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Dynamic Design Analysis

Problem: Increasingly, software systems are composed at runtime. Yet, the 

impact of runtime composition on design quality is unknown. Static analysis has 

shown that design flaws make bugs and security vulnerabilities more likely, but 

does not detect the effect of dynamic dependencies.

Solution: A technique to detect such flaws, either fully automatically (where 

possible) or semi-automatically (where necessary).
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Main Technical Challenges

1. Detecting dynamic dependencies (DDs). 

2. Determining whether DDs create new kinds of architectural flaws.

3. Determining the consequences of DD-induced design flaws.

4. Proposing refactorings to remedy these flaws.
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Thrust 1: Recovering Android App Interactions
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Thrust 1: Recovering Android App Interactions

Conformance Analysis Using ACME:

Many security violations come from data flows between components

Some of these can be checked via first order predicate logic

• E.g., Annotate applications with trust levels and check information disclosure

- forall a1 :! AndroidApplicationGroupT in self.GROUPS |

forall a2 :! AndroidApplicationGroupT in self.GROUPS |

((a1 != a2) -> 

(forall src in /a1/MEMBERS:!ApplicationElement/PORTS:! IntentBroadcastPortT |

forall activity :! ActivityComponentT in a2.MEMBERS |

forall tgt :! IntentReceivePortT in activity.PORTS |

((connected(src, tgt) and 

contains(src.action, activity.intentFilters)) 

-> a1.trustLevel <= a2.trustLevel)));

Apps cannot communicate 

implicit intents to apps that 

have a lower trust level
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Thrust 1: Recovering Android App Interactions
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Thrust 2: Discovering Dependencies by Tracking Issues

Observation: Dynamic dependencies are often revealed in co-change relationships.

Operationalization:

• We can mine issue repositories and revision-control systems to discover these 

"hidden" relationships.

• We can leverage this information to find architectural flaws among related sets of files.

• We have created a new architectural view, called "Issue Space", a sequence of 

Snapshots (Si):

IssueSpace = <S1, S2, … Sn>

where n is the # of commits in the revision history to address the issue 
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Thrust 2: Discovering Dependencies by Tracking Issues

• Each snapshot is a 2-element tuple:

Sr = <G, t>

where t is the time-stamp when a commit is made to address the issue, 

and G is a graph: <V,E>

where V is the set of files involved in the commit at time t. 
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Thrust 2: Discovering Dependencies by Tracking Issues

• Example: Apache Cassandra, Issue 436
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• Example: Apache Cassandra, Issue 436
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Thrust 2: Discovering Dependencies by Tracking Issues

Consequences:

• we have shown that when a system has files revised in many different issues—what 

we call a hotspot--these "shared" files are connected 

• and that these hotspots almost always have design flaws leading to bugs, security 

flaws, and maintenance problems

• thus they should be analyzed and refactored
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Thrust 2: Discovering Dependencies by Tracking Issues

• Example: Apache Cassandra

Design

Flaw
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Thrust 2: Discovering Dependencies by Tracking Issues

• Example: Apache Pig

Design

Flaw
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Conclusions and Future Work

By considering dynamic information we can find design flaws, and hence locate the 

root causes of bugs more quickly.

This information is not available solely via static analysis; dynamic dependencies 

must be considered.

These flaws are the roots of technical debt.

In our future work we are examining the relationship between such design flaws 

and security bugs.
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