© 2017 Carnegie Mellon University [[Distribution Statement A] This material has been approved for
public release and unlimited distribution. Please see Copyright

Software Engineering Institute | Carnegie Mellon University notice for non-US Government use and distribution.

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official
Government position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software
Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED
ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY
DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting
formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering
Institute at permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM18-0096

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been

—_— - 5 O " i . A approved for public release and unlimited distribution.
——— Software Engineering Institute Caﬂlegle Mellon University © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government

- use and distribution.

Agenda

e State of software

| ¥ - Building software: the Secure
Software Development Lifecycle

- Requirements
- Development
- Operations

e Review

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
- . - . . . approved for public release and unlimited distribution.
i’ Software Eﬂglﬂeel'll'lg Institute CﬂrﬂengMeulmUnIVHSltY © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government

use and distribution.

“Software Is eating the world”

Marc Andreessen
Wall Street Journal
Aug 20, 2011

Software is the new Hardware

Source: http://www.wsj.com/articles/SB10001424053111903480904576512250915629460

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
—_— o 5 O " | A 0 approved for public release and unlimited distribution.
= Software Englneerlng Institute Cﬂnlegle Mellon UlllWl'Slty © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 4

use and distribution.

Software Is the new hardware — IT

IT moving from specialized hardware to
software, virtualized as

Servers: virtual CPUs

Storage: SANs

Switches: Soft switches

Networks: Software defined
networks

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been

—_— o 5 O 4 " | s o approved for public release and unlimited distribution.
——— Software Engineering Institute (Aal'lleg'le Mellon University © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government

use and distribution.

Software is the new hardware — cyber physical

o Cellular
* Main processor
e Graphics processor
* Base band processor (SDR)
» Secure element (SIM)

e Automotive
. Autonomous vehicles
* Vehicle to infrastructure (V2I)

* Vehicle to vehicle (V2V)
\’%.. * Industrial and home automation
‘e « 3D printing (additive manufacturing)
g * Autonomous robots

. Interconnected SCADA

% * Aviation
.
. Next Gen air traffic control

e Smart grid
* Smart electric meters
e Smart metering infrastructure

« Embedded medical devices

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
—_— - 5 O " | . A approved for public release and unlimited distribution.
——— Software Engineering Institute Cﬂﬂle{-';le Mellon University © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government

use and distribution.

Mission function is increasingly delivered in software

%__é Software Engineering Institute

Carnegie Mellon University

A
A F-35
!
"
; B-787
:" reamliner
;
! -
£
!
;
f
i’
P e Rafale F3
= / w
- i
= ; i
ﬁ ,:' Eurofighter
_Q. S Typhoon
E !; (Tranche 1) F.22
g y
£ -
(@] i! .‘"_.
O , P
! f"
/' SRT1 e
£ -
’ ="
! .
’ % -
I ’.-"
! -
’ Apollo 11 =
,’ Lunar ___,f"
4 ander _-~
I -
! _‘-’
[,t”
o -~ "\Wright Fiyer
>
Functionality

Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

“The [F-35] aircraft relies on more
than 20 million lines of code to
"fuze" information from the JSF's
radar, infrared cameras, jamming
gear, and even other planes and
ground stations to help it hunt
down and hide from opponents,
as well as break through enemy
lines to blow up targets on the
ground. But if the computer
doesn't work, the F-35's greatest
advertised advantages over
existing rivals and future threats
would suddenly become moot.”
The Week, 2016

Source: Joseph Trevithick,
http://theweek.com/articles/605165/f35-still-horribly-broken.
Feb 26, 2016

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

7

http://theweek.com/articles/605165/f35-still-horribly-broken

Software vulnerabilities are ubiquitous

SFECURITYS

BANE

Frais Summit Chicags is Next Week - Viow Aganda »

Banklng Cyher-mtnck Trends to Watch

[———

Classiiods Jobs Care Fasl Esiste Fio & Save Dol Peblic Notices Fiacs |

Miami Hevald Business Breaking News

Home News Sporis Buminess Lsstyle Entectakmant Opinion Obitumries Subscriptions o2 00 (N

— A piarieng sunvay of N Yirk bk sacurly has faond that eybe iarves 4 uaieeg
lrmam:lr ‘scphisbicalid melhods i treach bank accounts.

Ths snpor, ke Mon ey by Gl Anariew Cuerm iind T ssale's Dupartrie it of Fieaecan Sanicis
feund Mot & magety of e 154

L
JU

WOGA DRECTORY

EEADSES HEANCES

SOTOAN, CALTMINR

woen

o o D > kb > 3 TR el o
RSA Conference 2014 e B] T Waeth S S
2om
ggnn‘ Growing risk of cyber attacks on banks m..:, J Homeland Security: Hack Attempts On
= Ry parch Defansa Companies Facing Amay of New Cyberthreats | | £ 0r0y Manufacturing Way Up in 2013
ot {UPDATED) | \

breaches involve
stolen passwords

the security ledger

sast e yewrs.

Tra aftacks eeivad i use ol
socoures, seie data and sisal |

CuDmD says he's sl tank
winarable thay o i atiack,

=

MEAD MORE BREAKING NE

Exziuston Bvarts

[TIRE o ol 3

it OHE B4 300 DS I

HP Sacurity

REUTERS

News Home p Listd Cytor Duters
gm’;::;:' e e U.S. regulators warn banks about rise
e T ook o By in eyber-attacks

ni g [T Frst i h

e ncimansasior K Anderon insrmad of the imfction an 30 Decormbe, by whish
e fargeen pirad, Wking wih i
Exces fios g 500 mot o n cacade

HP Security R A c0n o Tecware

SHSPI——

[— S T Ty

Th sesulls have ket us wih documents that are no loeger readabie. Feo lost sigh!
mars-worth of my work.® Arderson wans quoted s saying by Seacaas (nine.

Wany of e Tios had boon recovered from backups, incuding soma fhat had been
stored in paper form in @ safe, Fles et forgver Inchaded forme. nequests for proposals.
estinasi bics, ard soma miscolanscus dat on cosls.

ook Ol S
P e
Ui vasan e

T trackid all our slectric costs by bullcing, wuste lonnege, racyciing sonnaegs .., for
gt yoors. Allthat datn |5 Gone.” Andeeson said. It 8 ot haeral 1o he wen. It
il just ber mone time cansuming rocranting all of thees cocuments *

Lischily, & propriesary sfwans systam had bean wses o sion x Sles, saving i frem
Crypininckers atiention possbiy becauss § uned an unusun dut fomet

el - & grovep e o 115 regudators on Wednesday wamed

threse o v o bark

Tre atac highkghis The valnerabiy of small and probasly under-peascied
govprmmeictifion sl EMES {dhe rmagen of Crypioiocker, fosel mokkars.
et i

-

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

Building Secure Software for Mission Critical Systems

8

Software Engineering Institute | Carnegie Mellon University

© 2018 Carnegie Mellon University

Existing Customer Premise Equipment (SOHO)
typically vulnerable

54% of tested routers are vulnerable to cross-site
request forgery (CSRF)

15%

‘ 85% of tested routers use non-unique default
credentials

63% of tested routers are vulnerable to DNS spoofing
attacks

0%
100% of router firmware use BusyBox versions from 2011 or
earlier and embedded Linux kernel versions from 2010 or earlier

Source: Land, J. "Systemic Vulnerabilities in Customer-Premises Equipment Routers," unpublished white paper, 2015

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
=% - - - . . . approved for public release and unlimited distribution.
— Software Englnee"ng Institute Canlegle Mellon Um“el‘Slty © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 9
use and distribution.

Steel furnaces have been successfully attacked

“Steelworks compromise causes
massive damage to furnace.

One of the most concerning was a
targeted APT attack on a German
steelworks which ended in the attackers
gaining access to the business systems
and through them to the production
network (including SCADA). The effect
was that the attackers gained control of
a steel furnace and this caused massive
damages to the plant.”

Source: Sources: https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Lageberichte/Lagebericht2014.pdf?__blob=publicationFile;
http://www.resilienceoutcomes.com/state-ict-security/

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been

—_— o 5 O " A 0 approved for public release and unlimited distribution.
= Software Englrleerlng Institute Cameg'le Mellon Un-“’erSIty © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 10

use and distribution.

Electric grid under attack

BlackEnergy trojan strikes again: Attacks
Ukrainian electric power industry

BY ROBERT LIPOVSKY IN COOPERATION WITH ANTON CHEREPANOV POSTED 4 JAN 2016 - 12:45PM

CYBERCRIME BLACKEMERGY UKRAINE

Source:
I'd c . 5 . - . -))
On D?csmber 23 d. 1:2[{]11a:”f_jroum:i halli;ftzﬁ htt}mlesp t_heilvant; Frinkwskp\regmg.m LtJKrtilneUK N http://www.welivesecurity.com/2
h! | A,
(population around 1.4 million) were left without electricity for a few hours. According to the Ukrainian 016/01/04/blackenergy-trojan-

news media outlet TSN, the cause of the power outage was a "hacker attack” utilizing a "virus”
strikes-again-attacks-ukrainian-

electric-power-industry/

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
= - 5 O " | . A approved for public release and unlimited distribution.
——— Software Engineering Institute Cﬂﬂle{-';le Mellon University © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 11

- use and distribution.

Weapons platforms potential cyber attack targets

“The [Joint Strike Fighter] aircraft relies on
more than 20 million lines of code ... In
November 2015, the Pentagon canceled a
cyber test because of worries it would,
unsurprisingly, damage [the Autonomic
Logistics Information System that identifies
broken parts and other faults].”

The Week, 2016

Sources: https://www.dvidshub.net/image/935698/aerial-refueling-f-35-lightning-ii-joint-strike-fighters-eglin-afb-fla;

Joseph Trevithick, http://theweek.com/articles/605165/f35-still-horribly-broken. Feb 26,2016

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
== - . - . . . approved for public release and unlimited distribution.
== Software Eﬂglﬂeerll'lg Institute Cmegle Mellon UIIlVBl‘SltY © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government

use and distribution.

12

https://www.dvidshub.net/image/935698/aerial-refueling-f-35-lightning-ii-joint-strike-fighters-eglin-afb-fla
http://theweek.com/articles/605165/f35-still-horribly-broken

An ounce of prevention

“We wouldn't have to
spend so much time,
money, and effort on
network security If we
didn't have such bad
software security.”

Bruce Schneier in Viega and McGraw, “Building
Secure Software,” 2001

Source: Washington Post, March 19, 2014, http://www.washingtonpost.com/business/economy/toyota-reaches-12-billion-settlement-to-end-criminal-
probe/2014/03/19/5738a3c4-af69-11e3-9627-c65021d6d572 story.html; http://www.greene-broillet.com/Articles/Toyotasuddenacceleration.shtml

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
approved for public release and unlimited distribution. 13

Please see Copyright notice for non-US Government

use and distribution.

== Software Engineering Institute | Carnegie Mellon University ¢ 2018 camegie Mellon niversity

http://www.washingtonpost.com/business/economy/toyota-reaches-12-billion-settlement-to-end-criminal-probe/2014/03/19/5738a3c4-af69-11e3-9627-c65021d6d572_story.html

Software and security failures are expensive

sections = @he Washington Post

Business

Toyota reaches $1.2 billion settlement to
end probe of accelerator problems

| B S

GREEME BROILLET & WHEELER, LLP

WHERE SUCCESS

IS A TRADITION® Toyota Sudden Acceleration Defect Case: $1.1

Billion Settlement

Average cost in a breach:
USS$188 per record

Source: New York Times, Jan 10, 2014

Source: Ponemon Institute, “2013 Cost of Data Breach
Study: Global Analysis”, May 2013

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been

| approved for public release and unlimited distribution.
SOﬂware Englneenng |nStItUtE C arne \I llon l niv © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 14
use and distribution.

Catching software faults early saves money

Faults accounts for 30-50% percent of total software project

COStsS
Software Development Lifecycle

Where Faults are Introduced

¥* 70% ¥* 20% ¥* 10%

Requirements System Software Component Code Unit Test Integration System Acceptance Operation
Engineering Design Architectural Software Development Test Test

Design EET

Where Faults are Found

-w

»
»

* *
3.5% 16% 50.5%

Nominal Cost Per Fault
for Fault Removal

3

20.5%

o]

e
-
4l

B

F(5

FEBEE
QT

I8
FECBEBEE

=
FEPEE

-
B(5 (B 8
PP
a7l

CEEBEE
CEEBEE

—
=,
o), Cem), o0 o0, Ce0

= = =~ = <D <=

Sources: Critical Code; NIST, NASA, INCOSE, and Aircraft Industry Studies M % @E@I

- - -, 5) -, -

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
approved for public release and unlimited distribution. 15

= — Software Engineering Institute Cﬂl'negﬂe Mellon UanBI‘SltY © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government
use and distribution.

Security is a lifecycle issue

Sustainment

Engineering and Development

: Mission Threat I Abuse EArchitecture Coding ¢ Testing, Monitoring Breach
: Thread Analysis ¢ Cases : and Design Rules and ¢ Validation Awareness :
: Principles Guidelines : and
: : ¢ Verification :
H -.------------------l-------------------------------------f_--------------------' E
Requirements and Acquisition Deployment and Operations :

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
- . - . . . approved for public release and unlimited distribution.
i Software Englﬂeerll'lg Institute CﬂIIlBSIEMeulmUIIIVHSltY © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 16

use and distribution.

Room for improvement

Sustainment

19% fail to carryout 27% do not practice = 72% do not use code or 47% do not perform

security requirement secure design binary analysis acceptance tests for third-
definition party code
Mission thread Abuse Architecture Coding Testing, Monitoring Breach
(Business process) Threat Cases : and Design Rules and Validation Awareness
Analysis : Principles Guidelines and
: Verification
Requirements and Acquisition Deployment and Operations

More than 81% do not coordinate their security practices in

various stages of the development life cycle.

Sources: Forrester Consulting, “State of Application Security,” January 2011; Wendy Nather, Research Director, 451 Research, “Dynamic testing: Why Tools Alone Aren't
Enough, March 25, 2015”

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
—_— o 5 O " A 0 approved for public release and unlimited distribution.
——— Software Engineering Institute Cﬂ-l'l“legm Mellon UmWBI'SltY © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 17

_ use and distribution.

Software Security Engineering:
A Guide for Project Managers

i SEI SERIES * A CERT® BOOK

-
C@ SOFTWARE SECURITY SERIES)

Software Security
Engineering
A Guide for Project Managers

Contains an introduction to
software security engineering
and guidance for project
managers

» Derives material from DHS SwA
“Build Security In” web site

* Provides a process focus for
projects delivering software-
intensive products and systems

J, SumoouiBuy A3moag aremIzos O

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
approved for public release and unlimited distribution. 18

= Software Engineering Institute Cﬂl'lleg'ie Mellon UlllWl‘Sity © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government
use and distribution.

Organizational readiness: Mission Risk

Diagnostic (MRD) The MRD assesses risk in

Interactively complex, socio-technical
systems

* Projects and programs

Assess » Business processes and mission
threads

* |T processes

MRD purpose:

» Gauge the extent to which a system
IS In position to achieve its mission
and objective(s)

MRD assessment delivery:

» Expert-led assessment
» Self-assessment

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been

—_— - 5 O " i . A approved for public release and unlimited distribution.
= Software Englneerlng Institute Canlegle Mellon Un-“’el'fﬂty © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 19

use and distribution.

Software Assurance Framework (SAF)

What

» Defines software assurance practices for acquiring and developing
assured software products

Why

» Improve software assurance practlcw
in acquisition programs

provided by third parties -*—‘/* :

mfu'q g u;!;g A

= ﬁmgfﬁé} SrisEn m\ F%\‘t e

Benefits

 Establish confidence in a program’s ability to acquire software-reliant
systems across the life cycle and supply chain

» Reduce cybersecurity risk of deployed software-reliant systems

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
== - . - . . . approved for public release and unlimited distribution.
— Software Englﬂeerll'lg Institute Cﬂl'negm Mellon UanBI‘SltY © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 20

use and distribution.

SAF: Acquisition Lifecycle Focus

/N /N

/\

Material
Solution
Analysis

Material
Development
Decision

Technology
Development

Engineering and
Manufacturing
Development

Post-
CDR A

Production and
Deployment

FRP
Decision
Review

Operations and
Support

\ Pre-Systems Acquisition

Systems Acquisition

Sustainment

 The DoD acquisition lifecycle is the organizing structure for the SAF.

* Best practices for software assurance are mapped to the lifecycle.

e The SAF is consistent with DoD and industry policies for software assurance (e.g.,
NIST 800-53, DoD 5000-2, BSIMM).

%__% Software Engineering Institute | Carnegie Mellon University

Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been

approved for public release and unlimited distribution. 2 1
Please see Copyright notice for non-US Government

use and distribution.

SAF: Nine Practice Areas

Focus
Governance
1. Governance Infrastructure Practices Infrastructure
2. Materiel Solution 3. Technology 4';2?\'3;‘::5:"" 5. Production and 6. Operations and Ac.qu|5|t|on
Analysis (MSA) Development (TD) Develobment (EI\gIID) Deployment (PD) Support (O&S) Llfecycle
Practices Practices e Practices Practices Assurance
. : _ ftwar ri
7. Secure Software Development Practices 8. Secure Software Operation Practices Software Secu ty
Software Security
9. Software Security Infrastructure Practices Infrastructure
_ Building Secure Software for Mission Critical Systems [Distribution State_ment A] This matgrie_xl has'be_en ;
== Software Engineering Institute | Carnegie Mellon University 2018 camegie Mellon University Pieaes se6 Gonyriot notios fornonus Govemmert. 22

use and distribution.

SAF: Basis for Assessment and Improvement

Acquisition Programs

» Assess current software assurance
practices

* Develop improvement plan
* Improve software assurance

practices
» Supporting Program Protection Plans
_ _ Software Assurance
Assurance Service Providers Framework (SAF)

* |dentify gaps in software assurance
services currently provided

» Develop plan for new or enhanced
software assurance services

* Provide new or enhanced software
assurance services to constituents

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
—N - 0 O . i . A approved for public release and unlimited distribution.
= Software Englnee"ng Institute Caﬂlﬁgle Mellon Ulmel'Slfy © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 23

- use and distribution.

Requirements

Sustainment

Engineering and Development

: Mission Threat i Abuse EArchitecture Coding ¢ Testing, Monitoring Breach
: Thread Analysis : Cases : and Design Rules and ¢ Validation Awareness :
: Principles Guidelines : and
: = ¢ Verification :
g -.------------------l-------------------------------------f_--------------------' E
Requirements and Acquisition : Deployment and Operations :

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
- . - . . . approved for public release and unlimited distribution.
i’ Software Eﬂglﬂeel'll'lg Institute CﬂrﬂengMeulmUnIVHSltY © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 24

use and distribution.

Threat analysis tools help derive abuse and

misuse cases

9

STRIDE Threat Types

Vision Desired Property

Identi
Validate Thet:ﬂg Confidentiality

Threat Definition
Authentication Spoofing Impersonating something or someone
else
Integrity Tampering Madifying code or data without
authorization
Nen-repudiation Repudiation The abilityte claim to have nat
performed some action againstan
application
Infarmation The exposure of information to
Disclosure unauthorized users

Avallability

Denial of Service

The abilityte deny or degrade a
service to legitimate users

Authorization

Elevation of
Privilege

The abilityof a user to elevate their
privileges with an application without
authorization

Viitigate

Microsoft STRIDE Threat Types

Microsoft SDL Threat Modeling Tool

Physical Wellbeing
Human Impact

Ca

‘Access or Convenience Manipulation or Coercion ‘1
Adversary’s Motivations. i Adversary's Mathod:
\ | i ‘“-_ 1

Denning, Friedman, Kohno
The Security Cards: Security Threat Brainstorming Toolkit

Jane Cleland-Huang’s Persona non Grata
http://www.infoq.com/articles/personae-non-gratae

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been

% Software Engineering Institute | Carnegie Mellon University ¢ 2015 camegie Melion University

approved for public release and unlimited distribution. 25
Please see Copyright notice for non-US Government
use and distribution.

Security Quality Requirements Engineering

(SQUARE)

Agree on
definitions*

Identify assets
and security

goals®

Elicit security

. — Categori
requirements e

requirements*

_Sglegt Prioritize
elicitation requirements*
techniques
Review and

inspect
requirements

A robust SQUARE tool is available for download from http://www.cert.org/sse/square.html

*SQUARE-Lite process

% Software Engineering Institute | Carnegie Mellon University

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
approved for public release and unlimited distribution. 26
© 2018 Carnegie Mellon University Please see Copyright notice for non-US Government

use and distribution.

http://www.cert.org/sse/square.html

Embedded systems represent new classes of
vulnerabilities

Embedded systems have different characteristics than IT systems

More and varied attack surfaces

* Sensors

» Multiple command-and-control masters
Embedded firmware, FPGAs, ASICs
» Unique internal busses & controllers

Size, weight, power and latency demands
tradeoff against defense-in-depth

Timing demands offer potential side
channels
» Bit and clock cycle level operations

» Physical resources with real time
sensors

» Safety-Critical Real-time OS

Confusion between failure resilience and
attack

¢ Intermittent communications

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
= - - - . | . . approved for public release and unlimited distribution.
Software Englnee"ng Institute Canlegle Mellon Ulll“el‘Slty © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 27
use and distribution.

|"\|h\||

Security approaches for IT systems do not cover
embedded system security

Virus definitions and operating
guidelines do not always apply

Firewalls and IDS/IPS of limited value
Centralized account control not possible

Network tools and assessment
techniques unaware of embedded
systems architecture and interfaces

* Unique and insecure protocols

* Maintenance backdoors

» Hardcoded credentials

» Unique architectures of embedded
controllers

Unplanned connectivity and upgrades

Developers are not trained in software
engineering

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
=% - - - . . . approved for public release and unlimited distribution.
— Software Englnee"ng Institute Canlegle Mellon Um“el‘Slty © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 28
use and distribution.

Programming for security is not the same as
programming for safety

Rely on physical models in fault trees Attackers do not obey the laws of physics

Redundancy mitigates single failures Attackers are not independent events

Fault trees collectively exhaustive Attack trees depend on adversaries’
creativity

Steady state behavior indicator of proper APT (Advanced persistent threats) hide in
operation steady state behavior

Deteriorating performance predicts Attackers cover their tracks
maintenance for safety

Microcontrollers and air gaps implement Side channels open vulnerabilities
boundaries

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been

—_— - 5 O " i . A approved for public release and unlimited distribution.
——— Software Engineering Institute Caﬂlﬁgle Mellon University © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 29

- use and distribution.

Need for multisystem risk analysis

Single system scope

Exploit 1

Exploit 2

Exploit N

........... » Vulnerability 1

........... » Vulnerability 2

» Vulnerability N

Risk analysis is focused on a single system

e Standalone (i.e., single system) models have been
developed

* Risk analysis considers the exploit of an individual
vulnerability within a single system

Security risk identification techniques do not consider:
* Compositions of multiple vulnerabilities
* Cross-system security events/risks

* Impacts beyond the exploit of a single system (to the
intended service and organization)

Need for systematic, multiple system evaluations
* Notation for expressing a security events and risks

e Take into account all context

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
approved for public release and unlimited distribution. 30

= - - - . . .
== Software Engineering Institute Cmegle Mellon UlllVBl‘SltY © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government

use and distribution.

Security Engineering Risk Analysis approach

Comprehensive context

Determining actions

Use-Case View

Data View

Workflow View

d lill‘;l

nnnnnnnnn

Stakeholder View

 Establish threat model

e Determine common
system view

* Inspect connections
between systems

 Evaluate
* Consequences
* Likelihood
* Risk

%__% Software Engineering Institute | Carnegie Mellon University

http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=427321

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
approved for public release and unlimited distribution.

© 2018 Carnegie Mellon University Please see Copyright notice for non-US Government
use and distribution.

31

http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=427321

SERA applied to DHS’s Wireless Emergency
Alerts system

Do Sty
CTRTY Divisicn
Software Solumos Division

Wireless Emergency Alerts
(WEA) Cybersecurity Risk
Management Strategy for
Alert Originators

Wireless Emergency Alerts (WEA)
Cybersecurity Risk Management
Strategy for Alert Originators

First Responders Group

September 2013

Science and Technology Directorate

Support to the Momeland Security Enterprize and First Responders

7 Homeland e
Security
Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
= o 5 O " A 0 approved for public release and unlimited distribution.
= Software Englrleerlng Institute Cameg'le Mellon Un-“’erSIty © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 32

use and distribution.

Development

Sustainment

Engineering and Development

: Mission Threat I Abuse EArchitecture Coding : Testing, Monitoring Breach
: Thread Analysis : Cases : and Design Rules and ¢ Validation Awareness :
: Principles Guidelines : and
: = ¢ Verification :
H -.------------------l-------------------------------------f_--------------------' E
Requirements and Acquisition : Deployment and Operations :

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
- . - . . . approved for public release and unlimited distribution.
i’ Software Eﬂglﬂeel'll'lg Institute CﬂrﬂengMeulmUﬂIVHSltY © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 33

use and distribution.

Architecture Analysis & Design Language (AADL)

SW Design Architecture
Command & | Vs : I‘Ti
Control o M

Task & Communication
Architecture

| |
f Do
Distributed Computer
Platform
AADL Addresses Increasing Interaction Complexity
and Mismatched Assumptions
- Building Secure Software for Mission Critical Systems [Distribution State_ment A] This matgrie_xl has'be_en ;
=== Software Engineering Institute | Carnegie Mellon University 2015 camegie Mellon University P ey Lo R]

use and distribution.

Team Software Process

TSP is an agile, team-focused process for
software and systems development.

The TSP strategy improves software engineering
from the bottom up.
* Instills engineering discipline in software developers
 Builds high-performance trusted teams

TSP works in practice

Performance Category Typical TSP Typical Industry

Result Result
Effort estimation error <10% >30%
Schedule estimation error <10% >30%
Product quality (defects/KLOC) 0.01t00.5 1.0to 7.0

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
== - - - . . . approved for public release and unlimited distribution.
= — Software Engineering Institute Cmegle Mellon UHIWBI'SltY © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 35
use and distribution.

Extending TSP with security

» Adding secure design
. Minimize attack surfaces

. Defense in depth for software
development

e Adding secure coding
. Adopting secure coding practices

» Tooling support for automated
conformance checking

« Tracking security defects

. Monitoring results of tests with
respect to security

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
== - . - . . . approved for public release and unlimited distribution.
— Software Englﬂeerll'lg Institute Cﬂl'negﬂe Mellon UanBI‘SltY © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 36

use and distribution.

Integrating security into Agile (Scrum) development

1. Code hygiene —introduce secure coding
2. Secure DevOps —include security tools
Code hygiene 3. Threat modeling —represent a new role
. 5|P'"“t ;eclure Dle"OPS 4. Risk analysis — prioritize in backlog
planning = Daily cycle
PREPARATION P eeting
+ Business case & funding
= Contractual agreement
" Vision *Update SCRUM geeme:
« Initial product backlog product increment RELEASE
« Initial release plan backlog PROCESS
« Stakeholder buy-in
« Assemble team Risk analysis
Threat modeling *Sprint *Sprint SCRUM ROLES
retrospective review @ .
aAh Al
Scrum Team Stakeholders
master members
-
L 8
(See also: Bellomo and Woody, DoD Information Users Product e
Assurance and Agile: Challenges and Oowner
Recommendations Gathered Through Interviews non grata
with Agile Program Managers and DoD
Accreditation Reviewers
(http://repository.cmu.edu/cgi/viewcontent.cgi?
article=1674&context=sei)
- Building Secure Software for Mission Critical Systems [Distribution State_ment A] This matgrie_\l has_be_en ;
;—__% Software Engineering Institute Canlegie Mellon Ulll“el‘Sity © 2018 Carnegie Mellon University g?s;z;ii«io(r:g:slrli;rr:lr?;?ceeﬁr;? r?:rI:rTJISeng:zrrlr?rl:][tle?: 37

use and distribution.

http://repository.cmu.edu/cgi/viewcontent.cgi?article=1674&context=sei

Adoption of secure coding rules

Integrated
Training development
environments

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
—_— o 5 O " A 0 approved for public release and unlimited distribution.
——— Software Engineering Institute Canlegle Mellon UmWBI‘Slty © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 38

use and distribution.

Most Vulnerabilities Are Caused by
Programming Errors

64% of the vulnerabilities in the NIST National Vulnerability
Database due to programming errors

* 51% of those were due to classic errors like buffer overflows,
cross-site scripting, injection flaws

Top vulnerabilities include
* Integer overflow
 Buffer overflow
e Missing authentication
e Missing or incorrect authorization
* Reliance on untrusted inputs (aka tainted inputs)

Sources: Heffley/Meunier: Can Source Code Auditing Software Identify Common Vulnerabilities and Be Used to Evaluate

Software Security?
cwe.mitre.org/top25 Jan 6, 2015

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
— approved for public release and unlimited distribution. 39

— Software Engineering Institute Cal'llegie Mellon Ulll'Vi'-l'Sif_V © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government
use and distribution.

CERT Secure Coding Standards

SEI CERT
C Coding Standard

Fuskzs o Devakoping Sate, Raiiats, and Secors Systams

SEl CERT
C++ Coding Standard

Fuies: for Developing Safe, Reliabla, and
Secum: Systams n fe+

Aamn Baliman

Collected wisdom from thousands of contributors
on community wiki since Spring 2006
SEIl CERT C Coding Standard

* Free PDF download;:

http://cert.org/secure-coding/products-
services/secure-coding-download.cfm

» Basis for ISO TS 17961 C Secure Coding Rules

SEl CERT C++ Coding Standard
* Free PDF download (Released March 2017):
http://cert.org/secure-coding/products-
services/secure-coding-cpp-download-2016.cfm
CERT Oracle Secure Coding Standard for Java
“Current” guidelines available on CERT Secure
Coding wiki
* hitps://www.securecoding.cert.org

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been

—_— o 5 O " A 0 approved for public release and unlimited distribution.
= Software Englrleerlng Institute Cameg'le Mellon Un-“’erSIty © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 40

use and distribution.

http://cert.org/secure-coding/products-services/secure-coding-download.cfm
http://cert.org/secure-coding/products-services/secure-coding-cpp-download-2016.cfm
https://www.securecoding.cert.org/

Learning from rules and recommendations

Rules and recommendations in the secure coding standards focus to improve behavior

MNoncompliant Code Example

moment: = in a blue frame that
e e conform with all

rules and can be

reused in your code

Noncompliant code
examples or S B,
antipatterns in a
pink frame—do not
copy and paste into

Compliant Sclution

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
—_— - 5 O " i . A approved for public release and unlimited distribution.
= Software Englneerlng Institute Canlegle Mellon Un-“’el'fﬂty © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 41

use and distribution.

Secure Coding in C/C++ Training

The Secure Coding course is designed for C and C++
developers. It encourages programmers to adopt security best
practices and develop a security mindset that can help protect
software from tomorrow’s attacks, not just today’s.

Topics
e String management
* Dynamic memory management
* Integral security
* Formatted output
* File I/O

Additional information at ttp://www.sei.cmu.edu/training/p63.cfm

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been

—_— - 5 O " i . A approved for public release and unlimited distribution.
——— Software Engineering Institute Caﬂlﬁgle Mellon University © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 42

- use and distribution.

http://www.sei.cmu.edu/training/p63.cfm

Tools encourage application of secure coding

e g S & -

Moving rules into IDE improves application
of secure coding

» Early feedback corrects errors on introduction
» Exceptions are understood in context
» Feedback improves developer skill

Target Clang static analyzer (C based
languages)

» Widely used open source front end for popular
compilers

* Integrated into Apple’s Xcode IDE

Target FindBugs (Java)
* Integrated into Eclipse and JDeveloper

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
—_— - 5 O " i . A approved for public release and unlimited distribution.
= Software Englneerlng Institute Canlegle Mellon Un-“’el'fﬂty © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 43

use and distribution.

Software iIs more assembled than built

Ledger

l
I I 1
. SQL Server . WebSphere . GIF library °
l
I I 1
HTTP SIP servlet
server . Oracle DB ‘ container °

XML Parser

Note: hypothetical application composition

. General “Development” is now “assembly”
using collective development

Too large for single
organization

Too much specialization

Too little value in individual
components

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been

== Software Engineering Institute | Carnegie Mellon University ¢ 2018 camegie Mellon niversity

approved for public release and unlimited distribution. 44
Please see Copyright notice for non-US Government
use and distribution.

The rise of open source

S|
m
—

"_A_L
1= —
—_—

gle
mﬂﬁﬁf
(CEE

-

ONANA
9 ;!."[‘-‘g_ Y
a! ZINANE

ASSEMBLED

r1'|

* 90% of modern applications are
assembled from 3" party components

* Most applications are now assembled from
hundreds of open source components,
often reflecting as much as 90% of an
application

* Atleast 75% of organizations rely on open
source as the foundation of their
applications

Distributed development —
context:

 Amortize expense

e Qutsource non-differential
features

 Lower acquisition (CapEx)

expense

Sources: Geer and Corman, “Almost Too Big To Fail,” ;login: (Usenix), Aug 2014; Sonatype, 2014 open source development and application security

survey

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been

%__é Software Engineering Institute | Carnegie Mellon University

© 2018 Carnegie Mellon University

approved for public release and unlimited distribution. 45
Please see Copyright notice for non-US Government
use and distribution.

The rise of open source

WRITTEN

Distributed development —
11041104110 110

10141014101 101 .

context:

“Developers are gorging themselves on an ever [liEl
expanding supply of open source components”

. At | Sonatype, “2016 State of the Software Supply Chain”

O Most appnce -
from hundreds of open source
components, often reflecting as much
as 90% of an application

Sources: Geer and Corman, “Almost Too Big To Fail,” ;login: (Usenix), Aug 2014; Sonatype, 2014 open source development and application security

survey
Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
—_— o 5 O " | A 0 approved for public release and unlimited distribution.
= Software Englneerlng Institute Cameg'le Mellon Ulllml'slty © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 46

use and distribution.

Open source is not secure

Heartbleed and W
Shellshock were found Y\ ShellShock

by exploitation ‘w®¢:. {bashbug}

N

Other open source Grep-and-Gripe: Revenge of the Symlinks Grep-and-Gripe 2: Larry Cashdollar*

* That's his real last name. He swears it!
grep —AS5 -BS /tmp/ SPROGRAM

Software IIIUStrateS * Dmitry E. Oboukhov, August 2008

* Run against Debian packages * Grep-and-gripe

VU I n e rabl I Itl eS frO m CU rSO ry . Th:s king.l.Of thing really hurts pie charts of different * Old-school symbolic
. . vulnerability types
inspection

links and context- |
e dependent OS w1
| Dmitry | command injection : I

o *» Those are dead, right? .
I I I * Enter Ruby Gems l oo B

mm 0w om0 s o M oo o ohees L oy

Row number of symlinks reported over time (CVE]

Sources: Steve Christey (MITRE) & Brian Martin (OSF), Buying Into the Bias: Why Vulnerability Statistics Suck, https://media.blackhat.com/us-13/US-13-
Martin-Buying-Into-The-Bias-Why-Vulnerability-Statistics-Suck-Slides.pdf; Sonatype, Sonatype Open Source Development and Application Security Survey;
Sonatype, 2016 State of the Software Supply Chain; Aspect Software “The Unfortunate Reality of Insecure Libraries,” March 2012

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
—_— - 5 O " i . A approved for public release and unlimited distribution.
= Software Englneerlng Institute Canlegle Mellon Un-“’el'fﬂty © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 47

use and distribution.

https://media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-Why-Vulnerability-Statistics-Suck-Slides.pdf

Open sourq

Heartbleed and
Shellshock were fot
by exploitation

Other open source
software illustrates
vulnerabilities from cu
inspection

1.8 billion vulnerable open
source components
downloaded in 2015

26% of the most common
open source components
have high risk vulnerabilities

On average, applications
have 22.5 open source
vulnerabilities

—
p—

y

.. ShellShock
{bashbug}

-
rsi
&Y

o
r
=W

ep-and-Gripe 2: Larry Cashdollar*
*That's his real last name. He s\ it

He swears it!

Land-gripe
chool symbolic =

nd context-
Edent os

and injection

b are dead, right? ;
Ruby Gems

F Suck, https://media.blackhat.com/us-13/US-13-
ource Development and Application Security Survey;
ure Libraries,” March 2012, Mike Pittenger, Black

%% Software Engineering Institute

Building Secure Software for Mission Critical Systems

Carnegie Mellon University ¢ 2018 camegie Melion University

use

Plea:

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
se see Copyright notice for non-US Government
and distribution.

48

https://media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-Why-Vulnerability-Statistics-Suck-Slides.pdf

Reducing software supply chain risk

factors

Software supply chain risk for a
product needs to be reduced to

acceptable level

chain risks

Operational
Product Control

secure

Supplier Product Product

Capability Security Distribution
Supplier follows Delivered or Methods of
practices that updated product transmitting the
reduce supply is acceptably product to the

purchaser guard
again tampering

Product is used in a
secure manner

Building Secure Software for Mission Critical Systems

;: Software EnginEEring Institute Carneg’ie Mellon Ul].i“'el'sity © 2018 Carnegie Mellon University

[Distribution Statement A] This material has been

approved for public release and unlimited distribution. 49
Please see Copyright notice for non-US Government

use and distribution.

Connecting automotive systems to internet
opens system to attack

A (\WEH R} D] SUBSCRIBE

ANDY GREENBERG SECURITY 07.21.15 G6:00 AM Extending SyStemS OpenS

HACKERS REMOTELY KILL A JEEP QN T, | VU eraPiities notanticipated
HIGHWAY-WITH MEINIT e Optimizations performed

assuming one attack method

Hackers Remotely Kill a Jeep on the

» Assumptions no longer hold with
additional integrations

Studies suggest that new
operational environments are a
leading cause for introducing new
vulnerabilities in existing systems.

Source: http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
Clark, Frei, Blaze, Smith, “Familiarity Breeds Contempt: The Honeymoon Effect and the Role of Legacy Code in Zero-Day Vulnerabilities,” ACSAC
’10 Dec. 6-10, 2010, p. 251-260.”

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
e - 0 O . | . A approved for public release and unlimited distribution.
— Software Englnee"ng Institute Cﬂﬂle{-';le Mellon Ulmel'Slf,V © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 50
use and distribution.

http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

Machine-learning based systems increase
exposures

Operations are driven by high
volume, high velocity sensor data

Decision making is based on
“trained” models of behaviors

Conventional code development
“the [Tesla] car's driverless technology techniques of modest he|p

failed to detect the white side of the
tractor-trailer against a brightly lit sky, so

the brake wasn't activated.”
_ABC7News, July 1, 2016 Understand the limits of training

Source: http://abc7news.com/automotive/tesla-self-driving-car-fails-to-detect-truck-in-fatal-crash/1410042/

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
e - 0 O . i . A approved for public release and unlimited distribution.
— Software Englnee"ng Institute Caﬂl@gle Mellon Ulmel'Slfy © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 51

use and distribution.

Recognizing and recovering poisoned systems

Before attack (7 vs 1) Adter attack (7 vs 1)

o “Chaff” and “noise” can emerge
as vulnerabilities

5 10 15 20 25 5 10 15 20 25

« Defensive strategy based on “it
Is difficult to lie at scale”

Before attack (9 vs B) Adter attack (9 v= 8)

« Tactics include consistency
checks, such as
* Multiple models in a single unit
e Coordination among units
» Coordination with environment

5 10 15 20 25 5 10 15 20 25

Bafore attack (4 vs 0) Aftar attack (4 vs0)

5 10 15 20 25 5 10 15 20 25

Source: Battista Biggio, Blaine Nelson, Pavel Laskov, Poisoning Attacks against Support Vector Machines, 2012, arxiv.org/abs/1206.6389

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been

—_— - 5 O " i . A approved for public release and unlimited distribution.
= Software Englneerlng Institute Canlegle Mellon Un-“’el'fﬂty © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 52

use and distribution.

http://arxiv.org/abs/1206.6389

Deployment and operations

Sustainment

: Engineering and Development
: Mission Threat I Abuse Architecture Coding : Testing, Monitoring Breach
: Thread Analysis ¢ Cases : and Design Rules and ¢ Validation Awareness :
: Principles Guidelines : and
: : ¢ Verification :
. L T P T PR T T TP ET PR E
Requirements and Acquisition : Deployment and Operations :
Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been

- . - . . . approved for public release and unlimited distribution.
i Software Eﬂglﬂeel'll'lg Institute Cﬂl‘ﬂegleMe“ﬂl'lUnI\r’el'SllY © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 5 3

use and distribution.

Static Testing — Source code analysis tools

Secure Code Analysis Laboratory (SCALe)

« C, C++, Java, PERL, Python, Android
rule conformance checking

 Thread safety analysis

 |Information flows across Android
applications

e Operating system call flows

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
—_— o 5 O " A 0 approved for public release and unlimited distribution.
——— Software Engineering Institute Canlegle Mellon UmWBI‘Slty © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 54

_ use and distribution.

SCALe Multitool evaluation

Client

Build

Environment

Code
N

4

Analysis Tool

Analysis Tool

Analysis Tool

Secure Coding Filters J

Confirmed) Merged
violations |~ flagged
e non-
= conformities €
Probable
violations [€ J
‘___—/'-—_—

R~

Flagged
non-
conformities L

%_% Software Engineering Institute | Carnegie Mellon University

© 2018 Carnegie Mellon University

Improve expert review
productivity by focusing on high
priority violations

Filter select secure coding rule
violations

. Eliminate irrelevant
diagnostics

e Convertto common CERT
Secure Coding rule labeling

Single view into code and all
diagnostics

Maintain record of decisions

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been

approved for public release and unlimited distribution. 55
Please see Copyright notice for non-US Government
use and distribution.

Optimizing multitool evaluations

Analyzers Analyzers

Analyzers Analyzers

Analyzers Analyzers

Expert
(Oracle)

Diagnostics D Prioritized Diagnostics
from each . O diagnostics from each
tool Sosribicagli\ | list tool

Active ML with
STEM

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
- . - . . . approved for public release and unlimited distribution.
i Software Englﬂeerll'lg Institute CﬂIIlBSIEMeulmUIIIVHSltY © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 56

use and distribution.

Dynamic testing and evaluation — fuzzing

Fuzz testing of attack surfaces

« Based on techniques used in CERT’s Basic
Fuzzing Framework (BFF)

e mutational fuzzing

* machine learning and evolutionary computing
techniques

« adjusts its configuration parameters based on what
it finds (or does not find) over the course of a
fuzzing campaign

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
=% . . . Y ' . approved for public release and unlimited distribution.
— Software Englnee"ng Institute Cﬂrlle{-','le Mellon UlHWl'Slty © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 57
use and distribution.

Secure Coding Research

Prioritizing Vulnerabilities using Classification Models

« Aggregating information from multiple analysis tools to make better
predictions about whether a potential defect is true or not.

Automated Code Repair

* Fixing code based on anti-patterns and patterns for repair, rather than
just alerting developers and testers to a potential defect.

Sensitive Dataflow Analysis among Android App Sets

e Detecting tainted data flows across multiple Android components

Integrating Secure Coding Rule analysis with Development Environments

« Moving secure coding analysis “to the left” to alert developers while
coding, not just during a test phase after they are done.

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
e - 0 O . i . A approved for public release and unlimited distribution.
— Software Englnee"ng Institute ‘ Caﬂl@gle Mellon Ulmel'Slf_V © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 58
se and distribution.

Prioritizing Vulnerabilities

' Codebases]

>

Analyzer

Alerts

Analyzer

) Many alerts left un-audited!
Project Goal

o . . . 50,000
Classification algorithm development using CERT- .
and collaborator-audited data, that 40,000
o oo 35,000
accurately classifies most of the -
diagnostics as: 25,000
20,000
Long-term goal: Automated and Expected True Positive (e-TP) or 15,000
accurate statistical classifier, Expected False Positive (e-FP), 10088
. - 5,000
intended to efficiently use analyst and 1
effort and to remove code flaws the rest as Indeterminate (1)
Image of woman and laptop from http://www.publicdomainpictures.net/view-image.php?image=47526&picture=woman-and- Prioritized, Sma” number
laptop “Woman And Laptop” of alerts for manual audit
Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been

—_— o 5 O " | A 0 approved for public release and unlimited distribution.
= Software Englneerlng Institute Cameg'le Mellon Ull“’erﬂty © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 5 9

use and distribution.

Results with Transition Value

Software and paper: Classifier-development
» Code for developing classifiers in the R environment
» Paper: classifier development, analysis, & use [1]

Software: Enhanced-SCALe Tool (auditing framework)
» Added data collection
» Archive sanitizer
» Alert fusion
» Offline installs and virtual machine

Training to ensure high-quality data
 SEI CERT coding rules
 Auditing rules [2]

Conference/workshop papers:

[1] Flynn, Snavely, Svoboda, Qin, Burns, VanHoudnos,

e Enhanced-SCALe use Zubrow, Stoddard, and Marce-Santurio. “Prioritizing Alerts
]] from Multiple Static Analysis Tools, using Classification
Auditor quality test Models”, work in progress.
e Test audit skill: [2] Svoboda, Flynn, and Snavely. “Static Analysis Alert
mentor-expert designation Audits: Lexicon & Rules”, IEEE Cybersecurity Development

(SecDev), November 2016.

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
e - 0 O . i . A approved for public release and unlimited distribution.
— Software Englnee"ng Institute Caﬂl@gle Mellon Un-“’el'SIty © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 60
use and distribution.

Background: Automatic Alert Classification

Codebase Codebase Codebase
1 2 3
v

Static Alert
Analysis —» Consolidation| ——» Auditing
Tool(s) (SCALe)

i

Potential Rule o
Alerts . . Determinations
Violations
Training Data Inconsistent assignment of
audit determinations may
ML Classifi have a negative impact on
e classifier development!
Development
_ Building Secure Software for Mission Critical Systems [Distribution State_ment A] This matgrie_xl has'be_en ;
=== Software Engineering Institute | Carnegie Mellon University 2018 camegie Mellon University e o e ebs covarment B
use and distribution.

Lexicon: Audit Determinations

Audit
Determinations
Basic Determinations Supplemental Determinations
Dangerous
True 8
construct
Inapplicable
Complex Dependant .
environment
Unknown Choose ANY NUMBER
(default) Per Alert!
Choose ONE Per Alert!
Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
= —% . A . a . . d for public rel d unlimited distribution.
= — Software Eﬂglﬂeerll'lg Institute Cmegle Mellon UanBI‘SltY © 2018 Carnegie Mellon University ?’fgar,(s)geseeoégl;yrli;r:‘: r?;?:eafgr rlljtr;rlI[nlJnSeGoi/sz;rrlnrl:(la?]rt1 62

use and distribution.

SCALe Auditing Rules

1. Understand the language and the secure coding rule in
question.

Some diagnostics are too complex to judge; they
should be marked suspicious.

It is OK to mark a diagnostic true even if you think the
code maintainers will protest.

Assume that external inputs to the program are
malicious.

Unless instructed otherwise, assume that code must
be portable.

When auditing a diagnostic, if you discover a second
true violation, mark its diagnostic as true.

Do not arbitrarily extend the scope of a CERT rule.

Code that behaves as expected might still violate a
CERT rule.

A diagnostic might indicate a true violation of the CERT
coding rule, even if its message text is useless or
incorrect.

Multiple messages help in understanding a diagnostic.
Assume no violations occur before the line in question.

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
== - - - . . . approved for public release and unlimited distribution.
= Software Englneerlng Institute Caﬂlegle Mellon Un-“'erﬂty © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 63
use and distribution.

Results with Transition Value: Sanitizer

New data sanitizer
« Anonymizes sensitive fields
* SHA-256 hash with salt
e Enables analysis of features correlated with alert confidence

SCALe project is in a SCALe database
DB fields may contain sensitive information

 Sanitizing script anonymizes or discards fields
- Diagnostic message
- Path, including directories and filename
- Function name
- Class name
- Namespace/package
- Project filename

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
—_— - 5 O " | . A approved for public release and unlimited distribution.
——— Software Engineering Institute ‘ Cﬂﬂle{-';le Mellon University © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 64

- use and distribution.

Classifier Test Highlights

Classifiers made from all data, pooled:

All-rules (158) classifier accuracy: General results (not true for every test)

- Lasso Logistic Regression: 88% — _
- Random Forest: 91% Classifier accuracy rankings for all-pooled test data:

- CART: 89% XGBoost = RF > CART = LR
~ XGBoost: 9% Classifier accuracy rankings for collaborator test data:
LR = RF > XGBoost > CART
Rule ID Lasso LR | Forest [CART|XGBoost

Per-rule classifiers generally not useful (lack data), but 3
INT31-C 98% 97% 98% 97% .
P01 e T o oo oan rules (INT31-C best) are exceptions.

Single-rule classifier accuracy:

Random

OBIO3-J | 73% | 86% |86%| 8% » With-tools-as-feature classifiers better than without.
FIO04-J* 80% 80% 90% 80%)

EXP33-C* | 83% | 87% |83%| 83% » Accuracy of single language vs. all-languages data:
EXP34-C* 67% 72% 79% 72%

DCL36-C* 100% 100% |100%| 100% C> aII'Comblned > Java

ERRO8-J* 99% 100% |100%| 100%
IDS00-J* 96% 96% 96% | 96%
ERRO1-J* 100% 100% |100%| 100%
ERRO9-J* 100% 88% 88% 88%

* Small quantity of data, results suspect

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
—_— - 5 O " | . A approved for public release and unlimited distribution.
= Software Englneerlng Institute Cﬂnlegle Mellon Un-“’el'filty © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 65

use and distribution.

Rapid expansion of classification models to
prioritize static analysis alerts for C

Problem: Security-related code flaws detected by static analysis require
too much manual effort to triage, plus it takes too long to audit enough
alerts to develop classifiers to automate the triage.

Solution: Rapid expansion of number of classification models by using
“pre-audited” (equivalent to audited) code.

Approach:

1. Systematically map CERT C coding rules to named flaws in subsets of
pre-audited code (published as true or false for the flaw)

2. Automated enhanced-SCALe analysis of pre-audited (not by SEI)
codebases to gather sufficient code & alert feature info for classifiers

w

. Use DoD collaborator data from auditing software they actually use as
a validity check, and compare classifiers versus those based on pre-
audited code (mostly small, uncomplicated tests).

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
e - 0 O . i . A approved for public release and unlimited distribution.
— Software Englnee"ng Institute Caﬂl@gle Mellon Ulmel'Slfy © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 66
se and distribution.

Automated Code Repair

Hypothesis: Many violations of rules follow a small number of anti-patterns with
corresponding patterns for repair, and these can be feasibly recognized by static
analysis.

e printf(attacker_string) - printf("%s", attacker_string)

We propose to create a tool to automatically repair defects in source code resulting
from violations of the CERT Coding Standards.

Formalizable Constraints (to be formally verified):

» The patched and unpatched program behave identically over the set of all traces that
conform to the rules.

e No trace violates the rules.

Non-Formalizable Constraint;

* Repair in way that is plausibly acceptable to the developer.

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been

—_— - 5 O " i . A approved for public release and unlimited distribution.
= Software Englneerlng Institute Canlegle Mellon Un-“’el'fﬂty © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 67

use and distribution.

Automated Code Repair — Motivation

Software vulnerabilities constitute a major threat
* A majority arise from common coding errors
« Shown by experience from source code analysis labs
at CERT and DoD
Static analysis tools help, but:
» Typically are used late in the development process
* Produce an enormous number of warnings
» The volume of true positives often overwhelms the
ability of the development team to fix the code
Huge amount of code in use by DoD
« Billions of lines of C code
« Unknown number of security vulnerabilities

Likely Code Candidates
» Large Code Base
» Dynamically Allocated Memory (Buffer Overflows)
 Variable-length Input

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
—_— - 5 O " | . A approved for public release and unlimited distribution.
——— Software Engineering Institute Cﬂﬂle{-';le Mellon University © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 68

- use and distribution.

Integer Overflow

This past year (FY16), we developed techniques for automated
repair of integer overflows that lead to memory corruption

Integers in C are represented by a fixed number of bits N (e.g., 32
or 64).

» Overflow occurs when the result cannot fit in N bits

 Modular arithmetic: Only the least significant N bits are kept

How does integer overflow lead to memory corruption?
1. Memory allocation: malloc(-).
2. Bounds checks for an array

Example: Android Stagefright bugs (July 2015)

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
e - 0 O . i . A approved for public release and unlimited distribution.
— Software Englnee"ng Institute Caﬂl@gle Mellon Ulmel'Slfy © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 69
use and distribution.

Benefits

Eliminate security vulnerabilities at a much lower cost than
manual repair

Integer overflows are a very common type of bug

* In CERT SCALe audits, about 80% of findings were related to
fixed-width integers

Our technique:
* Will not break working code, provided inferred specification is
correct (Next slide)
e Typically total slowdown < 5% (Based on theoretical model)
 False positives: Flagged operations that cannot actually
overflow
- Then our ‘repair’ just adds a little unnecessary overhead

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
e - 0 O . i . A approved for public release and unlimited distribution.
— Software Englnee"ng Institute Caﬂl@gle Mellon Ulmel'Slfy © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 70
use and distribution.

wrappers.h

1. inline static size t UADD(size t lop, size t rop) {

2 size t result;

3 bool flag = __builtin_add_overflow(lop, rop, &result);
4. if (flag) {result = SIZE MAX;}

5 return result;

6.

} e What if dest_size is SIZE_MAX?
Repair: UADD(start, n) * What if both sides of inequality overflow?
—_—A * What if overflow reaches a non-comparison sink?

if (start + n <= dest size) {
memcpy (&dest[start], src, n);
} else {
return -EINVAL;

}

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been

—_— - 5 O " | . A approved for public release and unlimited distribution.
= Software Englneerlng Institute Cﬂnlegle Mellon Un-“’el'filty © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 7 1

use and distribution.

Inference of Memory Bounds

Problem 1: Security vuls. Not just traditional buffer overflows.

Leakage of sensitive info (out-of-bounds reads):
» HeartBleed vulnerability, BenignCertain attack on Cisco PIX.
» Unaffected by mitigations such as ASLR and DEP.
* Re-usable buffer with stale data: bounded to valid portion of buffer.
» Affects even Java: e.g., Jetty leaked passwords (CVE-2015-2080).

Problem 2: Decompilation of binaries. We will reconstruct information of the form
“bounds of pointer p is the interval [n, m]”.

Solution & Approach: Static analysis to find & evaluate likely bounds.
(E.g., re-usable buffer: guess that upper bound for reading is the last position written.)

For decompilation: Report these bounds, use when naming variables.

For repair: Test with dynamic analysis — tentatively implement all bounds checks
(even those subsumed by stricter bounds checks) as ‘soft-fail’ (just log a warning,
don’t abort). Can also repair to Checked C (David Tarditi).

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
e - 0 O . i . A approved for public release and unlimited distribution.
— Software Englnee"ng Institute Caﬂl@gle Mellon Ulmel'Slfy © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 72
use and distribution.

Android Information Leaks: Automated Detection

Problem: Exfiltration of sensitive data on mobile devices.
Colluding apps, or combination of malicious app and leaky app,
can use intents (messages sent to Android app components) to
extract sensitive or private information from an Android phone.

Solution: Precisely detect (i.e., few false positives) malicious
exfiltration of sensitive information from an Android phone (even
across multiple components), in a practical time & memory bound.

Approach: Add context sensitivity to analysis, to reduce false
positives, while retaining analytical speed by using DidFail’s fast 2-
phase static analysis method (that summarizes potential flows of
sensitive data per-app and quickly analyzes per-app-set).

—_— - 5 O H r . A approved for public release and unlimited distribution.
——— Software Engineering Institute Caﬂl@gle Mellon University ©2018 Carnegie Mellon University ~ Please see Co| pyright notice for non -US Government 73
istribution

Android App Sets: Sensitive Dataflow

Problem: Colluding apps, or a combination of a malicious app and leaky
app, can use intents (messages sent to Android app components) to
extract sensitive or private information from an Android phone.

Goal: Precisely detect tainted flows across multiple Android
components from sensitive information sources to restricted sinks.

« |If such flows are discovered:

— User might refuse to install app 4\()} ,C%Q_O O
src

— App store might remove app
Achievements:

sink

« First published static taint flow analysis for app sets (not just single apps)
« Fast user response: two-phase method uses phase-1 precomputation

Next: More precision using context sensitivity = fewer false alarms.

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been

approved for public release and unlimited distribution. 74
Please see Copyright notice for non-US Government
use and distribution.

;: Software EnginEEring Institute Carneg’ie Mellon Ul].i“'el'sity © 2018 Carnegie Mellon University

Goal: enforce
Analysis of Android App Sets: Sensitive confidentiality

Dataflow and integrity

Cutting-edge Android app set static dataflow analysis “DidFail” combines precise
single-component taint analysis and intent analysis.

* Phase 1: Each app analyzed once, in isolation
— Examine flow of tainted data from sources to sinks (including intents)
— Examines intent properties to match senders and receivers

* Phase 2: For a particular set of apps
— Generate taint flow equations

— lteratively solve equations Phase 2 fast because of Phase
1 pre-computation

— Fast!
Source code and binaries: App Store/Security System Provider
http://www.cert.org/secure- _ -
coding/tools/didfail.cfm Check(AppZ, List_MyApps) Stored Phase 1 analysis Apps
> App;: TaintFlowinfo,,, Intentinfos; App,
Appaz: TaintFlowInfoa,, Intentinfoa; App;
Next Work: Apps
- More context sensitivity Appy: TaintFlowInfoay, Intentinfoay App,
“Flows possible are ' ApPs
[POSSIBLE_FLOWS]. Phase 2 analysis
Do you want to install AppZ?” Output: potential tainted flows APPx
Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been

—_— - 5 O H r . A approved for public release and unlimited distribution.
——— Software Engineering Institute Caﬂl@gle Mellon University © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 75

- use and distribution.

Usability: Policies to Determine Allowed Flows

Policy: Prohibit flow from Src, to Sink,

sre, Example 1 . Example 2

Sink,
Sink,
Src,
Src,
. Sinkg
Sinkg
Policies could come from:
« App store Employer
» Security system provider ¢ User options
- Building Secure Software for Mission Critical Systems [Distribution State_ment A] This matgrie_\l has_be_en ;
%——é Software Engineering Institute Caﬂlﬁgie Mellon Ulll'VGI'Sify © 2018 Carnegie Mellon University g?ggzesiLocr:g:?/lrlizr:?lr?;?:eﬁr;? r?::rwlseégfé:ﬁ)rﬂ%? 76

use and distribution.

Review: Secure Software Development Lifecycle

Sustainment

Engineering and Development

Mission Threat Abuse Architecture Coding Testing, Monitoring Breach
Thread Analysis Cases : and Design Rules and Validation Awareness
: Principles Guidelines and
Verification
Requirements and Acquisition : Deployment and Operations
TEE N NN SN NN NN EEEE NN NN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE L

Automation; Acquisition (Supply chain); Building skills (Workforce development); Metrics, Models, and Measurement

Software Assurance Framework

Mission Ready Diagnostics; Architecture Analysis Team Software Process; Run time support; Forensic
Threat Modeling; & Design Language Secure TSP; Vulnerability Operations
SQUARE; Secure Agile; Analysis &
Security Engineering Secure Coding; Investigations
Risk Analysis SCALe
Building Secure Software for Mission Critical Systems [Distribution State_ment A] This matgrie_\l has_be_en ;
Software Engineering Institute Cﬂl'lleg'ie Mellon UlllWl‘Sity © 2018 Carnegie Mellon University g?s;z;iiéo(r:g:slrli;r:?lr?;?ceeﬁr;? r?::rrl:[sedegférrlr?rl:ll%r: 7 7

use and distribution.

Select Publications

« The SEI CERT C Coding Standard, 2016 Edition

The SEI CERT C++ Coding Standard, 2016 Edition

« Java Coding Guidelines (published 2013)

« Secure Coding in C and C++, 2nd Edition (published 2013)

« ISO/IEC TS 17961 C Secure Coding Rules

« Prioritizing Alerts from Static Analysis with Classification Models (October 2016)

« Static Analysis Alert Audits: Lexicon & Rules (November 2016)

« Automated Code Repair (October 2016)

« Establishing Coding Requirements for Non-Safety-Critical C++ Systems (October 2016)
« Beyond errno: Error Handling in C (November 2016)

« Exploiting Java Serialization for Fun and Profit (September 2016)

« Improving the Automated Detection and Analysis of Secure Coding Violations (2014)
« Common Exploits and How to Prevent Them (August 2016)

« http://www.cert.org/secure-coding/

Books & Stds.

Papers &
Presentations

« http://www.cert.org/secure-coding/publications/
« http://www.cert.org/secure-coding/products-services/scale.cfm
» http://securecoding.cert.org/

Websites

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
—_— o 5 O " A 0 approved for public release and unlimited distribution.
= Software Englrleerlng Institute ‘ Cameg'le Mellon Un-“’erSIty © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 78

use and distribution.

http://www.cert.org/secure-coding/products-services/secure-coding-download.cfm
http://cert.org/secure-coding/products-services/secure-coding-cpp-download-2016.cfm
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=474252
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=484185
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=474244
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=474247
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=484203&realTime
https://static.rainfocus.com/oracle/oow16/sess/1461174451300001tAQ7/ppt/Exploiting%20Deserialization.pdf
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=295724
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=473603
http://www.cert.org/secure-coding/
http://www.cert.org/secure-coding/publications/
http://www.cert.org/secure-coding/products-services/scale.cfm
http://securecoding.cert.org/

Contact Information

Robert Schiela

rschiela@sei.cmu.edu

Web Resources (CERT/SEI)

http://www.cert.org/

http://www.sei.cmu.edu/

http://[securecoding.cert.orqg

Building Secure Software for Mission Critical Systems [Distribution Statement A] This material has been
=% - - - . . . approved for public release and unlimited distribution.
= Software Englnee"ng Institute Canlegle Mellon Um“el‘Slty © 2018 Carnegie Mellon University Please see Copyright notice for non-US Government 79
use and distribution.

http://www.cert.org/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/isis/isis-main.html

	Building Secure Software for Mission Critical Systems
	Slide Number 2
	Agenda
	“Software is eating the world”
	Software is the new hardware – IT
	Software is the new hardware – cyber physical
	Mission function is increasingly delivered in software
	Software vulnerabilities are ubiquitous
	Existing Customer Premise Equipment (SOHO) typically vulnerable
	Steel furnaces have been successfully attacked
	Electric grid under attack
	Weapons platforms potential cyber attack targets
	An ounce of prevention ….
	Software and security failures are expensive
	Catching software faults early saves money
	Slide Number 16
	Room for improvement
	Software Security Engineering: �A Guide for Project Managers
	Organizational readiness: Mission Risk Diagnostic (MRD)
	Software Assurance Framework (SAF)
	SAF: Acquisition Lifecycle Focus
	SAF: Nine Practice Areas
	SAF: Basis for Assessment and Improvement
	Requirements
	Threat analysis tools help derive abuse and misuse cases
	Security Quality Requirements Engineering (SQUARE)
	Embedded systems represent new classes of vulnerabilities
	Security approaches for IT systems do not cover embedded system security
	Programming for security is not the same as programming for safety
	Slide Number 30
	Security Engineering Risk Analysis approach
	SERA applied to DHS’s Wireless Emergency Alerts system
	Development
	Architecture Analysis & Design Language (AADL)
	Team Software Process
	Extending TSP with security
	Integrating security into Agile (Scrum) development
	Adoption of secure coding rules
	Most Vulnerabilities Are Caused by Programming Errors
	CERT Secure Coding Standards
	Learning from rules and recommendations
	Secure Coding in C/C++ Training
	Tools encourage application of secure coding
	Software is more assembled than built
	The rise of open source
	The rise of open source
	Open source is not secure
	Open source is not secure
	Reducing software supply chain risk factors
	Connecting automotive systems to internet opens system to attack
	Machine-learning based systems increase exposures
	Recognizing and recovering poisoned systems
	Deployment and operations
	Static Testing – Source code analysis tools
	SCALe Multitool evaluation
	Optimizing multitool evaluations
	Dynamic testing and evaluation – fuzzing
	Secure Coding Research
	Prioritizing Vulnerabilities
	Results with Transition Value
	Background: Automatic Alert Classification
	Lexicon: Audit Determinations
	SCALe Auditing Rules
	Results with Transition Value: Sanitizer
	Classifier Test Highlights
	Rapid expansion of classification models to prioritize static analysis alerts for C
	Automated Code Repair
	Automated Code Repair – Motivation
	Integer Overflow
	Benefits
	wrappers.h
	Inference of Memory Bounds
	Android Information Leaks: Automated Detection
	Android App Sets: Sensitive Dataflow
	Analysis of Android App Sets: Sensitive Dataflow
	Usability: Policies to Determine Allowed Flows
	Slide Number 77
	Slide Number 78
	Contact Information

