[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Beginning Analysis with SiLK

Geoffrey Sanders Nathaniel Richmond

Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213

Document Markings

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Homeland Security under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center sponsored by the United States Department of Defense.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM18-0043

Learning Objectives

At the end of this class, analysts will have the knowledge and skills needed to perform the following tasks:

- Describe SiLK and network flow.
- Display SiLK site configuration using the rwsiteinfo command.
- Retrieve network flow records using the rwfilter command.
- Manipulate network flow records using the rwcut and rwsort commands.
- Count and profile network flow records using the rwstats and rwuniq commands.
- Manipulate IPsets using the rwsetbuild, rwsetcat, rwsettool, and rwset commands.

Beginning Analysis with SiLK

Introduction to SiLK Network flow SiLK components Repository tools Basic record handling tools Basic profiling tools Summary

Carnegie Mellon University Software Engineering Institute

What is SiLK?

SiLK - "System for internet Level Knowledge"

Collection of network flow traffic analysis tools from the CERT Situational Awareness group at the Software Engineering Institute (SEI), Carnegie Mellon University (CMU)

What SiLK Enables

Security analysis of large networks Efficient collection, storage, and analysis of network flow data Rapid query of large historical traffic data sets Ideally suited for distributed enterprise networks Suitable for small (home) networks as well

Beginning Analysis with SiLK

Introduction to SiLK **Network flow** SiLK components Repository tools Basic record handling tools Basic profiling tools Summary

What is Network Flow?

A metadata record of related packets

- log of network activity (not packet capture)
- similar to a phone bill (call detail record)

Content of messages is not recorded

- highly compact
 - increased retention
 - reduced processing
- privacy support
- reduced encryption impact

IP Flow Information Export

(IPFIX) common standard

'Flow', 'flow record', and 'record'

are commonly used in place of 'network flow'

LATITUDE	LONGITUDE	DATE	TIME	NUMBER	NAME	DURATION
44.50880 N	73.18223 W	1/28/2008	0917	802-555-1234	Chittenden Bank	0:10:17
44.50880 N	73.18223 W	1/28/2008	0942	802-555-8673	Poopsie LaRue	0:01:03
44.50880 N	73.18223 W	1/28/2008	0945	802-555-9201	Hanley Strappman	0:05:32
4.27834 N	73.21263 W	1/29/2008	2205	802-555-7758	Verizon Voice Mail	0:01.13
4.27834 N	73.21263 W	1/29/2008	1532	802-555-4492	Widgets LLC	0:03:47
4.27834 N	73.21263 W	1/29/2008	2209	802-555-7758	Verizon Voice Mail	0:00.36
44.50880 N	73.18223 W	1/30/2008	0830	202-555-1818	British Embassy	0:18:12
4.27834 N	73.21263 W	1/30/2008	2208	802-555-7758	Verizon Voice Mail	0:00.53
4.27834 N	73.21263 W	1/30/2008	2211	802-555-8673	Poopsie LaRue	0:06:18
44.50880 N	73.18223 W	1/31/2008	0903	202-555-1843	British Embassy	0:03:21
44.50880 N	73.18223 W	1/31/2008	0908	416-555-9834	British Embassy	0:22:04
44.4143 N	73.03561 W	1/31/2008	1047	802-555-9201	Hanley Strappman	0:01:02
14.4143 N	73.03561 W	1/31/2008	1050	213-555-2761	M. Fendell	0:09:06
44.25295 N	72.58229 W	1/31/2008	1127	802-555-9201	Hanley Strappman	0:05:38

Call Detail Records

Carnegie Mellon University Software Engineering Institute

What's in a Network Flow Record?

Fields found in network flow records

- source address, destination address
- source port, destination port, Internet Control Message Protocol [ICMP] type and code
- IP [transport] protocol
- bytes, packets
- TCP flags
- start time, end time, duration
- sensor identity
- flow termination conditions
- application-layer protocol

Network Flow Record										
Source Address	Source Port	Destination Address	Destination Port	Start Time	End Time					
Bytes	Packets	TCP Flags	Application Label	Protocol	Duration					
Sensor Name	Source Country Code	Destination Country Code	Sensor Type	Attributes	Custom Fields					

Network Flow Example

Network Flow Record										
Source Address	Source Port	Destination Address	Destination Port	Start Time	End Time					
Bytes	Packets	TCP Flags	Application Label	Protocol	Duration					
Sensor Name	Source Country Code	Destination Country Code	Sensor Type	Attributes	Custom Fields					

How are Flows Different from Packets?

	Flow	Packet
Unit	Record	Packet (IP)
Composition	Tuple	Header and Payload
Contents	Metadata Summary	Data Unit
Size	Small (52 or 88 bytes)	Variable (20+ bytes)
Trade-Offs	Data payload, retention, and	d query response time

Which Packets Combine into a Flow?

A flow is an aggregated record of packets

SiLK flows are identified by five attributes (5-tuple):

- source IP address
- destination IP address
- source port
- destination port
- transport protocol (any of about 130 in use)

SiLK flows are unidirectional:

- newly observed attributes, new flow
- previously observed attributes, update flow

TCP/IP Socket Example

TCP/IP SOCKET

IP address: 10.0.0.1 L4 protocol: TCP Ephemeral port #

TCP/IP SOCKET

IP address: 203.0.113.1 L4 protocol: TCP Well-Known Port #

TCP Socket (Packets)

	Connection	
Client	SYN	→ Server
Chent	SYN/ACK	_
	ACK	→
	ACK, DATA	→
	ACK, DATA	_
nine packets	FIN/ACK	→
parate	▲ ACK	_
	FIN/ACK	_
	ACK	→

TCP Socket (Flows)

How is Network Flow Used?

Investigation analysis

- past network events
- automated report generation
- forensics (what happened before an incident?)

Descriptive analysis

profiling/categorizing

Directed analysis (hunt)

looking for specific malicious behavior

Exploratory analysis

looking for the unusual

Predictive analysis

• projecting future behavior

Popular Network Flow Analytics

- Service inventory
- Event precursors
- **Policy violations**
- Top-N web servers
- **Blacklist testing**
- Indicators of Compromise (IoC)
- Service interruptions
- Spam behavior
- IP address audits

DNS Packets Viewed in Wireshark

<u>F</u> il	e <u>E</u>	dit	<u>V</u> iew	<u> </u>	jo j	<u>C</u> apt	ure	<u>A</u> n	alyze	<u>S</u> tat	tistics	Т	elep	hony	<u> </u>	ools	Inte	rnals	<u>H</u> elp										
	ë	0		((X.		B	×	P	8	0	6	4		Ð	T	ł		ł	Ð		(11		+	×.	¥	Ŀ	H	>>
Filt	Filter: Expression Clear Apply																												
No.	Т	ime		5	Sourc	e			De	stina	tion			Prot	ocol	Le	ngth	Info											
	1 ().00	0000	0 3	192.	.16	8.1.	.10	5 10).1.	10.1	_		DNS	5		78	Star	ıdard	qu	uery	/ A	WW	w.m	udyr	nami	cs.c	om	
	2 ().34	807	7 :	10.1	1.1	0.1		19	92.1	68.1	1	05	DNS	5		94	Star	ıdard	qu	uery	/ re	esp	ons	еA	69.	55.2	232.	156
•																													•
(+)	Fra	ne 2	2: 9	94	bvt	es	on ۱	wir	e (7	52	bits).	94	bvt	tes	car	otur	ed (7	'52 b	it	s)								
÷	Eth	erne	et 1	Π,	Sre	c: (cis	C0-	Li_6	6:a	e:1c	(00::	1a:7	70:6	6:	ae:1	c), [st:	Ap	pleo	om_	_d3	:9a	:b8	(00	:19:	e3:	d3:9
÷	Int	erne	et F	ro	toc	01	ver	sio	n 4,	Sr	c: 1	0.3	1.1	0.1	(10).1	.10.	1), c	st:	19	2.10	58.1	1.1	05	(192	2.16	8.1.	105)
÷	Usei	r Da	atag	gra	m Pi	rot	oco	1, :	Src	Port	t:d	oma	ain	(53	3),	DS1	t Po	rt: S	0744	(5074	14)							
÷	Dom	ain	Nar	ne	Syst	tem	(r)	esp	onse	:)																			
																													- F
000	0	00	19	e3	d3	9a	b8	00	1a	70	66	ae	1c	08	00	45	00			. r	of	E							
001	0	00	50	05	91	00	00	3f	11	9f	f9	0a	01	0a	01	с0	a8	.P.											
002	20	01	69	00	35	C6	38	00	<u>3c</u>	78	<u>0d</u>	ea	f9	81	80	00	01	.i.	5.8.	< >	(• • •	•						
00:	10	61	64	60	63	73	00	63	77 6f	6d	00	Da NO	01	00	04	79 c0	oe Oc	 ami		w v	ww.m	uay	m						
005	50	00	01	00	01	00	00	0e	10	00	04	45	37	e8	9c	0	00	•••		•••	.E7								

Simple DNS Sequence Diagram

SiLK DNS (rwcut) Output

sIPdIPsPortdPortpropacketsbytessensortype192.168.1.10510.1.10.1507445317164S1out10.1.10.1192.168.1.105535074417180S1in

Operational DNS Sequence Diagram

Carnegie Mellon University Software Engineering Institute

HTTP Sequence Diagram

Carnegie Mellon University Software Engineering Institute

sIP	dIP	sPort	dPort	pro	packets	flags	linitF	type
192.168.1.105	10.1.10.1	50744	53	17	4			out
10.1.10.1	192.168.1.105	53	50744	17	4			in
192.168.1.105	198.51.100.6	49152	80	6	4	SRPA	S	outweb
198.51.100.6	192.168.1.105	80	49152	6	3	S PA	S A	inweb

sIP	dIP	sPort	dPort	pkts	bytes	flags	sTime
88.187.13.78	71.55.40.204	40936	80	83	3512	FS PA	2010/12/08T11:00:01
71.55.40.204	88.187.13.78	80	40936	84	104630	FS PA	2010/12/08T11:00:01
88.187.13.78	71.55.40.204	40938	80	120	4973	FS PA	2010/12/08T11:00:04
71.55.40.204	88.187.13.78	80	40938	123	155795	FS PA	2010/12/08T11:00:05
88.187.13.78	71.55.40.204	56172	80	84	3553	FS PA	2010/12/08T12:00:02
71.55.40.204	88.187.13.78	80	56172	83	103309	FS PA	2010/12/08T12:00:02
88.187.13.78	71.55.40.204	56177	80	123	5093	FS PA	2010/12/08T12:00:05
71.55.40.204	88.187.13.78	80	56177	124	157116	FS PA	2010/12/08T12:00:05

dIP|sPort|dPort|pro|packets| bytes|flags|initF| SIP 30.22.105.250 71.55.40.253 52415 25 6 22 14045 | F RPA | S 71.55.40.253 30.22.105.250 25 52415 6 19| 1283|F Ρ SA 30.22.105.250 71.55.40.253 52415 25 б 1 40 R

sIP	dIP	pro	packets	bytes	sTime
99.217.139.155	177.252.24.89	1	2	122	2010/12/08T00:04:30.172
99.217.139.155	177.252.149.249	1	2	122	2010/12/08T00:04:37.302
99.217.139.155	177.252.24.52	1	2	122	2010/12/08T00:04:37.312
99.217.139.155	177.252.24.127	1	2	122	2010/12/08T00:04:58.363
99.217.139.155	177.252.24.196	1	2	122	2010/12/08T00:05:04.327
99.217.139.155	177.252.149.30	1	2	122	2010/12/08T00:05:09.242
99.217.139.155	177.252.149.173	1	2	122	2010/12/08T00:05:12.174
99.217.139.155	177.252.24.13	1	2	122	2010/12/08T00:05:14.114
99.217.139.155	177.252.24.56	1	2	122	2010/12/08T00:05:15.383
99.217.139.155	177.252.24.114	1	2	122	2010/12/08T00:05:18.228
99.217.139.155	177.252.202.92	1	2	122	2010/12/08T00:05:22.466
99.217.139.155	177.252.202.68	1	2	122	2010/12/08T00:05:23.497
99.217.139.155	177.252.24.161	1	2	122	2010/12/08T00:05:30.256
99.217.139.155	177.252.202.238	1	2	122	2010/12/08T00:05:33.088

Beginning Analysis with SiLK

Introduction to SiLK Network flow **SiLK components** Repository tools Basic record handling tools Basic profiling tools Summary

Carnegie Mellon University Software Engineering Institute

Network Flow Metering

Network flow analysis begins with flow generation ('metering')

Flowmeters (also called 'probes' and 'sensors') generate network flow data for SiLK

SiLK reads different network flow meter data standards

- IPFIX
- NetFlow version 5/9 protocol data units (PDU)

Example network flow meters

- Yet Another Flowmeter (YAF) (IPFIX)
- Routers (NetFlow v5/9)

YAF (Yet Another Flowmeter)

Carnegie Mellon University Software Engineering Institute

YAF Timing

The YAF flow table (buffer) requires management

Uses 'timeout' feature

• flush (output) network flow records for collection

Idle timeout

• flush flows without activity at 5 minutes (configurable)

Active timeout

• flush all flows every 30 minutes (configurable)

SiLK Components

SiLK is comprised of a *packing system* and *analysis suite*

Packing system

- collect
- convert
- store

Analysis suite

- read
- partition
- sort
- count
- and display network flow records

Packing

Packing collects, converts, and stores network flow data

Consists of packer, plugin, and configuration

Packer

- collect flow data and store in SiLK flow files
- categorize flow records into one or more class and type pairs

Plugin

• packing logic

Configuration

- silk.conf classes, types, and sensors
- sensor.conf networks, sensors and probes

Carnegie Mellon University Software Engineering Institute

Sensors

Sensors are logical flow collection points

Comprised of

- one or more meters (probes)
- unique names

Members of one or more *classes*

Flexible configuration options

- single probe per sensor (common)
- multiple probes per sensor
- multiple sensors per probe

SiLK Sensors

Networks

Networks are logical address spaces that border a sensor

• used to assign *types* to network flow data

Internal

• space that is monitored

External

space outside the monitored network

Null

- space that doesn't leave the sensor
- examples: blocked, BGP

internal external null
SiLK Networks

Classes

Classes represent network topological features

• label flow data relationship to infrastructure

Classes are comprised of

- unique names
- sensors
- types

Example classes

- "border"
- "internal"
- "partner"

One class must be defined

• 'all' is default

SiLK Classes

Carnegie Mellon University Software Engineering Institute

Types Overview

Types describe packet movement between networks

External source to internal destination

• incoming

Internal source to external destination

• outgoing

Internal source to internal destination

• internal

External source to external destination

• external

Internal or external source that terminates at a sensor

• null

incoming outgoing internal external null

Types List

Туре	Description
<u>inweb</u> , outweb	Incoming/outgoing TCP ports 80, 443
innull, outnull	Incoming/outgoing filtered traffic
<u>inicmp</u> , outicmp	Incoming/outgoing IP protocol 1
<u>in</u> , out	Incoming/outgoing not in above categories
int2int, ext2ext	Internal to internal, external to external
other	Source not internal or external, or destination not internal, external, or null

Names in **bold** are often default types

SiLK Types

Repository Overview

The *repository* is a hierarchical structure used to organize and store SiLK flow files

Combination of directories and files

- '/data' (default \$ROOT directory)
- sensor (directory)
- type (directory)
- time (directory and files)

Carnegie Mellon University Software Engineering Institute

Analysis Suite

Read binary files

- SiLK
- other

Partition, sort, count, and display network flow records

- select network flow records using detailed criteria
- read or store SiLK binary formats
- read or store text
- read other formats (ex: pcap, IPFIX, NetFlow v5)

SiLK Analysis Suite

Carnegie Mellon University Software Engineering Institute

Beginning Analysis with SiLK

Introduction to SiLK Network flow SiLK components **Repository tools** Basic record handling tools Basic profiling tools Summary

rwsiteinfo

Print information from the site configuration files

Carnegie Mellon University Software Engineering Institute Beginning Analysis with SiLK © 2017 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

rwsiteinfo Syntax

General form

rwsiteinfo --fields=fields[,fields...](required)

--classes=class[,class...]

--type=type[,type...]

--flowtypes=class/type[,class/type...]

--sensor=sensor[,sensor...]

rwsiteinfo --help

Example call rwsiteinfo --fields=type --sensor=T1

Carnegie Mellon University Software Engineering Institute

```
rwsiteinfo --fields=id-sensor --type=in
Sensor-ID
0
1
```

```
rwsiteinfo --fields=id-sensor,default-type \
--sensor=S0
Sensor-ID|Default-Type|
0| in|
0| inweb|
0| inicmp|
```

```
rwsiteinfo --fields=id-sensor --type=in
Sensor-ID
0
1
```

Answer: Display sensor IDs that have 'in' types

```
rwsiteinfo --fields=id-sensor,default-type \
--sensor=S0
Sensor-ID|Default-Type|
0| in|
0| inweb|
0| inicmp|
```

```
rwsiteinfo --fields=id-sensor --type=in
Sensor-ID
0
1
```

Answer: Display sensor IDs that have 'in' repository types

```
rwsiteinfo --fields=id-sensor,default-type \
--sensor=S0
Sensor-ID|Default-Type|
0| in|
0| inweb|
0| inicmp|
```

Answer: Display the sensor ID and default types for sensor SO

rwsiteinfo Helping the New Analyst

You have been asked to help a new analyst become familiar with the SOC SiLK deployment.

Using your knowledge of the rwsiteinfo command, help them identify the descriptive name and default SiLK types for sensor S1.

Solution

rwsiteinfo --fields=describe-sensor,default-type \ --sensor=S1

Exercise 1

This exercise will walk you through an analysis of the SiLK site configuration with the rwsiteinfo command:

• Understanding how SiLK is configured and the data each sensor is collecting will help analysts interpret output and perform configuration analysis.

Questions: 5

Time: 15 minutes

Beginning Analysis with SiLK

Introduction to SiLK Network flow SiLK components Repository tools **Basic record handling tools** Basic profiling tools Summary

Carnegie Mellon University Software Engineering Institute

rwfilter

Query data from the repository or raw file

rwfilter **Overview**

We will be covering the following basic parameters:

- rwfilter syntax Input, Selection, Partition, Output, Other
- time
- simple numeric fields: ports, protocol, ICMP Type
- count of packets, bytes, duration
- specified IP addresses, CIDR blocks, and wildcards
- sets of IP addresses
- TCP Flags

rwfilter Syntax

General form rwfilter {INPUT | SELECTION} PARTITION OUTPUT [OTHER]

Example call
rwfilter --sensor=S0 --type=in \
 --start-date=2009/4/21T9 \
 --end-date=2009/4/21T16 \
 --protocol=0-255 --pass=workday-21.rw

rwfilter Command Structure

The rwfilter command requires three basic parts:

- selection criteria or input criteria (Which files are input?)
 repository: class, sensor, type, start/end date/hour
- partition (Which records pass my criteria? Which fail?)
 filter options: Which flows do I really want?
- output options

Partitioning is the most complex part.

rwfilter Selection and Input Criteria

Selection options control access to repository files:

- --start-date=2009/4/21:00
- --end-date=2009/4/21T03 (ISO format)
- --sensor=S0
- --class=all
- --type=in,inweb

Alternatively, use input criteria for a pipe or a file:

- myfile.rw
- stdin or -
- useful for chaining filters through stdin/stdout

rwfilter Partitioning by Time (Raw File)

Alternatively, use input criteria for a pipe or a file:

- myfile.rw
- stdin or -

--stime=earliertime-latertime

--etime=earliertime-latertime

--active-time=earliertime-latertime

--duration=lowseconds-highseconds

stime and etime are usually **not** used together.

Each time has millisecond resolution.

--stime=2009/4/21T13:00-2009/4/21T13:29 # ½ hr
--etime=2009/4/21T13:00:00-2009/4/21T13:00:09 # 10 sec
--stime=2009/4/21T13:00-2009/4/21T13:00:48.725 # 48.725s

rwfilter Output Criteria

rwfilter leaves the flows in binary (compact) form.

- --pass, --fail: direct the flows to a file or pipe
- --all: destination for everything pulled from the repository
- One output is required, but more than one can be used (no screen allowed).
 Repository
- Other useful output
 - --print-filenames

 --print-missing-files
 - --print-statistics or
 --print-volume-statistics

rwfilter Chaining Filters

It is often very efficient to chain rwfilter commands together:

- Use --pass and --fail to segregate bins.
- Use --all so you only pull from the repository once.

```
rwfilter --start=2014/11/22 --type=out,outweb \
--duration=300- --pass=stdout \
--fail=outbound_less_then_5min.rw | \
rwfilter --input-pipe=stdin --bytes=40000000- \
--pass=large_outbound.rw --fail=small_outbound.rw
```


rwfilter Simple Numeric Key Fields

--protocol=

--sport= --dport= --aport=

--protocol=6,17

--protocol=1-5,7-16,18-

--protocol=0-

--dport=80,443

--sport=6000-6063,9100-9107

--aport=20,21

--sport=0-1023

TCP or UDP
not TCP or UDP
all protocols
HTTP or HTTPS
X11 or JetDirect
FTP
Well-Known Ports

source, dest, any

rwfilter Packets, Bytes, and Duration

- --packets=
- --bytes=
- --bytes-per-packet=
- --duration=

packets in the flow# bytes in the packets in flow# average# Time between stime - etime

- --packets=3-
- --bytes=40-570
- --bytes-per-packet=40.0-75.125
- --duration=120-

```
rwfilter \
    --start-date=2010/12/08 \
    --type=outweb \
    --bytes=100000- \
    --pass=stdout \
    rwfilter \
    --input-pipe=stdin \
    --duration=60- \
    --pass=long-http.rw \
    --fail=short-http.rw
```

```
rwfilter \
    --start-date=2010/12/08 \
    --type=outweb \
    --bytes=100000- \
    --pass=stdout \
    rwfilter \
    --input-pipe=stdin \
    --duration=60- \
    --pass=long-http.rw \
    --fail=short-http.rw
```

Answer: Classifies 100,000+-byte web output flows by fast or slow transfer

rwfilter Policy Violation

On 2014/12/12, the CIO put out a policy change on what servers are authorized to provide remote desktop access.

Using your knowledge of rwfilter, generate a SiLK raw file that contains network flows with RDP servers and internet clients from 2014/12/26 through 2014/12/28.

Solution

```
rwfilter --start-date=2014/12/26 \
--end-date=2014/12/28 --protocol=6 \
--type=out --sport=3389 --packets=3- \
--pass=rdp.rw
```

Review

rwfileinfo

Display a variety of characteristics for each file format produced by the SiLK tool suite

rwfileinfo Syntax

General form
rwfileinfo file.rw --fields=field[,field...]

Example call
 rwfileinfo bad_IP.rw --fields=version

rwfileinfo displays a variety of characteristics for each file format produced by the SiLK tool suite.

It is very helpful in tracing how a file was created and where it was generated.
rwfileinfo Example

\$ rwfilter --sensor=S0 --type=in,out --start-date=2009/04/21T15 \
--protocol=1 --pass=icmprecords.rw

\$ rwfileinfo icmpred	cords.rw					
icmprecords.rw:						
format(id)	FT_RWIPV6ROUTING(0x0c)					
version	16					
byte-order	littleEndian					
compression(id)	none(0)					
header-length	176					
record-length	88					
record-version	1					
silk-version	3.16.0					
count-records	39					
file-size	3608					
command-lines 1	rwfiltersensor=S0type=in,out					
start-date=2009/04	<pre>/21T15protocol=1pass=icmprecords.rw</pre>					

rwsort

Sort SiLK flow records on one or more fields

rwsort Syntax

General form
rwsort --fields=<fields> [switches] [files]
Example call
rwsort t20.rw --fields=stime \
 --output-path=t20bystime.rw

Why sort flow records?

- Records are recorded as received, not necessarily in time order.
- Analysis often requires finding outliers.
- You can also sort on other fields, such as IP address or port, to easily find scanning patterns.
- It allows analysts to find behavior such as beaconing or the start of traffic flooding.

rwsort **Options**

Input files are specified as positional arguments (default is stdin).

--output-path= specifies the output file (default is stdout).

For improved sorts, specify a buffer size with --sort-buffer-size=

For large sorts, specify a temporary directory with --temp-directory=

Temporary files are stored in /tmp by default.
rwsort t20.rw --fields=sip,sport,dport \
--temp-directory=/user/home/t20sort.rw

rwsort Data analysis

You have saved an rwfilter query that contains flow records for a data exfiltration investigation. The SiLK raw file name is badip.rw and it will be used for a time series analysis.

Using your knowledge of rwsort, sort the records in this raw file by source IP address, start time, and save it as badip_sorted.rw.

Solution

rwsort badip.rw --fields=sip,stime > badip_sorted.rw

Carnegie Mellon University Software Engineering Institute Beginning Analysis with SiLK © 2017 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

rwcut

rwcut

Print selected fields of binary SiLK flow records to a screen

rwcut Syntax

General form rwcut [switches] [file]

Example call
rwcut bad_IP.rw --fields=sip,dip,bytes,stime

But I can't read binary...

rwcut provides a way to display binary records as human-readable ASCII:

- useful for printing flows to the screen
- useful for input to text-processing tools
- Usually you'll only need the --fields option.

rwcut Default Display

By default

- sIP, sPort
- dIP, dPort
- protocol
- packets, bytes
- flags
- sTime, eTime, duration
- sensor

--all-fields

81

rwcut Print flow records

Default output is fixed-width, pipe-delimited data.

sIP	dIP	pro	pkts	bytes
207.240.215.71	128.3.48.203	1	1	60
207.240.215.71	128.3.48.68	1	1	60
207.240.215.71	128.3.48.71	1	1	60

Tools with text output have these formatting options:

- --no-titles: suppress the column headings
- --no-columns: suppress the spaces
- --column-separator: just change the bar to something else
- --delimited: combine the above three options
- --legacy-timestamps: better for import to Excel

rwcut Data analysis

After sorting the badip_sorted.rw raw file by source IP address and start time, an analyst wants to display the data in a popular graphical tool that only accepts text files with the following format:

SIP%DIP%BYTES

Using your knowledge of rwcut, save the records in the required text format.

Solution

rwcut badip_sorted.rw --fields=sip,dip,bytes \
--delimited='%' > badip_sorted.txt

Carnegie Mellon University Software Engineering Institute Beginning Analysis with SiLK © 2017 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Exercise 2

This exercise focuses on the following SiLK commands:

• rwfileinfo, rwcut, rwsort, and the all-powerful rwfilter

Time: 30 minutes

Questions: 7

Beginning Analysis with SiLK

Introduction to SiLK Network flow SiLK components Repository tools Basic record handling tools **Basic profiling tools** Summary

rwcount, rwstats, rwuniq Syntax

rwcount: Count volume across time periods.

rwstats: Count volume across IP addresses, port, or protocol and create descriptive statistics.

rwuniq: Count volume across any combination of SiLK fields.

Key field = SiLK fields defining bins

Volume = {Records, Bytes, Packets} and a few others

- measure
- aggregate value

Each tool reads raw binary flow records as input.

rwcount, rwstats, rwuniq Applications

Count [volume] by [key field] and print [summary]:

- basic bandwidth study
 - Count bytes by hour and print the results.
- top-10 talkers list
 - Count bytes by source IP and print the 10 highest IP addresses.
- user profile
 - Count records by dIP-dPort pair and print all the pairs.
- potential scanners
 - Count unique dIPs by sIP and print the sources that contacted more than 100 destinations.

rwcount

rwcount

Print traffic summaries across time

rwcount Syntax

General form rwcount [switches] [file]

Example call

rwcount bad_IP.rw --bin-size=600

Counts records, bytes, and packets by **time** and displays the results

Fast, easy way of summarizing volumes as a time series

Great for simple bandwidth studies

Easy to take output and make a graph with graphing software

rwcount Time Bins

rwcount uses a 30 second default time bin

Other time bins must be specified in seconds with the **bin-size** switch

--bin-size=86400 # 24 hour bins

rwcount Summary

The bin key is always time. You choose the period.

The aggregate measures are chosen for you. They are flows/records, bytes, and packets.

```
rwfilter --sensor=S0 --start=2009/4/21 \setminus
    --type=in --proto=1 --pass=stdout
   rwcount --bin-size=3600
               Date Records Bytes Packets
2009/04/21T13:00:00
                             2460.00
                                        41.00
                      10.00
2009/04/21T14:00:00
                             8036.00
                                       107.00
                      29.00
2009/04/21T15:00:00
                      22.00 2214.00
                                        47.00
2009/04/21T16:00:00
                             1586.00
                                        23.00
                      10.00
```

```
Carnegie Mellon University
Software Engineering Institute
```

© 2017 Carnegie Mellon University

What Is This?

rwcount MSSP.rwbin-size=3600							
Date	Records	Bytes	Packets				
2010/12/08T00:00:00	1351571.66	73807086.40	1606313.61				
2010/12/08T01:00:00	1002012.43	54451440.59	1185143.62				
2010/12/08T02:00:00	1402404.61	77691865.26	1675282.27				
2010/12/08T03:00:00	1259973.65	68575249.90	1491393.08				
2010/12/08T04:00:00	939313.56	51410968.24	1118584.81				
2010/12/08T05:00:00	459564.75	80862273.32	1742058.62				
2010/12/08T06:00:00	1280651.23	69881126.41	1519435.24				

What Is This?

rwcount MSSP.rwbin-size=3600							
Date	Records	Bytes	Packets				
2010/12/08T00:00:00	1351571.66	73807086.40	1606313.61				
2010/12/08T01:00:00	1002012.43	54451440.59	1185143.62				
2010/12/08T02:00:00	1402404.61	77691865.26	1675282.27				
2010/12/08T03:00:00	1259973.65	68575249.90	1491393.08				
2010/12/08T04:00:00	939313.56	51410968.24	1118584.81				
2010/12/08T05:00:00	459564.75	80862273.32	1742058.62				
2010/12/08T06:00:00	1280651.23	69881126.41	1519435.24				

Answer: Summarize the MSSP.rw file in one hour bins.

rwcount Bin Traffic

Your supervisor notices that there was a disturbance in the force from December 29, 2014 through January 2, 2015. Using your knowledge of rwfilter and rwcount, what command would help determine which 30 minute interval had the most outgoing traffic on sensor DS for this time period?

Solution

rwfilter --start-date=2014/12/29 \ --end-date=2015/01/02 --sensor=DS \ --protocol=0- --type=out,outweb \ --pass=stdout | rwcount --bin-size=1800

Review

rwstats

Print top-N or bottom-N lists or summarize data by protocol

rwstats Syntax

General form
rwstats [switches] [file]
--fields=KEY --value=VOLUME
--count=N or --threshold=N or
--percentage=N
[--top or --bottom]

Example call

rwstats bad_IP.rw --fields=sip --count=10

- Choose one or two key fields.
- Count one of the records, bytes, or packets.
- great for top-N lists and count thresholds

What Is This?

```
rwfilter outtraffic.rw \
    --stime=2010/12/08T18:00:00-2010/12/08T18:59:59 \
    --pass=stdout \
    | rwstats --fields=sip --values=bytes --count=10
INPUT: 1085277 Records for 1104 Bins and 4224086177 Total Bytes
```

OUTPUT: Top 10 Bins by Bytes

sIP	Bytes	%Bytes	cumul_%
71.55.40.62	1754767148	41.541935	41.541935
71.55.40.169	1192063164	28.220617	69.762552
71.55.40.179	331310772	7.843372	77.605923
71.55.40.204	170966278	4.047415	81.653338
177.249.19.217	122975880	2.911301	84.564639
71.55.40.72	110726717	2.621318	87.185957
71.55.40.200	101593627	2.405103	89.591060
177.71.129.255	40166574	0.950894	90.541954
71.55.40.91	35316554	0.836076	91.378030
149.249.114.204	26634602	0.630541	92.008571

What Is This?

```
rwfilter outtraffic.rw \
    --stime=2010/12/08T18:00:00-2010/12/08T18:59:59 \
    --pass=stdout \
    | rwstats --fields=sip --values=bytes --count=10
INPUT: 1085277 Records for 1104 Bins and 4224086177 Total Bytes
```

OUTPUT: Top 10 Bins by Bytes

sIP	Bytes	%Bytes	cumul_%
71.55.40.62	1754767148	41.541935	41.541935
71.55.40.169	1192063164	28.220617	69.762552
71.55.40.179	331310772	7.843372	77.605923
71.55.40.204	170966278	4.047415	81.653338
177.249.19.217	122975880	2.911301	84.564639
71.55.40.72	110726717	2.621318	87.185957
71.55.40.200	101593627	2.405103	89.591060
177.71.129.255	40166574	0.950894	90.541954
71.55.40.91	35316554	0.836076	91.378030
149.249.114.204	26634602	0.630541	92.008571

Answer: Display the Top 10 source IP addresses by byte volumes.

rwstats Top Protocols

Your supervisor provides you a raw file (inbound.rw) containing all inbound traffic. Which SiLK command would display the top-10 incoming protocols used based on bytes?

Solution

rwstats inbound.rw --fields=protocol \
--bytes --count=10

Carnegie Mellon University Software Engineering Institute Beginning Analysis with SiLK © 2017 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

rwuniq

rwuniq

Bin SiLK flow records by a key and print each bin's volume

rwuniq Syntax

General form rwuniq --fields=[switches] [file]

Example call
 rwuniq bad_IP.rw --fields=sip,dip \
 --values=bytes

Unlike rwstats, rwuniq will display all the bins, not just the top or bottom N.

Output is normally unsorted. --sort-output causes sorting by the key (bin), unlike rwstats which sorts by aggregate value.

rwuniq Counting Options

Key	Volume	Summary
fields=KEYS	value={	sort-output
	flows bytes	VOLUME=MIN
bin-time=SECS	packets	VOLUME=MIN-MAX
	sip-distinct	
	dip-distinct	
	stime etime}	

KEYS is any valid specification of SiLK fields:

- rwuniq --fields=sIP,sPort,sTime --bin-time=60
- rwuniq --fields=1-5

Choose any combination of volumes or --all-counts for all.

Use --sort-output to sort by key, not by volume (no top-N lists).

What Is This?

rwfilter outtraffic.rw \setminus

--stime=2010/12/08:18:00:00-2010/12/08:18:59:59 \
--saddress=71.55.40.62 --pass=stdout \

| rwuniq --fields=dip,sport --all-counts --sort-output

dIP	sPort	Bytes	Packets	Records	sTime-Earliest	eTime-Latest
12.113.41.190	80	12782	20	4	2010/12/08T18:42:51	2010/12/08T18:58:49
30.182.228.143	80	203907933	143611	2	2010/12/08T18:53:59	2010/12/08T19:01:47
37.153.24.229	80	205628625	144829	2	2010/12/08T18:29:11	2010/12/08T18:42:51
82.180.203.87	80	213013145	150896	92	2010/12/08T18:06:36	2010/12/08T18:32:33
82.180.203.197	80	800	8	2	2010/12/08T18:43:30	2010/12/08T18:43:30
88.124.166.233	80	223930369	158276	97	2010/12/08T18:08:55	2010/12/08T18:32:25
88.124.166.233	443	509285	732	43	2010/12/08T18:06:57	2010/12/08T18:51:11
94.239.226.247	80	124833037	96047	3	2010/12/08T18:25:22	2010/12/08T19:21:34
109.95.61.80	80	8467397	6325	90	2010/12/08T18:08:59	2010/12/08T18:10:09
139.65.186.4	80	204123360	143794	3	2010/12/08T18:19:48	2010/12/08T18:26:36
139.177.10.136	80	407978375	287354	6	2010/12/08T18:20:03	2010/12/08T19:01:30
198.237.16.172	80	159066748	112025	1	2010/12/08T18:18:43	2010/12/08T18:46:55
219.149.72.154	1024	44	1	1	2010/12/08T18:50:40	2010/12/08T18:50:40
249.216.88.172	80	88	2	2	2010/12/08T18:44:42	2010/12/08T18:44:47
250.211.100.88	80	3295160	2492	42	2010/12/08T18:47:50	2010/12/08T18:58:53

What Is This?

rwfilter outtraffic.rw \
 --stime=2010/12/08:18:00:00-2010/12/08:18:59:59 \
 --saddress=71.55.40.62 --pass=stdout \
 rwuniq --fields=dip,sport --all-counts --sort-output

dIP	sPort	Bytes	Packets	Records	sTime-Earliest	eTime-Latest
12.113.41.190	80	12782	20	4	2010/12/08T18:42:51	2010/12/08T18:58:49
30.182.228.143	80	203907933	143611	2	2010/12/08T18:53:59	2010/12/08T19:01:47
37.153.24.229	80	205628625	144829	2	2010/12/08T18:29:11	2010/12/08T18:42:51
82.180.203.87	80	213013145	150896	92	2010/12/08T18:06:36	2010/12/08T18:32:33
82.180.203.197	80	800	8	2	2010/12/08T18:43:30	2010/12/08T18:43:30
88.124.166.233	80	223930369	158276	97	2010/12/08T18:08:55	2010/12/08T18:32:25
88.124.166.233	443	509285	732	43	2010/12/08T18:06:57	2010/12/08T18:51:11
94.239.226.247	80	124833037	96047	3	2010/12/08T18:25:22	2010/12/08T19:21:34
109.95.61.80	80	8467397	6325	90	2010/12/08T18:08:59	2010/12/08T18:10:09
139.65.186.4	80	204123360	143794	3	2010/12/08T18:19:48	2010/12/08T18:26:36
139.177.10.136	80	407978375	287354	6	2010/12/08T18:20:03	2010/12/08T19:01:30
198.237.16.172	80	159066748	112025	1	2010/12/08T18:18:43	2010/12/08T18:46:55
219.149.72.154	1024	44	1	1	2010/12/08T18:50:40	2010/12/08T18:50:40
249.216.88.172	80	88	2	2	2010/12/08T18:44:42	2010/12/08T18:44:47
250.211.100.88	80	3295160	2492	42	2010/12/08T18:47:50	2010/12/08T18:58:53

Answer: Display (in sorted order) the destination IP addresses that source IP address 71.55.40.62 communicated with and the source ports it used

rwuniq Scanner

You generate the scanning.rw raw file to analyze outbound scanning activity originating from your network. Using your knowledge of rwuniq, how would you identify the internal IP addresses that connected to at least 400 distinct internet IP addresses, and then summarize the records and bytes for each?

Solution

rwuniq scanning.rw --fields=sip \
--dip-distinct=400 --flows --bytes

Carnegie Mellon University Software Engineering Institute Beginning Analysis with SiLK © 2017 Carnegie Mellon University [DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

$\texttt{rwuniq} \; Versus \; \texttt{rwstats}$

rwuniq	both	rwstats in top/bottom mode
All bins except per thresholds	Bin by key	top orbottom bins
	Default aggregate value is flows (records).	
sort-output by key otherwise unsorted		Sorted by primary aggregate value
Thresholds or ranges: bytes,packets, flows,sip-distinct, dip-distinct	Choose which bins have aggregate values significant enough to output.	count,threshold, percentage
all-counts (bytes, packets, flows, earliest sTime, and latest eTime)	Show volume aggregate value[s].	no-percents (good when primary aggregate isn't bytes, packets, or records)
	bin-time to adjust sTime and eTime	
	presorted-input (Omit when value includes Distinct fields, even if input is sorted.)	
values=sTime-Earliest, eTime-Latest	values=Records, Packets, Bytes, sIP-Distinct, dIP-Distinct, Distinct:KEY-FIELD (KEY-FIELD can't also be key field infields)	

IPset Tools

A tool suite that allows you to generate and manipulate IPset files:

- rwset
- rwsetcat
- rwsetmember
- rwsetbuild
- rwsettool

IPset Tools

An IPset is a mathematical set of IP addresses stored as a binary data structure

rwsetbuild: creates IPsets from text

- rwset: creates IPsets from binary flow records
- rwsetcat: displays an IPset as text
- rwsetmember: tests if an address is in given IPsets
- rwsettool: performs IPset algebra (intersection, union, set difference) on multiple IPset files

CERT SiLK IPset tools available in an independent distribution

IPset Applications

Too many addresses for the command line?

- Blacklist (spam networks, IP IoCs, etc)
- Whitelist (mail servers, VPNs, etc)
- arbitrary list of any type of addresses

Create an IPset!

- individual IP address in dotted decimal or integer
- CIDR blocks, 192.168.0.0/16
- wildcards, 10.4,6.x.2-254

Use it directly within your filter commands:

• --sipset, --dipset, --anyset

rwset Syntax

General form

rwset <IPset-Creation-Switch> [switches] [file]

Example call
 rwset badip.rw --dip-file=badip_dip.set

Read SiLK flow records and generate one or more binary IPset files.

At least one creation switch must be specified, and only one IPset of each possible type may be created.

Beginning Analysis with SiLK © 2017 Carnegie Mellon University

rwsetcat and rwsetmember Syntax

General form
rwsetcat [switches] [IPset file]
Example call
rwsetcat BadIP.set --network-structure=/24

By default, prints the IP address of the specified IPset file on the screen

General form

rwsetmember [switches] [input_set]

Example call

rwsetmember BadIP.set 192.168.1.1 --count

Determine the existence of IP address in one or more IPset files.

Carnegie Mellon University Software Engineering Institute

What Is This?

```
rwfilter --sensor=S0 --type=out \
    --start=2009/4/21 --proto=0- \
    --pass=stdout \
    | rwset --dip-file=outIPs.set

rwsetcat outIPs.set --network-structure=16
    10.1.0.0/16| 8748
    10.2.0.0/16| 27
    140.13.0.0/16| 1
```

What Is This?

```
rwfilter --sensor=S0 --type=out \
    --start=2009/4/21 --proto=0- \
    --pass=stdout \
    | rwset --dip-file=outIPs.set

rwsetcat outIPs.set --network-structure=16
    10.1.0.0/16| 8748
    10.2.0.0/16| 27
    140.13.0.0/16| 1
```

Answer: Group the distinct destination IP addresses for 'out' type flows and count them by /16 network.

rwsetbuild Syntax

General form

rwsetbuild [switches] [input file] [output file]

Example call cat ipset.txt 192.168.0.0/24 10.10.10.11-10.10.10.29 rwsetbuild ipset.txt ipset.set --ip-ranges

Read IP addresses from a text input file and write a binary IPset file to an output file.

rwsettool Syntax

General form rwsettool operation [switches] [IPset file]

Example call
 rwsettool --difference web.set \
 dns.set --output-path=web_not_dns.set

Performs the specified operation on one or more IPsets.

Set Intersection

rwsettool --intersect web.set dns.set
--output-path=web_and_dns.set

Set Union

--output-path=web_or_dns.set

Carnegie Mellon University Software Engineering Institute

Set Difference

rwsettool --difference web.set dns.set \
--output-path=web_not_dns.set

Carnegie Mellon University Software Engineering Institute

What Is This?

more MSSP.txt

171.128.2.0/24

171.128.212.0/24

rwsetbuild MSSP.txt MSSP.set

```
rwfilter --start=2010/12/8 --anyset=MSSP.set \
```

```
--pass=MSSP.rw --print-vol
```

	Recs	Packets	Bytes	Files
Total	30767188	81382782	35478407950	48
Pass	26678669	31743084	1464964676	
Fail	4088519	49639698	34013443274	

rwset --sip-file=MSSPsource.set MSSP.rw

```
rwsettool --intersect MSSP.set MSSPsource.set \
    --output=activeMSSP.set
```

```
rwsetcat --count-ips activeMSSP.set
```

22

What Is This?

more MSSP.txt

171.128.2.0/24

171.128.212.0/24

rwsetbuild MSSP.txt MSSP.set

```
rwfilter --start=2010/12/8 --anyset=MSSP.set \
```

```
--pass=MSSP.rw --print-vol
```

	Recs	Packets	Bytes	Files
Total	30767188	81382782	35478407950	48
Pass	26678669	31743084	1464964676	Í
Fail	4088519	49639698	34013443274	ĺ

```
rwset --sip-file=MSSPsource.set MSSP.rw
```

```
rwsettool --intersect MSSP.set MSSPsource.set \
    --output=activeMSSP.set
```

```
rwsetcat --count-ips activeMSSP.set
```

22

Answer: Count the number of IP addresses from two /24 networks that were active on 2010/12/08.

Exercise 3

This exercise focuses on the following SiLK commands:

 rwcount, rwstats, rwuniq, rwsetbuild, rwset, rwsetcat, rwsetmember, rwsettool, and again the all-powerful rwfilter

Time: 45 minutes Questions: 6

Furthering Your SiLK Analysis Skills - 1

Each tool has a --help option.

SiLK Reference Guide, SiLK Analysts' Handbook

- Both are available on the SiLK tools website:
 - http://tools.netsa.cert.org

Email support

netsa-help@cert.org

Furthering Your SiLK Analysis Skills - 2

Tool tips

• SiLK Tooltips link on http://tools.netsa.cert.org

Flow analysis research and advanced techniques

- http://www.cert.org/flocon
- http://www.cert.org/netsa

Questions?

Carnegie Mellon University Software Engineering Institute

Contact Information

DHS Shared Cybersecurity Services Arlene Guevara Zuleta (703) 235-4920 Arlene.Guevara-Zulet@hq.dhs.gov

SEI/CERT NetSA Mentor netsa-mentor@cert.org

Geoffrey Sanders

703-247-1393

gtsanders@sei.cmu.edu

Nathaniel Richmond 703-247-1395 nr@sei.cmu.edu

Carnegie Mellon University Software Engineering Institute Beginning Analysis with SiLK © 2017 Carnegie Mellon University