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1.  Introduction 

Ghost imaging (GI) is a novel imaging technique where an object is imaged using 
two light sources: an object beam that illuminates the object and is measured by a 
bucket detector, and a reference beam measured by a high-resolution focal point 
array (FPA).1 The light collected by the bucket detector interacts with the object 
but has no resolution. The reference beam is detected by a high-resolution imager, 
but does not interact with the object. Although neither measurements can image the 
object alone, a ghost image of the object can be created by combining the 
measurements. GI is applicable to imaging objects in harsh environments where 
typical imaging techniques will fail. 

Initial work on GI was posited to use quantum entanglement between the photons 
of the object and reference beams.2,3 Later work demonstrated GI without quantum 
entanglement and without even a reference beam.4,5 This technique is called 
computational GI (CGI). It is beyond the scope of this report to explore the role of 
quantum entanglement in GI, hence only classical optical effects are considered. 

Several papers offer a review of GI,6–9 but many of them focus on the issue of 
quantum entanglement, and are either too detailed for a basic introduction or too 
simple, focusing on the history of GI without addressing GI algorithms. In addition, 
the author is not aware of any GI papers accompanied by open-source software to 
allow for reproducible results. This report seeks to fill this gap, presenting and 
comparing several GI techniques and providing example MATLAB code. 
Traditional GI (TGI) is explained, modeled, and simulated. Basic CGI is introduced 
and compared with TGI. Building on basic CGI, several CGI variants are presented, 
and their performance is compared. GI with structured and pseudo-random 
illumination is evaluated. The enhancement of GI by denoising is demonstrated. 
Finally, compressive sensing (CS) image reconstruction is presented and compared 
to GI reconstruction. 

2.  Traditional Ghost Imaging 

Figure 1 shows a diagram of TGI.1 A light source transmits an intensity pattern 
modeled as matrix ࡵ ∈ Թ௡ൈ௡. The light is split, part detected by a ݊ ൈ ݊ FPA as 
values ࡵ෨ ∈ Թ௡ൈ௡ and part transmitted through a partially transparent object modeled 
as transparency matrix ࢀ ∈ Թ௡ൈ௡. GI can also be performed using light reflected 
from opaque objects. A single-pixel bucket detector sums the light transmitted 
through the object, producing a scalar measurement	ݏ. This basic diagram ignores 
lenses that some implementations may require. It is assumed that there is some 
environmental factor that prevents direct imaging with the FPA but allows the 
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bucket detector to collect the object’s light. The measurement process is repeated 
to produce ܯ measurements, each using different illumination patterns. The light 
might be a random, uncontrolled source, such as a pseudothermal source, or it may 
be a controlled spatial light modulator (SLM). 

 

Fig. 1 Traditional ghost imaging 

An image of the object, ࡻ ∈ Թ௡ൈ௡, is recovered by calculating the correlation 
between ࡵ෨ and ݏ as 

ࡻ  ൌ 〈൫ࡵ෨ െ ݏ൯ሺ〈෨ࡵ〉 െ  ሻ〉, (1)〈ݏ〉

where 〈∙〉 denotes an average value. More explicitly, using ݅ as the measurement 
index, 

 
ࡻ ൌ

1
ܯ
෍ቀ൫ࡵ෨௜ െ ௜ݏ൯ሺ〈෨ࡵ〉 െ ሻቁ〈ݏ〉

ெ

௜ୀଵ

, (2) 

with 

 
〈෨ࡵ〉 ൌ

1
݊
෍ࡵ෨௜

௡

௜ୀଵ

 (3) 

and 

 
〈ݏ〉 ൌ

1
݊
෍ݏ௜

௡

௜ୀଵ

. (4) 

In a compact notation, the measurement process can be modeled as  

 ࢙ ൌ  (5) ,࢞࡭

where ࡭ ∈ Թெൈே is the measurement matrix with rows 

௜ࢇ  ൌ vec൫ࡵ෨௜൯
୘
, (6) 
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࢞ ∈ Թேൈଵ is the vecorized object 

 ࢞ ൌ vecሺࢀሻ, (7) 

and ࢙ ∈ Թெൈଵ is the measurement vector 

 ࢙ ൌ ሺݏଵ, ,ଶݏ … ,  ெሻ୘, (8)ݏ

where ܰ ൌ ݊ଶ and vecሺ∙ሻ is an operator that vectorizes a matrix into a single 
column. This simple model excludes any path loss, optical effects, or noise; 
therefore, ࡵ෨ represents the true modeled object illumination. Using this 
measurement matrix notation, Eq. 1 can be rewritten as 

 ෥࢞ ൌ ൫࡭ െ vec൫〈ࡵ෨〉൯૚୘൯
୘
ሺ࢟ െ  ሻ, (9)〈ݏ〉

with ෥࢞ ൌ vecሺࡻሻ. The vec൫〈ࡵ෨〉൯૚୘ term performs mean centering, subtracting 

vec൫〈ࡵ෨〉൯
୘
 from every row of ࡭, where ૚ ∈ Թேൈଵ is a vectors of ones. 

Using the 32 × 32 test image in Fig. 2, GI measurements were simulated using  
Eq. 5, with a random binary ࡵ (i.e., the elements of ࡵ were drawn from a Bernoulli 
random variable with equal probabilities of 0 and 1). The simulation was noiseless, 
with ࡵ෨ ൌ  and no noise added to the measurement vector ࢙. Figures 3 and 4 show ࡵ
the results of TGI recovery using Eq. 9 for a range of sampling ratios. The sampling 
ratio in percent is defined as 100ܯ/ܰ. Both the original and recovered images 
were normalized so their values were in the interval ሾ0,1ሿ before calculating the 
peak signal to noise ratio (PSNR). The rightmost image in Fig. 3 shows the 
recovered image using a sampling ratio of 2,000%. Although recognizable, the 
image quality of TGI is still poor after using a large amount of measurements. 

 

Fig. 2 32 × 32 test image 
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Fig. 3 Example recovered images using GI over a range of sampling ratios 

 

Fig. 4 GI PSNR vs. sampling ratio 

3.  Computational Ghost Imaging 

In TGI, the measured value of ࡵ෨ is used to recover an image of the object. In CGI, 
instead of measuring ࡵ෨, it is assumed that ࡵ෨ ൌ  This is only possible when using 4.ࡵ
an SLM where ࡵ can be predetermined. This allows us to dispense with the FPA, 
leading to the simplified CGI experiment setup in Fig. 5. In the previous TGI 
simulation it was also assumed that ࡵ෨ ൌ  therefore, a CGI simulation without ;ࡵ
noise will have the same results as those shown in Figs. 3 and 4. To adequately 
compare TGI and CGI, a more-sophisticated measurement model is needed. 

 

Fig. 5 CGI setup 

P
S

N
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 (
dB

)

Light 
Source (ࡵ) 

Object (ࢀ) 
Bucket Detector (ݏ) 
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In the discussion on TGI, the source illumination ࡵ has already been distinguished 
from the measured illumination ࡵ෨. The desired ideal illumination pattern ࡵ is now 
distinguished from the actual illumination ࡵ .′ࡵ′ is modeled with a linear scale factor 
and Gaussian noise ࡵࣇ′ ∈ Թ

௡ൈ௡	as 

ᇱࡵ  	ൌ ሺܾ݅ ൅ ܿሻࡵ ൅  ᇲ (10)ࡵࣇ

and used in place of ࡵ෨ in the construction of the measurement matrix in Eq. 6. 
Optical effects such as the point spread function and attenuation are ignored. ࡵ෨ is 
derived from ࡵ′ with additive noise ࡵࣇ෨ ∈ Թ

௡ൈ௡ 

෨ࡵ  	ൌ ᇱࡵ ൅  ෨. (11)ࡵࣇ

Measurement noise ࢙ࣇ ∈ Թெൈଵ is added to Eq. 5 giving 

 ࢙ ൌ ࢞࡭ ൅  (12) .࢙ࣇ

Since TGI directly measures ࡵ෨, the scaling and noise of ࡵ′ can be accounted for in 
GI image reconstruction. In CGI, ࡵ෨ is not measured. Therefore, the bias and noise 
of ࡵ′ become extra system noise, degrading reconstruction performance. 

Figures 6 and 7 show a comparison of TGI and CGI for various noise levels using 
a fixed sampling ratio of 2,000% and a random binary illumination pattern. The 
noise levels were determined using a noise ratio: 

ߢ  ൌ
௦ߪ ൅ ூᇲߪ
ூሚߪ

, (13) 

where ߪ௦, ߪூᇲ, and ߪூሚ are the standard deviations of  ࡵࣇ ,࢙ࣇ′, and ࡵࣇ෨ respectively. No 
scale factor was used for this simulation (i.e., ܾ ൌ ܿ ൌ 0). The values of ߪ௦ and ߪூᇲ 
were kept equal, as was the total value of ߪ௦ ൅ ூᇲߪ ൅ ூሚߪ ൌ 1.1. When ߢ is small, 
the measured illumination noise ࡵࣇ෨ dominates, creating a substantial difference 
between the actual object illumination ࡵ′ and the measured illumination ࡵ෨. Since 
TGI relies on ࡵ෨ for image reconstruction, we expect that in this case TGI would 
perform poorly. On the other hand, CGI relies on the ideal illumination ࡵ for 
reconstruction. Since ࡵࣇ′ is small, ࡵ is close to ࡵ′, leading to high-quality CGI 
images. When ߢ is large, ࡵࣇ෨ is small and ࡵࣇ′ is large, leading to the opposite result 
where TGI outperforms CGI. In many practical applications, we expect that ࡵࣇ෨ is 
relatively small and that TGI will perform better than CGI. The advantage of CGI 
is that it operates without the FPA, simplifying the measurement process. 
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Fig. 6 Comparison of CGI and TGI for various noise ratios ࣄ: top row is CGI and bottom 
row is TGI 

 

Fig. 7 Comparison of CGI and TGI over a range of noise ratios ࣄ 

There are a number of variations of GI image recovery. Some are applicable to 
traditional GI as well as CGI, but the remainder of this report will focus exclusively 
on CGI. Figure 8 shows a variant of CGI called differential GI (DGI).10 Like CGI, 
the ideal illumination ࡵ is used for reconstruction, but a reference bucket detector 

P
S

N
R

 (
dB

)
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is employed to measure the total power of the light source. Using the form of  
Eq. 1, DGI reconstruction is given by  

 
ࡻ ൌ 〈ሺࡵ െ ሻ〈ࡵ〉 ቆݏ െ

〈ݏ〉
〈ݎ〉

 ቇ〉. (14)ݎ

Alternatively, in the form of Eq. 9, DGI reconstruction is given by 

 
෥࢞ ൌ ሺ࡭ െ vecሺ〈ࡵ〉ሻ૚୘ሻ୘ ቆ࢟ െ

〈ݏ〉
〈ݎ〉

࢘ቇ, (15) 

where  

 ࢘ ൌ ሺݎଵ, ,ଶݎ … ,  ெሻ୘. (16)ݎ

 
Fig. 8 Diagram of DGI 

Another CGI variant is normalized GI (NGI).11 NGI also makes use of a reference 
bucket measurement and is calculated as 

 
ࡻ ൌ 〈ሺࡵ െ ሻ〈ࡵ〉 ቆ

ݏ
ݎ
െ
〈ݏ〉
〈ݎ〉
ቇ〉, (17) 

or in matrix form as 

 

෥࢞ ൌ ሺ࡭ െ vecሺ〈ࡵ〉ሻ૚୘ሻ୘ ቆ࢟⊙/࢘ െ
〈ݏ〉
〈ݎ〉
ቇ, (18) 

where ⊙/ denotes an element-wise division. 

Examining the measurement model in Eq. 5, yet another reconstruction method 
presents itself. Given that GI can be modeled as a linear set of equations, given ࢙ 
and ࡭, a vectorized estimation of the image ෥࢞ can be calculated by 

 ෥࢞ ൌ  ା࢙, (19)࡭

Light 
Source (ࡵ) 

Object (ࢀ) 

Splitter 

Bucket Detector (ݏ) 

Reference 
Detector (ݎ) 
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where ࡭ା is the pseudo-inverse (PINV) of 12.࡭ 

Figure 9 shows simulation results comparing CGI, DGI, NGI, and the PINV method 
for a range of sampling ratios. Once again ࡵ is binary, and no noise sources were 
added to the simulation. DGI and NGI perform roughly the same but are both much 
better than CGI, with a 6-dB improvement for a sampling ratio of 1,500%. PINV is 
the best performer, especially at higher sampling ratios. Since the system is 
modeled by Eq. 5, there is perfect reconstruction when the sampling ratio reaches 
100% and the PINV becomes a true inverse. Although in this case PINV performs 
better than the other reconstruction algorithms, it has a much longer execution time. 
Figure 9 shows the execution time the various GI reconstruction algorithms versus 
the sampling ratio, which is related to the size of ࡭. The algorithms were performed 
using MATLAB on a PC with an Intel Core i7-2760QM CPU running at 2.4 GHz 
and 8 GB of RAM. All the other algorithms take virtually no time compared with 
the much slower PINV method. In addition, the other algorithms can run as the 
measurements are acquired, while PINV can only be applied at the end of the 
measurement process. 

 

Fig. 9 Execution time of GI reconstruction algorithms vs. sampling ratio 

Although it was already demonstrated that DGI performs better than CGI, the true 
advantages of DGI and NGI can be seen when ࡵ෨ and ࡵ′ do not equal ࡵ. Figures 10 
and 11 are the same, except that the scale factors in Eq. 10 have been used in Fig. 
11 to distort ࡵ෨ and ࡵ′ without any other additive noise; specifically, ܿ ൌ െ0.2 and 
ܾ ൌ  The performance of DGI and NGI, using the extra reference .ܯ/0.2
measurement, is comparable to the nonscaling case. CGI and PINV, which do not 
make use of the reference measurement, perform poorly when the illumination is 
distorted. Figure 12 summarizes the results of the nonscaled and scaled simulation 
in Figs. 10 and 11. 
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Fig. 10 Comparison of CGI, DGI, NGI, and PINV for several sampling ratios 
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Fig. 11 Comparison of CGI, DGI, NGI, and PINV with scaled illumination for several 
sampling ratios 
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Fig. 12 Summary of the nonscaled and scaled simulation results for the simulations in  
Figs. 10 and 11 

To improve performance in the case of distorted illumination, the reference 
measurement can be added the PINV. Differential PINV (DPINV) is formed by 
using the PINV in Eq. 15 to give 

 
෥࢞ ൌ ା࡭ ቆ࢟ െ

〈ݏ〉
〈ݎ〉

࢘ቇ. (20) 

Similarly, a normalized PINV (NPINV) is formed from Eq. 18 as 

 
෥࢞ ൌ ା࡭ ቆ࢟⊙/࢘ െ

〈ݏ〉
〈ݎ〉
ቇ. (21) 

Figure 13 shows the performance of DPINV and NPINV compared with the other 
GI variants for the scaled illumination case. The extra information in the reference 
measurement now allows DPINV and NPINV to outperform DGI and NGI. 
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Fig. 13 Performance comparison using scaled illumination including the new DPINV and 
NPINV algorithms 

4.  Structured Illumination 

The results so far have been obtained using random binary illumination patterns. 
Higher performance can be obtained, however, using pseudorandom or structured 
illumination.13 Three patterns are considered: Fourier, Hadamard, and noiselet. 

Fourier illumination uses the discrete cosine transform (DCT), a real-valued 
Fourier-related transform. Figure 14 shows some example DCT illumination 
patterns. DCT illumination can take advantage of the fact that natural images 
usually have most of their energy at lower frequencies. Figure 15 shows an example 
image with its DCT and a high-contrast DCT for illustration. The upper left corner 
of the DCT corresponds to lower frequencies, with the frequencies increasing 
toward the lower right corner. The largest DCT coefficients are in the upper left 
corner, containing most of the image’s energy. Figure 16 shows another 
visualization demonstrating how the image’s energy is concentrated in a small 
number of DCT coefficients. The 1024 pixel values of the 32 × 32 original image 
were sorted in descending order and plotted as the standard basis. The DCT 
coefficients were similarly ordered and plotted. There are a relatively small number 
of large DCT coefficients compared with the number of large values in the standard 
basis. This means that most of the frequency information is concentrated in these 
few coefficients, allowing for a fairly accurate reconstruction of the image from a 
small number of DCT illumination patterns. Coefficients from a Walsh–Hadamard 
Transform (WHT), which is based on a Hadamard matrix, are also plotted in  
Fig. 16. Here too, most of the image’s energy is concentrated in a small number of 
coefficients. 
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Fig. 14 Example DCT illumination patterns 

 

 

Fig. 15 Example image, the DCT of the image, and a high-contrast visualization of the DCT. 
The lower frequencies of the DCT occur in the upper left and generally have the largest 
amplitudes. 
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Fig. 16 Comparison of the image pixel magnitudes in the standard basis, the DCT coefficient 
magnitudes, and the WHT coefficient magnitudes 

Since the largest DCT coefficients are usually the lowest frequencies in the upper 
left of the DCT, these frequency patterns are used first for GI illumination. Figure 
17 shows the zig-zag method used to select patterns on an example 4×4 image. 
Starting in the upper left, the arrows indicate the order of precedence. This is the 
same order used in the Joint Photographic Experts Group (JPEG) compression 
standard in order to capture the most image information with the fewest number of 
DCT coefficients.14 

 

Fig. 17 Zig-zag method used to order DCT coefficients for JPEG compression 

Figure 18 shows the results of using DCT illumination for several GI variants. As 
expected, the image reconstruction results perform well even when using a 
relatively small number of measurements. 
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Fig. 18 Comparison of CGI, DGI, and PINV using DCT illumination for several sampling 
ratios 

A Hadamard matrix15 ࡴ௞ ∈ Թଶೖൈଶೖ is defined recursively as ࡴ଴ ൌ 1, and  

௞ࡴ  ൌ ൤
௞ିଵࡴ ௞ିଵࡴ
௞ିଵࡴ െࡴ௞ିଵ

൨. (22) 

All of the elements are 1 or –1, and all of the rows are orthogonal. For GI with ܯ 
measurements, ܯ rows of a Hadamard matrix can be used as the sensing matrix ࡭. 
Negative values are changed to zero for illumination and can be treated as zero as 
well in the image recovery algorithm. Alternatively, recovery can be handled by 
first making a measurement under full illumination, ݏ଴, and then calculating other 
measurements as ݏ௜

ᇱ ൌ ௜ݏ2 െ  ଵ଴ࡴ ଴. Figure 19 shows six example rows of aݏ
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Hadamard matrix, reshaped as square illumination patterns. Figure 20 shows a 
comparison of CGI, DGI, and PINV using Hadamard illumination, without noise 
or scaling. Sequency ordering was used instead of Hadamard ordering, which 
places lower-frequency patterns first, improving image reconstruction 
performance. Hadamard illumination is clearly superior to the random binary 
illumination in Fig. 10. 

 

Fig. 19 Example Hadamard illumination patterns 
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Fig. 20 Comparison of CGI, DGI, NGI, and PINV using Hadamard illumination for several 
sampling ratios 

Noiselets are pseudo-random binary functions that can be decomposed as a 
multiscale filterbank.16,17 In general, they are complex-valued, although the 
implementation used here is real-valued. A real-valued dragon noiselet 
implementation is given in the function realnoiseletm in the Appendix, based 

on code by Justin Romberg.18 Figure 21 shows six example illumination patterns 
generated by noiselets. Figure 22 shows a comparison of CGI, DGI, NGI, and PINV 
using noiselet illumination without noise or scaling. Noiselet illumination does not 
perform as well as Fourier and Hadamard illumination for most sampling ratios 
because the energy of natural images is not concentrated in a small number of 
coefficients in the noiselet basis. The patterns are orthogonal, however, leading to 
a near-perfect reconstruction at a 100% sampling ratio. 
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Fig. 21 Example noiselet illumination patterns 
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Fig. 22 Comparison of CGI, DGI, NGI, and PINV using noiselet illumination for several 
sampling ratios 

Figures 23 and 24 summarize the simulation results of the various illumination 
patterns with different recovery algorithms. In general, DCT illumination performs 
the best across GI-recovery algorithms. DCT illumination is real-valued, however, 
and can be expensive to produce. In the case of binary-valued illumination, 
Hadamard performs almost as well as DCT. Comparing the GI algorithms for the 
various illumination types, PINV is the top performer. As mentioned previously, 
PINV is a time-consuming algorithm. Among the faster CGI variants, DGI is 
generally the next-best performer. 
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Fig. 23 A performance summary comparing DCT, noiselet, Hadamard, and binary 
illumination using CGI, DGI, NGI, and PINV image recovery 

 

Fig. 24 Performance summary comparing CGI, DGI, NGI, and PINV image recovery 
algorithms for DCT, noiselet, Hadamard, and binary illumination 
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5.  Denoising 

Many noisy GI images, such as those in Fig. 10 and Fig. 21, can benefit from 
denoising.19 Total variation (TV) regularization is explored here as a denoising 
algorithm, although many other denoising algorithms exist.20 Following Gabriel 
Peyré’s tutorial,21 the TV of an image ݂ is defined as 

ሺ݂ሻܬ  ൌ න‖݂׏ሺݔሻ‖݀(23) .ݔ 

Denoising is accomplished through minimizing a combination of a fit to the data ݔ 
using the L2 norm and the weighted TV given by 

 min
௙

ଵ

ଶ
ݔ‖ െ ݂‖ ൅  ሺ݂ሻ. (24)ܬߣ

The minimization can be computed iteratively through gradient descent steps 

 ݂௞ାଵ ൌ ݂௞ ൅ ߬ቀ݂௞ െ ݔ ൅  ሺ݂௞ሻቁ. (25)ܬGradߣ

For ݂௞ to converge, ߬ should be set such that 

 ߬ ൏ ଶ

ଵାఒ୫ୟ୶
೑

‖஽మ௃ሺ௙ሻ‖
, (26) 

assuming that ܬ is twice differentiable. In practice, the smooth TV norm 

ఌሺ݂ሻܬ  ൌ නඥߝଶ ൅  ݔሻ‖ଶ݀ݔሺ݂׏‖
(27) 

is used to make the gradient well defined. Its gradient is 

 
Gradܬఌሺ݂ሻ ൌ divቆ

݂׏

ඥߝଶ ൅ ଶ‖݂׏‖
ቇ. 

(28) 

Figures 25 and 26 show the results of denoising 128×128 CGI recovered images 
using noiselet illumination. The best result of 800 iterations was chosen as the 
denoised image, using ߣ ൌ ߝ ,0.1 ൌ 0.01, and 

 
߬ ൌ

2
1൅ ߝ/8ߣ

	. 
(29) 

In this case, the denoising simulations in Fig. 25 resulted in an average 3-dB gain 
in PSNR. 
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Fig. 25 Performance gain of denoising an image recovered through CGI over a range of 
sampling ratios 

 
Fig. 26 Examples of denoising CGI images for 3 sampling ratios 

6.  Compressive Sensing 

CS is a relatively recent sensing technique where, unlike traditional sampling, the 
number of measurements required depends on the sparsity of the signal instead of 
its bandwidth. There are many tutorials that introduce CS,17,22–24 and the CCDC 
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Army Research Laboratory has researched the benefits of applying CS to a number 
of different sensing problems.25–29 The sensing procedure of CS is similar to CGI 
in many applications; therefore, it is natural to apply CS to GI.30 Like GI, CS can 
be modeled as patterned illumination collected in a bucket detector, leading to the 
same sensing model as in Eq. 5, ࢙ ൌ  CS requires the image ࢞ to be sparse in .࢞࡭
some basis, a quality possessed by most natural images, as previously illustrated in 
Fig. 15 and 20. Given the sparse coefficients ࣂ of ࢞ in basis શ, the measurements 
࢙ can be rewritten as 

 ࢙ ൌ ࣂશ࡭ ൌ  (30) , ࣂࡳ

where ࢞ ൌ શࣂ and the system matrix ࡳ is defined as ࡳ ൌ ܰ શ. Given that࡭ ൐  ,ܯ
there are an infinite number of solutions to Eq. 30, but CS theory states that if there 
are a sufficient number of measurements, the sparsest solution will recover the 
original signal. This can be found through L1-norm minimization denoted as 

 min
ࣂ
ଵ‖ࣂ‖ 		subject	to		࢙ ൌ  (31) .ࣂࡳ

The number of measurements required to reconstruct ࢞ is 

ܯ  ൒ ܥ ∙ ଶߤ ∙ ଴‖ࣂ‖ ∙ log	ܰ, (32) 

where ܥ is a positive constant, ‖ࣂ‖଴ is the number of nonzero values in ࣂ, and ߤ is 
a small constant determined by the structure of ࡳ called mutual coherence. The 
important point is that the number of measurements is linearly related to its sparsity 
 ଴, but only logarithmically related to the signal’s size, allowing large sparse‖ࣂ‖
signals to be sampled with relatively few measurements. 

In practice, TV minimization given by 

 min
࢞
ሺ࢞ሻܬ 		subject	to		࢙ ൌ  (33) ࢞࡭

also works well, since the gradient of natural images is sparse. ܬ here is a discrete 
version of the TV norm defined in Eq. 23. 

Figures 27 and 28 show a comparison of CGI using noiselet illumination, 
Hadamard illumination, CS using a DCT basis, and CS using TV minimization on 
an example 256 × 256 image. The CS results were obtained from the open-source 
L1 Magic software package,31 using noiselets to generate the sensing matrix. CS 
using TV minimization is the best performer, but GI also does well, outperforming 
CS using the DCT basis in this case. 
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Fig. 27 Comparison of CGI with noiselet and Hadamard illumination, and CS using a DCT 
basis and TV minimization 

 

Fig. 28 Example images comparing CGI with noiselet and Hadamard illumination, and CS 
using a DCT basis and TV minimization 
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There are three important points regarding these results. First, CS-minimization 
algorithms are computationally intensive and have a long execution time compared 
with GI. Figure 29 shows the execution time of the CS simulations used to produce 
the CS DCT results in Fig. 27. This is much longer than the CGI noiselet algorithm, 
which executed in about 2 ms. These results were obtained using the same PC as 
for Fig. 9. Not only does CS have a long execution time, but it can only begin once 
all of the measurements have been made. GI algorithms can be performed as each 
measurement is acquired. Second, noiselets do not enhance CS performance much 
over a random binary pattern. This means that in the case of random illumination, 
CS will greatly outperform TGI, similar to the noiselet-illuminated CGI and CS 
simulations presented here. Third, the performance of CS depends on the sparsity 
of the image. Although most natural 2-D images are sparse, they are only modestly 
sparse compared with many 3-D data applications, such as magnetic resonance 
imaging, hyper-spectral imaging, and 3-D antenna patterns. Thus, on very sparse 
images CS will perform extremely well, while the performance of GI will remain 
the same.  

 

Fig. 29 Execution time of the CS algorithm using the DCT basis 

This third point is demonstrated in Figs. 30 and 31, comparing the performance of 
Hadamard illuminated GI with CS in the standard basis. In this example, the image 
of text is extremely sparse, with only 2.6% of the pixel values nonzero. In this case, 
the performance difference between CS and GI is much larger than that of the 
cameraman test image used in Fig. 27. In Figs. 32 and 33 a new test image was 
formed by taking the inverse DCT of the text image used in Fig. 31, ensuring that 
it is sparse in the DCT basis. Here CS also performs much better than GI, now using 
CS with the DCT basis. The contrast of the images in Fig. 33 was increased for 
illustration purposes. 
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Fig. 30 Comparison of GI and CS using the image sparse in the standard basis shown in Fig. 
31 
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Fig. 31 Example images comparing GI with CS using a sparse image in the standard basis 
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Fig. 32 Comparison between GI and CS using the image sparse in the DCT basis shown in 
Fig. 33 
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Fig. 33 Example high-contrast images comparing GI with CS using a sparse image in the 
DCT basis 
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7.  Conclusion 

This report introduced GI, comparing several different GI algorithms. When the 
illumination source is random, a high-resolution FPA must be used to record the 
illumination patterns. In these cases, CS reconstruction typically produces  
much-higher-quality images than GI, although their reconstruction algorithms are 
much more computationally intensive. If the illumination source is controlled, GI 
performance can be enhanced using structured patterns such as Hadamard or DCT 
illumination. In these cases it is possible to dispense with the FPA, although often 
a second-reference bucket detector will aid image reconstruction using DGI or NGI 
algorithms. The quality of CGI compared with TGI with an FPA will depend on 
how accurately the real illumination matches the programmed illumination. CS 
reconstruction may also outperform GI algorithms for structured illumination, 
although the performance gain will be less than that seen for random illumination. 
In addition to the reconstruction algorithm, GI can benefit from denoising during 
postprocessing. Example MATLAB code is provided in the Appendix that 
implements many of the algorithms presented here, allowing others to easily begin 
their own exploration into GI. 
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The example code consists of a main GI function in GI.m, and two test scripts, 
GI_noise_test.m and GI_test.m. GI_noise_test.m will reproduce (from the main 
report) Fig. 7, and GI_test.m will reproduce Fig. 20, Fig. 22, Fig. 18, Fig. 23, and 
Fig. 24. To use the “noiseletf” illumination in GI.m, you must download and install 
Justin Romberg’s noiselet code. The original code was unavailable at the time of 
publication, but was found on an alternative website.* Further documentation of the 
example code is contained in the code comments. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   GI.m: Main GI function    % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function 
[O,time,PSNR]=GI(img,m,gi_type,illum_type,scale,vs,vI,vI2,do_denoise) 
%Inputs 
% img - image (square, sides are power of 2) 
% m - measurements 
% gi_type - CGI DGI NGI PINV DPINV NPINV JPEG 
% illum_type - 'hadamardf' 'hadamardm' 'binarym' 'realm' 'noiseletf' 
%       'noiseletm' 'dctsm' 'dctzzm' 
% Vnoise - variance of noise added to bucket and reference bucket 
% scale - scale measurements linearly from 1 to 1+scale 
% vs - noise standard dev added to bucket and reference bucket 
% vI - noise added to illumination 
% vI2 - moise added to measured illumination 
% do_denoise - 1 = denoise, 0 = don't denoise 
%Outputs 
% O - recovered image (vectorized) 
% time - processing time 
% PSNR - in dB 
 
%illum_type notes: 
%   end in m, matrix implementation 
%   end if f, functional implementation 
 
%If TGI or PINV variant, or use noise or scale, must use a matrix illum 
%For large images, use functional illumination, don't use PINV variant 
 
%Support 
% noiseletf requires noiselet mex code by Justin Romberg 
% The denoising and supporting functions are based on code by Gabriel 
 
%Examples 
%   [O,time,PSNR]=GI(rand(4,4),8,'TGI','hadamardm',1,0,0,0,0) 
%   [O,time,PSNR]=GI(img,m,'TGI','binarym',scale,Vs,Vi1,Vi2,0) 
 
n=length(img(1,:)); 
img=imnormalize(img); 
%each row of I is vec(illum. pattern) 
switch illum_type 
 case 'hadamardm' 
  %         Im=hadamard(n^2);  %hadamard ordering 
  %         Im=Im(1:m,:); 
  %         %Im=(Im+1)/2; 
  Im1=index(fwht(eye(n^2),n^2),1:m); %sequency ordering 
  Im1=(Im1+1)/2; 
 case 'hadamardf' 

                                                 
*22. Romberg, J. Compressive Sensing [accessed 2019 Jan 7]. http://w3.impa.br/~aschulz 
/CS/paper.html. 
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  I1 = @(z) index(fwht(z,n^2),1:m); %sequency ordering 
  It1 = @(z) ifwht(unindex(z,1:m,n^2)); 
 case 'noiseletf' 
  q = randperm(n^2)'; 
  I1 = @(z) index(realnoiselet(z),q(1:m)); 
  It1 = @(z) realnoiselet(unindex(z, q(1:m), n^2)); 
 case 'noiseletm' 
  q = randperm(n^2)'; 
  Im1=realnoiseletm(eye(n^2)); %I matrix for PINV 
  Im1=Im1(q(1:m),:); 
  Im1=(Im1+1)/2; 
 case 'binarym' 
  Im1=double(rand(m,n^2)>0.5); 
 case 'realm' 
  Im1=rand(m,n^2); 
 case 'dctsm' %change m to closest square, use upper left square for DCT 
  nmv=((1:n).^2); 
  [~,nm]=min(abs(nmv-m)); 
  m=nm^2; 
  Im1=zeros(m,n^2); 
  for k=1:m 
   v=zeros(nm^2,1); 
   v(k)=1; 
   vm=zeros(n,n); 
   vm(1:nm,1:nm)=reshape(v,[nm,nm]); 
   psi=dct2(vm); 
   Im1(k,:)=psi(:); 
  end 
 case 'dctzzm' %use jpeg zigzag DCT 
  Im1=dct_zigzag(n,m); 
  Im1=Im1-min(Im1(:)); 
end 
if illum_type(end)=='m' 
 %I1=@(z) Im1*z; %ideal I 
 It1=@(z) Im1'*z; 
 Im=scale_rows(Im1,scale)+vI*randn(m,n^2); %real I with scale and noise 
 I=@(z) Im*z; 
 %It=@(z) Im'*z; 
 Im2=Im+vI2*randn(m,n^2); %measured I for TGI 
 %I2=@(z) Im2*z; 
 It2=@(z) Im2'*z; 
else 
 I = @(z) I1(z); 
 %It = @(z) It1(z); 
 %I2 = @(z) I1(z); 
 It2 = @(z) It1(z); 
end 
 
%Noise 
%   Im and I() - have scale and noise (scale and vI added) 
%   Iavev - is from measured I with measurement noise  
%       (vI2 added on top of scale and vI) 
%   Iavev1 - is from ideal I 
%   S, R, Save, Rave - all have noise added (vs on top of scale and vI) 
 
T=img(:); %transmittance 
S=I(T)+sqrt(vs)*randn(m,1);  %bucket measurements 
R=I(ones(n^2,1))+sqrt(vs)*randn(m,1); % reference bucket, sums each 
illum. pattern (each row) 
Rave=mean(R); %(scalar) 
Iavev1=It1(ones(m,1))/m; %use ideal I 
Iavev=It2(ones(m,1))/m; %measured I (TGI) 
Save=mean(S); %average S (scalar) 
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tic 
switch gi_type 
 case 'TGI' 
  O=(It2(S-Save)-Iavev*sum(S-Save))/m; %traditional GI  (I-Iave)(S-Save) 
 case 'CGI' 
  O=(It1(S-Save)-Iavev1*sum(S-Save))/m; %computational GI 
 case 'DGI' 
  O=(It1(S-R*Save/Rave)-Iavev1*sum(S-R*Save/Rave))/m; %differential GI 
 case 'NGI' 
  O=(It1((S./R)-Save/Rave)-Iavev1*sum((S./R)-Save/Rave))/m;%normalized GI 
 case 'PINV' 
  O=pinv(Im1)*S; %pseudoinverse 
 case 'DPINV' 
  O=pinv(Im1)*(S-R*Save/Rave)/m; %differential pseudoinverse 
 case 'NPINV' 
  O=pinv(Im1)*((S./R)-Save/Rave)/m; %normalized pseudoinverse 
 case 'JPEG' 
  O=reshape(idct2(dct2(img).*ones_zigzag(n,m)),n^2,1);  
  %jpeg like compression, close to DCT illum 
end 
time=toc; 
if do_denoise 
 O=denoise(reshape(O,n,n),img); 
 O=O(:); 
end 
O=imnormalize(O); 
PSNR=-10*log10((sum((T-O).^2)/n^2)); 
end 
 
function [ v2 ] = index( v,i ) 
v2=v(i,:); 
end 
 
function [ v2 ] = unindex( v,i,n) 
v2=zeros(n,1); 
v2(i)=v; 
end 
 
function [ y ] = imnormalize( x ) 
y=(x-min(min(x)))/max(max(x-min(min(x)))); 
end 
 
function [ m ] = scale_rows( m,s ) 
%scale_rows scales rows of m, starting from 1 to 1+s 
[r,~]=size(m); 
for i=1:r 
 m(i,:)=m(i,:)*((i*s/r)+1); 
end 
end 
 
function y = realnoiseletm(x) 
[m,n]=size(x); 
y=zeros(m,n); 
m=uint32(m); 
for i=1:n 
 c = m - 1; 
 j=uint32(0); 
 mh=bitshift(m,-1); 
 while (j < mh) 
  k = bitxor(j,c); 
  y(j+1,i) = x(j+1,i) + x(k+1,i); 
  y(k+1,i) = x(j+1,i) - x(k+1,i); 
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  j=j+1; 
 end 
 d = bitshift(c,-1); 
 while (d > 0) 
  j=uint32(0); 
  while j < mh 
   k = bitxor(bitxor(j,c),d); 
   temp = y(j+1,i); 
   y(j+1,i) = y(j+1,i) - y(k+1,i); 
   y(k+1,i) = temp + y(k+1,i); 
   j=j+1; 
  end 
  d = bitshift(d,-1); 
 end 
end 
end 
 
function A=dct_zigzag(n,m) 
d=1; %diagonal number 
cnt=1; %counts measurements (rows of A) 
up=1; %1 = col increasing, 0 = col decreasing 
A=zeros(m,n^2); 
r=d; %row index 
c=1; %col index 
am=zeros(n,n); %dct matrix 
d_inc=1; 
%figure(1)  %debug 
while cnt<=m; 
 for i=1:d 
  am(r,c)=1; 
  %imshow(imresize(am,16,'nearest'),[]) %debug 
  psi=dct2(am); 
  am(r,c)=0; %init back to 0 
  A(cnt,:)=psi(:); %vectorize dct and add to A 
  cnt=cnt+1; 
  if cnt > m %stop when have enough measurements 
   break; 
  end 
  if up %update indices 
   r=r-1; 
   c=c+1; 
  else 
   r=r+1; 
   c=c-1; 
  end 
 end 
 if d==n %past half way 
  d_inc=-1; 
 end 
 d=d+d_inc; %increment diagonal 
 up=~up; %switch direction 
 if up %init indices 
  if d_inc==1 
   r=d; 
   c=1; 
  else %past half way 
   r=n; 
   c=n-d+1; 
  end 
 else 
  if d_inc==1 
   c=d; 
   r=1; 
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  else %past half way 
   c=n; 
   r=n-d+1; 
  end 
 end 
end 
end 
 
function am=ones_zigzag(n,m) 
d=1; %diagonal number 
cnt=1; %counts measurements (rows of A) 
up=1; %1 = col increasing, 0 = col decreasing 
%A=zeros(m,n^2); 
r=d; %row index 
c=1; %col index 
am=zeros(n,n); %dct matrix 
d_inc=1; 
%figure(1)  %debug 
while cnt<=m; 
 for i=1:d 
  am(r,c)=1; 
  %imshow(imresize(am,16,'nearest'),[]) %debug 
  %psi=dct2(am); 
  %am(r,c)=0; %init back to 0 
  %A(cnt,:)=psi(:); %vectorize dct and add to A 
  cnt=cnt+1; 
  if cnt > m %stop when have enough measurements 
   break; 
  end 
  if up %update indices 
   r=r-1; 
   c=c+1; 
  else 
   r=r+1; 
   c=c-1; 
  end 
 end 
 if d==n %past half way 
  d_inc=-1; 
 end 
 d=d+d_inc; %increment diagonal 
 up=~up; %switch direction 
 if up %init indices 
  if d_inc==1 
   r=d; 
   c=1; 
  else %past half way 
   r=n; 
   c=n-d+1; 
  end 
 else 
  if d_inc==1 
   c=d; 
   r=1; 
  else %past half way 
   c=n; 
   r=n-d+1; 
  end 
 end 
end 
end 
 
function fTV0 = denoise( y, f0 ) 
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niter = 800; 
epsilon=0.01; 
lambda=0.1; 
tau = 2 / ( 1 + lambda * 8 / epsilon); 
fTV = y; 
err_best=-inf; 
for i=1:niter 
 Gr = grad(fTV); 
 d = sqrt(sum(Gr.^2,3)); 
 G0 = -div( Gr ./ repmat( sqrt( epsilon^2 + d.^2 ) , [1 1 2]) ); 
 G = fTV-y+lambda*G0; 
 fTV = fTV - tau*G; 
 err = snr(f0,fTV); 
 if err>err_best 
  err_best=err; 
  fTV0=fTV; 
 end 
end 
end 
 
function fx=grad(M) 
fx = M([2:end end],:)-M; 
fy = M(:,[2:end end])-M; 
fx = cat(3,fx,fy); 
end 
 
function fd=div(Px) 
Py = Px(:,:,2); 
Px = Px(:,:,1); 
fx = Px-Px([1 1:end-1],:); 
fx(1,:)   = Px(1,:); 
fx(end,:) = -Px(end-1,:); 
fy = Py-Py(:,[1 1:end-1]); 
fy(:,1)   = Py(:,1); 
fy(:,end) = -Py(:,end-1); 
fd = fx+fy; 
end 
 
function v=snr(x,y) 
v = 20*log10(norm(x(:))/norm(x(:)-y(:))); 
end 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% GI_test.m: Reproduce Fig. 7 % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear 
close all 
 
img=double(imread('cameraman.tif')); %img 
n=32; %width of image 
m=round(20*n^2); %number of measurements 
gi_type={'CGI','TGI'}; 
 
% if vratio is low, that means vI2v (measured I for TGI) is high 
% and other noise is low, means TGI will do bad 
vs=0.5:-0.05:0.05; %std dev of noise added to bucket and reference bucket 
vI=0.5:-0.05:0.05; %std dev of noise added to I 
vI2=0.1:0.1:1; %std dev of noise added to measured I 
nloops=length(vs); 
ntypes=length(gi_type); 
vratio=(vs+vI)./vI2; 
[r,c]=size(img); 
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img = imresize(img,n/r); 
PSNR=zeros(ntypes,nloops); 
fprintf('Total = %d, ',nloops) 
for loop=1:nloops 
 rng('default'); 
 fprintf('%d ',loop); 
 for i=1:ntypes 
  [~,~,PSNR(i,loop)]=... 
  GI(img,m,char(gi_type(i)),'binarym',0,vs(loop),vI(loop),vI2(loop),0); 
 end 
end 
 
figure 
semilogx(vratio,PSNR,'LineWidth',1.5) 
xlabel('\kappa') 
ylabel('PSNR (dB)') 
legend(gi_type,'Location','SouthEast') 
fprintf('Done!\n',loop); 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% GI_test.m: Reproduce Figures. 15, 17, 22, 23, and 24 % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear 
close all 
 
img=double(imread('cameraman.tif')); %img 
n=32; %width of image 
m=round((0.3:0.05:1)*n^2); %number of measurements 
gi_type={'CGI','DGI','NGI','PINV'}; 
illum_type={'binarym','hadamardm','noiseletm','dctzzm'}; 
illum_title={'Binary','Hadamard','Noiselet','DCT'}; 
m_plot=round([0.3 0.7 0.9 1]*n^2); % measurements to plot 
 
m_ploti=zeros(1,length(m_plot)); %create index of m_plot into m vector 
for i=1:length(m_plot) 
 m_ploti(i)=find(m==m_plot(i)); 
end 
nillum=length(illum_type); %number of illums 
nm=length(m); %number of measurements 
ntypes=length(gi_type); %number of GI algorithms 
[r,c]=size(img); %rows and cols of image 
img = imresize(img,n/r); %resize image base on n 
PSNR=zeros(ntypes,nm,nillum); %init result matrices 
Om=zeros(n^2,nm,ntypes,nillum); 
fprintf('Total = %d, ',nm*nillum) 
timem=zeros(ntypes,nm,nillum); 
for illumi=1:nillum 
 for mi=1:nm 
  rng('default'); %init random number gen 
  fprintf('%d ',mi+(illumi-1)*nm) %progress 
  for typei=1:ntypes 
   %run GI sim 
 [Om(:,mi,typei,illumi),timem(typei,mi,illumi),PSNR(typei,mi,illumi)]=... 
  GI(img,m(mi),char(gi_type(typei)),char(illum_type(illumi)),0,0,0,0,0); 
  end 
 end 
end 
 
%% plot images based on m_plot list 
for illumi=1:nillum 
 figure 
 ha = tight_subplot(length(m_plot),ntypes,[.01 .01],[.01 .05],[.1 .01]); 
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 for mi=1:length(m_plot) 
  for typei=1:ntypes 
   axes(ha((mi-1)*ntypes+typei)); 
   imshow(reshape(Om(:,m_ploti(mi),typei,illumi),n,n),[]) 
   if mi==1 %only list gi_type for first row 
    title({char(gi_type(typei)),sprintf('PSNR = %.1f 
dB',PSNR(typei,m_ploti(mi),illumi))}) 
   else 
    title(sprintf('PSNR = %.1f dB',PSNR(typei,m_ploti(mi),illumi))) 
   end 
   if typei==1 %only list sampling for first col 
    ylabel(sprintf('%d%% Sampling',round(100*m(m_ploti(mi))/n^2)),... 
    'FontSize',12,'FontWeight','bold') 
   end 
  end 
 end 
 set(gcf,'Position', [600   200   700   750]) 
end 
fprintf('Done!\n') 
 
%% Compare illum, organized by GI type 
figure 
subplot_list=[1 2; 3 4; 6 7; 8 9]; %each subplot spans 2 cols 
line_list={'-','-.','--',':'}; 
for typei=1:ntypes  %GI type 
 subplot(2,5,subplot_list(typei,:)) %legend will be on last subplot col 
 for illumi=1:nillum %illum type 
  plot(100*m/n^2, PSNR(typei,:,illumi),line_list{illumi},'LineWidth',1.5) 
  hold on 
 end 
 title(gi_type{typei}) 
 ylim([4 45]) 
 xlim([100*m(1)/n^2 100*m(end)/n^2]) 
 if mod(typei,2)==1 
  ylabel('PSNR (dB)') 
 end 
 if typei>2 
  xlabel('Sampling (Percent)') 
 end 
end 
s=subplot(2,5,5); 
s.Position=[0.8137 0.8548  0.031 0.03870]; 
for illumi=1:nillum 
 plot(1,1,line_list{illumi},'LineWidth',1.5) 
 hold on 
end 
l=legend(illum_title,'Location','North'); 
l.Position=[0.7590 0.7565 0.2014 0.1698]; 
 
%% Compare types, organized by illum 
figure 
subplot_list=[1 2; 3 4; 6 7; 8 9]; %each subplot spans 2 cols 
for illumi=1:nillum %illum type 
 subplot(2,5,subplot_list(illumi,:)) %legend will be on last subplot col 
 for typei=1:ntypes  %GI type 
  plot(100*m/n^2, PSNR(typei,:,illumi),line_list{typei},'LineWidth',1.5) 
  hold on 
 end 
 title(illum_title{illumi}) 
 ylim([4 45]) 
 xlim([100*m(1)/n^2 100*m(end)/n^2]) 
 if mod(illumi,2)==1 
  ylabel('PSNR (dB)') 
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 end 
 if illumi>2 
  xlabel('Sampling (Percent)') 
 end 
end 
s=subplot(2,5,5); 
s.Position=[0.8137 0.8548  0.031 0.03870]; 
for typei=1:ntypes 
 plot(1,1,line_list{typei},'LineWidth',1.5) 
 hold on 
end 
l=legend(gi_type,'Location','North'); 
l.Position=[0.7590 0.7565 0.2014 0.1698]; 
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List of Symbols, Abbreviations, and Acronyms 

2-D 2-dimensional 

3-D 3-dimensional 

CS compressive sensing 

CGI computational ghost imaging 

CPU central processing unit 

DCT discrete cosine transform 

DGI differential ghost imaging 

DPINV differential pseudo-inverse 

FPA focal point array 

GI ghost imaging 

JPEG Joint Photographic Experts Group 

NGI normalized ghost imaging 

NPINV normalized pseudo-inverse 

PC personal computer 

PINV pseudo-inverse 

PSNR peak-signal-to-noise ratio 

RAM random access memory 

SLM spatial light modulator 

TGI traditional ghost imaging 

TV total variation 

WHT                     Walsh–Hadamard Transform 
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