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Abstract

In this thesis, we explore full memory safety and the various intricacies involved. We
analyze existing memory safety techniques in both hardware and software and their
many different goals. This task involves determining the limits of the protections
guaranteed by these different protection systems, regardless of whether they were
explicitly or implicitly stated. It is demonstrated that the common software technique
of protecting only allocation bounds does not provide nearly enough of a barrier for
attackers. Then, we go beyond particular schemes and examine the limitations of
languages, C in particular. We discover many corner cases and ambiguities that
prevent even the best possible protection system from providing full memory safety
in the context of the C language specification. We also collect some results for the
prevalence of these issues, present approaches to further analyze them, and consider
how they might extend into other languages or systems.
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Chapter 1

Introduction

Memory corruption is a classic problem that has plagued many systems and served
as a reliable source of exploits over the years [55]. Low level languages, such as C
and C++, which allow direct control of memory provide ample room for introducing
vulnerabilities through specification ambiguities, permitted unsafe usage, and their
general flexibility [44,46,47]. In fact, some of these issues make any system that honors

the language specification incapable of providing complete memory safety [11].

1.1 Memory Safety

There is a large amount of literature about providing memory safety [55]. However,
the guarantees provided by a full memory safe system are not necessarily well-defined.
Many systems have tried to provide only partial safety with the goal of increasing the
difficulty for exploit development. This goal also applies to commonly deployed pro-
tection schemes such as ASLR and WéX. ASLR attempts to make it harder to obtain
library addresses by randomizing their location in memory. WéX instead focuses on

avoiding code injection by preventing any writeable data from being executed as code.

In general, memory safety issues can be classified as spatial or temporal. To
provide complete memory safety, a system should be able to provide both complete

spatial and temporal safety.

13



1.1.1 Spatial

Spatial memory safety involves preventing memory accesses from going out of their
intended bounds. For example, a pointer to an array should not be able to access
memory outside of that array as shown in Figure 1-1. In some cases, the context of

a pointer or access is critical in determining the correct bounds.

1 |typedef struct {
3 char fool[32];
5 |} mystruct;

7 |mystruct s;
8 char* arr = s.foo;

10 |char a = arr([-8]; // Inwalid
11 |char b = arr[0]; // Valid
12 |char ¢ = arr([16]; // Valid
13 |char d = arr([40]; // Inwvalid

Figure 1-1: An example of accesses that should be valid or invalid to guarantee
spatial safety.

1.1.2 Temporal

Temporal memory safety involves preventing memory accesses to an incorrect or in-
valid object in the context of object allocation and deallocation. For example, a
pointer to an object should not allow access to the underlying memory after the ob-
ject has been deallocated (commonly referred to as use after free). This idea is shown

in Figure 1-2.

1.2 Defense Systems

It is common for defense systems to focus only on either spatial safety or temporal

safety [15,24,34,35]. Furthermore, there have been hardware-only, software-only, and
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1 |char* ptr = malloc(64);

3 |for (int i=0; i < 64; i++) {
4 ptrlil = °0’; // Valid

5 |}
6 |ptr[20] = ’a’; // Valid
7 |ptrl[42] = °b’; // Valid
s |ptr[30] == ’c’; // Valid

10 |free(ptr);
11
12 |for (int i=0; i < 64; i++) {
13 ptrlil = °1°; // Invalid

14 }
15 |ptr[20] = °x’; // Invalid
16 |ptrl[42] = ’y’; // Invalid
17 |ptr[30] == ’z’; // Invalid

Figure 1-2: An example of accesses that should be valid or invalid to guarantee
temporal safety.

hybrid designs. Each choice has its own pros and cons, but only a hybrid solution

can independently provide complete memory safety across the entire stack.

1.2.1 Hardware Systems

On the hardware side, defense systems have attempted to make safety guarantees
about execution and memory in a variety of ways. For example, one main approach
is to tag memory with metadata that can be used to verify correctness in some
way [17,18,40,59,64]. Even within this grouping, tagged architectures, there is a
divide between approaches that choose to tag all data in memory [18] and those that
tag only certain parts such as pointers [59|. There are other key dimensions that
distinguish tagged architectures from each other including policy type, compatibility,
and trusted computing base (TCB).

There are performance benefits to providing memory safety through hardware,
but there are also limits on expressiveness and dynamic policy control. Both of these
aspects are better handled through software which can use the mechanisms provided

by hardware to create higher-level policies.
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1.2.2 Software Systems

By comparison, software techniques generally suffer from greater performance over-
head [2,26,34,35,62|. However, they make it easier to maintain backwards compati-
bility and are simpler to deploy.

Without hardware support for memory safety, software schemes can at best try to
encapsulate their protections in a way that isolates their interaction with inherently
unsafe hardware interaction. Current systems architecture makes this complicated
since the kernel, which serves as the hardware interaction layer, tends to have the

greatest privileges of any software subsystem.

1.3 Limitations of C

However, even a system that intends to provide full memory safety regardless of the
overhead will be limited by the language in which it operates. For example, C has
an abundance of edge cases that are difficult or impossible to secure if the system

intends to follow the C standard.

1.4 Beyond C

While completely securing C in an automated fashion is impossible, corner cases that
similarly limit what protection can be provided also exist in other languages. Thus,
a system that intends to provide full memory safety needs to carefully consider its

software base and its limitations.
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Chapter 2

Hardware Defenses

2.1 Overview

There have been a variety of proposals that rely on hardware in order to provide
memory safety [18,24,28,53,60,61]. Some of these are pure hardware schemes while
others provide different levels of integration with the software stack. Hardware mech-
anisms can achieve better performance than software mechanisms but also lack the
level of control offered by software mechanisms. Furthermore, low-level mechanisms
can sometimes make it difficult to express more abstract guarantees. For example, a
hardware system may provide coarse-grained protections of memory regions, but it
may not be clear in the context of the software stack how it can provide more general
guarantees or policies. Overall, there has been a trend favoring hybrid hardware-
software approaches over pure hardware approaches in order to exploit the benefits

of each type of approach.

2.2 Tagged Architectures

Tagged machines date back to at least the early 70s [37], however there has been an
increasing interest in recent times. The core idea is that some or all parts of memory
have an associated tag which provides extra information about the piece that can

be used when verifying validity. There are many different aspects to this idea, such
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Figure 2-1: Dimensions of a tagged architecture design.

as the granularity of the tags, how many extra bits of information are stored, what
words are tagged, how are tags verified, etc. These design choices directly impact the

performance and compatibility of these architectures.

2.2.1 Dimensions

There are many details that vary between different tagged architectures, but a smaller
classification based on four features gives a good overall idea of their distinctions.
These four features are policy type, TCB, protected entity, and compatibility. Ta-
ble 2.1 shows the corresponding features and evaluation method for tagged architec-

tures over the years.

Policy Type

A policy serves as the key component in providing security guarantees by defining
what operations are allowed or disallowed. The granularity of the filter definition can
be broad or specific depending on the particular policy. Architectures may choose

to directly provide mechanisms to provide certain policies or delegate the task to
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Table 2.1: Tagged architectures with their design dimensions and evaluation
methods sorted by the publication year.

Architecture Year | Policy Type Protected Software Evaluation
Entity Compatibility
Goals
Dover |54 2017 Configurable Data Source FPGA
HDFT |51 2016 Isolation Data Full FPGA
Taxi [22, 23] 2015 | Memory Safety References Source Simulator
PUMP [16,18] 2015 Configurable Data None Simulator
CHERI [58,59,61] 2014 Configurable References Full FPGA
SPARC M7 2014 | Memory Safety References Full Processor
SSM [40,43]
WatchdogLite [32,33] | 2014 | Memory Safety References Full Simulator
Intel MPX [24] 2013 | Memory Safety: | References Full Processor
Spatial
Low-Fat Pointers [28] | 2013 | Memory Safety | References None FPGA
SAFE [4,17] 2012 Configurable Data None FPGA
DataSafe [10] 2012 Isolation Data Full Simulator
Harmoni [14] 2012 Configurable Data None FPGA
Shioya, et al. [48] 2011 Isolation Data None Simulator
SIFT [39] 2011 Configurable Data Full Processor Core
TIARA [49] 2009 Configurable Data None Theoretical
DIFT Coprocessor [27] | 2009 Configurable Data Full FPGA
HardBound [15] 2008 | Memory Safety: | References Full Simulator
Spatial
Loki [63] 2008 Isolation References Full FPGA
FlexiTaint [57] 2008 Configurable Data Full Simulator
SECTAG [3] 2007 Configurable Data Full Simulator
Raksha [13] 2007 Configurable Data Full FPGA
SecureBit2 [41] 2006 | Memory Safety: | References Full Emulator
Inter-Process
Minos [12] 2004 | Memory Safety Data Full Emulator
DIFT [53] 2004 | Memory Safety Data Full Simulator
RIFLE [56] 2004 Isolation Data Source Software
Estimation
AEGIS [52] 2003 Isolation Data None Simulator
Mondriaan [60] 2002 Configurable Data Full Simulator
Aries [7] 2001 Isolation Data None Theoretical
XOM |29 2000 Isolation Data Full Simulator
M-Machine [§] 1994 Isolation References None Whole System
KCM [5] 1989 | Memory Safety Data Source Processor
SPUR [64] 1987 | Memory Safety Data None Simulator
Lisp Machine [31] 1985 | Memory Safety Data None Whole System
HEP [50] 1982 Isolation Data None Whole System
Burroughs [38] 1973 | Memory Safety Data None Whole System
software.

The types of policies can be memory safety policies, isolation policies, or config-

urable as some combination of both. The way these policies are implemented varies
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greatly between different tagged architectures. For example, isolation is sometimes
provided through information flow control (IFC) with a corresponding controlled com-
munication mechanism. In other cases, memory safety can be used as a way to provide

isolation.

Trusted Computing Base (TCB)

A trusted computing base (TCB) can be critical for managing and configuring tags
in a tagged architecture. The particular components in the TCB determine the
impact that bugs in different parts of the system will have on the safety guarantees
provided by the whole system. The consequences can range from completely voiding
all guarantees to having no effect. The TCB is often an integral part of a tagged
architecture’s design and can be directly influenced by other design choices (e.g.

integration with the MMU).

Table 2.2 shows a compilation of the architectures with their corresponding TCB.
A component is not considered to be part of the TCB if the guarantees provided by
the architecture remain valid when that component is compromised. Furthermore,
designs which only partially include certain components (e.g. the kernel) in their

TCB are listed as having that component in their TCB.

Protected Entity

Tagged architectures choose to protect either data or references. For data protection
schemes, tags follow all words through registers and are used to control where words
are stored. Reference protection schemes instead use tags to identify and extend
pointers. These two approaches are an important distinction as they provide different
protection properties and overheads. Some schemes make use of such properties as a
basis for things such as rights delegation. The overhead for data protection schemes
scales with the amount of data while for reference protection schemes it scales with

the amount of references.
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Table 2.2: Tagged architectures with their TCB sorted by the publication year.

Architecture Year Tag Tag Loader | MMU | Processor | Kernel
Generation | Enforcement
Compiler Compiler
Dover |54 2017 Yes Yes Yes No Yes No
HDFT |51 2016 No No No Yes Yes No
Taxi [22, 23] 2015 No No Yes Yes Yes Yes
PUMP [16,18§] 2015 No No No No Yes No
CHERI [58,59,61] 2014 No No No No Yes No
SPARC M7 2014 No No No No Yes No
SSM [40,43]

WatchdogLite [32,33] | 2014 No No Yes Yes Yes Yes
Intel MPX [24] 2013 Yes Yes Yes No Yes No
Low-Fat Pointers [28] | 2013 No No No Yes Yes No
SAFE [4,17] 2012 No No No No Yes No
DataSafe [10] 2012 No No No Yes Yes No
Harmoni [14] 2012 No No Yes Yes Yes Yes
Shioya, et al. [48] 2011 No No Yes Yes Yes Yes
SIFT [39] 2011 No No Yes Yes Yes Yes
TIARA [49] 2009 No No No No Yes No
DIFT Coprocessor [27] | 2009 No No No No Yes No
HardBound [15] 2008 Yes Yes Yes Yes Yes Yes
Loki [63 2008 No No No No Yes Yes
FlexiTaint [57] 2008 Yes Yes Yes Yes Yes Yes
SECTAG |[3] 2007 Yes Yes Yes Yes Yes Yes
Raksha [13] 2007 No No No No Yes Yes
SecureBit2 [41] 2006 No No Yes No Yes Yes
Minos [12] 2004 No No Yes No Yes Yes
DIFT [53] 2004 Yes Yes Yes No Yes Yes
RIFLE [56] 2004 Yes Yes Yes No Yes Yes
AEGIS [52] 2003 No No No No Yes No
Mondriaan [60] 2002 No No No No Yes Yes
Aries [7] 2001 No No No Yes Yes Yes
XOM [29] 2000 No No No No Yes No
M-Machine |[8] 1994 No No Yes No Yes No
KCM [5] 1989 No No No Yes Yes No
SPUR [64] 1987 Yes Yes Yes Yes Yes Yes
Lisp Machine [31] 1985 Yes Yes Yes Yes Yes Yes
HEP [50] 1982 Yes Yes Yes Yes Yes Yes
Burroughs [38] 1973 Yes Yes Yes Yes Yes Yes

Compatibility

Tagged architectures aim for different levels of compatibility with existing code and

systems as part of their design.

In terms of software this choice means providing some degree of source code and /or

binary compatibility. In some cases these compatibilities are achieved by requiring

modifications elsewhere on the software stack or optionally in source code. For exam-

ple, certain kernel modifications may be able to prevent spurious fault detections in
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user space programs, or annotations may be optionally required to enable protections
afforded by the tagged architecture. Software structures impose limitations that force
a trade between security and compatibility. Consequently, architectures must choose
if and how their provided mechanisms account for these issues when dealing with

software compatibility.

The other aspect tagged architectures consider is hardware compatibilities. There
are various pieces of hardware that architectures may either modify or interact with
(e.g. the MMU). Generally, architectures must be clear in their design about how
they interact with the processor and main memory with respect to tags. However,
the amount of consideration for other components varies based on how the design
is evaluated. For example, purely theoretical schemes may not fully consider cer-
tain hardware interactions while prototyped designs are forced to explicitly consider

interaction with every physical component.

2.2.2 Challenges

Tagged architectures face a variety of challenges while trying to provide security
guarantees. Interestingly, some of these issues (e.g. edge cases and overheads) are
pertinent for software protection schemes and are discussed in that context in later

sections.

Tag Guarantees

A critical part of tagged architectures are the tags themselves. Architectures need to
consider how they can guarantee tag correctness and authenticity. These requirements
are handled in a variety of ways for different designs. For instance, capability based
designs provide the concept of capabilities which are consequently derived from one

another in a clear chain.
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Dynamic Linking and Dynamic Loading

Dynamic linking and dynamic loading are widely used in a wide variety of applica-
tions. They ease tasks such as code sharing or reuse (e.g. for libraries) and loading
components at runtime (e.g. plugins). However, these features can also create policy
enforcement conflicts. For example, if a library is compiled with a different policy
from the application it is used in, it can introduce disparities in what the enforcement
mechanism should do. Thus, architectures can choose to handle this issue as part of
their design or delegate it to the application level by requiring that every component

be compiled with the same or compatible policies.

Overheads

There are various overheads that tagged architectures must consider such as memory,
performance, silicon, and power. Memory and performance overheads are highly
dependent on the particular design of how tags are stored and processed. They may
even scale differently depending on characteristics such as whether an architecture
protects data or references. These different overheads can also impose limitations on
whether a tagged system can feasibly run in different contexts. For example, mobile
and embedded devices may be unable to use a tagged system due to the extra power

usage introduced by a tagged architecture.

Heterogeneous architectures

Most modern processors have accelerators. However, there has not been much work
done in figuring out how systems work with such third party IP components. A
primary exception is WHISK [42], a DIFT architecture that attempts to address
the issue. Many other details in the context of heterogeneous architectures such as

multiprocessor coherence and consistency can also use further analysis.
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Dynamic Code Generation

Dynamic code generation techniques (e.g. JIT) introduce their own set of questions
that architecture designs would need to consider such as what generates the tags and
how integration with tools might work. This topic is another area that has not been

well explored in the context of tagged architectures.

Distributed Systems

In order to properly function within the context of a distributed system, storage and
transfer of tag information becomes crucial. For example, designs would need to
examine the implications, if any, of tags being stored in nonvolatile storage. There
would also need to be consideration given to how tag information may be transferred
across a network. Furthermore, policy enforcement across processes, hosts, and other

groups introduces its own set of complexities and challenges.

Side Channels

Side channel attacks such as timing or storage attacks can potentially break isolation
guarantees. Systems need to take care to ensure that their isolation policies, especially
those involving IFC, can prevent untrusted code from leaking sensitive data through

these means.

Bounds Checking Precision

Determining precise bounds for arbitrary applications can become difficult due to nu-
merous factors such as language ambiguity or missing information. The conservative
approach would be to make bounds as restrictive as possible in every scenario, but it
comes at the expense of sometimes breaking systems and specifications. At the other
end of the spectrum, bounds could be chosen to be the least restrictive of all possible
choices. Yet, this approach can then break security guarantees. When dealing with
these problematic scenarios, many tagged architectures choose to expose an option

to dial the behavior instead of making it an inherent part of the design.
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Precise bounds checking is crucial to providing safety guarantees as exploits have
been designed around even off by one overflows. Some systems attempt to address
this precision issue in the context of specific language specifications and even then
there are often complications that arise (e.g. dealing with custom memory allocators,
language ambiguities, etc.). However, there are further edge cases that need to be

considered in other contexts such as assembly functions and signal handlers.

2.3 Memory Management Units (MMUs)

Memory management units (MMUs) are widely deployed in existing systems today.
They provide an abstraction layer by maintaining a mapping of virtual memory to
physical memory with associated permissions per page.

The MMU is commonly used to provide isolation. For example, the kernel com-
monly uses virtual addressing to isolate different processes. It can further be used to
provide memory safety at the page level (e.g. by using guard pages). However, page
sizes tend to be relatively large (commonly 4KB), which makes protecting smaller
objects expensive. This coarse-grained protection is useful only when used conserva-
tively as a sandboxing mechanism due to the potentially steep performance penalties.

Due to their widespread use, most schemes tend to address how they interact
with the MMU if at all. Some designs choose to fully integrate with it and preserve
the existing process model while others simply discard it. In either case, the over-
head imposed by virtual addressing serves as a useful baseline for different protection

schemes.
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Chapter 3

Software Defenses

3.1 Overview

Pure software schemes trade off performance in favor of easier deployability and some-
times compatibility. While there are schemes that provide complete protection (within
the limitations of the language) [34,35], the performance overhead is exceedingly high
and thus there has been no noticeable adoption of them in practice. Furthermore,
in order to obtain the complete memory protection guarantees these schemes often

incur false positives.

Other schemes have instead opted to provide partial protection in an effort to
achieve low overhead. One strategy that is sometimes used, which can greatly reduce

overhead, is to protect only allocation bounds rather than sub-object bounds.

3.2 Allocation Bounds

An allocation bounds scheme sets and checks bounds based on the size of an allocated
object. Thus, members of composite objects (e.g. structs) have the same bounds as
the allocated containing object. The result of this distinction is that inter-object

corruption is prevented, but not intra-object corruption.
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3.2.1 Examples

There have been a number of previous designs that offer to protect only allocation

bounds.

Low Fat

The original implementation of the low-fat pointer scheme was introduced in hard-
ware [28]. This hardware low-fat scheme provides fine-grained spatial safety while
reducing the overhead of fat pointers. It uses 18 bits of a 64-bit word to contain a
block size, lowest valid multiple of the block size, and largest valid multiple of the
block size. The other 46 bits are used to store the pointer address. These four values
are then used to reconstruct the base and bounds. Whenever a computed pointer
goes out of bounds, it is permanently changed to be an Out-of-Bounds Pointer
hardware type. This type of pointer will produce an error if there is ever an attempt
to dereference it.

It is important to note that due to the dependence on a fixed block size, this
scheme by default offers only an approximation, albeit a relatively accurate one, to
the actual bounds. This problem can be remedied by having the compiler pad sub-
objects, so that every sub-object is aligned to the exact block size. Moreover, since
the bounds can be set independently of the pointer address, a pointer can be narrowed
to a sub-object’s bounds.

Similar to its hardware counterpart, the recently proposed low-fat pointer software
schemes rely on bits stored in the 64-bit pointer representation to determine bounds
on stack [21] or heap [20]. However, instead of storing separate bits and reducing the
representable address space, it encodes the bounds into the address itself. For this
setup to work, pointers are assigned to specific address ranges based on the size of the
object they point to as shown in Figure 3-1. Then, pointer arithmetic is instrumented
to check the size corresponding to a particular region. Given the size of a region and
the fact that all objects in a region are of equal size, the code can then safely determine

if pointers resulting from pointer arithmetic are outside of these bounds.
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Heap Region 1

Heap Region 2

Heap Region N

1GB Object

1GB Object

16B Object 32B Object

16B Object 32B Object
4GB <

16B Object 32B Object

1GB Object

Base Address:

Base Address:

Base Address:

0x100000000 0x200000000 N x 4GB

Figure 3-1: An overview of how heap regions are designated in the low-fat software
scheme to store objects of a particular size.

Consequently, this strategy encodes the bounds information quite efficiently and
reduces he runtime overhead of safety checks. However, this efficiency comes at a cost
to precision compared to the hardware scheme. Because there is a correlation between
a pointer’s value and its bounds, there is no inherent ability to narrow bounds for

sub-objects. Hence, the software scheme only protects allocation bounds.

Baggy Bounds

Baggy Bounds [2] functions like the low-fat pointer schemes in that it tracks object
sizes based on bits in the pointer address. However, it uses these bits to index into an
external table stored in memory to determine the actual object bounds for a pointer.
Every pointer arithmetic and array indexing operation is then instrumented to check
that the pointer after the operation lies within the bounds set by the base and size
of the original pointer. Thus, Baggy Bounds stores information both in the pointer

address as well as an external structure just like the low-fat software scheme.
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PAriCheck

PAriCheck [62] takes a different approach and instead keeps a table of numeric la-
bels for all allocated memory regions. Then, it compares the labels of the memory
regions referenced by a pointer before and after each pointer arithmetic operation to
determine if it has gone out of bounds. While PAriCheck does not rely on storing
any information in the pointer address itself, it still needs an external structure that
is accessed for every check. Furthermore, it carries the risk that the fixed number of

labels available (based on label size) can run out.

Earlier Designs

Even earlier attempts which tracked referent objects such as Jones and Kelly’s GCC
patch (J&K) [26] and other schemes directly based on it [19,45] also provided at most
allocation bounds protection. The difficulty and overhead of modifying these designs

to protect object bounds varies but none originally attempted to do so as presented.

3.2.2 Limitations

Unfortunately, while making it slightly more difficult to mount an attack, allocation
bounds protection still leaves a program exposed to relatively common attack vectors.
Since all sub-objects in a composite object share the same bounds as the parent
object, any pointer to a composite object can freely read and write anywhere within
the parent object. In other words, overflows are still possible as long as they remain

within the bounds of the parent object.

typedef struct {
char buf[124];
void *fptr;

} mystruct;

[=2] ot - w N =

mystruct s;

Figure 3-2: A struct vulnerable to intra-object corruption.

One example of a problematic setup would therefore be a struct with both an
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array and a function pointer as shown in Figure 3-2. An attacker can use a standard
buffer overflow to overwrite the function pointer and hijack control. Moreover, this

particular setup is relatively common in major C programs as shown in Table 3.1.

Definitions | Array Function Other Total
Accesses Pointer Accesses Accesses
Accesses
git 8 140 51 965 1156
httpd 7 68 15 842 925
lighttpd | 1 0 7 468 475
nginx 3 55 60 2789 2904
openssl | 6 6 217 2674 2897
postgresql | 8 1 26 709 736
redis 1 0 5 10 15
acl 0 0 0 0
bash 2 3 14 76 93
coreutils | 1 6 2 19 27
e2fsprogs | 6 13 235 5446 5694
findutils | 0 0 0 0 0
gce 1 0 2 62 64
grep 3 10 6 90 106
g7ip 0 0 0 0 0
hostname | 0 0 0 0 0
ncurses 2 68 37 1158 1263
pam 1 0 1 33 34
perl 0 0 0 0 0
sed 1 0 0 0 0
slang 8 103 103 953 1159
tar 0 0 0 0 0
util-linux | 1 0 3 24 27
zlib 0 0 0 0 0

Table 3.1: Existence and usage of structs with both function pointers and arrays in
common C programs.

There are various other attacks that remain possible within the limits imposed by
the allocation bounds protection scheme such as data oriented attacks.

Since both the stack-based and the heap-based low-fat schemes focus on spatial
memory safety, we demonstrate the pointer stretching attack, which uses spatial cor-

ruption, as a concrete example.
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Bounds Checking Instructions
mov rsi, gword ptr [rax + 0x80];
Jmp rsi;

Gadget {

Figure 3-3: Selecting a gadget to avoid including bounds checks.

Pointer Stretching

The first step in a pointer stretching attack® is creating an intra-object corruption.
Consider the code snippet in Figure 3-2, and assume the struct is allocated on the
stack or heap. Since the attack uses only intra-object corruption, it can be assumed
that the allocation bounds corresponding to the struct are exact. In other words,
inter-object corruption is assumed to be impossible. In this case, the struct is stored
in a region with the designated size of 128 bytes that matches its size perfectly. Any
pointer to any field of this struct is inherently pointing to the same region where the
struct is stored, thus it can point to any field of the struct even when the protection
is enabled. For example, the bounds of *s.buf encompass the entire struct, while
it should legitimately only point to buf. As a result, we can overflow the buffer
inside mystruct to control the function pointer *ftpr. Since this modification of the
function pointer is done through an overflow, and not the intrinsic instructions in the
application itself, it is not instrumented by the low-fat schemes. As a result, after the
overflow, *ftpr can point to any region in memory.

Selecting the gadgets themselves from a hardened binary is not problematic. In
most cases, the start of a gadget can be selected to avoid including bounds checking
instructions as shown in Figure 3-3. When the checks cannot be avoided, such as for
consecutive memory accesses in one gadget, the only restriction imposed is that the
bounds on the start address for any indexing done in the instruction must correspond
to the bounds of the resulting address. This scenario is shown in Figure 3-4. The
exploits later presented use both cases.

Although it may seem like such an overwrite can be dangerous, what we have at

I'The name refers to the fact that buffer pointer bounds are “stretched” to corrupt other sub-
objects stored in a composite data structure.
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(( mov rbx, rdi;
Bounds Checking Instructions
Gadget < mov rsi, gword ptr [rdi + 0x40];
Bounds Checking Instructions
_ call gword ptr [rdi + 0x30];

bounds (rdi) = bounds (rdi + 0x40) V
= bounds (rdi + 0x30) V

Figure 3-4: An out of bounds error can be avoided by ensuring accesses in a gadget
do not go out of bounds when used.

this point is far from a complete attack. The overwritten function pointer can point
to a ROP gadget, but for an attack to succeed, we need to be able to run a series of
ROP gadgets. Even if the goal is to ultimately run one gadget that issues a system
call, for example to launch a shell, we need to be able to set the arguments (%rax,
%rdi, %rsi, etc.) properly, which necessitates a chaining mechanism. However, we
do not currently control the stack or have a trampoline to chain gadgets together.
Moreover, it is unlikely to find a gadget that loads the stack pointer (%rsp) from
an area currently under our control (the struct). To overcome these challenges, we

leverage a trick we call gadget hopping.

3.2.3 Gadget Hopping

It is possible to find a series of gadgets that ultimately modify %rsp to point to the
area under our control (stack pivoting), but we need to initially chain these gadgets
somehow without relying on the stack. In previous code reuse attacks, control always
returns to a central location that contains a list of gadget addresses. This central
location is the stack in ROP attacks and a trampoline in JOP attacks [6,9]. We
observe that this central location is not necessary, particularly for short sequences
of gadgets. By carefully selecting gadgets, we can come up with a set of gadgets
in a way that each gadget directly transfers control to the next one either through

a call or a jump, until the last gadget properly pivots the stack. We call this trick
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Figure 3-5: Gadget hopping compared to traditional ROP and JOP techniques.

gadget hopping that can be used for delayed pivoting. Figure 3-5 illustrates this
technique and its comparison with ROP and JOP. In traditional ROP attacks, such
a technique is not necessary since the attacker controls the stack and a simple pop
rsp; gadget can be used for pivoting. However, when the system is protected by
allocation protection techniques, gadget hopping is necessary since the area under

the control of the attacker is initially very small (e.g., the inside of a struct).

Consider the following example where we can initially control the inside of a
struct but not the stack. There is no gadget in libc that can load the %rsp from
the area under our control (which resides on heap). However, there are two gadgets
in libc listed in Figure 3-6. In this case, %rax points to a word inside the struct
under our control. By maliciously modifying the word pointed to by %rax to contain
the address of the next gadget minus 0x56 (0x381A), we can make the first gadget
jump directly to the second one. The second gadget pops the value from the top
of the stack, which was the original %rax content, to %rsp, thus pivoting the stack
to the area under our control. Figure 3-7 illustrates this example. Note that the
pivoted stack now resides in the struct itself, which is also the site of the initial

memory corruption. This is not strictly necessary since the pivoted stack can reside
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1 |0x0000000000173dc4: push rax; cmp ebp, esi; jmp qword ptr [rax + 0x56];

2

3 1 0x0000000000003870: pop rsp; ret;

Figure 3-6: Example gadgets useful for gadget hopping.

in any area under attacker’s control. Moreover, note that the pivoted stack will grow
upwards, hence the overlap with the struct.

The sample exploits demonstrate a more complicated example of gadget hopping
with hops through three gadgets. After the delayed pivot achieved through gadget
hopping, the attack proceeds as a traditional ROP attack by chaining gadgets together
to setup the arguments properly and issue a system call. By executing a system call
with control of the arguments, attackers can achieve arbitrarily malicious behavior

such as launching a shell, creating a backdoor socket, and so on.

Heap
- I ’ Gadget 1
Corrupted fptr o= push rax;
cmp ebp, esi;
_< Struct Jjmp gword ptr [rax+0x56];
9 Pointed to by %rax |<- - p
. ! Gadget 2
I
Pivoted ! bop rsp;
Stack I ret;
. - I
: : !
I

Figure 3-7: Gadget hopping example.

3.2.4 Sample Exploits

To further concretize the vulnerability of allocation bounds schemes, exploits that

assume the complete protection of the Low-Fat Pointer scheme [20,21] (an allocation

bounds scheme) are presented.
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Nginx Heap-based Exploit

The objective of this attack is to achieve arbitrary code execution using the pointer
stretching attack and demonstrate that allocation protection is an insufficient gran-
ularity for bounds checking. We search for a structure containing both a buffer and
a function pointer we can corrupt to ultimately execute a shell. After inspecting the
source code, we find the structure ngx_http_request_s, shown in Figure 3-8. It is
allocated for each request and has both of these features: a buffer, lowcase_header,
which contains part of the header as it is parsed and a function pointer, log_handler,

which is called if there is an issue processing the request.

1 [struct ngx_http_request_s {

2 uint32_t signature; /* "HTTP" x/
3 ngx_connection_t connection;

4 . e

5 ngx_http_log_handler_pt log_handler;

6 . e

7 u_char lowcase_header [NGX_HTTP_LC_HEADER_LEN] ;
8

9 unsigned http_minor:16;

10 unsigned http_major:16;

n |}

Figure 3-8: A snippet of the definition of the ngx_http_request_s struct.

The buffer is located below the function pointer in the structure, so overwriting
it requires a buffer underflow. Similar memory bugs have been discovered in Nginx
in the past, for example CVE-2009-2629 [1]; we assume such a memory bug exists.

The underlying weakness arises from the fact that any pointer to any sub-field of
the ngx_http_request_s can point to the entire struct, thus such a buffer underflow
is not prevented by the software-based low-fat schemes as long as the corruption is
contained in the struct and does not corrupt the areas outside of it. This is illustrated
in Figure 3-9. The solid black lines show the correct bounds for an array pointer, the
solid gray lines indicate the allowable bounds based on the allocation region, and the
dotted lines show out-of-bound accesses that are stopped. Note that the corruption
happens purely based on intra-object (struct) overwrites, so the function pointer

log_handler can be corrupted without causing out-of-bound violations.
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Figure 3-9: A display of the heap region where the vulnerable struct,
ngx_http_request_s, is allocated and what is accessible given a pointer to any
member of the structure (solid arrows).

First, we observe when the corruptible function gets called. Whenever there is
any issue processing a request, a worker process calls ngx_http_log_error shown in
Figure 3-10. Towards the end of this function, the corruptible pointer log_handler
is invoked. To ensure a problem is detected and control is eventually passed to this

function, we simply request a nonexistent page.

Now, for the initial step of the attack we overwrite the function pointer log_handler
with a ROP gadget to do a stack pivot. We need the stack pointer to point to a re-
gion of memory we control, so that we can continue executing further instructions.
Analyzing the call site reveals that there is a pointer to the same struct we are un-
derflowing. This is the variable r in Figure 3-10. At the default optimization level,
this pointer ends up stored in a register. Furthermore, it gets passed as the first
and second argument to log_handler since ctx->current_request is an alias to
the same pointer. Per x86 64-bit calling convention this setup means registers rdi

and rsi contain pointers to this structure which we control.

Unfortunately, there are no available single stack pivot gadgets for the 64-bit
registers we can use here. Nevertheless, we can create a delayed pivot by gadget

hopping. As described earlier, the idea is to create a chain of gadgets that call or
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static u_char * ngx_http_log_error(
ngx_log_t *log, u_char *buf, size_t len) {
u_char *p;
ngx_http_request_t *r;
ngx_http_log_ctx_t *ctx;

if (log->action) {
p = ngx_snprintf(buf, len, " while %s",
log->action);
len -= p - buf;
buf = p;
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ngx_snprintf (buf, len, ", client: %V",
&ctx->connection->addr_text) ;
len -= p - buf;
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r = ctx->request;
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if (r) {
return r->log_handler(
r, ctx->current_request, p, len);
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} else {
p = ngx_snprintf(p, len, ", server: V",
&ctx->connection->listening->addr_text) ;
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Figure 3-10: The log error function where the corruptible log_handler gets called.

jump to addresses set by previous gadgets in the chain. Only the last gadget ends
with a ret instruction, by which point we have completed the pivot. More concretely,
here we can use a chain of three gadgets to achieve the delayed pivot. The first gadget
runs three important instructions: move rdi (the struct pointer) into rbx, move the
contents at address rdi+0x40 into rsi, and call the address stored at rdi+0x30.
Thus, we set log_handler to the first gadget, rdi+0x30 to the second gadget, and
rdi+0x40 to the third gadget as shown in Figure 3-11. Since rdi is simply a pointer
to the start of the struct, we use the same original underflow to set all these addresses.
Given our setup, after the first gadget executes, the instruction pointer moves to the

address stored at rdi+0x30, which is the address of the second gadget. The relevant
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lowcase header Underflow

Gadget 1:

0 mov rbx, rdi;
mov rsi, gword ptr [rdi + 0x40];
log handler — Gadget 1 — call gword ptr [rdi + 0x30];
e Gadget 2:
SYSCALL Gadget push rbx;
add byteptr [rax], al;
cwde;
bb ed di;
POP Gadget S edx, edt
jmp rsi;
Gadget 3
POP Gadget
e 9 Gadget 3:
Gadget 2 pop rsp;

e poP Gadget ° izi iz
. /bin/sh pop rl5;
SYSCALL register setup 0P Gadget ' ret;

Beginning of
ngx_http_request_s

|

Uncorrupted Heap

Figure 3-11: A general overview of the attack and how the stack looks after the
stack pivot (i.e. part of the overwritten struct). The POP and SYSCALL gadget
entries refer to a gadgets of the form INSTRUCTION; ret;.

instructions in this gadget are pushing rbx onto the stack and then jumping to rsi.
Since the first gadget set rsi to the address at rdi+0x40, it now points to the address
of the third gadget. This gadget completes the stack pivot by popping rsp and then
popping three other arbitrary data registers. The sole purpose of popping the extra
registers is to move the stack pointer beyond the very beginning of the struct in order
to preserve the connection member of the struct. This data pointer is used between
the location of the underflow and the corrupted call site, so it is easier to simply

preserve the value for this exploit.

With the stack pivot complete, we can proceed to execute many more gadgets
from the new stack owing to the large size of the struct. In particular, we create a
chain of gadgets that sets the arguments for an execve system call. In order to do
complete the system call though, we need to the base address of the 1ibc library to
obtain a gadget for the final syscall instruction. We obtain this address by using
a known libc pointer on the stack. Since we know the offset of this pointer from the

base pointer, we add it to the address in the rbp register to get the address of the
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libc pointer on the stack. Then, we simply make the address provided for the syscall
gadget relative to the known address. Note that 1ibc itself is also “hardened” by the
low-fat bounds, but those have no impact on our usage of the gadgets, as described
earlier.

At this point, anything currently in the data registers is irrelevant going forward,
so we reuse some registers used for the stack pivot. Moreover, for simplicity, the
remaining system call setup is done through gadgets of the form instruction; ret;
and we refer to them only by the corresponding instruction. First, we pop off the next
value on the (pivoted) stack into register r10. Through the underflow, we set this
value to be the string “/bin/sh”. Then, we use a gadget to set another register, rdi,
to the address of an arbitrary valid object in memory. The only constraint is that
it needs to be large enough to hold two pointers. Once we have some valid address
in the register, we use a gadget to store the pointer in r10 into the address of rdi.
We can use the same gadgets to store a null byte in the address of rdi+8, but since
inserting a null byte in the underflow is problematic, we xor a register with itself so
that it gets zeroed and execute a mov to the correct address.

Finally, we use further pop gadgets to set the actual arguments to the syscall
instruction. This includes setting the execve syscall number of 0x3b in rax, setting
rdi to the “/bin/sh” string, rsi to the data pointer that contains the string pointer
and NULL, and rdx to that pointer + 8 (so it points to NULL).

We bootstrap the exploit by sending the malicious payload to cause the underflow
and consequently overwrite the various parts of the struct. Upon completion, the
process image switches to a shell. Through a similar construction, we can execute
any arbitrary command restricted only by the permissions given to the process (which

depends on the web server configuration).

Apache Stack-based Exploit

In this attack, we use pointer stretching to obtain arbitrary code execution in Apache.
In a similar fashion to the Nginx attack, we use a struct containing a buffer and a

function pointer. However, the struct is located on the stack in this case.
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1 |typedef struct {

2 /* internal state of the scanner */

3 const char  *inputbuf;

4 int inputlen;

5 oo

6 char scan_buf [MAX_STRING_LEN];

7

8 /*

9 * The function to use to lookup provider
10 * functions for variables and funtctions
11 */

12 ap_expr_lookup_fn_t *lookup_fn;

13 |} ap_expr_parse_ctx_t;

Figure 3-12: A snippet of the definition of the ap_expr_parse_ctx_t struct.

The attack vector for this exploit is the httpd configuration file. An attacker
using this vector can, for example, host the malicious configuration file on a code
sharing website and advertise its useful features. Unbeknownst to the target, the
configuration file then causes the intra-object corruption and hijacks control of the
web server.

In order to parse parts of the configuration file, a struct to contain the scanner and
parser state, ap_expr_parse_ctx_t, is pushed onto the stack. ap_expr_parse_ctx_t
contains two relevant members: a buffer, scan_buf, to store the raw characters being
scanned and a function pointer, lookup_fn, optionally specified by a module for its
configuration parsing (Figure 3-12). The function pointer is always called in the
function ap_expr_info_make (Figure 3-13), except that it is set to a no-op function
when creating the scanner and parser state struct if one was not provided.

The overview of the Apache attack is shown in Figure 3-14. We begin by trig-
gering an overflow of the buffer through a crafted directive in the configuration file.
Through this overflow we set the function pointer lookup_fn to a simple gadget of
ret 0x1189;. This instruction moves the stack pointer up into the same buffer that
was overflowed?. Besides the overflow, we also have the crafted string trigger the

ap_expr_info_make function by having some basic valid subexpression parsed after

2Due to the large size of the buffer, there are many other analogous gadgets that move the stack
pointer within the buffer’s bounds.
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1 |static ap_expr_t *ap_expr_info_make(int type, const char *name,
2 ap_expr_parse_ctx_t *ctx,
3 const ap_expr_t *arg)

s |1

5 ap_expr_t *info = apr_palloc(ctx->pool, sizeof(ap_expr_t));
6 ap_expr_lookup_parms parms;

7 parms.type = type;

8 parms.flags = ctx->flags;

9 parms.pool = ctx->pool;

10 parms.ptemp = ctx->ptemp;

11 parms.name = name;

12 parms.func = &info->node_argl;

13 parms.data = &info->node_arg2;

14 parms.err = &ctx->error2;

15 parms.arg = NULL;

16 if (arg) {

17 switch(arg->node_op) {

18 case op_String:

19 parms.arg = arg->node_argl;

20 break;

21 case op_ListElement:

22 do {

23 const ap_expr_t *val = arg->node_argl;
24 if (val->node_op == op_String) {

25 parms.arg = val->node_argl;

26 X

27 arg = arg->node_arg?2;

28 } while (arg != NULL);

29 break;

30 default:

31 break;

32 }

33 }

34 if (ctx->lookup_fn(&parms) !'= OK)

35 return NULL;

36 return info;

37 }

Figure 3-13: The ap_expr_info_make function in which lookup_fn gets called.

the lookup_fn pointer has been overwritten. Thereby, execution proceeds at the stack
pivot gadget which we set lookup_£fn to, and we can execute further instructions by

setting appropriate gadgets in the buffer.

Thus, using the same overflow, we set up a chain of a gadgets starting from
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Figure 3-14: An overview of the setup of the struct being exploited and the internals
of the buffer setup to execute the personality syscall.

the new stack pointer address inside the buffer. We use the gadgets to set up the
registers for a system call. Similar to the Nginx exploit, we could trigger execve
with proper arguments to spawn a shell, but in order to avoid repetition, we give
the Apache exploit a different flavor. In particular, we use the personality syscall?,
which sets a process’ execution domain, to disable WX protection and ASLR. We
set the first gadget to be a pop rdi; instruction and the address above it to be
0x440000. This value corresponds to the bitwise OR of the flags ADDR_NO_RANDOMIZE
and READ_IMPLIES_EXEC for a persona. They effectively disable ASLR and WeX

for any new pages mmaped by the process, respectively.

Since the persona is the only argument to the personality syscall, the remaining
gadgets are for executing the system call. To accomplish this we use a pop gadget to
set rax to 0x87, the syscall number for personality, and a gadget with the syscall
instruction to execute the actual system call. For the syscall gadget we need the

address of 1ibc, but we use the same strategy as in the previous exploit to obtain it.

3This system call is specific to Linux, but the attack generalizes such that any arbitrary code can
be run by setting the appropriate gadgets in the overflowed buffer.
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At this point, the persona of the main process has been changed and execution
resumes at the next address in the buffer. However, this result would prove pointless
if the server crashed right after it was done since we have just disabled the ASLR and
W & X protections. Hence, to avoid a crash we use one last ret gadget to move rsp
to a valid address, say the return of one of the functions on the call stack preceding
this one. We could have alternatively used more gadgets if we were unable to be as
specific as we needed with the address. Still, the particular address is not important
as long as execution proceeds normally thereafter. Note that the danger of such an
attack is partly due to its stealthiness. Going forward the server runs normally except
with ASLR and W@X protections disabled, enabling simple code injection using the

buffer overflow described earlier.

3.2.5 Mitigations

There are countermeasures that can be implemented to avoid the setup used in the
presented exploits. However, they can have steep performance and memory overheads.

The immediate solution would be to protect sub-object bounds. However, how this
would be handled in some designs is unclear. For instance, the low-fat pointer scheme
makes bounds highly dependent on addresses, thereby making narrowing complicated.
Furthermore, it’s likely that most if not all the performance benefits of the design
compared to existing sub-object protection schemes will be lost.

Alternatively, a combination of schemes can be used. In other words, composite
objects would rely on a scheme that protects sub-object bounds while other objects
would use the allocation bounds scheme. However, this mixing of designs can greatly
increase implementation complexity and make it difficult to prove safety guarantees.

A more targeted approach may instead choose to allocate sub-objects separately
and then maintain a pointer to them in the original object. In this way, the allocation
bounds will be correct for every object. Some of the problems with this approach
are that it reduces locality and can increases memory overhead since a sub-object
is essentially taking up twice the space (the parent object still has to have its full

size). As a way to improve upon this idea, instead only vulnerable members such as

44



arrays can be separately allocated. Nonetheless, the same problems still apply and
this design overall still doesn’t completely prevent intra-object corruption in the case
of composite objects. For example, unless all members are also moved, a pointer to
somewhere within the composite object remains free to move between members that
are not separately allocated.

It’s possible to imagine other improvements such as only storing metadata sep-
arately for sub-objects, but it is unclear if modifications to protect sub-objects can

preserve the performance benefits allocation bound schemes try to achieve.

3.3 Sub-object Bounds

Designs that protect sub-object bounds maintain separate bounds for sub-objects
rather than using the allocation bounds of the parent. These schemes include Soft-
Bound [34] with CETS [35] and the hardware low-fat pointer scheme [28] among

others.

3.3.1 Limitations

While schemes that protect sub-object bounds avoid the pitfalls of allocation bound
schemes, they still cannot provide complete protection without violating the C spec-
ification due to ambiguities introduced in the language specification. This issue is

further discussed in Section 4.
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Chapter 4

Full Memory Safety

4.1 Overview

SoftBound [34] combined with CETS [35] is formally proven to provide spatial and
temporal safety (i.e. what may be considered full memory safety). However, providing
truly complete memory safety requires breaking compatibility at various layers and
redesigning parts of existing architectures or software stacks. The reason is that the
completeness of a fully memory safe system is limited by the existing software and

hardware stack.

4.2 Limits of Hardware

Currently deployed hardware architectures do not inherently support operations to
provide full memory safety. There are some features, such as virtual addressing
provided by the MMU, which have limited use towards achieving this goal, but for the
most part the hardware is context-insensitive in this regard. Hence, there have been
new architecture proposals, such as tagged architectures meant to provide context at
the hardware level.

In the larger picture, hardware support is important so that interaction with the
hardware layer can be done in a safe manner. However, hardware support alone

cannot provide complete protection in the software layers. The operating system
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layer needs to be aware of the hardware support to fully make use of it and the same
is true for applications. Partial support or even isolation is of course possible, but a

fully memory safe system would need to be context aware across the whole stack.

4.3 Limits of Software

On the other hand, full memory safety for a system cannot be done purely in software.
At best, some part of the system would abstract out unsafe communication with the
hardware and serve as a middle layer for other components. In existing systems this

is one of the tasks of the kernel.

However, even within the scope of individual applications, full memory safety
can be incomplete. The software language itself imposes limits on how secure an
application can be made. In order to provide flexibility for programmers, languages
can introduce ambiguities in behavior from the system’s perspective. C in particular

has a great deal of undefined or implementation defined behavior that is widely used.

4.3.1 C Corner Cases

C corner cases are behaviors and features of the language that prove problematic
for protection systems. The problems may be due to breaking legacy compatibility,
required ambiguity due to the language specification, or both. There exist examples
that complicate both spatial and temporal safety, although spatial cases have been

explored much more.

4.3.2 Corner Case Classification

To better grasp the nuances of these cases, they can be classified based on two binary

features: defined and securable.
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Defined

The defined feature describes whether a corner case is based on defined or undefined
behavior per the language specification. The distinction is useful because it highlights
what cases are inherent to the language and what cases are a result of programmers

relying on undefined behavior.

Securable

The securable trait refers to whether a corner case can be fixed without breaking
requirements set by the language specification. The fix may involve preventing the
relevant behavior entirely or building a mechanism around it to avoid its pitfalls.
This characteristic is indicative of what behaviors are impossible to secure due to the

constraints imposed by the language design.

4.3.3 Example Corner Cases

The following examples demonstrate the classification dimensions applied to actual

corner cases:

1. Defined and Unsecurable: A pointer to a struct and a pointer to the first element
of that struct are considered identical according to the C specification. This
requirement introduces ambiguity that can complicate bounds checking. For
example, a protection scheme is unable to narrow the bounds on such a pointer
without breaking the required flexibility in the pointer’s meaning. Thus, this
behavior is defined but unsecurable since the ambiguity is a result of the lan-

guage specification.

2. Undefined and Securable: Casting pointers to integers (downcasting) and vice
versa (upcasting) is a commonly used behavior in C programs that is implementation-
defined. A heavy-handed approach to secure this case which does not care for

legacy compatibility is to simply ban the behavior entirely.
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3. Undefined and Unsecurable: The order in which sequence point modifications
to the values of objects occurs is not defined. In many cases the result of this

behavior is benign. For example, the expression

£O + g0

may have either of the functions f or g evaluated first but the end result will be
the same. On the other hand, when the same value is modified multiple times

in the same expression such as in

a = at+

the result is undefined. The increment example may seem slightly contrived,
but it is easy to imagine more complicated expressions that happen to modify

the same value somewhere along the way (intentionally or unintentionally).

Many spatial cases were discovered and explored by the CHERI team as they were
building and testing their system [11,30]. However, those cases are all examples of
undefined (or implementation-defined) and securable behaviors.

Besides spatial cases, there are also temporal issues that need to be considered.
These cases can be hard to discover since they typically involve dynamic behavior.
One example of a temporal corner case can be referred to as forced memory reuse.
The core idea is a variation of a use after free vulnerability: a pointer is freed and
later reallocated such that it points to a valid but different object when used. The
forced part comes from the idea that in order to guarantee what object the pointer
will point to, an attacker can fill up memory before freeing the object. Therefore,
when the system handles the new memory allocation it must be to the same part of
memory that was freed.

Interestingly, the forced memory reuse case will go undetected in temporal safety
protection schemes that only check the validity of an object since the pointer can
always point to a valid object when dereferenced. As for characterization, it can be

considered a defined and securable behavior. However, the potential fixes to address
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this case, such as avoiding virtual address reuse, are not commonly deployed and can

pose considerable overhead depending on their implementation.

4.3.4 Corner Cases Analysis

To understand whether these cases exist in real programs we conduct some static

analysis on a subset of commonly used C programs and libraries.

LLVM Infrastructure

Using LLVM, many of these cases can be detected and the code can even be accord-
ingly modified.

LLVM provides Clang as a frontend that can be used to analyze source code
directly through its corresponding abstract syntax tree (ABS). It also provides a
backend that can be used to analyze the intermediate code (IR) produced by the
compiler. Information can be more easily accessible through one or the other and

there are various interfaces to interact with the available data.

Example Passes and Plugins

As an example, for the struct pointer ambiguity case, the Clang frontend can be used
to find definitions of structs that have an array as their first member. Figure 4-1
shows a snippet of a Clang plugin that accomplishes this task.

Furthermore, the number of uses of such a struct in a program can be obtained
by with a pass using the LLVM backend. Such a pass can check GetElementPointer
instructions to check if they are accessing a struct with a buffer as its first member.
GetElementPointer instructions are produced in LLVM IR whenever a pointer is
dereferenced. A snippet of the code that accomplishes this is shown in Figure 4-2.

Both of these examples simply output metadata data along with a message when-
ever an instance is found. However, the same plugin and pass can be easily modified
to change the code or IR when it finds such a case. This ability can be useful for

various scenarios such as automatically implementing a fix if possible and /or specified
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1 |virtual void HandleTagDeclDefinition(TagDecl *D) {

2 SourceManager &sourceManager = Instance.getSourceManager() ;
3 if (D->isStruct()) {

4 const RecordDecl *r = dyn_cast<RecordDecl>(D);

5 RecordDecl::field_iterator firstMember = r->field_begin();
6 if (firstMember->getType()->isArrayType()) {

7 1lvm: :errs()

8 << D->getLocation() .printToString(sourceManager) << " "
9 << "Struct:" << r->getNameAsString() << " "

10 << "Array:" << firstMember->getNameAsString()

11 << ’\n’;

12 }

13 }

14 }

Figure 4-1: A code snippet used for detecting definitions of structs with buffers as
their first member.

through a compiler flag.

Sample Results

Table 4.1 shows the number of uses found for a few of the corner cases by using the
LLVM infrastructure. As can be seen most of these cases occur with non-negligible
frequency.

The CHERI team also provided their own analysis of the existence and usage of

the cases they found [11].

Completeness

Some of the cases can be more complicated to find and analyze and others are better
performed through dynamic analysis (e.g. temporal corner cases). Such an analysis
would be useful in creating a tool to help annotate programs or otherwise fix issues
resulting from these behaviors, but it is unclear if such a solution could provide
completeness.

Moreover, there is the issue that detection methods or tools are likely to have
many false positives or false negatives for more complicated cases that required a

more complicated analysis.
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1 |virtual bool runOnBasicBlock(BasicBlock &BB) {

2 for (BasicBlock::iterator ii = BB.begin(), ii_e = BB.end();

3 ii !'= ii_e; ++ii) {

4 if (GetElementPtrInst *gep = dyn_cast<GetElementPtrInst>(&+*ii)) {
5 Type *srcElem = gep->getSourceElementType() ;

6 if (StructType #*srcStruct = dyn_cast<StructType>(srcElem)) {

7 if (isStructWithBufferFirst(srcStruct)) {

8 printDebugInfo(&*ii);

9 errs() << srcStruct->getName().str() << ": ";

10 if (gep->getResultElementType()->isArrayTy()) {

11 errs() <<

12 "Found buffer-first struct access to array member." << ’\n’;
13 } else {

14 errs() <<

15 "Found buffer-first struct access to other member." << ’\n’;
16 }

17 }

18 }

19 3

20 }

21

22 return false;

23 }

Figure 4-2: A code snippet used for detecting accesses into structs with buffers as
their first member.

Other Analyses

Besides collecting usage statistics for the corner cases, other analyses may provide
some insights into how problematic they are. For example, an exploitability analysis
would prove interesting in seeing how many of these cases result in immediately viable
exploits. However, determining whether a particular case is exploitable could prove
complicated especially for some of the more general corner cases. In addition, there
is the inherent issue that if a case is left unaltered because it was considered to be
benign at one point, that does not prevent it from becoming exploitable due to later

changes in the program.
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Pointer Buffer First | Upcasting / | Pointer Relative
Subtraction | Struct Downcast- | Shrinkage Pointer
ing Comparison
git 586 58 675 0 248
httpd 7 20 3 0 0
lighttpd | 117 15 162 0 18
nginx 454 18 613 0 132
openssl | 189 48 274 0 71
postgresql | 570 60 3869 0 555
redis 112 22 111 0 46
acl 19 ) 42 0 3
bash 132 12 154 0 74
coreutils | 294 33 261 0 171
e2fsprogs | 61 22 167 0 24
findutils | 77 16 62 0 35
gce 165 34 207 0 79
grep 0 3 0 0 0
gzip 13 11 12 0 5
ncurses | 111 15 112 0 50
pam 0 1 0 0 0
sed 0 0 0 0 0
slang 308 21 167 0 370
tar 0 0 0 0 0
zlib 37 4 16 0 9

Table 4.1: Number of occurrences of a selection of corner cases in commonly used C
programs and the most used programs in Ubuntu’s popularity contest.

4.3.5 Benefits of Classification

Classifying corner cases based on whether they are defined and securable presents a
clearer picture of the limits of safety in the language. On the one hand, the defined
characteristic illustrates the behaviors that may be used but cannot be relied on. On
the other, the securable characteristic shows the line between what a defense system
can hope to accomplish in the best possible case and what is out of scope due to the

language specification.

o4



4.4 Scoping the Goal

Thus, achieving full memory safety requires cooperation across all levels of the stack
from hardware through the application software layer. Nevertheless, the transition is
unlikely to happen all at once, so defenses have focused on providing protections at
different layers. Unfortunately, the goal of complete memory safety is at odds with
backwards compatibility. From context-insensitive hardware to language ambiguities,
the amount of protection that can be afforded to existing systems is restricted.

New designs need to be aware of the limits imposed by the environment they
choose to function in, whether that is in hardware or software. This awareness is
critical to accurately determining what level of protection can be afforded even for
new systems designed to replace the existing flawed ones.

Language limits to memory safety also need to be explored in the case that a more
secure language is chosen to create a more secure system. It would be interesting
to further explore how many corner cases still exist in variants of C that focus on
providing greater secure such as Cyclone [25] and CCured [36]. However, even beyond
C it’s possible for language specifications to introduce other limitations or corner cases

that can complicate securing a system.
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Chapter 5

Conclusion

Memory safety is a topic that has been discussed and analyzed at length. Many
designs have been proposed to provide memory safety guarantees through hardware,
software, or a combination of both. However, most of these designs have attempted
to provide only some partial degree of safety to minimize overhead. For example,
there have been numerous variations of allocation bounds schemes that attempt to
keep overhead low. The problem is that these schemes only minimally increase the
difficulty of mounting an attack rather than providing a more complete fix.

Full memory safety is needed in order to avoid all the pitfalls that partial mem-
ory safety systems have. Given new designs and performance improvements, it is
becoming more feasible to imagine a system that can provide full memory safety.
However, while providing full memory safety sounds like a good overall goal, the
specifics have many details that need to be carefully considered. While partial pro-
tection systems have clear requirements based on what they intend to protect, the
requirements needed to obtain full memory safety are less clearly defined.

Moreover, full memory safety remains at odds with backwards compatibility. Ex-
isting systems impose limits to what protection can actually be provided. A major
example of this is the C language. It was purposefully designed to be extremely flexi-
ble, but a byproduct of that flexibility is corner cases that prevent protection schemes
from providing complete protection. Thus, any systems that intend to provide full

memory safety will have inherent limitations if they intend to function on a legacy
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software stack.

Ultimately, any system that intends to provide truly complete memory safety will
likely have to break compatibility with most existing hardware and software stacks.
At best, to preserve compatibility a protection system may isolate components that
do not adhere to its full memory safety requirements. However, eventually those
components would need to be replaced or rewritten in order to provide a fully memory

safe system.
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