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Certifiable Distributed Runtime Assurance

Challenge: Assure Safety of Distributed Cyber-Physical Systems

• Unpredictable Algorithms (Machine Learning)

• Multi-Vehicle (distributed) coordinating to achieve mission

Solution:

• Add simpler (verifiable) runtime enforcer to make algorithms predictable

• Formally: specify, verify, and compose multiple enforcers:

- Enforcer intercepts/replaces unsafe action at right time

Controller
Logical

Enforcer

at(x,y)

moveTo(x,y)
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Formal Periodic Model: Representing Time-Aware Logic

State of the system: values of variables

State variables: 𝑉𝑆

Action variables: 𝑉Σ

Variable values from domain: 𝐷

System state ≡ assignment of values to state variables: s: 𝑉𝑆 ↦ 𝐷 ∈ 𝑆

Action ≡ assignment of values to action variables: 𝛼: 𝑉Σ ↦ 𝐷

Behavior ≡ state transitions given actuation every period 𝑃: 𝑅𝑃(𝛼) ⊆ 𝑆 × 𝑆

Next state given action: 𝑅𝑃 𝛼, 𝑠 = {𝑠′| 𝑠, 𝑠′ ∈ 𝑅𝑃(𝛼)}

Property to verify subset of all possible states: 𝜙 ⊆ 𝑆

Enforceable state: 𝐶𝜙 ⊆ 𝜙 ∧ 𝐶𝜙 = 𝑠 ∃𝛼 ∈ Σ: RP 𝛼, 𝑠 ∈ 𝐶𝜙}

Safe actuation : 𝑆𝑎𝑓𝑒𝐴𝑐𝑡 𝑠 = 𝛼 𝑅𝑃 𝛼, 𝑠 ∈ 𝐶𝜙}

Add values to quantify
position & move-to position

Account for time & 
actuations

Enforcement Mechanism
(𝑥, 𝑦) still prevent getting out

Location -- e.g., (𝑥, 𝑦) position

Movement (move-to (𝑥, 𝑦) position)
Domain specific variables

Verify representative subset of ALL states
(𝑥, 𝑦) position within region

Safe actuation AHEAD of enforcement
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Formal Model

𝑆

𝜙

𝐶𝜙

𝑆1

𝑆2

𝑆3

𝑆4𝛼1 ∈ 𝑆𝑎𝑓𝑒𝐴𝑐𝑡(𝑠1)

𝛼2 ∉ 𝑆𝑎𝑓𝑒𝐴𝑐𝑡(𝑠2)
𝛼3 ∉ 𝑆𝑎𝑓𝑒𝐴𝑐𝑡(𝑠3)

𝑠𝑖: (𝑥, 𝑦) position
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Enforcer

𝑆

𝜙

𝐶𝜙

𝑆1

𝑆2

𝑆3

𝑆4𝛼1 = 𝐸 𝑠1, 𝛼1

𝛼4 = 𝐸 𝑠2, 𝛼2
¬∃ 𝛼| 𝛼 = E(s3, 𝛼

′)

E(𝑠, 𝛼): 𝛼 ∈ 𝑆𝑎𝑓𝑒𝐴𝑐𝑡 𝑠 ? 𝛼 ∶ 𝛼′ ∈ 𝑆𝑎𝑓𝑒𝐴𝑐𝑡(𝑠)

𝛼4

𝑆5
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Composing Enforcers

Enforcer Details: E: 𝑃, 𝐶𝜙, 𝜇, 𝑈

• ∀𝑠 ∈ 𝐶𝜙: 𝜇 𝑠 ⊆ 𝑆𝑎𝑓𝑒𝐴𝑐𝑡 𝑠

• 𝑈: utility

Composition without conflict

• 𝐸1: 𝑃1, 𝐶𝜙1
, 𝜇1, 𝑈1

• 𝐸2: 𝑃2, 𝐶𝜙2
, 𝜇2, 𝑈2

• 𝜇1,2: 𝜇1 ∩ 𝜇2

Conflicting: Priority:

• 𝜇1,2: 𝜇1 ∩ 𝜇2 ≠ ∅ ?𝜇1 ∩ 𝜇2 ∶ 𝜇1

Conflicting: Utility

• 𝜇1,2: 𝜇1 ∩ 𝜇2 ≠ ∅ ? 𝑎𝑟𝑔𝑚𝑎𝑥𝛼∈𝜇1∩𝜇2
∑𝑈𝑖 𝑠, 𝛼′ ∶ 𝑎𝑟𝑔𝑚𝑎𝑥𝛼∈𝜇1

∑𝑈𝑖 𝑠, 𝛼′
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Are We Done Yet?

Timing Assumption:

• Unverified software finishes execution and enforcer evaluates output every 𝑃 period.

• Software is guaranteed to finish executing by the next period (schedulable)

- Unverified software executes for less than its Worst-Case Execution Time (WCET)

- Other software running also executes for less than its WCET

- Schedulability analysis successful

What can go wrong?

• Unverified software executes A BIT longer than WCET

- Can make other software miss deadlines: late actions with old sensing

• Unverified software executes A LOT longer than WCET

- Makes other miss deadline

- Does NOT produce an output that can be evaluate by enforcer: late action + old sensing 

• Inertia takes it to unsafe state
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Primer: Fixed-Priority Scheduling + Rate Monotonic

Icons credit: http://www.doublejdesign.co.uk
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Overload -> Old Sensed Data + Late Actuation

Icons credit: http://www.doublejdesign.co.uk
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Solution: Enforce Timing Budgets (Timing Enforcement)
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Icons credit: http://www.doublejdesign.co.uk
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Solution Step 1: Enforce Timing Budgets (Timing 
Enforcement)
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Solution Step 2: Safe Actuation on Timing Enforcement
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Icons credit: http://www.doublejdesign.co.uk
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Scheduling Resilience: Tolerance To Miss Deadlines
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Null action

(skip period)

Neutral action:

budget enforcer

Positive action:

Improve safety
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Many Physical Processes – Many Threads

Icons credit: http://www.doublejdesign.co.uk
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Threads Share Single Processor
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𝑠 𝛼 𝛼𝑠 𝑠 𝛼𝛼∗

𝛼
𝛼

𝛼

Analyze Resilience to Skip Actuations

http://www.doublejdesign.co.uk/


Certifiable Distributed Runtime Assurance
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 

distribution.

Threads Share Single Processor
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Hypervisor Porting

Porting of XMHF Hypervisor for Drone Demos

• Raspberry Pi 3

• New Timing Infrastructure to support integration with temporal enforcer

To Support Tamper-Proof Protection



Certifiable Distributed Runtime Assurance
© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited 

distribution.

Results so Far (1)

Paper accepted on 17th International Conference on Runtime Verification 2017

• “Combining Symbolic Runtime Enforcers for Cyber-Physical Systems”

Bjorn Andersson, Sagar Chaki, and Dionisio de Niz

Paper under submission

• “Analyzing Real-Time Scheduling of Cyber-Physical Resilience”

Bjorn Andersson, Dionisio de Niz, and Sagar Chaki.
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Results So Far (2)

Software Artifacts

• Temporal Enforcer Scheduler with default actuation

• SMT-Based Logical Enforcer Combination

• Porting of XMHF Hypervisor to Raspberry Pi 3 (to support drone demo)

Demos

• SMT-Based Parrot Mini-Drone demos

- Logical + Temporal Enforcer

AFRL Summer of Innovation Transition

• Temporal (ZSRM) + Logical Enforcer into Drone Development Platform (UxAS)

ONR : Reuse of some core modeling ideas
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Future

Second Year

• Integration of Hypervisor for Tamper-Proof Protection

- Protect against compromised Virtual Machine

- Coordinate temporal enforcer between hyper-visor and ZSRM

- Logical Verification of Hypervisor Integration

• Logical Verification of Logical Enforcer and Default Actuation

Long Term

• Minimize enforcement actions: allow riskier high reward actions BUT safely

- Require deeper understanding of risky actions and application: 

• e.g., Autonomy and Machine Learning
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