
[DISTRIBUTION STATEMENT Please copy and paste the appropriate distribution statement into
this space.]

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

How Should We Address
Cybersecurity Risk in an Agile or
DevOps Environment?

Carol Woody, Ph.D.

2Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Document Markings

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless
designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS
FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

GOVERNMENT PURPOSE RIGHTS – Technical Data
Contract No.: FA8702-15-D-0002
Contractor Name: Carnegie Mellon University
Contractor Address: 4500 Fifth Avenue, Pittsburgh, PA 15213

The Government's rights to use, modify, reproduce, release, perform, display, or disclose these technical data are restricted by paragraph (b)(2) of the Rights in Technical Data—
Noncommercial Items clause contained in the above identified contract. Any reproduction of technical data or portions thereof marked with this legend must also reproduce the
markings.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for
any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

ATAM®, Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

Team Software ProcessSM and TSPSM are service marks of Carnegie Mellon University.

DM18-0347

3Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Tutorial: Topics

Cybersecurity Risk
Agile and DevOps Impacts
Cybersecurity Risk Frameworks
• Build Security In Maturity Model (BSIMM)
• Standards
• NIST Risk Management Framework (RMF)
• Software Assurance Framework (SAF)

Applying Critical Cybersecurity Requirements
Case Studies & Summary

4Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

© 2018 Carnegie Mellon University [Distribution Statement A] This material has been approved for public release and
unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Cybersecurity Risk

5Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

What Is Risk?

The probability of suffering harm or loss
A measure of the likelihood that an event will lead to a loss coupled with the magnitude of
the loss
Risk requires the following conditions:1

• A potential loss
• Likelihood
• Choice

1. Charette, Robert N. Application Strategies for Risk Analysis. New York, NY: McGraw-Hill Book Company, 1990.

Consequence
(Loss)

Potential Event

Condition

6Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Software is Addressing More Functionality

All software has defects.

Software quality determines the defect
volume and 1-5% are vulnerabilities

Software volume is increasing
• F-22 fighter aircraft (2005)

- 1.7 MLOC

• F-35 Lightning II fighter aircraft (2016)
- 24 MLOC

Likelihood of software vulnerabilities is
increasing as software volume increases

Defects per million lines of
code (MLOC)
Best-in-class code:

<600 defects per MLOC
Very good code:

600 to 1,000 defects per
MLOC

Average quality code:
6000 defects per MLOC

Capers Jones, sqgne.org/presentations
/2011-12/Jones-Sep-2011.pdf

1-5 % of defects are
vulnerabilities.
Woody, Carol; Ellison, Robert; and
Nichols, William. Predicting Software
Assurance Using Quality and Reliability
Measures. CMU/SEI-2014-TN-026.
Software Engineering Institute, Carnegie
Mellon University. 2014.
http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=428589)

7Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Software Vulnerability

Software Weakness: A deficiency, flaw, defect, or limitation in code, design, or architecture that
can lead to a software vulnerability.

Software Vulnerability: A weakness in software that may be exploited, resulting in a negative
impact to confidentiality, integrity, or availability.

Each exploit requires three elements
• software weakness
• threat source access to the software weakness
• threat source capability to exploit the software weakness

Consequence
(Loss)

Potential Event

Condition

Threat attack

Software
weakness

Vulnerability

8Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Software Vulnerabilities are Increasing

As the use of software increases, the three required elements are
increasingly present:

System weaknesses
- Millions of lines of software code handling an ever increasing amount of system functionality
- Thousands of reported software vulnerabilities (see National Vulnerability Database)

Threat source access to software weaknesses
- Many vendors have been compromised and their IP (e.g. designs and source code) stolen to inform attackers
- Increased connectivity linking systems to other systems and connecting systems to new types of devices expands the

potential attack surface
- Increased system and device remote communication capability

Threat source capability to exploit the weakness
- Attacker access to the same tools and techniques used to build and defend software
- Reverse engineering capabilities for software patches provides information about the most recently identified

vulnerabilities

9Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

ICT Supply Chain Threats

Supplier

System Integrator
or Developer

Manufacturer

Supplier

Supplier

Supplier

Acquirer

Intentional threats
• counterfeit hardware and

software
• tampering
• theft
• malware insertion

Result: Systems that contain
software vulnerabilities and do
not “function as intended”

Unintentional threats
• poor code quality
• software vulnerabilities

unintentionally inserted

Growing Supply Chains Increase Sources for Software
Vulnerabilities and Threat Access

10Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Contractors Perform Supply Chain Risk Management (SCRM)

General
Ledger

SQL Server WebSphere

HTTP server

XML Parser

Oracle DB SIP servlet
container

GIF library

Note: hypothetical application composition

Development is now assembly
using collective development
• Too large for single

organization
• Too much specialization
• Too little value in individual

components
Supply chains are long,
convoluted and international

How well are we managing
the supply chains?

11Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Recent Supply Chain Attacks Indicate Growing Risk

Types of supply chain attacks that leveraged compromised code:
Source Code Attacks

• Shadowpad (2017), Anti-Virus Code attack (2017)

Software Tool Attacks
• XcodeGhost (2015), Expensive Wall (2017), HackTask (2017)

Download Site Attacks
• Havex/Dragonfly (2014), KingSlayer (2015), Fioxif/CCleaner (2017)

Patch Site Attacks
• NotPetya/MeDoc (2017) paralyzed networks worldwide

12Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

© 2018 Carnegie Mellon University [Distribution Statement A] This material has been approved for public release and
unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Agile and DevOps Impacts

13Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Opportunities to Reduce Cybersecurity Risk

Mission thread
(Business process)

14Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Increased Software Use - Agile & DevOps Risk?

Extensive reliance on automation – even more software driving decisions
• What if the attacker could hide an attack by changing the monitoring software (integrity

problem and undiscovered intrusions)
Stakeholders define the work sequence

• What if stakeholders choose to delay upgrades to finish some functionality first
(potential vulnerabilities remain exposed)

What if the integration of a COTS product provides functionality quickly but there are
many vulnerabilities in the code?

• Who finds the vulnerabilities and fixes them?
• Who decides what is implemented and when?

What if the use of Cloud services will speed up the implementation substantially in
replacing a legacy system but the Cloud vendor will not demonstrate security testing logs
and controls without extensive cost increases?

15Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

What Level of Quality Software Should We Build?

All software has defects. Research clearly
shows the higher the quality of software, the
lower the number of defects and the lower the
number of vulnerabilities.

16Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Cybersecurity Is a Lifecycle Challenge

Mission thread
(Business process)

Design Weaknesses Coding Weaknesses Implementation
Weaknesses

940 Common Weaknesses
74,462 Common
Vulnerability
Enumerations
(CVE)

CVE.Mitre.orgCWE.Mitre.org as of Feb 2014

17Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

© 2018 Carnegie Mellon University [Distribution Statement A] This material has been approved for public release and
unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Cybersecurity Risk Frameworks

18Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Building Security In Maturity Model (BSIMM)

The Building Security In Maturity Model (BSIMM) is a multi-year study (8 years and counting)
led by Cigital and Fortify (http://bsimm.com/)

- Reviewed the efforts of over 100 organizations
- Objective was to identify what is currently done (state of the practice) rather than to promote

specific [unproven] practices.

Identified 113 security activities across the surveyed organizations and organized those
activities into 12 practice areas.

The number of collected activities demonstrates that there are multiple ways to improve
software security and that the BSIMM activities should be used as specific acquisition
requirements.

Defines three levels of levels of maturity for each practice based on usage.
- Level 1 activities (straightforward and simple) are commonly observed,
- Level 2 (more difficult and requiring more coordination) slightly less so
- Level 3 (rocket science) are much more rarely observed.

http://bsimm.com/

19Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

BSIMM Average Scores
Governance DeploymentIntelligence Development

Training

Penetration Testing

Configuration Mgnt &
Vulnerability Mgnt Compliance &

Policy

Strategy &
Metrics

Standards & Requirements

Security Features and
Designs

Attack Models

Architecture
Analysis

Security Testing

Code Review

Software Environment

20Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

BSIMM Scores for Top 10 Firms

Training

Penetration Testing

Configuration Mgnt &
Vulnerability Mgnt Compliance &

Policy

Strategy &
Metrics

Standards & Requirements

Security Features and
Designs

Attack Models

Architecture
Analysis

Security Testing

Code Review

Software Environment

Governance DeploymentIntelligence Development

21Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Standards Organizations Focused on Cybersecurity

ISC/ESC – secure coding, supply chain
NIST – security risk management, secure practices, security systems engineering, supply
chain risk management
IEEE – software engineering
NDIA – system engineering
ISACA – process management (recently acquired CMMI)
ISC2 – certification for information assurance, compliance with SwA curriculum model
INCOSE – system engineering
OWASP - Open Web Application Security Project

22Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Other Industry Standards Efforts

Object Management
Group
(http://www.omg.org/)

Software Assurance
Working Group is
developing
specifications that
enable creation of tools
related to data
collection for
automation of
assurance

Trusted Technology
Forum
(http://www.opengro
up.org/subjectareas/t
rusted-technology)

Standard that certify
conformance to best
practices of ICT
Providers to mitigate
the risk of tainted &
counterfeit products.

SafeCode Industry
Consortium
(https://www.safecode
.org/)

Major vendors (e.g.
Microsoft, Dell,
Seimans, Adobe,
Symantec) who build
critical technology
products share
information about how
they address security.

http://www.omg.org/
http://www.opengroup.org/subjectareas/trusted-technology
https://www.safecode.org/

23Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Standards Bodies

Bartol, ISO Cyber Security and ICT SCRM Standards, Annual
Computer Security Applications Conference (ACSAC), December
2012 www.acsac.org/2010/program/case/wed-1330-Bartol.pdf

http://www.acsac.org/2010/program/case/wed-1330-Bartol.pdf

24Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

NIST Risk Management Framework (RMF)

NIST SP 800-37 (DoDI 8510.01) RMF

Security Practice Guidance: NIST 800-53, NIST 800-53A
Supply Chain Risk Guidance: NIST 800-161

25Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Software Assurance Framework (SAF)

What
• Defines cybersecurity practices for acquiring and engineering software-reliant systems

Why
• Improve cybersecurity practices

in acquisition programs
Benefits

• Provides the basis for assessing
gaps in a program’s cybersecurity
practices and charting a course for improvement

• Establishes confidence in a program’s ability to acquire software-reliant systems across
the lifecycle and supply chain

• Reduces cybersecurity risk of deployed software-reliant systems
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=496134

26Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Key Practice Areas for Cyber Security

Process Management
• Process Definition
• Infrastructure Standards
• Resources
• Training

Engineering
• Product Risk Management
• Requirements
• Architecture
• Implementation
• Testing, Validation, and Verification
• Support Documentation and Tools
• Deployment

Project Management
• Project Plans
• Project Infrastructure
• Project Monitoring
• Project Risk Management
• Supplier Management

Support
• Measurement and Analysis
• Change Management
• Product Operation and Sustainment

27Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

SAF: Policy, Process, & Practice Alignment

2. Materiel Solution
Analysis (MSA)

Practices

3. Technology
Development (TD)

Practices

4. Engineering and
Manufacturing
Development

(EMD) Practices

5. Production and
Deployment (PD)

Practices

6. Operations and
Support (O&S)

Practices

1. Governance Infrastructure Practices

9. Software Security Infrastructure Practices

7. Secure Software Development Practices 8. Secure Software Operation Practices

28Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Opportunities for Improvement

Mission thread
(Business process)

19% fail to carry out security
requirement definition

27% do not practice
secure design

30% do not use static
analysis or manual code
review during development

47% do not perform
acceptance tests for
third-party code

Less than 19% coordinate their security practices in various stages of the development lifecycle.

Source: Forrester Consulting, “State of Application Security,” January
2011

29Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

© 2018 Carnegie Mellon University [Distribution Statement A] This material has been approved for public release and
unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Applying Critical Cybersecurity
Requirements

30Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Emphasize Quality - Focus on Defect Injection and Removal

Poor quality predicts poor security

31Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Approach for Predicting Security with Quality

Development

Operations

Fully instrumented process

0
20
40
60

Early Defect Removal across
Life Cycle

C&A

The Systems Sciences Institute at IBM has reported that “the
cost to fix an error found after product release was four to
five times as much as one uncovered during design, and up to
100 times more than one identified in the maintenance
phase.” [2015]

Early Life Cycle Indications for software
assurance risk based on quality processes
and quality control

• Fine-grained quality gates and tracking
• Models for predicting phase, increment, release,

and operations quality

https://www.isixsigma.com/industries/software-it/defect-prevention-reducing-costs-and-enhancing-quality/

32Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Successful Projects Inject Security Expertise Continuously

Embed Quality and Security Inspections at
Each Lifecycle Step

Peer review each step; Apply tools for code complexity, static and
dynamic vulnerability analysis across the life cycle

33Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Plan for Effective Cybersecurity

Establish a Secure Software Development Lifecycle (SDLC) to ensure that
cybersecurity activities are an integral part of the development effort to address:

• Software security as a continuous concern across the life cycle
• Early detection and removal of software weaknesses
• Awareness of the impact of software assurance choices on program protection

RMF Controls Addressed
SA-3 System Development Life Cycle
SA-4(3) Acquisition Process | Development Methods/Techniques/Practices

34Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Secure Software Development Life Cycle

Key Considerations:
• Secure development practices must apply to all software (including firmware, embedded,

safety-critical, and third-party)

• Processes and practices should be clearly identified as addressing cybersecurity and
integrated into each delivery cycle

• Third party participation includes confirming they are following secure development
practices or compensating for potential gaps by applying them as part of integration

• Incident response, breach notification, and data recovery should be part of the software
life cycle practices (direct link to DevOps) with a feedback mechanism to remove the root
causes

35Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

1. Code hygiene – introduce secure coding
2. Secure DevOps – include security tools
3. Threat modeling – represent a new role
4. Risk analysis – prioritize in backlog

Persona
non grata

Code hygiene
Secure DevOps

Threat modeling

Risk analysis

(See also: Bellomo and Woody, DoD Information Assurance and Agile: Challenges and
Recommendations Gathered Through Interviews with Agile Program Managers and
DoD Accreditation Reviewers
(http://repository.cmu.edu/cgi/viewcontent.cgi?article=1674&context=sei)

Secure Software Development Life Cycle

Uncaught
Breaches

DevOps
Feedback

http://repository.cmu.edu/cgi/viewcontent.cgi?article=1674&context=sei

36Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Focus on Software Vulnerabilities & Weaknesses

Critical Software Cybersecurity Requirements
1 Secure System/Software Development Lifecycle
2 Software Development Process, Standards, and Tools
3 Software Security Requirements
4 Software Security Architecture and Design
5 Software Configuration Management
6 Developer Security Testing and Evaluation
7 Static Code Analysis
8 Dynamic Code Analysis
9 Manual Code Reviews
10 Attack Surface Reviews
11 Software Threat Analysis
12 Penetration Testing/Analysis
13 Verifying Scope of Testing and Evaluation
14 Independent Verification of Assessment Plans/Evidence
15 Software Flaw Remediation
16 Malicious Code Protection
17 Software and Firmware Integrity
18 Software Supply Chain Protection

For each software
requirement we will
address the
following:
• Description/value
• RMF Controls
• Examples
• Key Considerations
• Evidence

37Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

2. Software Development Process, Standards, and Tools

Description
Repeated consistent delivery for of effective cybersecurity for all software
development requires the use of processes, standards, and tools that address
software security within the development life cycle for the each specific type of
software to be delivered. Choices should be based on criticality of software, who
must use them, options available for each specific software type and when they
are used in the software development life cycle.

RMF Controls Addressed
SA-15 Development Process, Standards, and Tools

38Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

2. Software Development Process, Standards, and Tools

Examples
Processes for Security Requirements: Threat modeling, Security Engineering Risk
Analysis (SERA), Software vulnerability assessments, Supply Chain Risk Management
(SCRM)

Standards: NIST Cybersecurity Framework (CSF) focuses on critical infrastructure, ISO/IEC
27034 (2011) an international standard for application security which is life cycle agnostic,
CERT Coding Standards (C, C++, Java), Open Trusted Provider Technology Standard (O-
TTPS) that certifies conformance to best practices to mitigate the risk of tainted & counterfeit
products

Tools: Integrated Development Environments (IDE) incorporate software vulnerability
tracking into software development activities; static and dynamic analysis tools, code
compliance checkers

39Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

2. Software Development Process, Standards, and Tools

Key Considerations:
Coverage of the many types of software is a major concern

• Will legacy code and supplier software be covered?
• Are all coding languages covered?
• Are multiple tools used?

Evidence:
Tools, standards, and processes should be clearly visible and monitored for
effectiveness (e.g. # uncaught breaches and reasons for them should be reduced)
Developers tend to repeat their mistakes – how is their training improved by the
identification and handling vulnerabilities and uncaught breaches

40Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

3. Software Security Requirements (User Stories for
Misuse and Abuse)
Description
It is well recognized in industry that requirements engineering is critical to the success of any major
development project. Several authoritative studies have shown that requirements engineering
defects cost 10 to 200 times more to correct once fielded than if they were detected during
requirements development.

For Agile development building starts with good user stories that consider not only desired
functionality but ways in which the system should properly handle unacceptable behaviors (misuse
and abuse).

RMF Controls Addressed
SA-4 Acquisition Process

SA-4(1) Acquisition Process | Functional Properties of Security Controls

41Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

3. Software Security Requirements

Examples
• Attack trees

Ellison, R. & Moore, A. Trustworthy Refinement Through Intrusion-Aware Design (CMU/SEI-2003-TR-
002, ADA414865). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University, 2003.

• Use, Misuse, and Abuse Cases
Alexander, Ian. “Misuse Cases: Use Cases with Hostile Intent.” IEEE Software 20, 1 (January-
February 2003): 58-66.

• Security Quality Requirements Engineering (SQUARE)
Mead, N.R. ; Hough, E.; & Stehney, T. Security Quality Requirements Engineering (SQUARE)
Methodology (CMU/SEI-2005-TR-009). Software Engineering Institute, 2005.
http://www.sei.cmu.edu/library/abstracts/reports/05tr009.cfm

• Security Patterns
Mellardo, D., Fernandez-Medina, E., Paittini, M., Applying a Security Requirements Engineering
Process. Computer Security – ESORICS 2006: 11th European Symposium on Research in computer
Security, Hamburg, Germany, September 18-20, 2006. Proceedings (pp.192-206)

42Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

3. Software Security Requirements

Key Considerations:
Common software security requirements problems:

• stated as specific security solutions (practices) or compliance mandates and not real
requirements which must be testable

• too narrowly focused on security in a particular component (e.g. use SSL for Web
communication) and not the whole system

• external feeds from other systems are trusted without verification
• no stakeholders knowledgeable enough about security impacts to effectively state

software security requirements
Evidence:
User stories clearly describe how the system should and should not perform
Test plans include verification that the system does not do what is not allowed

43Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

4. Software Security Architecture and Design

Description
Architecture and design establish how the system will function and choices are made among
the various system qualities (performance, safety, reliability, security, etc.). Security
architecture is a unified security design that addresses when and where to apply security
controls and how these controls relate to the overall system design. The architecture should
be analyzed to ensure it is structured to meet desired security needs.

RMF Controls Addressed
SA-17 Developer Security Architecture and Design

SA-4(2) Acquisition Process | Design/Implementation Information for Security Controls

44Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

4. Software Security Architecture and Design

Examples
Secure Architecture Design

• Industrial Control Systems diagrams: https://ics-cert.us-cert.gov/Secure-Architecture-Design
• Case study development of an information system security architecture https://www.sans.org/reading-

room/whitepapers/auditing/information-systems-security-architecture-approach-layered-protection-
1532

Architecture Analysis Approaches
• Quality Attribute Workshop (QAW) - facilitated method that engages system stakeholders early in the

lifecycle to discover the driving quality attribute requirements of a software-reliant system
• Architecture Tradeoff Analysis Method (ATAM) - method for evaluating software architectures relative to

quality attribute goals; provides insight into how those quality goals interact with each other—how they
trade off

https://ics-cert.us-cert.gov/Secure-Architecture-Design
https://www.sans.org/reading-room/whitepapers/auditing/information-systems-security-architecture-approach-layered-protection-1532

45Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

4. Software Security Architecture and Design

Key Considerations:
• Design choices must be made since qualities are frequently in conflict. The Secure

Software Development Lifecycle must include ways for making trade-off choices to meet
risk tolerances by decision makers knowledgeable about software security risk.

• Design weaknesses allow attackers to bypass security controls; these cannot be patched
later and will require redesign to address if inappropriate risk choices are made

• Architects and designers must be knowledgeable in the ways in which design
weaknesses occur and can impact system and software security

Evidence:
Software architecture is clearly described and the qualities that the architecture emphasizes
(prioritizing requirements) are clearly defined

Security risk is considered within the architecture decision making

46Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

5. Software Configuration Management

Description
Software configuration management is the task of tracking and controlling changes in the
software, part of the larger cross-disciplinary field of configuration management. Poor
configuration management practices are a major source of software problems (e.g. code
added from inappropriate libraries with known malware).

RMF Controls Addressed
SA-10 Developer Configuration

SA-10 (1) Developer Configuration Management | Software/Firmware Integrity Verification

47Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

5. Software Configuration Management

Guidance for Configuration Management
Top 10 Best Practices in Configuration Management (2007)

https://www.cmcrossroads.com/article/top-10-best-practices-configuration-management

Software Configuration Management Best Practices
https://www.microfocus.com/media/white-
paper/software_configuration_management_best_practices_wp.pdf

Introduction to Configuration Management Best Practices: Practical Methods that Work in
the Real World (2010) http://www.informit.com/articles/article.aspx?p=1622259

https://www.cmcrossroads.com/article/top-10-best-practices-configuration-management
https://www.microfocus.com/media/white-paper/software_configuration_management_best_practices_wp.pdf
http://www.informit.com/articles/article.aspx?p=1622259

48Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Examples: Open source security issues

Heartbleed and
Shellshock were found
by exploitation

Other open source
software illustrates
vulnerabilities from cursory
inspection

Sources: Steve Christey (MITRE) & Brian Martin (OSF), Buying Into the Bias: Why Vulnerability Statistics Suck, https://media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-Why-Vulnerability-Statistics-Suck-Slides.pdf; Sonatype,
Sonatype Open Source Development and Application Security Survey; Sonatype, 2016 State of the Software Supply Chain; Aspect Software “The Unfortunate Reality of Insecure Libraries,” March 2012, Mike Pittenger, Black Duck, “Open
Source Security Analysis,” 2016

1.8 billion vulnerable open source
components downloaded in 2015

26% of the most common open source
components have high risk

vulnerabilities

On average, applications have 22.5 open
source vulnerabilities

https://media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-Why-Vulnerability-Statistics-Suck-Slides.pdf

49Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

5. Software Configuration Management

Key Considerations:
• Software configuration management (and effective tools) must be consistently applied to

all software assets and integrated into the system and software development lifecycle

• Contractors should explain how software developed in the supply chain will be integrated
into their configuration management

• Information about security fixes are too frequently buried within software feature updates
and not effectively validated in updates

Evidence:
Each software build clearly tracks each element to the configuration management
environment.

50Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

6. Developer Security Testing and Evaluation

Description
Security testing involves a range of tools and specialized skills that are not part of the standard
software testing process. The Security Testing and Evaluation plan needs to define what tools will
be used, who will be using the tools (skill levels), tool coverage across the code and plans for
addressing gaps, when the testing will be done and how results will be reported. A good test plan
establishes confidence that software security requirements are appropriately addressed.

RMF Controls Addressed
SA-11 Developer Security Testing and Evaluation

51Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

6. Developer Security Testing and Evaluation

Guidelines
• Testing Guide Introduction, which includes a section on security testing integrated into

development
https://www.owasp.org/index.php/Testing_Guide_Introduction#Deriving_Security_Test_
Requirements

• Writing Software Security Test Cases http://www.qasec.com/2007/01/writing-software-
security-test-cases.html

https://www.owasp.org/index.php/Testing_Guide_Introduction#Deriving_Security_Test_Requirements
http://www.qasec.com/2007/01/writing-software-security-test-cases.html

52Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Security Testing - Government Tool Resources

NIST Software
Assurance Metrics and

Tool Evaluation
(SAMATE)

(http://samate.nist.gov/
index.php/Main_Page)

Evaluates available tools
against standard
vulnerabilities to

objectively
demonstrating their use

on real software

Software Assurance
Marketplace

(https://continuousa
ssurance.org/)

Provides free ready-
to-use computing
platform and tools or
the SWAMP-in-a-Box
(SiB) open-source
distribution for code
security testing

State-of-the-Art
Resources (SOAR) for
Software Vulnerability
Detection, Test, and

Evaluation
(http://www.acq.osd.mil
/se/docs/P-8005-
SOAR-2016.pdf)

IDA supports this to
assist those making
effective software
assurance (SwA) and
supply chain risk
management (SCRM)
decisions

SOAR

http://samate.nist.gov/index.php/Main_Page
https://continuousassurance.org/
http://www.acq.osd.mil/se/docs/P-8005-SOAR-2016.pdf

53Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

DoD Software Assurance Resources

DoD Joint Federated Assurance Center (JFAC)

• Service providers designated by each
DoD Service Component (Army, Navy,
Air Force) and available to DoD
program offices

• Managed by the JFAC Coordination
Center (JFAC-CC)

54Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

6. Developer Security Testing and Evaluation

Key Considerations:
• Security test cases should:

• be built as the system is designed to ensure full confirmation of security
requirements

• validate that security is properly blocking inappropriate behaviors as well as allowing
proper behaviors

• Security testing should include identification and prioritization of software vulnerabilities
• Security testing should focus on confirming the software is built to function as intended

and does not exhibit unstable behaviors that can be compromised
Evidence:
• Reduction in uncaught breaches after implementation
• Improved quality metrics (reduced defects)

55Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

7. Static Code Analysis

Description
Static code analysis tools evaluate code for specific software weaknesses that
could lead to software vulnerabilities without actually executing the code; these
tools are specific to a development environments, coding language, code parts
(e.g. source, bytecode, or binary) and identify structures that are likely candidates
for problems.

RMF Controls Addressed
SA-11 (1) Developer Security Testing and Evaluation | Static Code Analysis

56Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

7. Static Code Analysis

Guidance and Related Information
• State-of-the-Art Resources (SOAR) for Software Vulnerability Detection, Test, and

Evaluation (http://www.acq.osd.mil/se/docs/P-8005-SOAR-2016.pdf) describes the
various types of static code analysis that should be addressed by the contractor.

• Many tools exist with varying effectiveness. NIST SAMATE project periodically evaluates
available static analysis tools against a set of code (Juliet suite) that was written to
include 11 of the top 25 CWEs to objectively demonstrate the capabilities of each tool.
https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html

• Integrated Developer Environments (IDEs) that include analysis tools allow coders to
check their code as they write it (e.g. FindBugs (Java) can be integrated into Eclipse and
Jdeveloper)

http://www.acq.osd.mil/se/docs/P-8005-SOAR-2016.pdf
https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html

57Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

7. Static Code Analysis

Key Considerations:
• Broad code coverage is needed along with multiple tools to ensure breadth of CWE

coverage (described in the STP)

• There are many types of static analysis (e.g., source analysis, binary analysis, origin
analysis) each requires different source material, uses different tools, and addresses
different kinds of software weaknesses

• Tools must be effectively tuned to identify critical software problems without identifying too
many false positives that frustrate the developers who may ignore them, turn off flags or
skip tool use. Tool set up and monitoring should be handled by knowledgeable resources.

Evidence:
Developers are trained to avoid repeating the same types of mistakes

Improved code quality has shown a reduction in false positives by static analysis tools

58Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

8. Dynamic Code Analysis

Description
Dynamic code analysis is an evaluation of the software as it executes on a real or virtual
processor using sufficient test inputs to evaluate a wide range of possible behaviors.

These tools should generate runtime vulnerability scenarios through the following functions:
perform file corruption, resource fault injection, network fault injection, system fault injection,
and user interface fault injection attacks.

Types of dynamic code analysis include network scanners, network sniffers, network
vulnerability scanners, host-based vulnerability scanners, and host application interface
scanners.

RMF Controls Addressed
SA-11 (8) Developer Security Testing and Evaluation | Dynamic Code Analysis

59Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

8. Dynamic Code Analysis

Guidance and Tools
• State-of-the-Art Resources (SOAR) for Software Vulnerability Detection, Test, and

Evaluation (http://www.acq.osd.mil/se/docs/P-8005-SOAR-2016.pdf) describes the
various types of dynamic code analysis that should be addressed by the contractor.

• Open source or free tools list (June 2016) https://www.peerlyst.com/posts/resource-a-list-
of-dynamic-analysis-tools-for-software-susan-parker

• Another dynamic code analysis tool list is available (September 2017) at
https://en.wikipedia.org/wiki/Dynamic_program_analysis

http://www.acq.osd.mil/se/docs/P-8005-SOAR-2016.pdf
https://www.peerlyst.com/posts/resource-a-list-of-dynamic-analysis-tools-for-software-susan-parker
https://en.wikipedia.org/wiki/Dynamic_program_analysis

60Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

8. Dynamic Code Analysis

Key Considerations:
• Use of measures such as code coverage help ensure that an adequate slice of the

software’s set of possible behaviors has been observed.

• Tools are specific to operating system platforms and types of analysis; multiple tools are
needed to identify a sufficient range of problem software behaviors.

Evidence:
Developers are trained to avoid repeating the same types of mistakes

Uncaught vulnerabilities should be reducing over time

61Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

9. Manual Code Reviews

Description
Code review is a systematic examination (sometimes referred to as peer review) of
computer source code. It is intended to find mistakes overlooked in software development,
improving the overall quality of software.

Tools miss a lot of issues lurking in code and need to be backstopped by manual review
undertaken by developers with security expertise who can overcome the limitations of these
tools.

Reviews can vary in coverage and intensity: spot checks, specific reviews, IEEE 1028 formal
inspections, and generated code inspections.

RMF Controls Addressed
SA-11 (4) Developer Security Testing and Evaluation | Manual Code Reviews

62Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

9. Manual Code Reviews

Guidance
• 5 Best Practices for Perfect Secure Code Review

https://www.checkmarx.com/2016/02/05/5-best-practices-perfect-secure-code-review/

• OWASP Code Review Guide
https://www.owasp.org/images/2/2e/OWASP_Code_Review_Guide-V1_1.pdf

• Code Review Checklist http://www.evoketechnologies.com/blog/code-review-checklist-
perform-effective-code-reviews/

• 22 Point Code Review Checklist http://www.fromdev.com/2015/02/code-review-
checklist.html

https://www.checkmarx.com/2016/02/05/5-best-practices-perfect-secure-code-review/
https://www.owasp.org/images/2/2e/OWASP_Code_Review_Guide-V1_1.pdf
http://www.evoketechnologies.com/blog/code-review-checklist-perform-effective-code-reviews/
http://www.fromdev.com/2015/02/code-review-checklist.html

63Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

9. Manual Code Reviews

Key Considerations:
• Tools are not available for all programming languages and manual review is the only

option for some software. The STP should identify specific review issues that require
manual review.

• These reviews need to be conducted during development with resources familiar with the
security requirements and the software language in use.

• Sufficient time that matches resource availability needs to be allowed in the schedule to
perform manual reviews.

Evidence:
All code is reviewed at some point in the lifecycle (including legacy, third party, firmware)

Planning clearly notes what approach will be used for each type of code and how success
will be measured.

64Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

10. Attack Surface Reviews

Description
The software attack surface includes all of the ways an unauthorized user
(attacker) could reach the software to exploit vulnerabilities or extract data; this
includes paths from access points external to the system, linked system
components including third-party products such as operating systems, and
network connections. Reducing the number of attack paths has been shown to
improve software protection.

RMF Controls Addressed
SA-11 (6) Developer Security Testing and Evaluation | Attack Surface Reviews

65Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

10. Attack Surface Reviews

Guidance and tools
• Common Attack Pattern Enumeration and Classification (CAPEC) attack patterns

(https://capec.mitre.org/) provides a list of typical attack patterns that can be used to
evaluate the software attack surface

• An Attack Surface Analysis Cheat Sheet is available from Open Web Application Security
Project (OWASP)
https://www.owasp.org/index.php/Attack_Surface_Analysis_Cheat_Sheet

• Microsoft (MS) Attack Surface Analyzer is a tool created for the analysis of changes made
to the attack surface of the MS operating systems since Windows Vista and beyond. It is
available for public use at https://www.microsoft.com/en-
us/download/details.aspx?id=24487

https://capec.mitre.org/
https://www.owasp.org/index.php/Attack_Surface_Analysis_Cheat_Sheet
https://www.microsoft.com/en-us/download/details.aspx?id=24487

66Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

10. Attack Surface Reviews

Key Considerations:
• Limiting the attack surface must be a requirement for the overall system not just software components
• This analysis should begin this type of analysis early in the life cycle to allow for the identification and

use of attack reduction opportunities in architecture and design decisions
• Externally developed software can increase the attack surface and should be part of the analysis - –

choices in components can change the structure of the system increasing attack risk
• Testing should verify that the planned attack surface matches the actual build

Evidence:
Attack surface considerations influence user stories and are included in evaluation of design and
development options.

67Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

11. Software Threat Analysis

Description
Software threat modeling is an analysis practice for evaluating the expected software
security by analyzing the context in which the software operates, the threat sources and
potential vulnerabilities. Appropriate countermeasures must be defined, as needed, to
prevent or mitigate the effects of high risk threats to the software.

RMF Controls Addressed
SA-11(2) Developer Security Testing and Evaluation | Threat and Vulnerability Analysis

68Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

11. Software Threat Analysis

Examples
• MS STRIDE is a structured approach (with a tool) for evaluating software for a typical set of

software threats: spoofing identity, tampering data, repudiation, information disclosure, denial of
service, and elevation of privilege.

• DREAD is a structure for quantifying, comparing and prioritizing the amount of risk presented by
each evaluated threat based on the following: damage, reproducibility, exploitability, affected
users, and discoverability

• SEI SERA (Security Engineering Risk Analysis) is currently in use at MDA BMDS to identify
potential system threats that could be triggered by software

• System Theory Process Analysis for Security (STPA-Sec) is an approach that evaluates
redesign options to address security threats

69Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Software Context Must Match Security Concerns:
Wireless Emergency Alerting System

WEA Technology Swimlane

Al
er

t O
rig

in
at

or
 (A

O
)

In
iti

at
or

 (e
.g

.,
Fi

rs
t R

es
po

nd
er

)

Fe
de

ra
l

Em
er

ge
nc

y
M

an
ag

em
en

t
Ag

en
cy

 (F
EM

A)

Co
m

m
er

ci
al

 M
ob

ile

Se
rv

ic
e

Pr
ov

id
er

s
(C

M
SP

)
Re

cip
ie

nt
s

AOS

Initiator

AOS Operator

Initiator Computer

AO Computer

IPAWS-OPEN Aggregator

Recipient Phone Recipient

CSMP Infrastructure

IPAWS-OPEN Gateway Federal Alert Gateway

CSMP Gateway

Note: Information is transferred
between AOS and AO computers by
AOS operators using USB drives.

Note: Communication of alert information between
the initiator and AOS operator can be verbal (i.e., via
telecommunications) or electronic (e.g., via email). Recent Hawaii incident

involved sending a
inaccurate public notice
of a missile attack – the
software did not require
multiple confirming
authorizations and a
single bad actor created
international havoc

70Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

11. Software Threat Analysis

Key Considerations:
• Incomplete or inaccurate operational context for the software will result in missed or

inappropriate threat considerations

• Analysis must cover software within the context of all system components.

• The impact of interfaces from external systems cannot be ignored as they represent
critical context threat vectors

Evidence:
User stories include consideration of expected threats
Monitoring in DevOps includes a focus on expected threats

Software threat monitoring includes consideration of the operational context, physical
environment, and all external interfaces and influences

71Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

12. Penetration and Fuzz Testing

Description
Penetration testing (aka ethical hacking) is an authorized effort to evaluate the software
security by attempting to exploit software vulnerabilities in a controlled environment.

Fuzz testing (fuzzing) involves inputting large volumes of invalid and random data to see
how well the software can handle the unexpected. A wide range of refinement capabilities
are available to make fuzzing more useful beyond just crashing the software. Framework-
based fuzzers include instrumentation to guide the data generation to improve relevancy.

RMF Controls Addressed
SA-11(5) Developer Security Testing and Evaluation | Penetration Testing/Analysis

72Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

12. Penetration and Fuzz Testing

Guidance and Training
• Penetration testing involves the use of many tools and requires resources trained in

effectively applying the available tools; boot camps for training are available such as:
https://www.infosecinstitute.com/courses/ethical-hacking-boot-
camp?gclid=EAIaIQobChMI-4SvqdCb2AIVkoF-Ch0IAg6YEAMYASAAEgLW2PD_BwE

• Fuzz testing tutorial is available such as https://www.guru99.com/fuzz-testing.html
Synopsys Defensics shows up frequently in fuzzing tool searches

https://www.infosecinstitute.com/courses/ethical-hacking-boot-camp?gclid=EAIaIQobChMI-4SvqdCb2AIVkoF-Ch0IAg6YEAMYASAAEgLW2PD_BwE
https://www.guru99.com/fuzz-testing.html

73Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

12. Penetration and Fuzz Testing

Key Considerations:
These need to be executed as part of the standard software lifecycle activities and
performed consistently for all software development and as part of the regression
testing for all updates.
Resources who are knowledgeable in the use of the tools are required for the
results to be of value
Evidence:
Testing includes consideration of a wide range of unexpected data

74Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

13. Verifying Scope of Testing and Evaluation

Description
Software testing is an investigation conducted to provide information about the quality of the
software product or service under evaluation. Software security testing needs to provide a
view of the software in operation to appreciate and understand the risks of the software
implementation. Test techniques also need to include the process of executing the software
with the intent of finding software vulnerabilities and verifying that the software product is fit
for use.

RMF Controls Addressed
SA-11(7) Developer Security Testing and Evaluation | Verify Scope of Testing/Evaluation

75Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

13. Verifying Scope of Testing and Evaluation

Key Considerations:
• Attackers do not distinguish between arbitrary boundaries for software, software security, and systems

so it is important that the testing ensure full coverage within a system and with external interfaces.

• The plan for software testing and the evaluation of its sufficiency should be part of the system test
planning.

• Actual software security testing can be extremely complex and difficult to execute; the process needs
to be evaluated closely for sufficiency to confirm security requirements; the closer the test environment
is to the live environment the greater the confidence.

Evidence:
Code coverage includes considerations of which tools are handle each type of issue

Evaluation of uncaught breaches identifies which tools were incomplete or inconsistently
applied to discover the problems earlier

76Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

14. Independent Verification of Assessment Plans/Evidence

Description
Software test planning and test execution (including software security) requires
independent verification in the same manner as system testing, but those performing the
independent assessment must have appropriate skills in the use of the tools and analysis
techniques selected to generate the evidence.

RMF Controls Addressed
SA-11(3) Developer Security Testing and Evaluation | Independent Verification of
Assessment Plans/Evidence

77Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

14. Independent Verification of Assessment Plans/Evidence

Key Considerations:
• The context of independent verification should be as close to actual operational context

as feasible to ensure effective confirmation of software security.

• Verifiers must be knowledgeable about software and the ways in which security
vulnerabilities are attacked.

• The program must provide sufficient time and resources for this independent review.

Evidence:
Operational support resources should be part of the review of development results
to ensure they will not break (or easily attacked) after implementation

78Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

15. Software Flaw Remediation

Description
All software contains defects and vulnerabilities. As these are discovered and addressed,
corrective actions will be needed both during and after system development. A flaw
remediation process must include all flaw handling for all types of software and needs to
interface with the configuration management process. Security-relevant software updates
including patches, service packs, hot fixes, and anti-virus signatures need to be planned for
and addressed as criticality warrants. Organizations must also address flaws and
vulnerabilities discovered during security assessments, incident response activities, and
system error handling.

RMF Controls Addressed
SI-2 Flaw Remediation
SI-2(1) Flaw Remediation | Central Management
SI-2(2) Flaw Remediation | Automated Flaw Remediation Status
SI-2(3) Flaw Remediation | Time to Remediate Flaws/Benchmarks for Corrective Actions
SI-2(6) Flaw Remediation | Removal of Previous Versions of Software/Firmware

79Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

15. Software Flaw Remediation

Key Considerations:
• Consistency in planning for and addressing flaws can increase confidence that the

contractor understands how to effectively handle software security.

• Remediation should include a consistent prioritization and tracking of unaddressed flaws
and the risk this represents.

• If the contractor is not also handling software sustainment, a means of informing those
assuming this responsibility of the residual software risk will be needed.

• The cost of remediation will be less the closer it is performed to the flaw creation.

Evidence:
All types of defects are identified, tracked, and addressed not just those identified as high
priority at the moment – attacker capabilities are continually increasing and today’s low
priority weaknesses become tomorrows incidents

80Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

16. Malicious Code Protection

Description
Malicious code insertions occur through the exploitation of software and system
vulnerabilities. In addition, external access capabilities and trusted interfaces with software
from external systems can provide a mechanism for malicious code insertion. Protection
mechanisms include the reduction of the attack surface, removal of software weaknesses,
good configuration management, and operational code validity controls (e.g. code
signatures).

RMF Controls Addressed
SI-3 Malicious Code Protection
SI-3(1) Malicious Code Protection | Central Management
SI-3(2) Malicious Code Protection | Automatic Updates
SI-3(10) Malicious Code Protection | Malicious Code Analysis

81Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

16. Malicious Code Protection

Guidance
• What is Malicious Code? https://www.veracode.com/security/malicious-code;

http://www.informit.com/articles/article.aspx?p=31782&seqNum=3

• Malicious Code – What Should We Do? https://www.sans.org/reading-
room/whitepapers/malicious/malicious-code-do-1290

• How to Prevent Malicious Code https://www.checkmarx.com/glossary/how-to-prevent-
malicious-code/

https://www.veracode.com/security/malicious-code
http://www.informit.com/articles/article.aspx?p=31782&seqNum=3
https://www.sans.org/reading-room/whitepapers/malicious/malicious-code-do-1290
https://www.checkmarx.com/glossary/how-to-prevent-malicious-code/

82Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

16. Malicious Code Protection

Key Considerations:
• Mechanisms for ensuring the integrity of software code (including protection from

malicious code insertion) should be part of the configuration management and structured
within the practices used in the Secure Software Development Life Cycle for establishing
and maintaining development and deployment environments.

• Verification should be in place for acceptance of software from suppliers to ensure no
malicious code is accepted.

Evidence:
Development environments are supported for security in the same manner as operational
environments (patched and monitored)

Configuration management covers all types of software in every context to ensure bad code
is not picked up anywhere

83Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

17. Software and Firmware Integrity

Description
Software and firmware integrity involves verification between the current file state and a
known, good baseline that typically involves calculating a known cryptographic checksum
of the baseline and comparing with the calculated checksum of the current state of the
file.

RMF Controls Addressed
SI-7 Software, Firmware, and Information Integrity
SI-7(1) Software, Firmware, and Information Integrity | Integrity Checks

84Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

17. Software and Firmware Integrity

Guidance and tools
• Firmware Integrity, Verification, and Monitoring Tool with Mapping to NIST Guidelines

https://csrc.nist.gov/Presentations/2015/Firmware-Integrity-Verification,-Monitoring-and-
Re

• 10 Tools to Verify File Integrity Using MD5 and SHA1 Hashes
https://www.raymond.cc/blog/7-tools-verify-file-integrity-using-md5-sha1-hashes/

• File Integrity Monitoring https://en.wikipedia.org/wiki/File_integrity_monitoring

https://csrc.nist.gov/Presentations/2015/Firmware-Integrity-Verification,-Monitoring-and-Re
https://www.raymond.cc/blog/7-tools-verify-file-integrity-using-md5-sha1-hashes/
https://en.wikipedia.org/wiki/File_integrity_monitoring

85Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

17. Software and Firmware Integrity

Key Considerations:
• Practices for integrity confirmation need to be part of the planned Secure Software

Development Life Cycle.

• Software acceptance practices for third party software needs to include integrity
confirmation.

• Integrity confirmation should be coordinated with configuration management processes.

Evidence:
Software integrity is verified with the baseline any time it is implemented or changed.

86Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

18. Software Supply Chain Protection

Description
Ensure that appropriate software assurance practices are implemented in the software
supply chains. A supply chain can include components, code libraries, code generation
tools, COTS, firmware, and open source products
RMF Controls Addressed
SA-12 Supply Chain Protection
SA-12(1) Supply Chain Protection | Acquisition Strategies/Tools/Methods
SA-12(5) Supply Chain Protection | Limitation of Harm
SA-12(8) Supply Chain Protection | Use of All-Source Intelligence
SA-12(9) Supply Chain Protection | Operations Security
SA-12(11) Supply Chain Protection | Penetration Testing/Analysis of Elements, Processes, and
Actors
SA-22 Unsupported System Components

87Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

18. Software Supply Chain Protection

Key Considerations:
• Contractors may have existing supplier contracts that do not reflect effective software

security and compensations will need to be implemented as part of software acceptance.

• Mechanisms for verifying that software supply chain protections are applied in practice
are needed (e.g. sampling)

Evidence:
Transparency as to how software is selected and integrated at each level in the supply chain
will increase confidence that software supply chain protections are in place.

88Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

© 2018 Carnegie Mellon University [Distribution Statement A] This material has been approved for public release and
unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Case Studies & Summary

89Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Example 1: Federal Acquisition Focused Cybersecurity

19 new contract requirements will be added to all new contracts issued or updated after April 2018
• Selected from Federal recommended sources: NIST 800-53, NIST 800-53A, and CNSSI No.

1253
• Addressing 37 key security RMF controls

Requirements for nine existing system deliverables have been expanded to add software
information.
Four new contract deliverables have been added to report specific information about threats and
vulnerabilities.
Engineering technical assessment criteria have been updated for:

• System Requirements Review (SRR)
• Preliminary Design Review (PDR)
• Critical Design Review (CDR)
• Test Readiness Review (TRR)

Lifecycle choices are not specified

90Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

The Security Development Lifecycle (SDL) is a software development security assurance
process consisting of security practices grouped by seven phases.

Reference: http://www.microsoft.com/security/sdl/learn/measurable.aspx

CERT Secure Practices Mapped to MS SDL http://www.cert.org/archive/pdf/MS_CERT_SDL.pdf

Example 2: Microsoft Security Development Lifecycle (MS SDL)

http://www.microsoft.com/security/sdl/learn/measurable.aspx
http://www.cert.org/archive/pdf/MS_CERT_SDL.pdf

91Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

MS SDL as Practiced at Microsoft

Microsoft mandatory development policy since
2004

• Designed to reduce the number and severity
of vulnerabilities in Microsoft software

• Specifically tailored to Microsoft
development practices and business drivers

• Designed for enterprise scale software
development

• Longitudinal 3rd party studies show definite
impact (see graphic)

Dan Kaminsky - Fuzzmarking: Towards Hard Security Metrics For
Software Quality?

http://dankaminsky.com/2011/03/11/fuzzmark/

http://dankaminsky.com/2011/03/11/fuzzmark/

92Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Example 3: Quality Informs Security Risk Predictions

Data from five projects with low defect
density in system testing reported very
low or zero safety critical and security
defects in production use.

Org. Project Type
Secure or Safety
Critical Defects

Defect
Density

Size

D D1
Safety
Critical 20 46.07 2.8 MLOC

D D2
Safety
Critical 0 4.44 .9 MLOC

D D3
Safety
Critical 0 9.23 1.3 MLOC

A A1 Secure 0 91.70 .6 MLOC
T T1 Secure 0 20.00 .1 MLOC

Quality Threshold

Woody, Carol et al. Predicting Software Assurance Using Quality and Reliability Measures. CMU/SEI-2014-TN-026. Software
Engineering Institute, Carnegie Mellon University. 2014. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=428589

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=428589

93Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Example 3: Critical Metrics Tracked

Development Metrics
• Incoming/week
• Triage rate
• % closed
• Development work for cycle
• Software change request per developer (SCR/Dev) per week
• # developers
• Protocol work
• Software change request per safety verifier & validator (SCR/SVV) per week
• # verification persons

Software Change Metrics
• Fixed work per cycle
• Deferred planned work per cycle

94Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Example 3: Reliability Tracking from Operations

95Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Summary

Software quality matters for security
• Any project could evaluate their security relative to quality using current data sources with a

calibrated quality model.

Consist implementation and monitoring of security practices matters (automate
and monitor)
Knowledgeable use of security tools matters
Operational experience must inform development (automate with DevOps)

• Augment development quality evidence with sustainment reliability data

Assembling quality and reliability data across multiple projects and cycles within
projects supports a baseline from which organizational standards of sufficiency
can be confirmed

96Title of the Presentation Goes Here
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and
distribution.

Contact Information

Carol Woody, Ph.D.
cwoody@cert.org

Web Resources (CERT/SEI)
http://www.sei.cmu.edu/

mailto:cwoody@cert.org
http://www.sei.cmu.edu/

	How Should We Address Cybersecurity Risk in an Agile or DevOps Environment?
	Document Markings
	Tutorial: Topics
	Slide Number 4
	What Is Risk?
	Software is Addressing More Functionality
	Software Vulnerability
	Software Vulnerabilities are Increasing
	ICT Supply Chain Threats
	Contractors Perform Supply Chain Risk Management (SCRM)
	Recent Supply Chain Attacks Indicate Growing Risk
	Slide Number 12
	Opportunities to Reduce Cybersecurity Risk
	Increased Software Use - Agile & DevOps Risk?
	What Level of Quality Software Should We Build?
	Cybersecurity Is a Lifecycle Challenge
	Slide Number 17
	Building Security In Maturity Model (BSIMM)
	BSIMM Average Scores
	BSIMM Scores for Top 10 Firms
	Standards Organizations Focused on Cybersecurity
	Other Industry Standards Efforts
	Standards Bodies
	NIST Risk Management Framework (RMF)
	Software Assurance Framework (SAF)
	Key Practice Areas for Cyber Security
	SAF: Policy, Process, & Practice Alignment
	Opportunities for Improvement
	Slide Number 29
	Emphasize Quality - Focus on Defect Injection and Removal
	Approach for Predicting Security with Quality
	Successful Projects Inject Security Expertise Continuously
	Plan for Effective Cybersecurity
	Secure Software Development Life Cycle
	Secure Software Development Life Cycle
	Focus on Software Vulnerabilities & Weaknesses
	2. Software Development Process, Standards, and Tools
	2. Software Development Process, Standards, and Tools
	2. Software Development Process, Standards, and Tools
	3. Software Security Requirements (User Stories for Misuse and Abuse)
	3. Software Security Requirements
	3. Software Security Requirements
	4. Software Security Architecture and Design
	4. Software Security Architecture and Design
	4. Software Security Architecture and Design
	5. Software Configuration Management
	5. Software Configuration Management
	Examples: Open source security issues
	5. Software Configuration Management
	6. Developer Security Testing and Evaluation
	6. Developer Security Testing and Evaluation
	Security Testing - Government Tool Resources
	DoD Software Assurance Resources
	6. Developer Security Testing and Evaluation
	7. Static Code Analysis�
	7. Static Code Analysis�
	7. Static Code Analysis�
	8. Dynamic Code Analysis�
	8. Dynamic Code Analysis�
	8. Dynamic Code Analysis
	9. Manual Code Reviews
	9. Manual Code Reviews
	9. Manual Code Reviews
	10. Attack Surface Reviews
	10. Attack Surface Reviews
	10. Attack Surface Reviews
	11. Software Threat Analysis
	11. Software Threat Analysis
	Software Context Must Match Security Concerns: �Wireless Emergency Alerting System
	11. Software Threat Analysis
	12. Penetration and Fuzz Testing
	12. Penetration and Fuzz Testing�
	12. Penetration and Fuzz Testing
	13. Verifying Scope of Testing and Evaluation
	13. Verifying Scope of Testing and Evaluation
	14. Independent Verification of Assessment Plans/Evidence���
	14. Independent Verification of Assessment Plans/Evidence
	15. Software Flaw Remediation����
	15. Software Flaw Remediation
	16. Malicious Code Protection��
	16. Malicious Code Protection��
	16. Malicious Code Protection
	17. Software and Firmware Integrity
	17. Software and Firmware Integrity
	17. Software and Firmware Integrity
	18. Software Supply Chain Protection�
	18. Software Supply Chain Protection
	Slide Number 88
	Example 1: Federal Acquisition Focused Cybersecurity�
	Example 2: Microsoft Security Development Lifecycle (MS SDL)
	MS SDL as Practiced at Microsoft
	Example 3: Quality Informs Security Risk Predictions
	Example 3: Critical Metrics Tracked
	Example 3: Reliability Tracking from Operations
	Summary
	Contact Information

