
[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Obsidian: a Safe and
Natural Programming
Language for Blockchain
Applications

Dr. Mark Sherman

Director, Cyber Security Foundations

March 9, 2018

2
© 2018 Carnegie Mellon University [[DISTRIBUTION STATEMENT A] This material has been approved for

public release and unlimited distribution.

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon
University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government
position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN
"AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND
WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-
US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal
permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM18-0301

3
© 2018 Carnegie Mellon University [[DISTRIBUTION STATEMENT A] This material has been approved for

public release and unlimited distribution.

Existing blockchain programs are vulnerable

• Over $40M were stolen from TheDAO
due to a bug in the implementation (June
2016)

• $32M were stolen due to a bug in a
commonly used blockchain program (i.e.,
smart contract, June 2017)

Bugs in blockchain programs (smart contracts) cannot be fixed after
deployment

We want to build correct software, but current approaches have been
shown to have security vulnerabilities:

Re-entrancy attacks
Separation of money accounting from money storage

4
© 2018 Carnegie Mellon University [[DISTRIBUTION STATEMENT A] This material has been approved for

public release and unlimited distribution.

• Obsidian is a blockchain-based language
with the goals
• Make certain vulnerabilities impossible
• Make it easier to write correct

programs
• Show effectiveness and correctness

• Obsidian programs consist of

• contracts—similar to classes in
Java—which contain fields, states

• transactions—similar to methods

Obsidian: a new programming language

5
© 2018 Carnegie Mellon University [[DISTRIBUTION STATEMENT A] This material has been approved for

public release and unlimited distribution.

Obsidian: Core Features

• Obsidian contains core features to allow users to write safe
programs easily and effectively.

• First-class typestate programming
• Natural way to express sequences of transaction steps
• Formal methods exist to prove effectiveness
• Shown to be helpful in documentation, but no studies of

ease of writing code
• Linear types

• Natural way to express consumable resources
• Formal methods exist to prove safety
• Novel integration with an imperative language

6
© 2018 Carnegie Mellon University [[DISTRIBUTION STATEMENT A] This material has been approved for

public release and unlimited distribution.

Object Orientation vs Typestate Orientation
A file object has defined
operations:

Open
Read
Write
Close

A file object has defined
states:

isOpen
isClosed

7
© 2018 Carnegie Mellon University [[DISTRIBUTION STATEMENT A] This material has been approved for

public release and unlimited distribution.

Operations and States combine to define
legal invocations

Operations

Open Read Write Close

St
at

es isOpen Illegal Permitted Permitted Permitted

isClosed Permitted Illegal Illegal Illegal

8
© 2018 Carnegie Mellon University [[DISTRIBUTION STATEMENT A] This material has been approved for

public release and unlimited distribution.

Object oriented programming: organize by
operation

Object FileObject {
Open(File){
if isOpen(File)error
else {

fopen(File);
FileState = isOpen;

}
Read(File)returns char{
if isClosed(File)error
else return fread(File);
}
Write(File, char){ … }
Close(File){

if isClosed(File) error;
fclose(File);
FileState = isClosed;

}
}

9
© 2018 Carnegie Mellon University [[DISTRIBUTION STATEMENT A] This material has been approved for

public release and unlimited distribution.

Typestate programming: organize by state

Type FileState {
isOpen(File){
Read(File) returns char {

return fread(File);}
Write(File,char) { … }
Close(File) {

fclose(File);
FileState = isClosed;}

}
isClosed(File){

Open(File) {
fopen(File);
FileState = isOpen;

}
}

}

10
© 2018 Carnegie Mellon University [[DISTRIBUTION STATEMENT A] This material has been approved for

public release and unlimited distribution.

Typestate

• Blockchain programs commonly type state-oriented

• Obsidian makes type state first-class

- An object in Obsidian has a typestate that restricts which
transactions (operations) can be invoked on it.

• State transitions in a transaction can change the type state
of an object

- State transition sequences frequently can be inferred by
analyzing program flow at compile time

• States and the transactions that can change state are
organized into modules called contracts

11
© 2018 Carnegie Mellon University [[DISTRIBUTION STATEMENT A] This material has been approved for

public release and unlimited distribution.

Example Obsidian Program

• A LibraryPatron is always
in either the NoCard or
HasCard state

contract LibraryPatron {
state NoCard {

}

state HasCard {

}
}

Adapted from Barnaby, et al.

12
© 2018 Carnegie Mellon University [[DISTRIBUTION STATEMENT A] This material has been approved for

public release and unlimited distribution.

Example Obsidian Program

• A LibraryPatron is always
in either the NoCard or
HasCard state

• getBook can only be called
in HasCard state

• Calling from NoCard state
results in compile-time
error

contract LibraryPatron {
state NoCard {

}

state HasCard {
transaction getBook(){
…

}
}

}

Adapted from Barnaby, et al.

13
© 2018 Carnegie Mellon University [[DISTRIBUTION STATEMENT A] This material has been approved for

public release and unlimited distribution.

Example Obsidian Program

• A LibraryPatron is always
in either the NoCard or
HasCard state.

• getBook can only be called
in HasCard state

• Calling from NoCard state
results in compile-time
error

• ->HasCard is a state
transition

contract LibraryPatron {
state NoCard {
transaction getCard(){
…
->HasCard;

}
}

state HasCard {
transaction getBook(){
…

}
}

}

Adapted from Barnaby, et al.

14
© 2018 Carnegie Mellon University [[DISTRIBUTION STATEMENT A] This material has been approved for

public release and unlimited distribution.

Linear Types

• Blockchain programs often manage some kind of resource

- e.g., cryptocurrency, votes, items in supply chain

• Resources, defined as Linear types, allow the compiler to
enforce “resource safety”:

- Variables of linear type must be used exactly once in their defined
scope, hence

• Resources cannot be used more than once

• Resources must be used before leaving the current scope (i.e.,
don’t lose it)

15
© 2018 Carnegie Mellon University [[DISTRIBUTION STATEMENT A] This material has been approved for

public release and unlimited distribution.

Linear Resource Example

contract Treasury{
// Money is a resource of Treasury
resource contract Money { … }

transaction DoubleSpend(Money m) {
spendMoney(m);
Bond b = exchangeForBond(m);

}

transaction ForgetToSpend(Money m) {
return;

}
}

Compiler error – m used twice

Compiler error – m never used

Adapted from Barnaby, et al.

16
© 2018 Carnegie Mellon University [[DISTRIBUTION STATEMENT A] This material has been approved for

public release and unlimited distribution.

Programmers should be able to write
correct Obsidian code easily and effectively.

Creating an intuitive language is hard! Many
difficult design choices exist

Usability

17
© 2018 Carnegie Mellon University [[DISTRIBUTION STATEMENT A] This material has been approved for

public release and unlimited distribution.

Usability study

Participants were given a description of a voter registration system
for a hypothetical democratic nation.

18
© 2018 Carnegie Mellon University [[DISTRIBUTION STATEMENT A] This material has been approved for

public release and unlimited distribution.

1. Write pseudocode to implement program.

2. Given a state diagram modeling the voter
registration system, modify pseudocode.

3. Given Obsidian tutorial (with no
information on state transitions) invent
syntax for state transitions and complete
an Obsidian contract.

4. Shown three options for state transitions,
complete a brief contract for each option.

5. Choose one of the three options and use
it to complete the Obsidian program from
part 3.

Usability study

19
© 2018 Carnegie Mellon University [[DISTRIBUTION STATEMENT A] This material has been approved for

public release and unlimited distribution.

• Programmers do not naturally
consider state-based design when
architecting code

• Most intuitive design: include all
possible state actions explicitly within
the state

Usability study – Findings

20
© 2018 Carnegie Mellon University [[DISTRIBUTION STATEMENT A] This material has been approved for

public release and unlimited distribution.

• Obsidian contains core features—
including first-class typestate and
linear resources—to allow users to
write safe programs easily and
effectively

• Usable programming language design
requires iteration and user testing

- Obsidian is an active research
language and continues to evolve

Summary

21
© 2018 Carnegie Mellon University [[DISTRIBUTION STATEMENT A] This material has been approved for

public release and unlimited distribution.

Research Team

Michael Coblenz, Jenna Wise,
Joshua Sunshine, Jonathan
Aldrich, Brad Myers, Tyler Eltzel

Elli Kanal

Celeste Barnaby

Rick Hull

Institute for Software Research,
School of Computer Science,
Carnegie Mellon University

Software Engineering
Institute, Carnegie Mellon
University

Wesleyan University

IBM

22
© 2018 Carnegie Mellon University [[DISTRIBUTION STATEMENT A] This material has been approved for

public release and unlimited distribution.

Additional Reading
Michael Coblenz, “Obsidian: A Safer Blockchain Programming Language,” 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-C),
http://ieeexplore.ieee.org/document/7965268/

Michael Coblenz, Elli Kanal, Jenna Wise, Joshua Sunshine, Jonathan Aldrich, Brad Myers, Rick Hull,
“Obsidian: a Safer Blockchain Programming Language,” 2017,
https://resources.sei.cmu.edu/asset_files/Presentation/2017_017_001_506530.pdf

Eliezer Kanal, Michael Coblenz, “Obsidian - A Safer Blockchain Programming Language,” October 2017,
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=506444

Celeste Barnaby, Michael Coblenz, Tyler Etzel, Eliezer Kanal, Joshua Sunshine, Brad Myers, Jonathan
Aldrich, “A User Study to Inform the Design of the Obsidian Blockchain DSL, SPLASH 2017, ”
https://2017.splashcon.org/event/plateau-2017-a-user-study-to-inform-the-design-of-the-obsidian-
blockchain-dsl

Source:

https://github.com/mcoblenz/Obsidian

https://2017.splashcon.org/event/plateau-2017-a-user-study-to-inform-the-design-of-the-obsidian-blockchain-dsl

23
© 2018 Carnegie Mellon University [[DISTRIBUTION STATEMENT A] This material has been approved for

public release and unlimited distribution.

Contact Information

Mark Sherman
Director, Cyber Security Foundations
CERT, Software Engineering Institute
4500 Fifth Ave
Pittsburgh, PA 15213
Telephone: +1 412.268.5800
Email: info@sei.cmu.edu, mssherman@sei.cmu.edu

mailto:info@sei.cmu.edu

	Obsidian: a Safe and Natural Programming Language for Blockchain Applications
	Slide Number 2
	Existing blockchain programs are vulnerable
	Obsidian: a new programming language
	Obsidian: Core Features
	Object Orientation vs Typestate Orientation
	Operations and States combine to define legal invocations
	Object oriented programming: organize by operation
	Typestate programming: organize by state
	Typestate
	Example Obsidian Program
	Example Obsidian Program
	Example Obsidian Program
	Linear Types
	Linear Resource Example
	Usability
	Usability study
	Usability study
	Usability study – Findings
	Summary
	Research Team
	Additional Reading
	Contact Information

