
Dynamic Design Analysis
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution

Dynamic Design Analysis

Rick Kazman

Research Review 2017

2Dynamic Design Analysis
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution

Research Review 2017

Dynamic Design Analysis

Problem: Increasingly, software systems are composed at runtime. Yet, the

impact of runtime composition on design quality is unknown. Static analysis has

shown that design flaws make bugs and security vulnerabilities more likely, but

does not detect the effect of dynamic dependencies.

Solution: A technique to detect such flaws, either fully automatically (where

possible) or semi-automatically (where necessary).

3Dynamic Design Analysis
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution

Research Review 2017

Main Technical Challenges

1. Detecting dynamic dependencies (DDs).

2. Determining whether DDs create new kinds of architectural flaws.

3. Determining the consequences of DD-induced design flaws.

4. Proposing refactorings to remedy these flaws.

4Dynamic Design Analysis
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution

Research Review 2017

Thrust 1: Recovering Android App Interactions

5Dynamic Design Analysis
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution

Research Review 2017

Thrust 1: Recovering Android App Interactions

Conformance Analysis Using ACME:

Many security violations come from data flows between components

Some of these can be checked via first order predicate logic

• E.g., Annotate applications with trust levels and check information disclosure

- forall a1 :! AndroidApplicationGroupT in self.GROUPS |

forall a2 :! AndroidApplicationGroupT in self.GROUPS |

((a1 != a2) ->

(forall src in /a1/MEMBERS:!ApplicationElement/PORTS:! IntentBroadcastPortT |

forall activity :! ActivityComponentT in a2.MEMBERS |

forall tgt :! IntentReceivePortT in activity.PORTS |

((connected(src, tgt) and

contains(src.action, activity.intentFilters))

-> a1.trustLevel <= a2.trustLevel)));

Apps cannot communicate

implicit intents to apps that

have a lower trust level

6Dynamic Design Analysis
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution

Research Review 2017

Thrust 1: Recovering Android App Interactions

Architecture

Model
COVERT

Translator

Alloy

Analyzer

SAT

Solver

Satisfiable?

M ⊨ S ⋀ ¬P

App

Specifications

M

YES / No

Vulnerability

Assertion

P

Android

Specification

S

Given Android specification S, app specifications M, and vulnerability assertion P,

assert whether M does not satisfy P under S

Model Checking

with COVERT

7Dynamic Design Analysis
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution

Research Review 2017

Thrust 2: Discovering Dependencies by Tracking Issues

Observation: Dynamic dependencies are often revealed in co-change relationships.

Operationalization:

• We can mine issue repositories and revision-control systems to discover these

"hidden" relationships.

• We can leverage this information to find architectural flaws among related sets of files.

• We have created a new architectural view, called "Issue Space", a sequence of

Snapshots (Si):

IssueSpace = <S1, S2, … Sn>

where n is the # of commits in the revision history to address the issue

8Dynamic Design Analysis
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution

Research Review 2017

Thrust 2: Discovering Dependencies by Tracking Issues

• Each snapshot is a 2-element tuple:

Sr = <G, t>

where t is the time-stamp when a commit is made to address the issue,

and G is a graph: <V,E>

where V is the set of files involved in the commit at time t.

9Dynamic Design Analysis
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution

Research Review 2017

Thrust 2: Discovering Dependencies by Tracking Issues

• Example: Apache Cassandra, Issue 436

10Dynamic Design Analysis
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution

Research Review 2017

Thrust 2: Discovering Dependencies by Tracking Issues

• Example: Apache Cassandra, Issue 436

11Dynamic Design Analysis
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution

Research Review 2017

Thrust 2: Discovering Dependencies by Tracking Issues

• Example: Apache Cassandra, Issue 436

12Dynamic Design Analysis
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution

Research Review 2017

Thrust 2: Discovering Dependencies by Tracking Issues

• Example: Apache Cassandra, Issue 436

13Dynamic Design Analysis
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution

Research Review 2017

Thrust 2: Discovering Dependencies by Tracking Issues

Consequences:

• we have shown that when a system has files revised in many different issues—what

we call a hotspot--these "shared" files are connected

• and that these hotspots almost always have design flaws leading to bugs, security

flaws, and maintenance problems

• thus they should be analyzed and refactored

14Dynamic Design Analysis
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution

Research Review 2017

Thrust 2: Discovering Dependencies by Tracking Issues

• Example: Apache Cassandra

Design

Flaw

15Dynamic Design Analysis
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution

Research Review 2017

Thrust 2: Discovering Dependencies by Tracking Issues

• Example: Apache Pig

Design

Flaw

16Dynamic Design Analysis
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution

Research Review 2017

Conclusions and Future Work

By considering dynamic information we can find design flaws, and hence locate the

root causes of bugs more quickly.

This information is not available solely via static analysis; dynamic dependencies

must be considered.

These flaws are the roots of technical debt.

In our future work we are examining the relationship between such design flaws

and security bugs.

17Dynamic Design Analysis
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution

Research Review 2017

Contact Information

Presenter / Point of Contact

Rick Kazman <kazman@sei.cmu.edu>

18Dynamic Design Analysis
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release

and unlimited distribution

Research Review 2017

Copyright 2017 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie

Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official

Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON

AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS

TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,

EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY

WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice

for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting

formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering

Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM17-0780

