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ABSTRACT

Verifying that the behavior of an autonomous systems is safe is fundamental for safety-critical properties like
preventing crashes in autonomous vehicles. Unfortunately, exhaustive verification techniques fail to scale to the
size of real-life systems. Moreover, these systems frequently use algorithms whose runtime behavior cannot be
determined at design time (e.g., machine learning algorithms). This presents another problem given that these
algorithms cannot be verified at design time. Fortunately, a technique known as runtime assurance can be used
for these cases. The strategy that runtime assurance uses to verify a system is to add small components (known
as enforcers) to the system that monitor its output and evaluate whether the output is safe or not. If the output
is safe, then the enforcer will let it pass; if the output is unsafe, the enforcer replaces it with a safe output. For
instance, in a drone system that must be restricted to fly within a constrained area (a.k.a. geo-fence) an enforcer
will monitor the movement commands to the drone. Specifically, if a movement command keeps the drone within
the geo-fence, the enforcer lets it pass, but if the command takes the drone outside of this area, the enforcer
replaces it with a safe command (e.g., hovering). Given that enforcers are small components fully specified at
design time, it is possible to use exhaustive verification techniques to prove that they can keep the behavior of
the whole system safe (e.g., the drone flying within the geo-fence) even if the system contains unverified code.
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1. INTRODUCTION

Autonomous systems are systems controlled by software that interact with the physical world. This is in fact the
key characteristic of a Cyber-Physical System (CPS). CPS play numerous safety-critical roles in our day-to-day
lives, e.g., in the form of cars, airplanes, nuclear power plants, and medical devices. Verifying safe behavior of
CPS is thus an important challenge. Autonomous systems, in addition, incorporate advanced Al techniques, such
as machine learning, to deliver more features and capabilities. Examples of these systems include driverless cars,
autonomous drones, and intelligent patient monitors. On the one hand, the added intelligence allows the CPS
to operate more effectively and with less human supervision. On the other hand, it also makes static verification
of the CPS inadequate since the system evolves during operation, and the complete set of its behaviors cannot
be modeled precisely prior to deployment.

Runtime assurance allows the verification of systems whose behavior are not fully defined through the addition
of small components called enforcers creating an enforced system. Enforcers monitor the system output and
evaluate whether the output (e.g. drone command movements) is safe or not. If it is unsafe, the enforcer
replaces the output with a safe one (e.g. hover) otherwise it lets is pass. The enforced system is then verified
for safety by focusing only on the behavior of the enforcers in term of how they evaluate output safety and the
replaced output.

In order to verify the correct behavior of a CPS we not only need to evaluate whether the software produces
the correct actuation over the physical process but that also they are produced at the right time. For instance, to
ensure that a drone keeps flying in the correct trajectory, the software needs to read the sensors (e.g., gyroscope
and accelerometers) and evaluate the drone attitude and correct it if needed to compensate for perturbations
such as variations to wind. This correction takes the form to variations in speed to the different propellers. These
corrections need to happen in a timely manner to ensure that the drone remains stable. This timely interaction
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happens through a periodic execution of a function and this periodicity (or period) is defined according to some
control-theoretic model. Clearly, if the software takes too long to correct flight perturbations the drone can
become unstable and crash. These timely interactions apply to different physical aspects. For instance, to
ensure that a drone remains within a geo-fence area, it is necessary that the worst delay between sensing its
position and correcting its movement is smaller than the time it needs to stop the drone and prevent it from
leaving the geo-fence area in the worst-case.

The fact that a CPS requires timely interaction between the software and the physical process implies that it
is not enough to wait forever for the system to produce an output and evaluate whether or not it is safe. Instead,
we need to also ensure that if the system has not produced an output by a deadline (e.g., end of the period) we
are able to produce an output that will keep the system safe. This is another form of enforcement that we name
temporal enforcer. To avoid confusion we rename the enforcers that monitor the outputs as logical enforcers.

In this paper we present a runtime verification scheme to perform logical and timing verification of CPS with
the use of logical and temporal enforcers and show how this is applied to the drone example. We will use this
example across the paper to discuss the main concepts.

The rest of the paper is organized as follows. In Section 2 we present our logical model based on a set-
theoretic models of control. Section 3 we present our temporal enforcement model and mechanisms. In Section 4
we present our drone example implementation. Section 5 presents the related work and in Section 6 we present
our conclusions.

2. LOGICAL ENFORCEMENT

In this section we first define a timeless logical model that provides a gentle introduction of the system model
and the definition of safe states and safe actions. Then we extend the model to include the periodic character of
software actuation. Finally, we introduce the a model of the inertia of the physical system to have a complete
model that can be use in CPS.

2.1 Timeless Logical Model

In order to verify the logical enforcer we first need to define what safe means. We do this by modeling all
possible states the system can be in (a.k.a. statespace) and identifying what are the safe and unsafe states. In
the geo-fenced drone example, the safe states are all the positions within the geo-fenced area and the unsafe
states all the positions outside the geo-fenced area.

Formally speaking we say that the statespace S is the set of all possible states {s} or S = {s}. Then the safe
states ¢ is a subset of the state space: ¢ C 5, and everything outside ¢ is unsafe.

Once safe states are defined we then define the behavior of the system and identify safe and unsafe behavior.
The behavior of the system is defined as the set of all possible transitions between different states of the system
triggered by a system action (e.g. software actuation). Given this behavior then we can identify safe behavior
as the set of all transitions from one safe state (the source state) of the system to another safe state (the target
state). Similarly, the unsafe behavior is the set of all transitions whose target state is unsafe (the source state
can be either a safe or an unsafe state). From the point of view of the geo-fenced drone, an unsafe transition can
go from a position within the geo-fenced area to another position outside the geo-fence. In this case the actions
of the system are drone movements that take the drone from one position to another. This model is based on
set-theoretic methods of control as defined in [ 1].

The behavior can then be formalized as transitions that take an action « from one state to another: R(a) C
S x S. Now, in order to formalize safe actions we first identify the set of states that a transition will take us into
given a particular source state and an action as: R(a,s) = {s'|(s,s’) € R(«)}. Then we formalize safe actions
as those that take us from one state into a safe state: SafeAct*(s) = {a|R(w,s) C ¢}.



2.2 Time-aware Logical Model

The timeless model assumes that transitions take no time to execute and can be executed as frequently as desired.
In reality, as we discussed in Section 1, the software in CPS is executed in a periodic fashion with a specific
period. In order to reflect that we restrict transitions to only take place at every period P. The formalization of
this concept is performed by only annotating the transitions with a P (Rp(a) and Rp(«, s)) with the semantics
that the system reaches the target state of the transition at the end of the period.

2.3 Modeling Inertia

The final step to capture all the characteristics of a CPS is to add the effect of inertia to our time-aware model.
This means that the system continues to evolve between actuations while the period P elapses. To take this into
account we identify the set of states that are too close to the unsafe states for which it is not possible to stop the
system before it goes into an unsafe state. We use these states to define the set of states called enforceable states
Cy. These states are those for which there exists an action that triggers a transition into another enforceable
state. For the geo-fenced drone the enforceable states are those positions within the geo-fence for which a drone
command exists to keep the drone within the fence and within enforceable states. This is formalized as:

Vs € Cy|Fa|Rp(a,s) C Cy (1)
and create a final definition of a safe action as:

SafeAct(s) = {a|Rp(a,s) € Cy} (2)

2.4 Logical Enforcers

The time-aware logical model now let us formalize the concept of an enforcer E as a component that monitors
the system at every period P, to enforce that the system remains within enforceable safe states Cy C ¢ with a
specific set of safe actions for each enforceable states u(s) C SafeAct(s). Putting it all together: E(P, Cy, p).

The enforcer then intercepts the output « from the system and produces an output & as follows

~ o] if a € p(s)
‘= { pick(p(s)) Otherwlfse (3)

where pick(X) selects any one element from set X.

2.5 Geo-Fenced Drone Logical Sample Model

Let us now describe the geo-fenced drone example with our time-aware logical model. The elements of the model
are presented in Figure 1.

In this example the state of the system is the position and angle of movement at constant speed (z,y,6) and
the actions is a simple movement at a constant speed in the direction of an angle 6. The safe states is basically
any position (x,y) within the fence defined by the rectangle Z with corners (Xoin, Yinin)s (Xmaz, Ymaz)-

Then the inertia of the system is encoded as the maximum distance that the drone can travel g in opposite
direction of the enforcement action . This allows us to define the enforceable state as:

Cyp=A{(2,y,0)|(x+ 0B,y +dp) € ZA(x — 0,y —0p) € Z} (4)

The enforcer is then defined as angles of movement depending on how close they are to specific boundary.
For this we define the maximum distance the drone can travel in any direction as dp then. Then, if it gets too
close to any of the boundaries (sides of the rectangle) it selects an angle of movement from the set of enforcement
angles according to closes boundary as presented in Figure 1 and defined as:
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3. TEMPORAL ENFORCEMENT

The time-aware logical model presented in Section 2 assume that the output is produced before the next periodic
activation of the software occurs. Unfortunately, the only code we verify is the one in the enforcers. This means
that the rest of the software may contain bugs that can potentially delay the execution (e.g., leading to an infinite
loop) well beyond the end of the period. For this case we developed the temporal enforcement.

3.1 Real-Time Scheduling

Before describing in detail the temporal enforcement techniques we first introduced the basic concepts from
real-time scheduling that we use. As mentioned in Section 1, real-time software uses functions that execute
periodically to sense and actuate over a physical process to keep it under control. This functions live within
tasks (or threads) that wait for the period to elapsed, execute the periodic function and go back to sleep waiting
for the next period to elapsed (also known as the deadline of the current activation).

Given that a system typically interact with multiple physical processes, the software is organized as a set of
task (or taskset) that is scheduled with a real-time scheduler within a Real-Time OS. One of the most common
real-time schedulers is the Fixed-Priority Scheduler that is typically used with priorities assigned in a Rate-
Monotonic fashion, i.e., tasks with shorter periods are assigned a higher priority. Tasksets scheduled in this
fashion are said to be scheduled under Rate-Monotonic Scheduling (RMS).

Liu and Layland [ 2] develop one of the basic analysis techniques for tasks under RMS to verify if the tasks
will always finish before the next activation. Specifically, if each task 7; is characterized with a period T; and
a Worst-Case Execution Time (WCET) C; we can calculate the utilization of each task as % and the total
utilization of the taskset of n tasks as the sum of the utilization of all the tasks: '

|2

(6)

n

o

i=1

Lui and Layland proved that if the utilization is less than (n(2) & .69 then the tasks are always guaranteed
to finish before its next activation, i.e.:
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A task running under RMS start executing as soon as no other higher-priority task is ready to run and keeps
executing until either of two things happen (i) it finishes its periodic activation and goes to sleep waiting for the
next period to elapsed or (ii) a higher-priority task becomes ready to execute. The interruption of the lower-
priority task by a higher-priority task is known as a preemption and the analysis developed by Liu and Layland
assumes that these preemptions are bounded by the WCET of these tasks. Figure 2 shows these preemptions.

Figure 2 shows how tasks of different priorities execute periodically reading sensor data s and producing
actuation commands « at the end of their periodic activation. It is worth noting that preemptions delay the
completion of tasks. For instance, the red task is delayed by the blue one and the green one is delayed by both the
red and the blue. Liu and Layland analysis assume that the data provide to the analysis matches the behavior
of the tasks, namely that the tasks do not activate more frequently than its period and that it does not execute
more than the stated WCET. In this paper we assume that the periodicity is enforce by the RTOS. Hence, we
focus on the problems due to the violation of the WCET assumption.

3.2 Temporal Errors

When a task executes beyond its WCET it can cause two temporal errors. First, the faulty task can cause a
longer preemption on a lower-priority task than anticipated. This can be observed in Figure 3. In this figure we
can see that when the blue task execute for a long time (beyond its WCET) it causes both the red and green
tasks to miss their deadlines. We call this problem unbounded preemption.

The missing of deadlines caused by unbounded preemption means that the actuation («) is not sent at the
right time leading to errors like the drone getting out of the geo-fence in our example.

The second temporal error shown in Figure 3 is that the blue task also misses the deadline. We identify this
problem as unbounded execution. The difference between the first and the second error is subtle but important. In
the first error, the faulty task is not the one suffering the consequences (tasks red and green). In the second case,
the faulty task also suffer the consequences. This difference requires different protection mechanisms discussed
next.
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3.3 Preventing Unbounded Preemption

A number of techniques used for unbounded preemption has been developed over the year for RMS. These
are know as processing servers [3-5] and they were later incorporated into OS mechanisms known as resource
reservation [6,7] and generalized for other types of scheduling such as mixed-criticality scheduling [8].

Resource reservations are time budgets for the use of time-shared resource such as the CPU. More specifically,
a time budget is assigned to a task and the OS monitors the time the task uses the CPU. If the task tries to use
the CPU longer than the assigned budget then the OS stops the task (enforces the budget). CPU budgets for
RMS scheduled tasks are replenished periodically, such that at each activation the task has a renewed budget
to use during its current activation. The enforcement of CPU budgets allows a task to not execute beyond its
WCET (implemented as a budget). This can be seen in Figure 4.

Figure 4 depicts the CPU reservation (budget) applied to the blue task as a gray rectangle for each activation.
The enforcement of the budget is shown in the third activation of the blue task when it tries to continue executing
but it is paused by the OS to be later resumed when its period elapses and it is able to complete its execution
and output its actuation command c.

It is worth noting that, while the deadline misses and late actuation of the red and green task are prevented
by the budget enforcement shown in Figure 4, the blue task still has a late actuation beyond the deadline of the
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third activation. This is because we corrected the unbounded preemption problem but we have not corrected
the unbounded execution. This is discussed next.

3.4 Preventing Unbounded Execution

Preventing an unbounded execution is trickier than unbounded preemption because we cannot force a task to
execute faster if we have not control over the code it is executing. We solve this problem by adding a piece of
code that is under our control that we call the temporal enforcer. The temporal enforcer is verified code that
is executed at the last instant before we miss a deadline. This code is application specific and the purpose is
to issue a very simple safe actuation command that prevent the CPS from violating a safety condition. For
instance, for the case of our drone this could be a hovering command.

To implement the temporal enforcer we reserve a small part of the budget to be able to execute the enforcer.
In other words, the new budget B; of task 7; is composed of the stated WCET of the task C; and the enforcer
WCET E; such that B; = C; + E;. However, the enforcement is set for C; and a the temporal enforcer is called
to execute for at most E;. The call to the enforcer can be implemented as a signal handler.

The combination of the budget enforcement and the temporal enforcement is presented in Figure 5. This
figure shows the execution of the temporal enforcement outputing a default actuation o™*.

It is worth noting that after the temporal enforcer has issued a default command it is necessary to re-
evaluate what to do with the actuation command of the normal activation when it completes late (as presented
in Figure 5). This is because such an actuation was calculated with sensing data from an old activation (one
period or several periods old). This is application specific and a decision procedure must be devised to solve this
issue.

4. A DRONE EXAMPLE IMPLEMENTATION

The drone example discussed throughout the paper was implemented using a parrot minidrone controlled with
a laptop which in turn receive navigation commands from a user using an XBox game controller. It is worth
noting that the user commands have the same unpredictable nature of a machine learning algorithm given that
its behavior cannot be modeled at design time.

A logical controller was added to the drone controller to ensure that it stays within a virtual fenced area. To
evaluate the current position of the drone indoors in our lab we use an Optitrack motion-capture system with
six cameras. This camera system uses a desktop computer that process the video coming from the cameras and
locates a set of reflective dots put on top of the drone. The position is then multicast to an IP multicast channel
that is received by the laptop and used by the logical enforcer.



To enable the verification of the logical enforcer and the composition of multiple enforcers (not discussed in
this paper) we implemented the enforcers as SMT formulae and executed them with the Z3 [9] verifier. A full
discussion of this verification approach was presented in the Runtime Verification Conference in 2017 [10].

The temporal enforcer was implemented extending the verified budget enforcer presented in [11]. This was
extended to implement budget enforcement signal handlers and take into account the enforcement budgets.
Hovering was used as the safe actuation performed by the temporal enforcement.

We conducted experiments to test both the logical and temporal enforcement. The complexity of the Z3
verification process was a good test for the temporal enforcer. Specifically, a number of caching techniques were
used to speed up the Z3 verification but we were never able to obtain a guaranteed WCET. As a result, when
the verification took too long, the temporal enforcer kicked in and prevented the drone from leaving the virtual
fenced area. As we fine tuned the caching techniques, the execution temporal enforcer was minimized. However,
the experiment clearly highlighted the need of the temporal enforcer to ensure that the safety condition was
never violated.

5. RELATED WORK

A brief overview of runtime enforcement techniques is available in [12,13]. Seto et al. [14] proposed the “Simplex”
architecture for resilient control systems, where a monitor switches a system from a complex and more capable,
but untrusted, controller Ceomp to a simple but trusted controller Cgimp, whenever the system is in danger of
becoming unstable. The main focus of this work is on deciding the switching boundary based on control theory.
Bak et al. [15] have developed a version of Simplex that combines offline analysis with hybrid reachability at
runtime to further push the envelope of recoverability. We focus on efficient implementations of the switching
logic, and combining multiple enforcers.

The idea of runtime monitoring has also been used in the context of formal verification [?,16]. The key idea
is to check for violations of a target safety property at runtime. This is more tractable than complete static
verification since we are only analyzing the states that are reached during execution. Our approach is aimed at
implementing runtime monitors using SMT solvers, and resolving conflicting actuation decisions.

In the domain of security, Schneider proposed “security automata” [17] as a formalism to express proper-
ties whose violations can be detected at runtime. Originally, security automata were passive, i.e., they only
monitored the system for safety violations. Restricted versions of this has been considered: Viswanathan [?Sec-
tion 4.3]viswanathan00] studied the case that the enforcer must be decidable and Fong [18] studied the case
where memory is limited. More recently, Ligatti at al. [19] have generalized this idea to “edit automata” that
can not only monitor system inputs and outputs, but also modify them as needed. Similarly, Pinisetty et al. [20]
monitor and allow changing input and outputs for synchronous systems. This is similar in spirit to our enforcers.
However, our enforcers also have real-time constraints (i.e., deadlines) since they are targeted toward CPS.
Moreover, we focus on combining multiple enforcers, and efficient and incremental SMT-based implementations.

Falcone et al. [21] explore runtime verification of reactive systems where properties include finite and infinite
sequences (i.e., Safety-Progress), and are expressed via (untimed) Streett automata. In contrast, we consider
safety properties and consider enforcement in the context of the use of a real-time scheduler. The literature
has also considered monitoring of multiple properties. Pinissety and Tripakis [22] use one monitor for each
property, and enforce them either sequentially or in parallel. Instead, we construct a single monitor for multiple
properties. Previous work [23,24] has also considered synthesizing monitors from set of properties, assuming
they are consistent. We focus on resolving such inconsistencies based on prioritization.

The role of timing in run-time verification deserves mentioning. Timing matters in the sense that the eval-
uation of the property that is monitored may be a function of the time of events. This is studied in [25, 26].
Another aspect of timing, however, is that regardless of whether evaluation of the property that is monitored
depends on the timing of event, we would like to run the program that performs the enforcer at the right time;
this is the aspect of timing that we have studied in this paper (using a real-time scheduler).

In the domain of real-time scheduling, enforcers have also been used widely, particularly to enforce CPU usage
budgets by threads. For example, the ZSRM [8] mixed-criticality scheduler allocates CPU cycles to threads in



a way that respects their priorities (during nominal execution) and criticalities (during overload execution). To
this end, it uses timers to intercept thread execution and take appropriate preemptive and budget enforcement
steps. While we use ZSRM to ensure schedulability of enforcers, our main focus is on symbolic implementation
and combination of logical enforcers.

Pike et al. [27] describe CoPilot, a runtime assurance approach for embedded systems. They focus on
a single enforcer, which transforms a stream of application commands to commands that will ensure system
safety. The enforcer is specified in a high-level domain specific language, from which efficient (but non-symbolic)
implementations are automatically generated. A cyclic executive is used for scheduling both the enforcer and
applications. We are inspired by this work, and take the same approach when defining the semantics of a single
enforcers. However, our main contribution is on efficient symbolic implementations of enforcers using SMT
solvers, and combination of multiple enforcers.

6. CONCLUSIONS

The verification of autonomous systems with unpredictable techniques like machine learning are specially prob-
lematic because their behavior cannot be defined at design time. This is further complicated by the fact that
these systems are CPS that need to interact with physical processes in a timely manner. In this paper we
presented a verification technique based on runtime assurance that uses verified enforcers to verify the safety of
autonomous systems. Two type of enforcers were presented in this paper, a logical enforcer that monitors the
output of the system and replaces it when it is deemed unsafe and a temporal enforcer that ensure that at the
very least a safe default actuation is output to keep the system safe. Finally we discuss how this scheme was
implemented in a drone example and how the two types of enforcers complement each other.
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