
Inference of Memory Bounds
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Inference of Memory Bounds

Will Klieber, software security researcher

Joint work with Will Snavely

Research Review 2017

2

Research Review 2017

Inference of Memory Bounds
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Inference of Memory Bounds
(One-year project, extended to December 2017)

Goal: Detect the intended bounds of memory.

Problem 1: Repair buffer security vuls. Both out-of-bounds WRITEs and READs.

Leakage of sensitive info (out-of-bounds reads):

• HeartBleed vulnerability.

• Unaffected by mitigations such as ASLR and DEP.

• Re-usable buffer with stale data: bounded to valid portion of buffer.

• Affects even memory-safe languages: e.g., Jetty leaked passwords (CVE-2015-2080).

3

Research Review 2017

Inference of Memory Bounds
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Leakage of Sensitive Info in Re-Used Buffer

" p a s s w o r d " : " h u n t e r 2 "

" s o r t " : " i d " } h u n t e r 2 "

Buffer contents after second HTTP request (from a different client):

Upper bound for reading:

most recently written location

Buffer contents after first HTTP request:

4

Research Review 2017

Inference of Memory Bounds
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Inference of Memory Bounds
(One-year project, extended to December 2017)

Goal: Detect the intended bounds of memory.

Problem 1: Buffer Security vuls. Both out-of-bounds WRITEs and READs.

Leakage of sensitive info (out-of-bounds reads):

• HeartBleed vulnerability.

• Unaffected by mitigations such as ASLR and DEP.

• Re-usable buffer with stale data: bounded to valid portion of buffer.

• Affects even memory-safe languages: e.g., Jetty leaked passwords (CVE-2015-2080).

Problem 2: Decompilation of binaries. We will reconstruct information of

the form “the bounds of pointer p is the interval [n, m]”.

Solution & Approach: Static analysis to find and evaluate likely bounds.

For decompilation: Report these bounds, use when naming variables.

For repair: Test with dynamic analysis. Repair code to check bounds.

5

Research Review 2017

Inference of Memory Bounds
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Overall Approach for Candidate Bounds Checks

Static

Analysis

Identify

qualifying

arrays

Static

Analysis

Identify

candidate

bounds

Dynamic

Analysis

Confirm or

reject

candidate

bounds

Program

Transformation

Repair program

to abort if

bounds check

fails

For leakage of

sensitive information

6

Research Review 2017

Inference of Memory Bounds
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Static Analysis – Strategies to Propose Candidate Bounds

1. (For reads) The most recently written position in the buffer.

2. Bounds of region allocated by malloc.

3. Pointer arithmetic with constant offset (e.g., field of a struct) – for decompilation.

4. Analysis of memory accesses within loops and limits of the loop.

• Exact if the number of iterations is known at start of loop.

• Only a candidate bound if it is possible to break out of the loop early.

5. Invariants for structs (by typename or by allocation site)

• Suppose that we discover that, in most of the program, one field of a struct supplies the bounds of

another field of the struct.

• Then we guess that this is an invariant and violations of it are errors.

6. If in most callsites of a function foo(int n, char *p, ...),

the bounds on p is the closed interval [p, p+n-1],

then propose that in the other callsites, the same bounds should apply.

7

Research Review 2017

Inference of Memory Bounds
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Dynamic Analysis
(Only applies to repair, not to decompilation of malicious binaries.)

Instrument program to write to log

file.

In particular, record which checks are

violated, as well as statistics on checks

that succeed.

Run the instrumented program

to collect presumed-good traces.

Divide the candidate bounds into

three categories:

1. Strongly supported: Many traces where the

bounds check succeeded, with values near

the bounds, and no failed checks.

2. Likely incorrect: Some traces where the

bounds check failed.

3. Indeterminate: Insufficient log data about the

check.

Repair the program

by inserting missing bounds checks.

8

Research Review 2017

Inference of Memory Bounds
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Reading Outside the Valid Portion of an Array

How do we determine which arrays should be subject to this analysis?

• We consider an array to be a qualifying array if every write to the array is at either

index 0 or at the successor of the last written position (LWP).

How do we identify what the valid portion of the array is?

• Heuristic: It is from the start of the array up to and including the last written position

of the array.

How often do qualifying arrays occur in real-world programs?

• Imprecision in our static analysis might cause false negatives.

• To establish ground truth, we do a separate dynamic analysis (next slide).

9

Research Review 2017

Inference of Memory Bounds
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Dynamic Analysis with SAFECode

• SAFECode builds on the LLVM compilation process to:

- Maintain a side table recording the size and location of allocated memory regions.

- Check bounds when doing pointer arithmetic and prevent invalid mem accesses.

• We have extended SAFECode as follows:

- Record the allocation site and the last written position (LWP) of each allocated array.

- Check whether each write to the array is consistent with def'n of qualifying array.

- If all the writes have been qualifying, we flag any reads beyond LWP.

• Note that this dynamic analysis is different than the earlier-described dynamic validation

of statically inferred candidate bounds.

• Purpose: (1) Validate static analysis (for project internal), and

(2) source-to-binary repair (beyond the project).

10

Research Review 2017

Inference of Memory Bounds
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

11

Research Review 2017

Inference of Memory Bounds
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Example with Jetty

As mentioned earlier, Jetty is a web server implemented in Java that leaked

passwords (and other sensitive stale information) from a re-used buffer.

We have also implemented the dynamic analysis (from the previous slide) for Java

programs with ByteBuffers. (This is implemented via a Java agent.)

With this tool, we dynamically patch Jetty to prevent leakage of sensitive

information. (See next slide.)

12

Research Review 2017

Inference of Memory Bounds
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Unpatched Jetty

13

Research Review 2017

Inference of Memory Bounds
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Jetty with Runtime Bounds Enforcement

14

Research Review 2017

Inference of Memory Bounds
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Conclusion and Future Work

Repair spatial memory violations, with a focus on out-of-bounds READs

that leak sensitive information.

This project is the first part of a four-year project on automated repair to

enable a proof of memory safety.

Proving memory safety is part of a larger thrust in automated code repair.

The ultimate goal is enable cost-effective remediation of defects in large

DoD codebases.

15

Research Review 2017

Inference of Memory Bounds
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Contact Information

Presenter / Point of Contact

Will Klieber <weklieber@cert.org>

Software Security Researcher

Contributors

Will Snavely <wsnavely@cert.org>

16

Research Review 2017

Inference of Memory Bounds
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Copyright 2017 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie

Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official

Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON

AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS

TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,

EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY

WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice

for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting

formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering

Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM17-0781

