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Caveat: Slides are Notional for Distribution A

The following concepts represent current SEIl research and customer support of
programs within the USAF and Navy.

Although machine learning and deep learning are not novel in their application, our
complement of causal learning to segregate true causal influence from spurious
correlation enable us to go one step further in providing more actionable models.

The avionics system depicted in these slides could be any system. The methodology
would be unchanged across domains.

We first discuss potential improvement in system simulation and test via machine and
causal learning followed by improvement in system diagnosis via BBNs informed from
machine and causal learning.
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System Simulation and Test Operational Modes
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Machine and Causal Learning within Modes

Vertical Turning Manoeuvre
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models will be developed
on both the flight data
and simulation data.
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y * and Causal Learning
A

| This will enable us:

1) To evaluate realism of
existing simulation
and test, and

2) To generate more
realistic scenarios at
the parametric level
for simulation and
test.
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Simulation
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Simulation
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Scenarios in Simulator missing from Flight Test

a4

Operational Mode

Time Snapshot
09:01:01:05
09:01:01:06
09:01:01:07
09:01:01:08
09:01:01:09
09:01:01:10
09:01:01:11
09:01:01:12
09:01:01:13
09:01:01:14
09:01:01:15
09:01:01:16
09:01:01:17
09:01:01:18
09:01:01:19
09:01:01:20]

R R R R RRRRRERRRRERRRBR

—=— Software Engineering Institute

Simulation

Simulation data is

processed against

the “learned” flight

test data

Flight Testing

perational Mode

spg £
& g &
& o )
& & &
& & &
o o a

9

Bayesia multivariate “Outlier”
(red row with red factors)
identifies scenarios to be

Flight Test data is

“learned” using

Bayesia machine

learning

Simulation

PR R R R

Operational Mode

L L

&
&
&
&

Time Snapshot | <

N
&
&

&
&

L

&
&
&
&

rd

dropped or added t

S

<
&
S
&
&
RS

o flight tes

Q
KN

&
o

g
L

& S
S

N
L <
& &
SRS
Ay A

<L L L

09:01:01:05

09:01:01:06

09:01:01:07

09:01:01:08

09:01:01:09

09:01:01:10

09:01:01:13

——

=_E

09:01:01:14|

Carnegie Mellon University

1 1 09:01:01:16
1 1 09:01:01:17
1 1 09:01:01:18
1 1 09:01:01:19
1 1 09:01:01:20]

© 2018 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for
public release and unlimited distribution.



Learning Causal Patterns from Flight Test Stress Scenarios

Simulation Bayesia Flight Testing
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supervised machine learning on the Y
factors individually.
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Comparing Flight Test Behavior across Aircraft and Pilots

Simulation Bayesia Flight Testing
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Bayesian Belief Networks (BBNs) for Predictive Maintenance
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Bayesian Belief Networks (BBNs) for Predictive I\/Ialntenance
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Such a BBN
may be
constructed
thru both
Machine and
Causal
Learning. The
BBN machinery
brings together
causal learning
and prior
knowledge to
guide
maintenance
decision.
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