
AFRL-AFOSR-UK-TR-2019-0012

Ranking and Clustering in Signed and Weighted Bipartite Graphs

Ismail Hakki Toroslu
ORTA DOGU TEKNIK UNIVERSITESI

Final Report
02/28/2019

DISTRIBUTION A: Distribution approved for public release.

AF Office Of Scientific Research (AFOSR)/ IOE
Arlington, Virginia 22203

Air Force Research Laboratory

Air Force Materiel Command

DISTRIBUTION A: Distribution approved for public release.

 a. REPORT

Unclassified

 b. ABSTRACT

Unclassified

 c. THIS PAGE

Unclassified

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing
 data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or
 any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Executive Services, Directorate (0704-0188).
 Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information
 if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.

1. REPORT DATE (DD-MM-YYYY)
 05-03-2019

2. REPORT TYPE
 Final

3. DATES COVERED (From - To)
 15 Oct 2014 to 14 Oct 2018

4. TITLE AND SUBTITLE
Ranking and Clustering in Signed and Weighted Bipartite Graphs

5a. CONTRACT NUMBER

5b. GRANT NUMBER
FA9550-15-1-0004

5c. PROGRAM ELEMENT NUMBER
61102F

6. AUTHOR(S)
Ismail Hakki Toroslu

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
ORTA DOGU TEKNIK UNIVERSITESI
UNIVERSITELER MAHALLESI, 1
CANKAYA, 06800 TR

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
EOARD
Unit 4515
APO AE 09421-4515

10. SPONSOR/MONITOR'S ACRONYM(S)
AFRL/AFOSR IOE

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)
AFRL-AFOSR-UK-TR-2019-0012

12. DISTRIBUTION/AVAILABILITY STATEMENT
A DISTRIBUTION UNLIMITED: PB Public Release

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This project created and analyzed algorithms to cluster weighted graphs - ideas which could be applied to better understand
radical subnetworks in social media. The project piggy packed with a larger US DoD effort and connected the PI with researchers
working on DoDs Minerva Research Initiative at Arizona State University (ASU). The project produced several conference papers as
well as a journal article published jointly with the ASU team. The project successfully created several algorithms based on greedy
heuristics to cluster bi-partite and tri-partite graphs. In addition to benchmarks on synthetic data, these algorithms were also tested
on real-world Twitter data the goal to cluster UK Tweets from around to time of Brexit discussions to see if politicians, key words, and
sentiment could be well identify by the clustering. While the algorithms did show promise, it remains challenging to directly compare
these results to other existing clustering methods. Full details are found in the attached report as well as journal articles and
conference papers therein. While AFOSR is currently not supporting follow-on efforts, the PI and his team plan to continue to improve
their clustering techniques.
15. SUBJECT TERMS
Operations Research, Network Optimization, Bipartite Graphs, Complex Networks, EOARD

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
 ABSTRACT

SAR

18. NUMBER
 OF
 PAGES

19a. NAME OF RESPONSIBLE PERSON
PETERSON, JESSE

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Page 1 of 2FORM SF 298

3/5/2019https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll

DISTRIBUTION A: Distribution approved for public release.

19b. TELEPHONE NUMBER (Include area code)
314 235 6292

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Page 2 of 2FORM SF 298

3/5/2019https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll

DISTRIBUTION A: Distribution approved for public release.

FINAL REPORT

GRANT NUMBER: FA9550-15-1-0004
RESEARCH TITLE: Ranking and Clustering in Signed
and Weighted Bipartite Graphs

PI NAME: ISMAIL H. TOROSLU
PERIOD OF PERFORMANCE:14 OCT 2014 -14 Oct 2018

DISTRIBUTION A: Distribution approved for public release.

1

TABLE OF CONTENTS

1 SUMMARY 2

2

INTRODUCTION

4

3 METHODS, ASSUMPTIONS AND PROCEDURES 6

4

RESULTS AND DISCUSSIONS

19

5

CONCLUSIONS

22

6

REFERENCES

23

DISTRIBUTION A: Distribution approved for public release.

2

1. SUMMARY

The project had officially started on October 15, 2014 and it was planned as 2 years. However,

due to the problems with the transfer of the funds, an extension is granted, and the project has

been extended until Oct 14, 2018. The funds became available at METU project account in May

2016. The total amount was $38.000. Half of the funds were transferred to ASU project account.

Using these funds, the following visits are done:

 Prof. Davulcu visited Prof. Toroslu’s team at METU, Ankara, Turkey between March 4

and March 17, 2017.

 Prof. Toroslu visited Asst. Prof. Jordan at AFIT, Dayton, OH between May 27 and June

2, 2017.

 Prof. Toroslu visited Prof. Davulcu’s team at ASU, Tempe, AZ between January 27 and

February 4, 2018.

 Prof. Toroslu visited Prof. Davulcu’s team at ASU, Tempe, AZ between July 9 and 20,

2018.

The results of the collaboration has produced 6 paper, one of them is a journal paper [1], and the

others are well-known conferences on social networks [2, 3, 4, 5, 6]. One MS thesis of a

graduate student, Mr. Sefa Sahin Koc at METU who was supervised by Prof. Toroslu, was

directly based on the project subject, and in January 2017 Mr. Koc had completed his MS thesis.

In the last part of the project, a PhD student from METU, Riza Aktunc, also joined to the project.

Meanwhile, a PhD student at ASU who was supervised by Prof. Davulcu, Mr. Mert Ozer, was

also involved in the project. Finally, Asst. Prof. Dr. Jeremy Jordan from Air Force Institute of

Technology (AFIT), had also joined to the Prof. Toroslu and Prof. Davulcu research team, and

the journal paper has been published together.

In addition to the visits, project funds have also been used by Prof. Toroslu and Prof. Davulcu to

participate the most prestigious social network conference (IEEE/ACM ASONAM) in years

2015, 2016, and 2018. In year 2018, two teams published 2 separate papers in that conference.

The papers published in AONAM 2015 and 2016, the papers written by the collaboration of two

teams. Also, another conference paper has been published in another well-known social network

conference, SBP-BRIMS in 2015 as well in collaboration of two teams.

DISTRIBUTION A: Distribution approved for public release.

3

In general, the collaboration was very successful in terms of the scientific output produced, and

the funds were extremely helpful in achieving this success. All the papers published

acknowledge the support of the grant as well.

DISTRIBUTION A: Distribution approved for public release.

4

2. INTRODUCTION

Project Definition

At the beginning of this project, we started with bipartite graphs, and we modeled a mixed set of

blogs/microblog records debating a set of political issues from different camps as signed and/or

weighted bipartite graphs. At this point, our model has been evolved and now it is in the form of

a tri-partite graph. In this graph, the partitions correspond to people, issues, and keywords people

use to express their views related to these issues, respectively. We have developed algorithms for

clustering/partitioning the blogs/people, the issues (i.e. topics, leaders, etc.), and the keywords

simultaneously comprising the debate into two or more camps, which was published in [1]. In

addition, follow up research directions were evolved as well, such as detecting antagonistic and

allied communities on social media [3] and event detection by change tracking on community

structure of temporal networks [2, 4].

Teams

Prof. Davulcu’s team at Arizona State University have been working on this kind of problems for

several years, and his team has been supported by US DoD's Minerva Research Initiative Grant

(with #: N00014-09-1-0815). In this project, they had applied this model for understanding the

structure of counter-radical networks, the ideas on which they are based, social locations of their

leaders and followers, and the ways in which radical and counter-radical discourse intersect. One

of the main results of that project was extracting multidimensional portrait of counter-radical

networks shifting through time and across regions. Since 2011, Prof. Toroslu’s team and Prof.

Davulcu’s team have been working together on some sub-problems in this domain, namely the

scaling and clustering of signed and/or weighted bipartite graphs in order to formulate the kind

of relationships mentioned above and some results have been published.

DISTRIBUTION A: Distribution approved for public release.

5

Impact of the Project

The idea of this project is based on the problems related to Prof. Davulcu's other similar projects

supported by DoD and other government agencies, including MINERVA. The problems studied

are related to bipartite/tripartite graphs and different forms of data mining/optimization problems

in these graph models. We have identified new problems on this domain and developed effective

solutions to them. All these problems are from the new and emerging sub-domain of computer

science, called social network analysis. This area has become one of the most active research

areas in computer science and more specifically in data mining. The results of this specific

project will help us to understand social networks formed by people on the web and other

communication networks, and their connections, how they form communities etc.

In terms of collaboration between Turkish and US teams, these contributions not only

complement the DoD and similar projects of Prof. Davulcu, but they are also used for developing

further research projects. Both parties had benefited from this collaboration, since the parties

have skills and experiences complementing each other.

At the end of the project 1 MS student has completed his thesis, 2 PhD students had partially

contributed and a professor from AFIT also joined to the project. Finally, 5 conference and 1

journal paper had been published together by Prof. Toroslu and Prof. Davulcu. Both sides plan to

continue their collaboration after the completion of the project as well.

DISTRIBUTION A: Distribution approved for public release.

6

3. METHODS, ASSUMPTIONS AND PROCEDURES

Most important part of the methods developed or contributions of the project is based on the

journal paper [1], whose early version was also published in a conference [4]. Below details of

this work is given, and the other papers are summarized shortly afterwards.

Co-Clustering Signed 3-Partite Graphs

Social network data contains many hidden relationships. The most well-known is the

communities formed by users. Moreover, typical social network data, such as Twitter, can also

be interpreted in terms of three-dimensional relationships; namely the users, issues discussed by

the users, and terminology chosen by the users in these discussions. In this work, we propose a

new problem to generate co-clusters in these three dimensions simultaneously. There are three

major differences between our problem and the standard co-clustering problem definition: a node

can be a member of more than one clusters; not necessarily all the nodes are members of some

cluster; edges are signed and clusters are expected to have high density of positive signed edges,

and low density of negative signed edges. We apply our method to the tweets of British

politicians just before the Brexit referendum. Our motivation is to discover clusters of

politicians, issues and the sentimental words politicians use to express their feelings on these

issues in their tweets.

In many social network sites users share their views on a variety of subjects. This simple data set

can naturally be modelled as a 3-dimensional relationship including users, topics on which users

share their ideas and the keywords users use to express their feelings on the subjects as three

different dimensions. Users may be clustered according to the similarity of feelings on the same

issues. Also, users with different political views or from different social group may prefer to use

different keywords with the same negative or positive sentiments in order to express the same

kind of feeling on the same issue. Therefore, in clustering the people, it is important to use the

feelings of the people on the issues, as well as utilizing keywords they use to express these

views.

DISTRIBUTION A: Distribution approved for public release.

7

In this work, we have collected tweets of preselected groups of users on some specific issues,

and then, created a 3-dimensional data model by also extracting the sentiment keywords used by

these users on the selected issues. More specifically, our selected groups of people are politicians

from the UK, and the issues are hot subjects discussed just before the "Brexit" referendum.

Using this data, we have created a 3-D data set, whose dimensions correspond to the people, the

issues and keywords, and the values of each element of this 3-D data. If the person had written a

tweet on the issue including that keyword, the values are the sign of the sentiment keyword (as

positive or negative), else the value is empty. This 3-D data can be modelled as a tripartite

hypergraph.

The aim of this research is to propose an effective method which generates tri-clusters from

hypergraphs with signed tripartite hyperedges. Our focus data set is a signed 3-D relationships

obtained from users' feelings represented by the sentimental keywords (either positive or

negative) they use their tweets on the issues.

We have developed a new co-clustering algorithm customized to meet the requirements of our

problem for 2 main reasons. These reasons are as follows:

1. Typical co-clustering algorithms, such as spectral clustering algorithms, include all the nodes

of all the dimensions of the graph in the clusters generated for these dimensions. However, some

of these nodes might have very few relationships or they may not have sufficiently common

relationships with other nodes. Thus, we may want to exclude such nodes from the clusters

generated. In other words, we don't need to include all the nodes in clusters formed from tri-

partite graph if they do not contribute the clusters. The purpose of all clustering algorithms is to

determine subgraphs with strong connections/relationships among nodes. However, when all the

nodes are forced to be included in clusters, their connections weaken. Furthermore, we may want

to define the minimum amount of connection in subgraphs as a constraint. This means, we have

to construct clusters by excluding some of the nodes that violates these constraints. In this way,

we can obtain denser and more meaningful clusters.

2. Again, typical co-clustering algorithms, like spectral clustering method, place every node in

exactly one cluster. In our data set, a node may be in more than one cluster. For example, we

may detect a person which belongs to two different social groups. So, we have to allow overlaps

of nodes (not hyperedges) in clusters.

DISTRIBUTION A: Distribution approved for public release.

8

We call this new form of clustering method as triadic co-clustering. In this work we developed

the following:

1. A full-fledged system developed to crawl and collect tweets of selected users on selected

issues, and then construct a 3-D relationship among user issue-sentiment keyword triples by

parsing these tweets and extracting the issue-sentiment keyword relationships.

2. A flexible tri-partite clustering algorithm (triadic co-clustering) with parameters to control the

minimum density and the minimum size of clusters.

3. The clustering method has been applied on real data sets, more specifically on the tri-partite

graph obtained from "Brexit" tweets and its effectiveness has been shown both by empirically

and by the coverage metric defined.

For the dataset that we have studied in this work clusters cannot overlap. However, one user, or

one issue, or one sentiment keyword may be in more than one clusters simultaneously, since, for

example, a specific user's feelings toward some issues can be the same as with more than one

different set of people (different people clusters), so he can be in both clusters at the same time.

Again considering tweets, the same sentiment words may be used by people with different

clusters corresponding to different political camps. They may even use the same keywords on the

same issues. On people dimension, a person which appears in more than one cluster may be

interpreted as a person close to more than one different political camps.

Other Methods Studied

Other 4 papers focus on related but different aspects of the problem.

- Dynamic community detection and event detection by change tracking on community

structure of temporal networks [2, 5]

- Predicting hashtag breakouts in Twitter [6]

- Detecting antagonistic and allied communities on social media [3]

DISTRIBUTION A: Distribution approved for public release.

9

Both problems are variations of our original bipartite graph clustering problem. In the first one

the graph is not bipartite and the nodes are uniform. However the concept of community in these

graphs is similar to clusters in bipartite graphs and similar approaches are applicable. Even

though this version of the problem is well-studied in the literature its dynamic version on very

large graphs is still a new topic. Another important and popular topic related to blogosphere is

detecting hashtag breakouts, which is directly related to community behaviors. A directed graph

is formed representing the relationships among users in terms of retweeting, replying or

mentioning another user. Thus, this problem also turns into a classification in a directed graph

and, we have also studied it and a quite successful solution has been generated.

Dynamic community detection and event detection by change tracking on community

structure of temporal networks

Most of the social networks are not static because they evolve in many ways. They may gain or

lose users that are represented as nodes in the graphs over time. The users of these social

networks may lose contact from each other or there can be new connections among users. In

other words, some edges in the graphs may be removed or new edges may be added to the graph

over time. All these processes may happen in a very small amount of time in a social network if

it has a lot of active users. This kind of a social network may be called as highly dynamic. For

example, popular social sites such as Facebook, Twitter, LinkedIn and so on have highly

dynamic social networks. The first part of this work focusses on this dynamism [5].

Addition or deletion of an edge or a node from a network which has millions of edges might

seem insignificant; but when this additions or deletions of an edge or a node happen very

frequently, they begin to change the community structure of the whole network and become very

important. This change in the community structure raises the need of re-identification of

communities in the network. This need arises frequently and creates a new problem in the

community detection research area. This new problem requires somehow fast detection of

communities in dynamic networks.

DISTRIBUTION A: Distribution approved for public release.

10

The first solution that comes to mind for community detection in large dynamic networks

problem is the execution of static community detection algorithms already defined in the

literature all over again to detect the new community structure whenever the network is

modified. Nevertheless, this solution takes too much time in every modification of the large

networks since it runs the community detection algorithm from scratch each time. A much

efficient and less time consuming solution is to run the community detection algorithms not from

scratch but from a point in the history of the network by storing and using the historical results of

executions of the algorithms whenever network is evolved. In other words, updating previously

discovered community structure instead of trying to find communities from scratch each time the

network evolves consumes much less time and thus much efficient.

We modified the smart local moving (SLM) algorithm defined by Waltman & Van Eck [5] so

that it would detect the communities in rapidly growing large networks dynamically and

efficiently. As a result, we propose the dynamic SLM (dSLM) algorithm that dynamically

detects communities in large networks by optimizing modularity and using its own historical

results. We tested our proposed approach on several different datasets. We demonstrated the

effects of our contribution to the SLM algorithm in two ways. One of them is the change in

modularity value which determines the quality of the community structure of the network. The

other one is the change in running time that determines the pace of the algorithm. The latter is

more significant than the former because the community structure of the network must be

quickly identified at the given timestamp before the next timestamp is reached. We realized that

dSLM improved SLM by decreasing its running time incredibly. Moreover, there are some

experiments where modularity value increases while running time decreases.

SLM algorithm changes the reduced network construction step by applying following processes:

1) It iterates over all communities that are formed by the first step. It copies each community and

constructs a subnetwork that contains only the specific community’s nodes.

2) It then runs the local moving heuristic algorithm on each subnetwork after assigning each

node in the subnetwork to its own singleton community.

3) After local moving heuristic constructs a community structure for each subnetwork, the SLM

algorithm creates the reduced network whose nodes are the communities detected in

subnetworks. The SLM algorithm initially defines a community for each subnetwork. Then, it

DISTRIBUTION A: Distribution approved for public release.

11

assigns each node to the community that is defined for the node’s subnetwork. Thus, there is a

community defined for each subnetwork and detected communities in subnetworks are placed

under these defined communities as nodes in the reduced network.

This is the way that the SLM algorithm constructs the reduced network. After these processes,

the SLM algorithm gives the reduced network to the recursive call as input and all the processes

starts again for the reduced network. The recursion continues until a network is constructed that

cannot be reduced further.

SLM algorithm initially assigns each node to a different community, so each node has its own

singleton community. In order convert SLM to dynamic form, we replace that operation with a

newly defined procedure. This procedure works as follows:

- Existing communities are read from file as New Communities.

- If exists, the extensions to the network has been determined.

- For each new node, singleton new communities are constructed and added to New

Communities.

The effects of other changes in the network, such as adding new edges and deletions of nodes

and edges, are handled while executing standard SLM procedure. The new dSLM is available at

https://github.com/mertozer/dSLM.

We evaluate our proposed approach dSLM on five real world datasets which are the arXiv

citation dataset, the GSM calls dataset, Google Plus, Twitter and YouTube user network datasets.

In the second part of the work [2] we aimed to detect events from online data sources with least

possible delay. Most of the previous work focuses on analyzing textual content such as social

media postings to detect happenings. In this work, we considered event detection as a change

detection problem in network structure, and propose a method that detects change in community

structure extracted from communication network. We have studied three versions of the method

based on different change models.

We focused especially on detecting the events on Call Detail Record (CDR) data. We firstly

extract weekly samples from CDR data and then convert these samples to directed weighted and

unweighted networks. The nodes of the networks correspond to phone users in CDR data, while

the edges of the networks correspond to the communication between the connected nodes. The

DISTRIBUTION A: Distribution approved for public release.

12

communication can be an SMS or a voice call. For each communication type, we define different

networks.

In the literature, event is generally defined as a happening that takes place at a certain time and

place, and attracts attentions. In our study, we focus on the time dimension and aim to determine

time windows in which an event takes place. The proposed method involves tracking the change

in the community structures over temporal networks. A sequence of networks corresponding to

time windows along the timeline is analyzed for changes in detected communities in consecutive

networks. We model the change in three different ways: change in the number of communities,

change in the central nodes of the communities, and change in members of the communities.

Within each model, there are variations based on how the defined change is computed.

The proposed method is based on the idea that events can be detected by tracking the amount of

change in various attributes of the community structure of the network in consecutive time

windows. In addition to the length of the time window, the source of the network structure and

the community detection techniques may vary. In this work, we set the time window as one

week, and hence construct communities on the basis of the weekly interactions. As the

community detection technique, we use dSLM algorithm.

 In order to track the change, we compare the community structure parameter values against the

previous time window. We studied change in the community structure over three basic

parameters, which are Number of Communities, Central Nodes, and Community Members.

A Network-Based Model for Predicting Hashtag Breakouts in Twitter

Online Social Networks (OSNs) such as Twitter have emerged as popular microblogging and

interactive platforms for information sharing among people. Twitter provides a suitable platform

to investigate properties of information diffusion. Diffusion analysis can harness social media to

investigate viral tweets and trending hashtags to create early-warning solutions that can signal if

a viral hashtag started emerging in its nascent stages. In this work, first we introduced a simple

standard deviation sigma levels based Tweet volume breakout definition, then we proceeded to

determine patterns of re-tweet network measures to predict whether a hashtag volume will

DISTRIBUTION A: Distribution approved for public release.

13

breakout or not. We also developed a visualization tool to help trace the evolution of hashtag

volumes, their underlying networks and both local and global network measures. We trained a

random forest tree classifier to identify effective network measures for predicting hashtag

volume breakouts.

Given a set of tweets T = t1, t2, t3, ..., tn where n is number of tweets in our corpus. These tweets

comprise textual contents, user interactions and additional meta-data. We explore and analyze

both textual contents filtered by a given hashtag from hashtags set H. Then we denote tweet

volume as number of tweets per day. We then compute daily means (μ(20)) and standard

deviation (σ(20)) for each hashtag by utilizing its volume distribution during its previous 20 days

window. We experimentally determined the best window size by experimenting 10, 15, 20, 25

and 30 days windows. The 20 days window shows the best performance amongst the others.

If the hashtag frequency rises above (μ(20) +1σ(20)), then we label that period as an episode, and

we mark its previous 20 days as the accumulation period of an episode. We start observing

hashtag frequency for two possible outcomes:

– a breakout if hashtag volume rises above(μ(20) +2σ(20)), without falling below max(0,

μ(20) - 2σ(20)), or

– non-breakout, if hashtag volume falls below max(0, μ(20) - 2σ(20)), without rising above

(μ(20) +2σ(20))

In breakout scenario for an episode no further overlapping breakouts are allowed until its volume

falls below max(0, μ(20) - 2σ(20)). In both scenarios, as episode begins with its accumulation

period and continues until the hashtag volume dies out (i.e. it falls below max(0, μ(20) - σ(20))).

The dataset used in this study is a collection of tweets from UK region. These tweets have been

crawled based on a set of keywords with the aim to capture political groups, events, and trends in

the UK. The dataset consists of more than 3 million tweets, 600K users, with more than 5.2

million interactions (both mentioning and retweeting) between users along with 1,334 hashtags.

In this model we investigate how users get involved in a hashtag h by mentioning, replying or

retweeting. Their interactions are depicted as a directed graph. We then incorporated normalized

size-independent network features for directed graphs corresponding to accumulation periods of

episodes. The network graph is a pair G = (V,E) where V is set of vertices representing users

DISTRIBUTION A: Distribution approved for public release.

14

together with a set of edges E, representing interactions between users. For instance, if a user u1

mentioned, replied, or retweeted one tweet of u2, then a directed edge from u1 to u2 is formed.

We attempted to identify key features that contribute to the network based classification problem

for breaking or non-breaking hashtags. We used both local and global measures. Local measures

are associated with user interactions during the accumulation period only, whereas global

measures draws their information from all interactions beginning from the start date (June 2013)

until the end date of any accumulation period under consideration.

Detecting Antagonistic and Allied Communities on Social Media

Community detection on social media has attracted considerable attention for many years.

However, existing methods do not reveal the relations between communities. Communities can

form alliances or engage in antagonisms due to various factors, e.g., shared or conflicting goals

and values. Uncovering such relations can provide better insights to understand communities and

the structure of social media. According to social science findings, the attitudes that members

from different communities express towards each other are largely shaped by their community

membership. Hence, we hypothesize that intercommunity attitudes expressed among users in

social media have the potential to reflect their inter-community relations. Therefore, we first

validate this hypothesis in the context of social media. Then, inspired by the hypothesis, we

develop a framework to detect communities and their relations by jointly modeling users’

attitudes and social interactions.

In this work, we propose a framework, namely DAAC, which detects communities and their

relations (i.e., antagonism, alliance, or neither) by exploiting users’ social interactions (e.g.,

retweets) and attitudes expressed on social media. Our main contributions are:

 Validating the hypothesis suggesting that intercommunity attitudes that users express

towards each other in social media can reflect the relations of their communities;

 Achieving higher performance in detecting communities compared to several standard

community detection methods;

 Uncovering inter-community relations, i.e., antagonism, alliance, or no relation.

DISTRIBUTION A: Distribution approved for public release.

15

The problem of detecting communities and their relations on social media can be defined as:

Given social interaction matrix R and attitude matrix S, we aim to obtain community

membership matrix U and intra/inter-community relation matrix H. Formal definition can be

found in [3].

Politics is a domain in which it is common among political parties (i.e., communities) to form

alliances or engage in antagonisms. To validate the aforementioned hypothesis and evaluate our

proposed framework, we use the following political Twitter datasets:

 US Dataset consists of the tweets posted by 583 politicians from two major US political

parties (the Republican Party and the Democratic Party) from August 26 to November 29,

2016. For the period of time that this dataset covers, there were antagonisms between

these parties particularly due to the 2016 presidential election campaigning.

 Australia Dataset consists of the tweets posted by 225 user accounts, including politicians

and political groups, from five major Australian political parties (the Liberal Party, the

National Party, the Liberal National Party, the Greens, and the Labor Party) from January

1 to November 18, 2016. For several decades, there has been a coalition among the

Liberal Party, the National Party, and the Liberal National Party. In the 2016 federal

election, all relations between the parties were antagonistic except the relations between

the members of the coalition,.

 UK Dataset consists of the tweets posted by 389 user accounts, including politicians and

political groups, from five major UK political parties (the Conservative Party, the Labour

Party, the Scottish National Party, the Liberal Democrats Party, and the UK

Independence Party) from January 1 to October 31, 2015. There were antagonism among

five major UK political parties in this period of time, especially due to the 2015 general

election campaigning.

According to social science findings, the attitudes that members from different communities

express towards each other are largely shaped by their community membership. Therefore, we

hypothesize that inter-community attitudes expressed among users towards each other in social

media have the potential to reflect inter-community relations. However, the findings borrowed

from social sciences do not necessarily hold in social media due to many factors, such as the

validity and representativeness of available information. Moreover, the attitudes that users

DISTRIBUTION A: Distribution approved for public release.

16

express towards each other in social media might result from users’ personal relationships. we

aim to verify our hypothesis by answering the following two questions. With this respect, we

utilize the Australia dataset since it is the only dataset containing both allied and antagonistic

relations.

 Are the communities of two users who express negative attitudes towards each other

more likely to be in antagonism?

 Are the communities of two users who express positive attitudes towards each other more

likely to be in alliance?

For each pair of users (ui; uj) who are from different communities and have expressed negative

attitudes towards each other, we randomly select a user uk where users ui and uk are from

different communities and have not expressed negative attitudes towards each other. Then, we

check whether there is antagonism between the communities of ui and uj and between the

communities of ui and uk. If there is antagonism between the communities of ui and uj , we set

tp = 1; otherwise tp = 0. Similarly, if there is antagonism between the communities of ui and uk,

we set tr = 1; otherwise tr = 0. Let vector Tp denote the set of all tps for pairs of users from

different communities who have expressed negative attitudes towards each other, and vector Tr

denote the set of all trs for pairs of users from different communities who have not expressed

negative attitudes towards each other.

Therefore, the result of the two sample t-test demonstrates that the communities of two users

who express negative attitudes towards each other are highly probable to be in antagonism. we

conclude that the communities of two users who express positive attitudes towards each other are

highly probable to be in alliance.

We also propose a model which uncovers intra/inter-community relations by exploiting the

attitudes users express towards each other. Furthermore, we cluster users into k communities

with the most social interactions within each community and the fewest social interactions

between communities. Our framework DAAC jointly exploits these two models to uncover

communities and their relations. The proposed framework requires solving an optimization

problem. Since the optimization problem is not convex there is no guarantee to find the global

optimal solution. We introduce an alternative scheme to find a local optimal solution of the

optimization problem. The key idea is optimizing the objective function with respect to one of

DISTRIBUTION A: Distribution approved for public release.

17

the variables while fixing the other one. The algorithm keeps updating the variables until

convergence.

To evaluate our proposed framework, we design the required experiments to answer the

following two questions.

1) How effective is the proposed framework compared to the standard community detection

methods?

2) How effective is our framework in discovering intercommunity relations?

We can make the following observations:

 Our proposed framework achieves the highest performance in terms of NMI and ARI for

all three datasets. In terms of Purity, it also achieves the best in US and Australia

datasets. In the UK dataset, only InfoMap obtains higher Purity compared to our

framework since it generates a large number of communities (e.g., 11 communities for

the UK dataset) for sparse graphs such as social media networks.

 Our framework achieves its highest performance with large values of regularization

parameter (e.g., 107). This implies that social interactions are more effective in detecting

communities compared to users’ attitudes.

For the inter-community relations we compare the inter-community relations which our

framework detects with the real-word inter-community relations. Each community detected by

our framework is labeled with the party to which the majority of its members belong. Then, we

evaluate inter-community relations detected by our algorithm according to the known ground-

truth inter-party relations

The second experiment compares our framework with a two-step approach described as follows.

We first utilize social interactions to detect communities. Then, we aggregate the sentiment

expressed among the members of different communities in order to figure out their inter-

community relations.

We validated the hypothesis that inter-community attitudes that users express towards each other

in social media can reflect inter-community relations. As inspired by this hypothesis, our

proposed framework DAAC jointly models users’ attitudes and social interactions in order to

uncover communities and their antagonistic/allied relations. Experimental results on three real-

DISTRIBUTION A: Distribution approved for public release.

18

world social media datasets demonstrated that our framework obtains significant performance in

detecting communities compared with several baselines and also detects inter-community

relations correctly. Moreover, we showed that a two-step approach, which sequentially detect

communities and their relations, can fail to detect correct inter-community relations.

DISTRIBUTION A: Distribution approved for public release.

19

4. RESULTS AND DISCUSSIONS

In this part we only discuss the details of the main part of the study, namely co-clustering three-

partite graphs [4].

Experiments on Synthetic Data

In order to evaluate our algorithm, we have generated data sets with varying sizes. We have done

several experiments.

In the first set of experiments, we have fixed the positive and negative signed edge density ratios

while changing input sizes. In this test, we have generated 6 sample datasets. Each one contains

positive hyperedges with 60%, negative hyperedges with 20%, and 20% is empty. The sizes of

graphs were (31.25K, 62.5K, 125K, 250K, 500K, 1M) respectively for the 6 experiments.

In the second test, we have generated 5 datasets. In this test, we have fixed the size as 125K and

we have varying density ratios for (minimum positive edge, maximum negative edge) pairs as

(0.2,0.4), (0.2,0.2), (0.4,0.2), (0.4,0.4), (0.6,0.2).

Naturally a good clustering should contain most (positive) hyperedges in clusters while clusters

being non-trivial. The results show that we have achieved very high coverage in that sense, since

constructed clusters include almost as many hyperedges as the half of the number of positively

signed hyperedges.

The results show that we have achieved very high coverage in that sense, since constructed

clusters include almost half of the positive signed hyperedges.

Experiments on Brexit Data

We have generated one data set from Twitter data. We have used Brexit event for this purpose.

The Brexit referendum is a very popular political event of 2016. The citizens of the UK voted

DISTRIBUTION A: Distribution approved for public release.

20

whether or not the UK should leave the EU. To affect opinions, many talks have been done by

political parties. Social media is a very effective platform where a vast number of people can be

readily reached. Therefore, it is particularly focused for sharing ideas about Brexit. Millions of

tweets have been posted on the subject. Since there are great numbers of expressive tweets, it is

easier to find numerous ones having many common parts among themselves.

We collect tweets from 411 politicians from 5 major political parties in United Kingdom. Twitter

Search API is utilized to get the latest 3,200 tweets of each politician. For preprocessing, tweets

dated before January 1, 2016 are removed.

To represent each politician's stance towards the issue in binary, we utilize off

-the-shelf sentiment analysis tool SentiStrength. We assume that overall sentiment score of the

tweet implies the opinion of the tweet towards the issue word the tweet contains. To build input

tensor, sentiment scores of the tweets of i'th politician with j'th issue using k'th sentiment-

expressing words are summed up and put into the i'th row, j'th column and k'th slice entry.

The input data has 411 users and 48 different issues. The data also contains 6,776 keywords.

Keywords are derived from a state-of-the-art sentiment word list. Occurrence of each keyword is

counted. Then, most frequent 1000 keywords are selected, by keeping number of users and

issues stable.

This results in a maximum of 411 x 48 x 1000 = 19; 728; 000 possible hyperedges in the input

data. This is the size of 3D matrix constructed from nodes. The total number of hyperedges in the

input data is 26,624. The rest of it is sparse. Thus, the density of hyperedges in the input is

roughly 0.001. More than 60% of the hyperedges have negative label. Since the negative

hyperedges dominates the positives and the original algorithm mines clusters with high positive

density, the labels of hyperedges are switched in order utilize the negative feelings rather than

the positive ones in determining the clusters.

A summary of observations are as follows:

 Since most tweets had negative sentiments, we swapped positive and negative signs of

the edges in order to obtain correlation between users, issues and negative sentiment

words they use on these issues.

DISTRIBUTION A: Distribution approved for public release.

21

 Cluster sizes are much smaller since we only try to construct clusters with high

relationships among the nodes of 3 dimensions. Most nodes are not included in these

clusters. The largest cluster we obtained with the lowest density requirement, as 25% for

minimum negative signed edges, and up to 10% for maximum positive signed edges, was

with 24 users on 3 issues, using 22 different negative sentiment words. For this cluster

and other clusters, with these density constraints, we have obtained the resulting user

clusters containing members from different parties.

 As we have tightened the density constraints we have obtained much smaller and less

number of clusters from the experiments. With high density constraint and/or larger

minimum size constraint, it was not possible to obtain many clusters. Therefore, we have

obtained only a single cluster from most of our tests. As these constraints were slightly

relaxed it became possible to generate more clusters. Moreover we have clearly seen that

3 issues stand above almost all other issues, namely “EU", “tax", and “Brexit". Since our

method allows node sharing among clusters, we have seen that when more than one

cluster is obtained from an experiment, either all, or at least two out of these three issues

are in the issue dimension of these clusters. We have also observed that users are

distributed to different clusters due to sentiment words they choose to use as they express

their feelings against these issues.

 In the experiments with higher negative density requirements the users were mostly from

Labour and Conservative parties. Even though these users were from different parties,

when we look at their tweets we have seen that they express their negative feelings with

similar sentiment words against common issues. Since the number of users using

common sentiment words was small, the cluster sizes turned out to be small as well.

DISTRIBUTION A: Distribution approved for public release.

22

5. CONCLUSIONS

In the 4 year term the collaboration between Prof. Toroslu on the Turkish side and Prof. Davulcu

on the US side was very successful. Project funds were used to make visits, and participating

academic conferences. The results of these collaborations had been published as 5 major

conference papers and 1 prestigious journal paper. In the last part of the project the collaboration

has been extended by including Prof. Jeremy Jordan from Air Force Institute and Technology,

Dayton, OH as well.

Although the project had officially started in September 2014, the first installment of the project

fund had been received in May 2016. After the whole fund has reached to METU project

account, half of it has been transferred to the project account under the control of co-PI Prof.

Davulcu at ASU.

Both teams are continuing the collaborations after the completion of the project. They are also

planning to apply for follow-up research projects through the same agency or another one.

DISTRIBUTION A: Distribution approved for public release.

23

REFERENCES

[1] Sefa Sahin Koc, Mert Ozer, Ismail Hakki Toroslu, Hasan Davulcu, Jeremy Jordan, 2018,

Triadic co-clustering of users, issues and sentiments in political tweets. Expert Syst. Appl. 100:

79-94 (2018).

[2] Riza Aktunc, Ismail Hakki Toroslu, Pinar Karagoz, Event Detection by Change Tracking on

Community Structure of Temporal Networks. ASONAM 2018: 928-931, Barcelona, Spain.

[3] Amin Salehi, Hasan Davulcu, Detecting Antagonistic and Allied Communities on Social

Media. ASONAM 2018: 99-106, Barcelona, Spain.

[4] Koc, S. S., Toroslu, I. H., Davulcu, H., 2016, Co-Clustering Signed 3-Partite Graphs,

ASONAM 2016: 945-948, San Francisco, CA, USA.

[5] Aktunc, R., Ozer, M., Toroslu, I.H., Davulcu, H., 2015, A Dynamic Modularity Based

Community Detection Algorithm for Large-scale Networks, ASONAM 2015: 945-948 Paris,

France.

[6] Alzahrani, S., Alashri, S., Koppela, A., Davulcu, H., Toroslu, I., 2015, A Network-Based

Model for Predicting Hashtag Breakouts in Twitter, Proceedings of the International Conference

on Social Computing, Behavioral-Cultural Modeling, & Prediction (SBP15), pp. 3-12,

Washington DC, USA.

DISTRIBUTION A: Distribution approved for public release.

Expert Systems With Applications 100 (2018) 79–94

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Triadic co-clustering of users, issues and sentiments in political tweets

Sefa Ş ahin Koç a , Mert Özer b , İsmail Hakkı Toroslu

a , ∗, Hasan Davulcu

b , Jeremy Jordan

c

a Computer Engineering Department, Middle East Technical University, Ankara 06530, Turkey
b School of Computing, Informatics, Decision Systems Engineering, Arizona State University, Tempe, AZ 85287, Turkey
c Department of Mathematics and Statistics, Air Force Institute and Technology, Dayton, OH 45433, Turkey

a r t i c l e i n f o

Article history:

Received 7 October 2017

Revised 25 January 2018

Accepted 26 January 2018

Available online 2 February 2018

Keywords:

Social network analysis

Co-clustering

Hypergraph

3 partite graph

Sentiment analysis

a b s t r a c t

Social network data contains many hidden relationships. The most well known is the communities

formed by users. Moreover, typical social network data, such as Twitter, can also be interpreted in terms

of three-dimensional relationships; namely the users, issues discussed by the users, and terminology cho-

sen by the users in these discussions. In this paper, we propose a new problem to generate co-clusters

in these three dimensions simultaneously. There are three major differences between our problem and

the standard co-clustering problem definition: a node can be a member of more than one clusters; all

the nodes are not necessarily members of some cluster; and edges are signed and cluster are expected

to have high density of positive signed edges, and low density of negative signed edges. We apply our

method to the tweets of British politicians just before the Brexit referendum. Our motivation is to dis-

cover clusters of politicians, issues and the sentimental words politicians use to express their feelings on

these issues in their tweets.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Although social networks have been around for quite some

time, Facebook and Twitter have actually made them readily avail-

able to mainstream users. These top social network sites are

among the most visited websites in the world. This trend intro-

duces new and interesting problems, the most well-known being

the determination of communities or user clusters within these so-

cial networks.

The community detection problem or user clustering are among

the most popular recent research topics, and many different ver-

sions of the problem have been studied. However, co-clustering is

still relatively new and less explored than other clustering prob-

lems. Most of the research is limited to the 2-dimensional version

of the co-clustering problem, also known as 2-mode clustering or

biclustering, see (Angiulli & Pizzuti, 20 05; Dhillon, 20 01; Giannaki-

dou, Koutsonikola, Vakali, & Kompatsiaris, 2008; Zha, He, Ding, Si-

mon, & Gu, 2001). In this work, we focus on the 3-dimensional co-

clustering problem, which is motivated by real-life social network

data.

On many social network sites, users share their views on a vari-

ety of subjects. This simple data set can naturally be modeled as a

∗ Corresponding author.

E-mail addresses: sefa.koc@metu.edu.tr (S. ̧S . Koç), mozer@asu.edu (M. Özer),

toroslu@ceng.metu.edu.tr , toroslu@metu.edu.tr (̇I.H. Toroslu), hdavulcu@asu.edu (H.

Davulcu), Jeremy.Jordan@afit.edu (J. Jordan).

3-dimensional relationship which includes users, topics on which

users share their ideas, and the keywords they use to express their

feelings on the subjects. Users may be clustered according to the

similarity of feelings on the same issues. Also, users with different

political views or from different social groups, may prefer to use

different keywords with the same negative or positive sentiments

in order to express the same kind of feeling on the same issue.

Therefore, in clustering the people, it is important to use the feel-

ings of the people on the issues, as well as utilizing keywords they

use to express these views.

In this work, we have collected tweets of preselected groups of

users on specific issues, and subsequently created a 3-dimensional

data model by extracting the sentiment keywords used by these

users on the selected issues. More specifically, our selected group

of people are politicians from the UK, and the issues are hot sub-

jects discussed just before the “Brexit” referendum. Using this data,

we have created a 3-D data set, whose dimensions correspond to

the people, the issues and keywords, and the values of each ele-

ment of this 3-D data. If the person had written a tweet on the

issue including that keyword, the values are the sign of the sen-

timent keyword (as positive or negative), else the value is empty.

This 3-D data can be modeled as a tri-partite hypergraph.

The aim of this paper is to propose an effective method which

generates tri-clusters from hypergraphs with signed tripartite hy-

peredges. Our focus data set is signed 3-D relationships obtained

from users’ feelings, represented by the sentimental keywords (ei-

https://doi.org/10.1016/j.eswa.2018.01.043

0957-4174/© 2018 Elsevier Ltd. All rights reserved.

DISTRIBUTION A: Distribution approved for public release.

https://doi.org/10.1016/j.eswa.2018.01.043
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2018.01.043&domain=pdf
mailto:sefa.koc@metu.edu.tr
mailto:mozer@asu.edu
mailto:toroslu@ceng.metu.edu.tr
mailto:toroslu@metu.edu.tr
mailto:hdavulcu@asu.edu
mailto:Jeremy.Jordan@afit.edu
https://doi.org/10.1016/j.eswa.2018.01.043

80 S. ̧S . Koç et al. / Expert Systems With Applications 100 (2018) 79–94

ther positive or negative) they use in their tweets on the issues.

The preliminary version of this work is presented in an extended

abstract in Dawande, Keskinocak, Swaminathan, and Tayur (2001) ,

where the sketch of the tri-partite clustering method is given and

tested on toy data sets.

One of the most well-known and general purpose co-clustering

methods is spectral clustering, which could be applied to our

signed 3-D data as well (Gao, Liu, Zheng, Cheng, & Ma, 2005; Long,

Zhang, Wu, & Yu, 2006). However, we have developed a new co-

clustering algorithm customized to meet the requirements of our

problem for 2 main reasons. These reasons are as follows:

1. Typical co-clustering algorithms, such as spectral clustering al-

gorithms (Ng, Jordan, Weiss et al., 2001), include all the nodes

of all the dimensions of the graph in the clusters generated for

these dimensions. However, some of these nodes might have

very few relationships or they may not have sufficiently com-

mon relationships with other nodes. Thus, we may want to ex-

clude such nodes from the clusters generated. In other words,

we don’t need to include all the nodes in clusters formed from

tri-partite graph if they do not contribute to the clusters. The

purpose of all clustering algorithms are to determine subgraphs

with strong connections/relationships among nodes. However,

when all the nodes are forced to be included in clusters, their

connections weaken. Furthermore, we may want to define the

minimum amount of connection in subgraphs as a constraint.

This means, we have to construct clusters by excluding some

of the nodes that violate these constraints. In this way, we can

obtain denser and more meaningful clusters.

2. Again, typical co-clustering algorithms, like the spectral clus-

tering method, place every node in exactly one cluster. In our

data set, a node may be in more than one cluster. For example,

we may detect a person which belongs to two different social

groups. Thus, we have to allow overlaps of nodes (not hyper-

edges) in clusters.

We define this new form of clustering method as triadic co-

clustering . A full definition of the method will be given in the next

section. In this paper we present the following:

1. A full fledged system developed to crawl and collect tweets of

selected users on selected issues, and then construct a 3-D rela-

tionship among user issue-sentiment keyword triples by pars-

ing these tweets and extracting the issue-sentiment keyword

relationships.

2. A flexible tri-partite clustering algorithm (triadic co-clustering)

with parameters to control the minimum density and the min-

imum size of clusters.

3. The clustering method has been applied on real data sets,

more specifically on the tri-partite graph obtained from “Brexit”

tweets, and its effectiveness has been shown both empirically

and by the coverage metric defined.

For the dataset we studied in this paper, clusters cannot over-

lap. This means, for a triple (user u i , issue i j , sentiment keyword

k k), all of the following cannot happen at the same time: u i ∈ C ux ,

u i ∈ C uy ; i j ∈ C ix , i j ∈ C iy , k k ∈ C kx , and k k ∈ C ky , where C is a cluster.

However, one user, one issue, or one sentiment keyword may be in

more than one cluster simultaneously, since, for example, a specific

user’s feelings toward some issues can be the same as with more

than one different set of people (different people clusters), so he

can be in both clusters at the same time. Again considering tweets,

the same sentiment words may be used by people with different

clusters corresponding to different political camps. They may even

use the same keywords on the same issues. For the people dimen-

sion, a person who appears in more than one cluster may be inter-

preted as a person close to more than one different political camp.

The rest of the paper is organized as follows. Section 2 dis-

cusses current related literature. Section 3 introduces the Tri-

adic Co-Clustering algorithm. Section 4 presents experiments and

Section 5 concludes the paper.

2. Related work

In a tri-partite graph, a hyperedge represents the relationships

among the three nodes it connects. One of the well-known ex-

amples of the tri-partite network relationship from the literature

is a social tagging system, which contains three types of nodes

(users, tags, resources) (Lu, Chen, & Park, 2009). In this relation-

ship, a hyperedge represents a user annotating a resource with a

tag. In order to determine users with common interests on re-

sources, tri-partite clustering may be applied on this hypergraph.

As another example, in a biological system, a level of gene in a

sample at a particular time can be represented as a tripartite hy-

peredge. On this hypergraph, tri-partite clusters represent genes

showing common characteristics in samples at common time slots

(Zhao & Zaki, 2005).

It has already been shown that determining bi-clusters with

maximum sizes from a bipartite graph is NP-hard (Dawande et al.,

2001). Thus, finding maximum size tri-clusters from tri-partite

graphs is also NP-hard, and, works in literature (Lu et al., 2009;

Zhao & Zaki, 2005; Zhu, Galstyan, Cheng, & Lerman, 2014) typically

propose heuristics to determine clusters.

For example, in Zhu et al. (2014) , tri-clusters are constructed

by first generating biclusters between each pair of three partitions,

and then, by matching each bicluster with the two others in or-

der to construct tri-clusters. However, this approach is very costly.

Another work has proposed a faster method (Zhao & Zaki, 2005).

In this approach, two partitions are selected, then biclusters of

these bipartite graphs are constructed. In order to construct final

tri-clusters, each of these biclusters are iterated on the third parti-

tion. Since the first two partitions are fixed, this approach has bias

against the third partition. In the works of Lin et al. (2009) and

Liu and Murata (2010) , tri-partite clusters correspond to one-to-

one relationships among the nodes. On the other hand, as in social

tagging system, a group of users may tag multiple sources with the

same set of tags, which represents a many-to-many relationship.

The overlapping clustering concept has been studied as well.

There are several works, such as (Blondel, Guillaume, Lambiotte, &

Lefebvre, 2008; Gregory, 2010; Lancichinetti, Fortunato, & Kertész,

2009; Li, Xie, Xin, & Mo, 2017; Rhouma & Romdhane, 2014; Ros-

vall & Bergstrom, 2008; Zhou, Lü, Yang, Wang, & Kong, 2015) dedi-

cated on finding overlapping communities in large graphs. These

methods are all heuristic based approaches and all of them ap-

proach the problem very similarly. However for higher dimensions,

such as 2 or 3, the concept of overlapping is quite different. In the

higher dimensional version of the clustering problem, where co-

clusters are constructed for each dimension simultaneously by re-

lating them with each other, we can define overlapping of clus-

ters in a dimension as a more constrained concept. In this ver-

sion of overlapping, co-clusters related with each other may have

some overlaps with other clusters in their dimensions, however, all

co-clusters cannot have common entities with another set of co-

clusters at the same time. We define this version more formally in

the following section.

There are also some works focused on partitioning of signed

bipartite graphs (Gokalp, Temkit, Davulcu, & Toroslu, 2013;

Omeroglu, Toroslu, Gokalp, & Davulcu, 2013). The main difference

between these works and our research is related to the density

of the bi-partite graphs. Both of these works (Gokalp et al., 2013;

Omeroglu et al., 2013) aim to distribute the whole set of nodes

of both partitions into clusters, since their main assumption is the

bi-partite graph is complete and each node of one partition have

DISTRIBUTION A: Distribution approved for public release.

S. ̧S . Koç et al. / Expert Systems With Applications 100 (2018) 79–94 81

edges to every node of the other partition with a negative or pos-

itive sign. If there are a small number of missing edges, then, they

are replaced by unsigned edges.

Another paper uses ternary (3-dimensional) relationships also

(Missaoui & Kwuida, 2011). However, rather than clustering, the

aim of this paper is to find frequent triadic association rules.

To the best of our knowledge, the most similar work to

our method is presented in Ignatov, Gnatyshak, Kuznetsov, and

Mirkin (2015) paper. This paper introduces triadic clustering also.

However, they do not have sign on hyperedges and clusters with

overlapping nodes are not considered. They have also performed

experiments on data sets such as IMDB and Bibsonomy. Most of

these data sets have less than 30 objects at each dimension, or the

total number of hyperedges are less than 40 0 0. Example clusters

obtained from IMDB dataset has also been presented in the paper.

In our algorithm, unlike most of the above mentioned methods,

we address 3 dimensional input data with labeled (either positive

or negative) hyperedges. Due to this characteristic of the input,

the algorithm considers density of labeled hyperedges and it aims

to construct tri-dimensional clusters with high density of positive

edges while minimizing the density of negative ones in clusters.

Secondly, our algorithm is not biased towards any dimension. This

feature increases its applicability in different domains. Thirdly, the

nodes can be shared among clusters as long as hyperedges were

not repeated in clusters. In some applications, this node sharing

helps us to discover more useful clusters.

3. The TRIADIC CO-CLUSTERING algorithm

In a typical co-clustering problem there are N dimensions (usu-

ally 2 or 3) and all the items of these N dimensions are clustered

simultaneously by using the relationships among the items of dif-

ferent dimensions. For example, in the case of N = 2, the dimen-

sions correspond to the partitions of a bipartite graph, and the re-

lationship used for clustering is defined by the edges between two

partitions. This means, for the 2-cluster case, all the nodes of both

partitions will be placed into some clusters which are formed si-

multaneously. However, this approach does not work well when

the relationship is too sparse. Consider a bipartite graph with a

very few edges connecting two partitions. In this case most nodes

from both partitions may have no edges incident to them. If our

aim is to capture the clusters defined by the edges, then we should

exclude the nodes with no or very little connections while form-

ing the clusters. For example, consider a bipartite graph, where,

one of the partitions with size 1 million represents users, the other

partition with size 10 thousand represents movies, and the edges

between two partitions define the relationship of people watching

the movies. This bi-partite graph will most likely be very sparse.

If we are trying to determine a group of people with similar taste

in movies, they should have watched similar movies. When such a

group of people have been determined, the common movies they

have watched would also have been determined simultaneously, as

two clusters from two different partitions. Notice that, we are talk-

ing about forming two clusters in two partitions simultaneously,

such that the relationship between these two dimensions is ex-

pected to be dense. Also, in this formulation, a cluster of one par-

tition will have a one-to-one relationship with a cluster from the

other partition. We can assume that only a small portion of movies

and people will have a chance to be in such clusters, thus, leav-

ing most movies and most people without being in any cluster at

all. Furthermore, some people may have common taste with more

than one group of people, or, some movies might be in the watch

list of more than one group of people, implying there can be over-

lap between clusters of a partition. However, we cannot have the

same person and the same movie repeated in two clusters simul-

taneously.

Table 1

Cluster control parameters and constraints.

Symbol Meaning

Input parameters

εp Minimum h + edges ratio parameter in a cluster

εn Maximum h − edges ratio parameter in a cluster

λi Minimum size of dimension i parameter in a cluster

Cluster properties

L i Number of nodes for type i in a cluster (size of type i)

C p Number of h + edges in a cluster

C n Number of h − edges in a cluster

Constraints

εp ≤ C p
L 1 ×L 2 ×L 3

Ratio of h + edges constraint in a cluster

εn ≥ C n
L 1 ×L 2 ×L 3

Ratio of h − edges constraint in a cluster

L i ≥λi Size for dimension i constraint in a cluster

In this work, we propose a feasible solution to this problem.

Even though this problem can be defined for any dimension, we

focus on the three dimensional case. Our modeling can easily be

reduced to 2 dimensions, or can be extended to higher dimensions

with a little additional effort. Below we define the 3-dimensional

form formally.

Definition (Triadic Co-Clustering): Given 3 sets U 1 , U 2 , U 3 and

3D-relationships U 1 × U 2 × U 3 among the items of these 3 sets (i.e.,

hyperedges hyperedge (x, y, z) such that x ∈ U 1 , y ∈ U 2 , z ∈ U 3), den-

sity and size thresholds as ε and λi for each dimension, triadic

co-clustering determines k 3-clusters as {(C 11 , C 21 , C 31), (C 12 , C 22 ,

C 32), . . . , (C 1 k , C 2 k , C 3 k)} satisfying the following:

• Clusters satisfy size constraint. That is for each cluster C ij , size

(C ij) ≥λi .
• Clusters satisfy density constraints. That is for each 3-cluster

(C 1 j , C 2 j , C 3 j), number _ of _ hyperedges (C 1 k × C 2 k × C 3 k) ≥ ε.
• No common hyperedges. That is, if x ∈ U 1 , y ∈ U 2 , z ∈ U 3 , then, it

is not possible to generate two different 3-clusters as (C 1 i , C 2 i ,

C 3 i) and (C 1 j , C 2 j , C 3 j), such that, x ∈ C i 1 , y ∈ C i 2 , z ∈ C i 3 and at the

same time x ∈ C j 1 , y ∈ C j 2 , z ∈ C j 3 .

The first item in the above definition enforces forming dense

clusters with strong relationships among the sets from three dif-

ferent dimensions. The second item prevents forming trivial and

very small clusters satisfying the density constraints. Finally, the

third item allows node-overlapping among the clusters of the

same dimension while disallowing hyperedge-overlapping among

3-clusters.

In this work, we extend this problem with one more feature by

defining signs (positive or negative) for hyperedges. Therefore, in

this signed version, there will be two density parameters to max-

imize the number of positive edges while minimizing the number

of negative edges (or vice versa) in clusters.

The input parameters, together with related cluster features and

the definitions of the size and the ratio constraints, are given in

Table 1 . Since, the positive sign of the hyperedge means three

nodes forming this edge agree, and the negative sign means they

disagree, the idea is to form co-clusters on three dimensions using

this agreement relationship and maximizing the agreement while

minimizing the disagreement among the nodes of co-clusters. Fur-

thermore, we want to generate the largest possible clusters. So, we

have two conflicting objectives. For a given tri-partite graph, we

would like to construct the largest possible tri-clusters, as well as

generate clusters with maximum density of positive signed hyper-

edges and minimum density of negative signed hyperedges. There

is a trade-off between these two objectives. By trying various val-

ues of the parameters in Table 1 , clusters with different proper-

ties/qualities may be generated. As expected, only very small size

or trivial perfect clusters can be generated with full positive la-

DISTRIBUTION A: Distribution approved for public release.

82 S. ̧S . Koç et al. / Expert Systems With Applications 100 (2018) 79–94

beled edges. In order to generate more meaningful and useful clus-

ters with larger sizes, we may tolerate some negative labeled edges

in clusters and reduce the minimum positive edge ratio require-

ment.

To simplify the process, we have generated a fully connected

tri-partite graph by adding hyperedges with no sign between all

3 nodes from 3 different dimensions, if they are not already con-

nected in the original graph with negative or positive signed edges.

We have developed a simple and efficient greedy heuristic in order

to generate clusters satisfying the above mentioned constraints.

The general idea is to start with the whole graph as a cluster, then

trim less effective nodes until ratio constraints are satisfied, or it

cannot satisfy the size constraint. Effectiveness of the nodes is also

defined using simple formulas which will be discussed below. Our

method works as follows:

1. Start with a single co-cluster of the whole graph and trim the

least effective node from it in order to increase its positive den-

sity and decrease its negative density as much as possible. No-

tice that this trimming operation reduces the size of the cluster.

2. Repeat this trimming operation until a cluster is obtained sat-

isfying both the density constraints and the cluster size con-

straints, or until one of the minimum cluster size constraints

are violated.
• If the obtained cluster satisfies all the constraints, it is added

to the cluster list. Then, in order to remove the hyperedges

used in this cluster, least effective nodes incident to each

hyperedge are removed from the graph. The process then

repeats itself from the beginning using the remaining graph.
• If the obtained cluster violates one of the size constraints,

all node removals from this iteration were backtracked, and

only one hyperedge with negative sign is selected from the

graph, and one of the nodes incident to that edge is re-

moved from the graph. Following this, the process repeats

itself from the beginning using the remaining graph.

In this paper, we use the notations given in Table 1 . Triadic

Co-Clustering Algorithm takes a set of hyperedges, � as an input,

such that each hyperedge h connects three nodes from three differ-

ent types U = (U 1 , U 2 , U 3) . Fig. 1 illustrates hyperedges given as 3D

matrix. These hyperedges have either positive or negative labels,

represented by positive and negative signs respectively in Fig. 1 .

Remaining entries (white cells) correspond to node triples without

connecting hyperedges. In the example, nodes are {{ a 1 , a 2 }, { b 1 , b 2 ,

b 3 , b 4 , b 5 }, { c 1 , c 2 , c 3 , c 4 , c 5 }} from types U 1 , U 2 , U 3 respectively. An

example cluster obtained from the input graph given in Fig. 1 is

depicted in Fig. 2 .

The aim of Triadic Co-Clustering is to find tripartite clusters

of hyperedges with highly positive labels. To be a valid tripartite

cluster, it has to satisfy threshold values for both density and size.

The density threshold values are εp and εn , such that 0 ≤ εp , εn ≤ 1,

(εp + εn) ≤ 1 . The former one represents the minimum ratio den-

sity of positive hyperedges (h +) among all possible hyperedges (i.e.,

there may be L 1 × L 2 × L 3 number of possible hyperedges for a clus-

ter with size (L 1 , L 2 , L 3), where L i is number of nodes with U i type

in the cluster). If C p is the number of h + , then:

εp ≤ C p

L 1 × L 2 × L 3
, (1)

If εp = 1 , generated tripartite clusters become tripartite cliques as

well. εn is the value to control the density of negatively signed

hyperedges (h −). If C n represents the number of h −, then:

εn ≥ C n

L 1 × L 2 × L 3
, (2)

shows the maximum allowed tolerance of h − in a cluster if εn � = 0.

In order to prevent constructing very small clusters, λi is de-

fined, such that:

L i ≥ λi , (3)

for 1 ≤ i ≤ 3, and this constraint should also be satisfied by every

cluster.

The input parameters presented in Table 1 have different effects

on the structures and the qualities of the clusters constructed by

the algorithm. By adjusting them, different clusters may be con-

structed. Therefore, how these parameters are going to be adjusted

can be very important. To do this adjustment well, both the struc-

ture of the input data and what is expected from the clusters must

be known in advance. These metrics are: density of positively and

negatively labeled edges, percentage of sparseness, and sizes of

each dimension. For densely connected input data, density param-

eters can be chosen as high, or depending on the requirements,

they can also be set to a lower value as well. If it is known that

positive connections are dominant, then εp can be set to a higher

value. On the other hand, for a sparse data set, the algorithm may

behave more severely on eliminating potential clusters. If εp is not

low enough or λi is high, then no clusters may be found. In order

to be able to find the best settings of these input parameters, some

exploration of potential values may be needed.

Since in our problem, we have both positive and negative la-

belled edges, without some apriori knowledge about their den-

sities, arbitrary settings of the relevant density parameters may

produce uninteresting clusters. We assume that interesting clus-

ters will have high density of positive and low density of nega-

tive edges. For example, if the input graph is very sparse, we may

obtain trivial clusters with a very few nodes only, if the (positive)

density parameter is set to a high value. On the other hand, for

dense graphs, a small (positive) density parameter may generate a

giant single cluster including almost all the nodes. The difference

between the densities of positive and negative edges in the graph

is also very important. For example, if the negative edge density

is close to the positive edge density in the graph, relatively high

negative density ratio may produce clusters with so many negative

edges, maybe very close to the number of positive edges. Typically,

such clusters are not considered as interesting.

In addition to the density, the dimension sizes of the input

graphs are also very important. Since each dimension size can be

different, their corresponding size constraint parameters may also

be set to different values. While we can choose a small size con-

straint for clusters for a dimension with small size, we can set the

size constraint of larger dimension to a higher value.

Since dimension size parameters and density parameters con-

flict with each other, some kind of exploration of these parameters

are needed in order to be able to find more interesting clusters. As

we increase the size parameters it becomes more difficult to find

high (positive) density clusters. In general, we are not interested

in very small clusters even if they have high densities. Therefore, a

simple exploration process may start with high density and large

size parameters and reduce them to values that produce clusters

with acceptable densities and non-trivial sizes.

Triadic Co-Clustering algorithm (Algorithm 1) starts by gener-

ating a potential cluster α which contains all hyperedges in �. The

main loop (lines from 3 to 23 in Algorithm 1) iteratively constructs

clusters satisfying both size and density constraints.

It begins with the remaining nodes of the graph and removes

least effective nodes (through while loop in lines 5–7), until either

all constraints are satisfied (conditions of the if statement at lines 9

and 10), or until the graph becomes too small to satisfy minimum

size constraints due to these node removals.

If both the density and size constraints are satisfied, the re-

maining nodes of the graph form a cluster which is added to the

cluster list (at line 11). In addition, its edges (all signed edges) are

DISTRIBUTION A: Distribution approved for public release.

S. ̧S . Koç et al. / Expert Systems With Applications 100 (2018) 79–94 83

a1 b1 b2 b3 b4 b5

c1 – + –
c2 – + + +
c3 + +
c4 – +
c5 + – +

a2 b1 b2 b3 b4 b5

c1 + – +
c2 + + +
c3 + + – –
c4 – + + +
c5 +

(a) Matrix Representation

(b) Graph Representation

Fig. 1. Input data.

a1 b1 b2

c2 – +
c3 +

a2 b1 b2

c2 + +
c3 + +

(a) Matrix Representation

(b) Graph Representation

Fig. 2. Output cluster, when εp = 0.75, εn = 0.15.

removed from the graph (by adding them to invalid hyperedge list

at lines 12 and 13), so they cannot be used in the construction of a

new cluster. This way its guaranteed clusters will not share edges,

but can still share nodes.

As mentioned above, due to trimming of the graph by remov-

ing its least effective nodes to satisfy density constraints, the graph

may become too small and unable to satisfy the size constraints

any more, and thus, the else branch of the if statement between

the lines 15 and 18 of the algorithm is executed. A very simple

heuristic is done here. A negative edge is randomly selected from

the graph and removed (adding it to an invalid edge set). This way,

the next round of iteration of the main loop starts with a graph

with one less negative edge, and the chance for generating higher

positive density clusters increases.

After this main if statement (from lines 9 to 18 in the algo-

rithm) either one cluster is generated and its edges are added to

the invalid edge list, or just one negative edge is added to the in-

valid edge list. Then, these invalid edges must be removed from

the graph. This is done by removing one of the nodes incident to

these edges in order to be able to reduce the graph size as well.

The procedure at line 19 removes one node for each of the invalid

edges from the original graph, then the remaining graph (�′) is

used in the next iteration to discover another cluster from it. How-

ever, the remaining graph may be too small, and if it does not sat-

isfy the size constraints (checked at line 20), the process ends and

clusters obtained so far are returned (at line 21).

DISTRIBUTION A: Distribution approved for public release.

84 S. ̧S . Koç et al. / Expert Systems With Applications 100 (2018) 79–94

Algorithm 1 Triadic Co-Clustering Algorithm.

Input: � : all hyperedges

Input: εp : lowest ratio value of h + in a cluster

Input: εn : highest ratio value of h − in a cluster

Input: λi : minimum size value for type i in a cluster

Output: � : list of clusters

1: procedure TriadicCluster (�, εp , εn , λ1 , λ2 , λ3)

2: �′ ← �

3: � ← ∅
4: loop

5: α ← �′
6: while (SizeCheck (α, λ1 , λ2 , λ3)) and

7: not DensityCheck (α, εp , εn) do

8: ~~ RemLeastEffNode (α)

9: end while

10: if DensityCheck (α, εp , εn) and

11: SizeCheck (α, λ1 , λ2 , λ3) then

12: � ← �

⋃ { α}
13: for each h −/ + ∈ α do

14: �in v al ← �in v al

⋃ { h −/ + }
15: end for

16: else

17: h − = RandomNegativeEdge(�)

18: �in v al ← h −
19: end if

20: CleanInvalids (�, �in v al , �
′)

21: if not SizeCheck (�′ , λ1 , λ2 , λ3) then

22: return �

23: end if

24: end loop

25: end procedure

3.1. Density Check

DensityCheck is a sub-procedure with 3 input parameters. They

are a potential cluster α and two constraints values εp and εn . The

purpose of this sub-procedure is controlling the quality of a given

cluster due to constraints 1 and 2. If both constraints are satisfied,

then this sub-procedure returns true . Otherwise, it returns false to

point out the fact that removing a node is necessary.

3.2. Size Check

SizeCheck is a sub-procedure with 4 input parameters. The first

one is a potential cluster α, the others are size constraints for each

of 3 types. This sub-procedure checks the size of a given cluster.

If the size of each dimension is not below its corresponding limit

(constraint 3), then this sub-procedure returns true . Otherwise, it

returns false .

3.3. Remove Least Effective Node

RemLeastEffNode sub-procedure takes one input parameter

which is a potential cluster α. It removes a node from α.

Heuristic calculations are used to determine which node to re-

move. There is a simple approach behind this. If a node is con-

nected by high number of h + , it should be less likely to be re-

moved. If a node is highly linked by negatively signed hyperedges

or it is loosely connected, its probability of being removed is high.

Due to the statement of the problem, positively labeled hyperedges

are valuable. Therefore, it is not desired to extract them from a

cluster. In order to keep them inside, they are valued by a positive

number. In contrast, a negative number is given the ones carrying

Table 2

Maximum possible number of hyperedges for

each type.

Type Value

S 1 L 2 × L 3
S 2 L 1 × L 3
S 3 L 1 × L 2

negative labels (Eq. (4)).

v al(h) =

{
1 if h has positive label
−1 if h has negative label.

(4)

With the help of it, effectiveness of each node is determined. For

this purpose, formula 5 is used.

E ir =

1

S i
×

∑

h ∈ α

{
v al(h) if r ∈ h

0 otherwise
. (5)

E ir is the effectiveness value of node r from type i . It is a density

calculation of hyperedges which connect a node to the cluster. S i
refers to the maximum number of hyperedges which can be linked

to that node. For each type, S i value differs (Table 2). The lowest

effectiveness value indicates the node to remove. An example is

given in Fig. 3 , where the least effective node is b 3 .

3.4. Random Negative Edge

RandomNegativeEdge is a sub-procedure taking 1 input param-

eter, which is a potential cluster α. This sub-procedure helps to

invalidate a hyperedge. It finds and returns one which is not sig-

nificant whether it is covered or not. Predictably, it is the nega-

tively signed one. The sub-procedure traverses all hyperedges and

returns the first (h −) it finds.

3.5. Clean invalids

Invalid hyperedges are not desired to be part of future clus-

ters. The hyperedges of all tripartite clusters previously found are

invalid. Moreover, hyperedges returned by RandomNegativeEdge

sub-procedure are added to the list of invalids. CleanInvalids sub-

procedure aims to remove all invalid hyperedges (�inval) from (�′).
� is copied as �′ at the beginning of this sub-procedure. As a re-

sult, (�′) does not contain any hyperedge in �inval , and this sub-

procedure terminates. Then, the algorithm searches a valid cluster

inside �′ .
In order to remove a hyperedge, one of the nodes linked by

this hyperedge should be removed. In this manner, to remove an

invalid hyperedge, CleanInvalids sub-procedure looks for a node,

then removes it. It repeats the same removing action until no in-

valid hyperedge is left in �′ . While selecting a node, it uses a

heuristic that reduces side effects of removing nodes on the cluster

size as much as possible.

On the heuristic calculation, first, the number of invalid hyper-

edges connected to each node is counted. This value is then di-

vided by S i where i refers to the type of that node (Eq. (6)). The

final value (θ ir) is the density of invalids for that node. If (θ ir) is

high, the node r is more likely to be removed.

Q ir =

1

S i
×

∑

h ∈ α

{
1 if r ∈ h ∧ h is invalid

0 otherwise
. (6)

Next, the effectiveness of each node in �′ for all the valid hyper-

edges is calculated. This calculation is a modified version of Eq. (5) .

Additionally it checks if hyperedges are valid. If not, they are not

DISTRIBUTION A: Distribution approved for public release.

S. ̧S . Koç et al. / Expert Systems With Applications 100 (2018) 79–94 85

a1 b1 b2 b3 b4 b5

c1 – + –
c2 – + + +
c3 + +
c4 – +
c5 + – +

a2 b1 b2 b3 b4 b5

c1 + – +
c2 + + +
c3 + + – –
c4 – + + +
c5 +

Fig. 3. Removing node b 3 .

counted in the calculation (Eq. (7)). The final value (E v
ir

) is the ef-

fectiveness value for node r . A node with high (E v
ir

) will likely not

be extracted.

E v ir =

1

S i
×

∑

h ∈ α

{
1 + v al(h) if r ∈ h ∧ h is valid

0 otherwise
. (7)

(θ ir) is directly proportional with selecting a node to remove, as

(E v
ir

) value is inversely proportional. Therefore, the final calculation

is performed as in Eq. (8) . c is a constant value which is generally

set to 1.

γir = θir ×
1

c + E v
ir

. (8)

Among all nodes, the one with the highest γ value is removed.

The removing node is performed iteratively until there is no invalid

hyperedge inside �′ .
For the input data in Fig. 1 , Triadic Co-Clustering Algorithm

finds the cluster in Fig. 2 in the first iteration. Then, hyperedges

of this newly generated cluster are labeled as invalid. In the next

iteration, a new potential cluster �′ (Fig. 4 a) is generated from �.

But �′ contains some invalid hyperedges (colored with purple in

Fig. 4 a). Therefore, �′ is passed to CleanInvalids sub-procedure

which cleans �′ from invalid hyperedges. First, node c 3 is removed

since γ2 c 3
is 3 ÷ 0 . 3 = 30 , is the maximum among γ values. Then,

nodes b 2 and b 1 are selected and removed respectively (Fig. 4 b,

and c). This will result a clean �′ (Fig. 4 d) and the sub-procedure

terminates.

3.6. Complexity analysis

Let us assume that the size of each dimension is equal to L .

Thus, S i = L 2 and L 3 = n, where n represents the maximum po-

tential number of hyperedges. In this algorithm, the main calcu-

lations are (E ir) and (γ ir). (E ir) is calculated for each node from

each dimension. Therefore, the total number of calculations are

(L × S + L × S + L × S) = 3 × n . (γ ir) value includes (θ ir) and (E v
ir

).

This makes total calculation number for (γ ir) 6 × n . Thus, the

asymptotic complexity of (E ir) and (γ ir) is O(n) .

Worst case scenario for Triadic Co-clustering algorithm hap-

pens when no tripartite cluster is generated. In this case, Rem-

LeastEffNode is called until SizeCheck returns false in line 6. This

loop is iterated at most (3 × L) times. Time complexity of the loop

between lines 6 and 9 is O(L × n) . CleanInvalids sub-procedure

has same time complexity as well. The outer loop (lines between

4–24) eliminates a single node in each iteration in worst case.

Therefore, until it ends, it iterates (3 × L) times. As a result, the

worst case asymptotic complexity of Triadic Co-clustering algo-

rithm is O(L 2 × n) = O(n
5
3) .

In the best case, the whole input is a complete triadic co-

cluster. If the input satisfies density and size constraints (line 6–7),

it will be added into � (line 12). RemLeastEffNode sub-procedure

will not be called. Then, all nodes inside the input will be invalid.

Therefore, they will be removed in CleanInvalids (line 20), and �′
will be empty. Thus, the algorithm will conclude (line 22). As a re-

sult, asymptotic running time complexity of Triadic Co-clustering

algorithm in best case will be O(n) .

The algorithm concludes when �′ does not satisfy the size con-

straint. Therefore, values for λi , which are determined by the user

may effect the number of iterations, and thus, the running time

complexity. In these calculations, we assume (λ1 , λ2 , λ3) are all

set to 1. Furthermore, the running time of the algorithm is highly

dependent on the quality of the input. If positivity of the input

data is high, large clusters are found in early iterations, and the

algorithm quickly converges. If the negativity or the sparseness is

high, then RemLeastEffNode operation is called more often. Also,

negativity will decrease the chance of finding a cluster in line 10.

This will increase the number of iterations of the outer loop (lines

between 4–24). In this case, the algorithm will behave closely to

the worst case.

4. Experiments

4.1. Experiment metrics

We have performed two different kinds of experiments. We

have generated synthetic data sets in order to analyze the behav-

ior of our method, and we have also tested our algorithm with a

real data set in order to illustrate the applicability of our method.

Synthetic data is denser. Therefore, in these experiments, εp and

εn parameters are set to relatively high values. Size constraints are

kept at minimum in order to not eliminate small clusters. In the

end, many clusters are found. Real world data set is much sparser.

When we have tried to find larger clusters, the number of clus-

ters obtained became very small. All experiments are performed

on MacBook Pro-Mid 2015 (Intel i7 2,5 GHz, 16GB memory).

In our experiments, we have used internal evaluation measures.

Namely, to evaluate the baseline and proposed methods, we have

used well known clustering quality metrics such as coverage, den-

sity, and purity. The definitions of the first two are as follows:

Cov erage (�) =

∑

α∈�
L 1 × L 2 × L 3 , (9)

where � is a cluster list. α is a cluster inside � and (L 1 , L 2 , L 3) are

sizes of dimensions of α.

DensityP (α) =

C p

L 1 × L 2 × L 3
, (10)

DensityN(α) =

C n

L 1 × L 2 × L 3
, (11)

where α is a cluster. C p is number of positive hyperedges and C n
is number of negative hyperedges inside α. (L 1 , L 2 , L 3) are sizes of

dimensions of the given cluster.

DISTRIBUTION A: Distribution approved for public release.

86 S. ̧S . Koç et al. / Expert Systems With Applications 100 (2018) 79–94

a1 b1 b2 b3 b4 b5

c1 – + –
c2 – + + +
c3 + +
c4 – +
c5 + – +

a2 b1 b2 b3 b4 b5

c1 + – +
c2 + + +
c3 + + – –
c4 – + + +
c5 +

(a) Removing First Node

a1 b1 b2 b3 b4 b5

c1 – + –
c2 – + + +
c4 – +
c5 + – +

a2 b1 b2 b3 b4 b5

c1 + – +
c2 + + +
c4 – + + +
c5 +

(b) Removing Second Node

a1 b1 b3 b4 b5

c1 + –
c2 – + +
c4 +
c5 + – +

a2 b1 b3 b4 b5

c1 – +
c2 + +
c4 – + +
c5 +

(c) Removing Third Node

a1 b3 b4 b5

c1 + –
c2 + +
c4 +
c5 – +

a2 b3 b4 b5

c1 – +
c2 +
c4 + +
c5

(d) Clean Γ′

Fig. 4. Cleaning invalids.

Purity (Manning, Raghavan, & Schütze, 2008) is formally de-

fined as;

P urity (�) =

1

n

k ∑

i =1

max j | C i ∩ l j | (12)

where k is the number of clusters that model produces, n is the

number of instances, l j is the set of instances which belong to the

ground-truth cluster j, and C i is the set of instances that are mem-

bers of cluster i of the model’s output.

4.2. Experiments on synthetic data

This experiment is conducted to determine the effectiveness

and the scalability of our proposed method. In order to evaluate

Triadic Co-Clustering algorithm, we generate datasets with vary-

ing sizes.

In the first set of experiments, we fix h + and h − density ra-

tios while changing input sizes. We generate 6 sample datasets.

Each set contains positive hyperedges with 60%, negative hyper-

edges with 20%, and 20% empty. (L 1 × L 2 × L 3) values for the sam-

ples are (31.25K, 62.5K, 125K, 250K, 500K, 1M), respectively. Fig. 5 a

presents the results. Input parameters are fixed as εp = 0.75, εn =

0.10, λi = (2,2,2). εp value has been chosen larger than the positiv-

ity ratio of the input data. If it was smaller, the whole input would

have been accepted as one large cluster. Similarly, εn value is cho-

sen smaller than the negativity ratio of the input data. Therefore,

elimination of negative hyperedges was possible. Additionally, we

set the size constraints (λi) small in order to find as many clus-

DISTRIBUTION A: Distribution approved for public release.

S. ̧S . Koç et al. / Expert Systems With Applications 100 (2018) 79–94 87

N
um

be
r

of
 h

yp
er

ed
ge

s

0K

75K

150K

225K

300K

Ti
m

e

0 sec

1,500 sec

3,000 sec

4,500 sec

6,000 sec

Input Size

31.25K 62.5K 125K 250K 500K 1M

Time Coverage

(a) Varying Input Size

N
um

be
r

of
 h

yp
er

ed
ge

s

0K

10K

20K

30K

40K

Ti
m

e

0 sec

350 sec

700 sec

1,050 sec

1,400 sec

Density Ratio Values

02-04 02-02 02-00 04-04 04-02 06-02

Time Coverage

(b) Varying Density Ratios in Input Data

N
um

be
r

of
 h

yp
er

ed
ge

s

0K0K

75K

150K

225K

300K

Ti
m

e

0 sec

1,500 sec

3,000 sec

4,500 sec

6,000 sec

Input Size

31.25K 62.5K 125K 250K 500K 1M

Time Coverage

N
um

be
r

of
 h

yp
er

ed
ge

s

0K

10K

20K

30K

40K

Ti
m

e

0 sec0 sec

350 sec

700 sec

1,050 sec

1,400 sec

Density Ratio ValuesVV

02-04 02-02 02-00 04-04 04-02 06-02

Time Coverage

Fig. 5. Performance graphs of experiments on synthetic data.

ters as possible. The way, we have managed to cover as many hy-

peredges as possible by these clusters. Test results are plotted in

Fig. 5 a.

In the second test, we have generated 6 datasets. In this test, we

fix the total size as (L 1 × L 2 × L 3) = 125 K and we have performed

tests with varying density ratios for (h + , h −) pairs as {(0.2,0.4),

(0.2,0.2), (0.2,0.0), (0.4,0.2), (0.4,0.4), (0.6,0.2)}. We did not change

any of input parameters for test 2 as well. Chosen εp value is larger

than positivity ratios of all inputs while εn value is relatively small

(which is 0.1). λi values are chosen to be small in order to increase

the number of clusters found even with small sizes. The results are

shown in Fig. 5 b. Negativity of an input data effects the execution

time of the algorithm poorly. However, if positivity is high, the al-

gorithm finds large clusters and terminates more quickly.

The figures show both execution times and the number of hy-

peredges included in the constructed clusters. We prefer most

(positive) hyperedges to be included in clusters while clusters be-

ing non-trivial. The results show that we achieve very high cover-

age in that sense, since constructed clusters include almost half of

the positive signed hyperedges.

4.3. Experiments on brexit data

Since the problem that we define is new, previous datasets

made publicly available by other scholars do not meet our con-

straints. Given the scarcity of publicly available datasets containing

hypergraphs with signed tri-partite hyperedges, we decide to ex-

ploit well-known social media data source Twitter, thanks to its

generous APIs providing researchers social data freely over the last

decade. We choose to focus on recent Brexit referendum in the

United Kingdom to be able to generate signed tri-partite edges

from a social media data.

4.3.1. Data acquisition

We collect tweets from 411 politicians 1 from 5 major political

parties in the United Kingdom. Twitter Search API is utilized to get

the latest 3200 tweets of each politician. For preprocessing, tweets

dated before January 1, 2016 are removed. Then, tweets that do

not contain the words shown in Table 3 are eliminated. Number of

tweets that contain relevant keywords after preprocessing can be

seen in Table 3 .

To represent each politician’s stance towards the issue in bi-

nary format, we utilize an off-the-shelf sentiment analysis tool

called SentiStrength

2 . We assume that overall sentiment score of

1 Users’ Twitter id lists can be obtained from http://mlg.ucd.ie/aggregation/index.

html .
2 http://sentistrength.wlv.ac.uk/ .

Table 3

Keywords and number of tweets they occur in the

dataset.

Keyword Count Keyword Count

eu 12,206 #leave 157

Tax 3278 Hospitals 150

#brexit 2362 Gas 147

nhs 2312 daesh 126

#strongerin 2249 Muslims 125

#voteleave 1802 Worker 123

Workers 1250 healthcare 114

Immigration 1066 Tuition 86

#remain 807 Immigrants 72

#takecontrol 460 Visas 50

Debt 456 Abortion 49

Hospital 411 Deport 45

Brussels 396 Immigrant 34

Wage 364 Islam 33

Borders 343 Citizenship 32

Border 271 Deportation 22

isis 262 Vaccination 11

Wages 259 Same-sex 9

Nuclear 247 lgbtq 7

lgbt 232 Monarchy 6

Muslim 223 #remainin 3

Medical 204 samesex 2

oil 200 al-qaeda 1

Taxes 166 lbtq + 1

Total number of tweets: 26,624

the tweet implies the opinion of the tweet towards the issue word

the tweet contains in this work. Whether the assumption holds or

not is not the focus of this study, yet some insights based on our

experiments are discussed in Section 4.3.2 . To build input tensor

�, sentiment scores of the tweets of the i ’th politician with j ’th

issue using k ’th sentiment-expressing words are summed up and

put into the i ’th row, j ’th column and k ’th slice entry.

The major 5 political party viewpoints can be summarized as

below (Hobolt, 2016);

• Labour: Overwhelming majority of Labour Party members cam-

paign for staying in European Union although there were rais-

ing concerns about the structure and function of the European

Union.
• Conservatives: The leader of the Conservative Party, David

Cameron offered the referendum and started the campaign for

remaining in EU. There was a clear leaning towards leaving the

EU despite the Cameron’s effort s.
• Libdem: Liberal Democrats campaigned for staying in the EU.
• UKIP: UK Independence Party was a prominent figure in the

referendum campaign. They passionately advocated to leave the

DISTRIBUTION A: Distribution approved for public release.

http://mlg.ucd.ie/aggregation/index.html
http://sentistrength.wlv.ac.uk/

88 S. ̧S . Koç et al. / Expert Systems With Applications 100 (2018) 79–94

10 20 30 40

0.44

0.46

0.48

0.5

0.52

Number of Clusters

S
co

re

Purity

(a) Effect of number of clusters (c = c1 =
c2 = c3) on purity of user clusters

10 20 30 40
0

0.5

1

1.5

·107

Number of Clusters

S
co

re

Coverage

(b) Effect of number of clusters (c = c1 =
c2 = c3) on coverage of hyper-clusters

10 20 30 40

0.5

1

1.5
·10−3

Number of Clusters

S
co

re

Positive Density
Negative Density

(c) Effect of number of clusters (c = c1 =
c2 = c3) on density of hyper-clusters

Fig. 6. Experimental results for tucker decomposition.

EU. Blocking the refugees from entering the country, oppos-

ing international and EU-wide trade agreements, defending UK-

born workers’ rights over immigrants’ rights were standing out

as motivating factors in their campaign.
• SNP: Scottish National Party campaigns to stay in EU.

The input data has 411 users and 48 different issues. The data

also contains 6776 keywords. Keywords are derived from a state-

of-the-art sentiment word list. 3 Occurrence of each keyword is

counted. Then, the most frequent 10 0 0 keywords are selected, by

keeping number of users and issues stable.

This results in a maximum of 411 × 48 × 10 0 0 = 19 , 728 , 0 0 0

possible hyperedges in the input data. This is the size of 3D matrix

constructed from nodes. The total number of hyperedges in the in-

put data is 26,624. The rest of it is sparse. Thus, the density of

hyperedges in the input is ∼ 0.001. More than 60% of the hyper-

edges have a negative label. Since the negative hyperedges domi-

nate the positives and the original algorithm mines clusters with

high positive density, the labels of hyperedges are negated in or-

der to utilize negative feelings rather than the positive feelings in

determining the clusters.

3 http://www.cs.uic.edu/ ∼liub/FBS/opinion- lexicon- English.rar .

4.3.2. Discussions of experiment results

Tucker decomposition results. As a baseline method, we apply

Tucker decomposition to � to find user, issue and sentiment word

clusters in the Brexit data set. To that end, we utilize the Tucker

decomposition component (Kolda & Sun, 2008) of MATLAB Tensor

Toolbox Version 2.6 of Bader and Kolda (2007) which has the fol-

lowing objective function;

min

C , U , I , K
|| � − C ×1 U ×2 I ×3 K || 2 F

s.t. � ∈ R

u ×i ×k , C ∈ R

c 1 ×c 2 ×c 3 , (13)

U ∈ R

u ×c 1 , I ∈ R

i ×c 2 , K ∈ R

k ×c 3

where u is the number of users, i is the number of issues, and k is

the number of keywords.

Our experiment setup for measuring the performance of Tucker

decomposition spans different values of c 1 , c 2 and c 3 between 3

and 40. For brevity, we set all parameters of c 1 , c 2 and c 3 equal to

each other.

To evaluate the purity of clusters, we simply check cluster as-

signments in matrix U . Purity measure of user clusters are reported

for different c s (where c = c 1 = c 2 = c 3) between 3 and 40.

To be able to evaluate the tucker decomposition against den-

sity and coverage metrics, we form hyper-clusters of users, issues

and keywords according to the core tensor C . A simple heuristic is

followed when choosing which user, issue and keyword clusters to

DISTRIBUTION A: Distribution approved for public release.

http://www.cs.uic.edu/~liub/FBS/opinion-lexicon-English.rar

S. ̧S . Koç et al. / Expert Systems With Applications 100 (2018) 79–94 89

Fig. 7. Test results on Brexit data.

form a hyper-cluster. Top c (where c = c 1 = c 2 = c 3) entries of core

tensor C with highest absolute values are picked in a way where

none of the picks share any row, column or slice index. Therefore,

each cluster of user, issue and keyword represented in U, I, K is as-

signed to a hyper-cluster. Density and coverage measures of hyper-

clusters are reported for different c ’s between 3 and 40.

Purity of the clusters found tend to increase with increasing

numbers of clusters. It oscillates between 0.43 and 0.52 for dif-

ferent c ’s. Coverage of hyper-clusters tend to decrease dramatically

with increasing number of clusters. This signals the fact that split-

ting hyper-clusters to further smaller hyper-clusters does not help

to find dense sub-clusters. Density of the clusters tend to increase

with increasing number of clusters, yet not with any significance. It

supports the claim we make about tucker decomposition’s inability

to find dense sub-clusters with increasing number of clusters.

For qualitative analysis of the Tucker decomposition’s perfor-

mance, with the expectation to determine remain and leave camps,

we focus on the case of 2 clusters for the user dimension (c 1 = 2),

and 3 clusters for the issues and sentiment words dimensions

(c 2 = c 3 = 3), respectively. When two opposing camps exist, it is

also likely that the other dimensions will have reflections of these

two camps as two clusters, and there may be a third cluster for

the remaining issues and the sentiment words. Since spectral clus-

tering includes all the nodes of all these dimensions, we obtain

very large clusters with very low edge densities as seen in Fig. 6 .

Notable results that we observed from this experiment are as fol-

lows:

• Issues are unevenly distributed to 3 clusters. The first one con-

tains three of the most popular issues, namely “citizenship”,

“brussels” and “worker”. There is a strong negative reaction to-

wards these issues from the first user cluster. The next cluster

contains 11 issues, and towards those issues, there is less neg-

ative reaction from the second user cluster. This issue cluster

contains issues such as “humanrights”, “tuition”, “eu”. The re-

action is not very clear on remaining clusters. Thus, it is not

possible to obtain any useful information from issue dimension.
• Sentiment keywords are also unevenly distributed across three

clusters. Even the smallest cluster contains 105 sentiment

words. Positive and negative sentiment words are also dis-

tributed through the clusters. There is no useful result that can

be obtained from these clusters either.

DISTRIBUTION A: Distribution approved for public release.

90 S. ̧S . Koç et al. / Expert Systems With Applications 100 (2018) 79–94

1 2 3 4

0.3

0.4

0.5

0.6

0.7

Test Number

S
co

re

Purity

(a) Purity score of clusters

1 2 3 4
0

500

1,000

1,500

2,000

2,500

Test Number

S
ca

le

Coverage Time(sec)

(b) Quality of clusters

1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

Test Number

R
at

io

Positive Density Negative Density

(c) Plot of Average Density Ratios of Clus-
ters in Test Cases

Fig. 8. Result plots of test cases.

Table 4

Variables for tests with real data.

Test No λi εp εn

1 (5,3,5) 0.4 0.08

2 (5,3,5) 0.5 0.05

3 (10,3,5) 0.4 0.08

4 (10,3,5) 0.25 0.1

• The user clusters obtained from this method are also not very

informative. The first cluster contains 133 politicians from a va-

riety of parties. The largest group in this cluster is Labours with

62 members, which is followed by 44 members of the Conser-

vatives. It also contains 8 SNP, 8 Liberal, and 5 UKIP members,

as well as 6 members from other parties. The second cluster

contains 239 politicians. Labours increase to 95, Conservatives

almost double to 90, and other parties also increase, Liberals to

25, UKIP to 11, and SNP to 15. So, these clusters do not give any

information about the party membership vs issue relationship

either.

Triadic co-clustering results. When we applied our method on the

Brexit dataset, we tried different density and cluster size con-

straints in order to be able to explore different clustering struc-

tures. Four different runs are performed on various values for λi , εp

and εn . The values are listed on Table 4 with respect to test num-

bers. λi values are for users, issues, and keywords, respectively. The

Table 5

Sizes of clusters found in tests.

Num Test No 1 Test No 2 Test No 3 Test No 4

1 8 × 3 × 8 5 × 3 × 6 10 × 3 × 6 24 × 3 × 22

2 5 × 3 × 6 12 × 3 × 13

3 5 × 3 × 6 10 × 3 × 10

4 5 × 3 × 5 10 × 3 × 7

sizes of clusters obtained from these tests are given in Table 5 .

Cluster sizes are written in the form of (Users × Issues × Key-

words).

Since most tweets have negative sentiments, we swap positive

and negative signs of the edges in order to obtain correlation be-

tween users, issues and negative sentiment words they use on

these issues.

On Fig. 7 , circles refers to users, while triangles for keywords

and squares for issues. Bundles of edges are expressing the diver-

sity. Nodes with similar connections are adjacent. Coverage of clus-

ters can be seen on Fig. 8 b. Average density of clusters in each test

are plotted in Fig. 8 c.

A summary of observations are as follows:

• Purity score shows the homogeneity of clusters. High purity

score together with high coverage for results are highly desired.

For 4 test cases, purity scores are plotted in Fig. 8 a. It can be

seen that homogeneity of clusters is around 0.5. We observed

DISTRIBUTION A: Distribution approved for public release.

S. ̧S . Koç et al. / Expert Systems With Applications 100 (2018) 79–94 91

that generally half of the tweets are from same division. Others

are mixed.
• Cluster sizes are much smaller since we only constructed clus-

ters with high relationships among the nodes of 3 dimensions.

Most nodes are not included in these clusters. The largest clus-

ter we obtain with the lowest density requirement, as 25% for

minimum negative signed edges, and up to 10% for maximum

positive signed edges, is with 24 users on 3 issues, using 22 dif-

ferent negative sentiment words (test number 4). For this clus-

ter and other clusters, with these density constraints, we ob-

tain the resulting user clusters containing members from differ-

ent parties. The visual representation of clusters obtained from

these experiments are given in Fig. 7 .
• As we tighten the density constraints we obtain much smaller

and a lower number of clusters from the experiments. With

high density constraint and/or larger minimum size constraint,

it is not possible to obtain many clusters. Therefore, we ob-

tain only a single cluster from tests number 2 and 3. As these

constraints are slightly relaxed, it became possible to generate

more clusters, as it can be seen from test number 1. Moreover,

we clearly see that 3 issues stand above almost all other issues,

namely “EU”, “tax”, and “Brexit”. Since our method allows node

sharing among clusters, we see that when more than one clus-

ter is obtained from an experiment, either all, or at least two

out of these three issues are in the issue dimension of these

clusters. We also observe that users are distributed to different

clusters due to sentiment words they choose to use as they ex-

press their feelings against these issues.
• In the experiments with higher negative density requirements,

the users are mostly from Labour and Conservative parties.

Even though these users are from different parties, when we

look at their tweets we see they express their negative feelings

with similar sentiment words against common issues. Since the

number of users using common sentiment words are small, the

cluster sizes turn out to be small as well.

The details of all the clusters generated by all of the above dis-

cussed experiments are given in Appendix A .

In addition to these general observations, we also investigated

the details of the clusters formed by our approach. Consider the

first clusters generated from the first experiment, which contains

8 politicians, 3 issues, and 8 keywords. In order to understand this

cluster, we need to look into the tweets written by these politi-

cians on these issues including these keywords, which are given in

Appendix B.

When we look these tweets we see the following:

• The 8 politicians are distributed to 3 parties as 4 UKIP mem-

bers, 3 Conservatives, and 1 Labour. 7 out of these 8 have

strong feelings against the EU and are for the Leave campaign.
• The three issues, namely, “EU”, “tax”, and “Brexit”, are also very

common almost for all clusters formed in our experiments. This

is not surprising since these tweets are collected just before

Brexit referendum. As it can also be seen from Table 3 , these

are the top three issues of the collected tweets. The issues with

smaller counts did not have enough tweets to form clusters

with required densities.
• As it can also be seen from Appendix B these tweets include the

same set of negative sentiment words, such as “crisis”, “risk”,

“bad”, “worse”, etc. Since these 8 politicians have tweets on

the same set of issues and they use the same sentiment words,

our method clustered the politicians, issues, and the sentiment

words as three clusters of these three dimensions, respectively.
• When the tweets of a Labour member has been investigated,

it can easily be seen that he does not have the same political

view as the other 7 politicians. Unfortunately, since we have not

studied natural language semantic implications, we cannot cap-

ture such outlier behaviors. This politician has used the same

negative sentiment words in his tweets on the same issues, just

like the other seven, but, in a completely reverse way. Since

currently we only syntactically analyze tweets, we cannot cap-

ture these kind of anomalies.

As it can be seen from the above observations, our approach

had been quite successful in finding strong small clusters from

large, very sparse data sets. Considering the nature of politicians,

each one trying to be different from others, even if they want to

say exactly the same thing, they would probably try to be different

by using different terminology, focusing on different aspects etc.

That is why forming large clusters, even among the same party

members, are unlikely. We have demonstrated that there are at

least some small sets of politicians with very similar views.

In terms of running times, as expected the spectral cluster-

ing method is much faster than our method and determines the

clusters in almost real-time. However, spectral clustering does not

solve exactly the same problem. In our spectral clustering experi-

ments we have ignored negative signed edges and all there dimen-

sions of clusters are distinct from each other, but, as we have men-

tioned finding overlapping clusters with comon objects in some

of their dimensions is the main novality of our problem. More-

over, since this clustering problem does not require a real-time re-

sponse, and the quality of the clusters obtained is more important,

we aimed to improve the quailty while sacrificing execution time.

For the above mentioned experiments, our method took less than

an hour to complete.

5. Conclusions

In this paper, a new version of co-clustering problem is de-

fined. In this problem, from a given signed 3-partite graph, clus-

ters with high positive labeled edge, and low negative labeled edge

density are determined which potentially can have common nodes.

We have proposed a greedy heuristic solution for this problem. The

effectiveness of our method has been shown using both synthetic

and real data sets. Similar to many data mining applications, the

success of our proposed method also depends on the adjustments

of several parameters. Thus, apriori knowledge about the structure

of the data set, such as its density, dimension sizes etc., are needed

in adjusting these parameters properly.

In order to evaluate the quality of the clusters generated from

our real-world experiment, we mainly used internal evaluation

metrics. As a future work, we plan to use an external evaluation

method by obtaining comments from the domain experts, such as

political scientists, about the clusters generated.

Furthermore, we are also planning to expand our Brexit exper-

iments using more tweets in order to increase the density of in-

put graphs. Even with relatively small experiments that we have

presented in this paper, we were able to obtain very encouraging

results by obtaining highly dense clusters. As the input graph gets

denser, we are expecting to produce much larger and more mean-

ingful clusters. Moreover, we also plan to use different kinds of so-

cial network data sets with 3 dimensions and signed relationships,

such as tagged (as like and unlike) images, comments on movies

etc. in order to apply our method.

Acknowledgments

This research was supported partially by USAF Grant FA9550-

15-1-0 0 04 .

DISTRIBUTION A: Distribution approved for public release.

https://doi.org/10.13039/100006831

92 S. ̧S . Koç et al. / Expert Systems With Applications 100 (2018) 79–94

Appendix A. Tweets of one cluster

Table A.1

Tweets of 1st cluster in Test 1.

User Issue Keyword Tweet

15157283 : conservative EU bad RT @Vote_LeaveMedia: Professor David Blake gives 10 reasons why staying in the EU ranges

from ”pretty bad to very, very bad” for pensions h

crisis RT @Telegraph: Leaving the EU will halve net migration, boost pay and help to solve housing

crisis, according to a new study https://t.co/a

risk RT @TelegraphNews: Theresa May warns Tory Brexit rebels that they risk ’incentivising’ EU to

offer UK a bad deal https://t.co/Y3ekbmMrawht

risks RT @bbckamal: Carney says there are greater risks for the continent than for the UK during

the #Brexit process. EU wd face financial capaci

threat RT @suttonnick: Friday’s Telegraph front page: Britain can fight terror threat better outside EU

#tomorrowspaperstoday #euref https://t.co/

threaten RT @MustBeRead: If leaving the EU would really be so ruinous, asks @PaulGoodmanCH, why

did @David_Cameron threaten to do so? https://t.co/Y

worse RT @Change_Britain: Jacob Rees Mogg MP reminds people how wrong economists were about

the EU Referendum https://t.co/qnXwqi7ULa

tax

#brexit threat RT @AndrewRosindell: The biggest threat to #Brexit now is complacency. We need to fight this

campaign with every spare minute of the day. W

worse RT @BrexitTheMovie: EU protectionism raises the price of goods from the rest of the world

and makes us all worse off #brexit https://t.co/6

107254637 : labor EU bad bad: 746810051512393729: RT @TradingJeremy: EU warning that clearing houses should not

be in London needs more public airing and explanation. Catastrophically bad f

crisis Greek financial crisis hasn’t gone away: deal needs to be done by end of May or post-UK

referendum on EU membership https://t.co/3sWHXK62LK

risk RT @pdacosta: #Brexit talks must be quick, City of London at risk of losing ‘EU passport’:

@ECB’s Villeroy https://t.co/XELL6JG7Jo

risks Couldn’t be clearer from @bankofengland MPC today: leaving EU risks lower UK growth &

investment, higher unemployment & prices #StrongerIn

tax worse RT @resfoundation: PT worker on UC cld be 28 a wk worse off compared to tax credits. They’d

need to work 10 hrs more to offset losses http

#brexit bad IMF’s Lagarde: consequences of #Brexit range from “pretty bad to very, very bad” #EURef

https://t.co/PlARumMOaU

risk Lots emerged from @IMFNews report on UK economy: 1: echoes dire warnings on #Brexit risk

to growth, prices, funding current account deficit

risks July @ECB monetary policy minutes out: spots stronger growth risks including #Brexit but no

policy loosening for now https://t.co/LFcrMgBlTh

worse RT @EuropeElects: UK: Especially young voters are concerned that a #Brexit would leave them

financially worse off (TNS poll). #EURef https:

478679663 :ukip EU bad @FredLitten I understand this article bland claims UK entered eu at bad time and did well. The

lag in UK simply caught up whilst EU declined

crisis Just posted: When will EU and the world recognise that #mi-gration crisis is a @UN issue too

https://t.co/KqIRT2WXIu https://t.co/0IpY2iVNXR

risks Breaking: Europol reporting that 80 0,0 0 0 migrants in Libya alone waiting to come to EU. Huge

security risks & we have no control of borders. (+)

threat Read: My article for @heatstreet. The threat to European Peace is the EU itself NOT #Brexit.

Hope will beat fear. https://t.co/EsDtqYVNVy

threaten Don’t be scared and threatened of the EU powerbrokers. The power and size of our market

will do the talking.

worse Mr Cameron, EU’s expansionist foreign policy agenda, provoking Russia has made Europe less

safe. Will only get worse as EU grows.

wrong Britain will do well outside of the EU: Project fear is wrong says top economist Roger Bottle

https://t.co/6HXokYgLj1

tax risks For the City of London, the risks of a regulatory body based in Frankfurt & EU financial

transaction tax are far greater than Brexit.

#brexit threat Must Read: EU’s own Frontex force recognises terrorist porous borders threat

https://t.co/aJOSqD8M3w #Brexit https://t.co/MbNk26VESp

threaten Great morning #Brexit bill passed but the Lords threaten to demolish it. Well here’s brilliant

@SuellaFernandes dem https://t.co/5HGoTgKzCO

wrong Major wrong on what #Brexit is about. Brexit is not about isolationism, it’s about globalism

and mutual cooperation.

1668992125 : ukip EU bad RT @Nigel_Farage: I don’t just think the EU has been bad for Britain, I think it’s been

disastrous for the whole of Europe. https://t.co/yi...

crisis RT @V_of_Europe: Juncker: No Matter How Bad Migrant Crisis, Terrorism Gets, We’ll Never

Give Up Open Borders https://t.co/EdxqwxV67i https:.

risks RT @hermannkelly: Farage: Staying In EU Risks More Cologne -like Sex Attacks .@UKLabour

@MumsnetTowers #EURef https://t.co/DRqY80eGoi http...

threat RT @BBCRealityCheck: Criminal record not enough to reject EU citizens, must pose current

threat https://t.co/B4tnV6nK7N #BBCDebate https://...

threaten RT @MikeHookemMEP: Blundering Corbyn vows to veto TTIP trade deal threatening NHS - but

EU rules say he CAN’T https://t.co/6hztGhlGFh

tax wrong RT @richardcalhoun: Petition: Abolish Inheritance Tax. It is wrong to tax assets that have

already been taxed please RT https://t.co/7wJprH...

#brexit bad Remember the ’good day to bury bad news’? Well every I’ll in the world now due to #Brexit ...

Apparently! https://t.co/8678egiedB

(continued on next page)

DISTRIBUTION A: Distribution approved for public release.

https://t.co/a
https://t.co/Y3ekbmMrawht
https://t.co/
https://t.co/Y
https://t.co/qnXwqi7ULa
https://t.co/6
https://t.co/3sWHXK62LK
https://t.co/XELL6JG7Jo
https://t.co/PlARumMOaU
https://t.co/LFcrMgBlTh
https://t.co/KqIRT2WXIu
https://t.co/0IpY2iVNXR
https://t.co/EsDtqYVNVy
https://t.co/6HXokYgLj1
https://t.co/MbNk26VESp
https://t.co/5HGoTgKzCO
https://t.co/yi
https://t.co/EdxqwxV67i
https://t.co/DRqY80eGoi
https://t.co/B4tnV6nK7N
https://t.co/6hztGhlGFh
https://t.co/7wJprH
https://t.co/8678egiedB

S. ̧S . Koç et al. / Expert Systems With Applications 100 (2018) 79–94 93

Table A.1 (continued)

User Issue Keyword Tweet

crisis RT @LeaveEUOcial: Another Greek crisis is coming. The Eurocrats are trying to hush it up

before #Brexit vote: https://t.co/rHZG5t6c0A ht...

121171051 : ukip EU crisis RT @KulganofCrydee: EU migrant crisis ’is colossal’: British borders face threat from terrorists

and smugglers https://t.co/3PaoM2zKJK

risk RT @oflynnmep: What does Mr Carney think about risk of UK being in EU at next € zone

crisis? Predecessor Lord King thinks € will lurch from...

risks RT @oflynnmep: Janet Daley right to wish Leave would emphasise more the economic risks of

remaining in the EU. #VoteLeave

threat RT @KulganofCrydee: EU migrant crisis ’is colossal’: British borders face threat from terrorists

and smugglers https://t.co/3PaoM2zKJK

threaten RT @ConHome: If leaving the EU would really be so ruinous, why did @David_Cameron

threaten to do so only recently? https://t.co/MCtydB0w1N

worse RT @andrealeadsom: EU is making the migrant crisis so much worse, says Defence Minister

@PennyMordauntMP https://t.co/pVWlQ1nZRX @vote leav...

wrong RT @montie: Tim Farron wrong. This isn’t about Little Britain but about Little Europe. The EU

is a 28 nation lo-growth zone that is obsesse...

tax threat RT @terencehooson: Chancellor plotting ‘punishment’ Budget with threat to hike income tax

https://t.co/iMldSIkexmvia@MailOnline

#brexit bad RT @Charlton_UKIP: #BREXIT not so bad: UK employ-ment hits record high: fundamentals of

the British economy are strong https://t.co/r81UEb4E...

risk RT @DavidJo52951945: With open borders to 500m & ISIS terrorists flooding the EU,the EU is a

risk to UK security. We’re wide open #Brexit ht...

risks RT @minefornothing: The Spanish PM is warning Britain about the risks of leaving the EU.

Youth unemployment in Spain is 50%!!!! #Brexit

threat Fury at PMs EU pensions threat: Vindictive PM tries Brexit blackmail https://t.co/hgp7etDuIC

Shameful behaviour have your say #Brexit

wrong @Renegade_Inc Brit PM wrong Brits who support #Brexit put their people and country first!

14758838 : conservative EU bad Leaving the EU & copying Canada’s trade deal would be a bad deal for Britain. Here’s why:

https://t.co/51QRQ15FcZ https://t.co/APqkRlctRo

risk Manufacturing jobs are at risk if we leave the EU. Here’s why: https://t.co/BwNDgkE4io

#StrongerIN https://t.co/5f69NeJgUu

risks RT @David_Cameron: The IMF is right - leaving the EU would pose major risks for the UK

economy. We are stronger, safer and better off in th...

threat Suggestion UK’s vital intelligence ’five-eyes’ relationship is under any sort of threat from the

EU is wrong. Membership makes us safer.

worse RT @George_Osborne: Britain will be worse off by over 6% of GDP, to the tune of £4300 per

household if we vote to leave the EU on June 23,

wrong Suggestion UK’s vital intelligence ’five-eyes’ relationship is under any sort of threat from the

EU is wrong. Membership makes us safer.

#brexit risk Years of “gruelling negotiations” would follow a #Brexit vote - hurting jobs and investment. Its

not worth the risk. https://t.co/VbDhj63NK9

risks

threat New figures show that the threat of a #Brexit is hitting business investment

https://t.co/GWRGDR36l6@ConservativesIN

worse Comprehensive @hmtreasury report shows #Brexit would make British families £4,300 worse

o https://t.co/zNUQBfCzEk https://t.co/3wFfkx2ALr

118984824 : conservative EU bad RT @montie: if things are so bad in Norway, outside of the EU, why do 18% want to join but

70% want to stay out? #marr https://t.co/ILoXjRS...

crisis @grahamstuart You mean two richest countries in Europe outside the EU? Remain have to

explain risk of Greek default & migrant/Euro crisis

risk So just today: Heseltine says we’ll be forced to join Euro, Turkey opening EU negotiations,

Juncker says no new deal for UK.Why risk Remain?

risks RT @NadineDorriesMP: Time for Cameron and Osborne to debate live with Gove and Johnson

the risks of staying in the EU People need to know!...

threat RT @suttonnick: Monday’s Daily Express: Fury at PM’s EU pension threat

#tomorrowspaperstoday #bbcpapers https://t.co/wCOserkLPa

threaten RT @Vote_LeaveMedia: If leaving the EU would really be so ruinous, why did Cameron

threaten to do so only recently? https://t.co/omOhNWZkwP...

worse RT @vote_leave: .@wdjstraw just admitted live on #r4today that ’we will be worse off if we

stay in the EU’

wrong RT @David_Cameron: The Leave campaign is wrong to say there’ll be a 2nd referendum if we

vote to remain in the EU. This is a referendum and...

tax risk RT @MrRBourne: So following Cameron logic, he’d have been willing to risk war to secure

minor changes to tax credits.

#brexit risk RT @BeeAHoney_: Hey @David_Cameron please explain ‘in detail’: what changed from No.

2015, to NOW? YOU implied #BREXIT not a RISK?! https:/...

threat So John Major’s scaremongering over “threat” to peace in Northern Ireland of #Brexit is

rejected by a whopping 61%-21% in IpsosMori poll

wrong RT @ajcdeane: Look at this rogues’ gallery. Wrong then, wrong now. #Brexit

https://t.co/WWFzERiUrc

(continued on next page)

DISTRIBUTION A: Distribution approved for public release.

https://t.co/rHZG5t6c0A
https://t.co/3PaoM2zKJK
https://t.co/3PaoM2zKJK
https://t.co/MCtydB0w1N
https://t.co/pVWlQ1nZRX
https://t.co/iMldSIkexmvia@MailOnline
https://t.co/r81UEb4E
https://t.co/hgp7etDuIC
https://t.co/51QRQ15FcZ
https://t.co/APqkRlctRo
https://t.co/BwNDgkE4io
https://t.co/5f69NeJgUu
https://t.co/VbDhj63NK9
https://t.co/GWRGDR36l6@ConservativesIN
https://t.co/zNUQBfCzEk
https://t.co/3wFfkx2ALr
https://t.co/ILoXjRS
https://t.co/wCOserkLPa
https://t.co/omOhNWZkwP
https://t.co/WWFzERiUrc

94 S. ̧S . Koç et al. / Expert Systems With Applications 100 (2018) 79–94

Table A.1 (continued)

User Issue Keyword Tweet

2673995912 : ukip EU crisis Germany’s largest bank’s profits drop 98% as EU banking crisis spreads https://t.co/TSo2biDhAc

risk Biggest canard of Remainians is staying in EU is risk free. In fact, it’s a massive gamble we

escape federalist tide https://t.co/CwMBc8MKHn

threat RT @UKIP: “Despite clear evidence the EU is under threat from the migration crisis, our PM

will not secure our borders” @DianeJamesMEP #UKI...

threaten Here’s the deal. EU gives Turkey € 3B to house refugees and Erdogan threatens to send

millions more migrants https://t.co/HnjuI1U2q5#Cushty!

#brexit bad If things are going to be as bad after #BREXIT as the #scaremongering #Remainians suggest,

surely we will need to be even more creative!

crisis If you would like to know what is imperiling the global economy its not #Brexit it is the

European banking crisis https://t.co/g5oXXtrFsX

risks Another example of risks we face if #Remain in a federalist EU. Only way to make lawmakers

accountable #Brexit https://t.co/b791dDCC6u

wrong Cameron’s #ProjectFear speech Straw Man 3: #Leave equals uncertainty. Wrong. Staying in EU

SuperState means Decades of uncertainty #Brexit

Table A.2

Clusters of Test 1.

Cluster No Users Issues Keywords

1 Conservative eu Bad

Labour tax Crisis

ukip #brexit Risk

ukip Risks

ukip Threat

Conservative Threaten

Conservative Worse

ukip Wrong

2 ukip eu Desperate

Conservative tax Failing

ukip #brexit Fails

ukip Fear

Conservative Sorry

Threatening

3 Labour eu Fears

ukip Tax Risky

Labour #brexit Rival

ukip Shock

Conservative Threats

Worried

4 Labour nhs Benefit

Labour eu top

Labour Tax Attacks

Labour Lose

ukip Worst

References

Angiulli, F. , & Pizzuti, C. (2005). Gene expression biclustering using random walk
strategies. In Proceedings of the international conference on data warehousing and

knowledge discovery (pp. 509–519). Springer .

Bader, B. W. , & Kolda, T. G. (2007). Efficient matlab computations with sparse and
factored tensors. SIAM Journal on Scientific Computing, 30 (1), 205–231 .

Blondel, V. D. , Guillaume, J.-L. , Lambiotte, R. , & Lefebvre, E. (2008). Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and

Experiment, 2008 (10), P10 0 08 .
Dawande, M. , Keskinocak, P. , Swaminathan, J. M. , & Tayur, S. (2001). On bipartite

and multipartite clique problems. Journal of Algorithms, 41 (2), 388–403 .

Dhillon, I. S. (2001). Co-clustering documents and words using bipartite spectral
graph partitioning. In Proceedings of the seventh ACM SIGKDD international con-

ference on knowledge discovery and data mining (pp. 269–274). ACM .
Gao, B. , Liu, T.-Y. , Zheng, X. , Cheng, Q.-S. , & Ma, W.-Y. (2005). Consistent bipartite

graph co-partitioning for star-structured high-order heterogeneous data co-clus-
tering. In Proceedings of the eleventh ACM SIGKDD international conference on

knowledge discovery in data mining (pp. 41–50). ACM .

Giannakidou, E. , Koutsonikola, V. , Vakali, A. , & Kompatsiaris, Y. (2008). Co-clustering
tags and social data sources. In Proceedings of the ninth international conference

on Web-age information management, 2008. WAIM’08 (pp. 317–324). IEEE .

Gokalp, S. , Temkit, M. , Davulcu, H. , & Toroslu, I. H. (2013). Partitioning and scaling
signed bipartite graphs for polarized political blogosphere. In Proceedings of the

2013 international conference on social computing (socialcom) (pp. 168–173). IEEE .
Gregory, S. (2010). Finding overlapping communities in networks by label propaga-

tion. New Journal of Physics, 12 (10), 103018 .
Hobolt, S. B. (2016). The brexit vote: A divided nation, a divided continent. Journal

of European Public Policy, 23 (9), 1259–1277 .

Ignatov, D. I., Gnatyshak, D. V., Kuznetsov, S. O., & Mirkin, B. G. (2015). Triadic for-
mal concept analysis and triclustering: searching for optimal patterns. Machine

Learning, 101 (1), 271–302. doi: 10.1007/s10994-015-5487-y .
Kolda, T. G. , & Sun, J. (2008). Scalable tensor decompositions for multi-aspect data

mining. In Proceedings of the eighth IEEE international conference on Data mining,
2008 (pp. 363–372). IEEE .

Lancichinetti, A. , Fortunato, S. , & Kertész, J. (2009). Detecting the overlapping and

hierarchical community structure in complex networks. New Journal of Physics,
11 (3), 033015 .

Li, W. , Xie, J. , Xin, M. , & Mo, J. (2017). An overlapping network community partition
algorithm based on semi-supervised matrix factorization and random walk .

Lin, Y.-R. , Sun, J. , Castro, P. , Konuru, R. , Sundaram, H. , & Kelliher, A. (2009). Metafac:
community discovery via relational hypergraph factorization. In Proceedings of

the 15th ACM SIGKOD international conference on knowledge discovery and data

mining (pp. 527–536). ACM .
Liu, X. , & Murata, T. (2011). Detecting communities in K-Partite K-Uniform (Hyper)

networks. J. Comput. Sci. Technol., 26 (5), 778–791 .
Long, B. , Zhang, Z. M. , Wu, X. , & Yu, P. S. (2006). Spectral clustering for multi-type

relational data. In Proceedings of the 23rd international conference on machine
learning (pp. 585–592). ACM .

Lu, C. , Chen, X. , & Park, E. (2009). Exploit the tripartite network of social tagging

for web clustering. In Proceedings of the 18th ACM conference on information and
knowledge management (pp. 1545–1548). ACM .

Manning, C. D. , Raghavan, P. , & Schütze, H. (2008). Introduction to information re-
trieval (pp. 356–360)). New York, NY, USA: Cambridge University Press .

Missaoui, R., & Kwuida, L. (2011). Mining triadic association rules from ternary
relations . Berlin, Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/

978- 3- 642- 20514- 9 _ 16 .

Ng, A. Y. , Jordan, M. I. , Weiss, Y. , et al. (2001). On spectral clustering: Analysis and
an algorithm. In Nips: 14 (pp. 849–856) .

Omeroglu, N. B. , Toroslu, I. H. , Gokalp, S. , & Davulcu, H. (2013). K-partitioning of
signed or weighted bipartite graphs. In Proceedings od the 2013 international

conference on social computing (socialcom) (pp. 815–820). IEEE .
Rhouma, D. , & Romdhane, L. B. (2014). An efficient algorithm for community min-

ing with overlap in social networks. Expert Systems with Applications, 41 (9),
4309–4321 .

Rosvall, M. , & Bergstrom, C. T. (2008). Maps of random walks on complex networks

reveal community structure. Proceedings of the National Academy of Sciences,
105 (4), 1118–1123 .

Zha, H. , He, X. , Ding, C. , Simon, H. , & Gu, M. (2001). Bipartite graph partitioning and
data clustering. In Proceedings of the tenth international conference on information

and knowledge management (pp. 25–32). ACM .
Zhao, L. , & Zaki, M. J. (2005). Tricluster: an effective algorithm for mining coherent

clusters in 3d microarray data. In Proceedings of the 2005 ACM sigmod interna-

tional conference on management of data (pp. 694–705). ACM .
Zhou, L. , Lü, K. , Yang, P. , Wang, L. , & Kong, B. (2015). An approach for overlapping

and hierarchical community detection in social networks based on coalition for-
mation game theory. Expert Systems with Applications, 42 (24), 9634–9646 .

Zhu, L. , Galstyan, A. , Cheng, J. , & Lerman, K. (2014). Tripartite graph clustering for
dynamic sentiment analysis on social media. In Proceedings of the 2014 acm sig-

mod international conference on management of data (pp. 1531–1542). ACM .

DISTRIBUTION A: Distribution approved for public release.

https://t.co/TSo2biDhAc
https://t.co/CwMBc8MKHn
https://t.co/HnjuI1U2q5#Cushty!
https://t.co/g5oXXtrFsX
https://t.co/b791dDCC6u
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0001
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0001
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0001
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0001
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0002
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0002
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0002
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0002
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0003
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0003
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0003
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0003
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0003
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0003
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0004
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0004
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0004
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0004
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0004
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0004
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0005
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0005
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0006
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0006
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0006
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0006
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0006
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0006
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0006
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0007
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0007
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0007
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0007
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0007
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0007
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0008
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0008
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0008
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0008
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0008
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0008
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0009
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0009
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0010
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0010
https://doi.org/10.1007/s10994-015-5487-y
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0012
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0012
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0012
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0012
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0013
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0013
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0013
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0013
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0013
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0014
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0014
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0014
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0014
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0014
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0014
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0015
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0015
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0015
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0015
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0015
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0015
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0015
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0015
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0013a
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0013a
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0013a
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0013a
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0016
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0016
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0016
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0016
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0016
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0016
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0017
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0017
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0017
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0017
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0017
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0018
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0018
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0018
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0018
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0018
https://doi.org/10.1007/978-3-642-20514-9_16
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0020
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0020
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0020
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0020
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0020
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0021
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0021
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0021
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0021
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0021
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0021
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0022
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0022
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0022
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0022
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0023
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0023
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0023
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0023
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0024
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0024
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0024
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0024
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0024
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0024
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0024
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0025
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0025
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0025
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0025
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0026
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0026
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0026
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0026
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0026
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0026
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0026
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0027
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0027
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0027
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0027
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0027
http://refhub.elsevier.com/S0957-4174(18)30056-3/sbref0027

2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

Event Detection by Change Tracking on
Community Structure of Temporal Networks

Riza Aktunc
METU Computer Eng. Dept.

Ankara, Turkey
riza.aktunc@ceng.metu.edu.tr

I. Hakki Toroslu
METU Computer Eng. Dept.

Ankara, Turkey
toroslu@ceng.metu.edu.tr

Pinar Karagoz
METU Computer Eng. Dept.

Ankara, Turkey
karagoz@ceng.metu.edu.tr

Abstract—Event detection is a popular research problem, aim-
ing to detect events from online data sources with least possible
delay. Most of the previous work focus on analyzing textual
content such as social media postings to detect happenings. In this
work, we consider event detection as a change detection problem
in network structure, and propose a method that detects change
in community structure extracted from communication network.
We study three versions of the method based on different change
models. Experimental analysis on benchmark data set reveals
that change in the community can be used as an indication of
an event.

Index Terms—Event detection, temporal network, community
detection, network features, change

I. INTRODUCTION

Event detection has attracted attention as a research problem
due to its applicability in several applications from getting
news in a timely manner [1] to taking emergency steps for
city management or disasters [2]. There is a rich literature on
event detection, however, most of the previous studies focus
on analyzing textual content from social media and web data
[3], [4], [5], [6].

In this work, we follow a comparatively newer track in
the event detection literature, and study the problem from
network point of view [7], [8]. In addition to posting textual
messages, events trigger certain behaviors on individuals, such
as gathering or communicating, affecting the social context
and network among individuals. In this work, we hypothesize
that examining and tracking changes in community structure
can reveal that an event is happening. We focused especially
on detecting the events on Call Detail Record (CDR) data. We
firstly extract weekly samples from CDR data and then convert
these samples to directed weighted and unweighted networks.
The nodes of the networks correspond to phone users in CDR
data, while the edges of the networks correspond to the com-
munication between the connected nodes. The communication
can be an SMS or a voice call. For each communication type,
we define different networks. There are previous efforts on
detecting events on CDR data published in the literature [9],
[10], [11]. These works focus on tracking graph attributes such

This research was supported partially by USAF Grant FA9550-15-1-0004.
This work is partially supported by TUBITAK under project number

117E566.

as degree of nodes, and several probabilistic models to detect
events on the graph extracted from CDR data. Thus, the main
difference and contribution of our proposed method is that it
is based on tracking the change on community structure of the
consecutive networks.

In the literature, event is generally defined as a happening
that takes place at a certain time and place, and attracts
attentions. In our study, we focus on the time dimension and
aim to determine time windows in which an event takes place.

The proposed method involves tracking the change in the
community structures over temporal networks. A sequence of
networks corresponding to time windows along the timeline is
analyzed for changes in detected communities in consecutive
networks. We model the change in three different ways: change
in the number of communities, change in the central nodes of
the communities, and change in members of the communities.
Within each model, there are variations based on how the
defined change is computed.

Event detection performance of the methods are evaluated
on a benchmark data set [12] in terms of precision, recall
and f1-measure under varying change thresholds. The results
reveal the potential of the approach, especially for the use of
change model involving the number of communities, for event
detection problem.

II. PROPOSED METHOD: COMMUNITY STRUCTURE
CHANGE BASED EVENT DETECTION

The proposed method is based on the idea that events can be
detected by tracking the amount of change in various attributes
of the community structure of the network in consecutive time
windows. In addition to the length of the time window, the
source of the network structure and the community detection
techniques may vary. In this work, we set the time window as
one week, and hence construct communities on the basis of the
weekly interactions. As the community detection technique,
we use dSLM algorithm given in [13].

In order to track the change, we compare the community
structure parameter values against the previous time window.
We studied change in the community structure over three
basic parameters, which are Number of Communities, Central
Nodes, and Community Members. In the rest of this section,
the details of the methods through each of these parameters
are presented.IEEE/ACM ASONAM 2018, August 28-31, 2018, Barcelona, Spain

978-1-5386-6051-5/18/$31.00 © 2018 IEEE

928DISTRIBUTION A: Distribution approved for public release.

Algorithm 1 Event Detection via Change on # of Comm
Input: setOfComm, minCommSize, maxCommSize,

changeThreshold
Output: events

prev = NumberOfComm(setOfComm(t1), minCommSize,
maxCommSize)
for i=2 to timeWindowCount do

cur = NumberOfComm(setOfComm(setOfComm(ti),
minCommSize, maxCommSize)
change = abs(cur − prev)/prev
if change ≥ changeThreshold and abs(cur - prev) > 1
then

add i to events
end if
prev = cur

end for
return events

A. Change on the Number of Communities

Our first hypothesis is that the change on the total number
of communities is an indication of an event. In other words,
if the amount of change in the number of communities of two
consecutive time windows exceeds a given threshold, we may
mark the latter window as an event. However, size of the com-
munities is an important factor to be considered. Considering
all kinds of communities may lead to incorrect predictions due
to the fact that events may arise from communities of certain
size. In order to analyze the effect of the community size,
in experiments (as given in Section III), we partitioned the
set of communities into size groups. For instance, we find the
number of communities that contain 3 to 5 people in each time
window, and compute the change only for these communities.
The exception is that if the amount of change is only one
(despite the change threshold is fulfilled), we consider that
this change is not a strong indication, and hence do not mark
that window as an event. This algorithm is given in Algorithm
1.

B. Change on the Central Nodes

As another important indicator of an event, we consider
the change on the central nodes of the communities. Given a
ranked list of nodes with respect to centrality score, we define
central nodes of a community as the top 20% of the nodes
in the list. We compute the change of central nodes in four
different ways. The simplest one is that we compute the change
on the size of the central nodes in consecutive time windows
(denoted as SIZE). The second one is computing the change
as the number of central nodes of previous window that are
not central nodes any more in the current window (denoted
as NOT ANY MORE). The third way is that we compute
change as the number of central nodes of current window that
were not central nodes in the previous window (denoted as
NEW). The last and the most complex change computation
method involves the number of central nodes of previous
window that are not central nodes any more in current window,

Algorithm 2 Event Detection via Change On Central Nodes
Input: setOfComm, changeComptMethod, changeThreshold
Output: events

prev = setOfComm(t1).centralNodes
for i=2 to timeWindowCount do

cur =setOfComm(ti).centralNodes
change = ComputeChangeOnCentralNodes (
changeCompMethod, prev, cur)
changeInSize = abs(cur.size - prev.size)
if change ≥ changeThreshold and changeInSize > 1
then

add i to events
end if
prev = cur

end for
return events

added with the number of central nodes of current window
that were not central nodes in previous window (denoted
as NOT ANY MORE NEW). The algorithm is presented in
Algorithm 2 and Algorithm 3.

Algorithm 3 Compute Change on Central Nodes
Input: changeCompMethod, prev, cur
Output: change

if changeCompMethod is SIZE then
return abs(cur. size - prev.size) / prev.size

else if changeCompMethod is NOT ANY MORE then
return notAnyMoreCentralNodeCount / prev.size

else if changeCompMethod is NEW then
return newCentralNodeCount / cur.size

else if changeCompMethod is NOT ANY MORE NEW
then

return (notAnyMoreCentralNodeCount +
newCentralNodeCount) / cur.size

end if

C. Change on the Community Members

As another indicator for event, we consider the change
on the community members. However, community detection
techniques do not assign global identifiers to communities
to be tracked over time windows. To be able to track the
change within the same community, we assume that two
communities in consecutive windows are the same community
if they have common central nodes. Therefore, we firstly
find the communities of consecutive windows around similar
central nodes. Then, we compute the change in the number of
members within the community. We compute the change in
three different way, such that we consider the minimum (MIN)
of change value, the average (AVG) of these change values,
and the maximum (MAX) change value. The algorithm is given
in Algorithm 4 and Algorithm 5.

929DISTRIBUTION A: Distribution approved for public release.

Algorithm 4 Event Detection via Change on Comm Members
Input: setOfComm, changeCompMethod, changeThreshold
Output: events

prev = setOfComm(t1).members
for i=2 to timeWindowCount do

cur = setOfComm(ti).members
change = ComputeChangeOnMembers(
changeCompMethod, prev, cur)
if change ≥ changeThreshold then

add i to events
end if
prev = cur

end for
return events

Algorithm 5 Compute Change on Community Members
Input: changeCompMethod, prev, cur
Output: change

if changeCompMethod is MIN then
return min of the change values on the comm members

else if changeCompMethod is AVERAGE then
return avg of the change values on the comm members

else if changeCompMethod is MAX then
return max of the change values on the comm members

end if

III. EXPERIMENTS AND RESULTS

Data Set. The experiments are conducted on Reality Mining
data set that involves mobile phone call logs of 97 faculty,
student, and staff at MIT over 50 weeks [12]. The ground
truth captures semester breaks, exam and sponsor weeks, and
holidays. In data set, among voice call, SMS and bluetooth
activities, we used voice call logs. We built a sequence of
temporal networks corresponding to 1-week time windows.
We applied a modularity based community detection algorithm
[13] on each week’s network.
Experiments. We conducted experiments on two versions of
the network (weighted and unweighted) under varying change
thresholds from 5% to 85%. The results are presented in Tables
I to V. The experiments of the method that detects events
via tracking the change on community members have the
same results for both weighted and unweighted versions of the
network. Therefore, we present the results of the experiments
of this method as a single table in Table III. In all tables,
the second column shows the applied change threshold. The
first column includes the change modeling parameter, which
depends on the change model applied. In the first method, it
includes the community size, in the second one, the type of
change in central node, and in the third one, the type of change
in the community members. For each method, we present the
best three results per parameter setting in f1-measurement.
Discussion. We can summarize the results of the study as
follows:

• Among three community change models, event detec-

TABLE I
DIRECTED WEIGHTED VOICE NETWORK - NUMBER OF COMMUNITIES

Type Chng Precision Recall F1-meas.
3-5 nodes 0.05 0.62 0.81 0.71
3-5 nodes 0.15 0.62 0.81 0.71
3-5 nodes 0.25 0.6 0.75 0.67
6-10 nodes 0.05 0.38 0.56 0.46
6-10 nodes 0.15 0.38 0.56 0.46
6-10 nodes 0.25 0.36 0.5 0.42
11-20 nodes 0.05 0.48 0.88 0.63
11-20 nodes 0.15 0.48 0.88 0.63
11-20 nodes 0.25 0.5 0.75 0.6
21-30 nodes 0.05 0.32 0.44 0.38
21-30 nodes 0.15 0.32 0.44 0.38
21-30 nodes 0.25 0.32 0.44 0.38
21-30 nodes 0.35 0.17 0.19 0.18
31-40 nodes 0.05 0.55 0.38 0.45
31-40 nodes 0.15 0.55 0.38 0.45
31-40 nodes 0.25 0.55 0.38 0.45

TABLE II
DIRECTED WEIGHTED VOICE NETWORK - CENTRAL NODES

Type Chng Precision Recall F1-meas.
NEW 0.05 0.33 0.94 0.49
NEW 0.15 0.33 0.94 0.49
NEW 0.25 0.33 0.94 0.49
NOT ANY MORE 0.05 0.33 0.94 0.49
NOT ANY MORE 0.15 0.33 0.94 0.49
NOT ANY MORE 0.65 0.39 0.75 0.52
NOT ANY MORE NEW 0.05 0.33 0.94 0.49
NOT ANY MORE NEW 0.15 0.33 0.94 0.49
NOT ANY MORE NEW 0.25 0.33 0.94 0.49
SIZE 0.05 0.32 0.75 0.45
SIZE 0.15 0.36 0.5 0.42
SIZE 0.25 0.27 0.19 0.23

TABLE III
DIRECTED VOICE NETWORK - COMMUNITY MEMBERS

Type Chng Precision Recall F1-meas.
AVG 0.05 0.33 1 0.5
AVG 0.15 0.33 1 0.5
AVG 0.25 0.33 1 0.5
MAX 0.05 0.33 1 0.5
MAX 0.15 0.33 1 0.5
MAX 0.25 0.33 1 0.5
MIN 0.05 0 0 0
MIN 0.15 0 0 0
MIN 0.25 0 0 0

tion according to the change in number of communities
has the highest scores in terms of precision and f1-
measure. Although it is the simplest approach, it provides
a stronger indicator. Since it is computationally simpler
as well, it has an advantage to be applied online.

• Among different community size groupings, change
tracking on smallest communities (communities with 3-5
members) provides the highest precision and recall re-
sults. This indicates that an event triggers communication
among small groups that emerges new, possibly short-
lived communities.

• As a general observation for the first two methods under
all settings, lower threshold values provides the highest

930DISTRIBUTION A: Distribution approved for public release.

TABLE IV
DIRECTED UNWEIGHTED VOICE NETWORK - NUMBER OF COMMUNITIES

Type Chng Precision Recall F1-meas.
3-5 nodes 0.05 0.62 0.81 0.71
3-5 nodes 0.15 0.62 0.81 0.71
3-5 nodes 0.25 0.62 0.81 0.71
6-10 nodes 0.05 0.43 0.62 0.51
6-10 nodes 0.15 0.43 0.62 0.51
6-10 nodes 0.25 0.43 0.62 0.51
11-20 nodes 0.05 0.54 0.94 0.69
11-20 nodes 0.15 0.54 0.94 0.69
11-20 nodes 0.25 0.58 0.88 0.7
21-30 nodes 0.05 0.48 0.69 0.57
21-30 nodes 0.15 0.48 0.69 0.57
21-30 nodes 0.25 0.48 0.69 0.57
31-40 nodes 0.05 0.53 0.56 0.55
31-40 nodes 0.15 0.53 0.56 0.55
31-40 nodes 0.25 0.5 0.5 0.5

TABLE V
DIRECTED UNWEIGHTED VOICE NETWORK - CENTRAL NODES

Type Chng Precision Recall F1-meas.
NEW 0.35 0.34 0.94 0.5
NEW 0.45 0.34 0.94 0.5
NEW 0.55 0.34 0.94 0.5
NOT ANY MORE 0.05 0.33 0.94 0.49
NOT ANY MORE 0.15 0.33 0.94 0.49
NOT ANY MORE 0.65 0.39 0.81 0.53
NOT ANY MORE NEW 0.05 0.33 0.94 0.49
NOT ANY MORE NEW 0.15 0.33 0.94 0.49
NOT ANY MORE NEW 0.25 0.33 0.94 0.49
SIZE 0.05 0.31 0.75 0.44
SIZE 0.15 0.36 0.5 0.42
SIZE 0.25 0.25 0.19 0.22

accuracy scores. Except for a few cases, under increas-
ing change threshold, both precision and recall values
decrease.

• Event detection according to the change in the community
members appears to be insensitive to change threshold.
The accuracy values remain the same for each of AVG,
MAX and MIN settings. This method provides the highest
recall score (recall value 1.00) under AVG and MAX,
however, low precision value shows that it has tendency
towards labeling time windows as event.

• The similar observation holds for the method tracking
the change of central nodes as well. Although high recall
values (recall 0.94) are obtained, precision values remain
low.

• The accuracy values under weighted and unweighted
network structures do not indicate a strong difference.
The results are the same for the method with change
of community members for both of the graphs. For the
other two methods, the accuracy values slightly higher
for the unweighted network structure. Thus, unweighted
network structure may be preferable due to its lightweight
structure.

IV. CONCLUSION AND FUTURE WORK

In this work, we study event detection problem from social
network point of view and model it as a change detection
problem in community structure of temporal networks. Hence,
we detect communities in a network corresponding to a time
window, an then we track the change in the community
structures along the timeline. We propose event detection
under three different change models: the change in the num-
ber of communities, the change in the central nodes of the
communities and the change in the size of each community.
Experiments conducted on a benchmark data set under various
settings show that change in the number of communities is a
stronger indication for an event.

This work can be extended in several dimensions. As the
first one, a hybrid model combining these three change models
can be constructed. As another research direction, using the
change values under various change models as features, a
learning based method can be studied on. In our method,
we considered a particular centrality metric to determine the
central nodes. Alternative link based ranking methods can be
employed in the method.

REFERENCES

[1] J. Sankaranarayanan, H. Samet, B. E. Teitler, M. D. Lieberman, and
J. Sperling, “TwitterStand: News in Tweets,” in ACM SIGSPATIAL In-
ternational Conference on Advances in Geographic Information Systems
(GIS), 2009, pp. 42–51.

[2] T. Sakaki, M. Okazaki, and Y. Matsuo, “Earthquake Shakes Twitter
Users: Real-time Event Detection by Social Sensors,” in International
Conference on World Wide Web (WWW), 2010, pp. 851–860.

[3] X. Zhou and L. Chen, “Event Detection over Twitter Social Media
Streams,” The VLDB Journal, vol. 23, no. 3, pp. 381–400, 2014.

[4] O. Ozdikis, P. Karagoz, and H. Oğuztüzün, “Incremental Clustering with
Vector Expansion for Online Event Detection in Microblogs,” Social
Network Analysis and Mining, 2017.

[5] O. Ozdikis, P. Senkul, and H. Oguztuzun, “Semantic Expansion of Tweet
Contents for Enhanced Event Detection in Twitter,” in International
Conference on Advances in Social Networks Analysis and Mining
(ASONAM), 2012, pp. 20–24.

[6] F. Atefeh and W. Khreich, “A Survey of Techniques for Event Detection
in Twitter,” Computational Intelligence, vol. 31, no. 1, pp. 132–164,
2015.

[7] S. Rayana and L. Akoglu, “Less is more: Building selective anomaly
ensembles with application to event detection in temporal graphs,” in
SDM, 2015.

[8] S. Rayana and L. Akogli, “Less is more: Building selective anomaly
ensembles,” ACM Trans. Knowl. Discov. Data, vol. 10, no. 4, pp. 42:1–
42:33, May 2016.

[9] Y. Dong, F. Pinelli, Y. Gkoufas, Z. Nabi, F. Calabrese, and N. V. Chawla,
“Inferring unusual crowd events from mobile phone call detail records,”
CoRR, vol. abs/1504.03643, 2015.

[10] I. A. Karatepe and E. Zeydan, “Anomaly detection in cellular network
data using big data analytics,” in European Wireless 2014; 20th Euro-
pean Wireless Conference, May 2014, pp. 1–5.

[11] V. A. Traag, A. Browet, F. Calabrese, and F. Morlot, “Social event
detection in massive mobile phone data using probabilistic location
inference,” in 2011 IEEE Third International Conference on Privacy,
Security, Risk and Trust and 2011 IEEE Third International Conference
on Social Computing, Oct 2011, pp. 625–628.

[12] N. Eagle, A. Pentland, and D. Lazer, “Inferring Friendship Network
Structure by Using Mobile Phone Data,” in Proceedings of the National
Academy of Sciences, vol. 106, no. 36, 2009, pp. 15 274–15 278.

[13] R. Aktunc, I. H. Toroslu, M. Ozer, and H. Davulcu, “A dynamic
modularity based community detection algorithm for large-scale net-
works: Dslm,” in Proceedings of the 2015 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining 2015,
ser. ASONAM ’15, 2015, pp. 1177–1183.

931DISTRIBUTION A: Distribution approved for public release.

2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

Detecting Antagonistic and Allied Communities on
Social Media
Amin Salehi, Hasan Davulcu

Computer Science and Engineering
Arizona State University, Tempe, USA
{asalehi1, hdavulcu}@asu.edu

Abstract—Community detection on social media has attracted
considerable attention for many years. However, existing methods
do not reveal the relations between communities. Communities
can form alliances or engage in antagonisms due to various
factors, e.g., shared or conflicting goals and values. Uncover-
ing such relations can provide better insights to understand
communities and the structure of social media. According to
social science findings, the attitudes that members from different
communities express towards each other are largely shaped by
their community membership. Hence, we hypothesize that inter-
community attitudes expressed among users in social media have
the potential to reflect their inter-community relations. Therefore,
we first validate this hypothesis in the context of social media.
Then, inspired by the hypothesis, we develop a framework to
detect communities and their relations by jointly modeling users’
attitudes and social interactions. We present experimental results
using three real-world social media datasets to demonstrate the
efficacy of our framework.

I. INTRODUCTION

Although community detection plays an important role in
providing insights into the structure and function of social
media [1], existing community detection methods do not reveal
inter-community relations, which are indispensable to deepen
our insights. Moreover, to better understand communities,
there is a need to uncover their relations. Indeed, social scien-
tists suggest that “the understanding of policies and practices
prevailing within groups will be inadequate unless relations
among them are brought into the picture” [2]. A community,
or group in social sciences, is defined as a set of users with
many intra-group social interactions and few inter-group ones
[3], who tend to have mainly positive attitudes towards each
other [4], [5].

Several methods [6], [7], [8], [9], [10], [11] have been
proposed to detect antagonistic communities. There are gen-
erally two categories of such methods: (1) those which detect
antagonistic communities from signed networks [6], [7], [8],
[9], and (2) those which mine antagonistic communities by
finding frequent patterns in users’ ratings [10], [11]. However,
these methods suffer from two main limitations. First, they
cannot be applied to a majority of popular social network
platforms (e.g., Facebook and Twitter) since these platforms do
not provide signed links or users’ ratings explicitly. Second,
inter-community relations are not restricted to antagonisms.
Indeed, communities can also form alliances.

According to social science findings, inter-community atti-
tudes that individuals express towards each other are largely
shaped by their community membership rather than their
characteristics or personal relationships [12], [13]. More-
over, Tajfel [14] observed a pair of characteristics in inter-
community behavior. First, the members of a community
display uniformity in their behavior and attitude towards any
other community. Second, they tend to perceive the character-
istics and behavior of the members of any other community as
undifferentiated. Moreover, social scientists suggest that “the
social psychology of intergroup relations is concerned with
intergroup behaviour and attitudes” [14]. According to these
observations, inter-community attitudes that users express to-
wards each other in social media have the potential to reflect
inter-community relations.

In this paper, we propose a framework, namely DAAC,
which detects communities and their relations (i.e., antago-
nism, alliance, or neither) by exploiting users’ social interac-
tions (e.g., retweets) and attitudes expressed on social media.
Our main contributions are:

• Validating the hypothesis suggesting that inter-
community attitudes that users express towards each
other in social media can reflect the relations of their
communities;

• Achieving higher performance in detecting communities
compared to several standard community detection meth-
ods;

• Uncovering inter-community relations, i.e., antagonism,
alliance, or no relation.

The rest of the paper is organized as follows. In Section
II, we review related work. In Section III, we formally define
the problem of detecting communities and their relations on
social media. Section IV describes three real-world social
media datasets used in our experiments. In Section V, we first
validate the aforementioned hypothesis and then present our
framework. In Section VI, we demonstrate the effectiveness
of the proposed framework. Section VII concludes the paper
and discusses future work.

II. RELATED WORK

There has been a lot of efforts to detect communities
efficiently and accurately. To this end, a wide variety of
approaches have been utilized. Modularity-based methods are
among the most well-know techniques to detect communities.IEEE/ACM ASONAM 2018, August 28-31, 2018, Barcelona, Spain

978-1-5386-6051-5/18/$31.00 c© 2018 IEEE

99DISTRIBUTION A: Distribution approved for public release.

The modularity measure proposed in [15] evaluates whether a
division is good enough to form communities. Many variants
of modularity-based community detection [16], [17] have been
developed. Another well-known category includes spectral
algorithms [18], [19], [20], [21] which aims to divide the
network into several communities in which most of the interac-
tions are within communities while the number of interactions
across communities are minimized. Probabilist approaches
[22], in which users are assigned to clusters in a probabilistic
way, are also applied to the problem of community discovery.
There are a variety of approaches such as information theory
based methods [23], random walk techniques [24], [25], and
model-based methods [26], [27] to tackle this problem.

Although there has been a great deal of efforts to detect
communities, to the best of our knowledge, no previous work
has been proposed to uncover the existence of antagonism
and alliance between communities. However, some efforts
have been made [6], [7], [8], [9], [10], [11] to detect only
antagonistic communities. These methods can be roughly
divided into two main categories. First category includes the
methods [10], [11] utilizing frequent patterns in users’ ratings
to mine antagonistic communities. Second category includes
the methods [6], [7], [8], [9] utilizing signed networks, having
trust and distrust links, to detect antagonistic communities. A
majority of these methods [7], [8], [9] detect a pair of sub-
graphs with most trust links preserved between the members
of each subgraph and most distrust links remained between the
members of different subgraphs. These methods are limited to
detecting only a pair of antagonistic communities. To address
this limitation, another method [6] has been proposed to
detect multiple antagonistic communities by finding several
dense subgraphs with the mentioned property. However, as
experiments in [6] show such methods usually end up with
large number of small subgraphs due to high sparsity of users’
interactions in social media.

III. PROBLEM STATEMENT

We first begin with the introduction of the notations used in
the paper as summarized in Table I. Let U = {u1, u2, ..., un}
be the set of n users and C = {c1, c2, ..., ck} indicate
the set of k communities. R ∈ Rn×n

+ denotes the social
interaction matrix, where Ri,j corresponds to the number of
social interactions between user ui and user uj . S ∈ Rn×n

indicates the attitude matrix, where the positive/negative value
of Si,j corresponds to the positive/negative attitude strength
of user ui towards user uj . U ∈ Rn×k

+ indicates the com-
munity membership matrix, in which Ui,l corresponds to the
membership strength of user ui to community cl. H ∈ Rk×k

denotes intra/inter-community relation matrix, where Hi,j ,
if i 6= j, corresponds to the strength and type of inter-
community relation between community ci and community
cj ; the negative, positive, and zero value of Hi,j indicates
antagonism, alliance, or no relation between community ci
and community cj , respectively. Moreover, Hi,i corresponds
to the intra-community attitudes that the members of com-
munity ci have expressed towards each other. We define the

TABLE I: Notations used in the paper

Notation Explanation
U The set of users
C The set of communities
n The number of users
k The number of communities
R The social interaction matrix
S The attitude matrix
U The community membership matrix
H The community intra/inter-relation matrix
∼
R Symmetrically normalized matrix R
D Degree matrix of R
A+ The positive part of matrix A (i.e., (|A|+A)/2)
A− The negative part of matrix A (i.e., (|A| −A)/2)

symmetric normalization of R as
∼
R = D−1/2RD−1/2, where

D = diag(d1, d2, ..., dn) is the degree matrix of R and the
degree of user ui is di =

∑n
j=1 Ri,j . We separate positive

and negative parts of matrix A as A+
i,j = (|Ai,j | + Ai,j)/2

and A−
i,j = (|Ai,j | −Ai,j)/2.

By using the aforementioned notations, the problem of
detecting communities and their relations on social media can
be defined as: Given social interaction matrix R and attitude
matrix S, we aim to obtain community membership matrix U
and intra/inter-community relation matrix H.

IV. DATA DESCRIPTION

Politics is a domain in which it is common among polit-
ical parties (i.e., communities) to form alliances or engage
in antagonisms. To validate the aforementioned hypothesis
and evaluate our proposed framework, we use the following
political Twitter datasets:

• US Dataset consists of the tweets posted by 583 politi-
cians from two major US political parties (the Republican
Party and the Democratic Party) from August 26 to
November 29, 2016. For the period of time that this
dataset covers, there were antagonisms between these
parties particularly due to the 2016 presidential election
campaigning [28].

• Australia Dataset consists of the tweets posted by 225
user accounts, including politicians and political groups,
from five major Australian political parties (the Liberal
Party, the National Party, the Liberal National Party, the
Greens, and the Labor Party) from January 1 to November
18, 2016. For several decades, there has been a coalition
among the Liberal Party, the National Party, and the
Liberal National Party [29]. In the 2016 federal election,
all relations between the parties were antagonistic except
the relations between the members of the coalition,.

• UK Dataset consists of the tweets posted by 389 user
accounts, including politicians and political groups, from
five major UK political parties (the Conservative Party,
the Labour Party, the Scottish National Party, the Liberal
Democrats Party, and the UK Independence Party) from
January 1 to October 31, 2015. There were antagonism
among five major UK political parties in this period

100DISTRIBUTION A: Distribution approved for public release.

TABLE II: The statistics of the cleaned datasets.

US Australia UK
of tweets 111,743 159,499 267,085
of retweets 17,724 21,111 14,892
of mentions 8,470 14,996 33,462
of user accounts 583 225 389
of true communities 2 5 5
of allied relations 0 3 0
of antagonistic relations 1 7 10

of time, especially due to the 2015 general election
campaigning [30].

Preprocessing: For all datasets, we remove the users who
do not have any retweet (i.e., social interaction). Table II shows
the statistics of the preprocessed datasets. All users in the
datasets have been labeled with their corresponding parties,
and these labels are used to evaluate our proposed method.

Although aspect-based sentiment classification techniques
[31] have been proposed to capture users’ attitudes towards
entities, publicly available training datasets are either too
small or domain-oriented, making such techniques incapable to
tackle real-world problems. Therefore, we use the following
technique to extract the attitudes that users express towards
each other in social media. Given each message in which
author ui has mentioned user uj , we add the strength of the
message’s sentiment to the corresponding elements of matrix S
(i.e., Si,j). Even though some messages may carry a negative
sentiment, the author may not necessarily have an antagonistic
attitude towards a mentioned user. To alleviate this problem,
we ignore such messages if there is a social interaction (i.e.,
retweet) between the author and the mentioned user since a
social interaction indicates the presence of a good relationship
[32]. We utilize SentiStrength [33] to detect the sentiment
polarity and strength of messages. We have made the code
and datasets used in this paper available1.

V. THE PROPOSED FRAMEWORK

In this section, we first demonstrate the existence of a
significant level of correlation between the type of inter-
community relation (i.e., alliance or antagonism) between
two communities and the type of sentiment (i.e., positive or
negative) that members from these communities expressed
towards each other. Next, we propose our framework.

A. Validating the Hypothesis

According to social science findings [12], [13], the attitudes
that members from different communities express towards
each other are largely shaped by their community membership.
Therefore, we hypothesize that inter-community attitudes ex-
pressed among users towards each other in social media have
the potential to reflect inter-community relations. However,
the findings borrowed from social sciences do not necessarily
hold in social media due to many factors, such as the validity
and representativeness of available information [34], [35].
Moreover, the attitudes that users express towards each other in
social media might result from users’ personal relationships.

1https://github.com/amin-salehi/DAAC

Therefore, in this section, we aim to verify our hypothesis
by answering the following two questions. With this respect,
we utilize the Australia dataset since it is the only dataset
containing both allied and antagonistic relations.

• Are the communities of two users who express negative
attitudes towards each other more likely to be in antago-
nism?

• Are the communities of two users who express positive
attitudes towards each other more likely to be in alliance?

We first answer the former by using the following procedure
inspired by [36]. For each pair of users (ui, uj) who are from
different communities and have expressed negative attitudes
towards each other (i.e., Si,j < 0), we randomly select a user
uk where users ui and uk are from different communities
and have not expressed negative attitudes towards each other
(i.e., Si,k ≥ 0). Then, we check whether there is antagonism
between the communities of ui and uj and between the
communities of ui and uk. If there is antagonism between the
communities of ui and uj , we set tp = 1; otherwise tp = 0.
Similarly, if there is antagonism between the communities of
ui and uk, we set tr = 1; otherwise tr = 0. Let vector
Tp denote the set of all tps for pairs of users from different
communities who have expressed negative attitudes towards
each other, and vector Tr denote the set of all trs for pairs
of users from different communities who have not expressed
negative attitudes towards each other.

We conduct a two-sample t-test on Tp and Tr. The null
hypothesis H0 and alternative hypothesis H1 are defined as
follows:

H0 : Tp ≤ Tr, H1 : Tp > Tr (1)

The null hypothesis is rejected at significance level a = 0.01
with p-value of 3.56e−105. Therefore, the result of the two-
sample t-test demonstrates that the communities of two users
who express negative attitudes towards each other are highly
probable to be in antagonism. We apply a similar procedure
to answer the second question. For brevity, we only report the
result of the two-sample t-test. The null hypothesis is rejected
at significance level a = 0.01 with p-value of 1.57e−26.
As a result, we conclude that the communities of two users
who express positive attitudes towards each other are highly
probable to be in alliance.

B. Modeling Users’ Attitudes

In the previous section, we demonstrated that inter-
community attitudes expressed by users can reflect the relation
of their communities in the context of social media. Inspired
by this observation, we propose a model which uncovers
intra/inter-community relations by exploiting the attitudes
users express towards each other as,

min
U,H

||W � (S−UHUT)||2F

s.t. U ≥ 0.
(2)

101DISTRIBUTION A: Distribution approved for public release.

where � is Hadamard product, Wi,j controls the contribu-
tion of Si,j in the model, and a typical choice of W ∈ Rn×n

+

is,

W =

{
0, if S = 0
1, otherwise (3)

Given communities ci and cj , Eq. (2) aims to uncover
their inter-community relation Hi,j by using their attitudes. To
this end, U:,iHi,jU

T
:,j estimates the inter-community attitudes

among the members of these two communities as presented
in matrix S. Since the non-negativity constraint only holds on
U, Hi,j will be negative, positive, or zero if the members of
two communities have generally expressed negative, positive,
or no attitudes towards each other, respectively. The lower the
negative value of Hi,j is, the more antagonistic communities
ci and cj are. On the other hand, the larger the positive value of
Hi,j is, the more allied communities ci and cj are. Moreover,
Hi,i indicates the intra-community attitudes that the members
of community ci have expressed towards each other.

C. Modeling Social Interactions

Social interactions are one of the most effective sources
of information to detect communities [1]. In this section, we
aim to cluster users into k communities with the most social
interactions within each community and the fewest social
interactions between communities. To this end, we use the
following model,

max
U

Tr(UT
∼
RU)

s.t. U ≥ 0,UTU = I.
(4)

where I is the identity matrix with the proper size. In fact,
Eq. (4) is equivalent to the nonnegative relaxed normalized cut
as put forth in [19].

D. The Proposed Framework DAAC

We separately introduced our models to utilize users’ atti-
tudes and social interactions. In this section, we propose our
framework DAAC, which jointly exploits these two models to
uncover communities and their relations. The proposed frame-
work requires solving the following optimization problem,

min
U,H

F = ||W � (S−UHUT)||2F − λTr(UT
∼
RU)

s.t. U ≥ 0,UTU = I.
(5)

where λ is a non-negative regularization parameter controlling
the contribution of social interactions in the final solution.

Since the optimization problem in Eq. (5) is not convex with
respect to variables U and H together, there is no guarantee
to find the global optimal solution. As suggested by [37], we
introduce an alternative scheme to find a local optimal solution
of the optimization problem. The key idea is optimizing the
objective function with respect to one of the variables U or
H, while fixing the other one. The algorithm keeps updating
the variables until convergence.

Optimizing the objective function F with respect to U leads
to the following update rule,

Algorithm 1 The Proposed Algorithm for DAAC

Input: attitude matrix S and social interaction matrix R
Output: community membership matrix U and
intra/inter-community relation matrix H

1: Initialize U and H randomly where U ≥ 0
2: while not convergent do
3: Update U according to Eq. (6)
4: Update H according to Eq. (14)
5: end while

U = U�

√√√√E+
1 + E+

2 + E−
3 + E−

4 + λ
∼
RU + UΓ−

E−
1 + E−

2 + E+
3 + E+

4 + UΓ+
(6)

where,

E1 = −(W �W � S)UHT (7)

E2 = −(W �W � S)TUH (8)

E3 = (W �W �UHUT)UHT (9)

E4 = (W �W �UHUT)TUH (10)

Γ = −UTE1 −UTE2 −UTE3 −UTE4 (11)

+ λUT
∼
RU (12)

The details are given in the Appendix.
The derivative of F with respect to H is as follows:

∂F
∂H

=− 2UT (W �W � S)U

− 2UT (W �W �UHUT)U
(13)

Thus, the update rule of H is as follows:

H = H− α∂F
∂H

(14)

where α is the learning rate for updating H.
The detailed algorithm for DAAC is shown in Algorithm

1. We briefly review Algorithm 1. In line 1, it randomly
initializes U and H. From line 2 to 5, it updates U and H
until convergence is achieved.

E. Time Complexity

In Algorithm 1, the most costly operations are the matrix
multiplications in update rules Eq. (6) and Eq. (14) on which
we focus in this section. W and R are usually very sparse
matrices, so let Nw and Nr denote the number of non-zero
elements of W and R, respectively. The time complexities of
Eq. (6) and Eq. (14) are described as follows:

• We first focus on the time complexity of Eq. (6). Note that
W�W�S needs to be calculated once. Therefore, the
time complexities of both E1 and E2 are O(Nwk+nk2)
thanks to the sparsity of matrices W and S. The time
complexity of W�W�UHUT is O(Nwn+nk2+n2k).
The number of non-zero values of W�W�UHUT is
the same as W owing to the sparsity of W. Thus, the
time complexities of both E3 and E4 are O(Nwn+nk2+
n2k). Using a similar procedure, the time complexities of

102DISTRIBUTION A: Distribution approved for public release.

TABLE III: Comparison of community detection methods.

US dataset Australia dataset UK dataset
Method NMI ARI Purity NMI ARI Purity NMI ARI Purity
Louvain 0.431095 0.386347 0.943396 0.825234 0.833025 0.942222 0.858118 0.841718 0.987147
InfoMap 0.431437 0.351938 0.946826 0.831903 0.831737 0.942222 0.909684 0.928716 0.992288
Leading eigenvectors 0.580117 0.678051 0.938250 0.779931 0.573488 0.693334 0.913700 0.9533703 0.982005
CNM 0.502925 0.487620 0.945111 0.842446 0.848269 0.937778 0.939093 0.971631 0.984576
Label propagation 0.600777 0.655619 0.958833 0.822237 0.826724 0.937778 0.958379 0.979031 0.989717
Soft clustering 0.735760 0.829228 0.955403 0.841264 0.812856 0.844444 0.951260 0.974292 0.987147
DAAC 0.768307 0.854484 0.962264 0.903691 0.908264 0.951111 0.958806 0.978770 0.989717

∼
RU and Γ are O(Nrk) and O(Nwn+nk2+n2k+Nrk),
respectively. As a result, the time complexity of Eq. (6)
is O(Nw(n+ k) +Nrk + nk2 + n2k).

• Now we provide the time complexity of Eq. (14). The cost
of UT (W �W � S) is O(Nwk) thanks to the sparsity
of W. Thus, the time complexity of UT (W�W�S)U
is O(Nwk+nk2). Similarly, the cost of UT (W�W�
UHUT)U is O(Nwn+nk2 +n2k). Therefore, the time
complexity of Eq. (14) is O(Nw(n+ k) + nk2 + n2k).

Hence, the time complexity of Algorithm 1 is O(i(Nw(n+
k) +Nrk + nk2 + n2k)) where i is the number of iterations
required for the convergence. Our framework can be applied to
large scale social network platforms by exploiting distributed
approaches outlined in [38], [39], [40].

VI. EXPERIMENTS

To evaluate our proposed framework, we design the required
experiments to answer the following two questions.

1) How effective is the proposed framework compared to
the standard community detection methods?

2) How effective is our framework in discovering inter-
community relations?

In the next section, we first compare the performance
of several well-known community detection methods with
DAAC. Then, we evaluate the effectiveness of our framework
in uncovering inter-community relations. Finally, we study the
sensitivity of our framework with respect to regularization
parameter λ. For the experiments, we set the number of
communities for any method, if it is required, as the true
number of communities (i.e., parties) in each dataset.

A. Evaluation of Community Detection

1) Baselines: In order to demonstrate the efficacy of
DAAC, we compare it with six well-known community de-
tection methods presented as follows:

• Louvain: This method [17] greedily maximizes the ben-
efit function known as modularity to detect communities.

• InfoMap: This baseline [23] is based on information
theory and compresses the description of random walks
in order to find communities.

• Leading eigenvectors: Newton [20] presents a formula-
tion of modularity in a matrix form, namely modularity
matrix. Then, he proposes to use the eigenvectors of
modularity matrix to detect communities.

TABLE IV: The uncovered relations between detected com-
munities (i.e., parties) by using DAAC in the US dataset.

Republicans Democrats

Republicans 259 -138

Democrats -138 112

Note: all values in the table are rounded.

• CNM: This method [16] uses a greedy approach to
find the divisions of the network which maximizes the
modularity.

• Label propagation: [26] This method initially assigns
unique labels to users. Then, in each iteration, users adopt
the label that most of their neighbors posses. Finally,
users with the same label fall into the same community.

• Soft clustering: This baseline [22] assigns users to
communities in a probabilistic way.

2) Performance Measures: To evaluate the performance of
the methods, we utilize three following measures which are
frequently used for community detection evaluation: Normal-
ized Mutual Information (NMI), Adjusted Rand Index (ARI),
and Purity.

3) Experimental Results: We run all methods with their
hyperparameters initialized from {10x|x ∈ [0, 9]}. Table III
shows the best result for each method. According to the table,
we can make the following observations:

• Our proposed framework achieves the highest perfor-
mance in terms of NMI and ARI for all three datasets.
In terms of Purity, it also achieves the best in US and
Australia datasets. In the UK dataset, only InfoMap
obtains higher Purity compared to our framework since
it generates a large number of communities (e.g., 11
communities for the UK dataset) for sparse graphs such
as social media networks.

• Our framework achieves its highest performance with
large values of regularization parameter λ (e.g., 107).
This implies that social interactions are more effective
in detecting communities compared to users’ attitudes.
We will study more on the impact of the regularization
parameter in Section VI-C.

B. Evaluation of Inter-community Relations
In this section, we evaluate the effectiveness of our proposed

framework in uncovering inter-community relations by con-
ducting two experiments. To the best of our knowledge, there

103DISTRIBUTION A: Distribution approved for public release.

TABLE V: The uncovered relations between detected commu-
nities (i.e., parties) by using DAAC in the Australia dataset.

Liberals Nationalists Liberal
Nationalists Labors Greens

Liberals 87 61 34 -21 -32

Nationalists 61 52 46 -4 -22

Liberal
Nationalists 34 46 39 -4 -61

Labors -21 -4 -4 121 -31

Greens -32 -22 -61 -31 64

Note: all values in the table are rounded.

is no previous work to discover inter-community antagonistic
and allied relations. Therefore, as the first experiment, we
compare the inter-community relations which our framework
detects with the real-word inter-community relations. Each
community detected by our framework is labeled with the
party to which the majority of its members belong. Then, we
evaluate inter-community relations (i.e., matrix H) detected by
our algorithm according to the known ground-truth inter-party
relations as previously presented in Section IV.

Table IV shows intra/inter-community relation matrix H
for the US dataset as well as the parties corresponding to
the detected communities. In 2016, the Republican Party and
the Democratic Party were strongly antagonistic towards each
other, especially due to the 2016 presidential election cam-
paigning2 [28]. As Table IV shows, our framework uncovers
the existence of strong antagonism between these two parties.
It also discovers that intra-community attitudes among the
members of each community are highly positive as expected
owing to the election campaign dynamics.

Table V shows intra/inter-community relation matrix H for
the Australia dataset as well as the parties corresponding to
the detected communities. The Liberal Party, the National
Party, and the Liberal National party forged a coalition in
the 2016 federal election. Except the relations between the
members of the coalition, other relations among all parties
were antagonistic3. As shown in Table V, our framework
uncovers the coalition in which the three involved parties
are in alliance with each other. It also discovers antagonism
between the members of the coalition and other parties as well
as the antagonism between the Greens and the Labor Party.
Moreover, it detects high positive intra-community attitudes
among the members of communities as expected.

Table VI shows intra/inter-community relation matrix H
for the UK dataset as well as the parties corresponding to
the detected communities. In 2015, there were antagonisms
between all five major UK political parties, especially due
to the 2015 general election campaigning4 [30]. As shown
in Table VI, our framework correctly detects all antagonistic
relations between these parties. It also discovers that intra-
community attitudes among the members of each community
are highly positive as expected.

The second experiment compares our framework with a
two-step approach described as follows. We first utilize social

2https://en.wikipedia.org/wiki/United States presidential election, 2016
3https://en.wikipedia.org/wiki/Australian federal election, 2016
4https://en.wikipedia.org/wiki/United Kingdom general election, 2015

TABLE VI: The uncovered relations between detected com-
munities (i.e., parties) by using DAAC in the UK dataset.

Conservatives Labours Lib dems SNPs UKIPs

Conservatives 154 -37 -7 -21 -9

Labours -37 242 -8 -11 -26

Lib dems -7 -8 63 -3 -14

SNPs -21 -11 -3 55 -5

UKIPs -9 -26 -14 -5 30

Note: all values in the table are rounded.

TABLE VII: Inter-community detection performance between
DAAC and the two-step approach.

US Australia UK

Two-step approach 1.0 1.0 0.8

DAAC 1.0 1.0 1.0

interactions to detect communities. Then, we aggregate the
sentiment expressed among the members of different commu-
nities in order to figure out their inter-community relations. To
have a fair comparison, we use Eq. (4) to detect communities
for the two-step approach; which is the main component in
DAAC for utilizing social interactions. As Table VII shows,
the two-step approach is able to detect correct relations in
US and Australia datasets. However, it fails to detect two
out of ten inter-community relations in the UK dataset. This
result shows that our proposed framework can detect inter-
community relations more accurately by jointly using and
social interactions and attitudes among users compared to a
approach which sequentially detects communities and their
relations.

C. Study on the Regularization Parameter

In this section, we investigate the sensitivity of our frame-
work with respect to regularization parameter λ. We vary the
value of λ, and plot NMI, ARI and Purity measures in Figure
1 for all three datasets used in the study. Similarly, we plot
the correct number of inter-community relations discovered
by DAAC in Figure 2 for all three datasets with respect to
different values of λ.

As we observe from Figure 1, very large values of λ (e.g.,
106 and 107) for all datasets result in the highest performance
of DAAC in detecting communities. Similarly, Figure 2 shows
that very large values of λ also result in the highest number of
correct inter-community relations discovered by DAAC. The
rationale behind this is that inter-community relations cannot
be correctly identified unless communities are accurately de-
tected.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a framework to discover com-
munities and their relations by exploiting social interactions
and user-generated content. We validated the hypothesis that
inter-community attitudes that users express towards each
other in social media can reflect inter-community relations. As
inspired by this hypothesis, our proposed framework DAAC
jointly models users’ attitudes and social interactions in order

104DISTRIBUTION A: Distribution approved for public release.

103 104 105 106 107
0

0.2

0.4

0.6

0.8

1

Regularization parameter

Pe
rf

or
m

an
ce

NMI
ARI

Purity

(a) US dataset

103 104 105 106 107
0

0.2

0.4

0.6

0.8

1

Regularization parameter

Pe
rf

or
m

an
ce

NMI
ARI

Purity

(b) Australia dataset

103 104 105 106 107
0

0.2

0.4

0.6

0.8

1

Regularization parameter

Pe
rf

or
m

an
ce

NMI
ARI

Purity

(c) UK dataset

Fig. 1: Community detection performance with regard to λ.

103 104 105 106 107

0

1

Regularization parameter

C
or

re
ct

#
of

in
te

r-
co

m
m

un
ity

re
la

tio
ns

(a) US dataset

103 104 105 106 107

0

1

2

3

4

5

6

7

8

9

10

Regularization parameter

C
or

re
ct

#
of

in
te

r-
co

m
m

un
ity

re
la

tio
ns

(b) Australia dataset

103 104 105 106 107

0

1

2

3

4

5

6

7

8

9

10

Regularization parameter

C
or

re
ct

#
of

in
te

r-
co

m
m

un
ity

re
la

tio
ns

(c) UK dataset

Fig. 2: The correct number of inter-community relations with regard to λ.

to uncover communities and their antagonistic/allied rela-
tions. Experimental results on three real-world social media
datasets demonstrated that our framework obtains significant
performance in detecting communities compared with several
baselines and also detects inter-community relations correctly.
Moreover, we showed that a two-step approach, which sequen-
tially detect communities and their relations, can fail to detect
correct inter-community relations.

Since communities and their relations evolve over time,
studying such dynamics provides deeper insights into under-
standing communities. In our future work, we aim to study
uncovering the dynamics of communities and their relations
and the motives behind these dynamics.

APPENDIX

Optimizing the objective function F in Eq. (5) with respect
to U is equivalent to solving

min
U

FU = ||S−UHUT ||2F − λTr(UT
∼
RU)

s.t. U ≥ 0,UTU = I.
(15)

Let Γ and Λ be the Lagrange multiplier for constraints
UTU = I and U ≥ 0, respectively, and the Lagrange function
is defined as follows:

min
U

LU = ||S−UHUT ||2F − λTr(UT
∼
RU)

− Tr(ΛUT) + Tr(Γ(UTU− I))
(16)

The derivative of LU with respect to U is
∂LU

∂U
= −2(W �W � S)UHT − 2(W �W � S)TUH

+ 2(W �W �UHUT)UHT

+ 2(W �W �UHUT)TUH

− 2λ
∼
RU−Λ + 2UΓ

(17)
For the sake of simplicity, let us assume that,

E1 = −(W �W � S)UHT (18)

E2 = −(W �W � S)TUH (19)

E3 = (W �W �UHUT)UHT (20)

E4 = (W �W �UHUT)TUH (21)

By setting ∂LU

∂U = 0, we get

Λ = −2E1 − 2E2 + 2E3 + 2E4 − 2λ
∼
RU + 2UΓ (22)

With the KKT complementary condition for the nonnega-
tivity of U, we have

ΛijUij = 0 (23)

Therefore, we have

(E1 + E2 + E3 + E4 − λ
∼
RU + 2UΓ)ijUij = 0 (24)

where

Γ = −UTE1 −UTE2 −UTE3 −UTE4 + λUT
∼
RU (25)

105DISTRIBUTION A: Distribution approved for public release.

Since E1, E2, E3, E4, and Γ can take mixed signs.
Suggested by [41], we separate positive and negative parts
of any matrix A as

A+
ij = (|Aij |+ Aij)/2

A−
ij = (|Aij | −Aij)/2

(26)

Then, we get the following update rule of U,

U = U�

√√√√E+
1 + E+

2 + E−
3 + E−

4 + λ
∼
RU + UΓ−

E−
1 + E−

2 + E+
3 + E+

4 + UΓ+
(27)

ACKNOWLEDGMENTS

This work was partially supported by ONR Grant N00014-
16-1-2015 and USAF Grant FA9550-15-1-0004.

REFERENCES

[1] S. Papadopoulos, Y. Kompatsiaris, A. Vakali, and P. Spyridonos, “Com-
munity detection in social media,” Data Mining and Knowledge Discov-
ery, vol. 24, no. 3, pp. 515–554, 2012.

[2] M. Sherif and C. W. Sherif, “Groups in harmony and tension; an
integration of studies of intergroup relations.” 1953.

[3] M. Girvan and M. Newman, “Community structure in social and
biological networks,” Proc. Natl. Acad. Sci. USA, vol. 99, no. cond-
mat/0112110, pp. 8271–8276, 2001.

[4] L. Festinger, K. W. Back, and S. Schachter, “The spatial ecology of
group formation,” in Social pressures in informal groups: A study of
human factors in housing. Stanford University Press, 1950, vol. 3,
ch. 4.

[5] A. J. Lott and B. E. Lott, “Group cohesiveness as interpersonal attrac-
tion: a review of relationships with antecedent and consequent variables.”
Psychological bulletin, vol. 64, no. 4, p. 259, 1965.

[6] L. Chu, Z. Wang, J. Pei, J. Wang, Z. Zhao, and E. Chen, “Finding
gangs in war from signed networks,” in Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 2016, pp. 1505–1514.

[7] M. Gao, E.-P. Lim, D. Lo, and P. K. Prasetyo, “On detecting maximal
quasi antagonistic communities in signed graphs,” Data Mining and
Knowledge Discovery, vol. 30, no. 1, pp. 99–146, 2016.

[8] D. Lo, D. Surian, P. K. Prasetyo, K. Zhang, and E.-P. Lim, “Mining
direct antagonistic communities in signed social networks,” Information
Processing & Management, vol. 49, no. 4, pp. 773–791, 2013.

[9] D. Lo, D. Surian, K. Zhang, and E.-P. Lim, “Mining direct antagonistic
communities in explicit trust networks,” in Proceedings of the 20th ACM
international conference on Information and knowledge management.
ACM, 2011, pp. 1013–1018.

[10] K. Zhang, D. Lo, and E.-P. Lim, “Mining antagonistic communities from
social networks,” in Pacific-Asia Conference on Knowledge Discovery
and Data Mining. Springer, 2010, pp. 68–80.

[11] K. Zhang, D. Lo, E.-P. Lim, and P. K. Prasetyo, “Mining indirect
antagonistic communities from social interactions,” Knowledge and
information systems, vol. 35, no. 3, pp. 553–583, 2013.

[12] H. Tajfel, “Human intergroup conflict: Useful and less useful forms of
analysis,” Human ethology: Claims and limits of a new discipline, pp.
369–422, 1979.

[13] M. Billig and H. Tajfel, “Social categorization and similarity in inter-
group behaviour,” European Journal of Social Psychology, vol. 3, no. 1,
pp. 27–52, 1973.

[14] H. Tajfel, Social identity and intergroup relations. Cambridge Univer-
sity Press, 2010.

[15] M. E. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Physical review E, vol. 69, no. 2, p. 026113,
2004.

[16] A. Clauset, M. E. Newman, and C. Moore, “Finding community
structure in very large networks,” Physical review E, vol. 70, no. 6,
p. 066111, 2004.

[17] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of statistical
mechanics: theory and experiment, vol. 2008, no. 10, p. P10008, 2008.

[18] I. S. Dhillon, Y. Guan, and B. Kulis, “Kernel k-means: spectral clustering
and normalized cuts,” in Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2004, pp. 551–556.

[19] C. H. Ding, X. He, and H. D. Simon, “On the equivalence of nonnegative
matrix factorization and spectral clustering.” in SDM, vol. 5. SIAM,
2005, pp. 606–610.

[20] M. E. Newman, “Finding community structure in networks using the
eigenvectors of matrices,” Physical review E, vol. 74, no. 3, p. 036104,
2006.

[21] A. Salehi, M. Ozer, and H. Davulcu, “Sentiment-driven community
profiling and detection on social media,” in Proceedings of the 29th
ACM Conference on Hypertext and Social Media. ACM, 2018.

[22] K. Yu, S. Yu, and V. Tresp, “Soft clustering on graphs,” in Advances in
neural information processing systems, 2005, pp. 1553–1560.

[23] M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex
networks reveal community structure,” Proceedings of the National
Academy of Sciences, vol. 105, no. 4, pp. 1118–1123, 2008.

[24] D. Harel and Y. Koren, “On clustering using random walks,” in FSTTCS.
Springer, 2001, pp. 18–41.

[25] P. Pons and M. Latapy, “Computing communities in large networks using
random walks.” J. Graph Algorithms Appl., vol. 10, no. 2, pp. 191–218,
2006.

[26] U. N. Raghavan, R. Albert, and S. Kumara, “Near linear time algorithm
to detect community structures in large-scale networks,” Physical review
E, vol. 76, no. 3, p. 036106, 2007.

[27] S. Gregory, “Finding overlapping communities in networks by label
propagation,” New Journal of Physics, vol. 12, no. 10, p. 103018, 2010.

[28] D. Lilleker, D. Jackson, E. Thorsen, and A. Veneti, “Us election analysis
2016: Media, voters and the campaign.” 2016.

[29] D. Clune, “Contemporary australian political party organisations,” 2016.
[30] M. Moran, Politics and Governance in the UK. Palgrave Macmillan,

2015.
[31] M. Pontiki, D. Galanis, H. Papageorgiou, I. Androutsopoulos, S. Man-

andhar, A.-S. Mohammad, M. Al-Ayyoub, Y. Zhao, B. Qin, O. De Clercq
et al., “Semeval-2016 task 5: Aspect based sentiment analysis,” in
Proceedings of the 10th international workshop on semantic evaluation
(SemEval-2016), 2016, pp. 19–30.

[32] M. Conover, J. Ratkiewicz, M. R. Francisco, B. Gonçalves, F. Menczer,
and A. Flammini, “Political polarization on twitter.” ICWSM, vol. 133,
pp. 89–96, 2011.

[33] M. Thelwall, K. Buckley, G. Paltoglou, D. Cai, and A. Kappas, “Senti-
ment strength detection in short informal text,” Journal of the American
Society for Information Science and Technology, vol. 61, no. 12, pp.
2544–2558, 2010.

[34] Z. Tufekci, “Big questions for social media big data: Representa-
tiveness, validity and other methodological pitfalls,” arXiv preprint
arXiv:1403.7400, 2014.

[35] D. Ruths and J. Pfeffer, “Social media for large studies of behavior,”
Science, vol. 346, no. 6213, pp. 1063–1064, 2014.

[36] G. Beigi, J. Tang, and H. Liu, “Signed link analysis in social media
networks.” in ICWSM, 2016, pp. 539–542.

[37] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix
factorization,” in Advances in neural information processing systems,
2001, pp. 556–562.

[38] C. Liu, H.-c. Yang, J. Fan, L.-W. He, and Y.-M. Wang, “Distributed
nonnegative matrix factorization for web-scale dyadic data analysis on
mapreduce,” in Proceedings of the 19th international conference on
World wide web. ACM, 2010, pp. 681–690.

[39] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis, “Large-scale
matrix factorization with distributed stochastic gradient descent,” in
Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2011, pp. 69–77.

[40] F. Li, B. Wu, L. Xu, C. Shi, and J. Shi, “A fast distributed stochastic
gradient descent algorithm for matrix factorization,” in Proceedings of
the 3rd International Conference on Big Data, Streams and Heteroge-
neous Source Mining: Algorithms, Systems, Programming Models and
Applications-Volume 36. JMLR. org, 2014, pp. 77–87.

[41] C. H. Ding, T. Li, and M. I. Jordan, “Convex and semi-nonnegative ma-
trix factorizations,” IEEE transactions on pattern analysis and machine
intelligence, vol. 32, no. 1, pp. 45–55, 2010.

106DISTRIBUTION A: Distribution approved for public release.

Co-Clustering Signed 3-Partite Graphs
Sefa Şahin Koç, İsmail Hakkı Toroslu

Computer Engineering Department
Middle East Technical University, Ankara, Turkey

Email: {sefa.koc, toroslu}@ceng.metu.edu.tr

Hasan Davulcu
Computer Science and Engineering Department

Arizona State University, Tempe, AZ
Email: hdavulcu@asu.edu

Abstract—In this paper, we propose a new algorithm, called
STRICLUSTER, to find tri-clusters from signed 3-partite graphs.
The dataset contains three different types of nodes. Hyperedges
connecting three nodes from three different partitions represent
either positive or negative relations among those nodes. The
aim of our algorithm is to find clusters with strong positive
relations among its nodes. Moreover, negative relations up to
a certain threshold is also allowed. Also, the clusters can have
no overlapping hyperedges. We show the effectiveness of our
algorithm via several experiments.

I. INTRODUCTION

A hyperedge in a tri-partite graph represents the relationship
among the three nodes it connects. For example, in a social
tagging system, which contains three types of nodes (users,
tags, resources), a hyperedge means that a user annotates a
resource with a tag [1]. A tripartite cluster of these hyperedges
may give many information such as users' attitudes to multiple
resources or users with common interests. As another example,
in a biological analysis system, a level of gene in a sample at
a particular time can be represented as a tripartite hyperedge.
By mining tripartite clusters, genes showing common charac-
teristics in samples at common time slots could be extracted
[2].

Finding biclusters with maximum size from a bipartite graph
is proven to be NP-hard, as well as discovering tripartite
clusters with maximum size [3]. Therefore, works in literature
[2], [4], [1] apply heuristics to determine clusters. As a com-
mon strategy, tri-clusters are generated by first constructing
biclusters between each pair of three partitions [4]. Then, each
bicluster is matched with two others in order to construct tri-
clusters. Since this approach is very costly, as an alternative,
first, two partitions are selected, and, then, biclusters of these
bipartite graphs are constructed. After that, by iterating each
one of these biclusters on the third partition, tripartite clusters
can be constructed [2]. However, since the first two partitions
are fixed, this approach has bias against the third partition.
As another approach, tripartite clusters focus on one-to-one
correspondence among the nodes [5], [6]. However, the real-
world data is usually more complex. For example, in a social
tagging system, a group of users may tag multiple sources
with the same set of tags, which corresponds to many-to-many
relationship.

In this paper, we present an effective algorithm which
generates tri-clusters from tripartite hyperedges with positive
signs. Our method has the following properties: 1) A minimum

threshold for positive signed hyperedge density ratio over
all possible hyperedges among tri-partitions of the cluster is
defined, and, it must be satisfied by clusters. 2) A simple
greedy approach is used in order to trim the hyperedges from
tri-clusters with negative signs to increase the positive density
ratio of the cluster. 3) In order to prevent constructing very
small clusters, both negative signed hyperedges and triples
with no connections are also allowed as long as they satisfy
user defined density threshold constraints. 4) Clusters are not
allowed to have overlaps in terms of hyperedges. A simple
heuristic is used to mark hyperedges in order to prevent
hyperedge overlaps among clusters, and fast termination of
the algorithm while searching potentially maximal clusters. 5)
The effectiveness of our approach is shown using a coverage-
based metric.

To the best of our knowledge this is the first work that
attempts to find co-clusters with potentially overlapping nodes
from signed tri-partite graphs. In our work, the clusters
are constructed considering the hyperedges, and thus, it is
possible to generate clusters with common nodes from the
same dimension. A typical problems that motivates this work
is finding co-clusters from sentiments of tweets on issues.
The three dimensions of this problems are people who write
tweets, the selected set of issues (or named entities) and the
chosen sentiment words by the users on these issues. The
sign of the sentiment words also sepresent the sign of the
hyperedge between the three nodes of these dimenstions. It is
very likely that same sentiment words are used by people with
different clusters corresponding to different camps. Similarly
more than one camp may have similar sentiments towards the
same issue as well. Therefore, clusters generated on sentiment
words and on issues which corresponds to positive feelings
of different camps may have many common items. Even on
people dimension, it is likely to generate clusters with several
common people, which may be interpreted as these people
being close to more than one different political camps.

The rest of the paper is organized as follows. Section
II introduces STRICLUSTER algorithm. Section III presents
experiments and section IV concludes the paper.

II. THE STRICLUSTER ALGORITHM

In this paper, we use the notations given in Table 1.
STRICLUSTER algorithm takes a set of hyperedges, Γ as an
input, such that each hyperedge h connects three nodes from
three different types U = (U1, U2, U3). Figure 1 illustrates

DISTRIBUTION A: Distribution approved for public release.

TABLE I
SYMBOL TABLE

Symbol Meaning
Γ set of hyperedges
Γv/iv set of valid/invalid hyperedges
α a tripartite cluster
εp minimum ratio of h+ in a cluster
εn maximum ratio of h− in a cluster
λi minimum size for type i in a cluster
Li number of nodes for type i in a cluster (size of type i)
< set of tripartite clusters
h+/− a hyperedge with positive/negative label
Ui set of nodes for type i
Eir affectiveness value for node r of type i
Uir minimum Eir in Ui, which belongs to node r
Si maximum number of h in which a node from type i can be

hyperedges given as 3D matrix. These hyperedges have either
positive or negative labels which are also represented by green
and red colors respectively in Figure 1. Remaining entries
(white cells) corresponds to node triples without connecting
hyperedges. In the example, nodes are {{A,B}, {a,b,c,d,e},
{1,2,3,4,5}} from types U1, U2, U3 respectively.

A 1 2 3 4 5

a - + -

b - + + +

c + +

d - +

e + - +

B 1 2 3 4 5

a + - +

b + + +

c + + - -

d - + + +

e +

Fig. 1. Input Data

The aim of STRICLUSTER is to find tripartite clusters of
hyperedges with highly positive labels. To be a valid tripartite
cluster, it has to satisfy threshold values for both density and
size. The density threshold values are εp and εn, such that
0 ≤ εp, εn ≤ 1, (εp + εn) ≤ 1. The former one represents the
minimum ratio density of positive hyperedges (h+) among all
possible hyperedges (i.e., there may be L1×L2×L3 number
of possible hyperedges for a cluster with size (L1, L2, L3),
where Li is number of nodes with Ui type in the cluster). If
Cp is the number of h+, then:

εp ≤
Cp

L1 × L2 × L3
, (1)

If εp = 1, generated tripartite clusters become tripartite cliques
as well. εn is the value to control the density of negatively
signed hyperedges (h−). If Cn represnts the number of h−,
then:

εn ≥
Cn

L1 × L2 × L3
, (2)

shows maximum allowed tolerance of h− in a cluster if εn 6=
0.

In order to prevent constructing very small clusters λi is
defined, such that:

Li ≥ λi, (3)

for 1 ≤ i ≤ 3, and this constraint should also be satisfied by
every cluster.

Algorithm 1 STriCluster Algorithm
1: procedure STRICLUSTER(Γ, εp, εn, λ1, λ2, λ3)
2: loop
3: generate α from Γ

4: β = CLEANINVALIDS(Γ,Γiv, α, λ1, λ2, λ3)
5: if not β then
6: return <
7: end if
8: DENSITYCHECKING(α, εp, εn, λ1, λ2, λ3)
9: if α ⇀ formula (3) then . if α satisfies

10: < ← <⊕ α . ⊕ means appending
11: end if
12: for each h in α do . h is a hyperedge in α
13: Γiv ← Γiv ⊕ h
14: end for
15: end loop
16: end procedure

STRICLUSTER algorithm (Algorithm 1) starts by generating
a potential cluster α which contains all hyperedges in Γ. For
the example input data in Figure 1, α initially is equal to the
whole graph. If there are invalid hyperedges (used to prevent
hyperedge overlaps), they will be removed from α (Section
2.B). After invalid hyperedges are removed, if α does not
satisfy the condition (3), (i.e., β is FALSE), the algorithm
terminates.

A 1 2 3 4 5

a - + -

b - + + +

c + +

d - +

e + - +

B 1 2 3 4 5

a + - +

b + + +

c + + - -

d - + + +

e +

Fig. 2. Removing Node (3) From a Potential Cluster

After a potential cluster α is generated, density check
operation is applied on α (Section 2.A). This operation aims
to get α to satisfy conditions (1), (2), and (3). There are three
possible cases that can happen: In the first case (case I), if
conditions (1) or (2) are not satisfied, the least useful node is
removed from α (Figure 2) iteratively, until both constraints
are satisfied. For the example in Figure 1, this step will remove
nodes {{a,d,e}, {3,4,5}} from types U2, U3 respectively from
α. As the second case (case II), if the removal of a node
from α violates the constraint (3), the process stops. In this
case, one h− in α is labeled as invalid. This prevents the
construction of exactly the same potential tripartite cluster
again, because of CLEANINVALIDS operation (Line 4) of the
algorithm. As the third case (case III), α satisfies conditions
(1), (2), and (3). Then, DENSITYCHECKING operation returns

DISTRIBUTION A: Distribution approved for public release.

α (as a reference parameter). In the example, returned cluster
α contains nodes {{A,B}, {b,c}, {1,2}} shown in Figure 3. In
this case, α is added to the cluster list < (Line 7). After that,
all hyperedges in α are labeled as invalid and added into Γiv
which is the list of invalid hyperedges (Line 13). The following
sub-section describes the details of density checking procedure
which handles these operations.

A 1 2

b - +

c +

B 1 2

b + +

c + +

(a) Matrix Representation (b) Cluster Representation

Fig. 3. A Tripartite Cluster Mined in Given Input

A. Density Checking

If given cluster α does not satisfy conditions (1) and (2),
the density checking algorithm searches for nodes to exclude
until α satisfies these constraints. If a node is connected by
high number of h+, it should be less likely to be removed.
We define hyperedge’s usefullness as follows:

val(h) =

{
2 if h has positive label
−1 if h has negative label.

(4)

Then, the effectiveness of a node (r) is determined with the
following formula where Si represents the maximum number
of hyperedges which contains that node in Ui:

Eir =

∑
h∈α

{
val(h) if r ∈ h
0 otherwise

Si
. (5)

Then, for each partition, all nodes are checked to find a node
with minimum effectiveness value:

Uir = min(
∑
r∈Ui

Eir). (6)

At the end of this stage, there will be three Uir values
which are U1a, U2b, U3c corresponding to partitions U1, U2, U3

respectively. Minimum of them will be the effectiveness value
Eix of node x. This node will be the one to be removed from
type i in α in this iteration.

TABLE II
NUMBER OF POSSIBLE HYPEREDGES FOR EACH NODE TYPE

Type Value
S1 L2 × L3

S2 L1 × L3

S3 L1 × L2

For the input in Figure 1, when DENSITYCHECKING opera-
tion applied on α, node 3 will be removed in the first iteration

(Figure 2). Node 3 has the lowest effectiveness value, E33,
compared to others. E33 is obtained as 2+2−1−1−1

2× 5 = 0.1 us-
ing formula (5). In following iterations, nodes {a, d, e, 3, 4, 5}
will be removed from α. Then, DENSITYCHECKING will
reach to case III satisfying all three conditions (1), (2), and (3)
and, then returns α which contains nodes {A,B, b, c, 1, 2}.

If α does not satisfy conditions (1) and (2) and if node
removal results the violation of condition (3), it means that
DENSITYCHECKING is in case II. In this case, the procedure
marks the first h− as invalid.

B. Clean Invalids

Invalid hyperedges include the hyperedges of all tripartite
clusters previously generated as well as all edges marked
as invalid by DENSITYCHECKING. In order to remove a
hyperedge one of the nodes from this hyperedge should be
removed. To do this, CLEANINVALIDS procedure picks a node
to remove and it repeats the same action until no invalid
hyperedge is left in α. While selecting a node, it uses a
heuristic that reduces the cluster size as minimum as possible.

In order to do this, we first determine the number of invalid
hyperedges connected to each node. If the ratio of this number
to Si is high, that node is more likely to be removed. This ratio,
called as θir for node r from type i. Then, we calculate the
effectiveness for all the valid nodes of α, which is called as
Evir. These two values values are combined with the following
formula:

γir =
θir

0.9 + Evir
. (7)

Among all nodes, the one which has highest γ value is the
one to be removed.

As a constraint, if removing node x will result violation
of condition (3), CLEANINVALIDS procedure returns FALSE.
If there is no invalid hyperedge left in α, CLEANINVALIDS
returns TRUE.

For the input data in Figure 1, STRICLUSTER algorithm
finds the cluster in Figure 3 in the first iteration. Then,
hyperedges of this newly generated cluster are labeled as
invalid. In the next iteration, new potential cluster α (Fig-
ure 4-a) is generated from Γ. But α contains some invalid
hyperedges (colored with blue in Figure 4-a). Therefore, α
is passed to CLEANINVALIDS procedure to be cleaned from
invalid hyperedges. First, node c is removed since γ2c is
3÷0.9 = 3.33, is the maximum among γ values. Then, nodes
2 and 1 are selected and removed respectively (Figure 4-b,
4-c). This will result a clean α (Figure 4-d) and the procedure
terminates.

III. EXPERIMENTS

In order to evaluate our algorithm, we have generated data
sets with varying sizes. We have done all the experiments on
MacBook Pro Mid 2015 (Intel i7 2,5 GHz, 16GB memory).

In the first set of experiments, we have fixed h+ and h−
density ratios while changing input sizes. Other parameters
are also fixed as εp = 0.75, εn = 0.10, λi = (2,2,2). In this
test, we have generated 6 sample datasets. Each one contains

DISTRIBUTION A: Distribution approved for public release.

A 1 2 3 4 5

a - + -

b - + + +

c + +

d - +

e + - +

B 1 2 3 4 5

a + - +

b + + +

c + + - -

d - + + +

e +

(a) Removing First Node

A 1 2 3 4 5

a - + -

b - + + +

d - +

e + - +

B 1 2 3 4 5

a + - +

b + + +

d - + + +

e +

B 1 2 3 4 5

a + - +

b + + +

d - + + +

e +

(b) Removing Second Node

A 1 3 4 5

a + -

b - + +

d +

e + - +

B 1 3 4 5

a - +

b + +

d - + +

e +

(c) Removing Third Node

A 3 4 5

a + -

b + +

d +

e - +

B 3 4 5

a - +

b +

d + +

e

(d) A Clean Tripartite Cluster

Fig. 4. A Scenario of CLEANINVALIDS Procedure

positive hyperedges with 60%, negative hyperedges with 20%,
and 20% is empty. (L1 × L2 × L3) values for these samples
are (31.25K, 62.5K, 125K, 250K, 500K, 1M) respectively.
Figure 5 presents the results.

N
um
be
r
of
H
yp
er
ed
ge
s

0K

75K

150K

225K

300K

T
im
e

0 sn

1750 sn

3500 sn

5250 sn

7000 sn

Input Size

31.25K 62.5K 125K 250K 500K 1M

Time Cover

Fig. 5. Test Scenario Depending on Input Size

In the second test, we have generated 5 datasets. In this test,
we have fixed the size as (L1 × L2 × L3) = 125K and we
have varying density ratios for (h+, h−) pairs as {(0.2,0.4),
(0.2,0.2), (0.4,0.2), (0.4,0.4), (0.6,0.2)}. The results are shown
in Figure 6.

N
um
be
r
of
H
yp
er
ed
ge
s

0K

9K

18K

26K

35K

T
im
e

0 sn

256 sn

512 sn

768 sn

1024 sn

Density Ratio Values

0.2-0.4 0.2-0.2 0.4-0.4 0.4-0.2 0.6-0.2

Time Cover

Fig. 6. Test Scenario Depending on Density Ratios in Input Data

The figures show both execution times and the number of
hyperedges included in the constructed clusters. We prefer
most (positive) hyperedges to be included in clusters while

clusters being non-trivial. The results show that we have
achieved very high coverage in that sense, since constructed
clusters include almost as many hyperedges as the half of the
number of positively signed hyperedges.

We have also tested our approach using real data set, which
corresponds to the tweets of users on selected issues. These
tweets are processed in order to determine the sentiments of
users towards these issues. From these tweets, a three dimen-
sional data set is generated. These dimensions are users, issues,
and sentiment words chosen by the users on these issues,
which also represent the sign of the hyperedge connecting
these three items. We have large datasets with 10K users, 45K
sentiment words and 20 different issues. This 3-dimensional
data is very sparse with only 280K non-empty entries. So far,
we have applied our algorithm to a fraction of this dataset
which corresponds to randomly select few percentages of it.
We have obtained fairly large and overlapping clusters in all
three dimensions. Some largest clusters have as many items as
the 10% of the nodes of its corresponding dimensions, even
for user or sentiment words dimensions.

IV. CONCLUSION

In this paper, we have proposed a new method, called
STRICLUSTER, to mine tripartite clusters of positively labeled
hyperedges. The input data is composed of three dimensions.
Each hyperedge connects three nodes from each dimension.
Clusters are generated depending on density ratio of positively
(minimum) and negatively (maximum) labeled hyperedges.

We have showed the effectiveness of our approach using
both syntetic and real data sets.

ACKNOWLEDGMENT

This research was supported partially by USAF Grant
FA9550-15-1-0004.

REFERENCES

[1] C. Lu, X. Chen, and E. Park, “Exploit the tripartite network of social
tagging for web clustering,” in Proceedings of the 18th ACM conference
on Information and knowledge management. ACM, 2009, pp. 1545–
1548.

[2] L. Zhao and M. J. Zaki, “Tricluster: an effective algorithm for mining
coherent clusters in 3d microarray data,” in Proceedings of the 2005 ACM
SIGMOD international conference on Management of data. ACM, 2005,
pp. 694–705.

[3] M. Dawande, P. Keskinocak, J. M. Swaminathan, and S. Tayur, “On
bipartite and multipartite clique problems,” Journal of Algorithms, vol. 41,
no. 2, pp. 388–403, 2001.

[4] L. Zhu, A. Galstyan, J. Cheng, and K. Lerman, “Tripartite graph clus-
tering for dynamic sentiment analysis on social media,” in Proceedings
of the 2014 ACM SIGMOD international conference on Management of
data. ACM, 2014, pp. 1531–1542.

[5] X. Liu and T. Murata, “Detecting communities in tripartite hypergraphs,”
arXiv preprint arXiv:1011.1043, 2010.

[6] Y.-R. Lin, J. Sun, P. Castro, R. Konuru, H. Sundaram, and A. Kelliher,
“Metafac: community discovery via relational hypergraph factorization,”
in Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2009, pp. 527–536.

DISTRIBUTION A: Distribution approved for public release.

A Dynamic Modularity Based Community Detection
Algorithm for Large-scale Networks: DSLM

Riza Aktunc and Ismail Hakki Toroslu
Computer Engineering Department
Middle East Technical University

Ankara, Turkey 06530
Email: {riza.aktunc, toroslu}@ceng.metu.edu.tr

Mert Ozer and Hasan Davulcu
School of Computing, Informatics,

Decision Systems Engineering
Arizona State University

Tempe, USA 85287
Email: {mozer, hdavulcu}@asu.edu

Abstract—In this work, a new fast dynamic community
detection algorithm for large scale networks is presented. Most
of the previous community detection algorithms are designed
for static networks. However, large scale social networks are
dynamic and evolve frequently over time. To quickly detect com-
munities in dynamic large scale networks, we proposed dynamic
modularity optimizer framework (DMO) that is constructed
by modifying well-known static modularity based community
detection algorithm. The proposed framework is tested using
several different datasets. According to our results, community
detection algorithms in the proposed framework perform better
than static algorithms when large scale dynamic networks are
considered.

I. INTRODUCTION

In the last decade, the notion of social networking is
emerged and produced very large graphs that consist of the
information of their users. These graphs generally consist of
the nodes that represent the users; and edges that represent the
relations among users. The nodes in these graphs generally
tend to get together and construct communities of their own.
Thus, it can be stated that social networks commonly have
a community structure. These networks can be divided into
groups of nodes that have denser connections inside the group;
but fewer connections to the outside of the group. For example,
in a GSM network, a group of users who call each other more
densely than they call other users may construct their own
community. In this case, the nodes represent the users and the
edges represent the calls that users made. The detection of
communities in these large networks is a problem in this area;
therefore a lot of community detection algorithms such as [1],
[2], [3], [4], [5], [6], [7], [8], [9] proposed in the literature.
Almost all these community detection algorithms are static
and designed for static networks.

However, most of the social networks are not static because
they evolve in many ways. They may gain or lose users that
are represented as nodes in the graphs over time. The users of
these social networks may lose contact from each other or there
can be new connections among users. In other words, some
edges in the graphs may be removed or new edges may be
added to the graph over time. All these processes may happen
in a very small amount of time in a social network if it has
a lot of active users. This kind of a social network may be
called as highly dynamic. For example, popular social sites
such as Facebook, Twitter, LinkedIn and so on have highly
dynamic social networks. Moreover, most GSM networks have

millions of users and hundreds of calls made in seconds;
therefore, they can also be labeled as highly dynamic networks.
Addition or deletion of an edge or a node from a network
which has millions of edges might seem insignificant; but when
this additions or deletions of an edge or a node happen very
frequently, they begin to change the community structure of
the whole network and become very important. This change in
the community structure raises the need of re-identification of
communities in the network. This need arises frequently and
creates a new problem in the community detection research
area. This new problem requires somehow fast detection of
communities in dynamic networks.

The first solution that comes to mind for community
detection in large dynamic networks problem is the execution
of static community detection algorithms already defined in
the literature all over again to detect the new community
structure whenever the network is modified. Nevertheless, this
solution takes too much time in every modification of the large
networks since it runs the community detection algorithm from
scratch each time. A much efficient and less time consuming
solution is to run the community detection algorithms not
from scratch but from a point in the history of the network
by storing and using the historical results of executions of
the algorithms whenever network is evolved. In other words,
updating previously discovered community structure instead of
trying to find communities from scratch each time the network
evolves consumes much less time and thus much efficient. This
solution method for the problem of detecting communities in
large dynamic networks is the main focus of our study in this
paper.

In this paper, we modified the smart local moving (SLM)
algorithm defined by Waltman & Van Eck [9] so that it would
detect the communities in rapidly growing large networks dy-
namically and efficiently. As a result, we propose the dynamic
SLM (dSLM) algorithm that dynamically detects communities
in large networks by optimizing modularity and using its
own historical results. We tested our proposed approach on
several different datasets. We demonstrated the effects of our
contribution to the SLM algorithm in two ways. One of
them is the change in modularity value which determines
the quality of the community structure of the network. The
other one is the change in running time that determines the
pace of the algorithm. The latter is more significant than the
former because the community structure of the network must
be quickly identified at the given timestamp before the next

DISTRIBUTION A: Distribution approved for public release.

timestamp is reached. We realized that dSLM improved SLM
by decreasing its running time incredibly. Moreover, there
are some experiments where modularity value increases while
running time decreases.

The rest of the paper is organized as follows. Section II
introduces previous researches done in the area. Section III
explains the modularity. The proposed solution for dynamic
community detection in large networks called as dSLM and
its static version SLM are described in Section IV. In Section
V, the results of the experiments of SLM and dSLM are
demonstrated. Finally, the paper is concluded in Section VI.

II. RELATED WORK

The idea of modularity-based community detection is to
try to assign each vertex of the given network to a community
such that it maximizes the modularity value of the network.
Optimizing modularity is an NP-hard problem. [10] Exact
algorithms that maximize modularity such as [11], [10], [12]
can be used only for small networks.

For large-scale modularity optimization, heuristic algo-
rithms are proposed. We basically focus on three well known
algorithms, namely; CNM, Louvain and SLM. The first one is
Clauset et al.’s [13] CNM algorithm. It is a greedy modularity
maximization algorithm that searches for best community
assignment for each node. The second one is referred as
Louvain algorithm and proposed by Blondel et al. [7] in 2008.
By considering each community as a single node, it further
searches for new community merges after the local optimum
satisfied using CNM. The last one is called as Smart Local
Moving (SLM) algorithm that is proposed by Waltman and
Jan van Eck in 2013. [9] SLM algorithm is explained in detail
in chapter III.

Due to the dynamic features of many social networks
[14], the need for detecting communities dynamically in the
large networks is emerged in the latest years. There have
been many community detection algorithms proposed in the
literature to fulfill this need. Xu et al. divides the current
research on community evolution into the following categories.
Parameter estimation methods and probabilistic models have
been proposed in the literature. [15], [16] A methodology
that tries to find an optimal cluster sequence by detecting
a cluster structure at each timestamp that optimizes the in-
cremental quality can be classified as evolutionary clustering.
[17], [18] Furthermore, tracking algorithms based on similarity
comparison have also been studied in order to be able to
describe the change of communities on the time axis. [19], [20]
Apart from these algorithms that are focused on the evolution
procedures of communities, community detection in dynamic
social networks aims to detect the optimal community structure
at each timestamp. For this purpose, incremental versions of
both CNM and Louvain algorithm are proposed by Dinh et
al.[21] and Aynaud et al. [22]. To the best of our knowledge,
this is the first work considering the incremental version of
Smart Local Moving algorithm in literature. Our algorithm
can be classified as the last mentioned category which aims
to detect optimal community structure at each timestamp with
minimum running time.

III. MODULARITY

Modularity is a function that is used for measuring the
quality of the results of community detection algorithms.
If the modularity value of a partitioned network is high,
it means that the network is partitioned well. Apart from
quality measurement, modularity is used as the basis of some
community detection algorithms. These algorithms try to detect
communities (partitions) in a network by trying to maximize
the modularity value of the network. Thus, modularity is
a function that is used for both quality measurement and
community detection.

Modularity is based on the idea that a randomly created
graph is not expected to have community structure, so com-
paring the graph at hand with a randomly created graph would
reveal the possible community structures in the graph at hand.
This comparison is done through comparing the actual density
of edges in a subgraph and the expected edge density in the
subgraph if the edges in the subgraph were created randomly.
This expected edge density depends on how random the edges
created. This dependency is tied to a rule that defines how
to create the randomness and called as null model. A null
model is a copy of an original graph and it keeps some
of this original graphs structural properties but not reflects
its community structure. There can be multiple null models
for a graph such that each of them keeps different structural
properties of the original graph. Using different null models for
the calculation of the modularity leads to different modularity
calculation methods and values. The most common null model
that is used for modularity calculation is the one that preserves
the degree of each vertex of the original graph. With this null
model, modularity is calculated as the fraction of edges that
fall in the given communities minus such fraction in the null
model. [23], [24] The formula of modularity can be written as
in Equation 1

Q =
1

2m

∑
ij

(Aij − Pij)δ(Ci, Cj) (1)

m represents the total number of edges of the graph. Sum
iterates over all vertices denoted as i and j. Aij is the number
of edges between vertex i and vertex j in the original graph.
Pij is the expected number of edges between vertex i and
vertex j in the null model. The δ function results as 1 if the
vertex i and vertex j are in the same community (Ci = Cj),
0 otherwise. The null model can be created by cutting the
edges between vertices; thus, creating stubs (half edges) and
rewiring them to random vertices. Thus, it obeys the rule of
keeping degrees of vertices unchanged. Cutting edges into half,
creates m∗2 = 2m stubs. In the null model, a vertex could be
attached to any other vertex of the graph and the probability
that vertices i and j, with degrees ki and kj , are connected,
can be calculated. The probability pi to pick a ramdom stub
connection for vertex i is ki

2m , as there are ki stubs of i out of a
total of 2m stubs. The probability of vertex i and vertex j being
connected is pipj , since stubs are connected independently
of each other. Since there are 2m stubs, there are 2mpipj
expected number of edges between vertex i and vertex j. [24]
This yields to equation 2

DISTRIBUTION A: Distribution approved for public release.

Pij = 2mpipj = 2m
kikj
4m2

=
kikj
2m

(2)

By placing equation 2 into equation 1, modularity function
is presented as in equation 3.

Q =
1

2m

∑
ij

(Aij −
kikj
2m

)δ(Ci, Cj) (3)

The resulting values of this modularity function lie in the
range

[−1
2 , 1

)
. It would be positive if the number of edges

within subgraphs is more than the number of expected edges
in the subgraphs of null model. Higher values of the modularity
function mean better community structures. [9]

This modularity function also applies to weighted net-
works. [9], [25] The modularity function for the weighted
graphs can be calculated as in equation 4.

Qw =
1

2W

∑
ij

(Wij −
sisj
2W

)δ(Ci, Cj) (4)

There are three differences. The first difference is that in
the case of a weighted network Wij , instead of Aij , may take
not just 0 or 1 but any non-negative value that represents the
weight of the edge. The second one is that instead of m, which
is total number of edges, W , which is the sum of the weights
of all edges is used in the equation. The last one is that si and
sj which represents the sum of the weights of edges adjacent
to vertex i and vertex j respectively is used in the equation
instead of ki and kj which means the degree of vertex i and
vertex j respectively. [24]

Apart from weighted networks, the modularity function
defined in 3 has been extended in order to be also applicable
to directed networks. [26], [27] When the edges are directed,
stubs will also be directed and it changes the possibility of
rewiring stubs and connecting edges. The calculation of this
possibility in the directed case depends on the in- and out-
degrees of the end vertices. For instance, there are two vertices
A and B. A has a high in-degree and low out-degree. B has a
low in-degree and high out-degree. Thus, in the null model of
modularity, an edge will be much more likely to point from
B to A than from A to B. [24] Therefore, the expression of
modularity for directed graphs can be written as in equation 5

Qd =
1

m

∑
ij

(Aij −
kouti kinj
m

)δ(Ci, Cj) (5)

The sum of the in-degrees (out-degrees) equals m not
2m as in the case of undirected graph. Therefore, the factor
2 in the denominator of the first and second summand has
been dropped. In order to get the modularity function to be
applicable to directed weighted networks, the equations 4 and
5 can be merged; thus, equation 6 can be constructed as the
most general expression of modularity. [24]

Qdw =
1

W

∑
ij

(Wij −
souti sinj
W

)δ(Ci, Cj) (6)

There have been a few proposals of modified version of the
modularity functions defined above as alternative modularity
functions. These modified, extended versions for instance offer
a resolution parameter that makes it possible to customize
the granularity level at which communities are detected and
to mitigate the resolution limit problem defined by Fortunato
and Barthlemy [28]. [29] Moreover, there are modularity
functions with a somewhat modified mathematical structure
in the literature such as Reichardt & Bornholdt, 2006; Traag,
Van Dooren, & Nesterov, 2011; Waltman, Van Eck, & Noyons,
2010. [9], [28], [30], [31]

IV. SLM AND DSLM ALGORITHMS

A. SLM Algorithm

SLM is a community detection algorithm that is evolved
from Louvain algorithm. Louvain algorithm is a large scale
modularity based community detection algorithm that is pro-
posed by Blondel et al in 2008. [7] The quality of detected
communities by Louvain algorithm is measured by the method
called modularity. The modularity of a network is a value
that is between -1 and 1. This value presents the density of
links inside communities over the density of links between
communities. [23] When this value is close to 1, then the
measured network can be called as modular network. In
the case of weighted networks, modularity function can take
weights into consideration and measure the quality of detected
communities. Louvain algorithm uses modularity function as
not only a measurement function but also an objective function
to optimize.

Louvain algorithm is a recursive algorithm which has two
steps running in each recursive call. Before the recursion starts,
the algorithm assigns a different community to each node of
the network whose communities are going to be detected.
Therefore, in the initial case each node has its own community.
In each recursive call the following steps are run:

1) It runs a local moving heuristic in order to obtain
an improved community structure. This heuristic ba-
sically moves each node from its own community
to its neighbors’ community and run the modularity
function. If the result of the modularity function,
which means quality, increased, the node would be
kept in the new community; else, the node would be
moved back to its previous community. This process
is applied to each node for its each neighbor in
random order and thereby heuristically the quality is
tried to be increased.

2) The algorithm constructs a reduced network whose
nodes are the communities that are evolved in the
first step. Moreover, the weights of the edges in this
reduced network are given by the sum of weights
of the links between the nodes which reside in
the corresponding two communities. Links between
nodes of the same community in the old network are
presented as self-links for the node that represents
that community in the new reduced network. When
this reduced network is fully constructed, then algo-
rithm calls itself recursively and first step is applied
to this reduced network.

DISTRIBUTION A: Distribution approved for public release.

The algorithm keeps recursing until no further improvement
in modularity is measured and thereby there are no changes in
the community structure. [7]

Louvain algorithm detects community structures whose
modularity values are locally optimal with respect to commu-
nity merging, but not necessarily locally optimal with respect
to individual node movements. Since the Louvain algorithm
applies local moving heuristic in the beginning of its recursive
block and merges communities by reducing network in the
end of its recursive block, calling it iteratively ensures that
the resulting community structure cannot be improved further
either by merging communities or by moving individual nodes
from one community to another. Like the iterative variant
of these algorithms SLM algorithm constructs community
structures that are locally optimal with respect to both in-
dividual node movements and community merging. Besides
these capabilities, SLM also tries to optimize modularity by
splitting up communities and moving sets of nodes between
communities. This is done by changing the way that local
moving heuristic and network reduction runs.[9]

Louvain algorithm runs local moving heuristic algorithm
on the present network as the first step, and then construct
the reduced network as the second step. However, the SLM
algorithm changes the reduced network construction step by
applying following processes:

1) It iterates over all communities that are formed by the
first step. It copies each community and constructs a
subnetwork that contains only the specific commu-
nity’s nodes.

2) It then runs the local moving heuristic algorithm on
each subnetwork after assigning each node in the
subnetwork to its own singleton community.

3) After local moving heuristic constructs a community
structure for each subnetwork, the SLM algorithm
creates the reduced network whose nodes are the
communities detected in subnetworks. The SLM al-
gorithm initially defines a community for each sub-
network. Then, it assigns each node to the community
that is defined for the node’s subnetwork. Thus,
there is a community defined for each subnetwork
and detected communities in subnetworks are placed
under these defined communities as nodes in the
reduced network.

This is the way that the SLM algorithm constructs the reduced
network. After these processes, the SLM algorithm gives the
reduced network to the recursive call as input and all the
processes starts again for the reduced network. The recursion
continues until a network is constructed that cannot be reduced
further. To sum up, the SLM algorithm has more freedom in
trying to optimize the modularity by having the ability to move
sets of nodes between communities which cannot be done by
Louvain algorithm. [9]

B. Dynamic Smart Local Moving Algorithm

SLM algorithm initially assigns each node to a different
community, so each node has its own singleton community. In
order convert SLM to dynamic form, we replace that operation
with a newly defined procedure, called initialize communities
which is given in Figure 1. This procedure works as follows:

Procedure: Initialize Communities
Input: Old Communities, Old Network, New Network
Output: New Communities

1: j = 0
2: for i = 0→ Old Communities.size do
3: New Communities = ReadCommunitiesF ile()
4: end for
5: Delta Network = New Network −Old Network
6: for j = i→ Delta Network.size do
7: new communities[j] = Delta Network[j − i]
8: end for

Fig. 1. Initialize Communities Procedure

• Existing communities are read from file as New Com-
munities.

• If exists, the extensions to the network has been
determined.

• For each new node, singleton new communities are
constructed and added to New Communities.

The effects of other changes in the network, such as adding
new edges and deletions of nodes and edges, are handled
while executing standard SLM procedure. The new dSLM is
available at https://github.com/mertozer/dSLM.

Since after some iterations, the increase of modularity
drops to very small values, it might make sense to stop the
iterations using either the amount of changes or by setting
a target modularity value. We have implemented the second
option, which is called dSLMEVS in the experiments. We
have made the tests by setting the modularity values as the one
obtained for SLM in order to be able to observe the differences
in the execution times for exactly the same modularity values.

C. Running Example

Fig. 2. Network in time t (analyzed by SLM)

Let the sample network depicted in Figure 2 to be a
network that changes in time and needs to be analyzed
continuously in each time frame. So, the network is analyzed
and communities are detected in time t. Figure 2 presents the

DISTRIBUTION A: Distribution approved for public release.

beginning and end states of the community structure of the
network analyzed by SLM algorithm in time t. Solid rectangles
present the initial community structure; whereas the colors
of the nodes (and dashed rectangles) present the resulting
community structure. From time t to time t+1, a node which
is numbered as 10 and an edge between this new node and
the node which is numbered as 9 are added to the network.
This evolved network in time t+1 can be seen in Figure 3 and
Figure 4. Figure 3 presents the community detection process

Fig. 3. Network in time t+1 (analyzed by SLM)

of the network in time t+1 performed by SLM algorithm in
the same way as Figure 2. As the difference of Figure 2
and Figure 3, a new node and a new edge are only seen in
Figure 3. Since they both demonstrate the SLM process, the
initial communities are singleton. Figure 4 demonstrates the

Fig. 4. Network in time t+1 (analyzed by dSLM)

dSLM process of the network in time t+1. In this process, the
community structure of the network in time t is used as the
initial states of communities which can be seen as rectangles
in Figure 4. Both SLM and dSLM algorithms place the newly
added node in blue community. SLM constructs the community

structure from scratch by trying and finding node movements
that maximize the modularity of the network. However, dSLM
needs to try only one node movement which is to move newly
added node from its singleton community to its only neighbor
(blue) community. Since it appears to increase the modularity
of the network, dSLM places the new node to blue community
and that is it. Because the initial community structure is known
to be the one that maximizes the modularity of the network,
there is no other node movement trying that can increase
modularity. By this way, the dSLM runs faster than SLM .
This run time difference between SLM and dSLM gets much
greater while the network size increases.

V. EXPERIMENTS & RESULTS

We evaluate our proposed approach dSLM on five real-
world datasets which are the arXiv citation dataset, the GSM
calls dataset, Google Plus, Twitter and Youtube user network
datasets..

The arXiv1 citation dataset is published in the KDD Cup
2003. It contains approximately 29,000 papers and their ci-
tation graph. In this graph, each vertex represents a paper
and each edge represents the citation between its connected
vertexes. There are around 350,000 edges which represent
citations in this graph.

We have used call detail record (CDR) dataset, obtained
from one of the largest GSM operators in Turkey. This
produced GSM calls dataset contains 12,521,352 nodes and
44,768,912 edges. These two datasets are used for edge
deletion and addition experiments purposes.

The Google Plus and Twitter user network data is collected
by Stanford Network Analysis Project2. The Google Plus
data consists of 107,614 nodes and 13,673,453 edges. The
Twitter data consists of 81,306 nodes and 1,768,149 edges.
The Youtube user network data is provided by Mislove et
al. [32]. It consists of 1,134,890 nodes and 2,987,624 edges.
The users of the Youtube are the nodes, and the friendships
are represented by edges. We used these 3 datasets for node
deletion and addition experiments purposes.

In the first set of experiments we have assumed the dynamic
feature is in the form of edge insertions and deletions. Table I
and II gives the results for these experiements. In the second
set, on the other hand, node insertions and deletions represent
the dynamic feature. Table III and IV presents the results for
these experiments.

TABLE I. THE EFFECT OF DSLM FOR EDGE INSERTIONS

Algorithm Dataset Base (#
of Edges)

of
Edges
Added

Change in Mod-
ularity Value

Decrease
in Running
Time

dSLM arxiv 300,000 1,000 0.02% increased 26%
dSLM arxiv 300,000 10,000 0.15% increased 26%
dSLM GSM 10,000,000 1,000 no change 27%
dSLM GSM 10,000,000 10,000 no change 29%
dSLM GSM 10,000,000 100,000 no change 20%
dSLM GSM 10,000,000 1,000,000 0.02% increased 17%
dSLMEVS GSM 10,000,000 1,000 no change 91%
dSLMEVS GSM 10,000,000 10,000 no change 63%
dSLMEVS GSM 10,000,000 100,000 no change 64%
dSLMEVS GSM 10,000,000 1,000,000 no change 80%

1http://www.cs.cornell.edu/projects/kddcup/datasets.html
2http://snap.stanford.edu/data

DISTRIBUTION A: Distribution approved for public release.

TABLE II. THE EFFECT OF DSLM FOR EDGE DELETIONS

Algorithm Dataset Base (#
of Edges)

of
Edges
Deleted

Change in Mod-
ularity Value

Decrease
in Running
Time

dSLM arxiv 300,000 1,000 0.08% increased 32%
dSLM arxiv 300,000 10,000 0.04% increased 7%
dSLM GSM 10,000,000 1,000 no change 38%
dSLM GSM 10,000,000 10,000 no change 27%
dSLM GSM 10,000,000 100,000 0.01% increased 24%
dSLM GSM 10,000,000 1,000,000 0.01% increased 16%
dSLMEVS GSM 10,000,000 1,000 no change 92%
dSLMEVS GSM 10,000,000 10,000 no change 61%
dSLMEVS GSM 10,000,000 100,000 no change 91%
dSLMEVS GSM 10,000,000 1,000,000 no change 80%

TABLE III. THE EFFECT OF DSLM FOR NODE INSERTIONS

Algorithm Dataset Base (#
of Nodes)

of
Nodes
Added

Change in Mod-
ularity Value

Decrease
in Running
Time

dSLM Twitter 81,296 10 no change 67%
dSLM Twitter 81,206 100 no change 90%
dSLM Twitter 80,306 1,000 no change 89%
dSLM Twitter 71,306 10,000 0.04% increased 70%
dSLM GPlus 107,604 10 0.02% decreased 72%
dSLM GPlus 107,514 100 no change 53%
dSLM GPlus 106,614 1,000 no change 54%
dSLM GPlus 97,614 10,000 0.97% decreased 11%
dSLM Youtube 1157728 100 1.77% increased 73%
dSLM Youtube 1156828 1000 1.36% increased 65%
dSLM Youtube 1147828 10000 0.03% increased 77%
dSLM Youtube 1057828 100000 0.12% increased 41%
dSLMEVS Twitter 81,296 10 no change 82%
dSLMEVS Twitter 81,206 100 no change 90%
dSLMEVS Twitter 80,306 1,000 no change 79%
dSLMEVS Twitter 71,306 10,000 no change 75%
dSLMEVS GPlus 107,604 10 0.02% decreased 70%
dSLMEVS GPlus 107,514 100 no change 83%
dSLMEVS GPlus 106,614 1,000 no change 83%
dSLMEVS GPlus 97,614 10,000 0.04% increased 30%
dSLMEVS Youtube 1,157,728 100 0.04% increased 92%
dSLMEVS Youtube 1,156,828 1000 0.13% increased 99%
dSLMEVS Youtube 1,147,828 10000 0.08% increased 98%
dSLMEVS Youtube 1,057,828 100000 0.15% increased 98%

TABLE IV. THE EFFECT OF DSLM FOR NODE DELETIONS

Algorithm Dataset Base (#
of Nodes)

of
Nodes
Added

Change in Mod-
ularity Value

Decrease
in Running
Time

dSLM Twitter 81,306 10 0.06% increased 85%
dSLM Twitter 81,306 100 no change 79%
dSLM Twitter 81,306 1,000 0.02% increased 87%
dSLM Twitter 81,306 10,000 0.03% decreased 28%
dSLM GPlus 107,614 10 0.35% decreased 90%
dSLM GPlus 107,614 100 0.37% decreased 78%
dSLM GPlus 107,614 1,000 0.35% decreased 75%
dSLM GPlus 107,614 10,000 0.35% decreased 73%
dSLM Youtube 1,157,828 100 0.28% decreased 88%
dSLM Youtube 1,157,828 1000 0.03% decreased 87%
dSLM Youtube 1,157,828 10000 0.21% decreased 73%
dSLM Youtube 1,157,828 100000 0.09% decreased 73%
dSLMEVS Twitter 81,306 10 0.05% increased 92%
dSLMEVS Twitter 81,306 100 0.02% decreased 81%
dSLMEVS Twitter 81,306 1,000 0.02% increased 87%
dSLMEVS Twitter 81,306 10,000 0.05% decreased 28%
dSLMEVS GPlus 107,614 10 0.36% decreased 90%
dSLMEVS GPlus 107,614 100 0.35% decreased 78%
dSLMEVS GPlus 107,614 1,000 0.36% decreased 84%
dSLMEVS GPlus 107,614 10,000 0.34% decreased 69%
dSLMEVS Youtube 1,157,828 100 0.29% decreased 99%
dSLMEVS Youtube 1,157,828 1000 0.01% decreased 99%
dSLMEVS Youtube 1,157,828 10000 0.19% decreased 99%
dSLMEVS Youtube 1,157,828 100000 0.07% decreased 98%

In general, dSLM does not decrease the number iterations
of convergence of SLM, however, it decreases the number
of node movements needed in each iteration of SLM. This
indicates that each iteration of dSLM runs faster than each
iteration of SLM. Therefore, overall running time of dSLM is
less than SLM’s overall execution time. The overall results can
be seen in Table I, II, III and IV.

In order to be able to decrease the overall running time
of dSLM algorithm even more, we added another parameter
called expected modularity value that enables the algorithm
stop when it is reached. We named this kind of new algorithm
as dSLMEVS and made same experiments on it with this
new parameter set to the modularity value resulted from SLM
algorithm. By this new algorithm and parameter, we aimed to
decrease running time as much as possible while keeping the
modularity value unchanged or increased. We reached our aim
and decreased running time drastically and keep modularity
value unchanged or increased as seen in all of the tables.

VI. CONCLUSION

Waltman & Van Eck proposed and implemented the SLM
algorithm in order to detect communities in large networks.
We extended their implementation to define the community
structure in a dynamic rather than static way. We made use of
the past calculation results of the SLM algorithm in order to
calculate the current networks community structure. This usage
is the main extension and contribution to the SLM algorithm.
In the basics, it is what extends the SLM to be dSLM.

To sum up, we extended SLM to be incremental and
dynamic by using the historical results of community detection
algorithms for the initial community assignments of the nodes.
Thus, the number of node movement actions tried to maximize
the modularity value is decreased. This led to decrease in
running time of the algorithms. Moreover, it can lead to
decrease in number of iterations to converge. Thus, if the
algorithms run with a constant number of iterations parameter,
the modularity value may result as increased.

ACKNOWLEDGMENT

This research was supported partially by USAF Grant
FA9550-15-1-0004.

REFERENCES

[1] A. Clauset, M. Newman, and C. Moore, “Finding community
structure in very large networks,” Physical Review E, vol. 70,
p. 066111, 2004. [Online]. Available: http://www.citebase.org/cgi-
bin/citations?id=oai:arXiv.org:cond-mat/0408187

[2] R. Guimera, M. Sales-Pardo, and L. Amaral, “Modularity from fluctu-
ations in random graphs and complex networks,” Physical Review E,
vol. 70, no. 2, p. 025101, 2004.

[3] J. Duch and A. Arenas, “Community detection in
complex networks using extremal optimization,” Physical
Review E, vol. 72, p. 027104, 2005. [Online]. Available:
http://www.citebase.org/abstract?id=oai:arXiv.org:cond-mat/0501368

[4] M. Newman, “Finding community structure in networks using the
eigenvectors of matrices,” Physical Review E, vol. 74, no. 3, p. 36104,
2006.

[5] S. Lehmann and L. K. Hansen, “Deterministic modularity optimization,”
The European Physical Journal B, vol. 60, no. 1, pp. 83–88, 2007.
[Online]. Available: http://dx.doi.org/10.1140/epjb/e2007-00313-2

DISTRIBUTION A: Distribution approved for public release.

[6] J. Lee, S. P. Gross, and J. Lee, “Mod-csa: Modularity optimization by
conformational space annealing,” CoRR, vol. abs/1202.5398, 2012.

[7] V. Blondel, J. Guillaume, R. Lambiotte, and E. Mech, “Fast unfolding
of communities in large networks,” J. Stat. Mech, p. P10008, 2008.

[8] R. Rotta and A. Noack, “Multilevel local search algorithms for modu-
larity clustering.” ACM Journal of Experimental Algorithmics, vol. 16,
2011.

[9] L. Waltman and N. J. van Eck, “A smart local moving algorithm
for large-scale modularity-based community detection.” CoRR, vol.
abs/1308.6604, 2013.

[10] U. Brandes, D. Delling, M. Gaertler, R. Goerke, M. Hoefer,
Z. Nikoloski, and D. Wagner, “On modularity clustering,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 20, no. 2, pp. 172–
188, 2008.

[11] D. Aloise, S. Cafieri, G. Caporossi, P. Hansen, L. Liberti, and S. Perron,
“Column generation algorithms for exact modularity maximization in
networks,” Physical Review E, vol. 82, no. 4, article, pp. –, jan 2010.

[12] G. Xu, S. Tsoka, and L. G. Papageorgiou, “Finding community
structures in complex networks using mixed integer optimisation,” The
European Physical Journal B, vol. 60, no. 2, pp. 231–239, 2007.
[Online]. Available: http://dx.doi.org/10.1140/epjb/e2007-00331-0

[13] A. Clauset, M. E. J. Newman, and C. Moore, “Finding
community structure in very large networks,” Phys. Rev.
E, vol. 70, p. 066111, Dec 2004. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevE.70.066111

[14] P. Holme and J. Saramäki, “Temporal networks,” Physics Reports, vol.
519, no. 3, pp. 97–125, 2012.

[15] T. Yang, Y. Chi, S. Zhu, Y. Gong, and R. Jin, “Detecting communities
and their evolutions in dynamic social networks - a bayesian approach.”
Machine Learning, vol. 82, no. 2, pp. 157–189, 2011.

[16] X. Tang and C. C. Yang, “Dynamic community detection with temporal
dirichlet process.” in SocialCom/PASSAT. IEEE, 2011, pp. 603–608.

[17] D. Chakrabarti, R. Kumar, and A. Tomkins, “Evolutionary clustering,”
in Proceedings of the 12th ACM SIGKDD international conference
on Knowledge discovery and data mining, ser. KDD ’06. New
York, NY, USA: ACM, 2006, pp. 554–560. [Online]. Available:
http://doi.acm.org/10.1145/1150402.1150467

[18] M.-S. Kim and J. Han, “A particle-and-density based evolutionary
clustering method for dynamic networks.” PVLDB, vol. 2, no. 1, pp.
622–633, 2009.

[19] D. Greene, D. Doyle, and P. Cunningham, “Tracking the evolution of
communities in dynamic social networks.” in ASONAM, N. Memon and
R. Alhajj, Eds. IEEE Computer Society, 2010, pp. 176–183.

[20] P. Brodka, S. Saganowski, and P. Kazienko, “Group evolution discovery
in social networks,” in Advances in Social Networks Analysis and
Mining (ASONAM), 2011 International Conference on, 2011, pp. 247–
253.

[21] T. Dinh, Y. Xuan, and M. Thai, “Towards social-aware routing in
dynamic communication networks,” in Performance Computing and
Communications Conference (IPCCC), 2009 IEEE 28th International,
Dec 2009, pp. 161–168.

[22] T. Aynaud and J.-L. Guillaume, “Static community detection algorithms
for evolving networks,” in Modeling and Optimization in Mobile, Ad
Hoc and Wireless Networks (WiOpt), 2010 Proceedings of the 8th
International Symposium on, May 2010, pp. 513–519.

[23] M. Newman, “Modularity and community structure in networks,” Pro-
ceedings of the National Academy of Sciences, vol. 103, no. 23, pp.
8577–8582, 2006.

[24] S. Fortunato, “Community detection in graphs,” Physics Reports, vol.
486, pp. 75–174, 2010.

[25] M. E. J. Newman, “Analysis of weighted networks,” Phys. Rev.
E, vol. 70, no. 5, p. 056131, Nov. 2004. [Online]. Available:
http://pre.aps.org/abstract/PRE/v70/i5/e056131

[26] A. Arenas, J. Duch, A. Fernandez, and S. Gmez, “Size re-
duction of complex networks preserving modularity,” CoRR, vol.
abs/physics/0702015, 2007.

[27] E. A. Leicht and M. E. J. Newman, “Community structure in directed
networks,” Phys. Rev. Lett., vol. 100, no. 11, p. 118703, Mar. 2008.
[Online]. Available: http://prl.aps.org/abstract/PRL/v100/i11/e118703

[28] S. Fortunato and M. Barthlemy, “Resolution limit in community detec-
tion,” Proceedings of the National Acadamy of Sciences of the United
States of America (PNAS), vol. 104, no. 1, pp. 36–41, 2007.

[29] J. Reichardt and S. Bornholdt, “Statistical mechanics of community
detection,” Arxiv preprint cond-mat/0603718, 2006.

[30] V. A. Traag, P. Van Dooren, and Y. Nesterov, “Narrow scope for
resolution-limit-free community detection,” Physical Review E, vol. 84,
no. 1, p. 016114, 2011.

[31] L. Waltman, N. J. van Eck, and E. C. Noyons, “A unified
approach to mapping and clustering of bibliometric networks,”
Journal of Informetrics, vol. 4, no. 4, pp. 629–635, 2010. [On-
line]. Available: http://www.sciencedirect.com/science/article/B83WV-
50RFN28-1/2/809f89176e8076cac3862b6589bc6fd5

[32] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhat-
tacharjee, “Measurement and Analysis of Online Social Networks,” in
Proceedings of the 5th ACM/Usenix Internet Measurement Conference
(IMC’07), San Diego, CA, October 2007.

DISTRIBUTION A: Distribution approved for public release.

A Network-Based Model
for Predicting Hashtag Breakouts in Twitter

Sultan Alzahrani1, Saud Alashri1, Anvesh Reddy Koppela1,
Hasan Davulcu1(B), and Ismail Toroslu2

1 School of Computing, Informatics and Decision Systems Engineering,
Arizona State University, Tempe, AZ 85287, USA

{ssalzahr,salashri,akoppela,hdavulcu}@asu.edu
2 Department of Computer Engineering, Middle East Technical University, Ankara,

Turkey
toroslu@ceng.metu.edu.tr

Abstract. Online information propagates differently on the web, some
of which can be viral. In this paper, first we introduce a simple standard
deviation sigma levels based Tweet volume breakout definition, then we
proceed to determine patterns of re-tweet network measures to predict
whether a hashtag volume will breakout or not. We also developed a
visualization tool to help trace the evolution of hashtag volumes, their
underlying networks and both local and global network measures. We
trained a random forest tree classifier to identify effective network mea-
sures for predicting hashtag volume breakouts. Our experiments showed
that “local” network features, based on a fixed-sized sliding window, have
an overall predictive accuracy of 76 %, where as, when we incorporate
“global” features that utilize all interactions up to the current period,
then the overall predictive accuracy of a sliding window based breakout
predictor jumps to 83 %.

Keywords: Information diffusion · Hashtag volumes · Prediction ·
Social networks · Diffusion networks

1 Introduction

Online Social Networks (OSNs) such as Twitter have emerged as popular
microblogging and interactive platforms for information sharing among people.
Twitter provides a suitable platform to investigate properties of information dif-
fusion. Diffusion analysis can harness social media to investigate viral tweets
and trending hashtags to create early-warning solutions that can signal if a viral
hashtag started emerging in its nascent stages. In this paper, we utilize the 68-
95-99.7 rule to define a simple method of hashtag volume breakouts. In statistics,
the 68-95-99.7 rule, also known as the three-sigma rule or empirical rule, states
that nearly all values lie within three standard deviations (σ) of the mean (μ) in
a normal distribution. We utilize a fixed sized sliding window (of length 20 daily

c© Springer International Publishing Switzerland 2015
N. Agarwal et al. (Eds.): SBP 2015, LNCS 9021, pp. 3–12, 2015.
DOI: 10.1007/978-3-319-16268-3 1

DISTRIBUTION A: Distribution approved for public release.

4 S. Alzahrani et al.

intervals), to compute a running average and standard deviation for each hash-
tag’s volume distribution. Then, we identify non-overlapping episodes within a
time-series of daily volumes for each hashtag whenever its daily volume exceeds
(μ + 1σ) of the previous 20 day periods. We label the 20 day periods preceeding
an episode as the accumulation period of an episode. We categorize an episode as
breaking if the hashtag volume goes on to exceed (μ + 2σ) without falling below
max(0, μ - 2σ), or else as a non-breaking episode otherwise. Next, we exam-
ine multiple network metrics associated with the accumulation period of each
episode and proceed to build a classifier that aims to predict whether an episode
will lead to a breakout volume or not. We employ a network based classification
model and to discover latent patterns for the breakout phenomena, particularly
we examine which factors contribute to make hashtag volumes breakout. We also
build a visualization tool called Trending Hashtag Forecaster (THF). Our THF
tool helps reveal the underlying network structures, patterns and properties that
lead to breakout volumes. Our experiments showed that ”local” network features
during an accumulation period have an overall predictive accuracy of 76%, where
as, when we incorporate ”global” features that utilize measures extracted from
all of the network up to the current accumulation period, then the overall pre-
dictive accuracy of the Trending Hashtag Forecaster jumps to 83%.

2 Problem Formulation

Given a set of tweets T = t1, t2, t3, ..., tn where n is number of tweets in our
corpus. These tweets comprise textual contents, user interactions and additional
meta data. We explore and analyze both textual contents filtered by a given
hashtag from hashtags set H. Then we denote tweet volume as number of tweets
per day. We then compute daily means (μ(20)) and standard deviation (σ(20))
for each hashtag by utilizing its volume distribution during its previous 20 days
window. We experimentally determined the best window size by experiment-
ing 10, 15, 20, 25 and 30 days windows. The 20 days window shows the best
performance amongst the others.

If the hashtag frequency rises above (μ(20) +1σ(20)), then we label that
period as an episode, and we mark its previous 20 days as the accumulation
period of an episode. We start observing hashtag frequency for two possible
outcomes:

– a breakout if hashtag volume rises above(μ(20) +2σ(20)), without falling
below max(0, μ(20) - 2σ(20)), or

– non-breakout, if hashtag volume falls below max(0, μ(20) - 2σ(20)), without
rising above (μ(20) +2σ(20))

In breakout scenario for an episode no further overlapping breakouts are
allowed until its volume falls below max(0, μ(20) - 2σ(20)). In both scenarios,
as episode begins with its accumulation period and continues until the hashtag
volume dies out (i.e. it falls below max(0, μ(20) - 2σ(20))). Figure 1, shows the
histograms of all daily hashtag volumes in our corpus.

DISTRIBUTION A: Distribution approved for public release.

A Network-Based Model for Predicting Hashtag Breakouts in Twitter 5

Next, in Section 3 we present related work. In Section 4 we describe out
Tweet corpus. In Section 5, we describe our Trending Hashtags Forecaster visu-
alization tool. In Section 6, we introduce our network based model, local and
global network features to predict hashtag episode breakouts following accumu-
lation periods. In Section 7, we present experimental results and findings. Section
8 concludes the paper and presents the future work.

Fig. 1. Probability distribution function of all Hashtags

3 Related Work

Twitter network has more than 271 million monthly active members and 500
million tweets are generated daily 1. The vast size and reach of Twitter enables
examination of potential factors that might be correlated with breakout events
and viral diffusion. We found that diffusion related studies fall into two cate-
gories. In the first category, many studies start by analyzing social networks as a
graph of connected interacting nodes i.e. between users, friends or followers, and
these studies investigate different factors that drive propagation and diffusion of
information Arruda et al. [7] proposes that network metrics play an important
role in identifying influential spreaders. They examined the role of nine central-
ity measures on a pair of epidemics models (i.e. disease spread on SIR model
and spreading rumors on a social network). According to the authors, epidemic
networks are different from social networks such that infected individuals in
SIR become recovered by a probability μ while in social networks a spreader
of a rumor becomes a carrier by contacts. They found centrality measures such
as closeness and average neighborhood degree are strongly correlated with the
outcome of spreading rumors model.
1 https://about.twitter.com/company

DISTRIBUTION A: Distribution approved for public release.

https://about.twitter.com/company

6 S. Alzahrani et al.

The second category looked into the diffusion problem through content
analysis by incorporating different natural language processing techniques. For
instance, one study hypothesized that a specific group of words is more likely
to be contained in viral tweets. Li et al. analyzed tweets in terms of emotional
divergence aspects (or sentiment analysis) and they noted that highly interactive
tweets tend to contain more negative emotions than other tweets [1], [8].

Weng et al. [5] investigated the prediction of viral hashtags by first defining a
threshold for a hashtag to be viral, and then by examining metrics and patterns
related to the community structure. They achieved a precision of 72% when
threshold is set statically to 70. Romero et al studied the diffusion of information
on Twitter and presented some sociological patterns that make some types of
political hashtags spread more than others. Asur [11] presented factors that
hinder and boost trends of topics on Twitter. They found content related to
mainstream media sources tends to be main driver for trends. Trending topics are
further spread by propagators who re-tweet central and influential individuals.

We propose a model that predicts hashtag breakouts thru adaptive dynamic
thresholds, and by utilizing generic content-independent network measures that
draws their information from (i) local networks corresponding to accumulation
periods, as well as (2) from the global networks corresponding to the entire net-
work history preceeding an accumulation period.Our experiments showed that
local network features yield an overall predictive accuracy of 76%, and, global
network features yield an overall predictive accuracy of 83%.

4 Data Source

The dataset we are using in this study is a collection of tweets from UK region.
These tweets have been crawled based on a set of keywords with the aim to
capture political groups, events, and trends in the UK. The dataset consists of
more than 3 million tweets, 600K users, with more than 5.2 million interactions
(both mentioning and retweeting) between users along with 1,334 hashtags.

5 Visualization Tool: Trending Hashtags Forecaster

In order to visualize and understand breaking hashtag phenomena, we built a
visualization tool, depicted in Figure 2, that facilitate exploring temporal dynam-
ics of hashtags and their underlying networks during accumulation period of each
episode. Local and global network measures are also computed and displayed as
network and node features. These network measures are utilized to train and
test a predictive classifier, presented in the next section.

6 Methodology

In this study, we crawled tweets containing hashtags (case insensitive) which
related to political groups in UK from June, 2013 to July, 2014. After crawling,

DISTRIBUTION A: Distribution approved for public release.

A Network-Based Model for Predicting Hashtag Breakouts in Twitter 7

Fig. 2. THF visualization tool

we detected hashtag episodes using techniques described in Section 2. We iden-
tified the accumulation period and accumulation network of each episode, and
extracted network measures corresponding to its accumulation network. Each
eposide was also labeled as breaking or non-breaking based on its spread.

THF visualization tool reveals some of the discriminative patterns between
breaking and non-breaking hashtags. Figure 3 shows the user interaction network
for a non-breaking hashtag. User interaction network denoted by number 1 was
captured during its accumulation period. Later on, this Hashtag did not breakout
(i.e. did not cross its μ(20) + 2σ(20), but it fall back to zero volume, hence
considered as a non-breaking episode. Figure 4, illustrates a breakout hashtag.
Following a 20 period accumulation period, its volume exceeds μ(20) + 1σ(20)
(denoted by network number 1), and it’s volume exceeds breakout levels (by
exceeding it’s μ(20)+2σ(20)) threshold (denoted by network number 2). Network
3 shows the entire reach this episode before it’s demise (i.e. by falling below
max(0, μ(20) - 2σ(20)). An interesting observation related in the network 1 is
a highly central green node, which attracts many new re-tweeters in network 2
and network 3. This observation indicates that existence of a large number of
highly central nodes during the accumulation phase of an episode could be a
good predictor for a following breakout. Other instances’ patterns could not be
cached by naked eye, yet they carry latent centrality measures correlate with
our definition.

6.1 Network Based Model

In this model we investigate how users get involved in a hashtag h by mentioning,
replying or retweeting. Their interactions are depicted as a directed graph Ghi

.
We then incorporated normalized size-independent network features for directed
graphs corresponding to accumulation periods of episodes. The network graph
is a pair G = (V,E) where V is set of vertices representing users together with
a set of edges E, representing interactions between users. For instance, if a user

DISTRIBUTION A: Distribution approved for public release.

8 S. Alzahrani et al.

Fig. 3. Non breaking #Dawah Hashtag episode

Fig. 4. Breaking #haram Hashtag episode

DISTRIBUTION A: Distribution approved for public release.

A Network-Based Model for Predicting Hashtag Breakouts in Twitter 9

u1 mentioned, replied, or retweeted one tweet of u2, then a directed edge from
u1 to u2 is formed.

We attempted to identify key features that contribute to the network based
classification problem for breaking or non-breaking hashtags. Table 1 list all fea-
tures that we used for local and global measures. Local measures are associated
with user interactions during the accumulation period only, where as global mea-
sures draws their information from all interactions beginning from the start date
(June 2013) until the end date of any accumulation period under consideration.

Table 1. Feature description

Feature Description

Eigen Vector Centrality Node’s centrality depends on its neighbors centralities. If your neighbor
are important you most likely are important too.

Page Rank IVariant of Eigenvector where a node don’t pass its entire centrality to its
neighbors. Instead, its centrality divided into the neighbors. [3]

Closeness Centrality A node is considered important if it is relatively close to all other nodes
in the network [2].

Betweeness centrality Measuring the importance of a node in connecting other parts of the graph
[6]. This measure possesses the highest space and time complexity.

Degree centrality It measures the number of ties a node has in undirected graph.
Indegree Centrality It measures number of edges pointing into a node in a directed graph.
Outdegree Centrality It is similar to the two above measure but it concerns on the number of

outgoing links from a user, and it is normalized for each node.
Link Rate Number of URLs in the tweets during the accumulation period divided by

number of tweets.
Distinct Link Rate Similar to link rate but without considering similar URLs.
Number of uninfected
neighbors of early
adopters

It is total number of retweets or mentioned (edges) a user has ever received
globally, normalized by max-min retweets within local network in a current
period being measured. [5]

Neighborhood average
degree

it measures the average degree of the neighborhood of each node. [4]

7 Experiment Results and Findings

As a preprocessing step, We had 2790 for the non break out instances, while 1331
were for the break out. We sampled (without replacement) instances from both
classes with oversampling for the lower represented class. We next examined
the correlation between features and breaking hashtags using Principle Compo-
nent Analysis (PCA). PCA is a dimensionality reduction approach that analyzes
dataset to find which features give highest variance among instances and it maps
the given features into lesser number of factors called components [9]. After that,
in order to predict whether a given hashtag will breakout or not, we run a super-
vised network based learning model.

7.1 Features Correlated with Breaking Hashtags

PCA identified nine factors shown in Table 1. According to Kaiser Criterion [10],
the factors to consider are the ones with eigenvalue above 1. In this study, we will
focus on the first two components since they reveal interesting insights. Table 2

DISTRIBUTION A: Distribution approved for public release.

10 S. Alzahrani et al.

shows the correlation between our features and the first two components shown
in Table 1. The first component is strongly correlated (negatively) with global
measures, where as the second component is strongly correlated (negatively)
with local measures. These two components give us a hint that global features
should be grouped together and they contribute heavily (36%) to the variation
in our dataset. Also, some of the local measures are also grouped together in a
single factor and they somewhat contribute (21%) to the variation in our dataset.

Table 2. PCA components

Component Eigenvalue Variance
Cumulative
Variance

1 5.79 36.16 36.17
2 3.30 20.62 56.78
3 1.669 10.43 67.21
4 1.24 7.73 74.94
5 1.01 6.31 81.24
6 0.88 5.54 86.78
7 0.663 4.14 90.92
8 0.48 3.01 93.93
9 0.42 2.65 96.57

Table 3. Correlation Between Table and Components

Feature
Component

1
Component

2
Feature

Component
1

Component
2

PageRank
Local

0.14 -0.45
PageRank
Global

-0.36 -0.10

Closeness
Local

0.05 -0.51
Closeness
Global

-0.24 0.09

Betweeness
Local

0.05 -0.44
Betweeness

Global
-0.35 -0.07

Avg Neighbor
Degree Local

-0.11 -0.04
Avg Neighbor
Degree Global

-0.3552 -0.10

Degree Cent.
Local

0.11 -0.49
Degree
Global

-0.3897 -0.0554

Uninfected
Neighbor

0.19 0.02
In Degree
Global

-0.39 -0.09

Link Rate -0.03 0.14
Distinct Link

Rate
0.0282 0.1889

Outdegree
Global

-0.21 0.02 - - -

7.2 Network Based Model

For this model, we measured two sets of features: local and global. For local fea-
tures: we have eigenvector, pagerank, closeness, betweeness, average neighbor-
hood degree, uninfected neighbors before break out, and degree centrality. For
global features we have the previous features measured globally plus in degree,
out degree, and link rate. Next, we train and test a random forest classifier

DISTRIBUTION A: Distribution approved for public release.

A Network-Based Model for Predicting Hashtag Breakouts in Twitter 11

with 10 fold cross-validation using three approaches: prediction using all fea-
tures shown in Table 3, prediction using global features that are correlated with
the first factor identified by PCA shown in Table 4, and prediction using local
features that are correlated with the second factor returned by PCA shown in
Table 5. We achieve the highest precision of 84%, recall of 81% and F-measure
of 82% for breakout prediction with the global features. We also achieve the
highest precision of 82%, recall of 85% and F-measure of 84% for non-breakout
prediction with the global features. On the other hand, local features archive
overall lower precision and recall of roughly 76%. These findings suggest that
global measures outperform local measures in predictive accuracy.

Table 4. Break out results

Network TP FP Precision Recall F-measure

Local 0.73 0.2 0.77 0.73 0.75
Global 0.81 0.15 0.84 0.81 0.82
All Features 0.8 0.16 0.83 0.8 0.81

Table 5. Non break out results

Network TP FP Precision Recall F-measure

Local 0.79 0.27 0.75 0.79 0.77
Global 0.85 0.19 0.82 0.85 0.84
All Features 0.84 0.20 0.81 0.84 0.83

8 Conclusion and Future Work

In this paper, we develop a model for predicting breaking hashtags using a con-
tent independent network model comprising both local and global network fea-
tures drawn from an indicative accumulation period of hashtag volumes. For the
network model, we measured and experimented with the predictive accuracies of
global and local features. We also examined their importance and rankings using
PCA. Global features drawn for the accumulation period network showed higher
predictive accuracy compared to the local features. Network based model with
global centralities for the accumulation period network can be used as a gen-
eral framework to predict breaking hashtags with an overall accuracy of 82%.As
future work, we propose to study the utility of content based features such as
sentiment analysis, and different types of sources.

Acknowledgments. This research was supported by US DoD ONR grant N00014-
14-1-0477 and USAF AFOSR grant FA9550-15-1-0004.

DISTRIBUTION A: Distribution approved for public release.

12 S. Alzahrani et al.

References

1. Li, C., Sun, A., Datta, A.: Twevent: segment-based event detection from tweets.
In: Proceedings of the 21st ACM International Conference on Information and
Knowledge Management, pp. 155–164. ACM (2012)

2. Newman, M.E.J. A measure of betweenness centrality based on random walks.
Social networks 27.1, 39–54 (2005)

3. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems 30, 107–117 (1998). doi:10.1.16/S0169-
7552(98)00110-X

4. Barrat, A., Barthelemy, M., Pastor-Satorras, R., Vespignani, A.: The architecture
of complex weighted networks. In: Proceedings of the National Academy of Sciences
of the United States of America 101.11, PP. 3747–3752 (2004)

5. Weng, L., Menczer, F., Ahn, Y.-Y.: Virality prediction and community structure
in social networks. Scientific reports 3 (2013)

6. Freeman, L.C.: A set of measures of centrality based on betweenness.Sociometry,
35–41 (1977)

7. Arruda, G., Barbieri, A., Rodrigues, F., Moreno, Y., Costa, L.: The role of cen-
trality for the identification of influential spreaders in complex networks. Physical
Review E 90, 032812 (2014)

8. Cheng, J., Adamic, L., Dow, P.A., Kleinberg, J.M., Leskovec, J.: Can cascades be
predicted?. In: Proceedings of the 23rd International Conference on World Wide
Web, pp. 925–936. International World Wide Web Conferences Steering Committee
(2014)

9. Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Sci-
ence 2(11), 559–572 (1901)

10. Bandalos, D.L., Boehm-Kaufman, M.R.: Four common misconceptions in
exploratory factor analysis. Statistical and methodological myths and urban leg-
ends: Doctrine, verity and fable in the organizational and social sciences, 61–87
(2009)

11. Asur, S., et al.: Trends in social media: persistence and decay. ICWSM (2011)

DISTRIBUTION A: Distribution approved for public release.

	DTIC Title Page -
	FA9550-15-1-0004 SF298
	FA9550-15-1-0004 FINAL REPORT

