
[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] Approved for public release and
unlimited distribution.

Linux and NIST SP 800-171 or:
How I Learned To Stop Worrying
and Love Compliance
Enforcement

Craig Lewis

James Ralston

2Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute,
a federally funded research and development center.

References herein to any specific commercial product, process, or service by trade name, trade mark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT
TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM18-0156

Copyright and distribution statements

3Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Agenda

Challenges and Background
• What is the problem?
• How can we solve it?

Technology high-level overview
• What Puppet can do
• What Splunk can do

Examples of NIST SP 800-171 enforcement
• 3.4.2, 3.4.6, 3.4.9
• visualizing conformance with Splunk

Agenda

Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Linux and NIST SP 800-171

Challenges and background

5Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Challenges and background

About us:
• A team of 4 people that manages:

- 500+ Linux servers
- Many mission-critical enterprise services

• There’s always more to do
• We try to do the #devops thing, but we have lots of silos
• We try hard to leverage existing technologies
• We need administrator amplification

- We don’t have the time or manpower for artisanal hand-
crafted hosts or services

- “Cattle not pets”

Challenges and background

6Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Challenges and background

The goal: comply with NIST SP 800-171
• But how?

Issues:
• NIST SP 800-171 dialog is Windows user endpoint-centric
• Few automated compliance enforces/checkers for Linux
• We don’t have just Windows hosts
• Linux isn’t typically discussed

Challenges and background

7Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Challenges and background

Potential Solutions?

Apply configuration changes manually or at build?
• Doesn’t scale
• How to detect configuration drift?

Is there a better way?

Challenges and background

8Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Challenges and background

How about a configuration management system (CMS)?

• The point of a CMS is to apply and enforce a desired state

Disadvantages:

• Initial setup is more complex

Advantages?

• Can scale to many hosts

• Should be able to detect (and correct!) drift

Challenges and background

9Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Challenges and background

What CMS to use?

Should you write your own?

• Spoiler alert: NO.

Challenges and background

Image credit: xkcd

10Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Challenges and background

So, which one?

Some potential options:

• Ansible

• Chef

• Otter

• Puppet

• Salt

Challenges and background

“The nice thing about standards is that you have so many to choose
from.” – Andrew S. Tanenbaum

11Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Challenges and background

We chose Puppet. Why?

• We needed to replace our aging, custom CMS

• At the time (early 2011), Puppet seemed like the most mature
solution

• We didn’t agonize over the choice… and you shouldn’t, either

Challenges and background

Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Linux and NIST SP 800-171

Puppet and Splunk overview

13Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Puppet overview

Puppet uses a client/server model

• A Puppet agent runs on each client

• The agent periodically enforces that the actual state of the
system matches its intended state

• The agent obtains the client’s intended state from the Puppet
server

Puppet and Splunk overview

14Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Puppet overview

How do you describe the intended state of a client?

Using a declarative language

• a package that should be installed

• the contents of a configuration file

• a service that should be running

Descriptions are called resources.

• Resources can be ordered via dependencies

• Puppet will respect those dependencies when making changes
to the system

Puppet and Splunk overview

15Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Puppet overview

A class contains one or more resource declarations

A module is a collection of classes, data, files, templates, and so
forth, laid out in a specific directory structure

The Puppet Forge contains thousands of freely-available Puppet
modules

• So don’t reinvent the wheel!

The Puppet server knows which modules should be applied to
which clients

Puppet and Splunk overview

16Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Puppet overview

What is the update process?

• The client agent gathers facts about the system

• The agent gives those facts to the Puppet server

• The server takes the facts, the list of modules the client should
use, and other configuration data, and produces a catalog

• The catalog describes the desired state of the system

• The server sends the catalog to the agent

• The agent applies whatever actions are necessary to ensure the
state of the client matches the catalog

• The agent sends a report of its actions to the server

Puppet and Splunk overview

17Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Splunk overview

What is Splunk?

• A tool for analyzing and visualizing machine data

• Can consume almost any type of data you can throw at it
• System logs, audit logs, server logs, network logs

• Helps address the paradox of machine data
• Machine data itself is rarely valuable…
• …but the derivative information is

Puppet and Splunk overview

Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Linux and NIST SP 800-171

Examples of NIST SP 800-171 enforcement

19Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

NIST SP 800-171 requirement 3.4.2

3.4.2 states: “Establish and enforce security configuration settings”

• An example of this is SELinux.

• Developer attitude toward SELinux: “that NSA security thing that
breaks my applications, so I turn it off.”

• IT attitude:

Examples of NIST SP 800-171 enforcement

https://stopdisablingselinux.com/

20Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

NIST SP 800-171 requirement 3.4.2

Problem: we’re IT, so no one listens to us.

• Solution: use Puppet to ensure that SELinux runs in enforcing
mode.

• When users realize they can't “solve” their SELinux problems by
disabling SELinux, they complain come to us.

Examples of NIST SP 800-171 enforcement

21Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

NIST SP 800-171 requirement 3.4.2

class selinux (

Enum['enforcing', 'permissive'] $selinux_mode = 'enforcing',

) {

file { '/etc/selinux/config':

ensure => file,

owner => root,

group => root,

mode => '0644',

content => "SELINUX=${selinux_mode}\nSELINUXTYPE=targeted\n",

}

if $facts['os']['selinux']['current_mode'] != $selinux_mode {

exec { "setenforce ${selinux_mode}":

path => ['/bin', '/usr/bin', '/usr/sbin', '/sbin'],

}

}

}

Examples of NIST SP 800-171 enforcement

22Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

NIST SP 800-171 requirement 3.4.6

3.4.6 states: “Employ the principle of least functionality by
configuring the information system to provide only essential
capabilities.”

• Firewall policy contributes to 3.4.6:
• Permit authorized connections
• Deny all other connections

• Problem: define “authorized”
• How do you know whether a particular firewall allowance is

intended/authorized to be there?

Examples of NIST SP 800-171 enforcement

23Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

NIST SP 800-171 requirement 3.4.6

Our approach:

• A firewall allowance is authorized if an included Puppet module
contributes the rule.

• If an allowance isn’t authorized, Puppet will remove it

• How to implement this?
• Use the firewall module from the Puppet Forge
• https://forge.puppet.com/puppetlabs/firewall

Examples of NIST SP 800-171 enforcement

24Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

NIST SP 800-171 requirement 3.4.6

class iptables {

firewallchain { 'INPUT:filter:IPv4':

purge => true,

policy => 'drop',

}

}

class openssh::server {

firewall { '500 IPv4 permit incoming ssh connections':

provider => iptables,

proto => tcp,

dport => 22,

tcp_flags => 'FIN,SYN,RST,ACK SYN',

action => 'accept',

}

}

Examples of NIST SP 800-171 enforcement

25Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

NIST SP 800-171 requirement 3.4.9

3.4.9 states: “Control and monitor user-installed software.”

• Just a wee bit Windows centric

• Monitoring individual packages is a challenge of scale

Examples of NIST SP 800-171 enforcement

$ rpm -qa | wc -l
1478

• Our approach: use Splunk to enumerate and report

26Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

NIST SP 800-171 requirement 3.4.9

The nuts and bolts:

• Write a Splunk input script that enumerates installed packages
and sends that machine data to Splunk

• Use Puppet to ensure:
• All hosts have the Splunk forwarder installed
• All hosts have the Splunk input script installed

Examples of NIST SP 800-171 enforcement

27Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

NIST SP 800-171 requirement 3.4.9

Forwarder script:

Examples of NIST SP 800-171 enforcement

#! /bin/sh

Yes, we could do it in one line. But readability is better.

TIMESTAMP=$(date "+%b %d %T")

FORMAT="rpmname=%{name},rpmvers=%{version}-%{release}.%{arch}"

rpm -qa --qf "${TIMESTAMP} ${FORMAT}\n"

Forwarder script configuration:

[script://$SPLUNK_HOME/bin/scripts/rpmInventory.sh]

interval = 1800

sourcetype = rpm_inventory

28Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

NIST SP 800-171 requirement 3.4.9

Visualization:

Examples of NIST SP 800-171 enforcement

29Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Other Puppet/Splunk uses

• By leveraging this simple workflow:
• Use Puppet to install a script to log the data you want
• Use Splunk to collect that data and present it

• It is possible to speak to other NIST SP 800-171 requirements:
• 3.11 Risk assessment
• 3.12 Security assessment strategy

• For example, the output of this command…
• yum updateinfo list cves

• When aggregated into Splunk…

Examples of NIST SP 800-171 enforcement

30Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Other Puppet/Splunk uses

…can tell you whether you missed applying security updates:

Examples of NIST SP 800-171 enforcement

no
th

in
g

to
 se

e
he

re
,

la
 la

la
la

la
la

la
la

Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Linux and NIST SP 800-171

Conclusions

32Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Conclusions

• Conformance involves dull, repetitive tasks

• Computers are pretty good at performing dull, repetitive
tasks

• Phrased differently: your time is order of magnitudes more
valuable than a machine’s time.

• Therefore, leverage tools to achieve conformance more
efficiently

Conclusions

33Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Conclusions

• What tool you use isn’t important, as long as you use it

• Incremental improvement is better than no improvement

Conclusions

34Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Conclusions

• You may not receive much recognition for employing best
security practices and being good at conformance…

Conclusions

35Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Conclusions

• …but you’ll receive plenty of recognition if you’re bad at it.

Conclusions

36Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Resources and links

• Puppet and the Puppet Forge:

• https://www.puppet.com/

• https://forge.puppet.com/

• Splunk:

• https://www.splunk.com/

• Open Source Puppet modules for NIST, STIG, et. al. compliance:

• https://simp-project.com/

Conclusions

Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Linux and NIST SP 800-171

Questions?

	Linux and NIST SP 800-171 or: How I Learned To Stop Worrying and Love Compliance Enforcement
	Slide Number 2
	Agenda
	Linux and NIST SP 800-171
	Challenges and background
	Challenges and background
	Challenges and background
	Challenges and background
	Challenges and background
	Challenges and background
	Challenges and background
	Linux and NIST SP 800-171
	Puppet overview
	Puppet overview
	Puppet overview
	Puppet overview
	Splunk overview
	Linux and NIST SP 800-171
	NIST SP 800-171 requirement 3.4.2
	NIST SP 800-171 requirement 3.4.2
	NIST SP 800-171 requirement 3.4.2
	NIST SP 800-171 requirement 3.4.6
	NIST SP 800-171 requirement 3.4.6
	NIST SP 800-171 requirement 3.4.6
	NIST SP 800-171 requirement 3.4.9
	NIST SP 800-171 requirement 3.4.9
	NIST SP 800-171 requirement 3.4.9
	NIST SP 800-171 requirement 3.4.9
	Other Puppet/Splunk uses
	Other Puppet/Splunk uses
	Linux and NIST SP 800-171
	Conclusions
	Conclusions
	Conclusions
	Conclusions
	Resources and links
	Linux and NIST SP 800-171

