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Agenda

Challenges and Background
• What is the problem?
• How can we solve it?

Technology high-level overview
• What Puppet can do
• What Splunk can do

Examples of NIST SP 800-171 enforcement
• 3.4.2, 3.4.6, 3.4.9
• visualizing conformance with Splunk

Agenda
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Challenges and background

About us:
• A team of 4 people that manages:

- 500+ Linux servers
- Many mission-critical enterprise services

• There’s always more to do
• We try to do the #devops thing, but we have lots of silos
• We try hard to leverage existing technologies
• We need administrator amplification

- We don’t have the time or manpower for artisanal hand-
crafted hosts or services

- “Cattle not pets”

Challenges and background
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Challenges and background

The goal: comply with NIST SP 800-171
• But how?

Issues:
• NIST SP 800-171 dialog is Windows user endpoint-centric
• Few automated compliance enforces/checkers for Linux
• We don’t have just Windows hosts
• Linux isn’t typically discussed

Challenges and background
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Challenges and background

Potential Solutions?

Apply configuration changes manually or at build?
• Doesn’t scale
• How to detect configuration drift?

Is there a better way?

Challenges and background
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Challenges and background

How about a configuration management system (CMS)?

• The point of a CMS is to apply and enforce a desired state

Disadvantages:

• Initial setup is more complex

Advantages?

• Can scale to many hosts

• Should be able to detect (and correct!) drift

Challenges and background
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Challenges and background

What CMS to use?

Should you write your own?

• Spoiler alert: NO.

Challenges and background

Image credit: xkcd
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Challenges and background

So, which one?

Some potential options:

• Ansible

• Chef

• Otter

• Puppet

• Salt

Challenges and background

“The nice thing about standards is that you have so many to choose 
from.” – Andrew S. Tanenbaum
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Challenges and background

We chose Puppet. Why?

• We needed to replace our aging, custom CMS

• At the time (early 2011), Puppet seemed like the most mature 
solution

• We didn’t agonize over the choice… and you shouldn’t, either 

Challenges and background
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Puppet overview

Puppet uses a client/server model

• A Puppet agent runs on each client

• The agent periodically enforces that the actual state of the 
system matches its intended state

• The agent obtains the client’s intended state from the Puppet 
server

Puppet and Splunk overview
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Puppet overview

How do you describe the intended state of a client?

Using a declarative language

• a package that should be installed

• the contents of a configuration file

• a service that should be running

Descriptions are called resources. 

• Resources can be ordered via dependencies

• Puppet will respect those dependencies when making changes 
to the system

Puppet and Splunk overview
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Puppet overview

A class contains one or more resource declarations

A module is a collection of classes, data, files, templates, and so 
forth, laid out in a specific directory structure

The Puppet Forge contains thousands of freely-available Puppet 
modules

• So don’t reinvent the wheel!

The Puppet server knows which modules should be applied to 
which clients

Puppet and Splunk overview
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Puppet overview

What is the update process?

• The client agent gathers facts about the system

• The agent gives those facts to the Puppet server

• The server takes the facts, the list of modules the client should 
use, and other configuration data, and produces a catalog

• The catalog describes the desired state of the system

• The server sends the catalog to the agent

• The agent applies whatever actions are necessary to ensure the 
state of the client matches the catalog

• The agent sends a report of its actions to the server

Puppet and Splunk overview
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Splunk overview

What is Splunk?

• A tool for analyzing and visualizing machine data

• Can consume almost any type of data you can throw at it
• System logs, audit logs, server logs, network logs

• Helps address the paradox of machine data
• Machine data itself is rarely valuable…
• …but the derivative information is

Puppet and Splunk overview
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Linux and NIST SP 800-171

Examples of NIST SP 800-171 enforcement
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NIST SP 800-171 requirement 3.4.2

3.4.2 states: “Establish and enforce security configuration settings”

• An example of this is SELinux.

• Developer attitude toward SELinux: “that NSA security thing that 
breaks my applications, so I turn it off.”

• IT attitude:

Examples of NIST SP 800-171 enforcement

https://stopdisablingselinux.com/
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NIST SP 800-171 requirement 3.4.2

Problem: we’re IT, so no one listens to us.

• Solution: use Puppet to ensure that SELinux runs in enforcing 
mode.

• When users realize they can't “solve” their SELinux problems by 
disabling SELinux, they complain come to us.

Examples of NIST SP 800-171 enforcement
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NIST SP 800-171 requirement 3.4.2

class selinux (

Enum['enforcing', 'permissive'] $selinux_mode = 'enforcing',

) {

file { '/etc/selinux/config':

ensure  => file,

owner   => root,

group   => root,

mode    => '0644',

content => "SELINUX=${selinux_mode}\nSELINUXTYPE=targeted\n",

}

if $facts['os']['selinux']['current_mode'] != $selinux_mode {

exec { "setenforce ${selinux_mode}":

path => ['/bin', '/usr/bin', '/usr/sbin', '/sbin'],

}

}

}

Examples of NIST SP 800-171 enforcement
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NIST SP 800-171 requirement 3.4.6

3.4.6 states: “Employ the principle of least functionality by 
configuring the information system to provide only essential 
capabilities.”

• Firewall policy contributes to 3.4.6:
• Permit authorized connections
• Deny all other connections

• Problem: define “authorized”
• How do you know whether a particular firewall allowance is 

intended/authorized to be there?

Examples of NIST SP 800-171 enforcement
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NIST SP 800-171 requirement 3.4.6

Our approach:

• A firewall allowance is authorized if an included Puppet module 
contributes the rule.

• If an allowance isn’t authorized, Puppet will remove it

• How to implement this?
• Use the firewall module from the Puppet Forge
• https://forge.puppet.com/puppetlabs/firewall

Examples of NIST SP 800-171 enforcement
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NIST SP 800-171 requirement 3.4.6

class iptables {

firewallchain { 'INPUT:filter:IPv4':

purge  => true,

policy => 'drop',

}

}

class openssh::server {

firewall { '500 IPv4 permit incoming ssh connections':

provider  => iptables,

proto     => tcp,

dport => 22,

tcp_flags => 'FIN,SYN,RST,ACK SYN',

action    => 'accept',

}

}

Examples of NIST SP 800-171 enforcement
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NIST SP 800-171 requirement 3.4.9

3.4.9 states: “Control and monitor user-installed software.”

• Just a wee bit Windows centric

• Monitoring individual packages is a challenge of scale

Examples of NIST SP 800-171 enforcement

$ rpm -qa | wc -l
1478

• Our approach: use Splunk to enumerate and report
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NIST SP 800-171 requirement 3.4.9

The nuts and bolts:

• Write a Splunk input script that enumerates installed packages 
and sends that machine data to Splunk

• Use Puppet to ensure:
• All hosts have the Splunk forwarder installed
• All hosts have the Splunk input script installed

Examples of NIST SP 800-171 enforcement



27Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release 
and unlimited distribution.

NIST SP 800-171 requirement 3.4.9

Forwarder script:

Examples of NIST SP 800-171 enforcement

#! /bin/sh

# Yes, we could do it in one line. But readability is better.

TIMESTAMP=$(date "+%b %d %T")

FORMAT="rpmname=%{name},rpmvers=%{version}-%{release}.%{arch}"

rpm -qa --qf "${TIMESTAMP} ${FORMAT}\n"

Forwarder script configuration:

[script://$SPLUNK_HOME/bin/scripts/rpmInventory.sh]

interval = 1800

sourcetype = rpm_inventory
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NIST SP 800-171 requirement 3.4.9

Visualization:

Examples of NIST SP 800-171 enforcement
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Other Puppet/Splunk uses

• By leveraging this simple workflow:
• Use Puppet to install a script to log the data you want
• Use Splunk to collect that data and present it

• It is possible to speak to other NIST SP 800-171 requirements:
• 3.11 Risk assessment
• 3.12 Security assessment strategy

• For example, the output of this command…
• yum updateinfo list cves

• When aggregated into Splunk…

Examples of NIST SP 800-171 enforcement
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Other Puppet/Splunk uses

…can tell you whether you missed applying security updates:

Examples of NIST SP 800-171 enforcement
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Conclusions
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Conclusions

• Conformance involves dull, repetitive tasks

• Computers are pretty good at performing dull, repetitive 
tasks

• Phrased differently: your time is order of magnitudes more 
valuable than a machine’s time.

• Therefore, leverage tools to achieve conformance more 
efficiently

Conclusions
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Conclusions

• What tool you use isn’t important, as long as you use it

• Incremental improvement is better than no improvement

Conclusions



34Linux and NIST SP 800-171
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release 
and unlimited distribution.

Conclusions

• You may not receive much recognition for employing best 
security practices and being good at conformance…

Conclusions
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Conclusions

• …but you’ll receive plenty of recognition if you’re bad at it.

Conclusions
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Resources and links

• Puppet and the Puppet Forge:

• https://www.puppet.com/

• https://forge.puppet.com/

• Splunk:

• https://www.splunk.com/

• Open Source Puppet modules for NIST, STIG, et. al. compliance:

• https://simp-project.com/

Conclusions
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Questions?
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