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Existing blockchain programs are vulnerable

• Over $40M were stolen from TheDAO
due to a bug in the implementation (June 
2016)

• $32M were stolen due to a bug in a 
commonly used blockchain program (i.e., 
smart contract, June 2017)

Bugs in blockchain programs (smart contracts) cannot be fixed after 
deployment

We want to build correct software, but current approaches have been 
shown to have security vulnerabilities:

Re-entrancy attacks
Separation of money accounting from money storage
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• Obsidian is a blockchain-based language 
with the goals
• Make certain vulnerabilities impossible
• Make it easier to write correct 

programs
• Show effectiveness and correctness

• Obsidian programs consist of

• contracts—similar to classes in 
Java—which contain fields, states

• transactions—similar to methods

Obsidian: a new programming language
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Obsidian: Core Features

• Obsidian contains core features to allow users to write safe 
programs easily and effectively.

• First-class typestate programming
• Natural way to express sequences of transaction steps
• Formal methods exist to prove effectiveness
• Shown to be helpful in documentation, but no studies of 

ease of writing code
• Linear types

• Natural way to express consumable resources
• Formal methods exist to prove safety
• Novel integration with an imperative language
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Object Orientation vs Typestate Orientation
A file object has defined 
operations:

Open
Read
Write
Close

A file object has defined 
states:

isOpen
isClosed
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Operations and States combine to define 
legal invocations

Operations

Open Read Write Close

St
at

es isOpen Illegal Permitted Permitted Permitted

isClosed Permitted Illegal Illegal Illegal
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Object oriented programming: organize by 
operation

Object FileObject {
Open(File){
if isOpen(File)error
else {

fopen(File);
FileState = isOpen;

}
Read(File)returns char{
if isClosed(File)error
else return fread(File);
}
Write(File, char){ … }
Close(File){

if isClosed(File) error;
fclose(File);
FileState = isClosed;

}
}
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Typestate programming: organize by state

Type FileState {
isOpen(File){
Read(File) returns char {

return fread(File);}
Write(File,char) { … }
Close(File) {

fclose(File);
FileState = isClosed;}

}
isClosed(File){

Open(File) {
fopen(File);
FileState = isOpen;

}
}

}
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Typestate

• Blockchain programs commonly type state-oriented

• Obsidian makes type state first-class

- An object in Obsidian has a typestate that restricts which 
transactions (operations) can be invoked on it.

• State transitions in a transaction can change the type state 
of an object

- State transition sequences frequently can be inferred by 
analyzing program flow at compile time

• States and the transactions that can change state are 
organized into modules called contracts
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Example Obsidian Program

• A LibraryPatron is always 
in either the NoCard or 
HasCard state

contract LibraryPatron {
state NoCard {

}

state HasCard {

}
}

Adapted from Barnaby, et al.
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Example Obsidian Program

• A LibraryPatron is always 
in either the NoCard or 
HasCard state

• getBook can only be called 
in HasCard state

• Calling from NoCard state 
results in compile-time 
error

contract LibraryPatron {
state NoCard {

}

state HasCard {
transaction getBook(){
…

}
}

}

Adapted from Barnaby, et al.
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Example Obsidian Program

• A LibraryPatron is always 
in either the NoCard or 
HasCard state.

• getBook can only be called 
in HasCard state

• Calling from NoCard state 
results in compile-time 
error

• ->HasCard is a state 
transition

contract LibraryPatron {
state NoCard {
transaction getCard(){
…
->HasCard;

}
}

state HasCard {
transaction getBook(){
…

}
}

}

Adapted from Barnaby, et al.
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Linear Types

• Blockchain programs often manage some kind of resource

- e.g., cryptocurrency, votes, items in supply chain

• Resources, defined as Linear types, allow the compiler to 
enforce “resource safety”: 

- Variables of linear type must be used exactly once in their defined 
scope, hence

• Resources cannot be used more than once

• Resources must be used before leaving the current scope (i.e., 
don’t lose it)
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Linear Resource Example

contract Treasury{
// Money is a resource of Treasury
resource contract Money { … }

transaction DoubleSpend(Money m) {
spendMoney(m);
Bond b = exchangeForBond(m);

}

transaction ForgetToSpend(Money m) {
return;

}
}

Compiler error – m used twice

Compiler error – m never used

Adapted from Barnaby, et al.
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Programmers should be able to write 
correct Obsidian code easily and effectively.

Creating an intuitive language is hard! Many 
difficult design choices exist

Usability
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Usability study

Participants were given a description of a voter registration system 
for a hypothetical democratic nation.
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1. Write pseudocode to implement program.

2. Given a state diagram modeling the voter 
registration system, modify pseudocode.

3. Given Obsidian tutorial (with no 
information on state transitions) invent 
syntax for state transitions and complete 
an Obsidian contract.

4. Shown three options for state transitions, 
complete a brief contract for each option.

5. Choose one of the three options and use 
it to complete the Obsidian program from 
part 3.

Usability study
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• Programmers do not naturally 
consider state-based design when 
architecting code

• Most intuitive design: include all 
possible state actions explicitly within 
the state

Usability study – Findings
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• Obsidian contains core features—
including first-class typestate and 
linear resources—to allow users to 
write safe programs easily and 
effectively

• Usable programming language design 
requires iteration and user testing

- Obsidian is an active research 
language and continues to evolve

Summary
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Additional Reading
Michael Coblenz, “Obsidian: A Safer Blockchain Programming Language,” 2017 IEEE/ACM 39th 
International Conference on Software Engineering Companion (ICSE-C), 
http://ieeexplore.ieee.org/document/7965268/

Michael Coblenz, Elli Kanal, Jenna Wise, Joshua Sunshine, Jonathan Aldrich, Brad Myers, Rick Hull, 
“Obsidian: a Safer Blockchain Programming Language,” 2017, 
https://resources.sei.cmu.edu/asset_files/Presentation/2017_017_001_506530.pdf

Eliezer Kanal, Michael Coblenz, “Obsidian - A Safer Blockchain Programming Language,” October 2017, 
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=506444

Celeste Barnaby, Michael Coblenz, Tyler Etzel, Eliezer Kanal, Joshua Sunshine, Brad Myers, Jonathan 
Aldrich, “A User Study to Inform the Design of the Obsidian Blockchain DSL, SPLASH 2017, ” 
https://2017.splashcon.org/event/plateau-2017-a-user-study-to-inform-the-design-of-the-obsidian-
blockchain-dsl

Source:

https://github.com/mcoblenz/Obsidian

https://2017.splashcon.org/event/plateau-2017-a-user-study-to-inform-the-design-of-the-obsidian-blockchain-dsl
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Contact Information

Mark Sherman
Director,  Cyber Security Foundations
CERT, Software Engineering Institute
4500 Fifth Ave
Pittsburgh, PA 15213
Telephone:  +1 412.268.5800
Email: info@sei.cmu.edu, mssherman@sei.cmu.edu
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