra information in the reference
measurement now allows DPINV and NPINV to outperform DGI and NGI.

P
S

N
R

 (
dB

)

P
S

N
R

 (
dB

)

12

Fig. 13 Performance comparison using scaled illumination including the new DPINV and
NPINV algorithms

4. Structured Illumination

The results so far have been obtained using random binary illumination patterns.
Higher performance can be obtained, however, using pseudorandom or structured
illumination.13 Three patterns are considered: Fourier, Hadamard, and noiselet.

Fourier illumination uses the discrete cosine transform (DCT), a real-valued
Fourier-related transform. Figure 14 shows some example DCT illumination
patterns. DCT illumination can take advantage of the fact that natural images
usually have most of their energy at lower frequencies. Figure 15 shows an example
image with its DCT and a high-contrast DCT for illustration. The upper left corner
of the DCT corresponds to lower frequencies, with the frequencies increasing
toward the lower right corner. The largest DCT coefficients are in the upper left
corner, containing most of the image’s energy. Figure 16 shows another
visualization demonstrating how the image’s energy is concentrated in a small
number of DCT coefficients. The 1024 pixel values of the 32 × 32 original image
were sorted in descending order and plotted as the standard basis. The DCT
coefficients were similarly ordered and plotted. There are a relatively small number
of large DCT coefficients compared with the number of large values in the standard
basis. This means that most of the frequency information is concentrated in these
few coefficients, allowing for a fairly accurate reconstruction of the image from a
small number of DCT illumination patterns. Coefficients from a Walsh–Hadamard
Transform (WHT), which is based on a Hadamard matrix, are also plotted in
Fig. 16. Here too, most of the image’s energy is concentrated in a small number of
coefficients.

P
S

N
R

 (
dB

)

13

Fig. 14 Example DCT illumination patterns

Fig. 15 Example image, the DCT of the image, and a high-contrast visualization of the DCT.
The lower frequencies of the DCT occur in the upper left and generally have the largest
amplitudes.

14

Fig. 16 Comparison of the image pixel magnitudes in the standard basis, the DCT coefficient
magnitudes, and the WHT coefficient magnitudes

Since the largest DCT coefficients are usually the lowest frequencies in the upper
left of the DCT, these frequency patterns are used first for GI illumination. Figure
17 shows the zig-zag method used to select patterns on an example 4×4 image.
Starting in the upper left, the arrows indicate the order of precedence. This is the
same order used in the Joint Photographic Experts Group (JPEG) compression
standard in order to capture the most image information with the fewest number of
DCT coefficients.14

Fig. 17 Zig-zag method used to order DCT coefficients for JPEG compression

Figure 18 shows the results of using DCT illumination for several GI variants. As
expected, the image reconstruction results perform well even when using a
relatively small number of measurements.

N
or

m
al

iz
ed

 M
ag

ni
tu

d
e

15

Fig. 18 Comparison of CGI, DGI, and PINV using DCT illumination for several sampling
ratios

A Hadamard matrix15 ࡴ௞ ∈ Թଶೖൈଶೖ is defined recursively as ࡴ଴ ൌ 1, and

௞ࡴ ൌ ൤
௞ିଵࡴ ௞ିଵࡴ
௞ିଵࡴ െࡴ௞ିଵ

൨. (22)

All of the elements are 1 or –1, and all of the rows are orthogonal. For GI with ܯ
measurements, ܯ rows of a Hadamard matrix can be used as the sensing matrix ࡭.
Negative values are changed to zero for illumination and can be treated as zero as
well in the image recovery algorithm. Alternatively, recovery can be handled by
first making a measurement under full illumination, ݏ଴, and then calculating other
measurements as ݏ௜

ᇱ ൌ ௜ݏ2 െ ଵ଴ࡴ ଴. Figure 19 shows six example rows of aݏ

16

Hadamard matrix, reshaped as square illumination patterns. Figure 20 shows a
comparison of CGI, DGI, and PINV using Hadamard illumination, without noise
or scaling. Sequency ordering was used instead of Hadamard ordering, which
places lower-frequency patterns first, improving image reconstruction
performance. Hadamard illumination is clearly superior to the random binary
illumination in Fig. 10.

Fig. 19 Example Hadamard illumination patterns

17

Fig. 20 Comparison of CGI, DGI, NGI, and PINV using Hadamard illumination for several
sampling ratios

Noiselets are pseudo-random binary functions that can be decomposed as a
multiscale filterbank.16,17 In general, they are complex-valued, although the
implementation used here is real-valued. A real-valued dragon noiselet
implementation is given in the function realnoiseletm in the Appendix, based

on code by Justin Romberg.18 Figure 21 shows six example illumination patterns
generated by noiselets. Figure 22 shows a comparison of CGI, DGI, NGI, and PINV
using noiselet illumination without noise or scaling. Noiselet illumination does not
perform as well as Fourier and Hadamard illumination for most sampling ratios
because the energy of natural images is not concentrated in a small number of
coefficients in the noiselet basis. The patterns are orthogonal, however, leading to
a near-perfect reconstruction at a 100% sampling ratio.

18

Fig. 21 Example noiselet illumination patterns

19

Fig. 22 Comparison of CGI, DGI, NGI, and PINV using noiselet illumination for several
sampling ratios

Figures 23 and 24 summarize the simulation results of the various illumination
patterns with different recovery algorithms. In general, DCT illumination performs
the best across GI-recovery algorithms. DCT illumination is real-valued, however,
and can be expensive to produce. In the case of binary-valued illumination,
Hadamard performs almost as well as DCT. Comparing the GI algorithms for the
various illumination types, PINV is the top performer. As mentioned previously,
PINV is a time-consuming algorithm. Among the faster CGI variants, DGI is
generally the next-best performer.

20

Fig. 23 A performance summary comparing DCT, noiselet, Hadamard, and binary
illumination using CGI, DGI, NGI, and PINV image recovery

Fig. 24 Performance summary comparing CGI, DGI, NGI, and PINV image recovery
algorithms for DCT, noiselet, Hadamard, and binary illumination

P
S

N
R

 (
dB

)
P

S
N

R
 (

dB
)

P
S

N
R

 (
dB

)
P

S
N

R
 (

dB
)

21

5. Denoising

Many noisy GI images, such as those in Fig. 10 and Fig. 21, can benefit from
denoising.19 Total variation (TV) regularization is explored here as a denoising
algorithm, although many other denoising algorithms exist.20 Following Gabriel
Peyré’s tutorial,21 the TV of an image ݂ is defined as

ሺ݂ሻܬ ൌ න‖݂׏ሺݔሻ‖݀(23) .ݔ

Denoising is accomplished through minimizing a combination of a fit to the data ݔ
using the L2 norm and the weighted TV given by

 min
௙

ଵ

ଶ
ݔ‖ െ ݂‖ ൅ ሺ݂ሻ. (24)ܬߣ

The minimization can be computed iteratively through gradient descent steps

 ݂௞ାଵ ൌ ݂௞ ൅ ߬ቀ݂௞ െ ݔ ൅ ሺ݂௞ሻቁ. (25)ܬGradߣ

For ݂௞ to converge, ߬ should be set such that

 ߬ ൏ ଶ

ଵାఒ୫ୟ୶
೑

‖஽మ௃ሺ௙ሻ‖
, (26)

assuming that ܬ is twice differentiable. In practice, the smooth TV norm

ఌሺ݂ሻܬ ൌ නඥߝଶ ൅ ݔሻ‖ଶ݀ݔሺ݂׏‖
(27)

is used to make the gradient well defined. Its gradient is

Gradܬఌሺ݂ሻ ൌ divቆ

݂׏

ඥߝଶ ൅ ଶ‖݂׏‖
ቇ.

(28)

Figures 25 and 26 show the results of denoising 128×128 CGI recovered images
using noiselet illumination. The best result of 800 iterations was chosen as the
denoised image, using ߣ ൌ ߝ ,0.1 ൌ 0.01, and

߬ ൌ

2
1൅ ߝ/8ߣ

	.
(29)

In this case, the denoising simulations in Fig. 25 resulted in an average 3-dB gain
in PSNR.

22

Fig. 25 Performance gain of denoising an image recovered through CGI over a range of
sampling ratios

Fig. 26 Examples of denoising CGI images for 3 sampling ratios

6. Compressive Sensing

CS is a relatively recent sensing technique where, unlike traditional sampling, the
number of measurements required depends on the sparsity of the signal instead of
its bandwidth. There are many tutorials that introduce CS,17,22–24 and the CCDC

P
S

N
R

 (
dB

)

23

Army Research Laboratory has researched the benefits of applying CS to a number
of different sensing problems.25–29 The sensing procedure of CS is similar to CGI
in many applications; therefore, it is natural to apply CS to GI.30 Like GI, CS can
be modeled as patterned illumination collected in a bucket detector, leading to the
same sensing model as in Eq. 5, ࢙ ൌ CS requires the image ࢞ to be sparse in .࢞࡭
some basis, a quality possessed by most natural images, as previously illustrated in
Fig. 15 and 20. Given the sparse coefficients ࣂ of ࢞ in basis શ, the measurements
࢙ can be rewritten as

 ࢙ ൌ ࣂશ࡭ ൌ (30) , ࣂࡳ

where ࢞ ൌ શࣂ and the system matrix ࡳ is defined as ࡳ ൌ ܰ શ. Given that࡭ ൐ ,ܯ
there are an infinite number of solutions to Eq. 30, but CS theory states that if there
are a sufficient number of measurements, the sparsest solution will recover the
original signal. This can be found through L1-norm minimization denoted as

 min
ࣂ
ଵ‖ࣂ‖ 		subject	to		࢙ ൌ (31) .ࣂࡳ

The number of measurements required to reconstruct ࢞ is

ܯ ൒ ܥ ∙ ଶߤ ∙ ଴‖ࣂ‖ ∙ log	ܰ, (32)

where ܥ is a positive constant, ‖ࣂ‖଴ is the number of nonzero values in ࣂ, and ߤ is
a small constant determined by the structure of ࡳ called mutual coherence. The
important point is that the number of measurements is linearly related to its sparsity
 ଴, but only logarithmically related to the signal’s size, allowing large sparse‖ࣂ‖
signals to be sampled with relatively few measurements.

In practice, TV minimization given by

 min
࢞
ሺ࢞ሻܬ 		subject	to		࢙ ൌ (33) ࢞࡭

also works well, since the gradient of natural images is sparse. ܬ here is a discrete
version of the TV norm defined in Eq. 23.

Figures 27 and 28 show a comparison of CGI using noiselet illumination,
Hadamard illumination, CS using a DCT basis, and CS using TV minimization on
an example 256 × 256 image. The CS results were obtained from the open-source
L1 Magic software package,31 using noiselets to generate the sensing matrix. CS
using TV minimization is the best performer, but GI also does well, outperforming
CS using the DCT basis in this case.

24

Fig. 27 Comparison of CGI with noiselet and Hadamard illumination, and CS using a DCT
basis and TV minimization

Fig. 28 Example images comparing CGI with noiselet and Hadamard illumination, and CS
using a DCT basis and TV minimization

P
S

N
R

 (
dB

)

25

There are three important points regarding these results. First, CS-minimization
algorithms are computationally intensive and have a long execution time compared
with GI. Figure 29 shows the execution time of the CS simulations used to produce
the CS DCT results in Fig. 27. This is much longer than the CGI noiselet algorithm,
which executed in about 2 ms. These results were obtained using the same PC as
for Fig. 9. Not only does CS have a long execution time, but it can only begin once
all of the measurements have been made. GI algorithms can be performed as each
measurement is acquired. Second, noiselets do not enhance CS performance much
over a random binary pattern. This means that in the case of random illumination,
CS will greatly outperform TGI, similar to the noiselet-illuminated CGI and CS
simulations presented here. Third, the performance of CS depends on the sparsity
of the image. Although most natural 2-D images are sparse, they are only modestly
sparse compared with many 3-D data applications, such as magnetic resonance
imaging, hyper-spectral imaging, and 3-D antenna patterns. Thus, on very sparse
images CS will perform extremely well, while the performance of GI will remain
the same.

Fig. 29 Execution time of the CS algorithm using the DCT basis

This third point is demonstrated in Figs. 30 and 31, comparing the performance of
Hadamard illuminated GI with CS in the standard basis. In this example, the image
of text is extremely sparse, with only 2.6% of the pixel values nonzero. In this case,
the performance difference between CS and GI is much larger than that of the
cameraman test image used in Fig. 27. In Figs. 32 and 33 a new test image was
formed by taking the inverse DCT of the text image used in Fig. 31, ensuring that
it is sparse in the DCT basis. Here CS also performs much better than GI, now using
CS with the DCT basis. The contrast of the images in Fig. 33 was increased for
illustration purposes.

T
im

e
 (

s)

26

Fig. 30 Comparison of GI and CS using the image sparse in the standard basis shown in Fig.
31

P
S

N
R

 (
dB

)

27

Fig. 31 Example images comparing GI with CS using a sparse image in the standard basis

28

Fig. 32 Comparison between GI and CS using the image sparse in the DCT basis shown in
Fig. 33

P
S

N
R

 (
dB

)

29

Fig. 33 Example high-contrast images comparing GI with CS using a sparse image in the
DCT basis

30

7. Conclusion

This report introduced GI, comparing several different GI algorithms. When the
illumination source is random, a high-resolution FPA must be used to record the
illumination patterns. In these cases, CS reconstruction typically produces
much-higher-quality images than GI, although their reconstruction algorithms are
much more computationally intensive. If the illumination source is controlled, GI
performance can be enhanced using structured patterns such as Hadamard or DCT
illumination. In these cases it is possible to dispense with the FPA, although often
a second-reference bucket detector will aid image reconstruction using DGI or NGI
algorithms. The quality of CGI compared with TGI with an FPA will depend on
how accurately the real illumination matches the programmed illumination. CS
reconstruction may also outperform GI algorithms for structured illumination,
although the performance gain will be less than that seen for random illumination.
In addition to the reconstruction algorithm, GI can benefit from denoising during
postprocessing. Example MATLAB code is provided in the Appendix that
implements many of the algorithms presented here, allowing others to easily begin
their own exploration into GI.

31

8. References

1. Erkmen BI, Shapiro JH. Ghost imaging: from quantum to classical to
computational. Advances in Optics and Photonics. 2010;2(4):405–450.

2. Pittman TB, Shih YH, Strekalov DV, Sergienko AV. Optical imaging by
means of two-photon quantum entanglement Phys Rev A. 1995;52(5).

3. Brambilla Gatti E, Bache M, Lugiato LA. Ghost imaging with thermal light:
comparing entanglement and classical correlation. Phys Rev Lett.
2004;93:093602.

4. Shapiro JH. Computational ghost imaging. Phys Rev A. 2008;78.6:061802.

5. Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector. Phys
Rev A. 2009;79:053840.

6. Basano L, Ottonello P. Ghost imaging: open secrets and puzzles for
undergraduates. American Journal of Physics. 2007;75(4):343–351.

7. Padgett MJ, Boyd RW. An introduction to ghost imaging: quantum and
classical. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences. 2017;375(2099):20160233.

8. Hoenders BJ. Review of a bewildering classical–quantum phenomenon: ghost
imaging. Advances in Imaging and Electron Physics. 2018;208:1.

9. Pal D. Review of ghost imaging; 2015 Aug [accessed 2019 Jan 7].
https://www.researchgate.net/publication/281103553_Review_of_Ghost_Ima
ging.

10. Ferri F, Magatti D, Lugiato LA, Gatti A. Differential ghost imaging. Physical
Review Letters. 2010;104(25):253603.

11. Sun Baoqing, Welsh SS, Edgar MP, Shapiro JH, Padgett MJ. Normalized
ghost imaging. Optics Express. 2012;20(15):16892–16901.

12. Zhang C, Guo S, Cao J, Guan J, Gao F. Object reconstitution using pseudo-
inverse for ghost imaging. Optics Express. 2014;22(24):30063–30073.

13. Zhang Z, Wang X, Zheng G, Zhong J. Hadamard single-pixel imaging versus
Fourier single-pixel imaging. Optics Express. 2017;25:19619–19639.

14. Wallace GK. The JPEG still picture compression standard. IEEE Transactions
on Consumer Electronics. 1992;38(1):xviii-xxxiv.

32

15. Hedayat A, Wallis WD.. Hadamard matrices and their applications. The
Annals of Statistics. 1978;6(6):1184–1238.

16. Coifman Ronald, Geshwind F, Meyer Yves. Noiselets. Applied and
Computational Harmonic Analysis. 2001;10.1:27–44.

17. Candes Emmanuel, Romberg Justin. Sparsity and incoherence in compressive
sampling. Inverse Problems. 2007;23(3):969.

18. Romberg Justin. Imaging via compressive sampling: introduction to
compressive sampling and recovery via convex programming. IEEE Signal
Processing Magazine. 200;25(2):14–20.

19. Yao Xu-Ri, Yu Wen-Kai, Liu Xue-Feng, Li Long-Zhen, Li Ming-Fei, Wu
Ling-An, Zhai Guang-Jie. Iterative denoising of ghost imaging. Optics
Express. 2014;22(20):24268–24275.

20. Buades Antoni, Coll Bartomeu, Morel Jean-Michel. A review of image
denoising algorithms, with a new one. Multiscale Modeling & Simulation.
2005;4(2):490–530.

21. Peyré G. The numerical tours of signal processing: advanced computational
signal and image processing. IEEE Computing in Science and Engineering.
2011;13(4):94–97.

22. Candès Emmanuel J, Wakin Michael B. An introduction to compressive
sampling. IEEE Signal Processing Magazine. 2008;25(2):21–30.

23. Duarte Marco F, Davenport Mark A, Takhar Dharmpal, Laska Jason N, Sun
Ting, Kelly Kevin F, Baraniuk Richard G. Single-pixel imaging via
compressive sampling. IEEE Signal Processing Magazine. 2008;25(2):83–91.

24. Willett Rebecca M, Marcia Roummel F, Nichols Jonathan M. Compressed
sensing for practical optical imaging systems: a tutorial. Optical Engineering.
2011;50(7):072601.

25. Chen X, Yu Z, Hoyos S, Sadler BM, Silva-Martinez J. A sub-nyquist rate
sampling receiver exploiting compressive sensing. IEEE Transactions on
Circuits and Systems I: Regular Papers. 2011;58(3):507–520.

26. Kim HH, Govoni MA, Haimovich AM. May. Cost analysis of compressive
sensing for MIMO STAP random arrays. IEEE Radar Conference (RadarCon).
2015:0980–0985. doi: 10.1109/RADAR.2015.7131137.

27. Don ML. Fu C, Arce GR. Compressive imaging via a rotating coded aperture.
Applied Optics. 2017;56(3):B142–B153.

33

28. Fu C, Don ML, Arce GR. Compressive spectral imaging via polar coded
aperture. IEEE Transactions on Computational Imaging, 2017;3(3):408–420.

29. Don ML, Arce GR. Antenna radiation pattern compressive sensing. MILCOM
2018. doi: 10.1109/MILCOM.2018.8599791.

30. Katz Ori, Bromberg Yaron, Silberberg Yaron. Compressive ghost imaging.
Applied Physics Letters. 2009;95.13:131110.

31. Candes Emmanuel, Romberg Justin. l1-magic: recovery of sparse signals via
convex programming; 2005 Oct [accessed 2019 Nov 26]. http://www-
inst.eecs.berkeley.edu/~ee225b/fa12/lectures/CSmeetsML-
Lecture1/codes/l1magic/l1magic.pdf.

34

Appendix. Example MATLAB Code

35

The example code consists of a main GI function in GI.m, and two test scripts,
GI_noise_test.m and GI_test.m. GI_noise_test.m will reproduce (from the main
report) Fig. 7, and GI_test.m will reproduce Fig. 20, Fig. 22, Fig. 18, Fig. 23, and
Fig. 24. To use the “noiseletf” illumination in GI.m, you must download and install
Justin Romberg’s noiselet code. The original code was unavailable at the time of
publication, but was found on an alternative website.* Further documentation of the
example code is contained in the code comments.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% GI.m: Main GI function %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function
[O,time,PSNR]=GI(img,m,gi_type,illum_type,scale,vs,vI,vI2,do_denoise)
%Inputs
% img - image (square, sides are power of 2)
% m - measurements
% gi_type - CGI DGI NGI PINV DPINV NPINV JPEG
% illum_type - 'hadamardf' 'hadamardm' 'binarym' 'realm' 'noiseletf'
% 'noiseletm' 'dctsm' 'dctzzm'
% Vnoise - variance of noise added to bucket and reference bucket
% scale - scale measurements linearly from 1 to 1+scale
% vs - noise standard dev added to bucket and reference bucket
% vI - noise added to illumination
% vI2 - moise added to measured illumination
% do_denoise - 1 = denoise, 0 = don't denoise
%Outputs
% O - recovered image (vectorized)
% time - processing time
% PSNR - in dB

%illum_type notes:
% end in m, matrix implementation
% end if f, functional implementation

%If TGI or PINV variant, or use noise or scale, must use a matrix illum
%For large images, use functional illumination, don't use PINV variant

%Support
% noiseletf requires noiselet mex code by Justin Romberg
% The denoising and supporting functions are based on code by Gabriel

%Examples
% [O,time,PSNR]=GI(rand(4,4),8,'TGI','hadamardm',1,0,0,0,0)
% [O,time,PSNR]=GI(img,m,'TGI','binarym',scale,Vs,Vi1,Vi2,0)

n=length(img(1,:));
img=imnormalize(img);
%each row of I is vec(illum. pattern)
switch illum_type
 case 'hadamardm'
 % Im=hadamard(n^2); %hadamard ordering
 % Im=Im(1:m,:);
 % %Im=(Im+1)/2;
 Im1=index(fwht(eye(n^2),n^2),1:m); %sequency ordering
 Im1=(Im1+1)/2;
 case 'hadamardf'

*22. Romberg, J. Compressive Sensing [accessed 2019 Jan 7]. http://w3.impa.br/~aschulz
/CS/paper.html.

36

 I1 = @(z) index(fwht(z,n^2),1:m); %sequency ordering
 It1 = @(z) ifwht(unindex(z,1:m,n^2));
 case 'noiseletf'
 q = randperm(n^2)';
 I1 = @(z) index(realnoiselet(z),q(1:m));
 It1 = @(z) realnoiselet(unindex(z, q(1:m), n^2));
 case 'noiseletm'
 q = randperm(n^2)';
 Im1=realnoiseletm(eye(n^2)); %I matrix for PINV
 Im1=Im1(q(1:m),:);
 Im1=(Im1+1)/2;
 case 'binarym'
 Im1=double(rand(m,n^2)>0.5);
 case 'realm'
 Im1=rand(m,n^2);
 case 'dctsm' %change m to closest square, use upper left square for DCT
 nmv=((1:n).^2);
 [~,nm]=min(abs(nmv-m));
 m=nm^2;
 Im1=zeros(m,n^2);
 for k=1:m
 v=zeros(nm^2,1);
 v(k)=1;
 vm=zeros(n,n);
 vm(1:nm,1:nm)=reshape(v,[nm,nm]);
 psi=dct2(vm);
 Im1(k,:)=psi(:);
 end
 case 'dctzzm' %use jpeg zigzag DCT
 Im1=dct_zigzag(n,m);
 Im1=Im1-min(Im1(:));
end
if illum_type(end)=='m'
 %I1=@(z) Im1*z; %ideal I
 It1=@(z) Im1'*z;
 Im=scale_rows(Im1,scale)+vI*randn(m,n^2); %real I with scale and noise
 I=@(z) Im*z;
 %It=@(z) Im'*z;
 Im2=Im+vI2*randn(m,n^2); %measured I for TGI
 %I2=@(z) Im2*z;
 It2=@(z) Im2'*z;
else
 I = @(z) I1(z);
 %It = @(z) It1(z);
 %I2 = @(z) I1(z);
 It2 = @(z) It1(z);
end

%Noise
% Im and I() - have scale and noise (scale and vI added)
% Iavev - is from measured I with measurement noise
% (vI2 added on top of scale and vI)
% Iavev1 - is from ideal I
% S, R, Save, Rave - all have noise added (vs on top of scale and vI)

T=img(:); %transmittance
S=I(T)+sqrt(vs)*randn(m,1); %bucket measurements
R=I(ones(n^2,1))+sqrt(vs)*randn(m,1); % reference bucket, sums each
illum. pattern (each row)
Rave=mean(R); %(scalar)
Iavev1=It1(ones(m,1))/m; %use ideal I
Iavev=It2(ones(m,1))/m; %measured I (TGI)
Save=mean(S); %average S (scalar)

37

tic
switch gi_type
 case 'TGI'
 O=(It2(S-Save)-Iavev*sum(S-Save))/m; %traditional GI (I-Iave)(S-Save)
 case 'CGI'
 O=(It1(S-Save)-Iavev1*sum(S-Save))/m; %computational GI
 case 'DGI'
 O=(It1(S-R*Save/Rave)-Iavev1*sum(S-R*Save/Rave))/m; %differential GI
 case 'NGI'
 O=(It1((S./R)-Save/Rave)-Iavev1*sum((S./R)-Save/Rave))/m;%normalized GI
 case 'PINV'
 O=pinv(Im1)*S; %pseudoinverse
 case 'DPINV'
 O=pinv(Im1)*(S-R*Save/Rave)/m; %differential pseudoinverse
 case 'NPINV'
 O=pinv(Im1)*((S./R)-Save/Rave)/m; %normalized pseudoinverse
 case 'JPEG'
 O=reshape(idct2(dct2(img).*ones_zigzag(n,m)),n^2,1);
 %jpeg like compression, close to DCT illum
end
time=toc;
if do_denoise
 O=denoise(reshape(O,n,n),img);
 O=O(:);
end
O=imnormalize(O);
PSNR=-10*log10((sum((T-O).^2)/n^2));
end

function [v2] = index(v,i)
v2=v(i,:);
end

function [v2] = unindex(v,i,n)
v2=zeros(n,1);
v2(i)=v;
end

function [y] = imnormalize(x)
y=(x-min(min(x)))/max(max(x-min(min(x))));
end

function [m] = scale_rows(m,s)
%scale_rows scales rows of m, starting from 1 to 1+s
[r,~]=size(m);
for i=1:r
 m(i,:)=m(i,:)*((i*s/r)+1);
end
end

function y = realnoiseletm(x)
[m,n]=size(x);
y=zeros(m,n);
m=uint32(m);
for i=1:n
 c = m - 1;
 j=uint32(0);
 mh=bitshift(m,-1);
 while (j < mh)
 k = bitxor(j,c);
 y(j+1,i) = x(j+1,i) + x(k+1,i);
 y(k+1,i) = x(j+1,i) - x(k+1,i);

38

 j=j+1;
 end
 d = bitshift(c,-1);
 while (d > 0)
 j=uint32(0);
 while j < mh
 k = bitxor(bitxor(j,c),d);
 temp = y(j+1,i);
 y(j+1,i) = y(j+1,i) - y(k+1,i);
 y(k+1,i) = temp + y(k+1,i);
 j=j+1;
 end
 d = bitshift(d,-1);
 end
end
end

function A=dct_zigzag(n,m)
d=1; %diagonal number
cnt=1; %counts measurements (rows of A)
up=1; %1 = col increasing, 0 = col decreasing
A=zeros(m,n^2);
r=d; %row index
c=1; %col index
am=zeros(n,n); %dct matrix
d_inc=1;
%figure(1) %debug
while cnt<=m;
 for i=1:d
 am(r,c)=1;
 %imshow(imresize(am,16,'nearest'),[]) %debug
 psi=dct2(am);
 am(r,c)=0; %init back to 0
 A(cnt,:)=psi(:); %vectorize dct and add to A
 cnt=cnt+1;
 if cnt > m %stop when have enough measurements
 break;
 end
 if up %update indices
 r=r-1;
 c=c+1;
 else
 r=r+1;
 c=c-1;
 end
 end
 if d==n %past half way
 d_inc=-1;
 end
 d=d+d_inc; %increment diagonal
 up=~up; %switch direction
 if up %init indices
 if d_inc==1
 r=d;
 c=1;
 else %past half way
 r=n;
 c=n-d+1;
 end
 else
 if d_inc==1
 c=d;
 r=1;

39

 else %past half way
 c=n;
 r=n-d+1;
 end
 end
end
end

function am=ones_zigzag(n,m)
d=1; %diagonal number
cnt=1; %counts measurements (rows of A)
up=1; %1 = col increasing, 0 = col decreasing
%A=zeros(m,n^2);
r=d; %row index
c=1; %col index
am=zeros(n,n); %dct matrix
d_inc=1;
%figure(1) %debug
while cnt<=m;
 for i=1:d
 am(r,c)=1;
 %imshow(imresize(am,16,'nearest'),[]) %debug
 %psi=dct2(am);
 %am(r,c)=0; %init back to 0
 %A(cnt,:)=psi(:); %vectorize dct and add to A
 cnt=cnt+1;
 if cnt > m %stop when have enough measurements
 break;
 end
 if up %update indices
 r=r-1;
 c=c+1;
 else
 r=r+1;
 c=c-1;
 end
 end
 if d==n %past half way
 d_inc=-1;
 end
 d=d+d_inc; %increment diagonal
 up=~up; %switch direction
 if up %init indices
 if d_inc==1
 r=d;
 c=1;
 else %past half way
 r=n;
 c=n-d+1;
 end
 else
 if d_inc==1
 c=d;
 r=1;
 else %past half way
 c=n;
 r=n-d+1;
 end
 end
end
end

function fTV0 = denoise(y, f0)

40

niter = 800;
epsilon=0.01;
lambda=0.1;
tau = 2 / (1 + lambda * 8 / epsilon);
fTV = y;
err_best=-inf;
for i=1:niter
 Gr = grad(fTV);
 d = sqrt(sum(Gr.^2,3));
 G0 = -div(Gr ./ repmat(sqrt(epsilon^2 + d.^2) , [1 1 2]));
 G = fTV-y+lambda*G0;
 fTV = fTV - tau*G;
 err = snr(f0,fTV);
 if err>err_best
 err_best=err;
 fTV0=fTV;
 end
end
end

function fx=grad(M)
fx = M([2:end end],:)-M;
fy = M(:,[2:end end])-M;
fx = cat(3,fx,fy);
end

function fd=div(Px)
Py = Px(:,:,2);
Px = Px(:,:,1);
fx = Px-Px([1 1:end-1],:);
fx(1,:) = Px(1,:);
fx(end,:) = -Px(end-1,:);
fy = Py-Py(:,[1 1:end-1]);
fy(:,1) = Py(:,1);
fy(:,end) = -Py(:,end-1);
fd = fx+fy;
end

function v=snr(x,y)
v = 20*log10(norm(x(:))/norm(x(:)-y(:)));
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% GI_test.m: Reproduce Fig. 7 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear
close all

img=double(imread('cameraman.tif')); %img
n=32; %width of image
m=round(20*n^2); %number of measurements
gi_type={'CGI','TGI'};

% if vratio is low, that means vI2v (measured I for TGI) is high
% and other noise is low, means TGI will do bad
vs=0.5:-0.05:0.05; %std dev of noise added to bucket and reference bucket
vI=0.5:-0.05:0.05; %std dev of noise added to I
vI2=0.1:0.1:1; %std dev of noise added to measured I
nloops=length(vs);
ntypes=length(gi_type);
vratio=(vs+vI)./vI2;
[r,c]=size(img);

41

img = imresize(img,n/r);
PSNR=zeros(ntypes,nloops);
fprintf('Total = %d, ',nloops)
for loop=1:nloops
 rng('default');
 fprintf('%d ',loop);
 for i=1:ntypes
 [~,~,PSNR(i,loop)]=...
 GI(img,m,char(gi_type(i)),'binarym',0,vs(loop),vI(loop),vI2(loop),0);
 end
end

figure
semilogx(vratio,PSNR,'LineWidth',1.5)
xlabel('\kappa')
ylabel('PSNR (dB)')
legend(gi_type,'Location','SouthEast')
fprintf('Done!\n',loop);

%%
% GI_test.m: Reproduce Figures. 15, 17, 22, 23, and 24 %
%%
clear
close all

img=double(imread('cameraman.tif')); %img
n=32; %width of image
m=round((0.3:0.05:1)*n^2); %number of measurements
gi_type={'CGI','DGI','NGI','PINV'};
illum_type={'binarym','hadamardm','noiseletm','dctzzm'};
illum_title={'Binary','Hadamard','Noiselet','DCT'};
m_plot=round([0.3 0.7 0.9 1]*n^2); % measurements to plot

m_ploti=zeros(1,length(m_plot)); %create index of m_plot into m vector
for i=1:length(m_plot)
 m_ploti(i)=find(m==m_plot(i));
end
nillum=length(illum_type); %number of illums
nm=length(m); %number of measurements
ntypes=length(gi_type); %number of GI algorithms
[r,c]=size(img); %rows and cols of image
img = imresize(img,n/r); %resize image base on n
PSNR=zeros(ntypes,nm,nillum); %init result matrices
Om=zeros(n^2,nm,ntypes,nillum);
fprintf('Total = %d, ',nm*nillum)
timem=zeros(ntypes,nm,nillum);
for illumi=1:nillum
 for mi=1:nm
 rng('default'); %init random number gen
 fprintf('%d ',mi+(illumi-1)*nm) %progress
 for typei=1:ntypes
 %run GI sim
 [Om(:,mi,typei,illumi),timem(typei,mi,illumi),PSNR(typei,mi,illumi)]=...
 GI(img,m(mi),char(gi_type(typei)),char(illum_type(illumi)),0,0,0,0,0);
 end
 end
end

%% plot images based on m_plot list
for illumi=1:nillum
 figure
 ha = tight_subplot(length(m_plot),ntypes,[.01 .01],[.01 .05],[.1 .01]);

42

 for mi=1:length(m_plot)
 for typei=1:ntypes
 axes(ha((mi-1)*ntypes+typei));
 imshow(reshape(Om(:,m_ploti(mi),typei,illumi),n,n),[])
 if mi==1 %only list gi_type for first row
 title({char(gi_type(typei)),sprintf('PSNR = %.1f
dB',PSNR(typei,m_ploti(mi),illumi))})
 else
 title(sprintf('PSNR = %.1f dB',PSNR(typei,m_ploti(mi),illumi)))
 end
 if typei==1 %only list sampling for first col
 ylabel(sprintf('%d%% Sampling',round(100*m(m_ploti(mi))/n^2)),...
 'FontSize',12,'FontWeight','bold')
 end
 end
 end
 set(gcf,'Position', [600 200 700 750])
end
fprintf('Done!\n')

%% Compare illum, organized by GI type
figure
subplot_list=[1 2; 3 4; 6 7; 8 9]; %each subplot spans 2 cols
line_list={'-','-.','--',':'};
for typei=1:ntypes %GI type
 subplot(2,5,subplot_list(typei,:)) %legend will be on last subplot col
 for illumi=1:nillum %illum type
 plot(100*m/n^2, PSNR(typei,:,illumi),line_list{illumi},'LineWidth',1.5)
 hold on
 end
 title(gi_type{typei})
 ylim([4 45])
 xlim([100*m(1)/n^2 100*m(end)/n^2])
 if mod(typei,2)==1
 ylabel('PSNR (dB)')
 end
 if typei>2
 xlabel('Sampling (Percent)')
 end
end
s=subplot(2,5,5);
s.Position=[0.8137 0.8548 0.031 0.03870];
for illumi=1:nillum
 plot(1,1,line_list{illumi},'LineWidth',1.5)
 hold on
end
l=legend(illum_title,'Location','North');
l.Position=[0.7590 0.7565 0.2014 0.1698];

%% Compare types, organized by illum
figure
subplot_list=[1 2; 3 4; 6 7; 8 9]; %each subplot spans 2 cols
for illumi=1:nillum %illum type
 subplot(2,5,subplot_list(illumi,:)) %legend will be on last subplot col
 for typei=1:ntypes %GI type
 plot(100*m/n^2, PSNR(typei,:,illumi),line_list{typei},'LineWidth',1.5)
 hold on
 end
 title(illum_title{illumi})
 ylim([4 45])
 xlim([100*m(1)/n^2 100*m(end)/n^2])
 if mod(illumi,2)==1
 ylabel('PSNR (dB)')

43

 end
 if illumi>2
 xlabel('Sampling (Percent)')
 end
end
s=subplot(2,5,5);
s.Position=[0.8137 0.8548 0.031 0.03870];
for typei=1:ntypes
 plot(1,1,line_list{typei},'LineWidth',1.5)
 hold on
end
l=legend(gi_type,'Location','North');
l.Position=[0.7590 0.7565 0.2014 0.1698];

44

List of Symbols, Abbreviations, and Acronyms

2-D 2-dimensional

3-D 3-dimensional

CS compressive sensing

CGI computational ghost imaging

CPU central processing unit

DCT discrete cosine transform

DGI differential ghost imaging

DPINV differential pseudo-inverse

FPA focal point array

GI ghost imaging

JPEG Joint Photographic Experts Group

NGI normalized ghost imaging

NPINV normalized pseudo-inverse

PC personal computer

PINV pseudo-inverse

PSNR peak-signal-to-noise ratio

RAM random access memory

SLM spatial light modulator

TGI traditional ghost imaging

TV total variation

WHT Walsh–Hadamard Transform

45

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 1 CCDC ARL
 (PDF) FCDD RLD CL
 TECH LIB

 23 CCDC ARL
 (PDF) FCDD RLW LF

B ALLIK
B J ACKER
T G BROWN
S BUGGS
E BUKOWSKI
J COLLINS
J CONDON
B DAVIS
M DON
D EVERSON
R HALL
J HALLAMEYER
M HAMAOUI
T HARKINS
M ILG
B KLINE
J MALEY
C MILLER
B NELSON
D PETRICK
K PUGH
N SCHOMER
B TOPPER

