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Inference of Memory Bounds 
(One-year project, extended to December 2017)

Goal: Detect the intended bounds of memory.

Problem 1: Repair buffer security vuls. Both out-of-bounds WRITEs and READs.

Leakage of sensitive info (out-of-bounds reads):

• HeartBleed vulnerability.

• Unaffected by mitigations such as ASLR and DEP.

• Re-usable buffer with stale data: bounded to valid portion of buffer.

• Affects even memory-safe languages: e.g., Jetty leaked passwords (CVE-2015-2080).
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Leakage of Sensitive Info in Re-Used Buffer

" p a s s w o r d " : " h u n t e r 2 "

" s o r t " : " i d " } h u n t e r 2 "

Buffer contents after second HTTP request (from a different client):

Upper bound for reading:

most recently written location

Buffer contents after first HTTP request:



4

Research Review 2017

Inference of Memory Bounds
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A]  Approved for public release and unlimited 

distribution.

Inference of Memory Bounds
(One-year project, extended to December 2017)

Goal: Detect the intended bounds of memory.

Problem 1: Buffer Security vuls. Both out-of-bounds WRITEs and READs.

Leakage of sensitive info (out-of-bounds reads):

• HeartBleed vulnerability.

• Unaffected by mitigations such as ASLR and DEP.

• Re-usable buffer with stale data: bounded to valid portion of buffer.

• Affects even memory-safe languages: e.g., Jetty leaked passwords (CVE-2015-2080).

Problem 2: Decompilation of binaries. We will reconstruct information of 

the form “the bounds of pointer p is the interval [n, m]”.

Solution & Approach: Static analysis to find and evaluate likely bounds.

For decompilation: Report these bounds, use when naming variables.

For repair: Test with dynamic analysis.  Repair code to check bounds.
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Overall Approach for Candidate Bounds Checks
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Static Analysis – Strategies to Propose Candidate Bounds

1. (For reads) The most recently written position in the buffer.

2. Bounds of region allocated by malloc.

3. Pointer arithmetic with constant offset (e.g., field of a struct) – for decompilation.

4. Analysis of memory accesses within loops and limits of the loop.

• Exact if the number of iterations is known at start of loop.

• Only a candidate bound if it is possible to break out of the loop early.

5. Invariants for structs (by typename or by allocation site)

• Suppose that we discover that, in most of the program, one field of a struct supplies the bounds of 

another field of the struct.

• Then we guess that this is an invariant and violations of it are errors.

6. If in most callsites of a function  foo(int n, char *p, ...),

the bounds on p is the closed interval [p, p+n-1],

then propose that in the other callsites, the same bounds should apply.
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Dynamic Analysis 
(Only applies to repair, not to decompilation of malicious binaries.)

Instrument program to write to log 

file.

In particular, record which checks are 

violated, as well as statistics on checks 

that succeed.

Run the instrumented program

to collect presumed-good traces.

Divide the candidate bounds into 

three categories:

1. Strongly supported: Many traces where the 

bounds check succeeded, with values near 

the bounds, and no failed checks.

2. Likely incorrect: Some traces where the 

bounds check failed.

3. Indeterminate: Insufficient log data about the 

check.

Repair the program

by inserting missing bounds checks.
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Reading Outside the Valid Portion of an Array

How do we determine which arrays should be subject to this analysis?

• We consider an array to be a qualifying array if every write to the array is at either 

index 0 or at the successor of the last written position (LWP).

How do we identify what the valid portion of the array is?

• Heuristic: It is from the start of the array up to and including the last written position 

of the array.

How often do qualifying arrays occur in real-world programs?

• Imprecision in our static analysis might cause false negatives.

• To establish ground truth, we do a separate dynamic analysis (next slide).
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Dynamic Analysis with SAFECode

• SAFECode builds on the LLVM compilation process to:

- Maintain a side table recording the size and location of allocated memory regions.

- Check bounds when doing pointer arithmetic and prevent invalid mem accesses.

• We have extended SAFECode as follows:

- Record the allocation site and the last written position (LWP) of each allocated array.

- Check whether each write to the array is consistent with def'n of qualifying array.  

- If all the writes have been qualifying, we flag any reads beyond LWP.

• Note that this dynamic analysis is different than the earlier-described dynamic validation 

of statically inferred candidate bounds.  

• Purpose: (1) Validate static analysis (for project internal), and 

(2) source-to-binary repair (beyond the project).
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Example with Jetty

As mentioned earlier, Jetty is a web server implemented in Java that leaked 

passwords (and other sensitive stale information) from a re-used buffer.

We have also implemented the dynamic analysis (from the previous slide) for Java 

programs with ByteBuffers.  (This is implemented via a Java agent.)

With this tool, we dynamically patch Jetty to prevent leakage of sensitive 

information. (See next slide.)
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Unpatched Jetty
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Jetty with Runtime Bounds Enforcement 
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Conclusion and Future Work

Repair spatial memory violations, with a focus on out-of-bounds READs 

that leak sensitive information.

This project is the first part of a four-year project on automated repair to 

enable a proof of memory safety.  

Proving memory safety is part of a larger thrust in automated code repair.  

The ultimate goal is enable cost-effective remediation of defects in large 

DoD codebases.
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