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Motivation

Mixed-Criticality
 Certification standards (DO-178B/C)
— Different assurance rigor depending on severity of failure (criticality)
— If proven that low-criticality task cannot interfere with higher-criticality ones

Distributed Scheduling
* End-to-end threads running across multiple processors

(arspeec}——{ i} (s )
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Distributed Mixed-Criticality Scheduling
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Zero-Slack Scheduling (1)

Tasks : T; = (Cil Cioi Ti, Di) (l)
 C;: nominal WCET, C/: overloaded WCET, T;: period, D;: deadline, {;:criticality

Start with DM

 Calculate last instant to stop lower-critical task Z;: zero-slack instant
» Stop lower-criticality tasks

e =(2.5,5,8,8)

Normal Mode Critical Mode
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Zero-Slack Scheduling (2)

Guarantee
* 7; guaranteed to execute for C’before its deadline D;
— If no higher criticality task z; executes for more than ¢;
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Calculating The Zero-Slack Instant

Start of trailing
slack
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Calculating The Zero-Slack Instant

T
_m: i om G,
7, R R i |

New slack can open after each iteration

Needs to repeat until no new slack opens
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Distributed Scheduling

Multi-period end-to-end deadlines
 Start of receiver task not synchronized
* Message reception guaranteed after two periods

i [ ] i —>
- =

. L
Wait two periods

Pipelines to reduce wait
» Synchronize start of receiver task

Receiver
I I waits message

\ 4

v
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Fixed-Priority Pipelines
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Real-Time Pipelines Response Time

Synthetic Taskset
e T; execution:
_C*(i) = . ) N_—l .
Ce (l) 2(]|Pj > pi) C],maxl + 25—1 (]'|Pr?aZXPi)(C]'2)

* Preemption on others

* —
- Cj — Cj,maxl + Cj,maxz

* Response time

(k) _ g RETM s
~R =@ +Z(]'|Pj >Pi)[ T }Cj
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ZSRM Response Time Equations

Interfering Tasksets
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ZSRM Pipeline Response Time (1)

Stages in normal and critical mode
g/ . stage where Z; occurs
Nf ={mjle? <j <N} ; N} ={n|1 <j <o/}
Critical mode synthetic task
« CS() = €5 (D)
c.

K : i €i
e (2 (1) — C. max C.
e ( ) ZTiEFfUTi j,max1 + Zni’seﬂf\ TN . JErCuT; J,S

» To calculate which stages overload C js IS calculated solving optimization

— Maximize ), max Xx;

Cc
sEM\ my jer{ur;

» Subject to:

eV(j,s)st. ETfUT)A(sE Hic);xj,s = Cj(,)s

e Vj S.1. (] € F-C U Ti) N\ (C] > Ci),zsenlngs < ZSEI'IL-C Cj,s
e Ci=Cft 4l

jmax2

RS = CE()+Y |R] C *Ci

L‘]EFL |T |
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ZSRM Pipeline Response Time (2)

Normal mode

*Z;=D;— R}
Z; *N§
IL — Zjel"? [T_] C]

« S = max(O, Z; — I; — Cél(l'))
e C5(i) = max(0,C5(i) — S
e C2(i) = min(C?, CF() + S1)

— min {i|SY 0 :
c 0] = 1rsnjlan{] | X521 Cis > CeH (D)}
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Average Utilization With Increasing Stages
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Increasing Overload
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Implementation

Linux Kernel Module
 Periodic Activation of Root Stage
— wait_next_root_period()
— Wait for periodic timer to activate
« Middle Stage Activation
— wait_next_stage arrival()
— Wait for message and enforce minimum inter-arrival
— Execute stage computation
— Send message to next stage
» Leaf Stage Activation
—wait_next_leaf arrival()
— Wait for minimum interarrival
— Execute stage computation
* End-to-end overload monitoring
» Defer after overload enforcement
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Synthetic Avionics Taskset

Stage\Task Stall Runway Traffic Terrain
Warning Overrun Aware Aware
{(=4p=1 {(=2,p=3 {=1,p=4 {(=3,p=2
IOM Airspeed GPS Pos. Air Radar Ground Radar
CPIOM1 Lift Stop Distance Object Ident.  Terrain
Distance
CPIOM2 Stall threshold Stop location  Track build. Time to
terrain
CPIOM3 Angle attack  Virtual runway Traffic warn.  Terrain warn.
T 14534(ms) 3174(ms) 7002(ms) 5164(ms)
C 1090(ms) 238(ms) 525(ms) 387(ms)
Co 1362(ms) 297(ms) 656(ms) 484(ms)
Z 8000(ms) 3174(ms) 7002(ms) 5164(ms)
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Avionics Taskset Execution Timeline
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Conclusions

Pipeline Scheduling Improves Utilization
 |[n contrast to unsynchronized activation
* Response-Time Pipeline Model by Jayachandran and Abdelzaher

Created First Mixed-Ciriticality Scheduling
« ZSRM
— Reformulated Response Time Z Calculation
— End-to-end overload
— End-to-end enforcement
Improved Performance
« 4X average state utilization
 Increase overload tolerance
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