

 ARL-TR-8863 ● DEC 2019

Visualization and Processing for Embedded
Research Systems (ViPERS) Web-based
Interface for Internet of Things (IoT):
Implementation Guide

by Kevin E Claytor, Alex George, Zachary Drummond, and
Abby Snellman

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-8863 ● DEC 2019

Visualization and Processing for Embedded
Research Systems (ViPERS) Web-based Interface
for Internet of Things (IoT): Implementation Guide

Kevin E Claytor
Sensors and Electron Devices Directorate, CCDC Army Research Laboratory

Alex George and Zachary Drummond
General Technical Services

Abby Snellman
Army Educational Outreach Program (AEOP) College Qualified Leaders (CQL)

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

December 2019
2. REPORT TYPE

Technical Report
3. DATES COVERED (From - To)

May 2017‒October 2019
4. TITLE AND SUBTITLE

ViPERS Web-based Interface for Internet of Things (IoT): Implementation
Guide

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Kevin E Claytor, Alex George, Zachary Drummond, and Abby Snellman
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

CCDC Army Research Laboratory
ATTN: FCDD-RLS-SP
Aberdeen Proving Ground, MD 21005-5066

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-8863

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
ORCID ID(s): Kevin E. Claytor, https://orcid.org/0000-0002-6072-5033

14. ABSTRACT

Visualization and Processing for Embedded Research Systems (ViPERS) provides a way to run data processing and
visualization code on an edge device, such as a Raspberry Pi or Snickerdoodle single-board computer, and present the results
to a personal computer or mobile device. This enables the rapid transition of cutting-edge research results from the researcher
(who can develop using the ViPERS platform) to the Warfighter (who can view the results on the ViPERS interface). This is
done securely so only authorized users can view the data. Additional tools are provided so that the networking can be
configured, allowing or disallowing local or wide area networking and cloud-connectivity while still maintaining a functional
processing node. By providing the researcher a process manager and access to real-time log files, ViPERS enables a feedback
loop for rapid prototyping of new algorithms and processing techniques, but these can simultaneously be presented as
actionable information to the Warfighter in a relevant environment.

15. SUBJECT TERMS

Internet of Things (IoT), embedded processing, transition, live data visualization, device management, network configuration

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

44

19a. NAME OF RESPONSIBLE PERSON

Kevin E Claytor
a. REPORT

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(301) 394-2162
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures v

List of Tables v

1. Introduction/Motivation 1

2. Survey 2

2.1 Language 2

2.2 Webservers 2

2.3 Plotting 3

2.4 Databases 4

2.5 Networking 6

3. Architecture 6

3.1 ViPERS Webserver 7

3.1.1 Viewing the Web Application 8

3.1.2 Running the Webserver 8

3.2 ViPERS Dataserver 9

3.2.1 Implementation Details 9

3.2.2 Process Management 10

3.2.3 Bokeh Management 11

3.2.4 Configuration File 11

3.2.5 Python API 12

3.2.6 JSON API 13

3.3 ViPERS NetManager 13

3.3.1 Implementation Details 14

3.3.2 Platform Dependence 17

3.3.3 Testing and Command-Line Arguments 17

3.3.4 JSON API 18

3.4 ViPERS Python Virtual Environment 19

iv

4. Case Study: ViPERS-ARTEMIS 20

4.1 Core100 Module 20

4.2 Synchro Module 21

4.3 Relative Module 22

4.4 Influx Module 23

4.5 GPS / IMU / Battery Modules 24

4.6 Replication Module 25

4.7 Proxy Module 26

4.8 Raw Data Module/API 26

4.9 Backup to HDD Module 26

4.10 dLAMP Integration 27

5. Troubleshooting 28

5.1 Common Webapp Issues 28

5.2 Common Dataserver Issues 28

5.3 Common NetManager Issues 28

5.4 Common InfluxDB Issues 29

6. Software Licenses 30

7. Conclusion 31

8. References 32

List of Symbols, Abbreviations, and Acronyms 35

Distribution List 37

v

List of Figures

Fig. 1 Schematic of the ViPERS architecture. The webserver is the main user
interaction component, which communicates to Dataserver and
NetManager through a Transmission Control Protocol (TCP) API. The
database is lightly integrated and can be replaced with a database of
one’s choosing. ... 7

Fig. 2 All pages are protected by a login screen. Once authenticated, the
index page allows quick access to main ViPERS components............. 8

List of Tables

Table 1 Survey of databases and their advantages and disadvantages for the
ViPERS architecture ... 5

Table 2 Mapping between network mode and IP address to use to connect to
ViPERS ... 8

Table 3 Description of the core Dataserver functions and folders 10

Table 4 Functions in dataserver.py that define the public API 12

Table 5 Classes and configuration functions used by NetManager 14

Table 6 Custom ViPERS-ARTEMIS modules and their descriptions 20

Table 7 Fields used by core100.py in the phasors.conf configuration file
... 21

Table 8 Fields used by synchro.py in the phasors.conf configuration file
... 21

Table 9 Values and their interpretation for the source field 21

Table 10 Command-line arguments and their interpretation for the module 22

Table 11 Fields used by relative.py in the phasors.conf configuration
file ... 22

Table 12 Fields of the [[channels]] list of dictionaries in the phasors.conf
configuration file ... 23

Table 13 Fields of the [[circuits]] list of dictionaries in the phasors.conf
configuration file. .. 23

Table 14 Fields used by influx.py in the influx.conf configuration file. 24

Table 15 Fields used by extras.py in the influx.conf configuration file. 25

Table 16 Fields used by replication.py in the influx.conf configuration
file ... 25

Table 17 Core software, their license, and their license file 30

Table 18 Python packages, their license, and their license file.......................... 30

1

1. Introduction/Motivation

With the proliferation of Internet of Things (IoT) devices, there is now a spread of
sensing and computing devices from traditional data acquisition units (DAQs) and
PCs to tiny embedded IoT sensors. These IoT devices are frequently no more than
a small microprocessor and WiFi or Bluetooth chip, able to sense their environment
and transmit that data to a remote server. Conversely, DAQs and PCs can not only
interface with the sensor(s), but provide a powerful computing and analysis
platform. Between these devices is a range of systems that are ideal for research,
and transition to Department of Defense (DOD) users. Here, the application space
may not be defined enough to have a headless IoT device. However, the size,
weight, and power (SWaP) constraints may not permit a full DAQ or PC. These
devices, such as the Raspberry Pi,1 Snickerdoodle,2 Beaglebone,3 or Intel NUC,4
are powerful enough that they can perform processing and data storage on the
device, but have sufficiently low power draws that they are practical for extended
unattended operation. Thus, the benefits of IoT sensing can be realized in a military
environment, which may include degraded communications, requiring the device
to operate independently.

These single-board computers (SBCs), however, have a major drawback restricting
their use as a research tool and transition to military operators: the lack of an
interface. As they do not have a display, one must either attach an external display
or tunnel into the device using a command-line tool such as secure shell (SSH). An
attached display may negatively impact SWaP, for while these may be quite, quite
small, they may cost a significant fraction of an SBC and can have a negative impact
on battery life. On the other hand, command-line tools such as SSH are quite
powerful, but require an experienced user.

This software Visualization and Processing for Embedded Research Systems
(ViPERS) attempts to address these limitations by providing an easy-to-extend
website-based interface to the device. This interface can be viewed from any device
capable of rendering web content, such as a PC, smartphone, tablet, or even an
integrated display. In addition to simply providing a user interface, ViPERS also
provides a process manager that can aid development and a networking controller
that can assist in configuring the device for local area network (LAN) or wide area
network (WAN) connections.

To achieve this, ViPERS consists of three parts:

1) A webserver to interface with and configure the SBC and to configure and
view data.

2

2) A process controller (Dataserver) that can be used to run data processing
programs and streaming visualizations.

3) A network manager (NetManager) to configure the network state of the
device.

Since it runs as a webserver, the researcher or customer can bring their own device,
such as a mobile phone or tablet to interact with the SBC. This removes the need
for a power-hungry integrated monitor or a bulky laptop. Secondly, Dataserver
allows the researcher to upload and quickly prototype their processing algorithms,
while viewing log files and streaming output data to a visualization. Finally,
NetManager allows the customer to configure the device to their specific network,
a necessity since DOD installations frequently have specific network requirements.

This report has three main aims:

1) Introduce the need for ViPERS and survey the available open-source
libraries that can be combined to create our solution and select the specific
ones that we used.

2) Describe the ViPERS architecture and how it is used in an example
application.

3) Describe how to customize and extend the core ViPERS elements for other
computing platforms.

2. Survey

2.1 Language

Web applications can be written in practically any programming language. For the
case of ViPERS, we chose to use Python5 for two main reasons:

1) It is flexible with large and growing community support.6

2) Many scientific programs are written in Python, allowing the scientific
programmer to apply their knowledge to tailor ViPERS to their need.

2.2 Webservers

Within the Python ecosystem, there are two popular web frameworks: Django7 and
Flask.8

Django is a “batteries included” framework that includes user authentication,
database management and migration, support for subapplications, and

3

administrative management, among many other tools. However, it also has a steep
learning curve and a fairly rigid structuring and layout.

On the other hand, Flask is a “microframework” that provides only the essential
elements and relies on an ecosystem of add-ons to fill out functionality. This more
decentralized approach gives it flexibility in how one approaches creating a web
application and also gives it an easier learning curve, only requiring one to learn a
single new component at a time. While both are valid options for a project such as
this, the goal of minimizing learning time and maximizing flexibility encouraged
the use of Flask.

Although Flask provides a development webserver, it is not recommended for
production environments. Consequently, we rely on Gunicorn9 for the webserver
gateway interface (WSGI) and NGINX10 for the webserver.

2.3 Plotting

There are several popular Python plotting frameworks including the following:

• Matplotlib11

• Qt12

• Plotly13

• Dash14

• Bokeh15

For this application, there were two driving requirements:

• Plots need to be generated locally (there may be no Internet connection).

• Streaming/dynamic plots are needed to facilitate user interaction.

It is exceedingly difficult to get Matplotlib to generate dynamic, streaming plots.
Similarly, Qt is much more for interaction on desktop devices versus web/mobile
devices. Finally, Plotly requires an internet connection and data
transfer/authentication with plotly’s servers.

Because of these limitations, Bokeh appeared to be the best choice. It facilitates
very customizable, modern plots and graphs that can either be static or a dynamic
application served with the bokeh serve command. Additionally, Bokeh has very
good Jupyter/IPython integration, allowing one to prototype plots and applications
in an interactive environment and then transfer them to ViPERS when ready.

4

After Bokeh was selected for this project, Plotly released Dash, an open-source
application similar to Plotly, but not dependent on their servers. This may be a good
candidate if one is already using Plotly in other applications or otherwise familiar
with its application programming interface (API).

2.4 Databases

Even with the ubiquity of WiFi hotspots and cellular data, such as 3G and 4G, cloud
connectivity is never guaranteed and there may be long stretches of time when the
IoT device is left without connection to a cloud-based database. In fact, depending
on the application, the data during times of network outage are the most important
data. As a result, it is essential that an IoT device store data locally in addition to
pushing data to the cloud. By maintaining a local database of events, when Internet
connectivity is restored, data may be replicated back to the cloud. Thankfully, there
is no shortage of database options from which to choose. A few are shown in the
Table 1.

5

Table 1 Survey of databases and their advantages and disadvantages for the ViPERS
architecture

Database Type Advantages Disadvantages

Flat file NoSQL Easy to write into. Difficult to query into. Complexity
grows with additional data.

MySQL16 SQL Simple, reasonable performance. Memory consumption. Relational
model may not be suited for time-
series data.

PostgreSQL17 SQL Good performance, stable, good
query speed.

Memory consumption. Relational
model may not be suited for time-
series data.

SQLite18 SQL Lower memory consumption,
single file database.

Relational model may not be suited
for time-series data.

Berkley DB19 NoSQL Good performance for inserts, long
stable history.

Need to build a time-series engine
around the key/value store.

Redis20 NoSQL High-performance in-memory
key/value store.

Need to build a time-series engine
around the key/value store.

OpenTSDB21 NoSQL Simple. Open source. Immature software, still under
substantial development. Limited
support for math on queries.
Rollups and retention policies need
to be performed manually.

TimescaleDB22 SQL Stability of PostgreSQL with
improved insert performance for
time-series data.

Difficult to install, especially on
older versions of operating systems.
Rollups and retention policies need
to be performed manually. Large
database size.

InfluxDB23 NoSQL Good insert speeds for low-
cardinality data. Single binary
distribution. Open-source
community edition. Rollups and
retention policies are first class.
Performs data compression for
small database size.

Has some stability issues,
inconsistent type-conversion.

Note: SQL = Structured Query Language

Most of these databases will run on an embedded Linux system such as a
Snickerdoodle or Raspberry Pi. In the end, we chose InfluxDB to include with the
ViPERS installer because 1) it was a single binary and easy to include, 2) the
NoSQL structure allows one to quickly start storing data without having to worry
about creating a schema, and 3) the included Chronograf visualization software
makes exploring and querying the database easy for a nontechnical user.

It is interesting that the capabilities of TimescaleDB are growing fast. For high-
cardinality data, it appears that TimescaleDB may outperform the insert
performance of InfluxDB.24 Additionally, it is able to leverage the stability and the
query planner of PostgreSQL giving high-reliability into one’s data and fast

6

queries. Finally, a third-party visualization software called Grafana25 can interface
almost all of the databases described earlier giving a good visualization solution
regardless of the database back end.

2.5 Networking

In addition to the different use cases for IoT devices, every installation has a
different approach to network security. To accommodate as many networking
configurations as possible, a research IoT device cannot simply rely on WPA2
secured WiFi—the standard for homes and small businesses. For this reason, we
built in a network manager into ViPERS.

To configure Linux networking, one can rely on new tools such as ip and network-
manager. However, for older Linux distributions, these may not be available. In
this case, we use ifconfig to manage the interfaces (mainly through ifdown and
ifup). Instead of painstakingly managing the wpa_supplicant.conf, however,
we use the wpa_cli26 tool.

Additionally, ViPERS can configure the system to host its own network. This
allows data collection and real-time visualization of data in environments where
network infrastructure is not available, such as field sites. For these, hostapd27 and
isc-dhcp-server28 allow the SBC to serve as an access point and hand out
Dynamic Host Configuration Protocol (DHCP) addresses.

These tools allow us to reach a broad range of Linux systems while avoiding some
of the low-level frustrations of working with networking interfaces. Additionally,
we are able to cover the range of network configurations—from Ethernet to Wi-Fi,
host or client, dynamic or static IP—ViPERS is able to configure it.

3. Architecture

ViPERS comprises three components and an optional database layer graphically
displayed in Fig. 1:

• The webserver is the front-facing user interaction and send command
signals to the other components. Additionally, it allows for the embedding
and visualization of the data.

• Dataserver is a process manager, which is used to run the data processing
code. It also exposes an API that allows the webserver to start and stop
modules.

7

• NetManager is an interface to lower-level Linux networking commands.
This allows one to tailor both the interfaces and connect to wireless
networks.

Fig. 1 Schematic of the ViPERS architecture. The webserver is the main user interaction
component, which communicates to Dataserver and NetManager through a Transmission
Control Protocol (TCP) API. The database is lightly integrated and can be replaced with a
database of one’s choosing.

When installed using the included installer, symbolic links to all three components
and the Python virtual environment is generated in /usr/local/vipers.
Additionally, all log files are sent to /var/run/vipers/ as vwebserver.log,
vdataserver.log, and vnetmanager.log, respectively.

These three components and their APIs are described in depth in the next three
sections.

3.1 ViPERS Webserver

The ViPERS webserver is how the user interacts with both Dataserver and
NetManager. Additionally, it allows one to view the status of the system and
ViPERS components. There is an integrated help system—wherever a question
mark appears in a title, clicking it will take the user to the corresponding help pages.

8

3.1.1 Viewing the Web Application

Depending on the network configuration, the address of the webserver is variable.
Table 2 describes how to determine the address of the webserver.

Table 2 Mapping between network mode and IP address to use to connect to ViPERS

Networking mode Address
Ethernet DHCP host 10.10.0.1

Wi-Fi DHCP host 11.11.0.1
Static IP address <assigned static ip>
DHCP IP address <assigned dhcp ip>

All <hostname>.local
All <hostname>.lan

Once connected, the user can view the login screen, authenticate, and see the main
index, as shown in Fig. 2. The main index page is always available by clicking on
the title text present on any page.

Fig. 2 All pages are protected by a login screen. Once authenticated, the index page allows
quick access to main ViPERS components.

3.1.2 Running the Webserver

If the main install script (../install.sh) or the webserver install script
(../install/setup_vwebserver.sh) was run then the webserver should be
installed as a startup script. One can view the status of the webserver by running
the following:

sudo service vwebserver status

The service can be restarted with the following:

sudo service vwebserver restart

9

The webserver can be run manually with the following:

cd vipers
workon vipers
gunicorn webapp:app --bind 0.0.0.0:8000 --log-level DEBUG

Finally, for development or debugging, one can run the Flask development server.
The development server actively watches for code changes and reloads when the
source changes, allowing one to rapidly create and test new pages. Additionally,
when an error is encountered, the development server displays an interactive stack
trace, which allows the user to enter a Python command line at various points
through the error. This allows one to inspect variables and the state of the program
at the point of the crash and in the stack frames above the crash. This does require
entering a personal identification number, which is displayed on the command-line
when the development server runs.

To run the development server, one can use the following convenient script:

cd vipers
workon vipers
./run_flask.sh

Do not run the development server in production. Use the production Gunicorn
server that is provided as part of the startup script. Additionally, the default port for
the debug server is port 5000, as opposed to 8000 (for the Gunicorn server). This
must be specified when connecting (for example, in the browser’s address bar).

3.2 ViPERS Dataserver

Dataserver is a process manager that presents both a Python API and a JavaScript
Object Notation (JSON)-encoded socket API that can be used to start, stop, and/or
restart the processes it manages.

In addition, it also runs the bokeh serve command and passes it a list of plots. The
Bokeh session is secured with a secret key, which Dataserver can share with other
applications to allow them to access the Bokeh sessions.29 This prevents
unauthenticated users from viewing the Bokeh applications.

The Python module also implements a programmatic API, which one can use to
control Dataserver. Additionally, other languages may use command port to send
JSON-encoded command messages.

3.2.1 Implementation Details

The Dataserver directory structure is as follows:

10

dataserver/
├── controller.py
├── dataserver.py
├── settings.conf
├── saved/
├── plots/
| ├── plots.py
| └── ...
└── modules/
 ├── conf/
 ├── data/
 ├── logs/
 ├── modules.py
 └── ...

The purpose of these programs and folders are listed in Table 3.

Table 3 Description of the core Dataserver functions and folders

File/folder Description

controller.py Provides an interactive control session to Dataserver.
dataserver.py The main executable.

settings.conf The configuration file that specifies which modules and plots are enabled.
saved/ A folder for saved configuration files.

plots/ Folder for Bokeh plot scripts.
modules/ Folder for modules (scripts/executable files).

modules/conf/ Convenience folder for modules to store configuration files.
modules/data/ Convenience folder or modules to store data files.

modules/logs/ Standard output and error from modules is piped to files in this folder.

3.2.2 Process Management
Modules are started as subprocesses using the psutil.Popen command.30 Standard
output and standard error are piped to a log file: dataserver/modules/logs
/<module filename>.log.

Modules are killed using SIGTERM, and it is recommended that the module
handles SIGTERM and shuts down gracefully after receiving the signal.
Additionally, all child processes of the module are terminated in a similar manner.

On shutdown of Dataserver, all internal modules are killed, even if they are no
longer in the configuration file. This ensures that all running child processes are
terminated.

11

3.2.3 Bokeh Management

In addition to the module processes, there is a special process that corresponds to
Dataserver running the bokeh serve command. This is equivalent to running the
following:

export BOKEH_SECRET_KEY=`$(bokeh secret)`
export BOKEH_SIGN_SESSIONS=true
bokeh serve --allow-websocket-origin=* --session-ids=external-sig
ned <list of plot files>

The flag --allow-websocket-origin=* allows any host to connect to the server,
which is needed as we do not know a priori where the user is connecting from.
Given the networking options we support, the user could be connecting over wired
or wireless LAN or DHCP directly or through a LAN.

This allows any device on the local network to connect by going to the server URL,
for instance, http:192.168.1.4:5006/synchro if the device has an IP address of
192.168.1.4. This is clearly suboptimal, as it allows anyone to view our stream of
data. To protect against these attacks, we can set Bokeh to only allow through
sessions with a secret key.

By setting the flag --session-ids=external-signed Bokeh only allows
sessions that present a key derived from the environment variable
BOKEH_SECRET_KEY. This keeps the data secure in transit and ensure that only those
who have BOKEH_SECRET_KEY can connect.

Unfortunately, the BOKEH_SECRET_KEY is only exported to Dataserver’s process
and child processes. As a result, the webserver cannot access it; however,
Dataserver retains memory of the secure secret and can provide that to other
applications (e.g., the web application) via its API. This allows other applications
such as the webserver to sign Bokeh sessions and embed plots. This is done through
the dataserver.secret() function.

Since Dataserver only accepts connections from the localhost, only other
applications on the IoT device can request the secret (such as the Flask web
application) and use it to authenticate against the Bokeh server to embed plots.

3.2.4 Configuration File

Dataserver uses a configuration file settings.conf. This is a TOML31-encoded
configuration file with entries of the following form:

12

plots = []
[[modules]]
 filename = "mycode.py"
 command = "python" # Can be: python, java, octave, execute
 options = "" # Command-line arguments to pass
 enabled = true # Is the module enabled or not?

It is recommended to use the Python API to read and write this file.

3.2.5 Python API

It is recommended to use the Python API where available. This abstracts out the
implementation and provides convenience functions for Dataserver functionality.

To use this, simply import Dataserver and call one of the functions shown Table 4.

Table 4 Functions in dataserver.py that define the public API

Function Description

(modules, plots) = read_config() Return the current module and plot dictionaries.a
write_config(modules=None,

plots=None)
Write modified module and plot dictionaries to a file.

start(*args) Start modules specified by args.b,c
stop(*args) Stop modules specified by args.b

reload(*args) Reload (stop then start) modules specified by args.b.c
reload() Reload (stop then start) all modules.c

replot() Restart the Bokeh server.
secret() Return the Bokeh secret key (needed to authenticate

against the Bokeh session).
show() Show the running modules and provide their status

(zombie/running/sleeping) and central processing unit
usage.

quit() Cause the Dataserver to exit
aThe module dictionary matches the modules section of the config file. The plots dictionary uses the module
filenames as keys and a Boolean for the value corresponding to whether or not they are running:

modules = {
 "module.py": {
 "filename": "module.py", # The filename
 "command": "python", # One of; "python", "exec", or "octave"
 "options": "", # Command-line arguments
 "enabled": True, # Runs the module if enabled
 }
}
plots = {
 'mod1.py': True, # Pass `mod1.py` to Bokeh if enabled
 'mod2.m': False,
}

b*args is an unpacked list of module filenames, for example, start('mod1.py', 'mod2.m').
cIf the module is not enabled in settings.conf, it will not be started.

13

3.2.6 JSON API

If using a programming language other than Python, one can still issue commands
to Dataserver using its JSON-based socket API.

Create a TCP connection to Port 5052 then transmit a JSON message of the form:
The JSON data should conform to the following:

{<COMMAND>: <OPTIONS>}
 COMMAND is a string and is one of
 - "QUIT" (no OPTIONS)
 - "SHOW" (no OPTIONS)
 - "START" (OPTIONS is required)
 - "STOP" (OPTIONS is required)
 - "RELOAD" (OPTIONS is optional)
 - "REPLOT" (no OPTIONS)
 - "SECRET" (no OPTIONS)
 OPTIONS is a list of module names, eg;
 ['mod1.py', 'mod2.m', 'mod3']

The server will then reply with JSON in the following form:

[RESULT, MESSAGE]
 RESULT is either "ACK" for success, or "NAK" for failure.
 MESSAGE is a list of messages. This can be an error, or the resu
lt of the command.

3.3 ViPERS NetManager

NetManager presents a JSON-encoded socket API that can be used to change the
networking state of the host system. It is designed to run as root and enable or
disable specific network interfaces, as well as add, remove, and/or connect to
wireless access points, and finally can also set the date and time.

NetManager modifies the network interfaces by rewriting the files in
/etc/network/interfaces.d/, in particular, eth0 for Ethernet and wlan0 for
wireless. Additionally, it uses wpa_cli26 for scanning and managing wireless
access points. For a useful list of wpa_cli commands, see McLeod.34

In addition to helping connect to existing Ethernet or wireless networks,
NetManager can also configure the interfaces to host their own network. In this
case, the device will take on a specific IP address:

• 10.10.0.1 when hosting an Ethernet network

• 11.11.0.1 when hosting a wireless network (called “ARTEMIS”)

This is done through hostapd27 and isc-dhcp-server.28

14

Since these two networks are separated, one can have the device host both a wired
and wireless network.

The most likely point of friction will occur with the interface name and the wireless
driver. There are a few places where these occur and are pointed out in the
following.

3.3.1 Implementation Details

NetManager consists of two classes and a set of config definitions (Table 5).

Table 5 Classes and configuration functions used by NetManager

Item Type Description
DateWrapper Class Used for setting system date and time.

WpaCliWrapper Class Used for issuing commands to wpa_cli.
InterfaceWrapper Class Sets the interface files and restarts the interfaces.

NetManager Class Wraps the above three classes and presents the API.
_get_configs_test() Config Contains configuration dictionary for test cases.

_get_configs_1404() Config Contains configuration dictionary for Snickerdoodle Ubuntu
14.04.

_get_configs_1604() Config Contains configuration dictionary for Ubuntu 16.04.

3.3.1.1 Class Specifics

When run, the NetManager class is created. This first determines the platform
release (e.g., Ubuntu 16.06) and selects the appropriate config. Next, it creates a
WpaCliWrapper that finds wpa_cli and determines if it needs root privileges to
run.

The NetManager then listens for valid JSON commands (see Section 3.3.4) on port
6584 forever. If a valid message is received, it attempts to execute it.

When a valid command is received, the appropriate config text is retrieved and
filled in, and the update_interface() function is run. This function 1) disables
the interface (e.g., ifdown eth0 or ifdown wlan0), which ensures that the
interface is brought down according to the current config mode it is in;
2) overwrites the interface file with the new config; and 3) enables the interface
with the new config (e.g., ifup eth0).

3.3.1.2 Configs

The config functions return a nested dictionary of contents for the
/etc/network/interfaces.d/ files.

15

The dictionary structure follows that of the API: CONFIG[<INTERFACE>][<MODE>],
for example; CONFIG["WLAN0"]["DHCP-HOST"] would return the contents that will
be inserted into /etc/network/interfaces.d/wlan0.

Some config strings require additional information, specifically the STATIC modes
require a static IP and netmask.

In the following, we annotate some of the configs specifically.

3.3.1.3 Disable

These are empty config files used to disable the interface:

Wired DISABLED (NetManager)

3.3.1.4 Static

These set the static IP address and netmask and attempt to get network time. Note:
If we are unable to get network time we include the || true so that the interface
continues to be brought up.

Wired STATIC CLIENT (NetManager)

auto eth0
allow-hotplug eth0
iface eth0 inet static
address %s
netmask %s
post-up ntpdate ntp.ubuntu.com time.nist.gov || true

3.3.1.5 DHCP-client

This example is from the 16.04 config, where one can see that the driver and wpa-
conf are also specified. The user may need to replace the wpa-driver argument with
their own driver.

Wireless DHCP CLIENT (NetManager)

auto wlan0
allow-hotplug wlan0
iface wlan0 inet dhcp
 wpa-driver nl80211
 wpa-conf /etc/wpa_supplicant.conf
post-up ntpdate ntp.ubuntu.com time.nist.gov || true

The 14.04 version uses pre-up and post-up scripts, which may exist for the user’s
driver as well:

16

pre-up /usr/share/wl18xx/sta_start.sh || true
...
post-down /usr/share/wl18xx/sta_stop.sh || true

3.3.1.6 DHCP-HOST Ethernet

In this case, we have to restart the isc-dhcp-server after we assign the static IP
address. When isc-dhcp-server sees that the device has this “magic” static IP
address, it successfully starts and begins serving DHCP addresses (see dhcpd.conf
in Section 3.3.1.8).

Wired DHCP SERVER (NetManager)

auto eth0
allow-hotplug eth0
iface eth0 inet static
address 10.10.0.1
netmask 255.255.255.192
post-up service isc-dhcp-server restart
post-down service isc-dhcp-server restart

Similarly after we bring down the interface, we restart the isc-dhcp-server. The
device no longer has the “magic” IP address and the isc-dhcp-server fails to start
and does not serve IP addresses.

3.3.1.7 Wireless

This has a few additional steps. In addition to the isc-dhcp-server, we have to
remove any lingering elements of old, obtained IP addresses from other networks.
This is done with the ip addr flush dev wlan0 in the pre-up line. Additionally,
hostapd has to be started before the interface is online, so this also appears on the
pre-up line.

Wireless DHCP SERVER (NetManager)

auto wlan0
iface wlan0 inet static
pre-up ip addr flush dev wlan0 && service hostapd restart
address 11.11.0.1
netmask 255.255.255.0
post-up service isc-dhcp-server restart
post-down service hostapd stop && service isc-dhcp-server restart
&& ip addr flush dev wlan0

Note: The pre-up line appears before the static IP address is assigned.

Finally, in addition to restarting isc-dhcp-server on the post-down line, we also
stop hostapd, and remove the static IP address with the ip addr flush command.

17

3.3.1.8 Additional Files

There are some additional files in networking/install/ that one may want to
customize.

dhcpd.conf contains the “magic” IP addresses for when the device enters into
DHCP-HOST mode, as well as the range of addresses that will be handed out. Some
of the key values are reproduced:

subnet 10.10.0.0 netmask 255.255.255.0 {
 range 10.10.0.2 10.10.0.17; # Address range of clients
 ...
 option domain-name "ARTEMISE";
 ...
 option routers 10.10.0.1;
 ...
}

hostapd.conf contains details for hosting the wireless access point and needs the
interface and driver set properly:

interface=wlan0
driver=nl80211

isc-dhcp-server includes the interfaces on which one will run the DHCP mode:

INTERFACES="wlan0 eth0"

3.3.2 Platform Dependence
Because Netmanager modifies the network interface files, the user may have to
customize it to their specific system. NetManager comes preconfigured for two
basic systems: 1) Ubuntu 16.04 and 2) snickerdoodle Ubuntu 14.04.

Both versions are fairly generic, and should likely work on most systems. However,
both versions have some scripts or driver specifications specific to the wireless
driver found on the Snickerdoodle board (if these scripts do not exist, they are not
run). The user’s system may have similar driver-specific scripts. See
Sections 3.1.1.5, 3.1.1.6, and 3.1.1.8 for how to specify the driver and interface
name.

3.3.3 Testing and Command-Line Arguments

Running NetManager with the -t argument places it testing mode. Instead of
modifying the /etc/network/interfaces.d/ files, it will create a new directory
test/ and modify eth0 and wlan0 in that directory. Similarly, instead of actually
issuing commands to wpa_cli, it will instead print the command to the screen. This
is useful for automated unit tests.

18

Additionally, one can run NetManager with a higher level of debugging using the
-d argument.

Finally, if the wireless interface is not wlan0, the user can specify this with the -i
argument. A full example would be the following:

python netmanager.py -d -t -i wlp3s0

3.3.4 JSON API

Netmanager runs a TCP server on port 6584 and accepts a JSON-encoded string
for commands. The most recent API can be found in the NetManager class in
netmanager.py. It is reproduced here for convenience.

NetManager - Control and manage network interfaces

Control network interfaces (eth0, wlan0) in access point, DHCP, o
r static modes.

Public API:
This runs on port: 6584 and accepts a JSON string for data (descr
ibed below).

DATE - Set the system datetime
{"DATE": <UNIX TIMESTAMP>}
{"DATE": 1557518882.967937}
To get the unix timestamp: time.time()

ETH0 - Set the ethernet adapter
{"ETH0": [<COMMAND>, <MODE>, <OPTION>]}
{"ETH0": ["DHCP-HOST"]}
{"ETH0": ["DHCP-CLIENT"]}
{"ETH0": ["STATIC", "10.10.0.1", "255.255.255.192"]}
{"ETH0": ["STATIC", "192.168.1.144", "255.255.255.255"]}
{"ETH0": ["DISABLE",]}

WLAN0 - Set the wireless adapter
{"WLAN0": [<COMMAND>, <MODE>, <OPTION>]}
{"WLAN0": ["DHCP-HOST"]}
{"WLAN0": ["DHCP-CLIENT"]}
{"WLAN0": ["STATIC", "10.10.0.1", "255.255.255.192"]}
{"WLAN0": ["STATIC", "192.168.1.144", "255.255.255.255"]}
{"WLAN0": ["DISABLE",]}

WPA_CLI - Send commands to wpa_cli for configuring wireless netwo
rks
NOTE: This uses a list of command, option pairs. The commands are
executed
 in the order in which they appear in the list.

19

NOTE: <idx> is an integer specifying the network index in list_ne
tworks
{"WPA_CLI": [(<COMMAND>, <OPTION>, <OPTION>, ...),]}
{"WPA_CLI": [("scan",),]}
{"WPA_CLI": [("scan_results",),]}
{"WPA_CLI": [("list_networks",),]}
{"WPA_CLI": [("enable_network", <idx>),]}
{"WPA_CLI": [("select_network", <idx>),]}
{"WPA_CLI": [("disable_network", <idx>),]}
{"WPA_CLI": [("remove_network", <idx>),]}
{"WPA_CLI": [("add_network",),]}
{"WPA_CLI": [("set_network", <idx>, key, value),]}
{"WPA_CLI": [("reassociate",),]}

NOTE: Multiple commands may be sent at once:
{"WPA_CLI": [("scan",), ("scan_results",),]}
{"WPA_CLI": [
 ("set_network", 5, "ssid", "blueberry_pie"),
 ("set_network", 5, "psk", "kiss_the_cook"),
 ("set_network", 5, "scan_ssid", True),
]}

NOTE: One can also send multiple types of commands at once:
{
 "WLAN0": ["DHCP"],
 "WPA_CLI": [
 ("set_network", 5, "ssid", "blueberry_pie"),
 ("set_network", 5, "psk", "kiss_the_cook"),
 ("set_network", 5, "scan_ssid", True),
]
}

3.4 ViPERS Python Virtual Environment

Only NetManager is written targeting Python 2.7 with only the standard libraries,
both the ViPERS webserver and Dataserver require Python 3.6+ and third-party
packages. As a result, the ViPERS installer checks for the presence of a Python 3.6
interpreter and if none is found installs one. A virtual environment is then created
using Virtualenvwrapper.29 One can activate this environment with the command
workon vipers, which will make Python 3.6 the default Python and enable all of
the third-party packages. To stop working on the environment, issue the command
deactivate. Note that packages installed in this environment will not be available
to the system Python 2.7 or the system Python 3. Additionally, a symbolic link is
created in /usr/local/vipers/env, which allows the startup scripts for the
webserver and Dataserver to access the virtual environment.

20

Additionally, the software licenses for the core Python packages installed in this
environment are shown in Section 7. These packages may be dependent on
additional packages, whose license can be obtained from the parent package.

4. Case Study: ViPERS-ARTEMIS

The Electric- and Magnetic-Field sensing team at the US Army Combat
Capabilities Development Command (CCDC) Army Research Laboratory (ARL)
has developed a hardware platform called Autonomous Real-Time
Electric/Magnetic Integrated Sensor (ARTEMIS). The latest “mobile” version is a
Snickerdoodle-based IoT electric-power sensing and processing platform.
ViPERS-ARTEMIS is a customization layer on ViPERS that supports this by
interfacing a number of power-processing specific modules and plots. These
custom modules are summarized in Table 6 and discussed in detail in the following
sections. Additionally, ViPERS-ARTEMIS contains software to integrate into the
existing power processing software; distributed Live Animated Multi-Phasor
(dLAMP), published separately as a MATLAB analysis tool.

Table 6 Custom ViPERS-ARTEMIS modules and their descriptions

Module Description
core100.py Set hardware (filter frequencies, log raw data to internal secure digital [SD]

card, etc.) properties.
synchro.py Select data from a range of sources and format it to a standard dLAMP

packet.
relative.py Combine synchrophasors into meaningful relative phasor and power

measurements.
influx.py Store synchrophasors or relative and power phasors to InfluxDB.
extras.py Store GPS, inertial measurement unit (IMU), and battery data to InfluxDB.
proxy.py Use to connect between a data server (synchro.py or relative.py) and a

dLAMP-PC server.
Note: core100.py should successfully exit and show “zombie” status in Dataserver, while all the other
modules are designed to run forever and should show a “running” or “sleeping” status.

4.1 Core100 Module

Purpose: Configure ARTEMIS hardware, field-programmable gate array software,
and Core100 software.

Command-line arguments: --debug

Configuration file: conf/phasors.conf (scheme: toml)

This program waits for Core100 to start then sets initial filtering parameters, data
source, and raw data logging. Table 7 details the fields this module uses.

21

Table 7 Fields used by core100.py in the phasors.conf configuration file

Configuration field Description
hardware/initial_arltx Initial ARLTX command to send. Useful for setting filtering

parameters.
hardware/log_raw_sd1 Enable raw data writing to internal SD card 1.
hardware/log_raw_sd2 Enable raw data writing to internal SD card 2.
hardware/bank Select hardware data source, BNC, BNC with attenuation, or LEMO.

4.2 Synchro Module

Purpose: Connect to data source and standardize output to dLAMP packet.

Command-line arguments: --debug --channels --noise --frequency --rate

Configuration file: conf/phasors.conf (scheme: toml)

This program subscribes to a data source (either the hardware data source [dbus] or
a number of simulated data sources) and then republishes a standardized dLAMP
packet on port 5683. It will attempt to automatically reconnect to the dbus if the
connection is dropped. Table 8 details the fields this module uses, Table 9 describes
the values used for those fields, and Table 10 shows the command-line arguments.

Table 8 Fields used by synchro.py in the phasors.conf configuration file

Configuration field Description
hardware/source Source for data. See Table 9 for possible values.
hardware/broadcast Broadcast data to 0.0.0.0 (all clients) instead of localhost.
hardware/n_channels Number of channels.
hardware/n_harmonics Number of harmonics per channel (currently, only 3 is supported).

Table 9 Values and their interpretation for the source field

Data source Description
dbus Read phasors published on the dbus by Core100.
inl Read phasors published by the INL application.
simulator Create a simulated three-phase and cable sensor signal. The first bank mimics

data from a three-phase source (VA, IA, IB, IC) and the second bank mimics
data from a cable sensor (H1, H2, H3, DDot).

simulator-
3phase

Full three phase connection. The first bank simulates all voltages (VA, VB, VC,
VN) and the second bank all currents (IA, IB, IC, IN). Useful for simulating
DELTA or WYE circuits.

none No data are read or published.

22

Table 10 Command-line arguments and their interpretation for the module

Command-line
argument Description

channels Number of simulated phasor channels to produce.
noise Magnitude noise of simulated phasors (in percent).
frequency Standard deviation of frequency noise of simulated phasors (in

Hz).
rate Rate at which simulated phasors are produced.

4.3 Relative Module

Purpose: Convert raw synchrophasors into physically meaningful relative and
power phasors.

Command-line arguments: --debug

Configuration file: conf/phasors.conf (scheme: toml)

This subscribes to the synchrophasors published on localhost:5683, transforms
them to relative phasors and publishes those, their reference synchrophasor, and the
corresponding power phasor, frequency, and total harmonic distortion value on port
5684. Table 11 details the fields this module uses.

Table 11 Fields used by relative.py in the phasors.conf configuration file

Configuration field Description
hardware/broadcast Broadcast data to 0.0.0.0 (all clients) instead of localhost.
hardware/bank Used for scaling synchrophasors to physical units.
channels Used for scaling synchrophasors to physical units.
circuits Used for constructing referenced relative phasors and corresponding

power phasors.

The circuits are scaled according to the following equation:

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚∗𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)
(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∗𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)

, (1)

where the factors are pulled from the configuration file channels fields as described.

Channel scaling to physical units is set in the [[channels]] array (Table 12) and
phase references are set in the [[circuits]] array (Table 13). The received data and
the transmitted data should be in the form of level 10 or 11 dLAMP phasor packets.

23

Table 12 Fields of the [[channels]] list of dictionaries in the phasors.conf configuration
file

Channel
field Description

name The name of the channel. This is arbitrary, although channel names can contain
neither a dot (“.”) or colon (“:”) and should be unique to avoid data loss in
InfluxDB.

type Can be one of; “current”, “voltage”, “hfield”, “efield”, “undefined”
impedance “50” or “1M”, which sets the impedance factor to 1 or 2, respectively.
sensitivity The numeric component of the sensor sensitivity
units The units of the sensor sensitivity.
multiplier Arbitrary numeric multiplier. Useful for voltage/current transformers.
hw_channel Integer identifier to the corresponding hardware channel (zero indexed).

Table 13 Fields of the [[circuits]] list of dictionaries in the phasors.conf configuration
file.

Circuit
field Description

name The name of the circuit. This is arbitrary, although channel names can contain
neither a dot (“.”) or colon (“:”) and should be unique to avoid data loss in
InfluxDB.

wiring One of “3WYE”, “3DELTA”, “SINGLE”, “SPLIT” (currently unused).
signal An array of signal channels - this maps to the hw_channel used above.
reference An array of reference channels - this maps to the hw_channel used above. This

must be the same length as the signal array.
phase An additional phase angle to subtract from the signal channel. This must be the

same length as the signal array.

Once the channels are scaled, the signal and reference channels are specified. The
phase of the reference channel(s) is then subtracted from the signal channel(s). This
phase referencing transforms a synchrophasor into a relative phasor. Additionally,
the power phasor is produced by multiplying the relative phasors magnitude by the
magnitude of the reference channel. The combination of signal and reference
channels is called a circuit, and 0-N circuits may be created.

4.4 Influx Module

Purpose: Listen to dLAMP phasor packets (either from synchro.py or
relative.py) and store the results in InfluxDB.

Command-line arguments: --debug --address --port

24

Configuration file: conf/influx.conf (scheme: toml)

By default this module listens on localhost:5684 for dLAMP Level 10 or 11
packets, parses the metadata from the ssn_name and channel names and inserts it
into InfluxDB. The address and port can be specified with command-line
arguments, allowing one to use this program to insert data from another dLAMP
phasor source. For example, one can run synchro.py or relative.py on an
ARTEMIS unit and use this program on a PC on the local area network to insert
data into a local database, or a database in the cloud. Table 14 details the fields this
module uses.

Table 14 Fields used by influx.py in the influx.conf configuration file.

Configuration
field Description

local/host Hostname for local InfluxDB database (default: “localhost”).
local/port Port for local InfluxDB database (default: 8086).
local/database InfluxDB database to publish measurements to.
local/username Username for authentication against the local InfluxDB database.
local/password Password for authentication against the local InfluxDB database.
influx/use_line Use influxdb-python’s default line protocol interpreter (more robust, but

more computation) rather than the default string format method.
influx/interval Interval for pushing data to Influx. Set this to zero to push data on every

sample received.
influx/resample Average over this period (in seconds). Note that averaging is done by

real/imaginary components, so this can yield incorrect results for rapidly
varying frequencies.

4.5 GPS / IMU / Battery Modules

Purpose: Store GPS, IMU, and battery information to InfluxDB.

Command-line arguments: --debug, --interval

Configuration file: conf/influx.conf (scheme: toml)

These three modules, gps.py, imu.py, and battery.py, log GPS, IMU (roll, pitch,
yaw, and quaternion, and 9-degree-of-freedom), and battery data, respectively. The
interval for each can be specified independently. Table 15 details the fields this
module uses.

25

Table 15 Fields used by extras.py in the influx.conf configuration file

Configuration field Description
local/host Hostname for local InfluxDB database (default: “localhost”).
local/port Port for local InfluxDB database (default: 8086).
local/database InfluxDB database to publish measurements to.
local/username Username for authentication against the local InfluxDB database.
local/password Password for authentication against the local InfluxDB database.

4.6 Replication Module

Purpose: Duplicate measurements from the local InfluxDB to a cloud instance of
InfluxDB.

Command-line arguments: --debug

Configuration file: conf/influx.conf (scheme: toml)

This module replicates data stored in the local database to data stored in a remote
database. It queries the last size points from each measurement and then attempts
to POST them to a cloud instance of InfluxDB. If successful, it then marks that
region in a separate “replication” measurement that tracks what points have been
replicated. On future passes, any successfully replicated regions from the
“replication” measurement are excluded from the local data query. This allows both
newer and older points to be replicated on the second pass. After the second pass,
any overlapping regions of replication are combined into one active region.
Eventually, this scheme allows all historical data to be replicated while
simultaneously ensuring that the most recent data are also replicated. Table 16
details the fields this module uses.

Table 16 Fields used by replication.py in the influx.conf configuration file

Configuration field Description
local/host Hostname for local InfluxDB database (default: “localhost”).
local/port Port for local InfluxDB database (default: 8086).
local/database InfluxDB database to publish measurements to.
local/username Username for authentication against the local InfluxDB database.
local/password Password for authentication against the local InfluxDB database.
cloud/ Same parameters as local, but for the cloud InfluxDB instance.
replication/ interval Interval for replicating points.
replication/size How many points to query when replicating data.
replication/measurements List of measurement names to replicate.

26

4.7 Proxy Module

Purpose: Connect output from synchro.py or relative.py to dLAMP-PC.

Command-line arguments: --source --destination --port

Configuration file: <NONE>

Since synchro.py and relative.py transmit data by hosting a TCP server, and
dLAMP-PC connects to data sources by hosting a TCP server and sending
connection information, the two cannot natively connect to one another. This
program solves that by creating two clients and passing data between them. The
first client connects to source port 5684 (relative phasors) by default and transmits
data to the second client, specified by the IP address destination and port, which
are specified by the command-line arguments.

4.8 Raw Data Module/API

Purpose: Allows users to remotely request and data from raw data files stored on
the ARTEMIS sensors.

Command-line arguments: <NONE>

Configuration file: <NONE>

This API provides users with the ability to remotely request raw data from any time
period, file, or storage location on the ARTEMIS sensor unit. After a request is
made, this API will read data blocks from either one file or multiple files and
produce a double array containing all of the raw data collected during the requested
time period. If collecting data from multiple files, this API ensures that overlapping
data are not concatenated. This API also allows users to stream and process raw
data packets from a user datagram protocol or TCP stream.

From the ViPERS web application, users are able to download full files from both
the internal SD cards and an external hard drive (HDD) if one is attached, as well
as analyze both live and historical data from a raw data analyzer tool. This tool both
provides a plot of the raw data, as well as some basic calculations for average
frequency, root-mean-squared (RMS) amplitude, and total harmonic distortion
(THD) to help the user further analyze the raw data.

4.9 Backup to HDD Module

Purpose: Allows users to remotely toggle data backups to a hard disk whenever one
is attached to ARTEMIS sensor.

27

Command-line arguments: <NONE>

Configuration file: <NONE>

This module, once started, either via command line or the ViPERS web application,
first detects whether an external HDD is attached to the ARTEMIS sensor unit. If
one is attached, it will begin backing up files from local SD cards to an HDD. This
module waits until there is 4-GB worth of data stored on the SD cards and then
concatenates these files into one large file. This module only concatenates files
together if they occur one after the other. This feature allows users to determine if
there are any time periods where no raw data were collected by the sensor. This
module also writes header files for each file copied to the HDD so that they can be
processed using the dLAMP software at a later time.

This module should be stopped only from either the ViPERS web application or by
issuing the kill command with the –SIGTERM argument in the command line. This
will ensure that the module exits cleanly, and finishes copying the current file it is
working on to the HDD. If the HDD is just ejected from the device, this program
will wait for a new HDD to be attached in order to continue the backup. However,
some files on the original HDD may be corrupted as they have not been properly
flushed (data written and files closed) before ejecting the disk.

4.10 dLAMP Integration

Purpose: Provide a Pythonic API for encoding and decoding standardized dLAMP
binary data.32

Command-line arguments: <NONE>

Configuration file: <NONE>

The dLAMP Python module was designed to encode data in a standardized binary
format (the dLAMP data standard). It provides a Pythonic API for formatting
arbitrary data as binary, hiding the low-level operations of converting Python data
to the dLAMP binary format and back. Higher-level modules such as the
synchro.py, relative.py, and influx.py use the dLAMP module as a backend
for communication. Due to the flexibility of the dLAMP data packets, the dLAMP
module can be used for communication between different embedded systems or
other PCs. The end user is presented with a file-like object33 that provides well-
known methods such as read() and write(), as well as classes that encode
provided data into specific dLAMP formats. This file-like object can write either to
a binary file or a TCP socket making communication easy. Other Python features

28

such as context manager functionality are provided to make usage as simple as
possible.

5. Troubleshooting

Occasionally either the web application, the plots, networking, or the InfluxDB
database will fail to perform. This section discusses some common issues with
each.

5.1 Common Webapp Issues

The log file is located at /var/run/vipers/vwebserver.log. The application
may be restarted with sudo service vwebserver restart. On Ubuntu 16.04
and later the log may also be viewed with; sudo journalctl -u vwebserver.

Unless the system date and time are set to within a few years of the current date and
time, the application will fail to start. Simply update using network or GPS time
and reconnect. Due to this issue, the ViPERS installer includes the fake-hwclock
package. Once network or GPS time is obtained, this package writes that to disk so
that after a system restart, the time is reset to the last known time. This allows the
web application to start and from there one can adjust to the correct time.

5.2 Common Dataserver Issues

The log file is located at /var/run/vipers/vdataserver.log. The application
may be restarted with sudo service vdataserver restart. On Ubuntu 16.04
and later the log may also be viewed with; sudo journalctl -u vdataserver.

Dataserver is fairly robust and no issues have been reported yet.

The main log file contains both the log for Dataserver and the bokeh serve
subprocess. Other processes have their log files piped to unique files in
vipers/dataserver/modules/logs.

When the “zombie” state is shown, this can either indicate a successful exit or a
crash. Unfortunately, there is no way of differentiating between the two.

5.3 Common NetManager Issues

The log file is located at /var/run/vipers/vnetmanager.log. The application
may be restarted with sudo service vnetmanager restart. On Ubuntu 16.04
and later the log may also be viewed with; sudo journalctl -u vnetmanager.

29

NetManager was designed to run under the system Python, which is still Python 2.7
for most distributions. When run under Python 3, some of the exception classes
have changed names and will fail.

When setting the date, one may receive a “NAK” message despite the action being
carried out.

Depending on how long the system takes to execute “ifup”, one may need to extend
the timeouts.

One can also manually execute wpa_cli commands. A summary of wpa_cli
commands can be found online.34

5.4 Common InfluxDB Issues

The log file is located at /var/log/influxdb/influxdb.log. The application
may be restarted with sudo service influxdb restart. On Ubuntu 16.04 and
later the log may also be viewed with; sudo journalctl -u influxdb. One can
replace influxdb in the above with telegraf, chronograf, or kapacitor to view
the corresponding log or restart the corresponding service.

The InfluxDB documentation35 is quite extensive should be a primary source of
information for understanding and debugging the database.

When writing data, the first write to a field determines the data type (string, integer,
Boolean, or float). Future writes will be ignored if they do not match this type. This
can be an issue if the data is floating point, but the first measurement is a zero
represented as an integer—all subsequent writes will be ignored! Therefore, it is
helpful to explicitly type cast before formatting the insert string.

InfluxDB can consume a tremendous amount of memory on startup. This is when
it scan previous write-ahead-log (wal) files and attempts to write their contents into
the database. This is especially pronounced when using the inmem index. Switching
to the tsi1 index stores the cardinality index on the disk and improves memory
usage.

If the system was shut down while writing, one of these files can become corrupted.
On startup, InfluxDB will repair the first instance of this corruption, but if another
corrupted file is encountered it will crash. As a result, either the corrupted files must
be removed, or InfluxDB must be continuously restarted until all files are repaired.

If Chronograf is not showing any data under the “Explore” tab, first ensure that a
connection has been created under the “Configuration” tab. If no source is still
showing, then try another browser or clearing the browser cache.

30

6. Software Licenses

Tables 33 and 34 list the core software and their licenses used in this project.

Table 17 Core software, their license, and their license file

Software License URL
Python BSD-Style https://docs.python.org/3/license.html
Flask BSD https://github.com/mbr/flask-bootstrap/blob/master/LICENSE
nginx BSD 2-clause http://nginx.org/LICENSE
Bootstrap MIT https://github.com/twbs/bootstrap/blob/v4.1.3/LICENSE
Telegraf MIT https://github.com/influxdata/telegraf/blob/master/LICENSE
InfluxDB MIT https://github.com/influxdata/influxdb/blob/master/LICENSE
Chronograf MIT https://github.com/influxdata/chronograf/blob/master/LICENSE
Kapacitor MIT https://github.com/influxdata/kapacitor/blob/master/LICENSE
wpa_cli GPL 2, BSD https://linux.die.net/man/8/wpa_cli
hostapd BSD https://w1.fi/cgit/hostap/plain/hostapd/README
isc-dhcp-server MPL 2.0 https://www.isc.org/licenses/

Table 18 Python packages, their license, and their license file.

Package License URL
Bokeh New BSD https://github.com/bokeh/bokeh/blob/master/LICENSE.txt
Flask-Bootstrap4 BSD https://github.com/mbr/flask-bootstrap/blob/master/LICENSE
Flask-Login MIT https://github.com/maxcountryman/flask-

login/blob/master/LICENSE
Flask-Migrate MIT https://github.com/miguelgrinberg/Flask-

Migrate/blob/master/LICENSE
Flask-
SQLAlchemy

BSD https://github.com/mitsuhiko/flask-
sqlalchemy/blob/master/LICENSE

Flask-WTF BSD https://github.com/lepture/flask-wtf/blob/master/LICENSE
gps3 BSD https://pypi.org/project/gps/
gunicorn MIT https://pypi.org/project/gunicorn/
influxdb MIT https://github.com/influxdata/influxdb-

python/blob/master/LICENSE
markdown2 MIT https://github.com/trentm/python-

markdown2/blob/master/LICENSE.txt
numpy BSD http://www.numpy.org/license.html
pandas BSD https://github.com/pandas-dev/pandas/blob/master/LICENSE
psutil BSD https://github.com/giampaolo/psutil/blob/master/LICENSE
pydbus LBGLv2.1+ https://github.com/LEW21/pydbus/blob/master/LICENSE
pytest MIT http://doc.pytest.org/en/latest/license.html
virtualenvwrapper MIT https://pypi.org/project/virtualenvwrapper/
Werkzeug BSD https://pypi.org/project/Werkzeug/
WTForms BSD https://github.com/wtforms/wtforms/blob/master/LICENSE.rst

31

7. Conclusion

The CCDC ARL is always looking to make transitions of cutting-edge technology
available to the Warfighter. As more of this technology requires powerful,
embedded computers, both researchers and Warfighters need a flexible platform on
which they can collaborate. ViPERS solves this need by providing its three key
services. Dataserver provides a platform on which the researcher can develop
software and visualizations. The webserver provides a portable interface that can
be used with desktops, laptops, tablets, or mobile devices and provides both the
researcher and Warfighter a way to live, real-time, streaming data. Tying
everything together is NetManager, which allows the networking interface of the
IoT device to be configured, adapting it to either a research, prototype, or field
environment. We expect that this software will rapidly accelerate technology
development, demonstration, and transition.

32

8. References

1. Foundation RP. Teach, Learn, and Make with Raspberry Pi Raspberry Pi.
[accessed 2019 Sep 12]. https://www.raspberrypi.org/.

2. krtkl. Snickerdoodle | krtkl. [accessed 2019 Sep 12].
https://krtkl.com/snickerdoodle/.

3. BeagleBoard.org. BeagleBoard.Org - bone. [accessed 2019 Sep 12].
https://beagleboard.org/bone.

4. Intel. Intel NUC. [accessed 2019 Sep 12].
https://www.intel.com/content/www/us/en/products/boards-kits/nuc.html.

5. The Python Software Foundation. Welcome to Python.Org. [accessed 2019
Sep 12]. https://www.python.org/.

6. Cass S. The top programming languages 2019 - IEEE Spectrum. [accessed
2019 Sep 12]. https://spectrum.ieee.org/computing/software/the-top-
programming-languages-2019.

7. Foundation DS. Django. [accessed 2019 Sep 10].
https://www.djangoproject.com/.

8. Mönnich A, Ronacher A, Lord D, Unterwaditzer M. Flask. Flask. [accessed
2019 Sep 12]. https://palletsprojects.com/p/flask/.

9. Chesneau B. Gunicorn - Python WSGI HTTP server for UNIX. [accessed 2019
Sep 12]. https://gunicorn.org/.

10. NGINX Inc. NGINX | High performance load balancer, web server, & reverse
proxy. [accessed 2019 Sep 12]. https://www.nginx.com/.

11. NumFOCUS. Matplotlib: Python plotting Matplotlib 3.1.1 documentation.
[accessed 2019 Sep 12]. https://matplotlib.org/.

12. The QT Company. Qt for Python | The official Python bindings for Qt.
[accessed 2019 Sep 12]. https://www.qt.io/qt-for-python.

13. Plotly. Modern analytic apps for the enterprise - Plotly. [accessed 2019 Sep
12]. https://plot.ly/.

14. Plotly. Dash user guide and documentation - Dash by Plotly. [accessed 2019
Oct 21]. https://dash.plot.ly/.

https://www.raspberrypi.org/
https://krtkl.com/snickerdoodle/
https://beagleboard.org/bone
https://www.intel.com/content/www/us/en/products/boards-kits/nuc.html
https://www.python.org/
https://spectrum.ieee.org/computing/software/the-top-programming-languages-2019
https://spectrum.ieee.org/computing/software/the-top-programming-languages-2019
https://www.djangoproject.com/
https://palletsprojects.com/p/flask/
https://gunicorn.org/
https://www.nginx.com/
https://matplotlib.org/
https://www.qt.io/qt-for-python
https://plot.ly/
https://dash.plot.ly/

33

15. Bird S, Canvan L, Hulsey C, Paprocki M, Rudiger P, Van de Ven B. Welcome
to Bokeh. Bokeh 1.3.4 documentation. [accessed 2019 Sep 12].
https://bokeh.pydata.org/en/latest/.

16. Oracle. MySQL. [accessed 2019 Sep 12]. https://www.mysql.com/.

17. PostgreSQL. PostgreSQL The world’s most advanced open source database.
[accessed 2019 Sep 10]. https://www.postgresql.org/.

18. SQLite Consortium. SQLite home page. [accessed 2019 Sep 12].
https://www.sqlite.org/index.html.

19. Oracle. Oracle Berkeley DB downloads. [accessed 2019 Sep 12].
https://www.oracle.com/database/technologies/related/berkeleydb-
downloads.html.

20. redislabs. Redis. [accessed 2019 Sep 12]. https://redis.io/.

21. The OpenTSDB Authors. OpenTSDB - a distributed, scalable monitoring
system. [accessed 2019 Sep 10]. http://opentsdb.net/.

22. Timescale Inc. Timescale. [accessed 2019 Sep 10].
https://www.timescale.com/

23. InfluxData. InfluxData The leading platform for monitoring & analytics.
[accessed 2019 Sep 10]. https://www.influxdata.com/products/.

24. Freedman M. TimescaleDB vs. InfluxDB: Purpose built differently for time-
series data. Timescale Blog. 2019 [accessed 2019 Sep 10].
https://blog.timescale.com/blog/timescaledb-vs-influxdb-for-time-series-
data-timescale-influx-sql-nosql-36489299877/.

25. Grafana Labs. Grafana. [accessed 2019 Sep 12]. https://grafana.com/.

26. Malinen J. Wpa_cli WPA client - Linux man page. [accessed 2019 Sep 10].
https://linux.die.net/man/8/wpa_cli.

27. Malinen J. Hostapd IEEE 802.11 AP, IEEE
802.1X/WPA/WPA2/EAP/RADIUS Authenticator. [accessed 2019 Sep 10].
https://w1.fi/hostapd/.

28. Ubuntu Wiki. Isc-dhcp-server. [accessed 2019 Sep 10].
https://help.ubuntu.com/community/isc-dhcp-server.

29. Bird S, Canvan L, Hulsey C, Paprocki M, Rudiger P, Van de Ven B. Running
a Bokeh Server Bokeh 1.3.4 documentation. [accessed 2019 Sep 12].
https://bokeh.pydata.org/en/latest/docs/user_guide/server.html.

https://bokeh.pydata.org/en/latest/
https://www.mysql.com/
https://www.postgresql.org/
https://www.sqlite.org/index.html
https://www.oracle.com/database/technologies/related/berkeleydb-downloads.html
https://www.oracle.com/database/technologies/related/berkeleydb-downloads.html
https://redis.io/
http://opentsdb.net/
https://www.timescale.com/
https://www.influxdata.com/products/
https://blog.timescale.com/blog/timescaledb-vs-influxdb-for-time-series-data-timescale-influx-sql-nosql-36489299877/
https://blog.timescale.com/blog/timescaledb-vs-influxdb-for-time-series-data-timescale-influx-sql-nosql-36489299877/
https://grafana.com/
https://linux.die.net/man/8/wpa_cli
https://w1.fi/hostapd/
https://help.ubuntu.com/community/isc-dhcp-server
https://bokeh.pydata.org/en/latest/docs/user_guide/server.html

34

29. Hellmann D. Virtualenvwrapper 4.8.5.Dev5 virtualenvwrapper 4.8.5.Dev5
documentation. [accessed 2019 Sep 12].
https://virtualenvwrapper.readthedocs.io/en/latest/.

30. Rodola G. Psutil documentation psutil 5.6.4 documentation. [accessed 2019
Sep 12]. https://psutil.readthedocs.io/en/latest/.

31. Preston-Werner T. Toml-lang/toml. 2019 [accessed 2019 Sep 12].
https://github.com/toml-lang/toml.

32. Parks B, Hull D. US Army Research Laboratory Live Animated Multi Phasor
(ARL-LAMP) analysis software. Adelphi Laboratory Center (MD): Army
Research Laboratory (US); 2015 Sep. Report No.: ARL-TR-7436.

33. The Python Software Foundation. Glossary — Python 3.8.0 Documentation.
[accessed 2019 Oct 2]. https://docs.python.org/3/glossary.html#term-file-
object.

34. McLeod R. WPA CLI commands. Gist. [accessed 2019 Sep 10].
https://gist.github.com/penguinpowernz/1d36a38af4fac4553562410e0bd8d6c
f.

35. influxdata. InfluxDB 1.7 documentation | InfluxData Documentation.
[accessed 2019 Sep 12]. https://docs.influxdata.com/influxdb/v1.7/.

https://virtualenvwrapper.readthedocs.io/en/latest/
https://psutil.readthedocs.io/en/latest/
https://github.com/toml-lang/toml
https://docs.python.org/3/glossary.html#term-file-object
https://docs.python.org/3/glossary.html#term-file-object
https://gist.github.com/penguinpowernz/1d36a38af4fac4553562410e0bd8d6cf
https://gist.github.com/penguinpowernz/1d36a38af4fac4553562410e0bd8d6cf
https://docs.influxdata.com/influxdb/v1.7/

35

List of Symbols, Abbreviations, and Acronyms

API application programming interface

ARL Army Research Laboratory

ARTEMIS Autonomous Real-Time Electric/Magnetic Integrated Sensor

CCDC US Army Combat Capabilities Development Command

DAQ data acquisition

DHCP Dynamic Host Configuration Protocol

dLAMP distributed Live Animated Multi-Phasor

DOD Department of Defense

GPS global positioning system

HDD hard drive

IMU inertial measurement unit

IoT Internet of Things

IP Internet Protocol

JSON JavaScript Object Notation

LAN local area network

PC personal computer

SBC single-board computer

SD secure digital

SQL Structured Query Language

SSH secure shell

SWaP size, weight, and power

TCP Transmission Control Protocol

TOML Tom’s Obvious Markup Language

UDP User Datagram Protocol

ViPERS Visualization and Processing for Embedded Research Systems

36

WAN wide area network

WSGI webserver gateway interface

37

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 1 CCDC ARL
 (PDF) FCDD RLD CL
 TECH LIB

 2 CCDC ARL
 (PDF) FCDD RLS SP
 K E CLAYTOR
 FCDD RLS S
 A GEORGE

	List of Figures
	List of Tables
	1. Introduction/Motivation
	2. Survey
	2.1 Language
	2.2 Webservers
	2.3 Plotting
	2.4 Databases
	2.5 Networking

	3. Architecture
	3.1 ViPERS Webserver
	3.1.1 Viewing the Web Application
	3.1.2 Running the Webserver

	3.2 ViPERS Dataserver
	3.2.1 Implementation Details
	3.2.2 Process Management
	3.2.3 Bokeh Management
	3.2.4 Configuration File
	3.2.5 Python API
	3.2.6 JSON API

	3.3 ViPERS NetManager
	3.3.1 Implementation Details
	3.3.1.1 Class Specifics
	3.3.1.2 Configs
	3.3.1.3 Disable
	3.3.1.4 Static
	3.3.1.5 DHCP-client
	3.3.1.6 DHCP-HOST Ethernet
	3.3.1.7 Wireless
	3.3.1.8 Additional Files

	3.3.2 Platform Dependence
	3.3.3 Testing and Command-Line Arguments
	3.3.4 JSON API

	3.4 ViPERS Python Virtual Environment

	4. Case Study: ViPERS-ARTEMIS
	4.1 Core100 Module
	4.2 Synchro Module
	4.3 Relative Module
	4.4 Influx Module
	4.5 GPS / IMU / Battery Modules
	4.6 Replication Module
	4.7 Proxy Module
	4.8 Raw Data Module/API
	4.9 Backup to HDD Module
	4.10 dLAMP Integration

	5. Troubleshooting
	5.1 Common Webapp Issues
	5.2 Common Dataserver Issues
	5.3 Common NetManager Issues
	5.4 Common InfluxDB Issues

	6. Software Licenses
	7. Conclusion
	8. References
	List of Symbols, Abbreviations, and Acronyms

