S Mixed-Criticality Scheduling of

_ Presenter: Dionisio de Niz
Bjorn Andersson, Hyoseung Kim, Mark Klein, Linh Thi
_ Xuan Phan, and Raj Rajkumar

%é Software Engineering Institute | Cari

Distribution Statement A] Approved for public release and unlimited distribution.

Copyright 2018 Carnegie Mellon University, Hyoseung Kim and Linh Thi Xuan Phan. All
Rights Reserved.

This material is based upon work funded and supported by the Department of Defense
under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation
of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s)
and should not be construed as an official Government position, policy, or decision, unless
designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE
ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-1S" BASIS.
CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and
glnllmkl)ted distribution. Please see Copyright notice for non-US Government use and
istribution.

This material may be reproduced in its entirety, without modification, and freely distributed
in written or electronic form without requesting formal permission. Permission is required
for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie
Mellon University.

DM18-0288

=== Software Engineering Institute | Can

Distribution Statement A] Approved for public release and unlimited distribution.

Motivation

Mixed-Criticality
 Certification standards (DO-178B/C)
— Different assurance rigor depending on severity of failure (criticality)
— If proven that low-criticality task cannot interfere with higher-criticality ones

Distributed Scheduling
* End-to-end threads running across multiple processors

(arspeec}——{ i} (s)

[} 8-

Distributed Mixed-Criticality Scheduling

=== Software Engineering Institute | Can

Distribution Statement A] Approved for public release and unlimited distribution.

Zero-Slack Scheduling (1)

Tasks : T; = (Cil Cioi Ti, Di) (l)
 C;: nominal WCET, C/: overloaded WCET, T;: period, D;: deadline, {;:criticality

Start with DM

 Calculate last instant to stop lower-critical task Z;: zero-slack instant
» Stop lower-criticality tasks

e =(2.5,5,8,8)

Normal Mode Critical Mode

=== Software Engineering Institute | Can

Distribution Statement A] Approved for public release and unlimited distribution.

Zero-Slack Scheduling (2)

Guarantee
* 7; guaranteed to execute for C’before its deadline D;
— If no higher criticality task z; executes for more than ¢;

=== Software Engineering Institute | Can

Distribution Statement A] Approved for public release and unlimited distribution.

Calculating The Zero-Slack Instant

Start of trailing
slack
= == = = == = = 1
=1 =1 >
' |
L : ' I| :
. | L | ! | l 5,
| | I I | | I I
I |
| ' ! I
z-| 1 I - r L
1 J 1 J
Y Y
Slack Normal Mode Slack Critical Mode

== Software Engineering Institute | Car

Distribution Statement A] Approved for public release and unlimited distribution.

Calculating The Zero-Slack Instant

T
_m: i om G,
7, R R i |

New slack can open after each iteration

Needs to repeat until no new slack opens

== Software Engineering Institute | Car

Distribution Statement A] Approved for public release and unlimited distribution.

Distributed Scheduling

Multi-period end-to-end deadlines
 Start of receiver task not synchronized
* Message reception guaranteed after two periods

i [] i —>
- =

. L
Wait two periods

Pipelines to reduce wait
» Synchronize start of receiver task

Receiver
I I waits message

\ 4

v

=== Software Engineering Institute | Can

Distribution Statement A] Approved for public release and unlimited distribution.

Fixed-Priority Pipelines

C2.J+C2f1+] +”.+C2’|_ c:1.L+CI,L+1"-'“4'(:‘..N

Stage 1

Stage 2 |

Stage j

Stage L

Stage N

Jy

| Ja |

- =

5] []

IENEAED
.%—I
Cy1#+Cy 2+ +Cyy 3, | 1, |

FilEA
P

n N-1
Delay(J;) < Z Ceq; T Z maxj_;(Cjs)
j=i s=1

Cj,maxl + Cj,maxz if Ai < Aj
Cjmax1 Otherwise

C

eq; —

=== Software Engineering Institute

Carn

Distribution Statement A] Approved for public release and unlimited distribution.

Real-Time Pipelines Response Time

Synthetic Taskset
e T; execution:
C*(i) = .) N—l .
Ce (l) 2(]|Pj > pi) C],maxl + 25—1 (]'|Pr?aZXPi)(C]'2)

* Preemption on others

* —
- Cj — Cj,maxl + Cj,maxz

* Response time

(k) _ g RETM s
~R =@ +Z(]'|Pj >Pi)[T }Cj

=== Software Engineering Institute | Can

Distribution Statement A] Approved for public release and unlimited distribution.

10

ZSRM Response Time Equations

Interfering Tasksets

C! C
[—

Z;, R
i =C5 0 =

H H
Hf H
HF H
L¥ L
Ly L

H Z;=D; — R}

I - 0o r
(_‘N
I
]
3| AN
P
I
]

St=max(0,Z; — I — 1 —

R¢ R¢
= Cf + z [%lcﬁ z [?‘l(cj—cnﬂ z
jemhe jeLhe '/

EHSC

C7)

e

Cic = maX(O, Cic — S,:n) ,Cln = min(CiO, C,:n + S,:n)

Software Engineering Institute | Can

Distribution Statement A] Approved for public release an

d unlimited distribution.

11

ZSRM Pipeline Response Time (1)

Stages in normal and critical mode
g/ . stage where Z; occurs
Nf ={mjle? <j <N} ; N} ={n|1 <j <o/}
Critical mode synthetic task
« CS() = €5 (D)
c.

K : i €i
e (2 (1) — C. max C.
e () ZTiEFfUTi j,max1 + Zni’seﬂf\ TN . JErCuT; J,S

» To calculate which stages overload C js IS calculated solving optimization

— Maximize), max Xx;

Cc
sEM\ my jer{ur;

» Subject to:

eV(j,s)st. ETfUT)A(sE Hic);xj,s = Cj(,)s

e Vj S.1. (] € F-C U Ti) N\ (C] > Ci),zsenlngs < ZSEI'IL-C Cj,s
e Ci=Cft 4l

jmax2

RS = CE()+Y |R] C *Ci

L‘]EFL |T |
=== Software Engineering Institute | Car

Distribution Statement A] Approved for public release and unlimited distribution.

12

ZSRM Pipeline Response Time (2)

Normal mode

*Z;=D;— R}
Z; *N§
IL — Zjel"? [T_] C]

« S = max(O, Z; — I; — Cél(l'))
e C5(i) = max(0,C5(i) — S
e C2(i) = min(C?, CF() + S1)

— min {i|SY 0 :
c 0] = 1rsnjlan{] | X521 Cis > CeH (D)}

=== Software Engineering Institute

Carn

Distribution Statement A] Approved for public release and unlimited distribution.

13

Average Utilization With Increasing Stages

0.3
0.25
0.2 \
c
)
d
=
= - RTPIPE O
3 0.15
) ZSPIPEO
hd
o =>é= ZS PIPE N
>
< 01 =75 DEC O
0.05 :L ‘-. —_— = —
=X
0
4 5 6 7 8 9 10

Number of Stages

=== Software Engineering Institute | Can

Distribution Statement A] Approved for public release and unlimited distribution.

14

Increasing Overload

0.3
0.25

o /
c
S
hd
S
= ——RTPIPE O
= 015 -
) —h— ZS PIPE O
) N N N 2
o 7 € == 7S PIPE N
>
< ” P —#=Z7S DECO

> w ¢

0.05
O T T T T T v T \ T . T . T / \ T . T ._l
.30 .35 .40 A5 .50 .55 .60 .65 71 75 .80 .85 .90 .95

15 .20 .25

Overload

=== Software Engineering Institute | Can

Distribution Statement A] Approved for public release and unlimited distribution.

15

Implementation

Linux Kernel Module
 Periodic Activation of Root Stage
— wait_next_root_period()
— Wait for periodic timer to activate
« Middle Stage Activation
— wait_next_stage arrival()
— Wait for message and enforce minimum inter-arrival
— Execute stage computation
— Send message to next stage
» Leaf Stage Activation
—wait_next_leaf arrival()
— Wait for minimum interarrival
— Execute stage computation
* End-to-end overload monitoring
» Defer after overload enforcement

=== Software Engineering Institute | Can

Distribution Statement A] Approved for public release and unlimited distribution.

16

Synthetic Avionics Taskset

Stage\Task Stall Runway Traffic Terrain
Warning Overrun Aware Aware
{(=4p=1 {(=2,p=3 {=1,p=4 {(=3,p=2
IOM Airspeed GPS Pos. Air Radar Ground Radar
CPIOM1 Lift Stop Distance Object Ident. Terrain
Distance
CPIOM2 Stall threshold Stop location Track build. Time to
terrain
CPIOM3 Angle attack Virtual runway Traffic warn. Terrain warn.
T 14534(ms) 3174(ms) 7002(ms) 5164(ms)
C 1090(ms) 238(ms) 525(ms) 387(ms)
Co 1362(ms) 297(ms) 656(ms) 484(ms)
Z 8000(ms) 3174(ms) 7002(ms) 5164(ms)

=== Software Engineering Institute | Can

Distribution Statement A] Approved for public release and unlimited distribution.

Avionics Taskset Execution Timeline

airspeed —————— aps aradar ————————— g-radar

CPUO

it ————— stop-dist object —————— terrain-d

CPU 1

T[Tt IARNRARRERRRRRE IRERA ARBRRRRRRRRRNRE AN RARRRRRRR

stall @ ————————— stop-loc track ———— t-terrain

CPU 2

angle —— v-runway wafficw ————————— terrain-w

CPU 3

o o o (=] o o o o o o o [=] (=] (=) (=) (=) (=1 o (=] (=] (=] (=) (=] (=1 (=] o o o o (=1 (=1 (=] (=]
[=} [=} (=4 [=} [=} [=} [=] (=] (=] o [=} [=} [=} [=} (=] (=} [=} [=} [=} o (=] (=] [=} [=} o o o o o

un o N} o nl (=} un o wy (=] uy [=} n o wn (= N [=} n [=} n [=] n (=] N [=} n o wn o uwn o

— - N &N ™ m < < 1 N © W ~ N~ © © o o o o - - N o ™ m < < W wn O

B — - — - o~ - A4 A A = o

=== Software Engineering Institute | Car

Distribution Statement A] Approved for public release and unlimited distribution.

Conclusions

Pipeline Scheduling Improves Utilization
 |[n contrast to unsynchronized activation
* Response-Time Pipeline Model by Jayachandran and Abdelzaher

Created First Mixed-Ciriticality Scheduling
« ZSRM
— Reformulated Response Time Z Calculation
— End-to-end overload
— End-to-end enforcement
Improved Performance
« 4X average state utilization
 Increase overload tolerance

=== Software Engineering Institute | Can

Distribution Statement A] Approved for public release and unlimited distribution.

19

	Mixed-Criticality Scheduling of Processing Pipelines
	Slide Number 2
	Motivation
	Zero-Slack Scheduling (1)
	Zero-Slack Scheduling (2)
	Calculating The Zero-Slack Instant
	Calculating The Zero-Slack Instant
	Distributed Scheduling
	Fixed-Priority Pipelines
	Real-Time Pipelines Response Time
	ZSRM Response Time Equations
	ZSRM Pipeline Response Time (1)
	ZSRM Pipeline Response Time (2)
	Average Utilization With Increasing Stages
	Increasing Overload
	Implementation
	Synthetic Avionics Taskset
	Avionics Taskset Execution Timeline
	Conclusions

