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1. Introduction 

Ultra-high molecular weight polyethylene (UHMWPE) laminar composites used in 
ballistic applications typically deform with significant shear between the plies and 
extensive delamination. Successful finite element simulations1 of the deformation, 
delamination, and perforation of the composites have been achieved using a fiber 
composite model in conjunction with slide surfaces separating each layer of 
elements in the composites. The bonding of the element layers is modeled with 
cohesive elements and associated constitutive relations. The slide surfaces account 
for the interlaminar slip to accommodate bending, and the slides also facilitate 
modeling separation of the layers. As the fibers are significantly damaged by the 
penetrator and fractured, the elements are eroded. To keep the solution tractable, 
each element layer represents several layers of oriented UHMWPE fibers. 
However, the number of element layers has to be sufficiently high to capture the 
bending and the penetration. 

Simulating the UHMWPE composite with slides is effective,2 but it is 
computationally very expensive. The increase in time over a simulation with a 
monolithic material was nearly a factor of 10 in initial simulations with EPIC.3 The 
time increase has many sources. The number of finite element nodes in the target 
is roughly doubled, and the number of sliding contact constraints introduced is 
approximately equal to the number of target elements. Sliding and cohesive contact 
constraint equations must be solved at each contact segment, and these are solved 
twice in the robust double-pass algorithms. In addition, for multiprocessor 
simulations, the quantity of information communicated to adjacent processors 
increases significantly as data further from the domain boundaries are needed, and 
the slide surfaces must be repartitioned frequently among the processors as sliding 
and separation occur.   

The significant cost of using explicit slide interfaces is acceptable if a limited 
number of simulations are to be run, but for design optimization studies, where 
hundreds or thousands of simulations are possible, a less costly option would be a 
substantial benefit. The intent of this work is to explore the use of a simple, special-
purpose composite model that properly accounts for large-scale interlamina sliding 
as a less expensive alternative for situations where large deflections are expected, 
but with little penetration.  

2. Laminar Model with Slip 

The approach taken here is to represent explicitly the interlaminar slip in the 
deformation kinematics and to capture the stress as the sum of the fiber and the 
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matrix behavior. The kinematics, the stress increment, and the incremental solution 
algorithm are described in this section. 

2.1 Notation 

In the following, boldface Greek symbols and bold uppercase Latin letters represent 
second-rank tensors. Bold lowercase Latin letters represent vectors. Fourth-order 
tensors are given by double-struck, uppercase Latin symbols. Quantities with over-
bars are effective quantities for the matrix, and dots over symbols denote a time 
rate. A dot between tensors implies an inner product, and a colon between second-
rank tensors represents a contraction. The composition of a second-rank tensor from 
two vectors is indicated by the ⊗ symbol. The second-order identity is represented 
by 𝑰𝑰. 

2.2 Kinematics 

The approach taken here is to represent the interlaminar slip explicitly in the 
deformation kinematics. The velocity gradient is decomposed additively into elastic 
and inelastic parts, 𝑳𝑳 = 𝑳𝑳𝑒𝑒 + 𝑳𝑳𝑖𝑖𝑖𝑖−𝑠𝑠 + 𝑳𝑳𝑖𝑖𝑖𝑖−𝑝𝑝. Here, the inelastic part has been 
further decomposed into a slip, 𝑳𝑳𝑖𝑖𝑖𝑖−𝑠𝑠, and a more general plastic part, 𝑳𝑳𝑖𝑖𝑖𝑖−𝑝𝑝.  The 
portion of the inelastic velocity gradient due to slip is expressed as 

 𝑳𝑳𝑖𝑖𝑖𝑖−𝑠𝑠 = �̇�𝛾 (𝒔𝒔⊗𝒎𝒎), (1) 

where 𝒔𝒔 is the slip direction and 𝒎𝒎 is the slip plane normal. The shearing rate is �̇�𝛾. 
The local slip plane is taken to be the plane formed by the two orthogonal 
UHMWPE fiber families. The normal is determined by the cross-product of the 
fiber family directions, 𝒅𝒅1 and 𝒅𝒅2 as = 𝒅𝒅1 × 𝒅𝒅2 . The slip direction, 𝒔𝒔, is orthogonal 
to the slip plane normal, and the assumed direction is in the direction of the shear 
stress on the plane formed by the fibers.   

The velocity gradient, and its elastic and plastic parts, can be represented as the sum 
of symmetric and antisymmetric parts, 𝑳𝑳 = 𝑫𝑫 + 𝝎𝝎. The symmetric part, 𝑫𝑫, is the 
rate of deformation tensor, and the antisymmetric part is the spin, 𝝎𝝎. 

The inelastic part of the rate of deformation tensor is patterned after J2 Flow Theory 
plasticity with an added slip component motivated by crystal plasticity models. It 
is given by 

𝑫𝑫𝑖𝑖𝑖𝑖−𝑝𝑝 + 𝑫𝑫𝑖𝑖𝑖𝑖−𝑠𝑠 = 𝜀𝜀  ̇̅𝑚𝑚
3
2

 
𝝈𝝈𝑚𝑚′

𝜎𝜎�𝑚𝑚
+ �̇�𝛾 𝑷𝑷 . (2) 
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The subscript m refers to the matrix material. 𝜀𝜀  ̇̅𝑚𝑚 is an effective inelastic strain rate, 
𝝈𝝈𝑚𝑚′ = 𝝈𝝈𝑚𝑚 − 1

3
𝑰𝑰 (𝝈𝝈𝑚𝑚 ∶  𝑰𝑰) is the deviatoric part of the stress tensor, and 𝜎𝜎�𝑚𝑚 is the 

von Mises effective stress of the matrix. In the last term, �̇�𝛾 is the interlaminar shear 
rate and  

𝑷𝑷 =
1
2

 (𝒔𝒔⊗𝒎𝒎 + 𝒎𝒎⊗ 𝒔𝒔)  (3) 

is the symmetric slip tensor. The antisymmetric slip tensor is 

𝑾𝑾 =
1
2

 (𝒔𝒔⊗𝒎𝒎−𝒎𝒎⊗ 𝒔𝒔) . (4) 

2.3 Matrix Deviatoric Stress Rate 

The stress is assumed to have additive contributions from the fiber and matrix, and 
the matrix response is decomposed into deviatoric and volumetric parts. The matrix 
stress is related to the elastic strain of the matrix material. Assuming an elastic strain 
energy function, 𝜙𝜙, the second Piola–Kirchhoff (P-K) stress in the matrix, 𝑻𝑻, is 
related to the elastic Lagrangian strain, 𝑬𝑬𝑒𝑒, by  

𝑻𝑻 =
𝜕𝜕 𝜙𝜙
𝜕𝜕 𝑬𝑬𝑒𝑒

 . (5) 

The relation between the second P-K stress and the Cauchy stress, 𝝈𝝈, is 

𝝈𝝈𝑚𝑚 = 𝐽𝐽−1𝑭𝑭𝑒𝑒 ⋅ 𝑻𝑻 ⋅ 𝑭𝑭𝑒𝑒𝑇𝑇 , (6) 

where 𝑭𝑭𝑒𝑒 is the elastic part of the deformation gradient from a multiplicative 
decomposition, 𝑭𝑭 = 𝑭𝑭𝑒𝑒 ⋅ 𝑭𝑭𝑝𝑝,  and 𝐽𝐽 is the determinant of 𝑭𝑭. Taking the time 
derivative of the Cauchy stress 

�̇�𝝈𝑚𝑚 = −𝐽𝐽 ̇𝐽𝐽−1𝝈𝝈𝑚𝑚 + �̇�𝑭𝑒𝑒 ⋅ 𝑻𝑻 ⋅ 𝑭𝑭𝑒𝑒𝑇𝑇 + 𝑭𝑭𝑒𝑒 ⋅ 𝑻𝑻 ⋅ �̇�𝑭𝑒𝑒𝑇𝑇 + 𝑭𝑭𝑒𝑒 ⋅ �̇�𝑻 ⋅ 𝑭𝑭𝑒𝑒𝑇𝑇       

= −𝐽𝐽 ̇𝐽𝐽−1𝝈𝝈𝑚𝑚 + �̇�𝑭𝑒𝑒 ⋅ 𝑭𝑭𝑒𝑒−1 ⋅ 𝝈𝝈𝑚𝑚 + 𝝈𝝈𝑚𝑚 ⋅ 𝑭𝑭𝑒𝑒−𝑇𝑇 ⋅ �̇�𝑭𝑒𝑒𝑇𝑇 + 𝑭𝑭𝑒𝑒 ⋅ �
𝜕𝜕2𝜙𝜙
𝜕𝜕 𝑬𝑬𝑒𝑒2

∶ �̇�𝑬𝑒𝑒 � ⋅ 𝑭𝑭𝑒𝑒𝑇𝑇 , (7) 

= −𝐽𝐽 ̇𝐽𝐽−1𝝈𝝈𝑚𝑚 + 𝑳𝑳𝑒𝑒 ⋅ 𝝈𝝈𝑚𝑚 + 𝝈𝝈𝑚𝑚 ⋅ 𝑳𝑳𝑒𝑒𝑇𝑇 + ℂ ∶  �̇�𝑬𝑒𝑒   

ℂ is the fourth-order modulus tensor. The velocity gradient can also be expressed 
as the sum of the rate of deformation tensor, 𝑫𝑫, and the spin tensor, 𝝎𝝎. In addition, 
the Lagrangian strain rate can be expressed in terms of the rate of deformation 
tensor as  

�̇�𝑬 = 𝑭𝑭𝑇𝑇 ⋅ �̇�𝑫 ⋅ 𝑭𝑭  (8) 

so that the Cauchy stress rate of the matrix can be written as 
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�̇�𝝈𝑚𝑚 = 𝝎𝝎 ⋅ 𝝈𝝈𝑚𝑚 − 𝝈𝝈𝑚𝑚 ⋅ 𝝎𝝎 + 𝕂𝕂 ∶ 𝑫𝑫 − 𝕂𝕂 ∶ 𝑫𝑫𝑖𝑖𝑖𝑖−𝑝𝑝  
. (9) 

−[𝕂𝕂 ∶ 𝑫𝑫𝑖𝑖𝑖𝑖−𝑠𝑠 + 𝝎𝝎𝑖𝑖𝑖𝑖−𝑠𝑠 ⋅ 𝝈𝝈𝑚𝑚 − 𝝈𝝈𝑚𝑚 ⋅ 𝝎𝝎𝑖𝑖𝑖𝑖−𝑠𝑠]  

The inelastic plastic spin is assumed to be zero. The fourth-order modulus 𝕂𝕂  
includes ℂ, several stress terms, and the volume change contribution. Substituting 
for the inelastic velocity gradient from Eqs. 1 and 2, the stress rate becomes 

�̇�𝝈𝑚𝑚 = 𝝎𝝎 ⋅ 𝝈𝝈𝑚𝑚 − 𝝈𝝈𝑚𝑚 ⋅ 𝝎𝝎 + 𝕂𝕂 ∶ 𝑫𝑫 −
3
2

 
𝜀𝜀  ̇̅𝑚𝑚
𝜎𝜎�𝑚𝑚

 𝕂𝕂 ∶ 𝝈𝝈𝑚𝑚′  
. (10) 

−�̇�𝛾 [𝕂𝕂 ∶ 𝑷𝑷 + 𝑾𝑾 ⋅ 𝝈𝝈𝑚𝑚 − 𝝈𝝈𝑚𝑚 ⋅ 𝑾𝑾] 

Assuming no coupling between the pressure and deviatoric response of the matrix, 
the stress is split into volumetric and deviatoric parts so that the pressure-volume 
response can be represented by a simplified equation of state for shock simulations. 
Further assuming that the matrix is isotropic, the modulus tensor can be replaced 
by a scalar shear modulus in Eq. 10, and the matrix deviatoric stress rate is 

�̇�𝝈𝑚𝑚′ = 𝝎𝝎 ⋅ 𝝈𝝈𝑚𝑚′ − 𝝈𝝈𝑚𝑚′ ⋅ 𝝎𝝎 + 2𝜇𝜇𝑫𝑫′ − 3𝜇𝜇𝜀𝜀  ̇̅𝑚𝑚  
𝝈𝝈𝑚𝑚′

𝜎𝜎�𝑚𝑚
 − �̇�𝛾𝑹𝑹 , (11) 

where  

  𝑹𝑹 = 2𝜇𝜇𝑷𝑷 + 𝑾𝑾 ⋅ 𝝈𝝈𝑚𝑚′ − 𝝈𝝈𝑚𝑚′ ⋅ 𝑾𝑾 . (12) 

2.4 Matrix Stress Integration 

The subscript m is dropped in this section for clarity. The stress is for the matrix 
only. Equation 11 is integrated over a time step ∆𝑡𝑡 as 

𝝈𝝈𝑡𝑡+∆𝑡𝑡′ = 𝝈𝝈𝑡𝑡′ + ∆𝑡𝑡(𝝎𝝎 ⋅ 𝝈𝝈𝑡𝑡′ − 𝝈𝝈𝑡𝑡′ ⋅ 𝝎𝝎 + 2𝜇𝜇𝑫𝑫′) − 3𝜇𝜇𝜀𝜀̅̇∆𝑡𝑡 
𝝈𝝈𝑡𝑡+∆𝑡𝑡  
′

𝜎𝜎�𝑡𝑡+∆𝑡𝑡
 − �̇�𝛾∆𝑡𝑡𝑹𝑹 . (13) 

The first two terms are grouped together as the trial stress, 𝝈𝝈𝑇𝑇. This includes the 
incremental rotation from the material spin in addition to the strain increment. From 
Eq. 13, the plastic term is moved to the left-hand side to give 

𝝈𝝈𝑡𝑡+∆𝑡𝑡(1 + 3𝜇𝜇𝜀𝜀̅̇∆𝑡𝑡/𝜎𝜎�𝑡𝑡+∆𝑡𝑡) = 𝝈𝝈𝑇𝑇 − �̇�𝛾∆𝑡𝑡𝑹𝑹 = 𝑩𝑩 . (14) 

The stress at the end of the time step depends on the applied strain at a material 
point and relaxation due to either slip, plasticity, or both. The approach is to first 
determine if slip is active. If it is, is general plasticity also active? If slip is not 
active, is general plasticity active? 
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2.4.1 Slip Vector Calculation 

Before the resolved shear stress on the slip plane can be determined, the direction 
of slip is needed for Eqs. 1 and 3. The resolved traction on the slip plane is the 
projection of the Cauchy stress tensor onto the plane normal. The direction of slip 
is assumed to be in the direction of the maximum shear traction. For isotropic slip 
in the plane, this will be in the direction of the projected trial stress, 𝒕𝒕 = 𝒎𝒎 ⋅ 𝝈𝝈𝑇𝑇. 
The slip direction within the plane is found by subtracting the projection of the 
traction on the normal from the total traction,   

𝒔𝒔 =
𝒕𝒕 −𝒎𝒎(𝒕𝒕 ⋅ 𝒎𝒎)

|𝒕𝒕 −𝒎𝒎(𝒕𝒕 ⋅ 𝒎𝒎)| . (15) 

2.4.2 Slip Only 

Active slip is determined by setting 𝜀𝜀̅̇ in Eq. 14 to zero and projecting the equation 
onto the slip tensor as 

𝑷𝑷:𝝈𝝈𝑡𝑡+∆𝑡𝑡 = 𝜏𝜏 = 𝑷𝑷:𝝈𝝈𝑇𝑇 − �̇�𝛾∆𝑡𝑡𝑷𝑷:𝑹𝑹 . (16) 

The left-hand side of the equation is the resolved shear stress, 𝜏𝜏. If the projected 
trial stress exceeds the critical resolved shear stress,  𝑷𝑷:𝝈𝝈𝑇𝑇 > 𝜏𝜏𝑐𝑐, slip must occur to 
reduce the resolved shear stress to the critical value.  

�̇�𝛾 ∆𝑡𝑡 = � 0 if 𝑷𝑷:𝝈𝝈𝑇𝑇 ≤ 𝜏𝜏𝑐𝑐
(𝑷𝑷:𝝈𝝈𝑇𝑇 − 𝜏𝜏𝑐𝑐) (𝑷𝑷:𝑹𝑹)⁄ if 𝑷𝑷:𝝈𝝈𝑇𝑇 > 𝜏𝜏𝑐𝑐  

 . (17) 

Once the slip rate is known, 𝑩𝑩 is calculated from Eq. 14, and its effective scalar 
magnitude is determined by  

�3
2
 𝑩𝑩:𝑩𝑩 = 𝐵𝐵�  . (18) 

If �̇�𝛾 = 0, general plasticity is evaluated through Section 2.4.3. If �̇�𝛾 > 0, general 
matrix plasticity is also possible. If  𝐵𝐵� ≤ 𝜎𝜎𝑐𝑐, the matrix flow stress, then there is no 
general plasticity, 𝝈𝝈𝑡𝑡+∆𝑡𝑡 = 𝑩𝑩, and the solution for the time step is complete. If there 
is also general plasticity, the solution proceeds according to Section 2.4.4. 

2.4.3 General Plasticity Only 

If the slip rate is zero from Eq. 17, there is still the possibility of general plasticity. 
In this case, Eq. 14 is the standard J2–Flow Theory plasticity relation. Assuming a 
von Mises yield strength of 𝜎𝜎𝑐𝑐, the plastic strain rate is determined from 

𝜀𝜀̅̇ ∆𝑡𝑡 = � 0 if 𝜎𝜎𝑒𝑒𝑇𝑇 ≤ 𝜎𝜎𝑐𝑐
(𝜎𝜎𝑒𝑒𝑇𝑇 − σc) 3𝜇𝜇⁄ if 𝜎𝜎𝑒𝑒𝑇𝑇 > 𝜎𝜎𝑐𝑐  

 , (19) 
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where the effective trial stress is defined as 

𝜎𝜎𝑒𝑒𝑇𝑇 = �3
2
 𝝈𝝈𝑇𝑇:𝝈𝝈𝑇𝑇 .     (20) 

The Cauchy stress is then calculated from the standard radial return method as 

𝝈𝝈𝑡𝑡+∆𝑡𝑡 = �𝝈𝝈
𝑇𝑇            if 𝜎𝜎𝑒𝑒𝑇𝑇 ≤ 𝜎𝜎𝑐𝑐

𝝈𝝈𝑇𝑇𝜎𝜎𝑐𝑐 𝜎𝜎𝑒𝑒𝑇𝑇⁄ if 𝜎𝜎𝑒𝑒𝑇𝑇 > 𝜎𝜎𝑐𝑐  
 . (21) 

2.4.4 Slip and General Plastic Deformation 

When both mechanisms are active, contracting Eq. 14 with itself, multiplying by 
3/2, and taking the square root results in 

𝜎𝜎�𝑡𝑡+∆𝑡𝑡(1 + 3𝜇𝜇𝜀𝜀̅̇∆𝑡𝑡/𝜎𝜎�𝑡𝑡+∆𝑡𝑡) = �3
2
 𝑩𝑩:𝑩𝑩 = 𝐵𝐵�  . (22) 

Dividing Eq. 14 by Eq. 22, and rearranging 

𝝈𝝈𝑡𝑡+∆𝑡𝑡𝐵𝐵� = 𝜎𝜎�𝑡𝑡+∆𝑡𝑡𝑩𝑩 = 𝜎𝜎�𝑡𝑡+∆𝑡𝑡 𝝈𝝈𝑇𝑇 − 𝜎𝜎�𝑡𝑡+∆𝑡𝑡 �̇�𝛾∆𝑡𝑡 𝑹𝑹 . (23) 

Projecting Eq. 23 onto the slip tensor, 

𝑷𝑷:𝝈𝝈𝑡𝑡+∆𝑡𝑡𝐵𝐵� = 𝜎𝜎�𝑡𝑡+∆𝑡𝑡 𝑷𝑷:𝝈𝝈𝑇𝑇 − 𝜎𝜎�𝑡𝑡+∆𝑡𝑡 �̇�𝛾∆𝑡𝑡 𝑷𝑷:𝑹𝑹 . (24) 

The material is slipping in this case, so the projected shear stress will equal the 
critical resolved shear stress, 𝑷𝑷:𝝈𝝈𝑡𝑡+∆𝑡𝑡 = 𝜏𝜏𝑐𝑐. Since there is also general plastic 
deformation, 𝜎𝜎�𝑡𝑡+∆𝑡𝑡 = 𝜎𝜎𝑐𝑐.  

Having eliminated the general plastic strain rate from Eq. 24 by the above division, 
everything in the relation is known except for the slip rate. The slip rate is also 
embedded in 𝐵𝐵� , so the solution is facilitated by squaring Eq. 24, resulting in 

3
2

 𝜏𝜏𝑐𝑐2 [(𝝈𝝈𝑇𝑇:𝝈𝝈𝑇𝑇) − 2(�̇�𝛾∆𝑡𝑡)(𝝈𝝈𝑇𝑇:𝑹𝑹) + (�̇�𝛾∆𝑡𝑡)𝟐𝟐(𝑹𝑹:𝑹𝑹)] 
. (25) 

= 𝜎𝜎�𝑡𝑡+∆𝑡𝑡2 [(𝑷𝑷:𝝈𝝈𝑇𝑇)2 − 2(�̇�𝛾∆𝑡𝑡)(𝑷𝑷:𝝈𝝈𝑇𝑇)(𝑷𝑷:𝑹𝑹) + (�̇�𝛾∆𝑡𝑡)2(𝑷𝑷:𝑹𝑹)2  

The terms on the left largely result from 𝐵𝐵�2. Rearranging the terms, Eq. 25 can be 
put in the form of a quadratic equation to solve for the slip rate. 

(�̇�𝛾∆𝑡𝑡)2 �(𝑷𝑷:𝑹𝑹)2 −
3
2
𝜏𝜏𝑐𝑐2

𝜎𝜎𝑦𝑦2
(𝑹𝑹:𝑹𝑹)� − 2(�̇�𝛾∆𝑡𝑡) �(𝑷𝑷:𝝈𝝈𝑇𝑇)(𝑷𝑷:𝑹𝑹) −

3
2
𝜏𝜏𝑐𝑐2

𝜎𝜎𝑦𝑦2
(𝝈𝝈𝑇𝑇:𝑹𝑹)� 

. (26) 
+ �(𝑷𝑷:𝝈𝝈𝑇𝑇)2 −

3
2
𝜏𝜏𝑐𝑐2

𝜎𝜎𝑦𝑦2
� = 0 
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Once the slip rate has been determined, it can be substituted into Eq. 22 to determine 
the strain rate 𝜀𝜀̅̇ from 

𝜀𝜀̅̇ ∆𝑡𝑡 =  
𝐵𝐵� − 𝜎𝜎𝑐𝑐

3𝜇𝜇
  . (27) 

Then the matrix contribution to the Cauchy stress can be found using the first 
equality in Eq. 23, which is essentially a radial return in the direction of 𝑩𝑩. 

𝝈𝝈𝑡𝑡+∆𝑡𝑡 = 𝑩𝑩 
𝜎𝜎�𝑡𝑡+∆𝑡𝑡
𝐵𝐵�

  . (28) 

2.5 Matrix Equation of State 

The equation of state (EOS) for the matrix material is assumed to follow the 
mechanical form of the Murnaghan EOS. Using the relative volume calculated from 
the determinant of the deformation gradient, 𝐽𝐽, the hydrostatic component of the 
matrix stress is determined by 

𝜎𝜎𝑚𝑚−ℎ = −
𝜅𝜅
𝜅𝜅′

 �𝐽𝐽−𝜅𝜅′ − 1� , (29) 

where  𝜅𝜅 is the bulk modulus and 𝜅𝜅′ is the derivative of the bulk modulus with 
respect to pressure. Any temperature dependence is ignored for this simple model.  

The total stress contribution for the matrix is the sum of the hydrostatic stress and 
the deviatoric part from Section 2.4. 

2.6 Fiber Stress 

Stress in the fiber families is assumed to be a function of the fiber stretch. Fiber 
directions in the undeformed configuration are specified by the model input as unit 
vectors  𝒅𝒅𝑖𝑖0. The deformed vectors are calculated using the deformation gradient, 

𝒅𝒅𝑖𝑖 = 𝑭𝑭 ⋅ 𝒅𝒅𝑖𝑖0 . (30) 

The stretch is determined as 𝜆𝜆𝑖𝑖 = �𝒅𝒅𝑖𝑖 ⋅ 𝒅𝒅𝑖𝑖 (no summation on i), and the stress due 
to the fiber stretch is  

𝝈𝝈𝑖𝑖𝑖𝑖 = � 𝐸𝐸 (𝜆𝜆𝑖𝑖 − 1)/[1 + 𝐴𝐴(1 − 𝜆𝜆𝑖𝑖)] if  𝜆𝜆𝑖𝑖 ≤ 1
 𝐸𝐸 (𝜆𝜆𝑖𝑖 − 1)                              if  𝜆𝜆𝑖𝑖 > 1  . (31) 

Here, 𝐸𝐸 is the fiber modulus, and the form for the 𝜆𝜆𝑖𝑖 < 1 branch is chosen to limit 
the compressive stress and simulate buckling.4 The compressive stress is linear in 
stretch near 𝜆𝜆𝑖𝑖 = 1 and smoothly asymptotes to 𝐸𝐸/𝐴𝐴, where 𝐴𝐴 is a softening 
parameter.  
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The fiber stress, the hydrostatic stress, and the matrix stress are added to give the 
total stress for the composite. The volume fraction weighting is not considered in 
this simple model, so the properties for the individual components should be 
weighted according to the volume fraction. 

2.7 Fiber Damage 

Fiber damage is assumed to accumulate with stretch to avoid fracture due to noise 
and to include a pressure dependence. Damage, 𝒟𝒟, is integrated through time as  

𝒟𝒟𝑡𝑡+∆𝑡𝑡 = 𝒟𝒟𝑡𝑡 +
𝐸𝐸〈𝜆𝜆 − 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚〉

𝜎𝜎𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑓𝑓 − 𝑎𝑎 𝜎𝜎𝑚𝑚−ℎ
 , (32) 

where 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum prior stretch attained by the fiber, and 〈– 〉 are Macaulay 
brackets. Damage does not accumulate if the current stretch is less than this 
maximum, 𝜆𝜆𝑚𝑚𝑚𝑚𝑠𝑠. Otherwise, the damage variable is unchanged. The 𝜎𝜎𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑓𝑓 in Eq. 34 
is the fiber failure stress, and 𝜎𝜎𝑚𝑚−ℎ is the hydrostatic stress in the matrix material.  

The purpose of the hydrostatic stress term is to offset the addition of the pressure 
associated with stress normal to the composite. The magnitude of the normal stress 
due to impact can exceed the composite tensile failure strength, and this pressure 
generally does not initiate fiber failure. The parameter 𝑎𝑎 in Eq. 32 is expected to be 
on the order of unity.  

2.8 Implementation as an Abaqus/UMAT 

The model described in the previous sections was implemented as an 
Abaqus/UMAT subroutine and it is run in EPIC for evaluation. 

3. Model Evaluation 

The model is evaluated in a simple plate impact configuration by comparing the 
solution with explicit slide surfaces to the solution using shear within the elements. 
The comparison presented is limited to the critical results that illustrate the 
limitations of the approach. 

3.1 Impact Geometry and Material Properties 

The model is evaluated in a configuration where a 12.7-mm-diameter, 4340 steel 
sphere impacts a 7.8-mm-thick panel at 293 m/s and normal incidence, as shown in 
Fig. 1a. The impactor is discretized with nine shells of elements across the radius 
and the panel is represented by 20 hexahedral elements through the thickness. The 
element aspect ratios are approximately 1:1 (Fig. 1b). 
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Fig. 1 Impact geometry: a) half-symmetry model and b) enlarged view showing the mesh 

The two orthogonal fiber families lie in the plane of the target in the x and y 
directions.  

The reference solution is one where cohesive elements and slide surfaces are placed 
between each element layer in the target. Thus, each layer of elements represents 
several cross-ply layers of UHMWPE fibers. The cohesive elements are given a 
strength of 6 MPa, a tangential separation length of 0.5 mm, and a normal 
separation length of 0.5 mm. 

Except for the slip strength, 𝜏𝜏𝑐𝑐, the same parameters are used for both the simulation 
with slide surfaces and without (Table 1). For the analysis with slide surfaces, the 
strength for slip is set high to prohibit slip, 𝜏𝜏𝑐𝑐 = 500 MPa.  

Table 1 Parameters used in the material model 

𝝆𝝆 
g/cm3 

𝝁𝝁 
GPa 

𝜿𝜿 
GPa 𝜿𝜿′ 𝝈𝝈𝒄𝒄 

MPa 
𝝉𝝉𝒄𝒄 

MPa 
𝑬𝑬 

GPa 
𝝈𝝈𝒇𝒇𝒇𝒇 
GPa 𝑨𝑨 𝒂𝒂 

0.987 1.0 2.0 8 150 5 52.8 1.5 10 1.5 

3.2 Results Prior to Fracture 

For an equivalent time prior to element failure, the simulation without the sliding 
surface between each element layer took 11 min on a single processor while the 
simulation with the sliding surfaces took 102 min. The code statistics show a bit 
over 16% of the time was spent in the slide algorithm for the former and over 85% 
for the latter.  

The fiber stretch at the symmetry plane is plotted in Fig. 2 for the simulations with 
and without explicit slide surfaces at 6 µs of simulation time. There are two 
important observations from the comparison. First is that the stretch is similar for 
the two simulation methods. Detailed examination reveals that the stretch is 
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somewhat higher in the shear result than the slip, but the rough similarity suggests 
that the shear in the new formulation is performing much the same way as the 
discrete slip. 

 

Fig. 2 In-plane fiber stretch at 6 µs for a) simulation with explicit slide surfaces and b) 
simulation with continuum slip  

 

b)

λ
1.04
1.03
1.02
1.01
1.00

a)

λ
1.04
1.03
1.02
1.01
1.00



 

11 

The second observation concerns the angle of the initially vertical element 
boundaries near the edge of the penetrator. In the simulation with the explicit slide 
surfaces, these boundaries show overall rotation with the element surfaces, whereas 
they remain more vertical for the continuum slip simulation. This shows the plastic 
spin needed to make the roughly inextensible fibers conform to the overall 
deformation. If the upper-left corners of the elements of successive layers in Fig. 2a 
were connected, they show a vertical alignment similar to the element sides of 
Fig. 2b. The sliding and rotation are captured by the shear model. 

The longitudinal stress distribution is also similar for the two simulation techniques, 
as shown in Fig. 3. The stress is 20 MPa or so lower in the simulation with explicit 
slip, but the overall distribution and patterns are similar. The goal is not to have the 
results be identical, but for the sliding mechanism to be appropriately captured by 
the slip. 

It is notable that the longitudinal stress is higher in the second layer of elements 
than the top layer. With the stress being significantly higher than the matrix flow 
strength, the longitudinal stress is essentially the sum of the negative matrix 
hydrostatic stress and the positive fiber stress. The magnitude of the hydrostatic 
stress is greater in the top layer than the second, which offsets the tensile stress.  
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Fig. 3 Axial stress distribution at 6 µs for a) simulation with explicit slide surfaces and b) 
simulation with continuum slip

a)

b)
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3.2 Fiber Failure Progression 

Material failure due to fiber stretch is indicated by the red in Fig. 4 for the two 
simulations. Plots are obtained every 1 µs, and since the fiber is stretching a bit 
faster in the slip simulation, the plot is at 7 µs for the slip simulation and at 8 µs for 
the simulation with explicit slide surfaces.  

 

Fig. 4 Fiber failure is indicated in red: a) simulation with explicit slide surfaces at 8 µs and 
b) simulation with continuum slip at 7 µs 

a)

b)
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The important feature to note about the failure patterns is that the failure quickly 
propagates to the second row of elements in the simulation with continuum shear 
(Fig. 4b). There is significant tensile stress and elastic stretch in the fibers prior to 
fracture. When the fibers break, the extension load that had been sustained by the 
broken layer is partially transmitted to the layer below through the contiguous 
mesh. This quickly initiates failure in the second layer. 

The discrete slides, on the other hand, offer greater isolation between the successive 
layers so that the stress concentration on the neighboring layer is substantially 
reduced. The fractured layer slips on the layer below, resulting in a more uniform 
stress redistribution. 

Undesirable coupling between layers was observed in other regions of the 
simulation at other times. Some of these were more subtle. The couplings often 
involved something akin to an hourglass mode where a gradient produced 
hourglass-type patterns that affected the stretch and shear of underlying layers. The 
elements have constant shear, and steep gradients within the plane of the fibers 
would require finer resolution to be represented appropriately. 

4. Conclusions 

The introduction of shear explicitly into the kinematics of a composite model 
successfully captures the large in-plane shear associated with deformation of 
UHMWPE, cross-ply fiber composites. However, the continuous mesh provides a 
degree of coupling between layers that introduces nonphysical forces in the 
neighborhood of sharp gradients, such as fractures.  

The simulation with explicit slide surfaces, on the other hand, has roughly  
two-thirds more degrees of freedom that accommodate in-plane relative motion 
between layers. These provide ample mobility to allow fiber failure without 
transmitting undue stress to adjacent layers.  

This preliminary analysis suggests that the proposed model will not be useful for 
the intended application beyond initial fracture. Hence, there is no impetus to 
pursue the addition of delamination or other features into this framework. While 
the use of multiple explicit slide surfaces is more computationally expensive, the 
solution is far superior once fracture initiates. While the current developments are 
useful for large deformation, the use of multiple slide surfaces is the recommended 
approach for simulations involving fiber failure. 
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List of Symbols, Abbreviations, and Acronyms 

ℂ Lagrangian modulus 

𝒅𝒅𝑖𝑖 fiber direction 

𝑫𝑫 rate of deformation tensor 

𝑬𝑬 Green–Lagrange strain 

𝑭𝑭 deformation gradient 

𝑰𝑰 second-order identity tensor 

𝐽𝐽 determinant of the deformation gradient 

𝕂𝕂 stress-modified modulus 

𝑳𝑳 velocity gradient 

𝒎𝒎 slip plane normal 

𝑷𝑷 symmetric slip tensor 

𝑹𝑹 projected modulus modified with rotated stress 

𝒔𝒔 slip direction 

𝑻𝑻 second Piola–Kirchhoff stress 

𝑾𝑾 antisymmetric slip tensor 

∆𝑡𝑡 time increment 

𝜀𝜀̅̇ effective plastic strain rate 

�̇�𝛾 shearing rate 

𝜙𝜙 elastic strain energy function 

𝜇𝜇 elastic shear modulus 

𝝈𝝈 Cauchy stress 

𝜎𝜎� von Mises effective stress 

𝜎𝜎𝑐𝑐 critical flow stress of the matrix 

𝜎𝜎𝑒𝑒𝑇𝑇 effective trial stress 

𝝈𝝈𝑇𝑇 trial stress 

𝜏𝜏𝑐𝑐 critical resolved shear stress of the matrix 
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𝜙𝜙 elastic strain energy function 

𝝎𝝎 spin tensor 

ARL Army Research Laboratory 

CCDC US Army Combat Capabilities Development Command 

EOC equation of state 

P-K Piola–Kirchhoff 

UHMWPE ultra-high molecular weight polyethylene 
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