
1
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

1

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

© 2017 Carnegie Mellon University [[Distribution Statement A] This material has been approved for
public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

Building Secure
Software for Mission
Critical Systems
Mark Sherman, PhD
Robert Schiela

2
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

2

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official
Government position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software
Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED
ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY
DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting
formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering
Institute at permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM18-0096

3
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

3

• State of software
• Building software: the Secure

Software Development Lifecycle
• Requirements
• Development
• Operations

• Review

Agenda

4
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

4

“Software is eating the world”

Source: http://www.wsj.com/articles/SB10001424053111903480904576512250915629460

Marc Andreessen
Wall Street Journal
Aug 20, 2011

Software is the new Hardware

5
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

5

Software is the new hardware – IT
IT moving from specialized hardware to
software, virtualized as

• Servers: virtual CPUs

• Storage: SANs

• Switches: Soft switches

• Networks: Software defined
networks

6
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

6

• Cellular
• Main processor
• Graphics processor
• Base band processor (SDR)
• Secure element (SIM)

• Automotive
• Autonomous vehicles
• Vehicle to infrastructure (V2I)
• Vehicle to vehicle (V2V)

• Industrial and home automation
• 3D printing (additive manufacturing)
• Autonomous robots
• Interconnected SCADA

• Aviation
• Next Gen air traffic control

• Smart grid
• Smart electric meters
• Smart metering infrastructure

• Embedded medical devices

Software is the new hardware – cyber physical

7
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

7

Mission function is increasingly delivered in software

“The [F-35] aircraft relies on more
than 20 million lines of code to
"fuze" information from the JSF's
radar, infrared cameras, jamming
gear, and even other planes and
ground stations to help it hunt
down and hide from opponents,
as well as break through enemy
lines to blow up targets on the
ground. …. But if the computer
doesn't work, the F-35's greatest
advertised advantages over
existing rivals and future threats
would suddenly become moot.”
The Week, 2016

Source: Joseph Trevithick,
http://theweek.com/articles/605165/f35-still-horribly-broken.
Feb 26, 2016

http://theweek.com/articles/605165/f35-still-horribly-broken

8
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

8

Software vulnerabilities are ubiquitous

9
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

9

Existing Customer Premise Equipment (SOHO)
typically vulnerable

54%46%

100
%

0%

54% of tested routers are vulnerable to cross-site
request forgery (CSRF)

85% of tested routers use non-unique default
credentials

63% of tested routers are vulnerable to DNS spoofing
attacks

100% of router firmware use BusyBox versions from 2011 or
earlier and embedded Linux kernel versions from 2010 or earlier

Source: Land, J. "Systemic Vulnerabilities in Customer-Premises Equipment Routers," unpublished white paper, 2015

10
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

10

Steel furnaces have been successfully attacked

“Steelworks compromise causes
massive damage to furnace.
One of the most concerning was a
targeted APT attack on a German
steelworks which ended in the attackers
gaining access to the business systems
and through them to the production
network (including SCADA). The effect
was that the attackers gained control of
a steel furnace and this caused massive
damages to the plant.”

Source: Sources: https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Lageberichte/Lagebericht2014.pdf?__blob=publicationFile;
http://www.resilienceoutcomes.com/state-ict-security/

11
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

11

Electric grid under attack

Source:
http://www.welivesecurity.com/2
016/01/04/blackenergy-trojan-
strikes-again-attacks-ukrainian-
electric-power-industry/

12
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

12

Weapons platforms potential cyber attack targets

“The [Joint Strike Fighter] aircraft relies on
more than 20 million lines of code … In
November 2015, the Pentagon canceled a
cyber test because of worries it would,
unsurprisingly, damage [the Autonomic
Logistics Information System that identifies
broken parts and other faults].”

The Week, 2016

Sources: https://www.dvidshub.net/image/935698/aerial-refueling-f-35-lightning-ii-joint-strike-fighters-eglin-afb-fla;
Joseph Trevithick, http://theweek.com/articles/605165/f35-still-horribly-broken. Feb 26, 2016

https://www.dvidshub.net/image/935698/aerial-refueling-f-35-lightning-ii-joint-strike-fighters-eglin-afb-fla
http://theweek.com/articles/605165/f35-still-horribly-broken

13
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

13

An ounce of prevention ….

“We wouldn't have to
spend so much time,
money, and effort on
network security if we
didn't have such bad
software security.”

Bruce Schneier in Viega and McGraw, “Building
Secure Software,” 2001

Source: Washington Post, March 19, 2014, http://www.washingtonpost.com/business/economy/toyota-reaches-12-billion-settlement-to-end-criminal-
probe/2014/03/19/5738a3c4-af69-11e3-9627-c65021d6d572_story.html; http://www.greene-broillet.com/Articles/Toyotasuddenacceleration.shtml

http://www.washingtonpost.com/business/economy/toyota-reaches-12-billion-settlement-to-end-criminal-probe/2014/03/19/5738a3c4-af69-11e3-9627-c65021d6d572_story.html

14
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

14

Software and security failures are expensive

Source: New York Times, Jan 10, 2014

Average cost in a breach:
US$188 per record

Source: Ponemon Institute, “2013 Cost of Data Breach
Study: Global Analysis”, May 2013

Source: Wall Street Journal, Feb 26, 2014

15
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

15

Catching software faults early saves money

Faults accounts for 30‒50% percent of total software project
costs

Sources: Critical Code; NIST, NASA, INCOSE, and Aircraft Industry Studies

16
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

16

Security is a lifecycle issue

17
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

17

Room for improvement

Mission thread
(Business process)

19% fail to carry out
security requirement

definition

27% do not practice
secure design

72% do not use code or
binary analysis

47% do not perform
acceptance tests for third-
party code

More than 81% do not coordinate their security practices in
various stages of the development life cycle.

Sources: Forrester Consulting, “State of Application Security,” January 2011; Wendy Nather, Research Director, 451 Research, “Dynamic testing: Why Tools Alone Aren't
Enough, March 25, 2015”

18
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

18

Software Security Engineering:
A Guide for Project Managers

Contains an introduction to
software security engineering
and guidance for project
managers

• Derives material from DHS SwA
“Build Security In” web site

• Provides a process focus for
projects delivering software-
intensive products and systems

19
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

19

Organizational readiness: Mission Risk
Diagnostic (MRD) The MRD assesses risk in

interactively complex, socio-technical
systems

• Projects and programs
• Business processes and mission

threads
• IT processes

MRD purpose:
• Gauge the extent to which a system

is in position to achieve its mission
and objective(s)

MRD assessment delivery:
• Expert-led assessment
• Self-assessment

20
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

20

Software Assurance Framework (SAF)

What
• Defines software assurance practices for acquiring and developing

assured software products

Why
• Improve software assurance practices

in acquisition programs
• Enhance software assurance services

provided by third parties

Benefits
• Establish confidence in a program’s ability to acquire software-reliant

systems across the life cycle and supply chain
• Reduce cybersecurity risk of deployed software-reliant systems

21
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

21

SAF: Acquisition Lifecycle Focus

Material
Solution
Analysis

Technology
Development

Engineering and
Manufacturing
Development

Production and
Deployment

Operations and
Support

A B C

Material
Development
Decision

Post-
CDR A

FRP
Decision
Review

Pre-Systems Acquisition Systems Acquisition Sustainment

• The DoD acquisition lifecycle is the organizing structure for the SAF.

• Best practices for software assurance are mapped to the lifecycle.

• The SAF is consistent with DoD and industry policies for software assurance (e.g.,
NIST 800-53, DoD 5000-2, BSIMM).

22
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

22

SAF: Nine Practice Areas

2. Materiel Solution
Analysis (MSA)

Practices

3. Technology
Development (TD)

Practices

4. Engineering and
Manufacturing

Development (EMD)
Practices

5. Production and
Deployment (PD)

Practices

6. Operations and
Support (O&S)

Practices

1. Governance Infrastructure Practices

9. Software Security Infrastructure Practices

7. Secure Software Development Practices 8. Secure Software Operation Practices

Focus

Governance
Infrastructure

Acquisition
Lifecycle

Assurance

Software Security

Software Security
Infrastructure

23
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

23

SAF: Basis for Assessment and Improvement
Acquisition Programs

• Assess current software assurance
practices

• Develop improvement plan
• Improve software assurance

practices
• Supporting Program Protection Plans

Assurance Service Providers
• Identify gaps in software assurance

services currently provided
• Develop plan for new or enhanced

software assurance services
• Provide new or enhanced software

assurance services to constituents

Assess

Plan

Improve

Software Assurance
Framework (SAF)

24
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

24

Requirements

25
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

25

Threat analysis tools help derive abuse and
misuse cases

Microsoft SDL Threat Modeling Tool

Jane Cleland-Huang’s Persona non Grata
http://www.infoq.com/articles/personae-non-gratae

Microsoft STRIDE Threat Types

Denning, Friedman, Kohno
The Security Cards: Security Threat Brainstorming Toolkit

26
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

26

Security Quality Requirements Engineering
(SQUARE)

A robust SQUARE tool is available for download from http://www.cert.org/sse/square.html
*SQUARE-Lite process

http://www.cert.org/sse/square.html

27
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

27

Embedded systems represent new classes of
vulnerabilities

More and varied attack surfaces
• Sensors
• Multiple command-and-control masters
• Embedded firmware, FPGAs, ASICs
• Unique internal busses & controllers

Size, weight, power and latency demands
tradeoff against defense-in-depth

Timing demands offer potential side
channels

• Bit and clock cycle level operations
• Physical resources with real time

sensors
• Safety-Critical Real-time OS

Confusion between failure resilience and
attack

• Intermittent communications

Embedded systems have different characteristics than IT systems

28
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

28

Security approaches for IT systems do not cover
embedded system security

Virus definitions and operating
guidelines do not always apply

Firewalls and IDS/IPS of limited value

Centralized account control not possible

Network tools and assessment
techniques unaware of embedded
systems architecture and interfaces

• Unique and insecure protocols
• Maintenance backdoors
• Hardcoded credentials
• Unique architectures of embedded

controllers

Unplanned connectivity and upgrades

Developers are not trained in software
engineering

29
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

29

Programming for security is not the same as
programming for safety
Safety strategy Security view

Rely on physical models in fault trees Attackers do not obey the laws of physics

Redundancy mitigates single failures Attackers are not independent events

Fault trees collectively exhaustive Attack trees depend on adversaries’
creativity

Steady state behavior indicator of proper
operation

APT (Advanced persistent threats) hide in
steady state behavior

Deteriorating performance predicts
maintenance for safety

Attackers cover their tracks

Microcontrollers and air gaps implement
boundaries

Side channels open vulnerabilities

30
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

30

Exploit 1Exploit 1 Vulnerability 1Vulnerability 1

Exploit 2Exploit 2 Vulnerability 2Vulnerability 2

Exploit NExploit N Vulnerability NVulnerability N

.

.

.

.

.

.

Risk analysis is focused on a single system
• Standalone (i.e., single system) models have been

developed
• Risk analysis considers the exploit of an individual

vulnerability within a single system
Security risk identification techniques do not consider:
• Compositions of multiple vulnerabilities
• Cross-system security events/risks
• Impacts beyond the exploit of a single system (to the

intended service and organization)
Need for systematic, multiple system evaluations
• Notation for expressing a security events and risks
• Take into account all context

Single system scope

Need for multisystem risk analysis

31
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

31

• Establish threat model
• Determine common

system view
• Inspect connections

between systems
• Evaluate

• Consequences
• Likelihood
• Risk

Security Engineering Risk Analysis approach

WEA Alert Workflow (Top Level)

Al
er

t O
rig

in
at

or
 (A

O
)

In
iti

at
or

 (e
.g

.,
Fi

rs
t R

es
po

nd
er

)

Fe
de

ra
l

Em
er

ge
nc

y
M

an
ag

em
en

t
Ag

en
cy

 (F
EM

A)

Co
m

m
er

ci
al

M

ob
ile

 S
er

vi
ce

Pr

ov
id

er
s

(C
M

SP
)

Re
ci

pi
en

ts

Submit alert
request to local

AO.

Decide to issue
alert.

Process alert.

Process alert.

Receive alert.

Alert not
forwarded to

FEMA

Alert not
forwarded to

FEMA

If alert is
issued

If alert is not issued

Process alert
request.

Monitor alert
status.

Monitor alert
queue.

Note: AO monitors FEMA systems
for status information and pulls
data on alert status from FEMA

systems.

Note: CMSP monitors FEMA
systems for alerts and pulls data

from FEMA systems when an alert
is available.

Initiator alert
request

Alert message
content

CAP-compliant
alert message

IPAWS
certificate

IPAWS receipt
status

Workflow View

Stakeholder View

Stakeholder Mission Interest

First responders Get content to the AOS operator within a required timeframe

AOS operators Enter alert message into AOS in the required timeframe

AO managers Maintain their organization’s authority to operate, including applying for and
maintaining certificate for their AOS

FEMA Transmit alert messages to CMSP within a requires timeframe and maintain
trust in WEA and the overall emergency alert system

CMSP Get alert messages to their customers as rapidly as possible without adversely
affecting customer satisfaction

Recipients (residents of given area
covered by WEA)

Indirectly provide funding to the AO funding source
Receive and act on wireless alert messages in the area where they reside

Recipients (transient population
visiting an area)

Receive and act on wireless alert messages within the given area covered by the
AO

Providers and maintainers of AOS Maintain trust in the services provided and in the security of their equipment

AO funding source (e.g.,
government)

Provide funding to operate the WEA service

AO community Promote the value of the WEA service.
Share information related to the WE service (e.g., problems, lessons learned)

Stakeholder View

Initiator Networks

FEMA Networks

Internet

RouterFirewall

Switch

Router
Firewall

Switch

Switch

AO Desktop AO Desktop

Router

Firewall

SwitchSwitch

Vendor Desktop

AOS Server

AOS Database Server

Note: Information is transferred
from AOS clients to AO Desktops
using USB drives.

AOS Client 2

AOS Client 1

Email Server

WebServer

Email Server

WebServer

Printer

Vendor Off-Site Data Storage

AO Off-Site Data Storage

AO System Administration

AO Development

Switch

AO Development

Back-Up Communications

Back-Up Communications

Network View

Data Requirements

Data Element Form Confidentiality Integrity Availability

Initiator alert request Verbal or
Electronic

There are no restrictions on who can
view this data element. (public data)

The data element must be correct and
complete. (high data integrity)

This data element must be available
when needed. (high availability)

Alert message content Verbal,
Electronic, or
Physical

There are no restrictions on who can
view this data element. (public data)

The data element must be correct and
complete. (high data integrity)

This data element must be available
when needed. (high availability)

CAP-compliant alert
message

Electronic There are no restrictions on who can
view this data element. (public data)

The data element must be correct and
complete. (high data integrity)

This data element must be available
when needed. (high availability)

IPAWS certificate Electronic Only authorized people can view this
data element. (sensitive but
unclassified)

The data element must be correct and
complete. (high data integrity)

This data element must be available
when needed. (high availability)

IPAWS receipt status Electronic There are no restrictions on who can
view this data element. (public data)

The data element must be correct and
complete. (high data integrity)

No availability requirement for this data
element.

Data View

M

C

AO Operator Room

AO Server Room

AO Manager’s
Office

AO System
Administrators

Office

AOS ClientsAOS Clients

AO DesktopsAO Desktops

AO ServersAO Servers

AO Desktop with AOS
management capability
AO Desktop with AOS

management capability

AO System
Administration

Computer

AO System
Administration

Computer

Note: Keypad access is
required for entry.
Note: Keypad access is
required for entry.

Note: The door to the server
room is open during business
hours. A physical key is required
for entry outside of business
hours.

Note: The door to the server
room is open during business
hours. A physical key is required
for entry outside of business
hours.

Note: Door can be locked
using physical key.
Note: Door can be locked
using physical key.

Hotline with initiators.Hotline with initiators.

Mobile AO capabilityMobile AO capability

Physical View

Use Case Scenario

Step Actor and Action Data Items involved Technology Security Controls/Relevant
Standards and Regulations

1 AOS operator logs on to the AOS using account and authenti-
cation information [Note: operator log on and session auditing
(next step) are performed by team at start of shift]

Account information
Authentication information
Procedures

AOS Client
AO Desktop
Server
USB?

User authentication
Firewall

2 AOS logon activates auditing of the AOS operator’s session
starting the session log.

Session log
Backup of session log

Session log software
Server

3 AOS operator enters the approved alert message (text and
optional audio/visual) including the relevant command “alert”,
“cancel”, or “update message” with status of “actual”1 indicating
this is an actual alert or command. [also includes the distribu-
tion channels via FEMA, of which wireless is the only relevant
channel, and the actual geographic distribution for the alert]

Alert message
Command (which is incorporated
into CAP-compliant message)
Procedures
Alert scripts
Session log data – record of
input and all the sources it went
to (in addition to wireless)

4 AOS converts alert message to CAP-compliant format. Alert message (original format,
text piece)
Alert message in CAP-compliant
format
Backup or saved version of
CAP-compliant message
Session log data

AOS Database server
AOS server

5 AOS transmits alert message to the IPAWS-OPEN Gateway. Alert message (CAP-compliant
format)
Session log data
IPAWS certificate

6 IPAWS-OPEN Gateway verifies2 alert message using authen-
tication information and logs the receipt of message in IPAWS
log.

Alert message
Status message
Authentication information
Message validation scripts
IPAWS log

7 AOS operator pulls the IPAWS receipt status from IPAWS log. IPAWS log/IPAWS Receipt Sta-
tus
Procedures for checking IPAWS
log

1 Other status values include “test” and “system.” Test will be addressed in an another use case.

2 In this table, message verification includes authenticating the message and ensuring that it is in the correct format.

Use-Case View

Comprehensive context Determining actions

http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=427321

http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=427321

32
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

32

SERA applied to DHS’s Wireless Emergency
Alerts system

33
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

33

Development

34
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

34

Architecture Analysis & Design Language (AADL)

Distributed Computer
Platform

Physical system

Command &
Control

Deployed on

Physical interface

AADL Addresses Increasing Interaction Complexity
and Mismatched Assumptions

Task & Communication
Architecture

SW Design Architecture

35
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

35

Team Software Process
TSP is an agile, team-focused process for
software and systems development.

The TSP strategy improves software engineering
from the bottom up.

• Instills engineering discipline in software developers
• Builds high-performance trusted teams

TSP works in practice

Performance Category Typical TSP
Result

Typical Industry
Result

Effort estimation error <10% >30%

Schedule estimation error <10% >30%

Product quality (defects/KLOC) 0.01 to 0.5 1.0 to 7.0

36
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

36

Extending TSP with security
• Adding secure design

• Minimize attack surfaces
• Defense in depth for software

development

• Adding secure coding
• Adopting secure coding practices

• Tooling support for automated
conformance checking

• Tracking security defects
• Monitoring results of tests with

respect to security

37
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

37

Integrating security into Agile (Scrum) development

1. Code hygiene – introduce secure coding
2. Secure DevOps – include security tools
3. Threat modeling – represent a new role
4. Risk analysis – prioritize in backlog

Persona
non grata

Code hygiene
Secure DevOps

Threat modeling

Risk analysis

(See also: Bellomo and Woody, DoD Information
Assurance and Agile: Challenges and
Recommendations Gathered Through Interviews
with Agile Program Managers and DoD
Accreditation Reviewers
(http://repository.cmu.edu/cgi/viewcontent.cgi?
article=1674&context=sei)

http://repository.cmu.edu/cgi/viewcontent.cgi?article=1674&context=sei

38
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

38

Adoption of secure coding rules

Training
Integrated

development
environments

39
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

39

Most Vulnerabilities Are Caused by
Programming Errors
64% of the vulnerabilities in the NIST National Vulnerability
Database due to programming errors

• 51% of those were due to classic errors like buffer overflows,
cross-site scripting, injection flaws

Top vulnerabilities include
• Integer overflow
• Buffer overflow
• Missing authentication
• Missing or incorrect authorization
• Reliance on untrusted inputs (aka tainted inputs)

Sources: Heffley/Meunier: Can Source Code Auditing Software Identify Common Vulnerabilities and Be Used to Evaluate
Software Security?
cwe.mitre.org/top25 Jan 6, 2015

40
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

40

Collected wisdom from thousands of contributors
on community wiki since Spring 2006
SEI CERT C Coding Standard

• Free PDF download:
http://cert.org/secure-coding/products-
services/secure-coding-download.cfm
• Basis for ISO TS 17961 C Secure Coding Rules

SEI CERT C++ Coding Standard
• Free PDF download (Released March 2017):
http://cert.org/secure-coding/products-
services/secure-coding-cpp-download-2016.cfm

CERT Oracle Secure Coding Standard for Java
“Current” guidelines available on CERT Secure
Coding wiki

• https://www.securecoding.cert.org

CERT Secure Coding Standards

http://cert.org/secure-coding/products-services/secure-coding-download.cfm
http://cert.org/secure-coding/products-services/secure-coding-cpp-download-2016.cfm
https://www.securecoding.cert.org/

41
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

41

Learning from rules and recommendations

Rules and recommendations in the secure coding standards focus to improve behavior

The “Ah ha”
moment:
Noncompliant code
examples or
antipatterns in a
pink frame—do not
copy and paste into
your code

Compliant solutions
in a blue frame that
conform with all
rules and can be
reused in your code

42
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

42

Secure Coding in C/C++ Training

The Secure Coding course is designed for C and C++
developers. It encourages programmers to adopt security best
practices and develop a security mindset that can help protect
software from tomorrow’s attacks, not just today’s.

Topics
• String management
• Dynamic memory management
• Integral security
• Formatted output
• File I/O

Additional information at ttp://www.sei.cmu.edu/training/p63.cfm

http://www.sei.cmu.edu/training/p63.cfm

43
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

43

Tools encourage application of secure coding

Moving rules into IDE improves application
of secure coding

• Early feedback corrects errors on introduction
• Exceptions are understood in context
• Feedback improves developer skill

Target Clang static analyzer (C based
languages)

• Widely used open source front end for popular
compilers

• Integrated into Apple’s Xcode IDE

Target FindBugs (Java)
• Integrated into Eclipse and JDeveloper

44
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

44

Software is more assembled than built

General
Ledger

SQL Server WebSphere

HTTP
server

XML Parser

Oracle DB
SIP servlet
container

GIF library

Note: hypothetical application composition

“Development” is now “assembly”
using collective development
• Too large for single

organization
• Too much specialization
• Too little value in individual

components

45
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

45

The rise of open source

• 90% of modern applications are
assembled from 3rd party components

• Most applications are now assembled from
hundreds of open source components,
often reflecting as much as 90% of an
application

• At least 75% of organizations rely on open
source as the foundation of their
applications

Distributed development –
context:
• Amortize expense
• Outsource non-differential

features
• Lower acquisition (CapEx)

expense

Sources: Geer and Corman, “Almost Too Big To Fail,” ;login: (Usenix), Aug 2014; Sonatype, 2014 open source development and application security
survey

46
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

46

The rise of open source

• 90% of modern applications are
assembled from 3rd party components

• At least 75% of organizations rely on open source
as the foundation of their applications

• Most applications are now assembled
from hundreds of open source
components, often reflecting as much
as 90% of an application

Distributed development –
context:
• Amortize expense
• Outsource non-differential

features
• Lower acquisition (CapEx)

expense

Sources: Geer and Corman, “Almost Too Big To Fail,” ;login: (Usenix), Aug 2014; Sonatype, 2014 open source development and application security
survey

“Developers are gorging themselves on an ever
expanding supply of open source components”

Sonatype, “2016 State of the Software Supply Chain”

47
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

47

Open source is not secure
Heartbleed and
Shellshock were found
by exploitation

Other open source
software illustrates
vulnerabilities from cursory
inspection

Sources: Steve Christey (MITRE) & Brian Martin (OSF), Buying Into the Bias: Why Vulnerability Statistics Suck, https://media.blackhat.com/us-13/US-13-
Martin-Buying-Into-The-Bias-Why-Vulnerability-Statistics-Suck-Slides.pdf; Sonatype, Sonatype Open Source Development and Application Security Survey;
Sonatype, 2016 State of the Software Supply Chain; Aspect Software “The Unfortunate Reality of Insecure Libraries,” March 2012

https://media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-Why-Vulnerability-Statistics-Suck-Slides.pdf

48
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

48

Open source is not secure
Heartbleed and
Shellshock were found
by exploitation

Other open source
software illustrates
vulnerabilities from cursory
inspection

Sources: Steve Christey (MITRE) & Brian Martin (OSF), Buying Into the Bias: Why Vulnerability Statistics Suck, https://media.blackhat.com/us-13/US-13-
Martin-Buying-Into-The-Bias-Why-Vulnerability-Statistics-Suck-Slides.pdf; Sonatype, Sonatype Open Source Development and Application Security Survey;
Sonatype, 2016 State of the Software Supply Chain; Aspect Software “The Unfortunate Reality of Insecure Libraries,” March 2012, Mike Pittenger, Black
Duck, “Open Source Security Analysis,” 2016

1.8 billion vulnerable open
source components
downloaded in 2015

26% of the most common
open source components

have high risk vulnerabilities

On average, applications
have 22.5 open source

vulnerabilities

https://media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-Why-Vulnerability-Statistics-Suck-Slides.pdf

49
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

49

Reducing software supply chain risk
factors

Software supply chain risk for a
product needs to be reduced to
acceptable level

Operational
Product Control

Product is used in a
secure manner

Product

Distribution

Methods of
transmitting the
product to the
purchaser guard
again tampering

Delivered or
updated product
is acceptably
secure

Product
Security

Supplier follows
practices that
reduce supply
chain risks

Supplier
Capability

50
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

50

Connecting automotive systems to internet
opens system to attack

Extending systems opens
vulnerabilities not anticipated

• Optimizations performed
assuming one attack method

• Assumptions no longer hold with
additional integrations

Studies suggest that new
operational environments are a
leading cause for introducing new
vulnerabilities in existing systems.

Source: http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
Clark, Frei, Blaze, Smith, “Familiarity Breeds Contempt: The Honeymoon Effect and the Role of Legacy Code in Zero-Day Vulnerabilities,” ACSAC
’10 Dec. 6-10, 2010, p. 251-260.”

http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

51
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

51

Machine-learning based systems increase
exposures

Operations are driven by high
volume, high velocity sensor data

Decision making is based on
“trained” models of behaviors

Conventional code development
techniques of modest help

Understand the limits of training

“the [Tesla] car's driverless technology
failed to detect the white side of the
tractor-trailer against a brightly lit sky, so
the brake wasn't activated.”
-ABC7News, July 1, 2016

Source: http://abc7news.com/automotive/tesla-self-driving-car-fails-to-detect-truck-in-fatal-crash/1410042/

52
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

52

Recognizing and recovering poisoned systems
• “Chaff” and “noise” can emerge

as vulnerabilities

• Defensive strategy based on “it
is difficult to lie at scale”

• Tactics include consistency
checks, such as

• Multiple models in a single unit
• Coordination among units
• Coordination with environment

Source: Battista Biggio, Blaine Nelson, Pavel Laskov, Poisoning Attacks against Support Vector Machines, 2012, arxiv.org/abs/1206.6389

http://arxiv.org/abs/1206.6389

53
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

53

Deployment and operations

54
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

54

Static Testing – Source code analysis tools

Secure Code Analysis Laboratory (SCALe)

• C, C++, Java, PERL, Python, Android
rule conformance checking

• Thread safety analysis

• Information flows across Android
applications

• Operating system call flows

55
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

55

SCALe Multitool evaluation
Improve expert review
productivity by focusing on high
priority violations

Filter select secure coding rule
violations

• Eliminate irrelevant
diagnostics

• Convert to common CERT
Secure Coding rule labeling

Single view into code and all
diagnostics
Maintain record of decisions

56
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

56

Optimizing multitool evaluations

Analyzers

Analyzers

Analyzers

Diagnostics
from each

tool

Expert
(Oracle)

Code
Repositories

Prioritized
diagnostics

list

Analyzers

Analyzers

Analyzers

Diagnostics
from each

tool

Test
Code

Active ML with
STEM

Learn Apply
Code

Metadata

57
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

57

Dynamic testing and evaluation – fuzzing

Fuzz testing of attack surfaces

• Based on techniques used in CERT’s Basic
Fuzzing Framework (BFF)

• mutational fuzzing

• machine learning and evolutionary computing
techniques

• adjusts its configuration parameters based on what
it finds (or does not find) over the course of a
fuzzing campaign

58
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

58

Secure Coding Research

Prioritizing Vulnerabilities using Classification Models
• Aggregating information from multiple analysis tools to make better

predictions about whether a potential defect is true or not.

Automated Code Repair
• Fixing code based on anti-patterns and patterns for repair, rather than

just alerting developers and testers to a potential defect.

Sensitive Dataflow Analysis among Android App Sets
• Detecting tainted data flows across multiple Android components

Integrating Secure Coding Rule analysis with Development Environments
• Moving secure coding analysis “to the left” to alert developers while

coding, not just during a test phase after they are done.

59
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

59

Prioritizing Vulnerabilities

Analyzer

Analyzer

Analyzer

Codebases

Alerts

Today

Project Goal

Image of woman and laptop from http://www.publicdomainpictures.net/view-image.php?image=47526&picture=woman-and-
laptop “Woman And Laptop”

Classification algorithm development using CERT-
and collaborator-audited data, that
accurately classifies most of the
diagnostics as:
Expected True Positive (e-TP) or
Expected False Positive (e-FP),

and
the rest as Indeterminate (I)

66 effort days

12,076

45,172

6,361

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

e-TP e-FP I

3,147

11,772

48,690

0

10,000

20,000

30,000

40,000

50,000

60,000

TP FP Susp

Prioritized, small number
of alerts for manual audit

Many alerts left un-audited!

Long-term goal: Automated and
accurate statistical classifier,
intended to efficiently use analyst
effort and to remove code flaws

60
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

60

Results with Transition Value
Software and paper: Classifier-development

• Code for developing classifiers in the R environment
• Paper: classifier development, analysis, & use [1]

Software: Enhanced-SCALe Tool (auditing framework)
• Added data collection
• Archive sanitizer
• Alert fusion
• Offline installs and virtual machine

Training to ensure high-quality data
• SEI CERT coding rules
• Auditing rules [2]
• Enhanced-SCALe use

Auditor quality test
• Test audit skill:

mentor-expert designation

Conference/workshop papers:

[1] Flynn, Snavely, Svoboda, Qin, Burns, VanHoudnos,
Zubrow, Stoddard, and Marce-Santurio. “Prioritizing Alerts
from Multiple Static Analysis Tools, using Classification
Models”, work in progress.

[2] Svoboda, Flynn, and Snavely. “Static Analysis Alert
Audits: Lexicon & Rules”, IEEE Cybersecurity Development
(SecDev), November 2016.

61
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

61

Background: Automatic Alert Classification

Inconsistent assignment of
audit determinations may
have a negative impact on
classifier development!

Static
Analysis
Tool(s)

Alerts

Alert
Consolidation

(SCALe)

Potential Rule
Violations

Auditing

Determinations

ML Classifier
Development

Codebase
1

Codebase
2

Codebase
3

Training Data

62
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

62

Lexicon: Audit Determinations

Basic Determinations Supplemental Determinations

Audit
Determinations

True False

Complex Dependant

Unknown
(default)

Dangerous
construct Dead

Ignore Inapplicable
environment

Choose ONE Per Alert!

Choose ANY NUMBER
Per Alert!

Dependant

63
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

63

SCALe Auditing Rules

1. Understand the language and the secure coding rule in
question.

2. Some diagnostics are too complex to judge; they
should be marked suspicious.

3. It is OK to mark a diagnostic true even if you think the
code maintainers will protest.

4. Assume that external inputs to the program are
malicious.

5. Unless instructed otherwise, assume that code must
be portable.

6. When auditing a diagnostic, if you discover a second
true violation, mark its diagnostic as true.

7. Do not arbitrarily extend the scope of a CERT rule.
8. Code that behaves as expected might still violate a

CERT rule.
9. A diagnostic might indicate a true violation of the CERT

coding rule, even if its message text is useless or
incorrect.

10. Multiple messages help in understanding a diagnostic.
11. Assume no violations occur before the line in question.

64
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

64

Results with Transition Value: Sanitizer

New data sanitizer
• Anonymizes sensitive fields
• SHA-256 hash with salt
• Enables analysis of features correlated with alert confidence

SCALe project is in a SCALe database
• DB fields may contain sensitive information
• Sanitizing script anonymizes or discards fields

- Diagnostic message
- Path, including directories and filename
- Function name
- Class name
- Namespace/package
- Project filename

65
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

65

Classifier Test Highlights

General results (not true for every test)
• Classifier accuracy rankings for all-pooled test data:

XGBoost ≈ RF > CART ≈ LR
• Classifier accuracy rankings for collaborator test data:

LR ≈ RF > XGBoost > CART
• Per-rule classifiers generally not useful (lack data), but 3

rules (INT31-C best) are exceptions.
• With-tools-as-feature classifiers better than without.
• Accuracy of single language vs. all-languages data:

C > all-combined > Java

Rule ID Lasso LR
Random

Forest CART XGBoost
INT31-C 98% 97% 98% 97%
EXP01-J 74% 74% 81% 74%
OBJ03-J 73% 86% 86% 83%
FIO04-J* 80% 80% 90% 80%
EXP33-C* 83% 87% 83% 83%
EXP34-C* 67% 72% 79% 72%
DCL36-C* 100% 100% 100% 100%
ERR08-J* 99% 100% 100% 100%
IDS00-J* 96% 96% 96% 96%
ERR01-J* 100% 100% 100% 100%
ERR09-J* 100% 88% 88% 88%

All-rules (158) classifier accuracy:
- Lasso Logistic Regression: 88%
- Random Forest: 91%
- CART: 89%
- XGBoost: 91%

Classifiers made from all data, pooled:

* Small quantity of data, results suspect

Single-rule classifier accuracy:

66
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

66

Rapid expansion of classification models to
prioritize static analysis alerts for C
Problem: Security-related code flaws detected by static analysis require
too much manual effort to triage, plus it takes too long to audit enough
alerts to develop classifiers to automate the triage.

Solution: Rapid expansion of number of classification models by using
“pre-audited” (equivalent to audited) code.

Approach:
1. Systematically map CERT C coding rules to named flaws in subsets of

pre-audited code (published as true or false for the flaw)
2. Automated enhanced-SCALe analysis of pre-audited (not by SEI)

codebases to gather sufficient code & alert feature info for classifiers
3. Use DoD collaborator data from auditing software they actually use as

a validity check, and compare classifiers versus those based on pre-
audited code (mostly small, uncomplicated tests).

67
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

67

Automated Code Repair

Hypothesis: Many violations of rules follow a small number of anti-patterns with
corresponding patterns for repair, and these can be feasibly recognized by static
analysis.

• printf(attacker_string)  printf("%s", attacker_string)

We propose to create a tool to automatically repair defects in source code resulting
from violations of the CERT Coding Standards.

Formalizable Constraints (to be formally verified):
• The patched and unpatched program behave identically over the set of all traces that

conform to the rules.
• No trace violates the rules.

Non-Formalizable Constraint:
• Repair in way that is plausibly acceptable to the developer.

68
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

68

Automated Code Repair – Motivation

Software vulnerabilities constitute a major threat
• A majority arise from common coding errors
• Shown by experience from source code analysis labs

at CERT and DoD

Static analysis tools help, but:
• Typically are used late in the development process
• Produce an enormous number of warnings
• The volume of true positives often overwhelms the

ability of the development team to fix the code

Huge amount of code in use by DoD
• Billions of lines of C code
• Unknown number of security vulnerabilities

Likely Code Candidates
• Large Code Base
• Dynamically Allocated Memory (Buffer Overflows)
• Variable-length Input

69
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

69

Integer Overflow

This past year (FY16), we developed techniques for automated
repair of integer overflows that lead to memory corruption

Integers in C are represented by a fixed number of bits N (e.g., 32
or 64).

• Overflow occurs when the result cannot fit in N bits
• Modular arithmetic: Only the least significant N bits are kept

How does integer overflow lead to memory corruption?
1. Memory allocation: malloc(∙).
2. Bounds checks for an array

Example: Android Stagefright bugs (July 2015)

70
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

70

Benefits

Eliminate security vulnerabilities at a much lower cost than
manual repair

Integer overflows are a very common type of bug
• In CERT SCALe audits, about 80% of findings were related to

fixed-width integers

Our technique:
• Will not break working code, provided inferred specification is

correct (Next slide)
• Typically total slowdown < 5% (Based on theoretical model)
• False positives: Flagged operations that cannot actually

overflow
- Then our ‘repair’ just adds a little unnecessary overhead

71
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

71

wrappers.h
1. inline static size_t UADD(size_t lop, size_t rop) {
2. size_t result;
3. bool flag = __builtin_add_overflow(lop, rop, &result);
4. if (flag) {result = SIZE_MAX;}
5. return result;
6. }

if (start + n <= dest_size) {
memcpy(&dest[start], src, n);

} else {
return -EINVAL;

}

Repair: UADD(start, n)

• What if dest_size is SIZE_MAX?
• What if both sides of inequality overflow?
• What if overflow reaches a non-comparison sink?

72
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

72

Inference of Memory Bounds

Problem 1: Security vuls. Not just traditional buffer overflows.
Leakage of sensitive info (out-of-bounds reads):

• HeartBleed vulnerability, BenignCertain attack on Cisco PIX.
• Unaffected by mitigations such as ASLR and DEP.
• Re-usable buffer with stale data: bounded to valid portion of buffer.
• Affects even Java: e.g., Jetty leaked passwords (CVE-2015-2080).

Problem 2: Decompilation of binaries. We will reconstruct information of the form
“bounds of pointer p is the interval [n, m]”.

Solution & Approach: Static analysis to find & evaluate likely bounds.
(E.g., re-usable buffer: guess that upper bound for reading is the last position written.)

For decompilation: Report these bounds, use when naming variables.
For repair: Test with dynamic analysis – tentatively implement all bounds checks
(even those subsumed by stricter bounds checks) as ‘soft-fail’ (just log a warning,
don’t abort). Can also repair to Checked C (David Tarditi).

73
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

73

Android Information Leaks: Automated Detection

Problem: Exfiltration of sensitive data on mobile devices.
Colluding apps, or combination of malicious app and leaky app,
can use intents (messages sent to Android app components) to
extract sensitive or private information from an Android phone.

Solution: Precisely detect (i.e., few false positives) malicious
exfiltration of sensitive information from an Android phone (even
across multiple components), in a practical time & memory bound.

Approach: Add context sensitivity to analysis, to reduce false
positives, while retaining analytical speed by using DidFail’s fast 2-
phase static analysis method (that summarizes potential flows of
sensitive data per-app and quickly analyzes per-app-set).

74
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

74

Android App Sets: Sensitive Dataflow

Problem: Colluding apps, or a combination of a malicious app and leaky
app, can use intents (messages sent to Android app components) to
extract sensitive or private information from an Android phone.

Goal: Precisely detect tainted flows across multiple Android
components from sensitive information sources to restricted sinks.

• If such flows are discovered:
— User might refuse to install app
— App store might remove app

Achievements:
• First published static taint flow analysis for app sets (not just single apps)
• Fast user response: two-phase method uses phase-1 precomputation

Next: More precision using context sensitivity ⟹ fewer false alarms.

sink
src

75
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

75

Analysis of Android App Sets: Sensitive
Dataflow

Cutting-edge Android app set static dataflow analysis “DidFail” combines precise
single-component taint analysis and intent analysis.

• Phase 1: Each app analyzed once, in isolation
– Examine flow of tainted data from sources to sinks (including intents)
– Examines intent properties to match senders and receivers

• Phase 2: For a particular set of apps
– Generate taint flow equations
– Iteratively solve equations
– Fast!

Phase 2 fast because of Phase
1 pre-computation

Next Work:
- More context sensitivity

Source code and binaries:
http://www.cert.org/secure-
coding/tools/didfail.cfm

Goal: enforce
confidentiality
and integrity

76
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

76

Usability: Policies to Determine Allowed Flows

C1

C3

C2

Src1

Src3

Sink1

Sink3

I(C1, C2, id1)

I(C3, C2, id2)

Example 2Example 1

C1

C3

C2

Src1

Src3

Sink1

Sink3

Policy: Prohibit flow from Src1 to Sink3

NoncompliantCompliant

I(C1, C2, id1)

I(C3, C2, id2)

Policies could come from:
• App store
• Security system provider

• Employer
• User options

77
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

77

Automation; Acquisition (Supply chain); Building skills (Workforce development); Metrics, Models, and Measurement

Review: Secure Software Development Lifecycle

Mission Ready Diagnostics;
Threat Modeling;

SQUARE;
Security Engineering

Risk Analysis

Architecture Analysis
& Design Language

Team Software Process;
Secure TSP;

Secure Agile;
Secure Coding;

SCALe

Run time support;
Vulnerability

Analysis

Forensic
Operations

&
Investigations

Software Assurance Framework

78
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

78

Select Publications
• The SEI CERT C Coding Standard, 2016 Edition
• The SEI CERT C++ Coding Standard, 2016 Edition
• Java Coding Guidelines (published 2013)
• Secure Coding in C and C++, 2nd Edition (published 2013)
• ISO/IEC TS 17961 C Secure Coding Rules
• Prioritizing Alerts from Static Analysis with Classification Models (October 2016)
• Static Analysis Alert Audits: Lexicon & Rules (November 2016)
• Automated Code Repair (October 2016)
• Establishing Coding Requirements for Non-Safety-Critical C++ Systems (October 2016)
• Beyond errno: Error Handling in C (November 2016)
• Exploiting Java Serialization for Fun and Profit (September 2016)
• Improving the Automated Detection and Analysis of Secure Coding Violations (2014)
• Common Exploits and How to Prevent Them (August 2016)
• http://www.cert.org/secure-coding/
• http://www.cert.org/secure-coding/publications/
• http://www.cert.org/secure-coding/products-services/scale.cfm
• http://securecoding.cert.org/

Bo
ok

s
&

St
ds

.
W

eb
si

te
s

Pa
pe

rs
 &

Pr

es
en

ta
tio

ns

http://www.cert.org/secure-coding/products-services/secure-coding-download.cfm
http://cert.org/secure-coding/products-services/secure-coding-cpp-download-2016.cfm
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=474252
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=484185
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=474244
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=474247
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=484203&realTime
https://static.rainfocus.com/oracle/oow16/sess/1461174451300001tAQ7/ppt/Exploiting%20Deserialization.pdf
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=295724
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=473603
http://www.cert.org/secure-coding/
http://www.cert.org/secure-coding/publications/
http://www.cert.org/secure-coding/products-services/scale.cfm
http://securecoding.cert.org/

79
Building Secure Software for Mission Critical Systems

© 2018 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government
use and distribution.

79

Contact Information

Robert Schiela

rschiela@sei.cmu.edu

Web Resources (CERT/SEI)

http://www.cert.org/

http://www.sei.cmu.edu/

http://securecoding.cert.org

http://www.cert.org/
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/isis/isis-main.html

	Building Secure Software for Mission Critical Systems
	Slide Number 2
	Agenda
	“Software is eating the world”
	Software is the new hardware – IT
	Software is the new hardware – cyber physical
	Mission function is increasingly delivered in software
	Software vulnerabilities are ubiquitous
	Existing Customer Premise Equipment (SOHO) typically vulnerable
	Steel furnaces have been successfully attacked
	Electric grid under attack
	Weapons platforms potential cyber attack targets
	An ounce of prevention ….
	Software and security failures are expensive
	Catching software faults early saves money
	Slide Number 16
	Room for improvement
	Software Security Engineering: �A Guide for Project Managers
	Organizational readiness: Mission Risk Diagnostic (MRD)
	Software Assurance Framework (SAF)
	SAF: Acquisition Lifecycle Focus
	SAF: Nine Practice Areas
	SAF: Basis for Assessment and Improvement
	Requirements
	Threat analysis tools help derive abuse and misuse cases
	Security Quality Requirements Engineering (SQUARE)
	Embedded systems represent new classes of vulnerabilities
	Security approaches for IT systems do not cover embedded system security
	Programming for security is not the same as programming for safety
	Slide Number 30
	Security Engineering Risk Analysis approach
	SERA applied to DHS’s Wireless Emergency Alerts system
	Development
	Architecture Analysis & Design Language (AADL)
	Team Software Process
	Extending TSP with security
	Integrating security into Agile (Scrum) development
	Adoption of secure coding rules
	Most Vulnerabilities Are Caused by Programming Errors
	CERT Secure Coding Standards
	Learning from rules and recommendations
	Secure Coding in C/C++ Training
	Tools encourage application of secure coding
	Software is more assembled than built
	The rise of open source
	The rise of open source
	Open source is not secure
	Open source is not secure
	Reducing software supply chain risk factors
	Connecting automotive systems to internet opens system to attack
	Machine-learning based systems increase exposures
	Recognizing and recovering poisoned systems
	Deployment and operations
	Static Testing – Source code analysis tools
	SCALe Multitool evaluation
	Optimizing multitool evaluations
	Dynamic testing and evaluation – fuzzing
	Secure Coding Research
	Prioritizing Vulnerabilities
	Results with Transition Value
	Background: Automatic Alert Classification
	Lexicon: Audit Determinations
	SCALe Auditing Rules
	Results with Transition Value: Sanitizer
	Classifier Test Highlights
	Rapid expansion of classification models to prioritize static analysis alerts for C
	Automated Code Repair
	Automated Code Repair – Motivation
	Integer Overflow
	Benefits
	wrappers.h
	Inference of Memory Bounds
	Android Information Leaks: Automated Detection
	Android App Sets: Sensitive Dataflow
	Analysis of Android App Sets: Sensitive Dataflow
	Usability: Policies to Determine Allowed Flows
	Slide Number 77
	Slide Number 78
	Contact Information

