
1
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 1

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

AADL V3 Standard Discussions
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

AADL V3 Standard
Discussions
Peter Feiler

Feb 2019

2
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 2

Copyright 2019 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-

0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research

and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an

official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,

EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF

FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE

MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO

FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form

without requesting formal permission. Permission is required for any other use. Requests for permission should be directed

to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM19-0166

3
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 3

Content

Roadmap

Packages and General Syntax

Interface Composition

Configuration Specification

Features, Connections, Flows

Property Language

4
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 4

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

AADL V3 Standard Discussions
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

AADL V3 Roadmap
Peter Feiler

5
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 5

Overall Strategy
AADL V2.2

• New AADL V2.2 errata: https://github.com/saeaadl/aadlv2.2

• OSATE issue reports: https://github.com/osate

• Long term support (LTS) for OSATE 2.x

AADL V3
• Working slides

- https://github.com/saeaadl/aadlv3/tree/master/SAEAADLV3

- Issues: https://github.com/saeaadl/aadlv3/issues

• New draft standard document

- Document conversion into Restructured Text (RST) in progress

- Document split into sections

- Revision of packages, component interface, implementation, sucomponent,
configuration

• Prototype implementation started

- https://github.com/saeaadl/AadlV3Prototype

https://github.com/osate
https://github.com/saeaadl/aadlv3/tree/master/SAEAADLV3
https://github.com/saeaadl/aadlv3/issues
https://github.com/saeaadl/AadlV3Prototype

6
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 6

Migration Path to V3

Instance model representation with minimal changes

• Most analyses operate on instance model

• Documented API

Declarative model

• Translation from V2.2 to V3

7
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 7

Key V3 Changes
Packages and General Syntax

• Import of namespaces

• Property definitions in packages

• Private classifiers and property definitions

• Simpler syntax: no section keywords, no matching end identifier

• case sensitive

Composition of Component Interfaces aka. component type
• Extends of multiple interfaces

• Interface without category

• Eliminates need for feature group type

Configuration Specification
• Finalize design

• Configuration assignment of subcomponents with implementation, features with
classifier/type (Replaces refined to)

• Assign final property values to any model element

• Annotate with bindings, annexes, flows

• Configurations are composable

• Parameterized configuration limits choice points (Replaces V2 prototype)

8
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 8

Key V3 Changes
Unified type system

• Single type system for properties and data types

• Records, lists, sets, maps, unions

• International System of Units

Properties
• Stereotypes to specify applicability

• Simplified property value assignment (default, final, override)

Explicit deployment binding concept
• Binding points and binding declarations

• Resource types associated with binding points

Virtual platform support
• Virtual memory

• Connectivity between virtual bus, processor, memory

Flows
• (virtual) platform flows

• Flow merge points

Nested component declarations
• Define nested components without explicit classifier

9
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 9

Key V3 Changes

Array support revision

• Exposure of index dimensions/sizes in interface

Connections

• Distinguish feature mappings

• Reach down of connection declarations

- Into named interfaces (aka feature groups)

- Into subcomponent hierarchy

No more category refinement

• Abstract component to other component

• Abstract feature to other features

Modes

10
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 10

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

AADL V3 Standard Discussions
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

AADL Packages &
Components

Peter Feiler

11
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 11

Packages for Property and Type Definitions
Request for property sets with nested identifiers

• Allow property definitions and type definitions in packages

• Decision: Yes

12
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 12

Nested Packages
Package definitions have nested name paths

• Allow syntactic nesting of package declarations

• Qualified name of package is the combination of outer

package names and defining package name

Decision: Yes

• Use <dot> as separator instead of ::

• Decision: Go with ::

13
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 13

Imported Namespaces
Import declaration

• Make other package namespace content visible in a given
package

- All content: Import packA::*; [alias for package name]

- Specific definition: import packB::TypeX [as mine];

• Declare within a package

• Reference by defining name only

- Qualify if local definition with same name (indicator to user)

- Qualify if multiple imported definitions with same name

- Alias can resolve multiple imported name conflicts

Decision: Yes including alias support

• Qualified name references are not required to be in listed in
import declaration

Decision: Yes (Alexey,Jerome)

Replaces with clause and renames declarations

14
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 14

Public and Private Sections in Packages
Public/private sections lead to complex rules about portions of
implementation definitions residing in public and portions in
private section

Proposal

• Eliminate public and private sections in packages

Proposal

• Allow classifier definitions to be marked as private

Decision: Yes

Recommendation: file per package (multiple nested packages
ok). File name = package name.

Question: name nesting reflected in name nesting

15
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 15

Make AADL Case Sensitive
Identifiers: yes for all identifiers

Keywords:

• Case sensitive – all upper xor all lower; allows for identifiers

with mixed case (Yes)

Decision: Yes

16
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 16

Section keywords in Classifiers
Proposal

• Sections in arbitrary order: yes

• Eliminate sections with keywords

- Revisit after nested components and connection keyword on connections

17
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 17

End keyword without Matching Name
Proposal

• Eliminate matching name after end keyword

- For packages

- For classifier definitions

Recommendation: all but Brian

18
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 18

Classifier Naming
As in AADL V2

Component interface name

• Single identifier

Component implementation name

• <component interface identifier> <dot> <impl identifier>

Configuration name

• <component interface identifier> <dot> <config identifier>

19
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 19

Property Association
As before but with new syntax instead of applies to

[ModelElementPath] #<propertyname> => <property value>;

General form used in classifier
Thread interface T is

Inp: in port;

#Period => 50 ms;

Inp#Data_Size => 6 Bytes;

End;

In context of local declaration
Thread interface T is

Inp: in port { #Data_Size => 5 Bytes;};

End;

System s.impl is

P1: process ComputeProcess.impl {

#Code_Size => 3.5 Kbytes;

t1#Period => 20 ms;

t2#Period => 10ms;

};

End;

20
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 20

Component Categories
Category

• Once specified cannot be refined into another category

- Binding better for mapping functions to implementation

architecture

- May be useful for providing “implemented as”

• Usage: interface, implementation, subcomponent

• Category must match

Component interface

• <category> and interface keyword

• Composable interface without category

- Usage in interface composition

• Content consistent with target category

21
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 21

Nested Subcomponent Declarations
Nested components without explicit classifier

• Single instance of an unnamed classifier

• No interface enforcement at given level

• Reach down for connection declarations

Recommendation: proceed. Think of this as pattern that needs to be satisfied

by classifiers getting configured. Can we define implementations without an

explicit type but identify path in nested structure. Name mapping of features

• Optional explicit interfaces for intermediate nested component declarations

• Interface enforcement as design constraint?

22
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 22

Optional semi-colon
Optional semi-colon for last in list of items

• List of properties in curly brackets (, vs ; as separator)

• List of nested subcomponents

• List of declarations in classifier (end as separator/terminator)

• Proceed

23
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 23

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

AADL V3 Standard Discussions
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

AADL Interface
Composition

Peter Feiler

24
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 24

Composition of Interfaces
Objectives

• Definition of component interfaces by
- Feature, flow, mode declarations and property associations

- Extension of component interfaces through additional declarations in extension

- Definition of component interfaces from previously defined composable
interfaces

• Named interfaces as connection point

Approach

• Component interface declaration with interface keyword and optional
component category

• Allow multiple component interfaces as part of extends

• Composition rules align with current extends rules
- Local addition of elements in extension

• Named interface instances
- Multiple instances of same interface replaces feature group concept in V2

25
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 25

Interfaces and Component Categories
Component interface

• <category> and interface keyword

- has implementations

- referenced in subcomponent

- Can be extended

• Interface keyword without category (composable interface)

- Usage in interface composition

• Content must be consistent with target category

26
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 26

Interface Extension

Extension and categories
• Defining interface and extended interface(s) must have same category or no category
• Extended interface can be an interface without category

Addition of features, flows, properties

Local refinement of inherited features in named interfaces
• Assign type when absent (primitive type or classifier)
• Override existing type with

- Type extension
- Any type

Interface Logical
Temperature: out data port;
AirPressure: out data port;

End Logical;

System interface mysys extends Logical
is
Speed: out data port;
Temperature => TemperatureData;

End;

System interface mysys1
is
L1: Interface Logical{

Temperature => TemperatureData;
};
Speed: out data port;

End;

27
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 27

Composition of Interfaces

Inherited content from multiple interfaces
• Cannot be in conflict (same as for local definitions)

interface Logical

is

temperature: out data port;

Speed: out data port;

End Logical;

interface Physical

is

Network: requires bus access CANBus;

End Physical;

interface s1 extends Logical

Onemore: out event port;

End s1;

interface s2 extends Logical, Physical

End s2;

interface s3 extends Logical, Physical

is

Onemore: out event port;

End s3; V3: Locally added feature cannot conflict with

inherited features

V3: Feature from Logical and Physical cannot

be in conflict

V2: Locally added feature cannot conflict with a

feature inherited from Logical

Right: at most one with category and others composable

28
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 28

Composition of Directional Interfaces

Interfaces with directional features may be included as original

direction or as inverse direction for component at the other end of

a connection

• This is the inverse of from feature groups

System interface Sender extends Logical, Physical

End;

System interface Receiver extends Physical, reverse Logical

End;

29
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 29

Composition of Named Interfaces

Objective: Handle multiple instance of same interface, e.g., voter

taking input from multiple instances of same subsystem
• Individual features qualified by interface instance name

• Internally: interfaceinstancename . Featurename

• Externally: subcomponentname . interfaceinstancename . Featurename

• Connections between named interfaces

System interface sif1

IFlog: interface Logical;

IFphys: interface Physical;

End;

System interface voter

Source1: interface reverse Logical;

Source2: interface reverse Logical;

End;

System Top.impl is

Sub1: system sif1;

Sub2: system sif1;

Voter: system voter;

Conn1: connection Sub1.IFlog <-> Voter.Source1 ;

Conn2: connection Sub2.IFlog.temperature -> Voter.Source2.temperature ;

End;

Connections between named interfaces (V2

feature group connections) or between

features in an interface (reach down V2.2)

Directionality of arrow on named interface:

Bi-directional arrow for interface connection.

Connections between directional features

must be directional.

Directional connection on bi-directional

interface: no.

30
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 30

Use of Named Interfaces

Example of mapping output to ports in different named interfaces
Device sensor is

temperature: out data port;

Speed: out data port;

End;

System sys2

is

L1: interface Logical;

L2: interface Logical;

Fl: flow L1.outp -> L2.inp;

End sys2;

System sys2.i1 is

sub1: device sensor;

conn1: sub1.temperature -> L1.temperature;

conn2: sub1.temperature -> L2.temperature;

End;

System sys2.i2 is

sub1: device sensor;

sub2: device sensor;

conn1: sub1.temperature -> L1.temperature;

conn2: sub2.temperature -> L2.temperature;

End;

sub1 output is mapped into a port in two different

interfaces. These may be ports with the same name,

or ports with different names.

Output from different sources to different

interfaces. L1.temperature and L2.temperature

receive different output.

How to refer to flow inside Logical?

L1.p1#DataSize =>

31
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 31

Nested Interfaces

Works for composition of named interface instances

• Nested name scopes
• Effectively we have nested feature groups

• Deprecate feature groups in V3
Interface composite is

L1: interface Logical1;

PF: interface Physical;

End;

System interface Top is

FG: interface composite;

L2: interface Logical2;

End;

Unnamed interfaces share a name space (no nested name space)
Interface composite extends Logical1, Physical

End composite ;

System interface Top extends composite, Logical2

End top;

All features in single namespace

Name conflict between Logical1 and Logical2

feature temperature

32
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 32

Subcomponent Refers to Interface
Substitution of any component that is an extension of interface

• Only in implementation extensions (not in configurations)

• Allow multiple interfaces on right hand side (unnamed composite interface)

• Rules about connected port (port_connection property)

System interface Sensor extends Logical, Physical
End;
System interface Actuator extends reverse Logical, Physical
End;

System Actuator.impl
End;

System top.i is
sub1: system Logical;
sub2: system reverse Logical;
conn1: sub1.temperature -> sub2.temperature;

End;

System top2.i extends top.i
is

sub1 => Sensor;
sub2 => Actuator.impl;

<connections to additional features>
End;

Assign a component classifier that

supports the interface plus more

33
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 33

Composition of Interface Property values
Interface property values are inherited by the component

Thread Interface Logical is

temperature: out data port;

Speed: out data port;

#Period=> 10ms;

Speed#Rate => 5 mpd;

End;

Interface Physical is

Network: requires bus access CANBus;

#Period => 10ms; -- should this property be there?

End;

System s2 extends Logical, Physical

End;

System s3 extends Logical, Physical is

#Period=> 20ms;

End;

One inherited assignment only: Yes

Multiple inherited assignments of

same value: No

Subject to default,

final, override rules

Component level property value

Feature level property value

34
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 34

Composition of Interface Property Values - 2
Named interface composition

• Component level property values apply to component, not the

named interface name space
Interface Logical is

temperature: out data port;

Speed: out data port;

#Myname => “peter”;

End;

Interface Physical is

Network: requires bus access CANBus;

Properties

#Hisname => “peter”;

End;

System s2 is

L1: Interface Logical;

P1: Interface Physical;

L1#DataSize => 30 Bytes;

End s2;

Myname and Hisname are s2

properties, not L1 and P1 properties.

Component level property value

35
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 35

Composition of Flows

Same rules as V2 extends

Flows in interfaces are only with respect to its features

The composite component may add flow specification for flows

between features in different interfaces

Interface Logical

temperature: out data port;

Speed: out data port;

flows

temp: flow source temperature;

End Logical;

System s2 implements Logical, Physical

flows

spd: flow source speed;

End s2;
Can add flows for inherited features

as was possible in V2

36
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 36

Composition of Modes

Only one source (same as extends of single classifier)

• Local additions as in V2

- current std allows adding states in type extensions

37
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 37

Annex Composition

Configuration of annex specifications into an AADL model

• See configuration discussion

Composition of annexes from different interfaces

• Same Annex notation in two interfaces

- Not allowed

• Local addition of annex

- Follow annex rules for annex extension

38
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 38

Feature Name Mapping for Connections
Support for composition of independently developed subsystems or

subsystem with different nested interface hierarchies

• Inline mappings (reach down multiple interface nesting levels)

Conn1: sub1.lfea1.fea2 -> sub2.rfea1;

Conn2: sub1.lfea1.fea3 -> sub2.rfea2.fea11;

Conn3: sub2.rfea2.fea12 -> sub1.lfea1.fea4;

• Reusable equivalence mapping
map1: mapping ComponentType1 == ComponentType2 as

lfea1.fea2 == rfea1;

Lfea1.fea3 == rfea2.fea11

end mapping ;

Connx: sub1 -> sub2 mapping pckx::map1;

Name mapping between name scope hierarchies

Direction is inferred from connection declaration and feature direction.

Needs to be repeated for each pair of subcomponent instances

Is reusable mapping needed? Alternative: use name mapping

in a feature mapping (up/down) as a wrapper or in an enclosing

component with mapping between them.

39
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 39

Use as Aggregate Port

Interface elements interpreted as elements of aggregate data

Device sensor is

temperature: out data port;

Speed: out data port;

End;

System sys2

is

L1: aggregate Logical;

End sys2;

System sys2.i1 is

sub1: device sensor;

conn1: sub1.speed -> L1.speed;

conn2: sub1.temperature -> L1.temperature;

End;

Do we need aggregate port

specifications?

Should this be a protocol issue?

Use output rates etc on aggregate.

For implementation architecture use virtual bus as

an aggregator. Its binding indicates over what part

of the HW flow it stays aggregated.

40
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 40

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

AADL V3 Standard Discussions
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

AADL Configuration
Specification

Peter Feiler

41
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 41

Architecture Design & Configuration

Architecture design via extends, refines to evolve design space (V2)

• Revise and add to existing architecture design structure

• Add/revise annotation of property values, bindings, annexes

Configuration specification

• Elaborate but do not change architecture structure

• Configuration assignments

- implementation to subcomponents

- Types or classifier to features

- Association of collections of final property values, bindings, annexes

to given architecture substructure

Composition of configuration specifications

Parameterized configuration specification

• Subcomponent configuration assignment via parameter only

42
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 42

Evolution of System Design

Component Interface Extension

• Addition of features, flows, etc.

• Assignment of types/classifiers to existing features

- Assign missing type

- Override with type extension or any type

Decision:

• Assignment of property values

Component Implementation Extension

• Addition of subcomponents, connections, etc.

• Revision of existing subcomponents

- Assign implementation for specified interface

- Override existing implementation with extension

- Override existing implementation with alternative

- Assign interface extensions and their implementations V2 type extension

Eliminate signature match and need for substitution rule specification
Decision:

V2 type match allows
implementation override

Myport => MyDataType;
Same as configuration
assignment syntax

Extension without feature addition:
Difference to interface configuration?

43
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 43

Configuration of a System Design

Configuration Specification elaborates and annotates component

hierarchy

• Associated with an implementation/interface via extends

• Configuration assignment assigns

- implementation or configuration to subcomponent

- Data type or classifier to feature

• Assign “final” property values within existing component

hierarchy

• Specify bindings

• Add flow specification

• Add annex subclauses

44
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 44

Configuration Assignment

Configuration assignment

• Elaborate and annotate subcomponent substructure

- Annotate substructure with “final” property values, bindings, annex

subclauses

- Assign component implementation for subcomponent with interface

• Explicit: it becomes the intended implementation

• Via configurations: associated implementation

• Cannot be for interface extension

configuration Top.config_L1 extends top.basic

is

Sub1 => x.i;

Sub2 => y.i;

end;

System top.basic is

Sub1: system x;

Sub2: system y;

End;

Replacement of interface by implementation or configuration

45
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 45

Configuration of a System Design

- Assign configurations for subcomponent with implementation

• Configurations for ancestor implementation or interface are ok

configuration Top.config_L1 extends top.L1impl

is

Sub1 => x.i2;

Sub2 => y.performance;

end;

Should we allow implementation extension as part of configuration
assignment in a configuration specification? It potentially adds additional
subcomponents

System x.i is

xsub1: process subsubsys;

xsub2: process subsubsys;

System top.L1impl is

Sub1: system x.i;

Sub2: system y;

System x.i2 extends x.i is

xsub3: process subsubsys;

configuration y.performance extends y.i is

xsub1#Period => 20 ms;

System y.i is

ysub1: process subsubsys;

ysub2: process subsubsys;

46
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 46

Configuration Across Multiple Levels

• Reach down configuration assignments

- Left hand side resolved relative to classifier being extended
configuration Top.config_Sub11 extends top.L1impl

is

Sub1.xsub1 => subsubsys.i;

Sub1.xsub2 => subsubsys.i;

end;
System x.i is

xsub1: process subsubsys;

xsub2: process subsubsys;

System top.L1impl is

Sub1: system x.i;

Sub2: system y.i;

47
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 47

Nested Configuration Assignment
• Nested configuration specification

- Used to configure an assigned classifier

- Left hand side resolved relative to enclosing extended or assigned
classifier

configuration Top.config_Sub1 extends top.basic

is

Sub1 => x.i {

xsub1 => subsubsys.i;

xsub2 => subsubsys.i;

}

end;

Sub1 => x.l2

- Nested configuration for existing subcomponent classifier
configuration Top.config_Sub11 extends top.L1impl

Is

Sub2 => {

ysub1 => subsubsys.i;

ysub2 => subsubsys.i;

annex EMV2 {** … **};

#Period => 20 ms

};

end;

Shorter target paths

Annex assignment without explicit configuration specification

Property assignment without target path

System top.basic is

Sub1: system x;

Sub2: system y;

System x.i is

xsub1: process subsubsys;

xsub2: process subsubsys;

System x.l2 extends x.i is

xsub1 => subsubsys.i;

xsub2 => subsubsys.i;

48
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 48

Assignment of Configuration Specifications

Specification and use of separate subsystem configurations

• Configuration of subsystems
Configuration x.config_L1 extends x.i is

xsub1 => subsubsys.i;

xsub2 => subsubsys.i;

end;

Configuration y.config_L1 extends y.i is

ysub1 => subsubsys.i;

ysub2 => subsubsys2.i;

end;

• Use of configuration as assignment value
Configuration Top.config_L2 extends top.basic is

Sub1 => x.config_L1;

Sub2 => y.config_L1;

end;

Configuration Top.config_L1L2 extends top.L1impl is

Sub1 => x.config_L1;

Sub2 => y.config_L1;

end;

Implementation associated with configuration is assigned to the
target subcomponent if the original assignment is an interface

Implementation associated with configuration must be the
same or an ancestor of the original implementation

49
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 49

Configuration of Property Values

Specifying a set of property values
• Property value assignment to any component in the

- subcomponent path resolvable via the classifier referenced by extends

- Assigned value is “final”

- May override previously assigned “default” values
Configuration Top.config_Security extends Top.config_L2

is

#myps::Security_Level => L1,

Sub1#myps::Security_Level => L2,

Sub1.xsub1#myps::Security_Level => L0,

Sub2#myps::Security_Level => L1

end;

Configuration Top.config_Safety extends Top.config_L1

is

#myps::Safety_Level => Critical,

Sub1#myps::Safety_Level => NonCritical,

Sub2#myps::Safety_Level => Critical

end;

Configuration x.config_Performance extends x.i

is

xsub1 => subsubsys.i {

#Period => 10ms,

#Deadline => 10ms }

end;

A configuration specification may only annotate property
values or it may also configure and annotate other items.

50
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 50

Composition of Configurations

Combine multiple configurations into new configuration specification

• Define configuration with multiple extends

• Multiple configuration assignments to same subcomponent

Rules

• Associated interfaces must be the same

• Associated implementations must have a single extends lineage

- The implementation associated with the composite: most descendant

• Only one property value assignment is allowed for any assignment target

- Property value assignments in configuration specifications are “final”

Configuration Top.config_L2 extends top.config_L1, Top.config_Sub1, Top.config_Sub2 end;

Configuration Top.config_L22 extends Top.config_Sub1, Top.config_Sub2 end;

Configuration Top.config_SafeSecure extends Top.config_L2, Top.config_Safety,

Top.config_Security end;

Configuration Top.config_SafetySecurity extends Top.config_Security, Top.config_Safety end;

51
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 51

Unnamed Compositions

Unnamed composition as part of a subcomponent configuration

• Same rules as for composite configuration specification (Probably yes)
Configuration Top.config_L2 extends top.basic is

Sub1 => x.config_L1;

Sub1 => x.security;

-- shorthand: Sub1 => x.config_L1, x.security;

Sub2 => y.config_L1;

end;

Unnamed composition as part of a subcomponent declaration

• Same rules as for composite configuration specification (probably not)
system top.basic is

Sub1: process proc.i , proc.safety;

Sub2: process proc.security , proc.safety;

end;

Implicit composition (unavoidable)

• Different assigned configurations may contain configuration assignment to same
target component

• Same rules as for composite configuration specification

Multiple assignments to same target act
as implicit composition.

52
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 52

Composition of Flow Configurations

Adding in end to end flows
• End to end flows may be declared in a separate classifier extension

• No conflicting end to end flow declarations

System Top.flows extends top.basic

is

Sensor_to_Actuator: end to end flow sensor1.reading -> … -> actuator1.cmd;

End;

Configuration Top.config_full extends Top.config_L2, Top.flows end;

• Flow specs for end-to-end flow targets may be declared in separate configurations

• Flow implementations for intermediate flow targets may be declared in a separate
configurations

configuration X.flowspec extends X

is

outsource: flow source outp;

End ;

configuration X.flowsequence extends x.i

is

outsource => flow subsub1.flowsrc -> … -> outp;

End;

53
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 53

Configuration/composition of Annex Subclauses

Adding in annex specifications
• Annex subclauses may be declared in a separate classifier extensions

• Different annex specifications may be added
System Top_emv2 extends top is

Annex EMV2 {**

use types ErrorLibrary;

…

**};

End Top_emv2;

Configuration Top.config_full extends Top.config_L2, Top.flows, Top_emv2 end;

Inherited annex subclauses based on extends
• Automatically included

• Extends override rules of annex apply

Separate extensions

• No conflicting declarations

subclause Top_emv2 for top

use types ErrorLibrary;

…

End Top_emv2;

Example of separately stored annex subclause

New idea: mode specific configuration specification: for
property assignment.

54
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 54

Parameterized Configuration

Explicit specification of all choice points

• Configuration of subcomponents via configuration parameters only

- Assignment of formal parameter to one or more subcomponents

• No direct configuration assignment to subcomponents by user

• Substitute the type of the parameter specification
Configuration x.configurable_dual(replicate: system subsubsys) extends x.i is

xsub1 => replicate;

xsub2 => replicate;

end;

Usage

• Supply parameter values
Configuration Top.config_sub1_sub2 extends top.i

is

Sub1 => x.configurable_dual(replicate => subsubsys.i);

end;

Configuration x.configured extends x.configurable_dual(replicate => subsubsys.i)

end;
Configuration parameter actual must match
• an implementation/configuration of the specified interface
• a configuration of the specified implementation or its ancestor or interface

Configuration parameter classifier must the same or an
ancestor of the assignment target

Similar to V2 prototype but we map parameter to targets
instead of requiring all targets to reference prototype

55
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 55

Explicit Specification of Candidates

• Explicit list of candidates
Configuration x.configurable_dual(securityProperties: system {

subsubsys.sec1, subsubsys.sec2 }) extends x.i is

xsub1 => securityProperties;

xsub2 => securityProperties;

end;

56
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 56

Property Values as Parameters
Explicit specification of all values that can be supplied to properties

• Values that can be used for different properties of the same type

• Values for specific properties
Configuration x.configurable_dual(TaskPeriod : time ,

TaskDeadline : #Deadline) extends x.i is (need #Deadline? Limit value to assignment to deadline)

xsub3.T1#Period => TaskPeriod;

xsub3.T1#Deadline => TaskDeadline;

end;

Usage: Supply parameter values
Configuration Top.config_sub1_sub2 extends top.i is

Sub1 => x.configurable_dual(

TaskPeriod => 20ms, TaskDeadline => 30 ms);

end;

Via configuration specification as parameter

• Collections of property value assignments

- Consistent set of property values

• Explicitly specified collections to choose from
Configuration x.configurable_dual1(securityProperties: system subsubsys.i) extends x.i is

xsub1 => securityProperties;

xsub2 => securityProperties;

end;

Configuration x.configurable_dual2(securityProperties: system { subsubsys.sec1, subsubsys.sec2 })
extends x.i is

xsub1 => securityProperties;

xsub2 => securityProperties;

end;

Xsub2.T1 must exist in x.i

57
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 57

Complete Configuration

• Finalizing choice points of an existing implementation or

configuration
Configuration Top.config_L0() extends top.basic end;

• Users are able to add “missing annotations”

- Additional flows, error model specification, property values

- User can declare extensions of parameterized configuration that

contain the annotations

- User can compose multiple such annotations into the configuration

• As new configuration or as part of each usage
Configuration Top.L0_Security extends Top.config_L0

is <security properties> end;

Configuration Top.L0_Safety extends Top.config_L0

is <EMV2 subclause for Top> end;

58
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 58

Configuration Assignment Patterns
Match&replace classifier/data type within a scope

• Match classifier in subcomponents and features, data types in features

Configuration FlightSystem.secure

extends FlightSystem.TripleRedundant

is

GPS *=> GPS.secure;

Dlib::dt *=> Secure.securesample;

#Period *=> 20 ms;

end;

Package mine

Device interface GPS

is

inp1: in data port Dlib::dt;

outp1: out data port Dlib::dt;

End;

Device GPS.secure is

Assign GPS.secure for all subcomponents with interface
GPS within scope of FlightSystem.TripleRedundant

Package FS

Import mine::*;

System FlightSystem.TripleRedundant

is

gps1: device GPS;

gps2: device GPS;

gps3: device GPS;

End;

End;

Assign type Secure.securesample for all features with
type dt within scope of FlightSystem.TripleRedundant

Period for all elements within scope of associated
implementation that require a Period

59
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 59

Generic Configuration Patterns
Match&replace within the scope the configuration pattern is assigned to

• Match classifier or primitive type in subcomponents and features

• Configuration without extends can be (Do I still need the implementaiton specific
configuration pattern specification?)

Configuration GPSsecure.config is

Mine::Sensor *=> Sensor.Settings;

Dlib::dt *=> Secure.securesample;

#Period *=> 50 ms;

Mine::GPS *=> GPS.secure { #Period => 50 ms};

end;

Configuration Sensor.Settings extends Sensor.impl is

#Period => 50 ms;

reading#Data_Size => 20 Bytes;

end;

• Assign configuration pattern to subsystems

Configuration AvionicsSystem.Dual is

FlightSystem1 => FlightSystem.primary, GPSsecure.config;

FlightSystem2 => FlightSystem.primary, GPSsecure.config;

BackupFlightSystem => FlightSystem.backup, SimpleGPS.config;

Assign period as part of pattern. Why not
define classifier that includes the property

Set Period default value within scope for any component requiring
period and does not have an explicit assigned value

60
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 60

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

AADL V3 Standard Discussions
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

Features, Connections,
Flows

Peter Feiler

61
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 61

Features
• Generic feature

- No refinement into one of the other categories

- No specific communication semantics

- Can be directional

• Ports
- Discrete message communication semantics

- Consistent I/O timing

- Clarification of “frozen”

- In/out direction and connection declaration

• Data access

- Syntactic read/write declaration

- Connection direction reflects data flow

• Bus/Virtual Bus access

- Connection direction from provides to requires (direction of icon)

• Subprogram (group) access

- Provides/requires

• Subprogram parameter
- As before

62
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 62

Features - 2
• Named interfaces

- Replaces feature groups

• Binding points

- Provides/requires resource type

63
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 63

Ports
Directional feature

• In, out, in/out

Predictable received value

• IPO semantics (received value not affected by new arrivals)

Default send/receive timing

• Completion/dispatch

• Explicit service calls

- Timing spec via property

- Received value at time of call

Queuing

• Receiving port

Shared queue

• Queue serviced by multiple receivers

Move port related service function definitions to code generation annex

64
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 64

Event, Data, Event Data Ports
Syntactic and semantic distinctions

• Event: no type, has receive queue

• Event data: message type, has receive queue

• Data: data type, Receive queue size of 1

- Intended for sampling by periodic receiver, can be input to aperiodic
receiver

- By default does not trigger dispatch, but can when explicitly specified in
property

• Event data, data, and event ports are sampled by periodic receivers

• No distinction between sender side data port and event data port

- They can be connected to all 3 types of ports

- Event port can only be connected to event port

• Cannot define as ‘generic port’ and configure in data type and queue
size

Simplified Syntax

• p1: in port <data type>

• Event port: no data type vs. event

65
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 65

ARINC653 Ports
Denis: From time to time we run into a problem that ports in the AADL core standard
are specified very precisely and (at the same time) in a very non-practical way.
In particular, obligatory double buffering (when one buffer of in event data port is filled
by input events and the second one is filled with Receive_Input service call) does not
allow to model adequately port-like communication when no such buffering occurs
(e.g. ARINC653 ports, AFDX ports, etc.). Default timings like sending output at
completion time is also a nice concept but does not model real-world facilities well.
At the same time, some aspects of ports are not defined well, like output buffering of
out event data ports with non-default queue size.
Some time ago at least some people in the committee agreed that the current
specification of ports in AADLv2.2 is not acceptable for the future, in particular for
AADLv3, because of overspecification. I.e. in v3 we need more flexible and less
restrictive specification for ports with which we at least should be able to model
adequately modern communication facilities from the desired field (like ARINC653-
ports, probably lower-level ports too).
So, what we suggest is at least to track in the v3 roadmap a special bullet regarding to
ports specification harmonization.

buzden commented on Jan 28, 2018

No description about buffering.
Only description about IPO semantics

(received value not affected by new arrivals)

https://github.com/buzden
https://github.com/saeaadl/aadlv3/issues/16#issue-292242472

66
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 66

Data Access and Data Components
Data access

• Provides (read->in | write->out | inout) data access <data type>

• Requires (read | write | readwrite) data access <data type>

• Configuring data type

- Optional data type: configuration assignment => useful to have data

keyword

- Declared data type:

• substitution by any type (individual, configuration pattern)

• Substitution by type extension

Data access connection between data access features only

• Data component to be declared as instance of data interface

- Data interface as extension of data type

• Alternative: V2 access connection to data component. Yes

67
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 67

Other Access Features
Other access features

• Bus, virtual bus, subprogram, subprogram group

• Bus, virtual bus: in, out

Need for syntactic distinction? Yes. Optional classifier

• All have provides access and requires access

• Is classifier sufficient as distinction?

- Provides access <bus_classifier>

- Specify access feature without type/classifier but category (yes)

Access connection between access features only

• Component classifier must have access feature

- Every interface must have explicit provides access feature

- Built-in access feature

• Alternative: Access connection to component (as in V1/V2).

Yes

68
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 68

Named Interfaces
Declaration as named feature in interface

• Reverse direction

- Configuration assignment of interface with reverse direction

• Source1 => reverse MyLogical; yes

• Require explicit interface classifier declaration as reverse

• reverse from original declaration

• Allow unnamed interface composition (multiple interfaces) in

named interface feature declaration?

- FullIF: interface Logical, Physical; No. As for subcomponent.

69
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 69

Connections
Connections between subcomponents

• Directional: Source -> target
- information flow (out -> in, provides read -> requires read, Requires write ->

provides write)

- Subprogram Access control flow (requires -> provides)

• Non-directional
- between abstract features without direction

- Conn1: connection comp1.fea1 <-> comp2.fea1;

• Bi-directional
- Between in/out ports, read/write access

- <-> vs. two separate directional connections

• Named interfaces
- <-> implies direction inferred from interface element direction

- -> implies all interface elements same direction (no)

Keyword connection instead of keywords
for types of connections

Connect is a verb: no

70
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 70

Feature Delegation
Feature delegation down the component hierarchy

• Map feature of enclosing component to feature of

subcomponent

- Maps connection targets to lower level targets

- Does not connect between components

Separate delegate keyword
 Use connection direction

71
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 71

Reach down of Connections
Reach down into nested named interfaces

• Connecting ports within an interface

• Mapping of named interface elements

72
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 72

Reach down Into Component Hierarchy
• In nested component without intermediate subcomponent features

• Consistent with mappings

- For nested components

- For subcomponents with implementations

73
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 73

Feature, Connections and Modes
V2.2 Issue #24

• Connection is only active if both endpoints are active: no need to explicitly

specify in modes for connection (already in V2.2)

• Connection not active even though endpoints are active: need in modes on

connection (already in V2.2). Needed? Yes

• Mode specific visibility of features

- V2.2: active component

- V2.2: requires connection property

- V2.2: property indicating input actively received (mode specific)

- V3 discussion: dispatch trigger port specific active input port list

74
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 74

Flow Specifications and Sequences
Flow specification (same as V2)

• Flow source, sink, path

• For features and element in named interface features

Flow implementation

• Assignment of flow sequence to flow specification

End to end flow sequence

75
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 75

Flow Sequence Specification
Currently (V2)

• Alternating component.flowspec and connection

• Alternating component and connection

- Flow spec inferred from connection end points

- Flow related property inferred from value assigned to component

Additional flexibility

• Component.flowspec sequence only

- Infer connections

• Connection sequence only

- Infer component and flow spec

76
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 76

Flows at Platform Level
• Flow sequence as target of connection binding

77
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 77

Flow Graphs
Objective: Forward and backward traceability

• Forward: variation in latency/age at all end points

• Backward: variation in latency/age from all contributing
sources

• Auto-generate from flow specs and connections

- As we do for propagation graphs

Fan-in/out logic for each component (Merge point semantics)

• Fan in across ports

- Flow path with multiple inputs (AND)

- Separate flow paths as alternatives (OR)

• Interpretation of BA logic

- Input on several ports triggers dispatch

- Fan in at single port with multiple incoming connections

• Fan out to multiple ports

- All vs. alternative (Not needed) The fan-in takes care of everything.
John Hatcliff discussion on canonical)

78
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 78

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

AADL V3 Standard Discussions
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

AADL V3 Property
Language
Peter Feiler

79
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 79

Property Definitions
Define in packages

Utilize unified type system

• No more aadlinteger, …

• Record, list, set, map

• Union of types:

• Integration of proposed Units system (ISO, SysML)

Identify assignment targets (V2 applies to)

• No need to list enclosing categories for inherit

• Component categories

• Specific classifiers

• Other model elements

80
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 80

Property Profile

Definition of property profile

• List of property references that are part of a profile

• Other profiles can be listed in a profile

• Same property reference can be in multiple profiles

Usage

• Classifier specific property profile

• Profile assignment to classifier

- Multiple configuration assignments

- Unnamed profile

• Analysis specific property profile

Periodic : properties {

Dispatch_Protocol => constant Periodic,

Period, Deadline, Execution_time

};

GPSProperties : properties {

Period, GPSPropertyset::Sensitivity,

GPSPropertyset::Hardening

};

device GPS

use properties GPSProperties;

End GPS;

MyPackage::GPS => properties

#SecurityLevel, #SafetyLevel;

Constraints between properties in profile
Literal value specific sub-profile

81
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 81

Property Profiles for Model Elements

• Identification of model element “type”

- By key word

- By Meta model element name

- By enumeration type for core and each annex

• Union of enumeration subtypes

• Granularity of model elements
- Component categories

- Feature categories

- Association categories

- Flow specifications

• Usage

- Property definition

- Profile assignment Thread => properties #Period, #Deadline;

property Period : applies to Thread;

82
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 82

Property Association
• Property reference always with #

• Properties on classifier elements

- Directly attached

- Via model element reference (aka contained property association)

83
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 83

Property Association in Annexes

Syntax in context of an annex

• FailStop#Ocurence => 2.3e-4;

• ^Process[1].thread2@Failstop#Occurrence => 2.3e-5;

- ^ escape to core model as context

- @ enter same annex type as original

- @(BA) enter specified annex: if we have annex specific properties in the
annex rather than core we may not need this

- [x] array index

Mode specific property value assignment #8

• Currently: => 2.3e-5 in modes (m1), 2.4e-4 in modes (m2);

• => { m1 => 2.3 , m2 => 2.4 };

• Event#Occurrence.m1 =>

• See also error type specific property value and binding specific value

- Use map type: mode, error type, binding target as key

- Syntax for identifying map key in path (.)

- One value multiple modes?

84
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 84

Property Values

Property value can be overridden many times in V2

• As part of definition

• Inherited from enclosing component

• Inherited from interface (ancestor)

• Inherited from implementation (ancestor)

• Inherited from subcomponent definition

• Multiple layers of contained property associations

85
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 85

Property Values in V3

Property value assignment in design space

• Assignment in interface or implementation

• Value override

- in interface extension

- Implementation, implementation extension

Property value assignment in configuration

• Assign only if not previously assigned

• At most once via configuration

86
AADL V3 Roadmap

Feb 2019

© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution. 86

Property Values in V3

V3: Scoped value assignment

• #Period *=> 20ms;

• Scope of configuration, implementation, or interface with

assignment

• Used if no value assigned explicitly for contained model element

• Replaces inherit in V2

