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1.  Introduction 

Hierarchical elastomers such as segmented polyureas,1–6 poly(urethane urea)s,7–16 
and polyurethanes17–20 typically consist of a combination of hard and soft segments, 
which often vary considerably in chemical structure. The evolution through self-
association of hard segments, facilitated via strong intermolecular hydrogen 
bonding, would result in microphase separation and a complex microstructure. This 
class of elastomeric materials, as pointed out by Roland and coworkers,1,2 could 
have potential to undergo a transient phase transition upon extreme dynamic 
loading conditions, from rubbery at ambient to become leathery or even glassy 
when the impulse approaches the respective segmental mobility. The discovery of 
this novel molecular mechanism was coined as high-rate, deformation-induced 
glass transition,2 through which the potential toward enhanced energy absorption 
and dissipation was postulated.1,2,21,22 Meanwhile, Hsieh et al. further elucidated 
that intersegment mixing between the soft phase and hard domains was essential 
toward enhanced dynamic stiffening, where a poly(urethane urea), PUU 532-1000, 
revealed moderate improvement in the resistance against impact by a 20-µm steel 
particle at strain rates of approximately 108 s–1, than a polyurea, PU 1000, despite 
both having approximately the same hard segment contents.23 The variation in the 
extent of dynamic stiffening upon impact corroborated well the corresponding 
segmental dynamics. PUU 532-1000 exhibited a segmental  relaxation time 
associated with the soft phase, which was about four orders of magnitude slower 
than that of PU 1000, approximately 1.1 × 10–1 s versus approximately  
2.2 × 10–5 s, determined at 25 °C by broadband dielectric relaxation spectroscopy.23 
Additionally, the segmental dynamics of the local  relaxation of PUU 532-1000 
appeared to be very close to that of the segmental  relaxation of PU 1000, which 
was further indicative of greater intersegment mixing in PUU 532-1000 than PU 
1000.23 Furthermore, recent experimental observations obtained from select model 
two-component polyurethanes clearly elucidated the essence of molecular 
attributes toward dynamic stiffening, where a predominantly amorphous 
polyurethane exhibited greater dynamic stiffening than the corresponding 
semicrystalline counterpart.24 

Meanwhile, advancements in high-performance fibers, inorganic fillers, 
nanoparticles, and carbon nanotubes have led to the development of lightweight 
polymer matrix composites for integration into design of a broad range of 
engineered structures and components used in automobiles, aircrafts, as well as 
lightweight military tactical vehicles.25–30 In practice, organosilanes are utilized in 
surface modification of fibers or fillers to yield better dispersion, thereby mitigating 
agglomeration of these reinforcement materials.31,32 Additionally, surface 
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modification can lead to proper interface interaction and subsequently adequate 
stress transfer between matrix and reinforcement in order to achieve the desired 
mechanical properties and performance characteristics of the composites. Zirconia 
(ZrO2) is known to exhibit high hardness, stiffness, flexural strength, and fracture 
toughness, as well as a low coefficient of friction.33,34 Additionally, recent research 
efforts revealed that addition of dopants such as ceria and yttria to zirconia had led 
to the development of unique characteristics such as shape memory or 
superelasticity, where stress-induced martensitic transformation was noted between 
tetragonal and monoclinic phases.35–37 This transformation was observed in micron-
sized, ceria-doped zirconia particles and was shown to be reproducible upon 
deformation over hundreds of cycles to strains up to approximately 4.7%.38 There 
has been increased interests in the development of ZrO2-based and ZrO2-containing 
ceramics particularly with respect to their potential toward enhanced fracture 
toughness.39 

The motivation for this research is to exploit the intrinsic hardness of ZrO2 along 
with the dynamic stiffening characteristics of hierarchical elastomers for 
integration into fabrication of hybrid composites for dynamic mechanical 
properties optimization. Recent progress has shown that incorporation of zirconia 
nanoparticles functionalized by 3-aminopropyltriethoxysilane led to a strong 
covalent bond with the epoxy-based matrix and subsequently greater interlaminar 
strength of the resultant fiber-reinforced, zirconia-modified epoxy matrix 
composites.32 Successful silanization of zirconia nanoparticles was hypothesized as 
a result of the reaction of organosilanes with surface hydroxyl groups, which was 
attributed to the presence of strongly absorbed water from the atmosphere.32 
Meanwhile, it was also reported that the surface of zirconia contains a variety of 
catalytically active sites,40 including Brønsted acidic and basic hydroxyl groups and 
coordinatively unsaturated Lewis acidic-base Zr4+O2- pairs.41 The presence of 
Lewis acidic sites was shown to be more abundant on the monoclinic phase,41 and 
further, the nature of the zirconia phases strongly affected the adsorption of carbon 
monoxide (CO) and carbon dioxide (CO2).41 A higher CO2 adsorption capacity of 
the monoclinic-ZrO2 was attributed to the presence of a higher concentration and 
basicity of the hydroxyl groups on this polymorph, as well as the stronger Lewis 
acidity of Zr4+ cations and the stronger Lewis basicity of O2- anions than the 
tetragonal counterpart.41 

In this work, we undertake an interface design approach through exploring the 
inherent dipolar characteristics of pristine zirconia—whereby zirconia particles are 
thoroughly premixed with an oligomeric diamine, which is also a reactant for 
polyurea—as an alternative pathway to the aforementioned organosilane-based 
surface functionalization. This is followed by addition of diisocyanate into the 
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oligomeric diamine/zirconia mixture, where an in-situ polymerization/casting 
process encompasses completion of reaction along with the formation of 
zirconia/polyurea composites. We investigate the extent of dipolar interaction 
between zirconia and polyurea in the matrix, as well as their influence on the 
material characteristics of resultant hybrid composites. 

2.  Experimental 

The bulk PU 1000 was prepared by reaction of poly(tetramethylene oxide di-p-
aminobenzoate) (Versalink P1000, Evonik)42 with a polycarbodiimide-modified 
diphenylmethane diisocyanate (ISONATE 143 L, Dow Chemical)43 at a 4:1 weight 
ratio, as shown in Fig. 1. Undoped zirconia microparticles in the monoclinic phase 
(SF-EXTRA, Saint Gobain) were used in this study. A representative crystal 
structure of zirconia is shown in Fig. 2.40 Meanwhile, characterization of particle-
size distribution provided by Saint Gobain using a Microtrac–FRA9200 analysis 
showed the distribution to be d10 = 0.441 µm, d50 = 0.889 µm, and d90 = 12.32 µm. 
A two-step synthesis route was utilized in the fabrication of zirconia-polyurea 
matrix composites; zirconia particles were first premixed with oligomeric diamine 
and then followed by the addition of diisocyanate to the mixture. In each step, 
thorough mixing and degassing was ensured during processing; the mixture was 
then cast between glass plates to complete polymerization. The reaction and final 
consolidation of the mixtures were carried out in a vacuum oven, first at 25 C for 
8 h and then at 80 C for additional 12 h, for both the bulk and hybrid composites. 

 

ISONATE 143L (polycarbodiimide-modified diphenylmethane diisocyanate) 

 

Versalink P1000 (oligomeric diamine) 

Fig. 1 Chemical structure of ISONATE 143L43 and Versalink P-1000 oligomeric 
diamine6,42 
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Fig. 2 Representative crystal structure of the zirconia surface 

The attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectra 
were acquired with 512 scans at a resolution of 1 cm–1 using a Thermo Scientific 
Nicolet 6700 FT–IR with a diamond ATR cell.  

Wide angle X-ray diffraction (WAXD) and small angle X-ray scattering (SAXS) 
measurements were carried out in a SAXSLAB (Xenocs) instrument with a 
DECTRIS PILATUS 300K detector. The system has a microbeam X-ray source  
(λ = 1.54 Å) as produced by Cu-Kα, and the voltage and current were set to 45 kV 
and 0.66 mA, respectively. The WAXD data are expressed in terms of intensity 
versus 2, where 2 is the scattering angle, while SAXS data are based on the 
scattering vector q, where q = 4 sin()/,  is the wavelength of the incident 
radiation, and  is one half the scattering angle.  

Thermogravimetric analysis (TGA) measurements were carried out using a TA 
Instruments Discovery TGA, where specimens were heated at 20 C/min up to  
600 C for determination of the residual weight upon combustion in air. 

Dynamic mechanical analysis (DMA) data were obtained with a TA Instruments 
Q800 DMA at 1 Hz and 0.1% strain, from –120 to 100 °C at a heating rate  
of 2 °C/min.  

3.  Results 

3.1  Material Characteristics 

We use the TGA measurements to determine the efficacy of a step-wise processing 
route for incorporation and mixing of zirconia microparticles into fabrication of 
hybrid composites. In Fig. 3, results from TGA reveal the presence of a two-step 
thermal degradation characteristic in the bulk as well as both zirconia composites, 
which is consistent with previously reported observations on the bulk polyurea 
(PU).44 Meanwhile, it is noteworthy that all three materials exhibit the char 
formation after being heated to 600 C in air. Results of the percentage weight 
(wt%) change obtained as a function of temperature are compared, as shown in  
Fig. 3, where the residual weight fraction is determined to be approximately 7.2%, 
52.6%, and 59.8% for the bulk, hybrid 1, and hybrid 2, respectively. In comparison, 
the residual weight-percent data of the hybrid composites are comparable with the 
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composition of zirconia used in the corresponding PU hybrid composites, 50.3 and 
58.1 wt%, respectively, given the fact that the extent of char associated with each 
PU matrix may vary. Meanwhile, the volume percent of the zirconia content 
calculated based on the initial composition is approximately 16.8% and 19.6% for 
hybrid 1 and hybrid 2, respectively, where the density of zirconia is taken as  
5.68 g/cm3,45 and for the bulk PU is 1.09 g/cm3, which was measured by following 
the buoyancy method.  

 

Fig. 3 Residual weight-percent as a function of temperature obtained from thermal 
degradation by TGA for PU 1000 bulk (black), PU hybrid 1 (blue), and PU hybrid 2 (red) 

3.2  Interface‐Induced Intermolecular Interaction 

The state of hydrogen-bonding association measured by ATR-FTIR is used to 
discern whether interface interaction between the PU matrix and zirconia is 
plausible. Figure 4 compares the ATR-FTIR spectra obtained for the bulk PU 1000 
and both hybrid 1 and hybrid 2 composites. Generally, the stretching modes of 
hydrogen-bonded NH groups ((NH)) and carbonyls ((C=O)) have distinct 
wavenumber assignments in the free, disordered, and ordered states.6 For PU 1000, 
the ordered band of NH stretching are predominantly associated with the aligned 
urea linkages in the hard domain phase, while the disordered bands as well as those 
associated with hydrogen-bonded ureas to the ether oxygen groups in 
polytetramethylene oxide (PTMO) were reported to arise from hydrogen bonds 
present in the mixed phase.6 The stretching absorption bands of free, disordered, 
and ordered hydrogen-bonded N–H groups are observed at approximately 3460, 
3360, and 3303 cm–1, respectively, consistent with previously reported data.6 
Meanwhile, the carbonyl bands are observed at approximately 1711 and  
1642 cm–1 for the free ester-carbonyls46 and ordered hydrogen-bonded urea-
carbonyl moieties, respectively.6 
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Fig. 4 ATR-FTIR spectra obtained for a) the carbonyl stretching regions and b) the NH 
stretching regions of the bulk PU 1000 (black), hybrid 1 (blue), and hybrid 2 (red); arrows in 
b) point to the ordered (orange) and disordered (green) stretching, as well as ether oxygen 
stretching (purple) regions 

It is envisioned that zirconia could act as a Lewis acid41 as well as a hydrogen-bond 
donor by the presence of [Zr4+O2−] and [Zr-OH], respectively, for participating in 
intermolecular interaction via dipolar or hydrogen bonding with the carbonyls of 
the urea moieties in the matrix. As a result, the carbonyls stretching reveals a slight 
shift of the peak frequency associated with the hydrogen-bonded ureas to lower 
wavenumbers, where the spectra become broadened as the zirconia content 
increases, in comparison to that of the bulk PU. This is in contrast to the ester-
carbonyl stretching, which remains unchanged among the bulk and both hybrid 
composites. Meanwhile, the broadening of the urea-carbonyl stretching could be 
related to the heterogeneity of the zirconia-polyurea composites, where the 
carbonyls are interacting with zirconia to various degrees. Correspondingly, it is 
apparent that for the hybrid composites the relative intensity of the disordered 
versus the ordered N–H stretching increases, presumably as a result of the 
monodentate hydrogen-bond formation due to the presence of zirconia interaction, 
rather than the bidentate urea–urea linkage predominantly seen in the bulk. 
Meanwhile, a weak shoulder at approximately 3260 cm–1 is noted in the hybrids, 
which is presumably due to the hydrogen-bond formation between the amide 
protons of urea and the ether oxygen moieties in PTMO. These observations are 
strongly indicative that an interface interaction is present between the PU matrix 
and zirconia, even without addition of any organosilane surfactants. 
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3.3  Evolution of Microstructure  

The influence of zirconia incorporation on the microstructure was examined by 
SAXS and WAXD measurements. In SAXS, the variation in the scattering intensity 
profiles is shown in Fig. 5, where PU 1000 exhibits a broad scattering peak. The 
mean interdomain spacing (d), calculated based on the peak maxima (qmax), where 
q is the scattering vector and d = 2/qmax, is ∼7 nm, which is consistent with the 
reported data.6 Meanwhile, addition of zirconia microparticles results in a 
considerable change in the scattering, which becomes significantly broadened and 
indistinct, as shown in Fig. 5 for the hybrid 1 composite, presumably reflecting the 
influence of a broad range of the particle-size distribution in zirconia.   

 

Fig. 5 SAXS profiles of PU 1000 (black) and hybrid 1 composite (blue) 

The WAXD data, shown in Fig. 6, reveal the presence of an amorphous halo at 
approximately 19.6 for the bulk PU 1000. This amorphous halo is also observed 
in hybrid 1 at a similar 2; however, its intensity is moderately decreased. For 
hybrid 2, the amorphous halo becomes relatively insignificant. This trend in the 
amorphous halo intensity corroborates well with the variation in the extent of 
disordered versus ordered hydrogen-bonded N–H stretching observed in ATR-
FTIR for both hybrid composites than that of the bulk, as shown in Fig. 4. 
Meanwhile, there are additional diffraction peaks present in both hybrid 1 and 
hybrid 2, at 2 of approximately 17.4, 24.0, 28.0, and 31.3, which are consistent 
with the diffraction peaks associated with the crystal structure of zirconia, also 
shown in Fig. 6.  
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Fig. 6 WAXD profiles of PU 1000 (black), hybrid 1 (blue), hybrid 2 (red), and zirconia 
powder (green) 

3.4  Dynamic Mechanical Relaxation Measurements 

We are particularly interested in the influence of zirconia incorporation that could 
affect the viscoelastic relaxation associated with the matrix elastomer, PU 1000. 
Figure 7 is a plot of the storage modulus as a function of temperature obtained at  
1 Hz via DMA for PU 1000 and both zirconia-hybrid composites. Incorporation of 
zirconia clearly results in an increase in the storage modulus of both hybrid 
composites compared to that of the bulk, where the ambient rubbery storage 
modulus is about the same for both hybrid composites, approximately 99100 MPa 
versus approximately 58 MPa for the bulk. Additionally, there is an appreciable 
difference revealed as temperature decreases and reaches approximately 5 C and 
over the rubber-to-glass transition region. For comparison, the glassy storage 
modulus determined at –80 C is approximately 2713 MPa for PU hybrid 2, which 
is higher than that of PU hybrid 1 and the bulk, approximately 2329 and 1679 MPa, 
respectively. Meanwhile, the loss modulus data show the presence of a distinct 
segmental  relaxation, Tg, at a temperature of approximately –50 C (not shown), 
corresponding to the Tg of the soft phase in PU 1000, which is consistent with the 
previously reported data.6  

It is noteworthy that for hybrid composites the tan data reveal the presence of a 
significant broadening of the soft phase glass transition toward higher temperatures, 
in contrast to a well-defined segmental α relaxation observed in the bulk, as shown 
in Fig. 8. We hypothesize that the broadening could be facilitated through a strong 
interface interaction, via either dipolar or hydrogen-bond interaction, between the 
PU matrix and the surface of zirconia microparticles. While addition of zirconia 
has shown to result in a decrease in the relaxation intensity in both hybrid 
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composites than the bulk, partly as a result of less matrix material participating in 
the glass transition, the hybrid 2 composite nevertheless reveals a slight increase in 
the tan loss factor than hybrid 1 over the broad soft phase glass transition region. 
This trend in the broadened relaxation corroborates well the variation in relative 
intensity of the disordered versus the ordered N–H stretching as well as the shift 
and broadening associated with the corresponding urea-carbonyl stretching, 
revealed via ATR-FTIR as shown in Fig. 4.  

 

Fig. 7 The temperature dependence of storage modulus data obtained at 1 Hz via DMA for 
PU 1000 bulk (black), PU hybrid 1 (blue), and PU hybrid 2 (red) 

 

Fig. 8 DMA tan  data obtained at 1 Hz for PU 1000 bulk (black), PU hybrid 1 (blue), and 
PU hybrid 2 (red) 
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4.  Discussion 

In hybrid composites, as the filler content increases, one of the common 
characteristics is that many polymer chains are in close contact with reinforced 
fillers, where the confinement effects on matrix elastomers have been well 
studied.47–49 Meanwhile, it was reported that immobilization of polymer chains near 
the interface could affect the chain dynamics and potentially induce glassy behavior 
of interfacial chains at temperature above the Tg of the bulk polymer.47 

Here, we investigate whether enhanced interactions noted between zirconia and PU 
in the matrix, which appears to disrupt the propensity of urea moieties to form 
ordered bidentate hydrogen-bond interaction, could also be an attribute to the 
variation in the dynamic storage modulus of matrix elastomers observed in hybrid 
composites. For better illustration, Fig. 9 compares the normalized storage modulus 
data, based on the ratio of the respective modulus of each hybrid composite versus 
the bulk, as a function of temperature. It is noteworthy that the normalized storage 
modulus data look very similar over the ambient temperature range, yet a deviation 
is noted that commences at a temperature approximately between –5 and 5 C, and 
becomes significant as the temperature further decreases. This inception 
temperature range is very close to the onset temperature of the rubber-to-glass 
transition of the bulk PU 1000, as shown in Fig. 10, which was previously 
determined by broadband dielectric relaxation spectroscopy measurement.23 These 
observations corroborate well the trend in the broadening of segmental  relaxation, 
as shown in Fig. 8, which indirectly validates the influence of interface interaction 
that could affect the matrix dynamics of PU 1000 in zirconia hybrid composites. 
Further, we hypothesize that the shift of soft phase glass transition to higher 
temperatures is a plausible attribute to a significant increase in sub-Tg dynamic 
storage modulus of matrix elastomer in hybrid 1 as compared to hybrid 2.  
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Fig. 9 Comparison of the ratio of storage modulus (hybrids/bulk) data obtained at 1 Hz via 
DMA for PU hybrid 1 (blue) and PU hybrid 2 (red)  

 

Fig. 10 Broadband dielectric relaxation data of the isochronal dielectric loss obtained at  
1 Hz as a function of temperature for PU 1000 (arrow points to the onset temperature of 
rubber-to-glass transition) 

Meanwhile, the relaxation broadening phenomenon observed as a result of 
enhanced interface interaction in zirconia PU 1000 hybrid composites resembles 
the molecular influence on the segmental α relaxation observed via DMA in the 
aforementioned PUU 532-1000 versus PU 1000, as shown in Fig. 11, where the 
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extent of intersegment mixing is significantly greater in PUU 532-1000 than  
PU 1000.   

 

Fig. 11 DMA tan  data obtained at 1 Hz for PUU 532-1000 (blue) and PU 1000 (red) 

5.  Conclusion 

We have demonstrated a plausible pathway where the use of an oligomeric diamine 
is effective to first facilitate dispersion of zirconia particles, followed by the 
completion of in-situ polymerization to form zirconia-polyurea matrix hybrid 
composites. This process route is greatly desired, as there is no need of 
organosilanes for surface functionalization of zirconia nor the use of any solvent 
for compounding of zirconia-polyurea mixtures. 

We hypothesize that addition of zirconia microparticles could potentially interfere 
the bidentate urea–urea linkage formation, presumably facilitated through interface 
interaction via hydrogen bonding. This would presumably promote intersegment 
hydrogen bonding between the dispersed hard segments and the neighboring soft 
segments. Enhanced interface interaction is evidenced by the presence of relaxation 
broadening along with an increase in the relative intensity of the tan data in DMA, 
as well as a shift and broadening of the carbonyl stretching in ATR-FTIR, as the 
zirconia content increases in hybrid composites. 

Meanwhile, it is envisioned that a synergistic effect involving stress-induced 
martensitic transformation in zirconia along with a transient high-rate deformation-
induced rubber-to-glass transition in a PU matrix elastomer could lead to the 
enhanced dynamic stiffening and strengthening characteristics required for 
protection against extreme dynamic environments.   
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List of Symbols, Abbreviations, and Acronyms 

ATR attenuated total reflectance 

DMA dynamic mechanical analysis 

FTIR Fourier transform infrared spectroscopy 

PTMO polytetramethylene oxide  

PU polyurea 

PUU poly(urethane urea) 

SAPI small arms protective insert 

SAXS small angle X-ray scattering 

TGA thermogravimetric analysis 

UHMWPE ultrahigh molecular weight polyethylene 

WAXD wide angle X-ray diffraction 

ZrO2 zirconia 
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