
NPS-CS-19-003 
 
 
 

 
 

NAVAL 
POSTGRADUATE 

SCHOOL 
 
 

MONTEREY, CALIFORNIA 
 
 
 

LABTAINER FRAMEWORK EXTENSIONS: FINAL REPORT 

by 

Cynthia E. Irvine and Michael F. Thompson 

August 2019 

Approved for public release. Distribution is unlimited 
 

Prepared for:  National Science Foundation 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK



 i 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and 
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no 
person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.  PLEASE DO NOT 
RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE 08-28-2019 
 

2. REPORT TYPE    Research 
 

3. DATES COVERED (From-To) 
08-13-2015 to 05-31-2018 

4. TITLE AND SUBTITLE 
 
 
Labtainer Framework Extensions: Final Report 
 

5a. CONTRACT NUMBER 
 
5b. GRANT NUMBER 
DUE-1438893 
5c. PROGRAM ELEMENT 
NUMBER 
 

6. AUTHOR(S) 
 
Cynthia E. Irvine 
Michael F. Thompson 

5d. PROJECT NUMBER 
 
5e. TASK NUMBER 
 
5f. WORK UNIT NUMBER 
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) 
Naval Postgraduate School 
1 University Circle 
Monterey, CA  93943 

8. PERFORMING 
ORGANIZATION REPORT 
NUMBER 
 NPS-CS-19-003 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 
 
National Science Foundation 

10. SPONSOR/MONITOR’S 
ACRONYM(S) 

11. SPONSOR/MONITOR’S 
REPORT NUMBER(S) 

12. DISTRIBUTION / AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited.  
13. SUPPLEMENTARY NOTES 
The material presented here is based upon work supported by the National Science Foundation under Grant No. DUE-1438893. Any 
opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily 
reflect the views of the National Science Foundation or of the Department of the Navy. 

14. ABSTRACT 
     Educational institutions are experiencing increasing demand for courses in computer and network security. Yet faculty members 
struggle to prepare new classes and compelling laboratory exercises, and must attempt to provide experiential learning to growing 
numbers of students. Meaningful laboratory activities are difficult to create and assess. However, laboratory exercises in which 
students learn fundamental concepts through exploration can help attract students, and ultimately into the cybersecurity workforce.  
     The Labtainer Framework for cybersecurity lab exercises was developed under NSF grant DUE-1438893. These fully packaged 
Linux-based cybersecurity labs run entirely within a modestly provisioned laptop computer.  Labtainers currently offer: 
• Automatically provisioned, consistent execution environments on diverse Linux distributions, 
• Multi-component network topologies without running multiple virtual machines,  
• Individualized labs to discourage the sharing of solutions and support reusability by instructors, 
• Automated assessment of student progress and 
• Over 45 labs covering topics ranging from software vulnerabilities, networking, cryptography, web security, system security and 

operations, and industrial control system security. 
     Labtainers are currently used by instructors worldwide to enhance cybersecurity education for their students. Each individual 
download enables the student to perform all existing Labtainer exercises as well as new Labtainer exercises introduced in the future.  
Labtainers has been well received by instructors from a range of educational institutions. 

15. SUBJECT TERMS 
Cybersecurity education, laboratory exercises, containers 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 
OF ABSTRACT 
 
Unclassified 

18. NUMBER 
OF PAGES 
 
23 

19a. NAME OF 
RESPONSIBLE PERSON 
Cynthia E. Irvine 

a. REPORT 
 
Unclassified 

b. ABSTRACT 
 
Unclassified 

c. THIS PAGE 
 
Unclassified 19b. TELEPHONE 

NUMBER (include area code) 
(831) 656 2461 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18 



 ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK   



NAVAL POSTGRADUATE SCHOOL 
Monterey, California 93943-5000 

 
 
Ann E. Rondeau  Steven Lerman 
President  Provost 
 
 
 
The report entitled Labtainer Framework Extensions: Final Report was prepared for and 
funded by the National Science Foundation.  
 
Further distribution of all or part of this report is authorized. 
 
 
 
This report was prepared by: 
 
 
________________________ ________________________ 
Cynthia E. Irvine  Michael E. Thompson 
Distinguished Professor  Research Associate 
Computer Science Department Computer Science Department  
 
 
Reviewed by:  Released by: 
 
 
________________________ ________________________ 
Peter J. Denning, Chairman  Jeffrey D. Paduan  
Computer Science Department  Dean of Research  
 



 iv 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK  
 
 
 



DEPARTMENT OF COMPUTER SCIENCE
NAVAL POSTGRADUATE SCHOOL

NPS-CS-19-003

Labtainer Framework Extensions: Final Report

Cynthia E. Irvine
Michael F. Thompson

August 2019



ACKNOWLEDGEMENT

A portion of the material presented here is based upon work supported by the National Science Foun-
dation under Grant No. DUE-1438893. Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not necessarily reflect the views of the National
Science Foundation or of the Department of the Navy.



A Introduction

Workforce demands for individuals able to configure and defend computers and networks far outstrips
production from the nation’s educational institutions. [3, 16, 4]

Educational institutions are experiencing increasing demand for courses in computer and network secu-
rity. Yet faculty members unfamiliar with security struggle to prepare new classes and compelling labora-
tory exercises, while experienced faculty members must attempt to provide experiential learning to growing
numbers of students. In addition, instructors whose classes do not directly focus on security may wish to in-
corporate laboratory materials for a unit on security, but lack sufficient expertise to build them from scratch.
Unfortunately, meaningful laboratory activities are difficult to create and assess. However, excellent labo-
ratory exercises in which students learn fundamental concepts through exploration and discovery can help
draw students to cyber security studies, and ultimately into the cybersecurity workforce.

To help meet this need, the Labtainer framework for Linux-based cybersecurity lab exercises was devel-
oped under the support of NSF grant DUE-1438893.

Labtainers are fully packaged Linux-based cybersecurity labs designed to run entirely within a modestly
provisioned laptop computer [13, 12]. Labtainers currently offer:

• Automatically provisioned, consistent execution environments on diverse Linux distributions,
• Multi-component network topologies without running multiple virtual machines,
• Individualized labs to discourage the sharing of solutions and support reusability by instructors,
• Automated assessment of student progress [17], and
• Over forty-five cybersecurity labs, many derived from SEED labs [9, 7, 8, 23]. These labs cover

the following categories of topics: software vulnerabilities, networking, cryptography, web security,
system security and operations, and industrial control system security.

Labtainers are currently used by instructors worldwide to enhance cybersecurity education for their stu-
dents. For example, there were over fourteen hundred downloads of the Labtainers product during a recent
four-month period. Each individual download enables the student to perform all existing Labtainer exer-
cises as well as new Labtainer exercises introduced in the future. As can be seen in Section sec:testimonials,
Labtainers has been well received by instructors from a range of educational institutions.

This report summarizes our current work on the Labtainer Framework. This section has introduced the
work. In the next section we motivate the project. In Section C we provide an overview of the Labtainer
framework.

B Why Labtainers?

Laboratory exercises provide students with experiential learning opportunities that reinforce concepts
presented in readings and lectures. In addition, they allow students to learn how a variety of techniques can
be used to solve problems. In the context of cybersecurity, laboratory exercises must cover a wide range
of topics and should be organized so that their learning outcomes progress from fundamental concepts to
in-depth understanding.

Despite the acknowledged value of experiential learning [10], cybersecurity educators often face a num-
ber of challenges when attempting to provide worthwhile laboratory exercises for classes.

First, they may lack the institutional infrastructure required to host complex lab exercises that often
involve networked systems.

Second, they may not have the time or expertise required to develop high quality exercises. Just as
educators often rely upon good textbooks that contain well-vetted homework problems, and that may be
accompanied by slides and other materials, so can over-worked instructors benefit from materials that will
help them provide useful laboratory activities.

1



Third, operating system and application configuration is a significant source of frustration and distrac-
tion for students and instructors when working with computer science labs. When students are required
to use their personal systems, the consequent platform diversity can force instructors to manage problems
associated with both the exercise setup and the potentially diverse results that can emerge due to platform
differences. Platform diversity can also negatively impact students, who must devote a disproportionate
amount of time to lab set up, relative to that devoted to doing the lab exercise and achieving the intended
learning objectives. Furthermore, if the setup for even simple labs is arduous, students may perceive cyber-
security as laborious and uninteresting.

Fourth, often the best learning takes place when students are engaged in exploratory exercises. An
innate characteristic of exploratory exercises is that they can involve many blind alleys and detours. When
instructors encourage exploration, understanding what each student has done, where that student may have
had difficulty and whether the lab was successfully completed can become very time-consuming.

Last, students may share or reuse exercise results. The undesirable consequences of this behavior in-
clude: implicit punishment of diligent students who complete the exercises themselves; student-cheaters
who do not learn the material yet receive undeserved high marks; and instructors who are unable to identify
and assist students having difficulty with the material. Individualized exercises could solve the problem;
however, if each student is given an different exercise, the instructor is faced with a huge grading task. Also,
it is possible that the individualized exercises will vary in difficulty, making the exercise unfair. Without
individualized labs that are fair and consistent and despite the proven effectiveness of existing lab exercises,
instructors are often forced to create new exercises each time a course is taught. A monumental task that
may deter instructors from offering labs at all.

To address these problems, we developed Labtainers under a grant from the NSF (DUE-1438893).

C Overview of Labtainers

The Labtainer Framework builds on Docker containers [6] to automatically provision lab execution
environments that ensure consistency in software packages and system configurations for all students and
instructors. An instance of OS-level virtualization, Docker containers, which are sometimes referred to as
lightweight virtual machines, require substantially fewer computing resources than do full virtual machines
[2]. This allows a Labtainer exercise that includes multiple networked components to run on a student
computer that could not support multiple virtual machines due to memory or processor limitations. When
beginning a Labtainer exercise, the student is presented with one or more virtual terminals connected to what
appear to the student as independent computers linked by one or more networks. Each of these computers
is, in fact, a Docker container that runs multiple programs, e.g., network daemons, and has its own set of
users, files, and device interfaces. Students interact with these containers via virtual terminals, e.g., bash
shells, GUI-based applications, such as a browser running within the container, or both. When the student
stops a lab exercise, the Labtainer Framework collects a set of artifact files from the student’s session. The
resulting file archive is forwarded to the instructor, who uses similar containers to review student work and
perform automated assessment of student progress against the lab exercise’s pre-defined goals.

The Labtainer Framework’s automated provisioning features relieve students and instructors from the
distractions and frustrations often associated with configuring environments to support labs. The Docker
containers described in the previous paragraph are primarily defined by Docker images, which are sets
of files and configuration settings that will exist in the running container. The Labtainer Framework pre-
provisions software packages and networking configurations within Docker images stored on a publicly
accessible Docker Hub or other Docker registries. When a student first starts a given lab, the corresponding
Docker images are automatically pulled from the registry and incorporated into running Docker containers
on the student’s computer.

2



Hardware	

Na)ve	Opera)ng	System	

Type	II	Virtual	Machine	Monitor	

Linux	VM	

Docker	Engine	

Bins/Libs	 Bins/Libs	

Ap
p	
A’
’	

Ap
p	
B’
	

Na)ve	Applica)ons	

Ap
p	
A’
	

Ap
p	
A	

Ap
p	
B	

Figure 1: Typical Labtainer software stack

Students typically obtain Labtainers by downloading and importing a VM appliance into either Virtual
Box or VMWare. Alternately, the Labtainer Framework installs on any Linux system that supports Docker.
The software stack of a typical student system is illustrated in Figure 1

C.1 Labtainer User Types

.

The Labtainer Framework supports three types of users.

Lab Designers are responsible for for creating laboratory exercises so that they meet intended learning
objectives. Each lab designer determines if and how the lab is parameterized and whether automated
assessment will be supported.

Instructors assign labs to students and assess their work. Instructors may or may not work with lab de-
signers to create exercises.

Students perform the laboratory exercises. They are oblivious to the underlying framework that configures
and individualizes their labs, and which will later gather any artifacts required for assessment.

C.2 Labtainer Primary Goals

.

The overarching goal of the Labtainers project has been to develop a framework for cybersecurity labo-
ratory exercises that is:

Consistent and Fair Laboratory exercises are delivered to students in a preconfigured environment. Dif-
ferent labs offer different environments. Both students and instructors generate consistent, repro-
ducible results. Each lab environment is homogeneous across the entire instructor and student popu-
lation, despite heterogeneity across the underlying platforms. (Of course, per-platform performance
can vary, so temporal heterogeneity will still be evident.) Students do not have to struggle to create
lab environments, and, instead, can concentrate on and learn from the lab assignment. Instructors can
assess student work without having to contend with differences resulting from the way the labs were
set up.

Parameterizable Each student has a laboratory exercise that cannot be accomplished by simply copying
the results of another student. Parameterization choices ensure that all students have labs of the same
difficulty. Lab designers can parameterize the generation of expected results on a per student basis,
thus streamlining the assessment process. Labtainers are not an absolute guarantee that students will

3



not engage a surrogate to do the lab or that a student might outwit the parameterization mechanism
for a particular exercise, but the work factor required to cheat is intended to disincentivize such mis-
behavior.

Support Automatic Assessment The Labtainer Framework is designed so that evidence can be collected
to demonstrate that students have achieved the intended intermediate and final goals of exercises.
Information is automatically collected so that the instructor can determine where students become
confused or go off track. The Framework includes automated assessment of artifacts gathered from
student work, based on criteria provided by the lab designer.

C.3 Efficient Use of Computing Resources

The primary efficiency that containers offer over VMs is that the containers all share the host platform’s
OS kernel, as shown in Figure 1. For example, a lab consisting of three computers, each based on a different
Linux distribution, can have all three share the underlying Linux platform’s kernel and thus does not incur
the overhead of running multiple kernels.

Leveraging Docker containers allows the Labtainer Framework to efficiently manage the space needed
to store multiple labs on the student computer, and to reduce the size of downloads used to import a lab
into the student computer. Docker manages each container image as a set of layers each of which represents
an incremental addition, e.g., the addition of a set of software packages. The lowest layer is a stripped-
down Linux distribution, e.g., Ubuntu. The final layer is a command that is to execute within the container,
e.g., to launch the Linux initial process. Docker manages these images such that layers are not duplicated
on disk or in memory when multiple containers are running. As a result, even though the image for a
single container may require several hundred megabytes of storage, most of that storage is not duplicated as
additional containers are added. Once present on the student computer, the Docker system will not pull that
layer again from the Docker registry. For example, if the image for a new lab is similar to that used for a
previous lab, only the new layers will be pulled from the registry when the new lab is started.

The Labtainer Framework manages the building of containers from images on the student computer
when a lab is first started. It uses lab-specific configuration files to define virtual networks and their connec-
tions to individual containers. These configuration settings are image-independent, and thus two labs that
share the same images can have different network topologies.

C.4 Lab Exercise Definition

The most challenging and critical part of creating a new cybersecurity lab is the design of the lab itself,
i.e., identifying learning objectives and organizing exercises to achieve those objectives. The Labtainer
Framework does not specifically address any of that. Rather, the Framework allows the lab designer to
focus more time on lab design and less time on mitigating and explaining system administration burdens
typically placed on students and instructors in other lab environments. The Framework does not require lab
designers to program or create scripts. The lab designer primarily interacts with the Framework by editing
configuration files that affect the student’s execution environment and the optional automated assessment of
student activity.[19]

In the remainder of this section, we outline the major steps in lab definition.

C.4.1 Define the lab execution environment
A given lab typically requires some set of software packages, and some system configuration, e.g., net-

work settings. Identifying an expected environment is a typical element of any lab design. The Framework
captures most configuration details within a standard Dockerfile.[5] Additionally, the lab designer identi-
ties the set of lab-specific files, e.g., vulnerable programs, that are to reside in the student’s home directory
within the container. Simple labs can use the default Dockerfiles created by the Labtainers script.

4



The Framework includes a set of baseline images available for lab designers to draw from. A single lab
may contain multiple containers, built from different baselines. The baseline containers include:

Table 1: Baseline container elements

base A basic Ubuntu distribution with software development tools, e.g., gcc, and software anal-
ysis tools such as gdb and hexedit.

network Extends the base image to include networking tools such as openssl, an ssh server, netcat
and tcpdump.

firefox Extends the base to include the Firefox browser.
java Extends the firefox image include a Java development kit.
centos A CentOS distribution including networking utilities and analysis tools
lamp Extends Centos to include the Apache web server, MySQL and PHP, i.e., the ‘LAMP’ stack.

C.4.2 Lab Parameterization
When a student starts a lab, the Labtainer Framework incorporates a student-supplied email address into

a seed for generation of pseudo random values. A watermark file is automatically created for each student
lab, and this file becomes one of the artifacts within the student’s archive. The watermark value is validated
as part of the assessment process initiated by the instructor. This simple strategy ensures (albeit weakly),
that the archive provided by the student originated with the student commencing the lab.

Additional assurances of the originality of student work rely on choices made by the lab designer, who
identifies specific properties of the lab that are to be individualized for each student. [17] Parameterization
is achieved by defining symbols within source code or data files. During container initialization, the Frame-
work will replace these symbols with randomized, student-specific values. A configuration file identifies
the files, and the symbols within those files, that are to be replaced by the computed values. An example
might be a constant controlling a buffer size in the source code of a program that the student is to interact
with. A given student’s instance of the lab will have a cryptographically generated seed that is unique to that
student for that lab. The configuration file entry for the example buffer size value would be expressed as a
random value within a given range. When the student first starts the lab, functions within the Framework
will replace the indicated constant in the source code file prior to code compilation.

C.4.3 Automated assessment of student labs
Labs can be configured for automated assessment of student work. This is optional; the Framework

does not require that labs include automated assessment, e.g., the “results” of a lab may consist entirely of a
written report submitted by the student.

The goal of automated assessment is to provide instructors with some confidence that students performed
the lab, and to give instructors insight into which parts of a lab students may be having difficulty with. It
is possible to create exercises in which the student must execute a specific sequence of operations, and the
lab designer can easily create assessments for such labs. However, it is more interesting to design labs that
encourage experimentation. Yet such experimentation does not lend itself to highly prescriptive assessment
techniques. What is needed is a means to ensure that students achieve a desired set of goals, albeit through
individual explorative steps. Thus, the automated assessment functions implemented in the Framework
are not intended to standardize each student’s approach to a lab, rather the objective is to permit ad hoc

exploration by students. To do so, the Framework gives the lab designer a means to identify evidence that
steps of a lab were performed, rather than trying to identify everything a student may have done in the course
of the lab.

5



The Framework’s automated assessment functions generally assume the student will interact with one
or more programs or system utilities. Each time the student invokes a selected program or utility, the
Framework captures copies of standard input and standard output (stdin and stdout) into timestamped file
sets. This is transparent to the student. For example, one artifact might be the value that follows the string
The result is: within the stdout file. The lab designer then references these tagged values within a
configuration file that defines the expected results of the lab. The expression of expected results can include
indirect references to values that are specific to the student’s instance of the lab, i.e., are a function of the
lab-specific seed described earlier.

These timestamped file sets, and everything else germane to the exercise in the student’s container-based
home directory, are automatically packaged when the student completes the lab. These packages of artifacts
are then transferred to the instructor, (e.g., via email or a learning management system), and ingested into
the instructor’s system where lab assessment occurs.

Thus, for assessments, the Framework requires the lab designer to create configuration files identifying
what has been parameterized for each lab, and what artifact values constitute success. This extra work by
the lab designer greatly simplifies the instructor’s task of assessing each student’s performance of the labs.
While many labs may still include an essay component in which the student is asked to describe the lab
activity, the automated evaluation of artifacts from individualized labs gives the instructor confidence that
the student essays reflect work performed by the student.

Labtainer Framework currently includes over 45 lab exercises. These are listed in the tables that follow.

Table 2: Crypto Labs

Lab Name Description Difficulty

macs-hash Exploration of cryptographic hashes and the potential for hash collisions. 2
onewayhash Introduction to generating cryptographic hashes using the openssl utility. 1
pubkey Explore public key certificates from a variety of web sites 1
sshlab Use of a public/private key pair to access a server via ssh. 1
ssh-agent Use an SSH agent to manage your private key and avoid retyping your

passphase
1

ssl Use of SSL to authenticate both sides of a connection, includes creating
and signing certificates using a CA.

symkeylab Exploration of symmetric key encryption modes. 1
vpnlab Example use of OpenVPN to protect network traffic. 2
vpnlab2 Similar to vpnlab, but with the use of a vpn gateway. 2

Table 3: Web Security Labs

Lab Name Description Difficulty

webtrack Illustrates web tracking techniques and the role of ad servers 1
xforge Cross Site Request Forgery with a vulnerable web site 2
xsite Cross site scripting attacks on a vulnerable web server. 2
sql-inject SQL injection attacks and countermeasures. 2

6



Table 4: Networking Labs

Lab Name Description Difficulty

telnetlab The student uses telnet to access a remote computer, and employs the
tcpdump tool to view plaintext passwords, and to observe how use of ssh
mitigates that vulnerability.

1

nmap-
discovery

The nmap utility is used to locate an ssh server on a network and to dis-
cover the port number being used by the service.

2

pcapanalysis The tshark network traffic analysis tool is used to identify and display a
specific network packet containing a plaintext password.

2

wireshark-
intro

Introduction to the use of Wireshark analyze network traffic. 2

nmap-ssh The nmap utility is utilized in combination with the tshark network traffic
analysis utility to demonstrate a security problem with an ssh server.

2

routing-basics A simple routing example with two LANs and an internet connection via
NAT

2

iptables The iptables utility is used to configure a firewall component to only for-
ward selected application service traffic between a client and a server.

2

tcpip TCP/IP protocol vulnerabilities, including SYN flooding, RST attacks
and session hijacking. Derived from the SEED lab.

2

arp-spoof Use of ARP spoofing for Man-in-the-middle attacks. 2
local-dns DNS spoofing and cache poisoning on a local area network. Derived

from the SEED lab.
3

snort Use of snort for network intrusion detection 2
dmz-lab Set up a DMZ for an enterprise. 2
radius Use a Radius authentication service to authenticate network devices. 2
ldap Authenticate users of Linux servers using an LDAP service. 2

Table 5: Software Vulnerability Labs

Lab Name Description Difficulty

bufoverflow An example program vulnerable to a stack buffer overflow, derived from
a SEED lab

3

formatstring Explor C library printf function vunerabilities, derived from a SEED lab 2
retlibc Exploit a program using a buffer overflow and return-to-libc, derived

from a SEED lab.
3

gdblesson An introduction to using gdb to debug a simple C program. 1
metasploit Use metasploit on a Kali Linux system to attack a ”metasploitable” host. 1
setuid-env Risks of the setuid feature, including environment variables, derived from

a SEED lab.
2

7



Table 6: System Security and Operations

Lab Name Description Difficulty

acl Access Control Lists (ACLs) on Linux 2
backups2 Using tar and dump/restore for file backups, including remote backups. 1
capabilities Use of Linux capabilites to limit program privileges. 2
sys-log System log basic usage and configuration on an Ubuntu system. 2
centos-log2 System log basic usage and configuration on a CentOS system. 2
file-deletion Data recovery from deleted files within EXT2 and NTFS file systems. 2
file-integrity File integrity checking and intrustion detetion with AIDE 2
pass-crack Introduction to passwords and elementary cracking schemes. 2
denyhost Use of the denyhost utility to block brute force attacks on SSH 2
nix-
commands

Introduction to Linux and shell commands. 1

Table 7: Industrial Control System Security

Lab Name Description Difficulty

softplc Program a software-based programmable logic controller (PLC) 3
plc-forensics Forensic analysis of a PLC session from a rouge client. 2
plc-forensics-
adv

Forensic analysis of a PLC session from a rouge client, including CIP &
EtherNet/IP protocols.

4

plc Simulated example of a vulnerable Programmable Logic Controller sys-
tem.

2

plc-app Application firewall and whitelisting to protect a PLC. 2
iptables-ics Use iptables to limit traffic destined for a PLC through a firewall. 2
grassmarlin Introduction to the GrassMarlin SCADA/ICS network discovery tool. 2
grfics A graphical realism framework for industrial control simulations

https://github.com/djformby/GRFICS
2

D Impact

This project advances cybersecurity education. Labtainer exercises cover foundational cybersecurity
topics, and individual labs can also address specific topics resulting from new research and developments
in the field. For example, new vulnerability assessment tools designed for use in Linux environments can
be easily deployed within a Docker container and incorporated into a Labtainer exercise. The tool’s envi-
ronment and configuration can be entirely defined by the lab designer to focus on a specific set of learning
objectives.

8



The Labtainer Framework simplifies creation, deployment and assessment of new cybersecurity exer-
cises, allowing instructors and other content developers to focus more on the pedagogical content of the labs
and less on administration and mechanics of lab deployment. The assessment functions provide insight into
student results. This can be particularly valuable when creating labs that address new topics that do not yet
have an established base of educational material.

The overarching goal of this project has been to provide quality cybersecurity lab exercises to instructors
and students at a low cost (measured in work required to administer and assess labs as well as license and
service fees.) To date, counts of virtual machine downloads (over 2000 over six recent months), suggest that
Labtainers is being used in courses and that its use is growing.

Our graduate students have used many of the laboratory exercises and we have had successful results.
Three high school and one university student have participated in the project as interns. While learning about
Linux, scripting, and programming, the interns brought fresh eyes to the project and have contributed to all
three Labtainer roles as students, instructors, and lab designers. They have been invaluable in debugging
documentation and procedures.

D.1 Dissemination and Outreach

Table 8 lists the various publications and demonstrations associated with this project.

Table 8: Labtainer Publications, Presentations, and Demonstrations

Type Title

Article Labtainers: A framework for parameterized cybersecurity labs using containers. [12]
Article Labtainers: A Docker-based cyber lab framework [13]
Article Individualizing Cybersecurity Lab Exercises with Labtainers [17]
Article (review
periodical)

Individualizing Cybersecurity Lab Exercises with Labtainers [18]

Extended Abs. CyberCIEGE and Labtainers: Promoting Exploration in Cyber Security Labs [11]
Manual Labtainer lab designer user guide [19]
Manual Labtainer Lab Manuals [1]
Manual Labtainer Student Guide [15]
Manual Labtainer Instructor Guide [14]
GitHub website Labtainers: A Docker-based cyber lab framework [21]
NPS website Labtainers [22]
Docker Hub Docker Hub - Labtainers [20]
Presentation Labtainers: A framework for parameterized cybersecurity labs using containers. [12]
Presentation CyberCIEGE and Labtainers: Promoting Exploration in Cyber Security Labs [11]
Presentation Labtainers: A Docker-based cyber lab framework [13]

Labtainers is distributed from our website as virtual machine appliances, and as an alternative archive
installable on any Linux system. All source code and documentation is maintained on GitHub, and the
Labtainer Docker images are all available on the public Docker Hub web site. The Labtainers project
maintains an email list server that we use to announce new releases of Labtainers.

The Labtainers VM appliances, and the alternate installation package, are available at the Labtainers
website [22] The Docker images used by each lab are automatically pulled from the Docker Hub. [20]

9



Labtainer framework and all lab source code is available on GitHub. [21]

D.2 Educators’ Testimonials of the Value of Labtainers

The following statements of support are from external educators who are using Labtainers.

Labtainers is a great way to introduce students to the technical aspects of cybersecurity. . . .
As a cybersecurity researcher and instructor, I highly recommend the adoption of Labtainers in cy-
bersecurity classes as a viable alternative to virtual labs that are designed by instructors from scratch,
or virtual labs of questionable quality that are offered to students at a steep price by academic pub-
lishers.

I used about 12 of the Labtainer exercises in my graduate class in Computer and Network Security
. . . I thought they were excellent hands-on exercises with enough depth to provide some very nice
learning opportunities. . . .
I talked to the students frequently about their thoughts on these assignments as a learning tool - and
every one of them felt very positively. I hope to use them again the next time I teach this class and
perhaps add more of them to the assignment list. I truly appreciate this tool - I feel it helped me offer
a deeper experience in learning security to the students.

. . . I was asked to build and deliver a “300-level” technical elective Cyber Security for Software
Developers, for Spring 2019. . . . I can safely say that the Labtainer Project is and will be essential to
the success of my Cyber Security for Software Developers course.
From my brief experience, I can see that the Labtainer Project can offer any school and every student
the ability to build hands-on skills in the configuration and operation of a range of cyber systems in
a virtualized lab environment, with no capital investment, and minimal lab administration overhead.
We have installed Labtainers on our lab machines, and many students have opted to install on their
personal systems, so they have access to the capability all the time.

Labtainers brings a very interesting virtual labs environment for teaching cybersecurity. We’re adopt-
ing it for a MOOC on cybersecurity which is part of a series of MOOCs in taught in French on net-
working, and will be hosted on the french platform FUN-MOOC, reaching thousands of learners in
all francophone countries. Not only does Labtainer include many already useable labs on cyberse-
curity, but it brings great tools for personalization and auto-evaluation of learner progress, which is
precious in a context of distant learning like a MOOC. The publicly available source code and use
Python and Linux containers make it quite flexible and help us integrate it in the PaaS platform used
for giving learners seamless access to virtual labs.

As a professor of cybersecurity and an instructional designer, I can attest to the fact that it can be
quite the challenge to find excellent hands-on learning resources that can support a cybersecurity
curriculum. There are many products out there, but their quality is often not great, and for the better
ones, the cost is quite high. I was extremely delighted to find out about Labtainers. The exercises are
well thought out, easy to follow and provide good feedback to the professors. The Labtainers cover
a wide range of topics and provide the possibility of creating your own. I use Labtainers in several
of the classes I teach. My students have ALL enjoyed the labs and have state so to me and in the
evaluations of the courses.

10



My students and I work in security and privacy and the research that we do is very high-impact
(multiple top-tier papers published every year with our work regularly finding its way to the popular
press).
I regularly teach introductory and advanced security courses at an undergraduate level as well as at
a graduate level. These courses are very well attended (typically more than 100 students each time)
. . . the large number of students puts a strain on myself and the TAs in terms of providing realistic,
hands-on assignments and somehow grading hundreds of these assignments each time we offer a
security course.
I was impressed not only with the large number of realistic exercises across a wide range of topics
(including access control, authentication, buffer overflows, and cross-site scripting) but also with the
auto-grading functionality available for most of the offered exercises.
In summary, I am very thankful for the Labtainers platform and I am unreservedly supportive of any
efforts to keep this platform maintained and expand it with more labs and additional functionality.

E Summary

The intellectual merit of the Labtainers project is reflected in its creation of a framework for cyber-
security labs. That framework has been proven through creation of a variety of cybersecurity labs, and by
importing several of the highly popular laboratory exercises from the SEED project. The resulting labs are
entirely provisioned using Docker containers so that students are no longer required to make administra-
tive or configuration changes to perform the labs. As a result, students can run labs containing multiple
networked components all within the confines of a laptop computer, and do so without having to make con-
figuration and networking changes particular to the lab exercises. Automated assessment of student progress
supports instructors by relieving the burden for significant portions of the grading effort. Individualization
of exercises discourages sharing of results between students and allows instructors to reuse successful labs
in subsequent classes.

The broader impacts of the work include:

• Availability of a large number of prepackage laboratory exercises for use by instructors,
• Modest resource requirements for running labs, even those involving many distributed components.

This supports students at institutions with limited resources.
• Tools for the creation of new labs,
• Availability of all results of the Labtainers project, and
• Parameterization to prevent students from sharing results.

Future work on Labtainers can include:

• A broader suite of labs with which to gain hands-on experience with cybersecurity concepts,
• Facilitation of collaborations with other educators,
• Further automation of testing, integration and distribution of the Labtainer framework,
• Support to help educators effectively integrate Labtainers into cybersecurity courses,
• Increased support for contributions by outside educators, which should, in turn, increase the pool of

available labs,
• Tools to simplify the lab designer’s task, which again will result in additional cybersecurity exercises

available within the Labtainer framework,
• Tools to simplify lab parameterization of labs will result in more exercises that instructors can assign

without fear of students sharing results, and
• Improved tools for instructors that might facilitate their understanding of student progress and ele-

ments of labs that students have trouble with.

11



THIS PAGE INTENTIONALLY LEFT BLANK

12



LIST OF REFERENCES

[1] —-. Labtainer Lab Manuals. Naval Research Laboratory, Monterey, California, October 2018.
[2] Abel Arvam. Docker: Automated and consistent software deployments. https://www.infoq.

com/news/2013/03/Docker, 27 March 2013.
[3] BurningGlass. Job market intelligence: Cybersecurity jobs, 2015. http://burning-glass.

com/wp-content/uploads/Cybersecurity\_Jobs\_Report\_2015.pdf, 2015.
[4] Cisco. Mitigating the cybersecurity skills shortage. http://www.cisco.com/c/dam/en/us/

products/collateral/security/cybersecurity-talent.pdf, 2015.
[5] Docker docs. Dockerfile reference. https://docs.docker.com/engine/reference/

builder/, November 2017.
[6] Docker.com. Docker. https://www.docker.com, 2017.
[7] W. Du, K. Jayaraman, and N. B. Gaubatz. Enhancing security education with hands-on laboratory

exercises. In Proceedings 5th Annual Sympoisum on Inforamtion Assurance (ASIA’10), June 2010.
[8] Wenliang Du. Seed: Hands-on lab exercises for computer security education. IEEE Security and

Privacy Magazine, 9(5):70–73, September 2011.
[9] Wenliang Du and Ronghua Wang. Seed: A suite of instructional laboratories for computer security

education. J. Educ. Resour. Comput., 8(1):3:1–3:24, March 2008.
[10] Janet Eyler. The power of experiential education. Liberal Education, 95(4), 2009.
[11] Cynthia Irvine and Michael Thompson. Cyberciege and labtainers: Promoting exploration in cyber se-

curity labs. https://www.fbcinc.com/e/nice/presentations/2017/lightning/
L-2_Irvine.pdf, November 2017.

[12] Cynthia E. Irvine, Michael F. Thompson, and Jean Khosalim. Labtainers: A framework for param-
eterized cybersecurity labs using containers. In Proceedings of the National Security Summit, June
2017.

[13] Cynthia E. Irvine, Michael F. Thompson, Michael McCarrian, and Jean Khosalim. Labtainers: A
Docker-based framework for cybersecurity labs. In Proceedings of the 2017 USENIX Workshop on

Advances in Security Education. USENIX, August 2017.
[14] NPS Labtainer Team. Labtainer instructor guide. https://my.nps.

edu/documents/107523844/109121513/labtainer-instructor.pdf/
595fe4b8-9858-48a7-a822-9e9374f1ddd9, 17 November 2017.

[15] NPS Labtainer Team. Labtainer student guide. https://my.nps.
edu/documents/107523844/109121513/labtainer-student.pdf/
a6c49134-4bd4-457f-bb88-f5cb79b34fd0, 17 November 2017.

[16] Ariha Setavad. Demand to fill cybersecurity jobs booming. http://peninsulapress.com/
2015/03/31/cybersecurity-jobs-growth/, 31 March 2015.

[17] M. F. Thompson and C. E. Irvine. Individualizing cybersecurity lab exercises with labtainers. IEEE

Security Privacy, 16(2):91–95, March 2018.
[18] M. F. Thompson and C. E. Irvine. Individualizing cybersecurity lab exercises with labtainers. Com-

puting Edge (reprint), pages 29–33, May 2018.
[19] Michael F. Thompson. Labtainer lab designer user guide. http://my.nps.edu/documents/

107523844/109121513/labdesigner.pdf, 27 October 2017.
[20] Michael F. Thompson. Docker hub - labtainers. https://hub.docker.com/u/mfthomps, April 2019.

13



[21] Michael F. Thompson. Labtainers: A docker-based cyber lab framework.
https://github.com/mfthomps/Labtainers, April 2019.

[22] Michael F. Thompson and Cynthia E. Irvine. Labtainers. https://my.nps.edu/web/c3o/labtainers, April
2019.

[23] Xinli Wang, Yan Bai, and Guy C. Hembroff. Hands-on exercises for it security education. In Pro-

ceedings of the 16th Annual Conference on Information Technology Education, SIGITE ’15, pages
161–166, New York, NY, USA, 2015. ACM.

14



 23 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, Virginia  

 
2. Dudley Knox Library 

Naval Postgraduate School 
Monterey, California  

 
3. Research Sponsored Programs Office, Code 41 

Naval Postgraduate School 
Monterey, CA 93943  

 
 
 
 
 


