
Analyzing Real-Time Scheduling of
Cyber-Physical Resilience∗

Björn Andersson1, Dionisio de Niz1, and Sagar Chaki2

1 Carnegie Mellon University
2 Mentor Graphics

Abstract
Cyber-Physical Systems (CPS) involve software executing on a computer that interacts with its
physical environment. Common steps in the design and analysis of such systems are: model
the physical environment, develop software to interact with this physical environment, specify
timing requirements of software, configure the software (e.g., assign priorities), and then analyze
the timing requirements for a given configuration. This approach works but tends to have low
resilience to disruption. With the pervasive use of CPS, there is an increasing need for developing
timing analysis methods that achieve increased resilience by modeling the linkage between the
execution of software and the physical environment. In this paper, we present a new model that
describes the current state of the physical environment in terms of how tolerant it is to disruption
of the software system; we call this model Cyber-Physical Resilience (CPR). We present an
exact schedulability test for this model and implement a tool that performs this schedulability
test. Through evaluation of randomly-generated tasksets, we find that (i) for tasksets with at
most five tasks, for all tasksets in our evaluation, our new schedulability test never took longer
than 15h, (ii) in most cases, our new schedulability test finishes much faster (seconds/minutes),
and (iii) thanks to our CPR model, our new schedulability test makes it possible to guarantee
schedulability on a single processor even for tasksets with utilization 400%. We also find that
our schedulability test can successfully analyze a model of a multi-UAV system from [1].

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2018.YY

1 Introduction

Cyber-Physical Systems (CPS) involve software executing on a computer that interacts with
its physical environment. Common steps [21] in the design and analysis of such systems are:
model the physical environment, develop software to interact with this physical environment,
specify timing requirements of software, configure the software (e.g., assign priorities), and
then analyze the timing requirements for a given configuration. This approach works but
tends to have low resilience to disruption. With the pervasive use of CPS, there is an
increasing need for developing timing analysis methods that achieve increased resilience by
modeling the linkage between the execution of software and the physical environment.

Although several works on real-time scheduling that aims to improve control performance
exists, results on resilience of real-time scheduling are scarce—see Related work section of
this paper. From the perspective of resilience, the ideas in [17] are particularly interesting. It
introduces a collection of sets of states of the physical environment where a set is associated
with an index (an integer) that indicates how many consecutive control actions that can be
disrupted without jeopardizing safety. When a controller executes successfully, the possible
successor states of the physical environment is in a set of states where this set is associated

∗ The last author did the work when he was with Carnegie Mellon University.

© Björn Andersson, Dionisio de Niz, and Sagar Chaki;
licensed under Creative Commons License CC-BY

30th Euromicro Conference on Real-Time Systems (ECRTS 2018).
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECRTS.2018.YY
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

YY:2 Analyzing Real-Time Scheduling of Cyber-Physical Resilience

𝐶𝜙

𝜙

𝐶𝜙
2

𝐶𝜙
1

Figure 1 Increasing Enforceable Regions

with an index that is one higher (i.e., makes the plant more resilient). On the other hand,
if a controller does not execute (e.g., because of a denial-of-service attack), the possible
successor states of the physical environment is in a set of states where this set is associated
with an index that is one lower. If the physical environment is in a set with index zero and
the controller does not execute, then safety is violated. Despite the appeal of the model
in [17] in terms of resilience, it had the drawback that it assumed a single controller—no
contention for the processor and hence no scheduling. Specifically, [17] neither presented
any task model nor any schedulability test. Therefore, we believe it is desirable to develop
a scheduling theory inspired by the resilience model of [17].

In this paper, we present a new model that describes the current state of the physical
environment in terms of how tolerant it is to disruption of the software system. The model
is inspired by the ideas in [17] but we focus on real-time tasks, enforcement, interaction with
physical environment, and schedulability analysis. Our model describes the relationship
between the timing behavior and the physical resilience of the system; hence we name it the
Cyber-Physical Resilience (CPR) model. For this model, we present an exact schedulability
analysis. The main idea of our schedulability test is as follows (i) identify necessary condi-
tions for a failure, (ii) formulate a Satisfiability Modulo Theories (SMT) instance such that
if the necessary condition of failure is true then the SMT instance is feasible, (iii) by taking
the contrapositive of the previous condition; obtain that if the SMT instance is unsatisiable
then the taskset is schedulable (this is our new schedulability test), (iv) prove that our new
schedulability test is exact. We also implement a tool that performs this schedulability
test. Through evaluation of randomly-generated tasksets, we find that (i) for taskset with
at most five tasks, for all tasksets in our evaluation, our new schedulability test never took
longer than 15h, (ii) in most cases, our new schedulability test finishes much faster (second-
s/minutes), and (iii) thanks to our CPR model, our new schedulability test makes it possible
to guarantee schedulability on a single processor even for tasksets with utilization 400%. We
also find that our schedulability test can successfully analyze a model of a multi-UAV system
from [1].

We consider this research to be significant because it can be seen as a generalization of
classic exact schedulability analysis of fixed-priority preemptive scheduling to cyber-physical
systems. Previous work has ignored the physical dynamics or had explicit models of the
physical dynamics; we, instead, use an abstraction of the dynamics of the physical world.

The remainder of this paper is structured as follows. Section 2 gives a background on
the model in [17] and our observations. Section 3 formally presents our system model. Sec-
tion 4 presents our new schedulability analysis. Section 5 presents performance evaluation.
Section 6 presents related work. Section 7 concludes the paper.

B. Andersson, D. de Niz, and S. Chaki YY:3

2 Physical Interaction

Figure 1 shows notions that we will discuss. Consider a plant. Let φ be a correctness
property of the plant (e.g., a UAV stays within a safe geographic region). We represent φ as
a set of states of the plant where this correctness property is true. There is also a computer
system that periodically senses and performs actuation actions on the plant. For a given
pair of state and action there is a set of possible successor states.

Note that the state refers to the state of the plant—not the state of the computer system.
Let Cφ be a subset of φ such that for each state in Cφ there is an action such that the set
of possible successor states is a subset of Cφ.

Let a null action be an action such that the software does nothing. The interpretation
of a null action is application specific and in particular, it depends on the actuator. For
example, an actuator may be designed so that if it receives no new command, then it re-
applies the command produced by the software in the previous period. Alternatively, an
actuator may have an internal timeout so that if it has not received a new command from
the software within a given timeout, then it actuates a specific command. For example, if a
motor has not received any new command within a given timeout, then it may disengage.
Let Ckφ (for k ≥ 1) denote the set of states such that for each state in Ckφ, it holds that if k
null actions are taken, then each possible successor state is in Cφ. Thus, both C2

φ and C1
φ

are sets of safe states but C2
φ is more resilient in the sense that it can tolerate more null

actions without the plant reaching an unsafe state.
Lucia et al. [17] studied control of such a system where the computer can suffer from a

Denial-of-Service attack, and it is desired to ensure that the system is still in a safe state
after that. We will now describe how to use this idea to create a model for the real-time
scheduling of the resilience of this type of systems. We will describe a system where the
software consists of a set of tasks where each task generates a sequence of jobs. We assume
that tasks operate on different plants, that is, task τi is associated with a plant i with the
correctness property φi. A counter is associated with each task; if the counter associated
with task τi is equal to k, then it means that plant i is in a state in Ckφi

. A job can be skipped
and then it outputs a null action. If a job is skipped, the counter of the corresponding task
is decremented. If a job is not skipped it can happen that the job finishes with some margin
before its deadline issuing a normal controller action; then the counter is incremented. If
the job is not skipped and the job does not finish with some margin before its deadline,
then within some margin before the deadline, the job is killed and an enforcer arrives;
if the enforcer finishes before the deadline issuing an enforcer action, then the counter is
unchanged. If the enforcer has not yet finished at its deadline, then the enforcer is killed
(and a null action is output) and the counter is decremented.

We assume that each task is assigned a priority and fixed-priority preemptive scheduling
is used. We assume that whether a job is skipped cannot be controlled by the scheduler
but we have rules that bound this behavior. There are different reasons for a job being
skipped. One reason is that the software system intentionally inserts a null action. For
example, skipping one job may temporarily free up processing time that can be used by
other tasks and this may give higher QoS. Another reason is a mixed-criticality context; a
low-criticality task may choose to skip so that a high-criticality task (e.g., flight control) will
meet its deadline.

We are interested in having very few assumptions on knowledge of execution times while
still being able to provide pre-run-time guarantees. For this purpose, we can stipulate that
if a job is of the type respectC (intuitively respect execution time), then the execution time

ECRTS 2018

YY:4 Analyzing Real-Time Scheduling of Cyber-Physical Resilience

is at most a given parameter; if the job is of the type not-respectC then execution time may
be greater than this parameter. Clearly, if all jobs are not-respectC, then it is impossible
to provide pre-run-time guarantees. Therefore, we also stipulate bounds on how many jobs
can be not-respectC.

Typically, it is desired not only to maintain the plant in a safe state but also to achieve
other objectives (for example, a UAV should stay within a geographical area but it should
also follow waypoints). Hence, there are cases (where the plant is not close to the border of
the set of safe states), when a successful action (a job finishing with some margin before its
deadline) should not increment the counter of the task. We can model this by introducing
a parameter per task and when the counter of a task has reached this parameter, then the
counter is not permitted to be incremented further.

Our goal is to (i) formulate a task model based on the above ideas, (ii) present an exact
schedulability test for this task model, and (iii) evaluate the new schedulability test.

3 System Model

Subsection 3.1 states notations that we will use. Subsection 3.2 states taskset parameters.
Subsection 3.3 presents run-time behavior; it explains the meaning of taskset parameters.
Subsection 3.4 defines the notion of schedulable, and based on that it defines the notion
schedulability test.

3.1 Notation
Throughout this article, we use the following notation and abbreviations. “with respect to”
is written as wrt. “left-hand side” is written as lhs. “right-hand side” is written as rhs.
{x|f(x)} denotes the set where an element x is in the set if and only if f(x) is true. 〈a, b〉 is
a tuple with two elements a and b. [a, b] is an interval of real numbers (e.g., a time interval).
{a..b} is the set of integers ≥ a and ≤ b.

We use dot to mean it holds that; for example, when we write “∀x Q(x). P (x)” we mean
forall x such that Q(x) is true, it holds that P (x) is true. In some cases, when Q is a set, we
write “∀x ∈ Q. P (x)” we mean forall x such that x is in the set Q, it holds that P (x) is true.
We will frequently use the above notations on tuples, for example when we write “∀〈j, q〉
Q(j, q). P (j, q)” we mean forall tuples 〈j, q〉 such that Q(j, q) is true, it holds that P (j, q)
is true. We will assume that logical conjunction can be performed over a set of variables; if
the set is empty, then the result is true. Ditto for logical disjunction.

In figures that show schedules, an arrow pointing upwards indicates the arrival of a job,
an arrow pointing downwards indicates the absolute deadline of a job, and a solid vertical line
will be used to indicate a time when the run-time system release an enforcement execution
(if needed) for a job.

When we say increment without specifying the amount, it is assumed to mean increment
by one. Ditto for decrement.

3.2 Static parameters
Table 1 shows an example of a system in our model. We consider a taskset τ and a single
processor. Each task τi ∈ τ is characterized by prioi, Ti, Di, Zi, Ci, Ei, MAXCOUNTi,
and RCi such that (Ti ≥ Di ≥ Zi ≥ Ci ≥ 0) ∧ (Di − Zi ≥ Ei ≥ 0) ∧ (MAXCOUNTi ∈
N≥1) ∧ (RCi ∈ N≥1). The interpretation is as follows. A task τi is assigned priority prioi.
A task τi generates a sequence of jobs where two consecutive jobs of τi have arrival times

B. Andersson, D. de Niz, and S. Chaki YY:5

|τ | = 2
prio1 = 2 T1 = 1.0 D1 = 0.8 Z1 = 0.64 C1 = 0.50 E1 = 0.10 MAXCOUNT1 = 4 RC1 = 1
prio2 = 1 T2 = 2.2 D2 = 1.7 Z2 = 1.40 C2 = 0.61 E2 = 0.25 MAXCOUNT2 = 1 RC2 = 1

Table 1 An example of a system in our model.

separated by at least Ti time units and each job of τi has relative deadline Di. If a job of
τi is a respectC job, then Ci is an upper bound on the execution time of this job performed
in the time interval from its arrival until Zi time units after its arrival. For a job of τi,
regardless of whether it is a respectC job, it holds that Ei is an upper bound on the execution
time of this job performed in the time interval from Zi time units after its arrival until
Di time units after its arrival. MAXCOUNTi is the largest value that the counter of
task τi may take at run-time. RCi specifies that we assume it cannot happen that RCi
consecutive jobs of τi are not-respectC. We assume that priorities of tasks are unique, that
is, ((i 6= j)∧ (τi ∈ τ)∧ (τj ∈ τ))⇒ (prioi 6= prioj). For convenience, we let hp(i) denote the
set of indices of tasks with higher priority than task τi.

3.3 Run-time behavior
Figure 2 shows a schedule that the taskset specified by Table 1 can generate. τi,q denotes
the qth job of task τi. The priority of a τi,q is equal to prioi. A job can be a skipped job
or not; if it is skipped, then there is a time at which it gets skipped. (For example, a job
may be skipped when it arrives because the operating system decided this. Alternatively,
the application software may decide that a job should be skipped and this type of skip will
happen after the job has arrived.) A job can be respectC job or not. We say that a job of
task τi Zexpires at time Zi plus the arrival time of the job. Analogously, we also say that a
job of task τi Dexpires at time Di plus the arrival time of the job. For a job τi,q, the normal
mode of the job is the time interval from its arrival until it Zexpires. For a job τi,q, the
enforcement mode of the job is the time interval from when it Zexpires until it Dexpires. A
job performs normal execution in its normal mode. A job performs enforcement execution
in its enforcement mode. The following rules (for evolution of counters, whether a job is
eligible, and how a job is selected for execution) apply at run-time:
1. When the system starts, the counter of τi is initialized to some non-negative value. The

choice in this value may be done non-deterministically when the system starts.
2. When a job arrives, if it is not skipped when it arrives, it becomes eligible.
3. When a job arrives, if it is skipped when it arrives, it is set to non-eligible.
4. If for τi,q, the RCi− 1 preceding jobs of are not-respectC job, then τi,q is a respectC job.
5. If for τi,q, the job is in its normal mode and the job is skipped, then it finishes, it

becomes non-eligible, and the counter of τi is decremented. (A job can only be skipped
in its normal mode.)

6. If for τi,q, the job is in its normal mode and it is not skipped and the job has performed
Ci units of normal execution, then the job finishes (note that a job can finish even if it
performs less) and it becomes not-eligible.

7. If for τi,q, the job finishes in its normal mode and it is not skipped and the counter of the
τi is at most MAXCOUNTi − 1, then the counter of τi is incremented. (note that if the
counter of τi equals MAXCOUNTi, then the counter is unchanged; hence, the counter
cannot exceed MAXCOUNTi).

8. When a job Zexpires, it leaves its normal mode and enters its enforcement mode.

ECRTS 2018

YY:6 Analyzing Real-Time Scheduling of Cyber-Physical Resilience

Processor

0 1 time

τ1 τ1 τ1 τ1 τ1τ2 τ2τ2 τ2τ2

2 3 4 5

τ1

τ2

counter of τ1

counter of τ2

1

1

2 3 4 4 4 3

0 0

Job of τ2 reached D1 after its arrival
and has not yet finished. Hence,
decrement counter of τ2.

Job of τ2 finishes before D2 after its arrival
but later than Z2 after its arrival. Hence,
counter of τ2 does not change.

Figure 2 Illustration of a schedule that the system can generate. τ1 has the highest priority;
hence, a job of τ1 executes immediately when it arrives. It can be seen that for each of the first
five jobs of τ1, the finishing time is at most Z1 after its arrival. Because of this early finishing, for
each of the first three jobs of τ1, the counter of τ1 is incremented. For the 4th and 5th job of τ1,
it holds that the job also has early finishing time but since the counter has already become 4 and
MAXCOUNT1 = 4, it follows that the counter is not incremented further. The 6th job of τ1 arrives
at time 5; this job is skipped and hence the counter of τ1 is decremented. As a result, the counter
of τ1 becomes 3 at time 5. Note that in this schedule, it never happens that a job of τ1 is eligible
Z1 time units after its arrival; hence, jobs of τ1 never perform enforcement execution. τ2 has lower
priority; hence a job of τ2 can only execute when a job of τ1 is not executing. For the first job of
τ2, it holds that it has not yet finished Z2 time units after its arrival; hence this job is killed and
its enforcement execution is released (at time 1.4). Note that this job cannot execute immediately
after time 1.4 because of the higher priority task. Therefore, this job has to wait until time 1.5 and
then it performs enforcement execution during [1.5,1.7]. At time 1.7, the deadline of the 1st job of
τ2 expires and hence this job is killed and as a result, the counter of τ2 is decremented. The 2nd

job of τ2 has similar behavior but since its enforcement execution experiences less interference, it
finishes before the deadline and hence the counter of τ2 is not changed.

9. If for τi,q, the job is in its enforcement mode and the job has performed Ei units of
enforcement execution, then the job finishes (note that a job can finish even if it performs
less; also note that a job cannot be skipped in its enforcement mode) and it becomes
not-eligible.

10. For τi,q, if the job finishes in its enforcement mode, then the counter of τi does not
change.

11. For τi,q, when the job Dexpires, it finishes (here we say it is killed) and it becomes
not-eligible and the counter of τi is decremented.

12. A job executes if and only if the job is eligible and there is no higher-priority job that is
eligible at that time.

B. Andersson, D. de Niz, and S. Chaki YY:7

3.4 Schedulable
Informally, a system is schedulable if for all possible schedules that the system can generate,
all deadlines are met. Therefore, we start by defining terminology for specifying the possible
schedules.

Let R be an assignment, for each task, the number of jobs it generates and for each
job, its arrival time and execution time in normal mode and in enforcement, whether it
is a skip-job and the time when it becomes a skip job (only used if it is a skip job) and
respectC. nji(R) denotes the number of jobs generated by τi for assignment R. Let Ai(R)
be the arrival time of τi,q for assignment R. Let ci,q(R) be the execution requirement of
τi,q in normal mode for assignment R. Let ei,q(R) be the execution requirement of τi,q in
enforcement mode for assignment R. Let skipi,q(R) be a Boolean indicating whether τi,q
is a skip-job for assignment R. Let skipti,q(R) be a real number indicating the time when
τi,q becomes a skip-job (only used if it is a skip job) for assignment R. Let respCi,q(R) be
a Boolean indicating whether τi,q is respectC for assignment R. Let leg(R, τ) mean legal
assignment. Formally:

leg(R, τ) =
(
∀〈i, q〉 (τi ∈ τ) ∧ (q ∈ {2..nji(R)}) Ai,q(R)−Ai,q−1(R) ≥ Ti

)
∧(

∀〈i, q〉 (τi ∈ τ) ∧ (q ∈ {1..nji(R)}) (ci,q(R) ≥ 0) ∧ (respCi,q(R)⇒ (ci,q(R) ≤ Ci))
)
∧(

∀〈i, q〉 (τi ∈ τ) ∧ (q ∈ {1..nji(R)}) ei,q(R) ∈ [0, Ei]
)
∧(

∀〈i, q〉 (τi ∈ τ) ∧ (q ∈ {1..nji(R)− (RCi − 1)}) ∨q′∈{q..q+RCi−1} respCi,q′(R)
)

Let ca be a counter assignment; that is, it is an assignment for each task, for each time,
the value of the counter of the task at that time. Let legca(ca, R, sc, τ) mean that ca is legal
counter assignment related to the assignment R, schedule sc, τ ; it means that the counter
assignment respects the increment and decrement rules specifies in the Subsection 3.3.

We say that τ is schedulable if and only if for each assignment R, counter assignment ca,
schedule sc s.t. R is legal wrt to τ , counter assignment ca is legal wrt τ and R, sc can be
generated from R it holds that for each task τi ∈ τ , at all times, the counter of τi is non-
negative. The intuition behind this definition of schedulable is (as mentioned in Section 2)
that counters that are non-negative represent safe states; thus, if a system is schedulable,
then it is safe.

A schedulability test is a function that takes τ and Π as input and outputs a Boolean.
For an exact schedulability test, it holds that if and only if the schedulability test outputs
true, then the system is schedulable.

4 New Schedulability Test

In this section, we present our new schedulability test for the CPR model. Our plan is as
follows. First, if a taskset is unschedulable, then there is a schedule in which there is a failure.
We reason (in Section 4.1) about this failure and obtain the existence of another schedule
that the system can generate; for this schedule, we identify necessary conditions. Then, we
represent those schedules with variables and constraints. Thus, if a taskset is unschedulable,
then there exists a constraint satisfaction problem that is satisfiable (Section 4.2 presents
this constraint satisfaction problem). Then, in Section ?? we show that we have obtained
a necessary condition for an unschedulable taskset. We take the contrapositive of this
necessary condition and this yields a sufficient condition for a taskset to be schedulable.

ECRTS 2018

YY:8 Analyzing Real-Time Scheduling of Cyber-Physical Resilience

We then show (in Section 4.3) that this condition is also exact. It turns out that it is not
obvious how to evaluate this condition. Hence, we develop (in Section 4.4) an algorithm to
evaluate the condition and this yields our exact schedulability test for the CPR model.

4.1 Reasoning About Necessary Condition for Failure
Consider an unschedulable taskset τ . From the definition of schedulability, it follows that

There is an assignment R, a counter assignment ca, a schedule sc, a task τiD, and an
instant t0 such that (i) R is legal wrt the taskset τ , (ii) ca is legal wrt R, sc, and τ ,
(iii) sc can be generated by R and τ , and (iv) just before t0, the counter of τiD was
0 and at t0, the counter of τiD becomes -1.

If there are multiple such t0, then choose the earliest one. Hence, for each task, for each
instant before t0, it holds that at this instant the counter of this task is non-negative. We
will present transformations such that after each transformation, the above three conditions
(and the non-negativeness) are true but in addition, there are other constraints that are true
as well. We will now perform a transformation as specified by the following steps:
T1 For tasks of lower priority than τiD, set the number of jobs to zero.
T2 Remove all jobs that arrive after t0.
T3 For each task, set the counter of this task as a function of time to reflect the changes of

steps T1 and T2.
Note that even after this change, it holds that at time t0, the counter of τiD becomes -1.
Recall that according to our system model, there are two reasons why the counter of a task
is decremented: either because a job of this task is skipped or because the job finishes too
late. The former cannot happen when the counter is zero (which is the case just before time
t0). Hence, at time t0, the counter of τiD is decremented because a job of τiD finishes too
late. We let qD denote the index of this job of task τiD. In addition, recall from our system
model that if a job has not finished by its absolute deadline, then the job is killed at its
absolute deadline; thus τiD,qD is killed a time t0. We will now perform a transformation as
specified by the following steps:
T4 For all jobs except τiD,qD, if the job performs some enforcement execution at time t0

or later, then reduce the enforcement execution time of the job; keep doing this until it
performs no enforcement execution after t0.

T5 For all jobs except τiD,qD, if the job performs some normal execution at time t0 or later,
then reduce the normal execution time of the job; keep doing this until it performs no
normal execution after t0.

T6 For each task, set the counter of this task as a function of time to reflect the changes of
steps T4-T5.

Note that even after this change, it holds that at time t0, the counter of τiD becomes -1.
Hence, it holds that:

There is an assignment R, a counter assignment ca, a schedule sc, a task τiD, and an
instant t0, and a positive integer qD such that (i) R is legal wrt the taskset τ , (ii) ca
is legal wrt R, sc, and τ , (iii) sc can be generated by R and τ , (iv) just before t0,
the counter of τiD was 0 and at t0, the counter of τiD becomes -1, (v) for each task,
for each instant before t0, it holds that at that time, the counter of the task is non-
negative, (vi) at each instant less than t0, for each task, it holds that the counter of
this task at this instant is non-negative, (vii) for each task of lower priority than τiD
it holds that, the task generates no jobs, (viii) no jobs arrive after t0, (ix) the number

B. Andersson, D. de Niz, and S. Chaki YY:9

of jobs generated by τiD is qD, (x) the absolute deadline of τiD,qD is t0, (xi) τiD,qD has
not yet finished by time t0, (xii) τiD,qD is killed at time t0, and (xiii) the processor is
idle at all times strictly after t0.

Let us consider two cases based on the initial value of the counter of task τiD.
Case 1: When the system starts, the value of the counter of task τiD is at least 1.

Since at time t0, it holds that the counter of τiD changes from 0 to -1 and since the
counter of τiD started with at least 1, it holds that there are at least two jobs of τiD for
which the counter of τiD was decreased. Hence qD ≥ 2. Let us define qD′ as the smallest
number such that after the absolute deadline of τiD,qD′ until t0, the counter of task τiD
does not change. Formally,

qD′ = min
q | the counter of τiD does not change during (AiD,q(R)+DiD,t0)

q

Note that since there are at least two jobs of τiD for which the counter of τiD was
decreased, it follows that qD′ exists. We will now perform a transformation as specified
by the following steps:
T7 Set τiD,qD′ to be skipped; set the time when this job is skipped to be the time when

the job arrives.
T8 Set τiD,qD′ to respectC.
T9 Remove all jobs τiD,q such that ((q 6= qD′) ∧ (q 6= qD)).
T10 Set the counter of τiD as a function of time to reflect the changes of steps T7-T9.
About the transformation, we note the following:
A The job τiD,1 after this transformation refers to the same job as τiD,qD′ before the

transformation.
B The job τiD,2 after this transformation refers to the same job as τiD,qD before the

transformation.
C After the transformation, at time t0, the counter of τiD changes from 0 to -1.
D After the transformation, there are two jobs of τiD.
E After the transformation, each of the two jobs of τiD causes the counter of τiD to be

decremented.
F After the transformation, when the system starts, the counter of τiD is 1 (this follows

from C. and E.).
G After the transformation, τiD,1 does not execute (this follows from A and T7).
H After the transformation, τiD,1 is a respectC job. (this follows from A and T8).
I If RCiD = 1, then before the transformation, each job of τiD is a respectC job. (follows

from the fact that R is legal).
J If RCiD = 1, then after the transformation, τiD,2 is a respectC job. (follows from I and

B).
We will now show that after this transformation, the assignment and schedule are still
legal. Clearly, this transformation does not change the arrival times, execution times of
tasks with index in hp(iD); also, for these tasks, the times when they execute do not
change, their counters do not change, and their respectC do not change (and hence RC
constraints are satisfied too). We will now show that this also holds for the task τiD.
Clearly, the execution time and arrival time constraints for τiD are satisfied. We will
now show that the RC constraint for τiD is satisfied after the change. Consider the case
that RCiD = 1. From H. and J., it follows that after the transformation, both jobs of τiD
are respectC jobs; hence the RC constraint for τiD is satisfied. Consider the case that
RCiD ≥ 2. In order to prove that the RC constraint of τiD is satisfied after the change,

ECRTS 2018

YY:10 Analyzing Real-Time Scheduling of Cyber-Physical Resilience

it suffices to show that for each sequence of RCiD jobs of τiD, it holds that at least one
of these jobs is a respectC job. Note (from H) that τiD,1 after the transformation is a
respectC job and hence each such sequence has a respectC job. Thus, the RC constraint
of τiD is satisfied after the transformation. Hence, it holds that:

There is an assignment R, a counter assignment ca, a schedule sc, a task τiD, and
an instant t0, and a positive integer qD such that (i) R is legal wrt the taskset
τ , (ii) ca is legal wrt R, sc, and τ , (iii) sc can be generated by R and τ , (iv) just
before t0, the counter of τiD was 0 and at t0, the counter of τiD becomes -1, (v) for
each task, for each instant before t0, it holds that at that time, the counter of the
task is non-negative, (vi) at each instant less than t0, for each task, it holds that
the counter of this task at this instant is non-negative, (vii) for each task of lower
priority than τiD it holds that, the task generates no jobs, (viii) no jobs arrive after
t0, (ix) the number of jobs generated by τiD is 2, (x) the absolute deadline of τiD,2 is
t0, (xi) τiD,2 has not yet finished by time t0, (xii) τiD,2 is killed at time t0, (xiii) the
processor is idle at all times strictly after t0, and (xiv) when the system starts, the
counter of τiD is 1.

Let t−1 denote the earliest time instant such that at each instant during [t−1,t0], the
processor is busy. We will now discuss the arrival time of τiD,1 and τiD,2. Let us define
∆ as AiD,2(R) − t−1. From the definition of t−1 and from the fact that we consider
work-conserving scheduling, it follows that ∆ ≥ 0. We will now consider two cases and
through reasoning, we will show that after these cases, we end up with AiD,2(R) = t−1.
Case 1a: ∆ = 0

Using the knowledge of the case (∆ = 0) and the definition of ∆ yields that AiD,2(R) =
t−1.

Case 1b: ∆ > 0
For this case, perform a transformation as specified by the following steps:
T11 Decrement AiD,1(R) by ∆.
T12 Decrement AiD,2(R) by ∆.
T13 Set t0 to the absolute deadline of τiD,2.
T14 Apply T4,T5,T6 so that there is no execution after the time given by the new

value of t0.
T15 Set the counter of τiD as a function of time to reflect the changes of steps T11-

T14.
Given that both jobs of τiD have their arrival times decreased by the same amount
and the minimum inter-arrival time was respected before the transformation, the
minimum inter-arrival time is still respected after the transformation. Also, after the
transformation, we obtain AiD,2(R) = t−1.

Hence, regardless of the case, we end up with AiD,2(R) = t−1. Also, note that we end
up with that the absolute deadline of τiD,2 equals t0 (this can be seen as follows: in Case
1a, this was true initially and we did not change it; in Case 1b, this was true initially
and then we changed it—with T12—and then T13 made sure it is true). We will now
perform a transformation as specified by the following steps:
T16 Remove the job τiD,1.
T17 Remove all jobs arriving before t−1.
T18 Left shift-the schedule by t−1 time units.
T19 For each task, set the counter of this task as a function of time to reflect the changes

of steps T16-T18.

B. Andersson, D. de Niz, and S. Chaki YY:11

Note that after this transformation, we obtain that τiD generates a single job that arrives
at time 0; at that time, the counter of τiD is zero; and DiD time units later, the deadline
of the single job of τiD expires at time DiD. Hence, it holds that:

There is an assignment R, a counter assignment ca, a schedule sc, a task τiD, and
an instant t0, and a positive integer qD such that (i) R is legal wrt the taskset
τ , (ii) ca is legal wrt R, sc, and τ , (iii) sc can be generated by R and τ , (iv) just
before t0, the counter of τiD was 0 and at t0, the counter of τiD becomes -1, (v) for
each task, for each instant before t0, it holds that at that time, the counter of
the task is non-negative, (vi) at each instant less than t0, for each task, it holds
that the counter of this task at this instant is non-negative, (vii) for each task of
lower priority than τiD it holds that, the task generates no jobs, (viii) no jobs arrive
after t0, (ix) the number of jobs generated by τiD is 1, (x) the absolute deadline
of τiD,1 is DiD, (xi) τiD,1 has not yet finished by time DiD, (xii) τiD,1 is killed at
time DiD, (xiii) the processor is idle at all times strictly after DiD, (xiv) when the
system starts at time zero, the counter of τiD is 0, (xv) τiD,1 arrives at time zero,
and (xvi) no job arrives before time 0.

[End-of-Case-1]
Case 2: When the system starts, the value of the counter of task τiD is 0.

If qD ≥ 2, then remove all jobs of τiD except τiD,qD. Now we have a situation with a
single job of τiD. Let t−1 denote the earliest time such that the processor is busy during
[t−1, t0]. Then, remove all jobs that arrive before t−1. And then left-shift the schedule
by t−1. This yields the same situation as in the end of Case 1. [End-of-Case-2]

It can be seen that regardless of the case, we obtain that the statement just before [End-
of-Case-1] is true. Let us now discuss skiptime of a job of a task in hp(iD). Let us define
a scheduling event as an event where at least one of the following happens (i) a job arrives,
(ii) a job finishes, (iii) a job Zexpires, or (iv) a job Dexpires. We will show that for each job,
we can set skiptime to a time of a scheduling event. Given a job, consider three case (i) the
job does not execute at all, (ii) the job executes and there exists a time after skiptime when
the job executes, and (iii) the job executes and for all times after skiptime, the job does not
execute. For the first case, set the skiptime of the job to the arrival time of the job. For
the third case, set skiptime of the job to the minimum of the finishing time and the time of
the Zexpire. We will now discuss the second case. Since, at the time skiptime of the job,
there is a time after skiptime of the job when the job executes, it follows that the job is not
a skipjob. Since it is not a skipjob, we can set skiptime to any value and it does not impact
the schedule. We set the skiptime of the job to its arrival time. Applying the above yields
that for each job, skiptime of the job equals the arrival time of the job or skiptime of the
job equals the minimum of the finishing time or the Zexpire time. Hence, for each job of a
task in hp(iD), the skiptime is at a time of a scheduling event. Also, we set the skiptime of
τiD,1 to its deadline (this is possible because this job is not a skipjob so any assignment of
skiptime will not impact the schedule).

We will now discuss the counters. For each j ∈ hp(iD) do the following (i) throughout
the schedule, find the smallest value of the counter for task τj and then (ii) throughout the
schedule, subtract the counter of τj by the number computed in (i). Hence, we obtain that
for each task with index j ∈ hp(iD), there exists a time when the counter of the τj is zero
and the counter is never lower than 0. Also, it is easy to see that for each task with index j,
it holds that there are at most dDiD/Tje jobs of task τj . Hence, for each task with index j,
during its schedule, it holds that at each instant, the counter of task τj is at most dDiD/Tje.

ECRTS 2018

YY:12 Analyzing Real-Time Scheduling of Cyber-Physical Resilience

Also, from the system model, for each task with index j, during its schedule, it holds that
at each instant, the counter of task τj is at most MAXCOUNTj . Putting them together
yields that for each task with index j, during its schedule, it holds that at each instant, the
counter of task τj is at most min(dDiD/Tje,MAXCOUNTj). Hence, it holds that:

There is an assignment R, a counter assignment ca, a schedule sc,
a task τiD, and an instant t0, and a positive integer qD such that
(i) R is legal wrt the taskset τ , (ii) ca is legal wrt R, sc, and τ ,
(iii) sc can be generated by R and τ , (iv) just before t0, the counter
of τiD was 0 and at t0, the counter of τiD becomes -1, (v) for each
task, for each instant before t0, it holds that at that time, the
counter of the task is non-negative, (vi) at each instant less than
t0, for each task, it holds that the counter of this task at this instant
is non-negative, (vii) for each task of lower priority than τiD it
holds that, the task generates no jobs, (viii) no jobs arrive after
t0, (ix) the number of jobs generated by τiD is 1, (x) the absolute
deadline of τiD,1 is DiD, (xi) τiD,1 has not yet finished by time DiD,
(xii) τiD,1 is killed at time DiD, (xiii) the processor is idle at all
times strictly after DiD, (xiv) when the system starts at time zero,
the counter of τiD is 0, (xv) τiD,1 arrives at time zero, (xvi) no job
arrives before time 0, (xvii) for each task with index in hp(iD), for
each job of the task, the skiptime of the job a time of a scheduling
event, (xviii) for the job τiD,1, its skiptime equals its deadline, and
(xix) for each task with index j, at each instant, the counter of the
task at this instant is at most min(dDiD/Tje,MAXCOUNTj).

(0)

If we could find a simple function such that this function takes parameters of the taskset
as input and outputs a Boolean such that (0) implies that the function is true, then we
can obtain a schedulability test by negating the function. One could imagine that such a
function could be obtained by summing up all the computation by jobs of tasks in hp(iD)
and adding the normal and enforcement execution of τiD,1 and then compare with DiD.
Unfortunately, doing so is very complicated in our model. The reason is that in our model,
the amount of execution of a job depends on when the job finishes (if the job finishes before
it Zexpires, then it performs no enforcement execution). Therefore, we will, instead, express
the schedule in (0) with variables and constraints so that if and only if (0) is true, then the
constraints are satisfiable.

4.2 Representing Schedules

General idea. We will express the schedule in (0) with variables and constraints so that
if and only if (0) is true, then the constraints are satisfiable. Recall that (0) considers
a schedule in the time interval [0,DiD] and no jobs arrive before time 0 and there is no
execution after time DiD. Hence, we only need to consider at most dDiD/Tje jobs of task
τj . Recall also from (1) that there is a single job of τiD. In addition, recall that there are
four types of scheduling events (arrival, finishing, Zexpiring, Dexpiring) that can require a
context switch (here, we consider that the instant when a job’s normal execution is killed

B. Andersson, D. de Niz, and S. Chaki YY:13

and the enforcement execution arrives as a context switch). Thus, in the schedule in the
time interval [0,DiD], there are at most 4 · (

∑
j∈hp(iD)∪{iD}dDiD/Tje) context switches. We

represent the time interval [0,DiD] as a set of time intervals such that in each time interval,
there is no context switch; we refer to each such time interval as a position. We let npos
(meaning number of positions) be the sufficient number of positions needed to represent the
schedule based on the above upper bound on the number of context switches; thus:

npos = 4 · (
∑

j∈hp(iD)∪{iD}

dDiD/Tje)− 1

Recall that the number of jobs of a task τj with j ∈ hp(iD) is at most dDiD/Tje. All of
these jobs must (as stated by (0)) arrive at time 0 or later. But we permit that some of these
jobs may arrive after DiD; these jobs, however, are not (from (0)) allowed to perform any
execution (they can be either skip jobs or they can have normal execution time being zero).
We will describe the schedule with variables that are either real, integers, or Booleans. We
will use a real variable to indicate time the time when an event occurs (for example a job
arrival). We will use integer variables to indicate the position at which an event occurs. We
will use Boolean variables to indicate whether a certain event occurs in a given position.
Recall that there are five possible outcomes for a job (skip, finish in normal mode and
increment counter, finish in normal mode and not increment counter, finish in enforcement
mode, kill at time of absolute deadline); we will use variables to indicate whether a job has
a certain outcome and this outcome was caused by an event in a certain position. We will
let j be an index of a task in hp(iD) ∪ {iD}. We will let q be an index of a job; we will let
p be the index of a position.

Variables. We now state the variables, their interpretation, and their domains. The
variables with the domain real numbers are the following. tp denotes the time when position
p starts. Aj,q denotes the arrival time of τj,q. cj,q denotes the normal execution time of τj,q.
ej,q denotes the enforcement execution time of τj,q. execcpj,q denotes the amount of normal
execution that τj,q performs in position p. execepj,q denotes the amount of enforcement
execution that τj,q performs in position p.

The variables with the domain integers are the following. arrivesposj,q denote the
position at which τj,q arrives. finishesposj,q denote the position at which τj,q finishes.
Zexpiresposj,q denote the position at which τj,q Zexpires. Dexpiresposj,q denote the po-
sition at which τj,q Dexpires. counterpj denotes the counter of τj in the beginning of position
p. The 1st position is position 1; however, we let counter0

j denote the value of the counter
of τj just before position 1 (that is, the initial value of the counter). The variables with the
domain Boolean are the following. respCj,q indicates whether τj,q is a respectC job. eligpj,q
indicates whether τj,q is a eligible for execution (i.e., has arrived but not finished) in the
beginning of position p. xpj,q indicates whether τj,q executes in position p. oj,q is an integer
(in {1..5}) stating that outcome of job τj,q; we also use opj,q to indicate the position of the
event that caused this outcome.

Constraints. We now state the constraints. Clearly, the start time of a position must
be no earlier than the start time of its preceding position. Thus:

∀p ∈ {1..npos}.tp ≤ tp+1 (1)

Also, the 1st position starts at time 0. Thus:

t1 = 0 (2)

ECRTS 2018

YY:14 Analyzing Real-Time Scheduling of Cyber-Physical Resilience

Also, the counters must initially be non-negative:

∀j ∈ hp(iD) ∪ {iD}.counter0
j ≥ 0 (3)

We now express arrival times, finishing times, Zexpiring, and Dexpiring. A job arrives in the
beginning of exactly one position. We use arrivesposj,q to indicate the position at which the
job τj,q arrives. It is an integer. Clearly, it must be in the range of position indices, that is,
{1..npos + 1}. The same applies to finishing times, Zexpiring, and Dexpiring as well. Thus:

∀〈j, p〉 (j ∈ hp(iD) ∪ {iD}) ∧ (q ∈ {1..dDiD/Tje}).
(1 ≤ arrivesposj,q) ∧ (arrivesposj,q ≤ npos + 1) ∧ (1 ≤ Zexpiresposj,q) ∧
(Zexpiresposj,q ≤ npos + 1) ∧ (1 ≤ Dexpiresposj,q) ∧ (Dexpiresposj,q ≤ npos + 1) ∧
(1 ≤ opj,q) ∧ (opj,q ≤ npos + 1) (4)

The time of arrival relates to the the position of arrival. Ditto for other events. Hence:

∀〈j, q, p〉 (j ∈ hp(iD) ∪ {iD}) ∧ (q ∈ {1..dDiD/Tje}) ∧ (p ∈ {1..npos + 1}).
(arrivesposj,q = p)⇒ (Aj,q = tp) ∧ (Zexpiresposj,q = p)⇒ (Aj,q + Zi = tp) ∧

(Dexpiresposj,q = p)⇒ (Aj,q +Di = tp) (5)

There are also some bounds on execution times.

∀〈j, q〉 (j ∈ hp(iD) ∪ {iD}) ∧ (q ∈ {1..dDiD/Tje}).
(cj,q ≥ 0) ∧ (respCj,q ⇒ (cj,q ≤ Cj)) ∧ (ej,q ≥ 0) ∧ (ej,q ≤ Ej) (6)

We also express minimum inter-arrival times as:

∀〈j, q〉 (j ∈ hp(iD) ∪ {iD}) ∧ (q ∈ {1..dDiD/Tje − 1}). Aj,q + Tj ≤ Aj,q+1 (7)

Our system model states that for RCj consecutive jobs of τj , at least one is a respectC job.
Thus:

∀〈j, q〉 (j ∈ hp(iD) ∪ {iD}) ∧ (q ∈ {1..dDiD/Tje − (RCj − 1)}). ∨q′∈{q..q+RCj−1} respCj,q′ (8)

We will now express constraints on the schedule based on how the scheduling is done.

∀〈j, q, p〉 (j ∈ hp(iD) ∪ {iD}) ∧ (q ∈ {1..dDiD/Tje}) ∧ (p ∈ {1..npos}).
(eligpj,q = ((arrivesposj,q ≤ p) ∧ (p < opj,q))) ∧

(xpj,q = (eligpj,q ∧ (∧j′∈hp(iD ∧q′∈{1..dDiD/Tj′e} (¬eligpj′,q′)))) (9)

Note that in the constraint above, we are not referring to an event but instead to the time
interval of the position. Hence, the case p = npos + 1 does not need to be considered. We
also express the amount of execution of a certain type (normal versus enforcement) of a job
in a given position as follows:

∀〈j, q, p〉 (j ∈ hp(iD) ∪ {iD}) ∧ (q ∈ {1..dDiD/Tje}) ∧ (p ∈ {1..npos}).
((xpj,q ∧ (p < Zexpiresposj,q))⇒ (execcpj,q = tp+1 − tp)) ∧

(((¬xpj,q) ∧ (p < Zexpiresposj,q))⇒ (execcpj,q = 0)) ∧
((xpj,q ∧ (p ≥ Zexpiresposj,q))⇒ (execepj,q = tp+1 − tp)) ∧

(((¬xpj,q) ∧ (p ≥ Zexpiresposj,q))⇒ (execepj,q = 0)) (10)

B. Andersson, D. de Niz, and S. Chaki YY:15

Recall that oj,q indicates the outcome of a τj,q—there are five outcomes. Also recall that
opj,q indicates position in which an event occurs for which this outcome is determined.
Clearly, their ranges are as follows:

∀〈j, q〉 (j ∈ hp(iD) ∪ {iD}) ∧ (q ∈ {1..dDiD/Tje}).
(1 ≤ oj,q) ∧ (oj,q ≤ 5) ∧ (1 ≤ opj,q) ∧ (opj,q ≤ npos + 1) (11)

Recall that outcome 1 means that the job is skipped. Hence:

∀〈j, q, p〉 (j ∈ hp(iD) ∪ {iD}) ∧ (q ∈ {1..dDiD/Tje}) ∧ (p ∈ {1..npos}).
((oj,q = 1) ∧ (opj,q = p))⇒

(arrivesposj,q ≤ p) ∧ (p ≤ Zexpiresposj,q) ∧
(counterp−1

j ≥ 1) ∧ (counterpj = counterp−1
j − 1) (12)

We will now describe the four other possible outcomes For the case p = 1, for o ∈ {2..5} it
holds that ((oj,q = 1)∧ (opj,q = p))⇒ false. We will now describe the constraints for p ≥ 2.
Recall that o = 2 represents early finishing and the counter is incremented. Thus:

∀〈j, q, p〉 (j ∈ hp(iD) ∪ {iD}) ∧ (q ∈ {1..dDiD/Tje}) ∧ (p ∈ {1..npos}).
((oj,q = 2) ∧ (opj,q = p))⇒

(arrivesposj,q < p) ∧ (p ≤ Zexpiresposj,q) ∧ x
p−1
j,q ∧ (

∑
p′∈{1..p−1}

execcp
′

j,q = cj,q) ∧

(counterp−1
j < MAXCOUNTj) ∧ (counterpj = counterp−1

j + 1) (13)

Recall that o = 3 represents early finishing and the counter is not incremented. Thus:

∀〈j, q, p〉 (j ∈ hp(iD) ∪ {iD}) ∧ (q ∈ {1..dDiD/Tje}) ∧ (p ∈ {1..npos}).
((oj,q = 3) ∧ (opj,q = p))⇒

(arrivesposj,q < p) ∧ (p ≤ Zexpiresposj,q) ∧ x
p−1
j,q ∧ (

∑
p′∈{1..p−1}

execcp
′

j,q = cj,q) ∧

(counterp−1
j ≥ MAXCOUNTj) ∧ (counterpj = counterp−1

j) (14)

Recall that o = 4 represents late finishing. Thus:

∀〈j, q, p〉 (j ∈ hp(iD) ∪ {iD}) ∧ (q ∈ {1..dDiD/Tje}) ∧ (p ∈ {1..npos}).
((oj,q = 4) ∧ (opj,q = p))⇒

(arrivesposj,q < p) ∧ (p ≤ Zexpiresposj,q) ∧ x
p−1
j,q ∧ (

∑
p′∈{1..p−1}

execcp
′

j,q < cj,q) ∧

(
∑

p′∈{1..p−1}

execep
′

j,q = ej,q) ∧ (counterpj = counterp−1
j) (15)

Recall that o = 5 represents finishing at deadline and the job gets killed. Thus:

∀〈j, q, p〉 (j ∈ hp(iD) ∪ {iD}) ∧ (q ∈ {1..dDiD/Tje}) ∧ (p ∈ {1..npos}).
((oj,q = 5) ∧ (opj,q = p))⇒

(p = Dexpiresposj,q) ∧ x
p−1
j,q ∧ (

∑
p′∈{1..p−1}

execcp
′

j,q < cj,q) ∧

(
∑

p′∈{1..p−1}

execep
′

j,q < ej,q) ∧ (counterpj = (counterp−1
j − 1)) (16)

ECRTS 2018

YY:16 Analyzing Real-Time Scheduling of Cyber-Physical Resilience

If an event that creates one of these outcomes occurs, then the counter of a task should be
unchanged. Thus:

∀〈j, q, p〉 (j ∈ hp(iD) ∪ {iD}) ∧ (q ∈ {1..dDiD/Tje}) ∧ (p ∈ {1..npos}).
(¬(oj,q = p))⇒ (counterpj = counterp−1

j) (17)

From (0) we obtain that there is no execution after the deadline of τiD,1 and no jobs arrive
then. Hence, considers cannot be changed after that. Also, from (0), we obtain that before
the deadline of τiD,1, there is no time when the counter of a task becomes negative. Hence:

∀〈j, p〉 (j ∈ hp(iD)) ∧ (p ∈ {1..npos}+ 1). counterpj ≥ 0 (18)

From (0) it follows that τiD,1 misses its deadline. Thus:

oiD,1 = 5 (19)

From (0) it follows that the initial value of the counter of τiD is zero. Thus:

counter0
iD = 0 (20)

From (0) it follows that:

∀p ∈ {1..npos}. (p ≤ Dexpiresposj,q) = (∨j∈hp(iD)∪{iD} ∨q∈{1..dDiD/Tje} x
p
j,q) (21)

From (0) it follows that:

∀〈j, p〉 (j ∈ hp(iD) ∪ {iD}) ∧ (p ∈ {1..npos}). counterpj ≤ min(dDiD/Tje,MAXCOUNTj) (22)

We let cprsmtinstance(τ ,iD) denote a function that takes a taskset τ and an integer iD
as input and outputs an SMT instance; this SMT instance is constructed as given in this
subsection.

4.3 Creating a schedulability condition
We will now put together the results from the two previous subsections into a schedulability
condition.

I Lemma 1. τ is not schedulable ⇒ (0)

Proof. Follows from the discussion in Section 4.1. J

I Lemma 2. (0) ⇒ (∃iD (τiD ∈ τ) ∧ cprsmtinstance(τ, iD))

Proof. Follows from the discussion in Section 4.2. J

I Lemma 3. τ is not schedulable ⇒ (∃iD (τiD ∈ τ) ∧ cprsmtinstance(τ, iD))

Proof. Follows Lemma 1 and Lemma 2. J

I Lemma 4. τ is not schedulable ⇐ (∃τiD ∈ τ cprsmtinstance(τ, iD))

Proof. If the rhs is true, then ∃τiD ∈ τ cprsmtinstance(τ, iD). Then we can obtain the
solution and this yields an assignment R, a schedule sc, and a counter assignment ca such
that R is legal, ca is legal, and sc can be generated by R and in which the 1st job of τiD
misses its deadline. Hence, the lhs is true. J

I Lemma 5. τ is not schedulable ⇔ (∃τiD ∈ τ cprsmtinstance(τ, iD))

Proof. Follows Lemma 3 and Lemma 4. J

I Theorem 6. τ is schedulable ⇔ (∀τiD ∈ τ ¬cprsmtinstance(τ, iD))

Proof. Follows Lemma 5. J

B. Andersson, D. de Niz, and S. Chaki YY:17

4.4 Creating an algorithm for schedulability testing
Based on Theorem 1, we can now create an algorithm for schedulability testing as follows:

1. flag := true
2. for each τiD ∈ τ as long as flag is true do
3. if not sat(cprsmtinstance(τ, i)) then
4. flag := false
5. end if
6. end for
7. if flag then
8. stop and declare schedulable
9. else
10. stop and declare unschedulable
11. end if

5 Performance Evaluation

We have implemented a tool that performs the schedulability test presented in the previous
section. Recall that this schedulability test checks satisfiability (sat) of an SMT instance.
Internally, such sat solvers infer new constraints. In order to speed up the schedulability
test, we will add additional (redundant) constraint that can be inferred directly. These are
the following. If we consider two jobs of the same task, then we can compute a minimum
inter-arrival time between them. We can also observe that in the schedule representation if
a schedule exist, then we can create another representation in which there is at most one
arrival, Zexpire, or Dexpire occurring. From this, we can obtain additional constraints on the
integers that describe that position in which an event occurs. For example: arrivesposj,1 +
4 ≤ arrivesposj,2. With these additional redundant constraints, we implement the tool. We
use the Z3 SMT solver because it is one of the most widely-used and also well-maintained
SMT solvers. We will now report on the our experimental results with our tool. We begin
by presenting the experimental setup (in Subsection 5.1), then present experimental results
(in Subsection 5.2), and then present results from a case study (in Subsection 5.3).

5.1 Experimental setup
We implement the meta mode with our tool. We do it as follows. There are 4 experimental
setup parameters (ntasks,targetutil,TMAXEXP,DTRATIO) and these are used to generate
a taskset randomly as follows:

1. |τ | = ntasks
2. Ti = random(1.0, 2log2(TMAXEXP))
3. Di = DTRATIO ∗ Ti
4. Zi = 0.8*Di

5. Ci = 0.9* Zi
6. Ei = 0.1* Zi
7. RCi = random(1,2)
8. MAXCOUNTi = 1

ECRTS 2018

YY:18 Analyzing Real-Time Scheduling of Cyber-Physical Resilience

After all tasks have been assigned this way, we compute scalingfactor as follows scaling-
factor := targetutil/(

∑
j=1..n Cj/Tj). Then, for each task τj ∈ τ , we multipy Cj and Ej by

scalingfactor.
These 4 experimental setup parameters are the following:

1. ntasks in {2..5}
2. targetutil in {0.2, 0.4, 0.6, 0.8.1.0, 1.2, 1.4, 1.6, 1.8, 2.0}
3. TMAXEXP in {1, 2, 4, 8, 16, 32, 64, 128}
4. DTRATIO in {0.01, 0.1, 1.0}
We explore all combinations of them; that is 960 combinations. For each combination, we
generate one taskset and measure that time required for our tool to perform schedulability
analysis. We also obtain whether the taskset is schedulable.

5.2 Experimental result
We ran the experiments on a Dell XPS x8900-8756BLK desktop computer with quad-core
Intel 6700k processor and 32Gb memory running Ubuntu 17.10. We used the SMT solver
Z3 (version X”’). Our tool is a C program that implement the algorithm in Section 4.4. Our
C program was compiled with gcc. This program writes an SMT instance to a file and calls
the SMT solver Z3. We set Z3 to verbose mode. It took 3 days to finish all the experiments

The results of the experiments are shown in Figure 3. It can be seen that (i) the time
required by our new schedulability test increases grows rapidly as the number of tasks and
TMAXEXP increase and (ii) at 400% utilization, there are 25% of the tasksets that are
schedulable. The former indicates that there are large systems that our method is not
capable of analyzing. On the other hand, the latter indicates that our method is very useful
for CPS where the number of tasks is not too large.

5.3 Case study
We have modeled a multi-UAV system from our previous work [1] using the task model
presented in this paper. And analyzed it with the scheduling theory in this paper.

6 Related Work

We now discuss relevant previous work. These works share our goal of linking the phys-
ical world to real-time scheduling but unlike our work, they do not offer any application-
independent way of specifying the resilience of the physical environment to deadline misses,
or any schedulability analysis.

Offline selection of periods. The paper [19] considers a set of periodic feedback
control tasks scheduled on a single processor. The paper mentions that the performance
of a control task can be characterized using a Performance Indicator function, which is
concave with respect to the controller frequency. If the Performance Indicator is small,
then the performance is good. The frequency of a controller must be above a certain lower
bound to prevent instability, and higher frequency leads to better performance. On the
other hand, if all tasks have very high frequency, then the taskset is not schedulable. Thus,
the paper formulates an optimization problem: minimize a weighted sum of the Performance
Indicator function across all tasks subject to the constraint that the taskset is schedulable
and that frequencies are above their minimum thresholds; here the frequencies of tasks
are the decision variables. This problem of selecting sampling frequencies has also been

B. Andersson, D. de Niz, and S. Chaki YY:19

 1

 10

 100

 1000

 10000

 100000

 1 1.5 2 2.5 3 3.5 4 4.5 5
 1

 10

 100

 1000

 10000

 100000

 0 0.5 1 1.5 2 2.5 3 3.5 4

(a) Time as function of number of tasks. (b) Time as function of utilization.

 1

 10

 100

 1000

 10000

 100000

 20 40 60 80 100 120
 1

 10

 100

 1000

 10000

 100000

 0.01 0.1 1

(c) Time as function of TMAXEXP. (d) Time as function of DTRATIO.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 2.5 3 3.5 4 4.5 5
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

(e) Success ratio as function of number of tasks. (f) Success ratio as function of utilization.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120
 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1

(g) Success ratio as function of TMAXEXP. (h) Success ratio as function of DTRATIO.

Figure 3 Experiments on randomly generated systems. Time means time required for schedulab-
ility test to finish analysis of one system (measured in seconds).

ECRTS 2018

YY:20 Analyzing Real-Time Scheduling of Cyber-Physical Resilience

studied in the context of surveillance radars [15]; here the problem is more complex and the
paper [15] proposes to pre-compute resource allocations before run-time using templates.

Rhythmic tasks. The paper [13] considers a set of tasks scheduled with fixed-priority
preemptive scheduling on a single processor. There is a physical body (a crankshaft), whose
rotation is described via an angle, θ, that increases with rotation. The highest-priority task
is assumed to be rhythmic, i.e., a job of this task arrives when (θ mod 2π) takes a certain
value; the other tasks are periodic. The paper presents a sufficient schedulability analysis
of such systems. The papers [10, 7] both extend [13]. Specifically, the paper [10] considers
the rhythmic task model, a single processor, and fixed-priority scheduling. It assumes that
a job arrives not only because (θ mod 2π) takes a certain value, but also that the software
is adaptive in the sense that at high rotation speed (high rpm), the rhythmic task has lower
execution time. The reason for lower execution time is that the task measures the rotation
speed and disables certain functionalities at higher rotation speeds. The paper [7] presents
a schedulability test of rhythmic tasks scheduled with EDF on a single processor.

Event-based control. The paper [3] presents an event-based PID controller that splits
a control task into two pieces – one samples the physical environment and determines the
need for the controller to compute a command, the other computes the command. The
first piece executes periodically, and computes the absolute difference δ between the current
error and the error at the last sampling. The second piece arrives if δ exceeds a certain
threshold, or if a certain amount of time elapses since its last arrival. The paper shows that
this event-based PID controller achieves a significant reduction of CPU consumption. One
can also describe this work as periodic sampling but with state-dependent execution time.

Self-triggered control. The paper [22] presents self-triggered control. Here, a control
task generates a sequence of jobs, and the arrivals are not necessarily periodic. Instead, when
a job of a control task finishes, it computes the time when the next job of this task should
arrive. This computation of the arrival time of the next job is based on the earliest instant
in which it is necessary to perform a control computation in order to ensure stability or a
control performance metric. Self-triggered control is different from the event-based control
mentioned above [3] in the sense that in the event-triggered control mentioned above, tasks
arrive periodically but the execution time varies (depending on whether there is a need to
compute a new control action). Self-triggered control is also different from the rhythmic
task model in the sense that a self-triggered control task computes the time of the next
arrival, whereas in the rhythmical task model a task does not compute the time of its next
arrival; it sleeps and wakes up based on an event whose arrival time is not known in advance.
The paper [22] proposes that self-triggered control be implemented by describing the plant
with a state vector (which is normal) but also adds an extra variable to the state vector
and this extra variable is the currently used period of the controller. The evolution of the
system is described by multiplying the current state vector with a matrix and adding a
vector multiplied by a command and this yields the new state vector. Certain elements
in the matrix determine how, at run-time, the next period will be computed based on the
physical variables.

The paper [2] considers self-triggered control for a distributed system with computer
nodes (of the type sensor, actuator, and controller) and a bus — Controller Area Networks
(CAN) bus — shared between the computer nodes. The transmission times of messages
between sensor-to-controller and controller-to-actuator are selected at run-time to be as late
as possible without jeopardizing stability. This decision is taken based on the current state
of the plants at run-time. The paper [16] presents another self-triggered controller but for
a single computer node and EDF. The paper [23] extends [22] by giving explicit rules for

B. Andersson, D. de Niz, and S. Chaki YY:21

computing the next sampling time for a controller at run-time. It also gives equations,
that can be used before run-time, for computing the maximum computation demand of a
controller that uses this rule. With this computed maximum computation demand, it is
possible to incorporate it in standard schedulability tests for fixed-priority scheduling or
EDF. The paper also shows a case study illustrating that event-triggered control can offer
better control performance and less processing demand than an optimal periodic controller.
Our work differs in two main aspects: (i) it preserves the decomposition of the recurrent
execution and time verification using the traditional periodic task model in combination
with a safety enforcer, and (ii) it allows the controller to focus on maximizing the control
performance (as close as possible to Ckφ) instead of staying at the limit of stability.

Mixed-criticality scheduling. Mixed-criticality scheduling [11, 4, 6] recognizes that
tasks typically implement different functions; different functions may have different critical-
ities and different criticalities have different requirements on the confidence in its proof of
correctness. Thus, it is helpful to make different assumptions about taskset parameters for
different criticality levels. For example, if a task τi has high criticality, then when proving
whether it meets deadlines, we need to have a high-degree of confidence in the parameters
that are used for this proof. For example, when computing its response time, we can use
worst-case execution time parameters for τi and for higher-priority task such that we have
very high confidence that these parameters correctly provide upper bounds on execution
times. On the other hand, if τk has lower criticality, then we do not need such a high
degree of confidence. The authors in [12] present a model where jobs are allowed to miss
deadlines by extending its deadline and period based on utility, which takes the form of
a “variable” criticality that decreases as more CPU is given to a task (a.k.a. diminishing
returns). However, this model does not take into account the execution of enforcers, or the
runtime state of the physical world when missing deadlines. Mixed-criticality scheduling
shares our goal of reducing pessimism, but differs by providing different taskset parameters
to be used for different criticality levels whereas we describe the impact on execution of a
task on the physical environment.

Skips and weakly hard real-time systems. The paper [5] presents a model called
weakly hard real-time systems. It specifies that a task does not have to meet all its deadlines;
occasional deadline misses are allowed. The task model of weakly hard real-time systems
gives a precise definition of what it means that occasional deadline misses are allowed. Two
examples are: (i) out of m consecutive jobs of a given task, there are at most n consecutive
jobs that misses its deadline; and (ii) out of m consecutive jobs of a given task, there are
at most n jobs (consecutive or not) that misses its deadline. The paper points out that
there are different reasons why a deadline is missed: (i) the task is not admitted to the
system so it generates no job, (ii) a job is admitted to the system but this particular job is
skipped [8], (iii) a job has started to execute but it gets aborted before it finishes, and (iv) a
job runs until completion but finishes after its deadline. The paper gives a schedulability
test for tasks in this model scheduled with fixed-priority preemptive scheduling on a single
processor. A similar model is provided by [14]. A similar problem occurs in networked
control systems where some messages are lost. A scheduling approach of processors and
analysis of the maximum allowed drop-out rate is provided by [18].

Run-time assurance/verification. A common technique is to monitor system states
and steer a computation toward safe states. See [9] for an excellent review.

Simplex. Simplex [20] is an architecture for designing controllers. It comprises one
sophisticated controller, a simple controller, a set describing the safe states, and another set
which describes transitioning between controllers. The sophisticated controller is allowed to

ECRTS 2018

YY:22 Analyzing Real-Time Scheduling of Cyber-Physical Resilience

operate when the plant is the last set of states. If the plant leaves this set, then a simpler
controller takes over. With this architecture, the sophisticated controller can be optimized
for performance and does not need to be verified; the simple controller, however, is verified
to make sure that the plant is always in a safe state. One can think of the simple controller in
Simplex as somewhat analogous to our enforcer execution (Ei of task τi). Simplex, however,
does not consider real-time scheduling.

Common to the above-listed previous work is that none of them offers a model with
associated schedulability analysis of real-time tasks where the physical environment imposes
a requirement on the interaction with the software and describe this in an application-
independent way. In this paper, we have presented such a model and an exact schedulability
test for it.

7 Conclusions

We have presented a new task model and test to verify the schedulability of the resilience
of a cyber-physical system. The schedulability test is exact and it is based on solving a
sequence of SMT instances. A key benefit of this scheduling theory is that it allows tasksets
with 400% to be guaranteed.

B. Andersson, D. de Niz, and S. Chaki YY:23

Acknowledgement. Copyright 2018 Carnegie Mellon University and Mentor Graphics. All Rights Re-
served. This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute,
a federally funded research and development center. NO WARRANTY. THIS CARNEGIE MELLON UNIVER-
SITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS.
CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MA-
TERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT. [DISTRIBU-
TION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution. DM18-0092.

References
1 B. Andersson, S. Chaki, and D. de Niz. Combining symbolic runtime enforcers for cyber-

physical systems. In RV, 2017.
2 A. Anta and P. Tabuada. On the benefits of relaxing the periodicity assumption for net-

worked control systems over CAN. In RTSS, 2009.
3 K.E. Årzén. A simple event-based PID controller. In IFAC World Congress, 1999.
4 S. Baruah. Schedulability analysis for a general model of mixed-criticality recurrent real-

time tasks. In RTSS, 2016.
5 G. Bernat, A. Burns, and A. Llamosí. Weakly hard real-time systems. In IEEE Transactions

on Computers, 2001.
6 A. Burns and R. Davis. Mixed criticality systems - a review. http://www-

users.cs.york.ac.uk/burns/review.pdf.
7 G. C. Buttazzo, E. Bini, and D. Buttle. Rate-adaptive tasks: Model, analysis, and design

issues. In DATE, 2014.
8 M. Caccamo and G. Buttazzo. Exploiting skips in periodic tasks for enhancing aperiodic

responsiveness. In RTSS, 1997.
9 M. Clark, X. Koutsoukos, R. Kumar, I. Lee, G. Pappas, L. Pike, J. Porter, and O. Sokolsky.

A study on run time assurance for complex cyber physical systems. In Technical Report,
2013.

10 R. I. Davis, T. Feld, V. Pollex, and F. Slomka. Schedulability tests for tasks with variable
rate-dependent behaviour under fixed priority scheduling. In RTAS, 2014.

11 D. de Niz and R. Rajkumar K. Lakshmanan. On the scheduling of mixed-criticality real-
time task sets. In RTSS, 2009.

12 D. de Niz, L. Wrage, A. Rowe, and R. Rajkumar. Utility-based resource overbooking for
cyber-physical systems. ACM Trans. Embed. Comput. Syst., 2014.

13 J. Kim, K. Lakshmanan, and R. Rajkumar. Rhythmic tasks: A new task model with
continually varying periods for cyber-physical systems. In ICCPS, 2012.

14 P. Kumar and L. Thiele. Quantifying the effect of rare timing events with settling-time
and overshoot. In RTSS, 2012.

15 C. Lee, C.-S. Shieh, and L. Sha. Online QoS optimization using service classes in surveil-
lance radar systems. In JRTS, 2004.

16 M. Lemmon, T. Chantem, X. Hu, and M. Zyskowski. On self-triggered full information
H-infinity controllers. In Hybrid Systems: Computation and Control, 2007.

17 W. Lucia, B. Sinopoli, and G. Franzè. A set-theoretic approach for secure and resilient
control of cyber-physical systems subject to false data injection attacks. In SOSCYPS,
2016.

ECRTS 2018

YY:24 Analyzing Real-Time Scheduling of Cyber-Physical Resilience

18 I. Saha, S. Baruah, and R. Majumdar. Dynamic scheduling for networked control systems.
In HSCC, 2015.

19 D. Seto, J.P. Lehoczky, L. Sha, and K.G. Shin. On task schedulability in real-time control
systems. In RTSS, 1996.

20 L. Sha. Using simplicity to control complexity. IEEE Software, 2001.

21 L. Sha, R. Rajkumar, and S. S. Sathaye. Generalized rate-monotonic scheduling theory:
A framework for developing real-time systems. In proceedings of the IEEE, 1994.

22 M. Velasco, J. Fuertes, and P. Martí. The self triggered task model for real-time control
systems. In RTSS-WIP, 2003.

23 M. Velasco, P. Martí, and E. Bini. Control-driven tasks: Modeling and analysis. In RTSS,
2009.

	Introduction
	Physical Interaction
	System Model
	Notation
	Static parameters
	Run-time behavior
	Schedulable

	New Schedulability Test
	Reasoning About Necessary Condition for Failure
	Representing Schedules
	Creating a schedulability condition
	Creating an algorithm for schedulability testing

	Performance Evaluation
	Experimental setup
	Experimental result
	Case study

	Related Work
	Conclusions

