

 ARL-TR-8870 ● DEC 2019

Fog Computing Platform Microservices
Framework Description

by Barry Secrest, Brian Rapp, and Robert Amrein

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-8870 ● DEC 2019

Fog Computing Platform Microservices Framework

Barry Secrest and Brian Rapp
Computational and Information Sciences Directorate,
CCDC Army Research Laboratory

Robert Amrein
Technica Corporation

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

December 2019
2. REPORT TYPE

Technical Report
3. DATES COVERED (From - To)

October 2018–September 2019
4. TITLE AND SUBTITLE

Fog Computing Platform Microservices Framework
5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Barry Secrest, Brian Rapp, and Robert Amrein
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

CCDC Army Research Laboratory
ATTN: FCDD-RLC-NC
Aberdeen Proving Ground, MD 21005

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-8870

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The Internet of Things relies on centralized Cloud computing and highly reliable networking. When applied to the battlefield,
the anticipated benefits to the warrior include increased battlefield awareness and Anticipatory Analytics that exploit the
explosion of available data. The battlefield environment, however, is contested by the adversary through electronic and cyber-
warfare and does not support a highly reliable network or Cloud computing. Through Fog Computing we are able to work in a
contested network and provide the benefits of Cloud computing without a Cloud, using devices that are much lower SWaP
(size, weight, and power) than traditional architectures required for big data, artificial intelligence, and other computation-
heavy tasks. Fog Computing combines all battlefield compute resources to form a robust, resilient, distributed computational
capability providing Cloud benefits closer to the edge. This report documents the framework for microservices in Fog
Computing.

15. SUBJECT TERMS

distributed computing, Cloud services, edge computing, Fog Computing, computer architecture

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

20

19a. NAME OF RESPONSIBLE PERSON

Barry Secrest
a. REPORT

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

410-306-1313
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

List of Tables iv

1. Introduction 1

2. FCP Background 1

2.1 Fog Computing 1

2.2 FCP Implementation and Overall Architecture 2

2.3 Microservices 3

3. Implementation Details 4

4. Sample Client 6

4.1 example_client.py 6

4.2 example_config.ini 9

5. Case Study 9

6. Future 10

7. Conclusion 11

8. References 12

List of Symbols, Abbreviations, and Acronyms 13

Distribution List 14

iv

List of Figures

Fig. 1 FCP architecture.. 2

List of Tables

Table 1 Speech-to-Text microservice development phases 10

1

1. Introduction

Fog Computing Platform Microservices Framework (FCP-MF) is a high-level
application programming interface (API) that allows developers to easily and
quickly build Fog Computing Platform (FCP)-compatible microservices. It allows
the developers to concentrate on the microservice functionality and not worry about
lower-level details like sending and receiving messages to process, configure,
encrypt, and log formatting that are essential for a well-running microservice but
distract from the core implementation of the microservice.

Currently, the FCP-MF is developed as an abstract Python implementation for
Python-based microservices but this can be expanded to other languages such as
Java and C/C++.

2. FCP Background

FCP is designed to process Internet of Things (IoT) events in near real-time. Fog
nodes are deployed close to the data sources to offload some of the analytics burden
from the cloud. Faster results are obtained, and with less security risk, than
transmitting all data to central servers for processing.

An intuitive web-based user interface provides a full suite of services for
administrators to configure a microservice, deploy it to a fog node, monitor its
status, start and stop the microservice, and send an updated configuration to a
running microservice. These functions are initiated on individual nodes or on
clusters of nodes.

The FCP architecture is powered by microservices: discrete software components
deployed at the fog and edge layers to perform specific functions. They include
support services such as databases and message brokers; also, analytic services such
as neural networks and machine-learning algorithms.

2.1 Fog Computing

Due to increasing demands/deployments of IoT, the Fog Computing construct has
gained considerable ground. In March 2018, National Institute of Standards and
Technology (NIST) released Special Publication 500-325, the NIST Fog
Computing Conceptual Model.1 NIST describes Fog Computing as a mechanism to
decentralize applications, management, and data analytics into the network itself
using a distributed and federated compute model. Fog Computing can be contrasted
with cloud computing in that, while the cloud is high in the air with pristine network
connectivity and unlimited compute, the fog is closer to the ground—where IoT

2

sensors/devices live. Fog networks generally have intermittent and limited
connectivity and also have reduced compute available. Fog Computing is especially
relevant for tactical environments because compute, analytics, storage, and so on
can be brought closer to edge devices/sensors operating in networks facing Denied-
Disconnected Intermittent Limited bandwidth challenges.

It is important to note the Fog Layer is abstract. There is no one-size-fits-all model.
Different use cases will require different configurations of Fog Nodes. Fog Nodes
can be organized hierarchically, such that a lower-level node sends a
condensed/subset stream of data to a higher-level node. For example, a Soldier’s
Fog Node could only communicate with the higher-level Fog Node on the Humvee.
Or, the Soldier may not have a Fog Node at all—his/her sensors may talk directly
to the Humvee’s Fog Node. Additionally, it may be the case that the Soldier’s Fog
Node (due to reduced power, space, processing, etc.) may not be considered a
tactical high-performance computing (HPC) device, while the Humvee Fog Node
would be a tactical HPC device.

2.2 FCP Implementation and Overall Architecture

Figure 1 depicts FCP notional architecture and the publishing and subscription
tasks that occur between the microservices and the broker.

Fig. 1 FCP architecture

There are two types of end users shown in the diagram. The end user on the left
represents users of a client application that makes use of the data coming from the
edge and fog. The application listens for the data, processes them in some way, and

3

formats the data for users to see. The end user on the right side is a SmartFog
administrator, who deploys and manages the microservices from the cloud.

Message Queue Telemetry Transport (MQTT) is the message-broker technology
that enables the microservices to communicate with each other and between the
edge and cloud layers. However, similar brokers, such as Advanced Message
Queuing Protocol, can be used as well. While each device does not need its own
MQTT broker, it must have access to a broker; therefore, each FCP deployment
must include at least one message-broker server.

2.3 Microservices

Microservice Architecture (MSA) is a specific type of software development that
concentrates on building single-purpose modules with well-defined interfaces and
operations. The MSA paradigm has grown in popularity in recent years as the
enterprise seeks to become more agile and move toward a continuous
integration/testing pattern found in DevOps solutions. Additionally, many
open-source projects such as Docker, Singularity, and SaltStack have facilitated
MSA adoption. MSA can help create scalable, testable software that can be
delivered daily/weekly.

MSA structures an application as a set of services based on business functionality.

In general, microservices have the following features:

• Highly maintainable and testable

• Loosely coupled

• Independently deployable

• Organized around business capabilities

In addition, FCP microservices

• are easily configured, deployed, and maintained by an administrator,

• process input and output through a message broker,

• are containerized,

• continue operating while being disconnected from the cloud,

• allow resiliency with slow or unstable network connections,

• accept dynamic configuration updates, either manually from administrators
or dynamically from higher-level systems, and

4

• communicate with each other over TLS-encrypted connections.

FCP-MF provides structure and convenience functions for building
FCP-compatible microservices.

3. Implementation Details

The FCP-MF packages provide an abstract implementation of core microservice
functionality to use when implementing microservices for the FCP. Microservices
consist of a data MQTT client, an optional configuration MQTT client, data
serializers and other various administrative functions that enables a unified
interface for creation, logging and configuration of new microservices operating
over the MQTT protocol.

The fogms package is for MQTT-based microservices that will retrieve their data
from MQTT, do some processing on the data, and send their output messages to
MQTT.

The fogms package provides the following five features to clients.

1) Defines a standard MQTT configuration object:

This object details all parameters needed to create a secure connection to an
MQTT broker. Developers can then ensure that these parameters are present
in the microservice configuration. The configuration object also validates
the parameters to safeguard against invalid values being passed into the
microservice.

2) Connects to MQTT brokers and automatically registers on_message
callback for received messages:

After calling connect_clients() the connection to the MQTT broker will be
established, and all topics defined in the MQTTConfiguration object will be
subscribed to and linked to the on_message() method of the implementing
object. A shutdown class is also provided to cleanly disconnect from
brokers when the microservice is being terminated.

3) Registers the update callbacks if defined:

Microservices can support dynamic configuration changes. They do this by
listening on a specified update topic. This can be a separate MQTT broker
that the microservice connects to for normal data processing. The
framework facilitates managing this separate broker configuration,
subscribing to the update topic, handling the new configuration, and
managing reloading for the new configuration to take effect.

5

4) Standardizes log messages:

Microservices use the standard Python logging mechanism but the
framework standardizes the format of the log messages so they are
consistent across microservices.

5) Provides a pluggable serializer for incoming and outgoing messages:

Messages coming into and out of a microservice can be in a variety of
formats. The pluggable serializer functionality allows clients to create a
handler to convert to and from external data formats and the internal data
structures required in the microservice. There is JavaScript Object Notation
(JSON) Serializer available for use, but developers can write their own as
well.

When inheriting the microservice, abstract base class developers must do the
following:

1) Call super() init in the class initialization passing the parameters

a. data_mqtt_config (MQTTConnectionConfig): configuration object
for the data MQTT client

b. update_mqtt_config (MQTTConnectionConfig, OPTIONAL):
configuration object for the MQTT client to receive real-time config
updates

c. serializer (fogms.payload_serializers, OPTIONAL): serializer
object used to conveniently serialize/deserialize payloads

d. logger_name (str, OPTIONAL): name of logger level

2) Implement abstract methods

a. _on_message(): define default callback for topic subscriptions

b. _validate(): define validation method for microservice
configurations

3) Call connect_clients() to make the connection to the MQTT broker and
subscribe to topics for incoming messages.

These interfaces are written as a Python module, which makes it very easy to use
in developing new microservice code by simply importing the appropriate module
components.

6

4. Sample Client

The following passage is a simple Fog Microservice that shows how the FCP-MF
should be used. This is a very simple service that connects to an MQTT broker,
receives a message, and outputs a message on the configured topics. Section 4.1
shows the microservice code implemented in Python, and Section 4.2 shows the
configuration file for the service.

4.1 example_client.py

from fogms import configurations

from fogms.microservice import microservice

from fogms.func._general_func import logging_format

from fogms.payload_serializers.JSONSerializer import JSONSerializer

from datetime import datetime

import logging

import argparse

import configparser

import sys

import time

import json

class SimpleService(microservice):

 '''

 Put any initialization code for the service in this method

 '''

 def __init__(self, data_mqtt_config, update_mqtt_config, serializer):

 super().__init__(data_mqtt_config=data_mqtt_config,

 update_mqtt_config=update_mqtt_config,

 serializer=serializer)

 '''

 Used to validate the configuration if necessary

 '''

 def _validate(self):

 #validate method - way to validate data members by type/value

 self.logger.debug("Validating....")

7

 '''

 Called when a message is received on the MQTT topic defined in the

 configuration

 '''

 def _on_message(self, client, userdata, msg):

 self.logger.info("Received message for processing from MQTT")

 self.logger.info("\tOn Topic: %s", msg.topic)

 self.logger.info("\tMsg: %s", msg.payload)

 #Service isn't really doing anything. But this is where the

 #interesting pieces would go.

 #Do something interesting with the incoming message then create the output

 self.logger.info("Doing some important work here......")

 raw_msg = { "msg": "Hello World",

 "success": "True" }

 json_msg = self.serializer.serialize(raw_msg, "data")

 #Send result to MQTT

 self.dataClient.publish_msg(json_msg)

 self.logger.info("Successfully sent results to MQTT")

def main():

 logger = logging.getLogger(__name__)

 #Read the config file location from the command line

 cl = argparse.ArgumentParser()

 cl.add_argument('--config_path', '-c', type=str,

 default='./exmple_client.ini',

 help = 'Full path to config file')

 cl.add_argument('--log_path', type=str, default='./',

 help = 'Path to write log files')

 cl_args = cl.parse_args()

 log_file_name = datetime.now().strftime('example_ms_%d_%m_%Y')

 logging.basicConfig(format=logging_format(), level=logging.DEBUG,

 handlers=[

8

 logging.FileHandler("{0}/{1}.log".format(

 cl_args.log_path, log_file_name)),

 logging.StreamHandler()])

 #get the config file and parse

 logger.info("Parsing config from {}".format(cl_args.config_path))

 config = configparser.ConfigParser()

 with open(cl_args.config_path) as data_file:

 config.read_file(data_file)

 config_errors = False

 #load MQTT configuration items from file into MQTT Configuration Object

 try:

 mqtt_dict = {}

 mqtt_dict['host'] = config['mqtt']['host']

 mqtt_dict['port'] = config.getint('mqtt','port')

 mqtt_dict['pub_topic'] = config['mqtt']['pub_topic']

 mqtt_dict['sub_topics'] = config.get('mqtt','sub_topics').split(',')

 mqtt_dict['ssl_protocol'] = config['mqtt']['ssl_protocol']

 mqtt_dict['keepalive'] = config.getint('mqtt','keepalive')

 mqtt_dict['sub_qos'] = config.getint('mqtt','sub_qos')

 mqtt_dict['pub_qos'] = config.getint('mqtt','pub_qos')

 mqtt_dict['mqtt_protocol'] = config.getint('mqtt','mqtt_protocol')

 mqtt_dict['ssl_cert_path'] = config['mqtt']['ssl_cert_path']

 mqtt_c = configurations.MQTTConnectionConfig(c=mqtt_dict)

 mqtt_c.output_config()

 except AssertionError:

 config_errors = True

 #Instantiate and initialize the service class

 jsonSerializer = JSONSerializer()

 simpleMS = SimpleService(data_mqtt_config=mqtt_c,

 update_mqtt_config=None,

 serializer=jsonSerializer)

 #Connect to MQTT and start listening for messages

9

 simpleMS.connect_clients()

 try:

 while True:

 time.sleep(1)

 except:

 simpleMS.shutdown()

 sys.exit(1)

if __name__ == '__main__':

 main()

4.2 example_config.ini

[mqtt]

host=x.x.x.x

port=8883

pub_topic=example/out

sub_topics=example/in

ssl_protocol=tls_12

keepalive=180

sub_qos=2

pub_qos=2

mqtt_protocol=311

ssl_cert_path=./certs/ca-chain.crt

5. Case Study

To get an idea of efficiency speed-up of using the FCP-MF in creating new
microservices, this section will review the Speech-to-Text application that was
recently converted to an FCP microservice. This was part of a larger effort to
convert a speech-to-speech translation application and run it in the FCP, but will
focus just on the speech-to-text portion of the workflow.

This developmental effort was done without the aid of the FCP-MF. Table 1 details
the microservice-development process with the high-level tasks and associated
effort involved.

10

Table 1 Speech-to-Text microservice development phases

Task Effort

Research 72 h

Design 24 h

Development 48 h

Testing 48 h

Most of the time used in converting this functionality to a microservice was for
learning and understanding the speech-to-text algorithms. For this effort we used
Kaldi, which is a speech-recognition toolkit that uses machine learning. This had a
large learning curve that accounted for most of the time used in the research phase.

However, we estimate the use of the FCP-MF would cut the development and
testing time by 25%–50%. By using this toolkit, the developer no longer must worry
about many of the details required to connect to and process messages from the
FCP. Also, this cuts down testing time by reusing code that has already been
thoroughly tested and used in other microservices.

6. Future

The FCP-MF has enormous potential for growth. Possibilities to increase its
usefulness include the following:

• Expanded set of common APIs

As the microservice catalog expands, additional common services could be
extracted into the Microservices Framework (MF) and made available to all
microservices. For example, microservice developers would find these APIs
helpful:

o Health Check Endpoint

o Telemetry and Metrics

o Automated Test Integration

• Additional language support

Currently, the MF extensions are written in Python. However,
microservices can be written in any language. As more microservices are
developed in other languages, the creation of similar abstract

11

implementations in languages such as Java and C/C++ is a natural
evolution.

• Other common functionality

Additional modules can be created to handle other common tasks in
microservices. One that might be especially useful would be support for
machine-learning toolkits to do inference quickly and easily in a
microservice.

7. Conclusion

The FCP-MF comprises APIs that allow microservice developers to focus on the
business functionality of the microservice and not be concerned about common
tasks like securely connecting to message brokers and receiving and processing
messages.

The FCP-MF today provides a strong base set of functionality for microservice
developers, but the expanded support of common APIs, languages, and machine
learning envisioned for subsequent revisions would increase the usefulness and
time savings for developers in the future.

12

8. References

1. Iorga M, Felman L, Barton R, Martin MJ, Goren N, Mahmoudi C. Fog
computing conceptual model. Gaithersburg (MD): National Institute of
Standards and Technology; 2018 Mar. NIST Special Publication No.: 500-325.

13

List of Symbols, Abbreviations, and Acronyms

API application programming interface

FCP Fog Computing Platform

FCP-MF Fog Computing Platform-Microservices Framework

HPC high-performance computing

IoT Internet of Things

JSON JavaScript Object Notation

MF Microservices Framework

MQTT Message Queue Telemetry Transport

MSA Microservice Architecture

NIST National Institute of Standards and Technology

TLS Transport Layer Security

14

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 1 CCDC ARL
 (PDF) FCDD RLD CL
 TECH LIB

 2 CCDC ARL
 (PDF) FCDD RLC NC
 B RAPP
 B SECREST

	List of Figures
	List of Tables
	1. Introduction
	2. FCP Background
	2.1 Fog Computing
	2.2 FCP Implementation and Overall Architecture
	2.3 Microservices

	3. Implementation Details
	4. Sample Client
	4.1 example_client.py
	4.2 example_config.ini

	5. Case Study
	6. Future
	7. Conclusion
	8. References
	List of Symbols, Abbreviations, and Acronyms

