
Certifiable Distributed Runtime Assurance
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Certifiable Distributed Runtime
Assurance

Dionisio de Niz

Principal Researcher

Research Review 2017

Certifiable Distributed Runtime Assurance
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Certifiable Distributed Runtime Assurance

Challenge: Assure Safety of Distributed Cyber-Physical Systems

• Unpredictable Algorithms (Machine Learning)

• Multi-Vehicle (distributed) coordinating to achieve mission

Solution:

• Add simpler (verifiable) runtime enforcer to make algorithms predictable

• Formally: specify, verify, and compose multiple enforcers:

- Enforcer intercepts/replaces unsafe action at right time

Controller
Logical

Enforcer

at(x,y)

moveTo(x,y)

Certifiable Distributed Runtime Assurance
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Formal Periodic Model: Representing Time-Aware Logic

State of the system: values of variables

State variables: 𝑉𝑆

Action variables: 𝑉Σ

Variable values from domain: 𝐷

System state ≡ assignment of values to state variables: s: 𝑉𝑆 ↦ 𝐷 ∈ 𝑆

Action ≡ assignment of values to action variables: 𝛼: 𝑉Σ ↦ 𝐷

Behavior ≡ state transitions given actuation every period 𝑃: 𝑅𝑃(𝛼) ⊆ 𝑆 × 𝑆

Next state given action: 𝑅𝑃 𝛼, 𝑠 = {𝑠′| 𝑠, 𝑠′ ∈ 𝑅𝑃(𝛼)}

Property to verify subset of all possible states: 𝜙 ⊆ 𝑆

Enforceable state: 𝐶𝜙 ⊆ 𝜙 ∧ 𝐶𝜙 = 𝑠 ∃𝛼 ∈ Σ: RP 𝛼, 𝑠 ∈ 𝐶𝜙}

Safe actuation : 𝑆𝑎𝑓𝑒𝐴𝑐𝑡 𝑠 = 𝛼 𝑅𝑃 𝛼, 𝑠 ∈ 𝐶𝜙}

Add values to quantify
position & move-to position

Account for time &
actuations

Enforcement Mechanism
(𝑥, 𝑦) still prevent getting out

Location -- e.g., (𝑥, 𝑦) position

Movement (move-to (𝑥, 𝑦) position)
Domain specific variables

Verify representative subset of ALL states
(𝑥, 𝑦) position within region

Safe actuation AHEAD of enforcement

Certifiable Distributed Runtime Assurance
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Formal Model

𝑆

𝜙

𝐶𝜙

𝑆1

𝑆2

𝑆3

𝑆4𝛼1 ∈ 𝑆𝑎𝑓𝑒𝐴𝑐𝑡(𝑠1)

𝛼2 ∉ 𝑆𝑎𝑓𝑒𝐴𝑐𝑡(𝑠2)
𝛼3 ∉ 𝑆𝑎𝑓𝑒𝐴𝑐𝑡(𝑠3)

𝑠𝑖: (𝑥, 𝑦) position

Certifiable Distributed Runtime Assurance
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Enforcer

𝑆

𝜙

𝐶𝜙

𝑆1

𝑆2

𝑆3

𝑆4𝛼1 = 𝐸 𝑠1, 𝛼1

𝛼4 = 𝐸 𝑠2, 𝛼2
¬∃ 𝛼| 𝛼 = E(s3, 𝛼

′)

E(𝑠, 𝛼): 𝛼 ∈ 𝑆𝑎𝑓𝑒𝐴𝑐𝑡 𝑠 ? 𝛼 ∶ 𝛼′ ∈ 𝑆𝑎𝑓𝑒𝐴𝑐𝑡(𝑠)

𝛼4

𝑆5

Certifiable Distributed Runtime Assurance
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Composing Enforcers

Enforcer Details: E: 𝑃, 𝐶𝜙, 𝜇, 𝑈

• ∀𝑠 ∈ 𝐶𝜙: 𝜇 𝑠 ⊆ 𝑆𝑎𝑓𝑒𝐴𝑐𝑡 𝑠

• 𝑈: utility

Composition without conflict

• 𝐸1: 𝑃1, 𝐶𝜙1
, 𝜇1, 𝑈1

• 𝐸2: 𝑃2, 𝐶𝜙2
, 𝜇2, 𝑈2

• 𝜇1,2: 𝜇1 ∩ 𝜇2

Conflicting: Priority:

• 𝜇1,2: 𝜇1 ∩ 𝜇2 ≠ ∅ ?𝜇1 ∩ 𝜇2 ∶ 𝜇1

Conflicting: Utility

• 𝜇1,2: 𝜇1 ∩ 𝜇2 ≠ ∅ ? 𝑎𝑟𝑔𝑚𝑎𝑥𝛼∈𝜇1∩𝜇2
∑𝑈𝑖 𝑠, 𝛼′ ∶ 𝑎𝑟𝑔𝑚𝑎𝑥𝛼∈𝜇1

∑𝑈𝑖 𝑠, 𝛼′

Certifiable Distributed Runtime Assurance
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Are We Done Yet?

Timing Assumption:

• Unverified software finishes execution and enforcer evaluates output every 𝑃 period.

• Software is guaranteed to finish executing by the next period (schedulable)

- Unverified software executes for less than its Worst-Case Execution Time (WCET)

- Other software running also executes for less than its WCET

- Schedulability analysis successful

What can go wrong?

• Unverified software executes A BIT longer than WCET

- Can make other software miss deadlines: late actions with old sensing

• Unverified software executes A LOT longer than WCET

- Makes other miss deadline

- Does NOT produce an output that can be evaluate by enforcer: late action + old sensing

• Inertia takes it to unsafe state

Certifiable Distributed Runtime Assurance
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Primer: Fixed-Priority Scheduling + Rate Monotonic

Icons credit: http://www.doublejdesign.co.uk

High Priority

Med. Priority

Low Priority

𝛼 𝛼 𝛼

𝛼

𝛼

𝑠 𝑠 𝑠

𝑠

𝑠

Preempted by higher

priority task Does not run until higher

priority tasks finish

Preempted by higher

priority task

S
c

h
e

d
u

le
r

S
c

h
e

d
u

le
r

http://www.doublejdesign.co.uk/

Certifiable Distributed Runtime Assurance
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Overload -> Old Sensed Data + Late Actuation

Icons credit: http://www.doublejdesign.co.uk

High Priority

Med. Priority

Low Priority

𝛼 𝛼

𝛼

𝛼

𝑠 𝑠

𝑠

𝑠

Old sensing,

late actuation

Old sensing,

late actuation

late actuation

Missed deadlinesMissed deadlinesMissed deadlines

overload

S
c

h
e

d
u

le
r

S
c

h
e

d
u

le
r

http://www.doublejdesign.co.uk/

Certifiable Distributed Runtime Assurance
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Solution: Enforce Timing Budgets (Timing Enforcement)

S
c

h
e

d
u

le
r

Icons credit: http://www.doublejdesign.co.uk

Only executed in given

periodic time budget

Only executed in given

periodic time budget

Only executed in given

periodic time budget

Only executed in given

periodic time budget

http://www.doublejdesign.co.uk/

Certifiable Distributed Runtime Assurance
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Solution Step 1: Enforce Timing Budgets (Timing
Enforcement)

S
c

h
e

d
u

le
r

Icons credit: http://www.doublejdesign.co.uk

Only executed in given

periodic time budget

Only executed in given

periodic time budget

Only executed in given

periodic time budget

Only executed in given

periodic time budget

𝑠 𝛼 𝛼𝑠 𝑠 𝛼 STILL: Old sensing,

late actuation

if overload

Prevented from

delaying other

tasks if overload

𝛼

𝛼

Other tasks’

actuation on time

Other tasks’

actuation on time

𝛼

http://www.doublejdesign.co.uk/

Certifiable Distributed Runtime Assurance
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Solution Step 2: Safe Actuation on Timing Enforcement

S
c

h
e

d
u

le
r

Icons credit: http://www.doublejdesign.co.uk

Only executed in given

periodic time budget

Only executed in given

periodic time budget

Only executed in given

periodic time budget

Only executed in given

periodic time budget

𝑠 𝛼 𝛼𝑠 𝑠 𝛼 Decide if calculated 𝛼
used too old 𝑠 or not

Prevented from

delaying other

tasks if overload

𝛼∗

𝛼
𝛼

𝛼

Calculate a default safe

fast actuation executed

“just before” timing budget

expires: kernel informs

task

http://www.doublejdesign.co.uk/

Certifiable Distributed Runtime Assurance
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Scheduling Resilience: Tolerance To Miss Deadlines

𝜙

𝐶𝜙
𝑘

𝑆

𝛼𝜙

𝐶𝜙
1

𝐶𝜙
2

𝐶𝜙

𝛼+
 𝛼

Null action

(skip period)

Neutral action:

budget enforcer

Positive action:

Improve safety

Certifiable Distributed Runtime Assurance
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Many Physical Processes – Many Threads

Icons credit: http://www.doublejdesign.co.uk

𝑠 𝛼 𝛼𝑠 𝑠 𝛼𝛼∗

𝛼
𝛼

𝛼

http://www.doublejdesign.co.uk/

Certifiable Distributed Runtime Assurance
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Threads Share Single Processor

S
c

h
e

d
u

le
r

Icons credit: http://www.doublejdesign.co.uk

𝑠 𝛼 𝛼𝑠 𝑠 𝛼𝛼∗

𝛼
𝛼

𝛼

Analyze Resilience to Skip Actuations

http://www.doublejdesign.co.uk/

Certifiable Distributed Runtime Assurance
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Threads Share Single Processor

S
c

h
e

d
u

le
r

Icons credit: http://www.doublejdesign.co.uk

𝑠 𝛼 𝛼𝑠 𝑠 𝛼𝛼∗

𝛼
𝛼

𝛼

Analyze Resilience to Skip Actuations

http://www.doublejdesign.co.uk/

Certifiable Distributed Runtime Assurance
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Hypervisor Porting

Porting of XMHF Hypervisor for Drone Demos

• Raspberry Pi 3

• New Timing Infrastructure to support integration with temporal enforcer

To Support Tamper-Proof Protection

Certifiable Distributed Runtime Assurance
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Results so Far (1)

Paper accepted on 17th International Conference on Runtime Verification 2017

• “Combining Symbolic Runtime Enforcers for Cyber-Physical Systems”

Bjorn Andersson, Sagar Chaki, and Dionisio de Niz

Paper under submission

• “Analyzing Real-Time Scheduling of Cyber-Physical Resilience”

Bjorn Andersson, Dionisio de Niz, and Sagar Chaki.

Certifiable Distributed Runtime Assurance
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Results So Far (2)

Software Artifacts

• Temporal Enforcer Scheduler with default actuation

• SMT-Based Logical Enforcer Combination

• Porting of XMHF Hypervisor to Raspberry Pi 3 (to support drone demo)

Demos

• SMT-Based Parrot Mini-Drone demos

- Logical + Temporal Enforcer

AFRL Summer of Innovation Transition

• Temporal (ZSRM) + Logical Enforcer into Drone Development Platform (UxAS)

ONR : Reuse of some core modeling ideas

Certifiable Distributed Runtime Assurance
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Future

Second Year

• Integration of Hypervisor for Tamper-Proof Protection

- Protect against compromised Virtual Machine

- Coordinate temporal enforcer between hyper-visor and ZSRM

- Logical Verification of Hypervisor Integration

• Logical Verification of Logical Enforcer and Default Actuation

Long Term

• Minimize enforcement actions: allow riskier high reward actions BUT safely

- Require deeper understanding of risky actions and application:

• e.g., Autonomy and Machine Learning

Certifiable Distributed Runtime Assurance
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Contact Information

Presenter / Point(s) of Contact

Dionisio de Niz

Principal Researcher

Email: dionisio@sei.cmu.edu

Telephone: +1 412.268.9002

Contributors

Bjorn Andersson

Sagar Chaki

James Edmonson

Jeffery Hansen

David Kyle

Gabriel Moreno

Certifiable Distributed Runtime Assurance
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited

distribution.

Copyright 2017 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with

Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official

Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED

ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR

IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR

MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY

DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT

INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting

formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering

Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM17-0776

